Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / drivers / misc / pti.c
1 /*
2  *  pti.c - PTI driver for cJTAG data extration
3  *
4  *  Copyright (C) Intel 2010
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16  *
17  * The PTI (Parallel Trace Interface) driver directs trace data routed from
18  * various parts in the system out through the Intel Penwell PTI port and
19  * out of the mobile device for analysis with a debugging tool
20  * (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7,
21  * compact JTAG, standard.
22  */
23
24 #include <linux/init.h>
25 #include <linux/sched.h>
26 #include <linux/interrupt.h>
27 #include <linux/console.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/tty.h>
31 #include <linux/tty_driver.h>
32 #include <linux/pci.h>
33 #include <linux/mutex.h>
34 #include <linux/miscdevice.h>
35 #include <linux/pti.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #define DRIVERNAME              "pti"
40 #define PCINAME                 "pciPTI"
41 #define TTYNAME                 "ttyPTI"
42 #define CHARNAME                "pti"
43 #define PTITTY_MINOR_START      0
44 #define PTITTY_MINOR_NUM        2
45 #define MAX_APP_IDS             16   /* 128 channel ids / u8 bit size */
46 #define MAX_OS_IDS              16   /* 128 channel ids / u8 bit size */
47 #define MAX_MODEM_IDS           16   /* 128 channel ids / u8 bit size */
48 #define MODEM_BASE_ID           71   /* modem master ID address    */
49 #define CONTROL_ID              72   /* control master ID address  */
50 #define CONSOLE_ID              73   /* console master ID address  */
51 #define OS_BASE_ID              74   /* base OS master ID address  */
52 #define APP_BASE_ID             80   /* base App master ID address */
53 #define CONTROL_FRAME_LEN       32   /* PTI control frame maximum size */
54 #define USER_COPY_SIZE          8192 /* 8Kb buffer for user space copy */
55 #define APERTURE_14             0x3800000 /* offset to first OS write addr */
56 #define APERTURE_LEN            0x400000  /* address length */
57
58 struct pti_tty {
59         struct pti_masterchannel *mc;
60 };
61
62 struct pti_dev {
63         struct tty_port port[PTITTY_MINOR_NUM];
64         unsigned long pti_addr;
65         unsigned long aperture_base;
66         void __iomem *pti_ioaddr;
67         u8 ia_app[MAX_APP_IDS];
68         u8 ia_os[MAX_OS_IDS];
69         u8 ia_modem[MAX_MODEM_IDS];
70 };
71
72 /*
73  * This protects access to ia_app, ia_os, and ia_modem,
74  * which keeps track of channels allocated in
75  * an aperture write id.
76  */
77 static DEFINE_MUTEX(alloclock);
78
79 static const struct pci_device_id pci_ids[] = {
80                 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)},
81                 {0}
82 };
83
84 static struct tty_driver *pti_tty_driver;
85 static struct pti_dev *drv_data;
86
87 static unsigned int pti_console_channel;
88 static unsigned int pti_control_channel;
89
90 /**
91  *  pti_write_to_aperture()- The private write function to PTI HW.
92  *
93  *  @mc: The 'aperture'. It's part of a write address that holds
94  *       a master and channel ID.
95  *  @buf: Data being written to the HW that will ultimately be seen
96  *        in a debugging tool (Fido, Lauterbach).
97  *  @len: Size of buffer.
98  *
99  *  Since each aperture is specified by a unique
100  *  master/channel ID, no two processes will be writing
101  *  to the same aperture at the same time so no lock is required. The
102  *  PTI-Output agent will send these out in the order that they arrived, and
103  *  thus, it will intermix these messages. The debug tool can then later
104  *  regroup the appropriate message segments together reconstituting each
105  *  message.
106  */
107 static void pti_write_to_aperture(struct pti_masterchannel *mc,
108                                   u8 *buf,
109                                   int len)
110 {
111         int dwordcnt;
112         int final;
113         int i;
114         u32 ptiword;
115         u32 __iomem *aperture;
116         u8 *p = buf;
117
118         /*
119          * calculate the aperture offset from the base using the master and
120          * channel id's.
