Merge remote-tracking branch 'asoc/topic/tas5270' into asoc-next
[cascardo/linux.git] / drivers / misc / lkdtm.c
1 /*
2  * Kprobe module for testing crash dumps
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2006
19  *
20  * Author: Ankita Garg <ankita@in.ibm.com>
21  *
22  * This module induces system failures at predefined crashpoints to
23  * evaluate the reliability of crash dumps obtained using different dumping
24  * solutions.
25  *
26  * It is adapted from the Linux Kernel Dump Test Tool by
27  * Fernando Luis Vazquez Cao <http://lkdtt.sourceforge.net>
28  *
29  * Debugfs support added by Simon Kagstrom <simon.kagstrom@netinsight.net>
30  *
31  * See Documentation/fault-injection/provoke-crashes.txt for instructions
32  */
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/kernel.h>
36 #include <linux/fs.h>
37 #include <linux/module.h>
38 #include <linux/buffer_head.h>
39 #include <linux/kprobes.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/interrupt.h>
43 #include <linux/hrtimer.h>
44 #include <linux/slab.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <linux/debugfs.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mman.h>
49 #include <asm/cacheflush.h>
50
51 #ifdef CONFIG_IDE
52 #include <linux/ide.h>
53 #endif
54
55 /*
56  * Make sure our attempts to over run the kernel stack doesn't trigger
57  * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
58  * recurse past the end of THREAD_SIZE by default.
59  */
60 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
61 #define REC_STACK_SIZE (CONFIG_FRAME_WARN / 2)
62 #else
63 #define REC_STACK_SIZE (THREAD_SIZE / 8)
64 #endif
65 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
66
67 #define DEFAULT_COUNT 10
68 #define EXEC_SIZE 64
69
70 enum cname {
71         CN_INVALID,
72         CN_INT_HARDWARE_ENTRY,
73         CN_INT_HW_IRQ_EN,
74         CN_INT_TASKLET_ENTRY,
75         CN_FS_DEVRW,
76         CN_MEM_SWAPOUT,
77         CN_TIMERADD,
78         CN_SCSI_DISPATCH_CMD,
79         CN_IDE_CORE_CP,
80         CN_DIRECT,
81 };
82
83 enum ctype {
84         CT_NONE,
85         CT_PANIC,
86         CT_BUG,
87         CT_WARNING,
88         CT_EXCEPTION,
89         CT_LOOP,
90         CT_OVERFLOW,
91         CT_CORRUPT_STACK,
92         CT_UNALIGNED_LOAD_STORE_WRITE,
93         CT_OVERWRITE_ALLOCATION,
94         CT_WRITE_AFTER_FREE,
95         CT_READ_AFTER_FREE,
96         CT_WRITE_BUDDY_AFTER_FREE,
97         CT_READ_BUDDY_AFTER_FREE,
98         CT_SOFTLOCKUP,
99         CT_HARDLOCKUP,
100         CT_SPINLOCKUP,
101         CT_HUNG_TASK,
102         CT_EXEC_DATA,
103         CT_EXEC_STACK,
104         CT_EXEC_KMALLOC,
105         CT_EXEC_VMALLOC,
106         CT_EXEC_USERSPACE,
107         CT_ACCESS_USERSPACE,
108         CT_WRITE_RO,
109         CT_WRITE_RO_AFTER_INIT,
110         CT_WRITE_KERN,
111         CT_WRAP_ATOMIC
112 };
113
114 static char* cp_name[] = {
115         "INT_HARDWARE_ENTRY",
116         "INT_HW_IRQ_EN",
117         "INT_TASKLET_ENTRY",
118         "FS_DEVRW",
119         "MEM_SWAPOUT",
120         "TIMERADD",
121         "SCSI_DISPATCH_CMD",
122         "IDE_CORE_CP",
123         "DIRECT",
124 };
125
126 static char* cp_type[] = {
127         "PANIC",
128         "BUG",
129         "WARNING",
130         "EXCEPTION",
131         "LOOP",
132         "OVERFLOW",
133         "CORRUPT_STACK",
134         "UNALIGNED_LOAD_STORE_WRITE",
135         "OVERWRITE_ALLOCATION",
136         "WRITE_AFTER_FREE",
137         "READ_AFTER_FREE",
138         "WRITE_BUDDY_AFTER_FREE",
139         "READ_BUDDY_AFTER_FREE",
140         "SOFTLOCKUP",
141         "HARDLOCKUP",
142         "SPINLOCKUP",
143         "HUNG_TASK",
144         "EXEC_DATA",
145         "EXEC_STACK",
146         "EXEC_KMALLOC",
147         "EXEC_VMALLOC",
148         "EXEC_USERSPACE",
149         "ACCESS_USERSPACE",
150         "WRITE_RO",
151         "WRITE_RO_AFTER_INIT",
152         "WRITE_KERN",
153         "WRAP_ATOMIC"
154 };
155
156 static struct jprobe lkdtm;
157
158 static int lkdtm_parse_commandline(void);
159 static void lkdtm_handler(void);
160
161 static char* cpoint_name;