121          */
122         aperture = drv_data->pti_ioaddr + (mc->master << 15)
123                 + (mc->channel << 8);
124
125         dwordcnt = len >> 2;
126         final = len - (dwordcnt << 2);      /* final = trailing bytes    */
127         if (final == 0 && dwordcnt != 0) {  /* always need a final dword */
128                 final += 4;
129                 dwordcnt--;
130         }
131
132         for (i = 0; i < dwordcnt; i++) {
133                 ptiword = be32_to_cpu(*(u32 *)p);
134                 p += 4;
135                 iowrite32(ptiword, aperture);
136         }
137
138         aperture += PTI_LASTDWORD_DTS;  /* adding DTS signals that is EOM */
139
140         ptiword = 0;
141         for (i = 0; i < final; i++)
142                 ptiword |= *p++ << (24-(8*i));
143
144         iowrite32(ptiword, aperture);
145         return;
146 }
147
148 /**
149  *  pti_control_frame_built_and_sent()- control frame build and send function.
150  *
151  *  @mc:          The master / channel structure on which the function
152  *                built a control frame.
153  *  @thread_name: The thread name associated with the master / channel or
154  *                'NULL' if using the 'current' global variable.
155  *
156  *  To be able to post process the PTI contents on host side, a control frame
157  *  is added before sending any PTI content. So the host side knows on
158  *  each PTI frame the name of the thread using a dedicated master / channel.
159  *  The thread name is retrieved from 'current' global variable if 'thread_name'
160  *  is 'NULL', else it is retrieved from 'thread_name' parameter.
161  *  This function builds this frame and sends it to a master ID CONTROL_ID.
162  *  The overhead is only 32 bytes since the driver only writes to HW
163  *  in 32 byte chunks.
164  */
165 static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc,
166                                              const char *thread_name)
167 {
168         /*
169          * Since we access the comm member in current's task_struct, we only
170          * need to be as large as what 'comm' in that structure is.
171          */
172         char comm[TASK_COMM_LEN];
173         struct pti_masterchannel mccontrol = {.master = CONTROL_ID,
174                                               .channel = 0};
175         const char *thread_name_p;
176         const char *control_format = "%3d %3d %s";
177         u8 control_frame[CONTROL_FRAME_LEN];
178
179         if (!thread_name) {
180                 if (!in_interrupt())
181                         get_task_comm(comm, current);
182                 else
183                         strncpy(comm, "Interrupt", TASK_COMM_LEN);
184
185                 /* Absolutely ensure our buffer is zero terminated. */
186                 comm[TASK_COMM_LEN-1] = 0;
187                 thread_name_p = comm;
188         } else {
189                 thread_name_p = thread_name;
190         }
191
192         mccontrol.channel = pti_control_channel;
193         pti_control_channel = (pti_control_channel + 1) & 0x7f;
194
195         snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master,
196                 mc->channel, thread_name_p);
197         pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame));
198 }
199
200 /**
201  *  pti_write_full_frame_to_aperture()- high level function to
202  *                                      write to PTI.
203  *
204  *  @mc:  The 'aperture'. It's part of a write address that holds
205  *        a master and channel ID.
206  *  @buf: Data being written to the HW that will ultimately be seen
207  *        in a debugging tool (Fido, Lauterbach).
208  *  @len: Size of buffer.
209  *
210  *  All threads sending data (either console, user space application, ...)
211  *  are calling the high level function to write to PTI meaning that it is
212  *  possible to add a control frame before sending the content.
213  */
214 static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc,
215                                                 const unsigned char *buf,
216                                                 int len)
217 {
218         pti_control_frame_built_and_sent(mc, NULL);
219         pti_write_to_aperture(mc, (u8 *)buf, len);
220 }
221
222 /**
223  * get_id()- Allocate a master and channel ID.
224  *
225  * @id_array:    an array of bits representing what channel
226  *               id's are allocated for writing.
227  * @max_ids:     The max amount of available write IDs to use.
228  * @base_id:     The starting SW channel ID, based on the Intel
229  *               PTI arch.
230  * @thread_name: The thread name associated with the master / channel or
231  *               'NULL' if using the 'current' global variable.
232  *
233  * Returns:
234  *      pti_masterchannel struct with master, channel ID address
235  *      0 for error
236  *
237  * Each bit in the arrays ia_app and ia_os correspond to a master and
238  * channel id. The bit is one if the id is taken and 0 if free. For
239  * every master there are 128 channel id's.
240  */
241 static struct pti_masterchannel *get_id(u8 *id_array,
242                                         int max_ids,
243                                         int base_id,
244                                         const char *thread_name)
245 {
246         struct pti_masterchannel *mc;
247         int i, j, mask;
248
249         mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL);
250         if (mc == NULL)
251                 return NULL;
252
253         /* look for a byte with a free bit */
254         for (i = 0; i < max_ids; i++)
255                 if (id_array[i] != 0xff)
256                         break;
257         if (i == max_ids) {
258                 kfree(mc);
259                 return NULL;
260         }
261         /* find the bit in the 128 possible channel opportunities */
262         mask = 0x80;
263         for (j = 0; j < 8; j++) {
264                 if ((id_array[i] & mask) == 0)
265                         break;
266                 mask >>= 1;
267         }
268
269         /* grab it */
270         id_array[i] |= mask;
271         mc->master  = base_id;
272         mc->channel = ((i & 0xf)<<3) + j;
273         /* write new master Id / channel Id allocation to channel control */
274         pti_control_frame_built_and_sent(mc, thread_name);
275         return mc;
276 }
277
278 /*
279  * The following three functions:
280  * pti_request_mastercahannel(), mipi_release_masterchannel()
281  * and pti_writedata() are an API for other kernel drivers to
282  * access PTI.
283  */
284
285 /**
286  * pti_request_masterchannel()- Kernel API function used to allocate
287  *                              a master, channel ID address
288  *                              to write to PTI HW.
289  *
290  * @type:        0- request Application  master, channel aperture ID
291  *                  write address.
292  *               1- request OS master, channel aperture ID write
293  *                  address.
294  *               2- request Modem master, channel aperture ID
295  *                  write address.
296  *               Other values, error.
297  * @thread_name: The thread name associated with the master / channel or
298  *               'NULL' if using the 'current' global variable.
299  *
300  * Returns:
301  *      pti_masterchannel struct
302  *      0 for error
303  */
304 struct pti_masterchannel *pti_request_masterchannel(u8 type,
305                                                     const char *thread_name)
306 {
307         struct pti_masterchannel *mc;
308
309         mutex_lock(&alloclock);
310
311         switch (type) {
312
313         case 0:
314                 mc = get_id(drv_data->ia_app, MAX_APP_IDS,
315                             APP_BASE_ID, thread_name);
316                 break;
317
318         case 1:
319                 mc = get_id(drv_data->ia_os, MAX_OS_IDS,
320                             OS_BASE_ID, thread_name);
321                 break;
322
323         case 2:
324                 mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS,
325                             MODEM_BASE_ID, thread_name);
326                 break;
327         default:
328                 mc = NULL;
329         }
330
331         mutex_unlock(&alloclock);
332         return mc;
333 }
334 EXPORT_SYMBOL_GPL(pti_request_masterchannel);
335
336 /**
337  * pti_release_masterchannel()- Kernel API function used to release
338  *                              a master, channel ID address
339  *                              used to write to PTI HW.
340  *
341  * @mc: master, channel apeture ID address to be released.  This
342  *      will de-allocate the structure via kfree().
343  */
344 void pti_release_masterchannel(struct pti_masterchannel *mc)
345 {
346         u8 master, channel, i;
347
348         mutex_lock(&alloclock);
349
350         if (mc) {
351                 master = mc->master;
352                 channel = mc->channel;
353
354                 if (master == APP_BASE_ID) {
355                         i = channel >> 3;
356                         drv_data->ia_app[i] &=  ~(0x80>>(channel & 0x7));
357                 } else if (master == OS_BASE_ID) {
358                         i = channel >> 3;
359                         drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7));
360                 } else {
361                         i = channel >> 3;
362                         drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7));
363                 }
364
365                 kfree(mc);
366         }
367
368         mutex_unlock(&alloclock);
369 }
370 EXPORT_SYMBOL_GPL(pti_release_masterchannel);
371
372 /**
373  * pti_writedata()- Kernel API function used to write trace
374  *                  debugging data to PTI HW.
375  *
376  * @mc:    Master, channel aperture ID address to write to.
377  *         Null value will return with no write occurring.
378  * @buf:   Trace debuging data to write to the PTI HW.
379  *         Null value will return with no write occurring.
380  * @count: Size of buf. Value of 0 or a negative number will
381  *         return with no write occuring.
382  */
383 void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count)
384 {
385         /*
386          * since this function is exported, this is treated like an
387          * API function, thus, all parameters should
388          * be checked for validity.