162 static char* cpoint_type;
163 static int cpoint_count = DEFAULT_COUNT;
164 static int recur_count = REC_NUM_DEFAULT;
165
166 static enum cname cpoint = CN_INVALID;
167 static enum ctype cptype = CT_NONE;
168 static int count = DEFAULT_COUNT;
169 static DEFINE_SPINLOCK(count_lock);
170 static DEFINE_SPINLOCK(lock_me_up);
171
172 static u8 data_area[EXEC_SIZE];
173
174 static const unsigned long rodata = 0xAA55AA55;
175 static unsigned long ro_after_init __ro_after_init = 0x55AA5500;
176
177 module_param(recur_count, int, 0644);
178 MODULE_PARM_DESC(recur_count, " Recursion level for the stack overflow test");
179 module_param(cpoint_name, charp, 0444);
180 MODULE_PARM_DESC(cpoint_name, " Crash Point, where kernel is to be crashed");
181 module_param(cpoint_type, charp, 0444);
182 MODULE_PARM_DESC(cpoint_type, " Crash Point Type, action to be taken on "\
183                                 "hitting the crash point");
184 module_param(cpoint_count, int, 0644);
185 MODULE_PARM_DESC(cpoint_count, " Crash Point Count, number of times the "\
186                                 "crash point is to be hit to trigger action");
187
188 static unsigned int jp_do_irq(unsigned int irq)
189 {
190         lkdtm_handler();
191         jprobe_return();
192         return 0;
193 }
194
195 static irqreturn_t jp_handle_irq_event(unsigned int irq,
196                                        struct irqaction *action)
197 {
198         lkdtm_handler();
199         jprobe_return();
200         return 0;
201 }
202
203 static void jp_tasklet_action(struct softirq_action *a)
204 {
205         lkdtm_handler();
206         jprobe_return();
207 }
208
209 static void jp_ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
210 {
211         lkdtm_handler();
212         jprobe_return();
213 }
214
215 struct scan_control;
216
217 static unsigned long jp_shrink_inactive_list(unsigned long max_scan,
218                                              struct zone *zone,
219                                              struct scan_control *sc)
220 {
221         lkdtm_handler();
222         jprobe_return();
223         return 0;
224 }
225
226 static int jp_hrtimer_start(struct hrtimer *timer, ktime_t tim,
227                             const enum hrtimer_mode mode)
228 {
229         lkdtm_handler();
230         jprobe_return();
231         return 0;
232 }
233
234 static int jp_scsi_dispatch_cmd(struct scsi_cmnd *cmd)
235 {
236         lkdtm_handler();
237         jprobe_return();
238         return 0;
239 }
240
241 #ifdef CONFIG_IDE
242 static int jp_generic_ide_ioctl(ide_drive_t *drive, struct file *file,
243                         struct block_device *bdev, unsigned int cmd,
244                         unsigned long arg)
245 {
246         lkdtm_handler();
247         jprobe_return();
248         return 0;
249 }
250 #endif
251
252 /* Return the crashpoint number or NONE if the name is invalid */
253 static enum ctype parse_cp_type(const char *what, size_t count)
254 {
255         int i;
256
257         for (i = 0; i < ARRAY_SIZE(cp_type); i++) {
258                 if (!strcmp(what, cp_type[i]))
259                         return i + 1;
260         }
261
262         return CT_NONE;
263 }
264
265 static const char *cp_type_to_str(enum ctype type)
266 {
267         if (type == CT_NONE || type < 0 || type > ARRAY_SIZE(cp_type))
268                 return "None";
269
270         return cp_type[type - 1];
271 }
272
273 static const char *cp_name_to_str(enum cname name)
274 {
275         if (name == CN_INVALID || name < 0 || name > ARRAY_SIZE(cp_name))
276                 return "INVALID";
277
278         return cp_name[name - 1];
279 }
280
281
282 static int lkdtm_parse_commandline(void)
283 {
284         int i;
285         unsigned long flags;
286
287         if (cpoint_count < 1 || recur_count < 1)
288                 return -EINVAL;
289
290         spin_lock_irqsave(&count_lock, flags);
291         count = cpoint_count;
292         spin_unlock_irqrestore(&count_lock, flags);
293
294         /* No special parameters */
295         if (!cpoint_type && !cpoint_name)
296                 return 0;
297