389          */
390         if ((mc != NULL) && (buf != NULL) && (count > 0))
391                 pti_write_to_aperture(mc, buf, count);
392         return;
393 }
394 EXPORT_SYMBOL_GPL(pti_writedata);
395
396 /*
397  * for the tty_driver_*() basic function descriptions, see tty_driver.h.
398  * Specific header comments made for PTI-related specifics.
399  */
400
401 /**
402  * pti_tty_driver_open()- Open an Application master, channel aperture
403  * ID to the PTI device via tty device.
404  *
405  * @tty: tty interface.
406  * @filp: filp interface pased to tty_port_open() call.
407  *
408  * Returns:
409  *      int, 0 for success
410  *      otherwise, fail value
411  *
412  * The main purpose of using the tty device interface is for
413  * each tty port to have a unique PTI write aperture.  In an
414  * example use case, ttyPTI0 gets syslogd and an APP aperture
415  * ID and ttyPTI1 is where the n_tracesink ldisc hooks to route
416  * modem messages into PTI.  Modem trace data does not have to
417  * go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct
418  * master IDs.  These messages go through the PTI HW and out of
419  * the handheld platform and to the Fido/Lauterbach device.
420  */
421 static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp)
422 {
423         /*
424          * we actually want to allocate a new channel per open, per
425          * system arch.  HW gives more than plenty channels for a single
426          * system task to have its own channel to write trace data. This
427          * also removes a locking requirement for the actual write
428          * procedure.
429          */
430         return tty_port_open(tty->port, tty, filp);
431 }
432
433 /**
434  * pti_tty_driver_close()- close tty device and release Application
435  * master, channel aperture ID to the PTI device via tty device.
436  *
437  * @tty: tty interface.
438  * @filp: filp interface pased to tty_port_close() call.
439  *
440  * The main purpose of using the tty device interface is to route
441  * syslog daemon messages to the PTI HW and out of the handheld platform
442  * and to the Fido/Lauterbach device.
443  */
444 static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp)
445 {
446         tty_port_close(tty->port, tty, filp);
447 }
448
449 /**
450  * pti_tty_install()- Used to set up specific master-channels
451  *                    to tty ports for organizational purposes when
452  *                    tracing viewed from debuging tools.
453  *
454  * @driver: tty driver information.
455  * @tty: tty struct containing pti information.
456  *
457  * Returns:
458  *      0 for success
459  *      otherwise, error
460  */
461 static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty)
462 {
463         int idx = tty->index;
464         struct pti_tty *pti_tty_data;
465         int ret = tty_standard_install(driver, tty);
466
467         if (ret == 0) {
468                 pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL);
469                 if (pti_tty_data == NULL)
470                         return -ENOMEM;
471
472                 if (idx == PTITTY_MINOR_START)
473                         pti_tty_data->mc = pti_request_masterchannel(0, NULL);
474                 else
475                         pti_tty_data->mc = pti_request_masterchannel(2, NULL);
476
477                 if (pti_tty_data->mc == NULL) {
478                         kfree(pti_tty_data);
479                         return -ENXIO;
480                 }
481                 tty->driver_data = pti_tty_data;
482         }
483
484         return ret;
485 }
486
487 /**
488  * pti_tty_cleanup()- Used to de-allocate master-channel resources
489  *                    tied to tty's of this driver.
490  *
491  * @tty: tty struct containing pti information.
492  */
493 static void pti_tty_cleanup(struct tty_struct *tty)
494 {
495         struct pti_tty *pti_tty_data = tty->driver_data;
496         if (pti_tty_data == NULL)
497                 return;
498         pti_release_masterchannel(pti_tty_data->mc);
499         kfree(pti_tty_data);
500         tty->driver_data = NULL;
501 }
502
503 /**
504  * pti_tty_driver_write()-  Write trace debugging data through the char
505  * interface to the PTI HW.  Part of the misc device implementation.
506  *
507  * @filp: Contains private data which is used to obtain
508  *        master, channel write ID.
509  * @data: trace data to be written.
510  * @len:  # of byte to write.
511  *
512  * Returns:
513  *      int, # of bytes written
514  *      otherwise, error
515  */
516 static int pti_tty_driver_write(struct tty_struct *tty,
517         const unsigned char *buf, int len)
518 {
519         struct pti_tty *pti_tty_data = tty->driver_data;
520         if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) {
521                 pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len);
522                 return len;
523         }
524         /*
525          * we can't write to the pti hardware if the private driver_data
526          * and the mc address is not there.