298         /* Neither or both of these need to be set */
299         if (!cpoint_type || !cpoint_name)
300                 return -EINVAL;
301
302         cptype = parse_cp_type(cpoint_type, strlen(cpoint_type));
303         if (cptype == CT_NONE)
304                 return -EINVAL;
305
306         for (i = 0; i < ARRAY_SIZE(cp_name); i++) {
307                 if (!strcmp(cpoint_name, cp_name[i])) {
308                         cpoint = i + 1;
309                         return 0;
310                 }
311         }
312
313         /* Could not find a valid crash point */
314         return -EINVAL;
315 }
316
317 static int recursive_loop(int remaining)
318 {
319         char buf[REC_STACK_SIZE];
320
321         /* Make sure compiler does not optimize this away. */
322         memset(buf, (remaining & 0xff) | 0x1, REC_STACK_SIZE);
323         if (!remaining)
324                 return 0;
325         else
326                 return recursive_loop(remaining - 1);
327 }
328
329 static void do_nothing(void)
330 {
331         return;
332 }
333
334 /* Must immediately follow do_nothing for size calculuations to work out. */
335 static void do_overwritten(void)
336 {
337         pr_info("do_overwritten wasn't overwritten!\n");
338         return;
339 }
340
341 static noinline void corrupt_stack(void)
342 {
343         /* Use default char array length that triggers stack protection. */
344         char data[8];
345
346         memset((void *)data, 0, 64);
347 }
348
349 static void noinline execute_location(void *dst)
350 {
351         void (*func)(void) = dst;
352
353         pr_info("attempting ok execution at %p\n", do_nothing);
354         do_nothing();
355
356         memcpy(dst, do_nothing, EXEC_SIZE);
357         flush_icache_range((unsigned long)dst, (unsigned long)dst + EXEC_SIZE);
358         pr_info("attempting bad execution at %p\n", func);
359         func();
360 }
361
362 static void execute_user_location(void *dst)
363 {
364         /* Intentionally crossing kernel/user memory boundary. */
365         void (*func)(void) = dst;
366
367         pr_info("attempting ok execution at %p\n", do_nothing);
368         do_nothing();
369
370         if (copy_to_user((void __user *)dst, do_nothing, EXEC_SIZE))
371                 return;
372         flush_icache_range((unsigned long)dst, (unsigned long)dst + EXEC_SIZE);
373         pr_info("attempting bad execution at %p\n", func);
374         func();
375 }
376
377 static void lkdtm_do_action(enum ctype which)
378 {
379         switch (which) {
380         case CT_PANIC:
381                 panic("dumptest");
382                 break;
383         case CT_BUG:
384                 BUG();
385                 break;
386         case CT_WARNING:
387                 WARN_ON(1);
388                 break;
389         case CT_EXCEPTION:
390                 *((int *) 0) = 0;
391                 break;
392         case CT_LOOP:
393                 for (;;)
394                         ;
395                 break;
396         case CT_OVERFLOW:
397                 (void) recursive_loop(recur_count);
398                 break;
399         case CT_CORRUPT_STACK:
400                 corrupt_stack();
401                 break;
402         case CT_UNALIGNED_LOAD_STORE_WRITE: {
403                 static u8 data[5] __attribute__((aligned(4))) = {1, 2,
404                                 3, 4, 5};
405                 u32 *p;
406                 u32 val = 0x12345678;
407
408                 p = (u32 *)(data + 1);
409                 if (*p == 0)
410                         val = 0x87654321;
411                 *p = val;
412                  break;
413         }
414         case CT_OVERWRITE_ALLOCATION: {
415                 size_t len = 1020;
416                 u32 *data = kmalloc(len, GFP_KERNEL);
417
418                 data[1024 / sizeof(u32)] = 0x12345678;
419                 kfree(data);
420                 break;
421         }
422         case CT_WRITE_AFTER_FREE: {
423                 int *base, *again;
424                 size_t len = 1024;
425                 /*
426                  * The slub allocator uses the first word to store the free