527          */
528         else
529                 return -EFAULT;
530 }
531
532 /**
533  * pti_tty_write_room()- Always returns 2048.
534  *
535  * @tty: contains tty info of the pti driver.
536  */
537 static int pti_tty_write_room(struct tty_struct *tty)
538 {
539         return 2048;
540 }
541
542 /**
543  * pti_char_open()- Open an Application master, channel aperture
544  * ID to the PTI device. Part of the misc device implementation.
545  *
546  * @inode: not used.
547  * @filp:  Output- will have a masterchannel struct set containing
548  *                 the allocated application PTI aperture write address.
549  *
550  * Returns:
551  *      int, 0 for success
552  *      otherwise, a fail value
553  */
554 static int pti_char_open(struct inode *inode, struct file *filp)
555 {
556         struct pti_masterchannel *mc;
557
558         /*
559          * We really do want to fail immediately if
560          * pti_request_masterchannel() fails,
561          * before assigning the value to filp->private_data.
562          * Slightly easier to debug if this driver needs debugging.
563          */
564         mc = pti_request_masterchannel(0, NULL);
565         if (mc == NULL)
566                 return -ENOMEM;
567         filp->private_data = mc;
568         return 0;
569 }
570
571 /**
572  * pti_char_release()-  Close a char channel to the PTI device. Part
573  * of the misc device implementation.
574  *
575  * @inode: Not used in this implementaiton.
576  * @filp:  Contains private_data that contains the master, channel
577  *         ID to be released by the PTI device.
578  *
579  * Returns:
580  *      always 0
581  */
582 static int pti_char_release(struct inode *inode, struct file *filp)
583 {
584         pti_release_masterchannel(filp->private_data);
585         filp->private_data = NULL;
586         return 0;
587 }
588
589 /**
590  * pti_char_write()-  Write trace debugging data through the char
591  * interface to the PTI HW.  Part of the misc device implementation.
592  *
593  * @filp:  Contains private data which is used to obtain
594  *         master, channel write ID.
595  * @data:  trace data to be written.
596  * @len:   # of byte to write.
597  * @ppose: Not used in this function implementation.
598  *
599  * Returns:
600  *      int, # of bytes written
601  *      otherwise, error value
602  *
603  * Notes: From side discussions with Alan Cox and experimenting
604  * with PTI debug HW like Nokia's Fido box and Lauterbach
605  * devices, 8192 byte write buffer used by USER_COPY_SIZE was
606  * deemed an appropriate size for this type of usage with
607  * debugging HW.
608  */
609 static ssize_t pti_char_write(struct file *filp, const char __user *data,
610                               size_t len, loff_t *ppose)
611 {
612         struct pti_masterchannel *mc;
613         void *kbuf;
614         const char __user *tmp;
615         size_t size = USER_COPY_SIZE;
616         size_t n = 0;
617
618         tmp = data;
619         mc = filp->private_data;
620
621         kbuf = kmalloc(size, GFP_KERNEL);
622         if (kbuf == NULL)  {
623                 pr_err("%s(%d): buf allocation failed\n",
624                         __func__, __LINE__);
625                 return -ENOMEM;
626         }
627
628         do {
629                 if (len - n > USER_COPY_SIZE)
630                         size = USER_COPY_SIZE;
631                 else
632                         size = len - n;
633
634                 if (copy_from_user(kbuf, tmp, size)) {
635                         kfree(kbuf);
636                         return n ? n : -EFAULT;
637                 }
638
639                 pti_write_to_aperture(mc, kbuf, size);
640                 n  += size;
641                 tmp += size;
642
643         } while (len > n);
644
645         kfree(kbuf);
646         return len;
647 }
648
649 static const struct tty_operations pti_tty_driver_ops = {
650         .open           = pti_tty_driver_open,
651         .close          = pti_tty_driver_close,
652         .write          = pti_tty_driver_write,
653         .write_room     = pti_tty_write_room,
654         .install        = pti_tty_install,
655         .cleanup        = pti_tty_cleanup
656 };
657
658 static const struct file_operations pti_char_driver_ops = {
659         .owner          = THIS_MODULE,
660         .write          = pti_char_write,
661         .open           = pti_char_open,
662         .release        = pti_char_release,
663 };
664
665 static struct miscdevice pti_char_driver = {
666         .minor          = MISC_DYNAMIC_MINOR,
667         .name           = CHARNAME,
668         .fops           = &pti_char_driver_ops
669 };
670
671 /**
672  * pti_console_write()-  Write to the console that has been acquired.