427                  * pointer in some configurations. Use the middle of the
428                  * allocation to avoid running into the freelist
429                  */
430                 size_t offset = (len / sizeof(*base)) / 2;
431
432                 base = kmalloc(len, GFP_KERNEL);
433                 pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
434                 pr_info("Attempting bad write to freed memory at %p\n",
435                         &base[offset]);
436                 kfree(base);
437                 base[offset] = 0x0abcdef0;
438                 /* Attempt to notice the overwrite. */
439                 again = kmalloc(len, GFP_KERNEL);
440                 kfree(again);
441                 if (again != base)
442                         pr_info("Hmm, didn't get the same memory range.\n");
443
444                 break;
445         }
446         case CT_READ_AFTER_FREE: {
447                 int *base, *val, saw;
448                 size_t len = 1024;
449                 /*
450                  * The slub allocator uses the first word to store the free
451                  * pointer in some configurations. Use the middle of the
452                  * allocation to avoid running into the freelist
453                  */
454                 size_t offset = (len / sizeof(*base)) / 2;
455
456                 base = kmalloc(len, GFP_KERNEL);
457                 if (!base)
458                         break;
459
460                 val = kmalloc(len, GFP_KERNEL);
461                 if (!val) {
462                         kfree(base);
463                         break;
464                 }
465
466                 *val = 0x12345678;
467                 base[offset] = *val;
468                 pr_info("Value in memory before free: %x\n", base[offset]);
469
470                 kfree(base);
471
472                 pr_info("Attempting bad read from freed memory\n");
473                 saw = base[offset];
474                 if (saw != *val) {
475                         /* Good! Poisoning happened, so declare a win. */
476                         pr_info("Memory correctly poisoned (%x)\n", saw);
477                         BUG();
478                 }
479                 pr_info("Memory was not poisoned\n");
480
481                 kfree(val);
482                 break;
483         }
484         case CT_WRITE_BUDDY_AFTER_FREE: {
485                 unsigned long p = __get_free_page(GFP_KERNEL);
486                 if (!p)
487                         break;
488                 pr_info("Writing to the buddy page before free\n");
489                 memset((void *)p, 0x3, PAGE_SIZE);
490                 free_page(p);
491                 schedule();
492                 pr_info("Attempting bad write to the buddy page after free\n");
493                 memset((void *)p, 0x78, PAGE_SIZE);
494                 /* Attempt to notice the overwrite. */
495                 p = __get_free_page(GFP_KERNEL);
496                 free_page(p);
497                 schedule();
498
499                 break;
500         }
501         case CT_READ_BUDDY_AFTER_FREE: {
502                 unsigned long p = __get_free_page(GFP_KERNEL);
503                 int saw, *val;
504                 int *base;
505
506                 if (!p)
507                         break;
508
509                 val = kmalloc(1024, GFP_KERNEL);
510                 if (!val) {
511                         free_page(p);
512                         break;
513                 }
514
515                 base = (int *)p;
516
517                 *val = 0x12345678;
518                 base[0] = *val;
519                 pr_info("Value in memory before free: %x\n", base[0]);
520                 free_page(p);
521                 pr_info("Attempting to read from freed memory\n");
522                 saw = base[0];
523                 if (saw != *val) {
524                         /* Good! Poisoning happened, so declare a win. */
525                         pr_info("Memory correctly poisoned (%x)\n", saw);
526                         BUG();
527                 }
528                 pr_info("Buddy page was not poisoned\n");
529
530                 kfree(val);
531                 break;
532         }
533         case CT_SOFTLOCKUP:
534                 preempt_disable();
535                 for (;;)
536                         cpu_relax();
537                 break;
538         case CT_HARDLOCKUP:
539                 local_irq_disable();
540                 for (;;)
541                         cpu_relax();
542                 break;
543         case CT_SPINLOCKUP:
544                 /* Must be called twice to trigger. */
545                 spin_lock(&lock_me_up);
546                 /* Let sparse know we intended to exit holding the lock. */
547                 __release(&lock_me_up);
548                 break;
549         case CT_HUNG_TASK:
550                 set_current_state(TASK_UNINTERRUPTIBLE);
551                 schedule();
552                 break;
553         case CT_EXEC_DATA:
554                 execute_location(data_area);
555                 break;
556         case CT_EXEC_STACK: {
557                 u8 stack_area[EXEC_SIZE];
558                 execute_location(stack_area);
559                 break;
560         }
561         case CT_EXEC_KMALLOC: {
562                 u32 *kmalloc_area = kmalloc(EXEC_SIZE, GFP_KERNEL);
563                 execute_location(kmalloc_area);
564                 kfree(kmalloc_area);
565                 break;
566         }
567         case CT_EXEC_VMALLOC: {
568                 u32 *vmalloc_area = vmalloc(EXEC_SIZE);
569                 execute_location(vmalloc_area);
570                 vfree(vmalloc_area);
571                 break;
572         }
573         case CT_EXEC_USERSPACE: {
574                 unsigned long user_addr;
575
576                 user_addr = vm_mmap(NULL, 0, PAGE_SIZE,
577                                     PROT_READ | PROT_WRITE | PROT_EXEC,
578                                     MAP_ANONYMOUS | MAP_PRIVATE, 0);
579                 if (user_addr >= TASK_SIZE) {
580                         pr_warn("Failed to allocate user memory\n");
581                         return;
582                 }
583                 execute_user_location((void *)user_addr);
584                 vm_munmap(user_addr, PAGE_SIZE);
585                 break;
586         }
587         case CT_ACCESS_USERSPACE: {
588                 unsigned long user_addr, tmp = 0;
589                 unsigned long *ptr;
590
591                 user_addr = vm_mmap(NULL, 0, PAGE_SIZE,
592                                     PROT_READ | PROT_WRITE | PROT_EXEC,
593                                     MAP_ANONYMOUS | MAP_PRIVATE, 0);
594                 if (user_addr >= TASK_SIZE) {
595                         pr_warn("Failed to allocate user memory\n");
596                         return;
597                 }
598
599                 if (copy_to_user((void __user *)user_addr, &tmp, sizeof(tmp))) {
600                         pr_warn("copy_to_user failed\n");
601                         vm_munmap(user_addr, PAGE_SIZE);
602                         return;
603                 }
604
605                 ptr = (unsigned long *)user_addr;
606
607                 pr_info("attempting bad read at %p\n", ptr);
608                 tmp = *ptr;
609                 tmp += 0xc0dec0de;
610
611                 pr_info("attempting bad write at %p\n", ptr);
612                 *ptr = tmp;
613
614                 vm_munmap(user_addr, PAGE_SIZE);
615
616                 break;
617         }
618         case CT_WRITE_RO: {
619                 /* Explicitly cast away "const" for the test. */
620                 unsigned long *ptr = (unsigned long *)&rodata;
621
622                 pr_info("attempting bad rodata write at %p\n", ptr);
623                 *ptr ^= 0xabcd1234;
624
625                 break;
626         }
627         case CT_WRITE_RO_AFTER_INIT: {
628                 unsigned long *ptr = &ro_after_init;
629
630                 /*
631                  * Verify we were written to during init. Since an Oops
632                  * is considered a "success", a failure is to just skip the
633                  * real test.