673  *
674  * @c:   Not used in this implementaiton.
675  * @buf: Data to be written.
676  * @len: Length of buf.
677  */
678 static void pti_console_write(struct console *c, const char *buf, unsigned len)
679 {
680         static struct pti_masterchannel mc = {.master  = CONSOLE_ID,
681                                               .channel = 0};
682
683         mc.channel = pti_console_channel;
684         pti_console_channel = (pti_console_channel + 1) & 0x7f;
685
686         pti_write_full_frame_to_aperture(&mc, buf, len);
687 }
688
689 /**
690  * pti_console_device()-  Return the driver tty structure and set the
691  *                        associated index implementation.
692  *
693  * @c:     Console device of the driver.
694  * @index: index associated with c.
695  *
696  * Returns:
697  *      always value of pti_tty_driver structure when this function
698  *      is called.
699  */
700 static struct tty_driver *pti_console_device(struct console *c, int *index)
701 {
702         *index = c->index;
703         return pti_tty_driver;
704 }
705
706 /**
707  * pti_console_setup()-  Initialize console variables used by the driver.
708  *
709  * @c:     Not used.
710  * @opts:  Not used.
711  *
712  * Returns:
713  *      always 0.
714  */
715 static int pti_console_setup(struct console *c, char *opts)
716 {
717         pti_console_channel = 0;
718         pti_control_channel = 0;
719         return 0;
720 }
721
722 /*
723  * pti_console struct, used to capture OS printk()'s and shift
724  * out to the PTI device for debugging.  This cannot be
725  * enabled upon boot because of the possibility of eating
726  * any serial console printk's (race condition discovered).
727  * The console should be enabled upon when the tty port is
728  * used for the first time.  Since the primary purpose for
729  * the tty port is to hook up syslog to it, the tty port
730  * will be open for a really long time.
731  */
732 static struct console pti_console = {
733         .name           = TTYNAME,
734         .write          = pti_console_write,
735         .device         = pti_console_device,
736         .setup          = pti_console_setup,
737         .flags          = CON_PRINTBUFFER,
738         .index          = 0,
739 };
740
741 /**
742  * pti_port_activate()- Used to start/initialize any items upon
743  * first opening of tty_port().
744  *
745  * @port- The tty port number of the PTI device.
746  * @tty-  The tty struct associated with this device.
747  *
748  * Returns:
749  *      always returns 0
750  *
751  * Notes: The primary purpose of the PTI tty port 0 is to hook
752  * the syslog daemon to it; thus this port will be open for a
753  * very long time.
754  */
755 static int pti_port_activate(struct tty_port *port, struct tty_struct *tty)
756 {
757         if (port->tty->index == PTITTY_MINOR_START)
758                 console_start(&pti_console);
759         return 0;
760 }
761
762 /**
763  * pti_port_shutdown()- Used to stop/shutdown any items upon the
764  * last tty port close.
765  *
766  * @port- The tty port number of the PTI device.
767  *
768  * Notes: The primary purpose of the PTI tty port 0 is to hook
769  * the syslog daemon to it; thus this port will be open for a
770  * very long time.
771  */
772 static void pti_port_shutdown(struct tty_port *port)
773 {
774         if (port->tty->index == PTITTY_MINOR_START)
775                 console_stop(&pti_console);
776 }
777
778 static const struct tty_port_operations tty_port_ops = {
779         .activate = pti_port_activate,
780         .shutdown = pti_port_shutdown,
781 };
782
783 /*
784  * Note the _probe() call sets everything up and ties the char and tty
785  * to successfully detecting the PTI device on the pci bus.
786  */
787
788 /**
789  * pti_pci_probe()- Used to detect pti on the pci bus and set
790  *                  things up in the driver.
791  *
792  * @pdev- pci_dev struct values for pti.
793  * @ent-  pci_device_id struct for pti driver.