634                  */
635                 if ((*ptr & 0xAA) != 0xAA) {
636                         pr_info("%p was NOT written during init!?\n", ptr);
637                         break;
638                 }
639
640                 pr_info("attempting bad ro_after_init write at %p\n", ptr);
641                 *ptr ^= 0xabcd1234;
642
643                 break;
644         }
645         case CT_WRITE_KERN: {
646                 size_t size;
647                 unsigned char *ptr;
648
649                 size = (unsigned long)do_overwritten -
650                        (unsigned long)do_nothing;
651                 ptr = (unsigned char *)do_overwritten;
652
653                 pr_info("attempting bad %zu byte write at %p\n", size, ptr);
654                 memcpy(ptr, (unsigned char *)do_nothing, size);
655                 flush_icache_range((unsigned long)ptr,
656                                    (unsigned long)(ptr + size));
657
658                 do_overwritten();
659                 break;
660         }
661         case CT_WRAP_ATOMIC: {
662                 atomic_t under = ATOMIC_INIT(INT_MIN);
663                 atomic_t over = ATOMIC_INIT(INT_MAX);
664
665                 pr_info("attempting atomic underflow\n");
666                 atomic_dec(&under);
667                 pr_info("attempting atomic overflow\n");
668                 atomic_inc(&over);
669
670                 return;
671         }
672         case CT_NONE:
673         default:
674                 break;
675         }
676
677 }
678
679 static void lkdtm_handler(void)
680 {
681         unsigned long flags;
682         bool do_it = false;
683
684         spin_lock_irqsave(&count_lock, flags);
685         count--;
686         pr_info("Crash point %s of type %s hit, trigger in %d rounds\n",
687                 cp_name_to_str(cpoint), cp_type_to_str(cptype), count);
688
689         if (count == 0) {
690                 do_it = true;
691                 count = cpoint_count;
692         }
693         spin_unlock_irqrestore(&count_lock, flags);
694
695         if (do_it)
696                 lkdtm_do_action(cptype);
697 }
698
699 static int lkdtm_register_cpoint(enum cname which)
700 {
701         int ret;
702
703         cpoint = CN_INVALID;
704         if (lkdtm.entry != NULL)
705                 unregister_jprobe(&lkdtm);
706
707         switch (which) {
708         case CN_DIRECT:
709                 lkdtm_do_action(cptype);
710                 return 0;
711         case CN_INT_HARDWARE_ENTRY:
712                 lkdtm.kp.symbol_name = "do_IRQ";
713                 lkdtm.entry = (kprobe_opcode_t*) jp_do_irq;
714                 break;
715         case CN_INT_HW_IRQ_EN:
716                 lkdtm.kp.symbol_name = "handle_IRQ_event";
717                 lkdtm.entry = (kprobe_opcode_t*) jp_handle_irq_event;
718                 break;
719         case CN_INT_TASKLET_ENTRY:
720                 lkdtm.kp.symbol_name = "tasklet_action";
721                 lkdtm.entry = (kprobe_opcode_t*) jp_tasklet_action;
722                 break;
723         case CN_FS_DEVRW:
724                 lkdtm.kp.symbol_name = "ll_rw_block";
725                 lkdtm.entry = (kprobe_opcode_t*) jp_ll_rw_block;
726                 break;
727         case CN_MEM_SWAPOUT:
728                 lkdtm.kp.symbol_name = "shrink_inactive_list";
729                 lkdtm.entry = (kprobe_opcode_t*) jp_shrink_inactive_list;
730                 break;
731         case CN_TIMERADD:
732                 lkdtm.kp.symbol_name = "hrtimer_start";
733                 lkdtm.entry = (kprobe_opcode_t*) jp_hrtimer_start;
734                 break;
735         case CN_SCSI_DISPATCH_CMD:
736                 lkdtm.kp.symbol_name = "scsi_dispatch_cmd";
737                 lkdtm.entry = (kprobe_opcode_t*) jp_scsi_dispatch_cmd;
738                 break;
739         case CN_IDE_CORE_CP:
740 #ifdef CONFIG_IDE
741                 lkdtm.kp.symbol_name = "generic_ide_ioctl";
742                 lkdtm.entry = (kprobe_opcode_t*) jp_generic_ide_ioctl;
743 #else
744                 pr_info("Crash point not available\n");
745                 return -EINVAL;
746 #endif
747                 break;
748         default:
749                 pr_info("Invalid Crash Point\n");
750                 return -EINVAL;
751         }
752
753         cpoint = which;
754         if ((ret = register_jprobe(&lkdtm)) < 0) {
755                 pr_info("Couldn't register jprobe\n");
756                 cpoint = CN_INVALID;
757         }
758
759         return ret;
760 }
761
762 static ssize_t do_register_entry(enum cname which, struct file *f,
763                 const char __user *user_buf, size_t count, loff_t *off)
764 {
765         char *buf;
766         int err;
767
768         if (count >= PAGE_SIZE)
769                 return -EINVAL;
770
771         buf = (char *)__get_free_page(GFP_KERNEL);
772         if (!buf)
773                 return -ENOMEM;
774         if (copy_from_user(buf, user_buf, count)) {
775                 free_page((unsigned long) buf);
776                 return -EFAULT;
777         }
778         /* NULL-terminate and remove enter */
779         buf[count] = '\0';
780         strim(buf);
781
782         cptype = parse_cp_type(buf, count);
783         free_page((unsigned long) buf);
784
785         if (cptype == CT_NONE)
786                 return -EINVAL;
787
788         err = lkdtm_register_cpoint(which);
789         if (err < 0)
790                 return err;
791
792         *off += count;
793
794         return count;
795 }
796
797 /* Generic read callback that just prints out the available crash types */
798 static ssize_t lkdtm_debugfs_read(struct file *f, char __user *user_buf,
799                 size_t count, loff_t *off)
800 {
801         char *buf;
802         int i, n, out;
803
804         buf = (char *)__get_free_page(GFP_KERNEL);
805         if (buf == NULL)
806                 return -ENOMEM;
807
808         n = snprintf(buf, PAGE_SIZE, "Available crash types:\n");
809         for (i = 0; i < ARRAY_SIZE(cp_type); i++)
810                 n += snprintf(buf + n, PAGE_SIZE - n, "%s\n", cp_type[i]);
811         buf[n] = '\0';
812
813         out = simple_read_from_buffer(user_buf, count, off,
814                                       buf, n);
815         free_page((unsigned long) buf);
816
817         return out;
818 }
819
820 static int lkdtm_debugfs_open(struct inode *inode, struct file *file)
821 {
822         return 0;
823 }
824
825
826 static ssize_t int_hardware_entry(struct file *f, const char __user *buf,
827                 size_t count, loff_t *off)
828 {
829         return do_register_entry(CN_INT_HARDWARE_ENTRY, f, buf, count, off);
830 }
831
832 static ssize_t int_hw_irq_en(struct file *f, const char __user *buf,
833                 size_t count, loff_t *off)
834 {
835         return do_register_entry(CN_INT_HW_IRQ_EN, f, buf, count, off);
836 }
837
838 static ssize_t int_tasklet_entry(struct file *f, const char __user *buf,
839                 size_t count, loff_t *off)
840 {
841         return do_register_entry(CN_INT_TASKLET_ENTRY, f, buf, count, off);
842 }
843
844 static ssize_t fs_devrw_entry(struct file *f, const char __user *buf,
845                 size_t count, loff_t *off)
846 {
847         return do_register_entry(CN_FS_DEVRW, f, buf, count, off);
848 }
849
850 static ssize_t mem_swapout_entry(struct file *f, const char __user *buf,
851                 size_t count, loff_t *off)
852 {
853         return do_register_entry(CN_MEM_SWAPOUT, f, buf, count, off);
854 }
855
856 static ssize_t timeradd_entry(struct file *f, const char __user *buf,
857                 size_t count, loff_t *off)
858 {
859         return do_register_entry(CN_TIMERADD, f, buf, count, off);
860 }
861
862 static ssize_t scsi_dispatch_cmd_entry(struct file *f,
863                 const char __user *buf, size_t count, loff_t *off)
864 {
865         return do_register_entry(CN_SCSI_DISPATCH_CMD, f, buf, count, off);
866 }
867
868 static ssize_t ide_core_cp_entry(struct file *f, const char __user *buf,
869                 size_t count, loff_t *off)
870 {
871         return do_register_entry(CN_IDE_CORE_CP, f, buf, count, off);
872 }
873
874 /* Special entry to just crash directly. Available without KPROBEs */
875 static ssize_t direct_entry(struct file *f, const char __user *user_buf,
876                 size_t count, loff_t *off)
877 {
878         enum ctype type;
879         char *buf;
880
881         if (count >= PAGE_SIZE)
882                 return -EINVAL;
883         if (count < 1)
884                 return -EINVAL;
885
886         buf = (char *)__get_free_page(GFP_KERNEL);
887         if (!buf)
888                 return -ENOMEM;
889         if (copy_from_user(buf, user_buf, count)) {
890                 free_page((unsigned long) buf);
891                 return -EFAULT;
892         }
893         /* NULL-terminate and remove enter */
894         buf[count] = '\0';
895         strim(buf);
896
897         type = parse_cp_type(buf, count);
898         free_page((unsigned long) buf);
899         if (type == CT_NONE)
900                 return -EINVAL;
901
902         pr_info("Performing direct entry %s\n", cp_type_to_str(type));
903         lkdtm_do_action(type);
904         *off += count;
905
906         return count;
907 }
908
909 struct crash_entry {
910         const char *name;
911         const struct file_operations fops;
912 };
913
914 static const struct crash_entry crash_entries[] = {
915         {"DIRECT", {.read = lkdtm_debugfs_read,
916                         .llseek = generic_file_llseek,
917                         .open = lkdtm_debugfs_open,
918                         .write = direct_entry} },
919         {"INT_HARDWARE_ENTRY", {.read = lkdtm_debugfs_read,
920                         .llseek = generic_file_llseek,
921                         .open = lkdtm_debugfs_open,
922                         .write = int_hardware_entry} },
923         {"INT_HW_IRQ_EN", {.read = lkdtm_debugfs_read,
924                         .llseek = generic_file_llseek,
925                         .open = lkdtm_debugfs_open,
926                         .write = int_hw_irq_en} },
927         {"INT_TASKLET_ENTRY", {.read = lkdtm_debugfs_read,
928                         .llseek = generic_file_llseek,
929                         .open = lkdtm_debugfs_open,
930                         .write = int_tasklet_entry} },
931         {"FS_DEVRW", {.read = lkdtm_debugfs_read,
932                         .llseek = generic_file_llseek,
933                         .open = lkdtm_debugfs_open,
934                         .write = fs_devrw_entry} },
935         {"MEM_SWAPOUT", {.read = lkdtm_debugfs_read,
936                         .llseek = generic_file_llseek,
937                         .open = lkdtm_debugfs_open,
938                         .write = mem_swapout_entry} },
939         {"TIMERADD", {.read = lkdtm_debugfs_read,
940                         .llseek = generic_file_llseek,
941                         .open = lkdtm_debugfs_open,
942                         .write = timeradd_entry} },
943         {"SCSI_DISPATCH_CMD", {.read = lkdtm_debugfs_read,
944                         .llseek = generic_file_llseek,
945                         .open = lkdtm_debugfs_open,
946                         .write = scsi_dispatch_cmd_entry} },
947         {"IDE_CORE_CP", {.read = lkdtm_debugfs_read,
948                         .llseek = generic_file_llseek,
949                         .open = lkdtm_debugfs_open,
950                         .write = ide_core_cp_entry} },
951 };
952
953 static struct dentry *lkdtm_debugfs_root;
954
955 static int __init lkdtm_module_init(void)
956 {
957         int ret = -EINVAL;
958         int n_debugfs_entries = 1; /* Assume only the direct entry */
959         int i;
960
961         /* Make sure we can write to __ro_after_init values during __init */
962         ro_after_init |= 0xAA;
963
964         /* Register debugfs interface */
965         lkdtm_debugfs_root = debugfs_create_dir("provoke-crash", NULL);
966         if (!lkdtm_debugfs_root) {
967                 pr_err("creating root dir failed\n");
968                 return -ENODEV;
969         }
970
971 #ifdef CONFIG_KPROBES
972         n_debugfs_entries = ARRAY_SIZE(crash_entries);
973 #endif
974
975         for (i = 0; i < n_debugfs_entries; i++) {
976                 const struct crash_entry *cur = &crash_entries[i];
977                 struct dentry *de;
978
979                 de = debugfs_create_file(cur->name, 0644, lkdtm_debugfs_root,
980                                 NULL, &cur->fops);
981                 if (de == NULL) {
982                         pr_err("could not create %s\n", cur->name);
983                         goto out_err;
984                 }
985         }
986
987         if (lkdtm_parse_commandline() == -EINVAL) {
988                 pr_info("Invalid command\n");
989                 goto out_err;
990         }
991
992         if (cpoint != CN_INVALID && cptype != CT_NONE) {
993                 ret = lkdtm_register_cpoint(cpoint);
994                 if (ret < 0) {
995                         pr_info("Invalid crash point %d\n", cpoint);
996                         goto out_err;
997                 }
998                 pr_info("Crash point %s of type %s registered\n",
999                         cpoint_name, cpoint_type);
1000         } else {
1001                 pr_info("No crash points registered, enable through debugfs\n");
1002         }
1003
1004         return 0;
1005
1006 out_err:
1007         debugfs_remove_recursive(lkdtm_debugfs_root);
1008         return ret;
1009 }
1010
1011 static void __exit lkdtm_module_exit(void)
1012 {
1013         debugfs_remove_recursive(lkdtm_debugfs_root);
1014
1015         unregister_jprobe(&lkdtm);
1016         pr_info("Crash point unregistered\n");
1017 }
1018
1019 module_init(lkdtm_module_init);
1020 module_exit(lkdtm_module_exit);
1021
1022 MODULE_LICENSE("GPL");
1023 MODULE_DESCRIPTION("Kprobe module for testing crash dumps");