794  *
795  * Returns:
796  *      0 for success
797  *      otherwise, error
798  */
799 static int pti_pci_probe(struct pci_dev *pdev,
800                 const struct pci_device_id *ent)
801 {
802         unsigned int a;
803         int retval = -EINVAL;
804         int pci_bar = 1;
805
806         dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__,
807                         __func__, __LINE__, pdev->vendor, pdev->device);
808
809         retval = misc_register(&pti_char_driver);
810         if (retval) {
811                 pr_err("%s(%d): CHAR registration failed of pti driver\n",
812                         __func__, __LINE__);
813                 pr_err("%s(%d): Error value returned: %d\n",
814                         __func__, __LINE__, retval);
815                 goto err;
816         }
817
818         retval = pci_enable_device(pdev);
819         if (retval != 0) {
820                 dev_err(&pdev->dev,
821                         "%s: pci_enable_device() returned error %d\n",
822                         __func__, retval);
823                 goto err_unreg_misc;
824         }
825
826         drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL);
827         if (drv_data == NULL) {
828                 retval = -ENOMEM;
829                 dev_err(&pdev->dev,
830                         "%s(%d): kmalloc() returned NULL memory.\n",
831                         __func__, __LINE__);
832                 goto err_disable_pci;
833         }
834         drv_data->pti_addr = pci_resource_start(pdev, pci_bar);
835
836         retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev));
837         if (retval != 0) {
838                 dev_err(&pdev->dev,
839                         "%s(%d): pci_request_region() returned error %d\n",
840                         __func__, __LINE__, retval);
841                 goto err_free_dd;
842         }
843         drv_data->aperture_base = drv_data->pti_addr+APERTURE_14;
844         drv_data->pti_ioaddr =
845                 ioremap_nocache((u32)drv_data->aperture_base,
846                 APERTURE_LEN);
847         if (!drv_data->pti_ioaddr) {
848                 retval = -ENOMEM;
849                 goto err_rel_reg;
850         }
851
852         pci_set_drvdata(pdev, drv_data);
853
854         for (a = 0; a < PTITTY_MINOR_NUM; a++) {
855                 struct tty_port *port = &drv_data->port[a];
856                 tty_port_init(port);
857                 port->ops = &tty_port_ops;
858
859                 tty_port_register_device(port, pti_tty_driver, a, &pdev->dev);
860         }
861
862         register_console(&pti_console);
863
864         return 0;
865 err_rel_reg:
866         pci_release_region(pdev, pci_bar);
867 err_free_dd:
868         kfree(drv_data);
869 err_disable_pci:
870         pci_disable_device(pdev);
871 err_unreg_misc:
872         misc_deregister(&pti_char_driver);
873 err:
874         return retval;
875 }
876
877 /**
878  * pti_pci_remove()- Driver exit method to remove PTI from
879  *                 PCI bus.
880  * @pdev: variable containing pci info of PTI.
881  */
882 static void pti_pci_remove(struct pci_dev *pdev)
883 {
884         struct pti_dev *drv_data = pci_get_drvdata(pdev);
885         unsigned int a;
886
887         unregister_console(&pti_console);
888
889         for (a = 0; a < PTITTY_MINOR_NUM; a++) {
890                 tty_unregister_device(pti_tty_driver, a);
891                 tty_port_destroy(&drv_data->port[a]);
892         }
893
894         iounmap(drv_data->pti_ioaddr);
895         kfree(drv_data);
896         pci_release_region(pdev, 1);
897         pci_disable_device(pdev);
898
899         misc_deregister(&pti_char_driver);
900 }
901
902 static struct pci_driver pti_pci_driver = {
903         .name           = PCINAME,
904         .id_table       = pci_ids,
905         .probe          = pti_pci_probe,
906         .remove         = pti_pci_remove,
907 };
908
909 /**
910  *
911  * pti_init()- Overall entry/init call to the pti driver.
912  *             It starts the registration process with the kernel.
913  *
914  * Returns:
915  *      int __init, 0 for success
916  *      otherwise value is an error
917  *
918  */
919 static int __init pti_init(void)
920 {
921         int retval = -EINVAL;
922
923         /* First register module as tty device */
924
925         pti_tty_driver = alloc_tty_driver(PTITTY_MINOR_NUM);
926         if (pti_tty_driver == NULL) {
927                 pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n",
928                         __func__, __LINE__);
929                 return -ENOMEM;
930         }
931
932         pti_tty_driver->driver_name             = DRIVERNAME;
933         pti_tty_driver->name                    = TTYNAME;
934         pti_tty_driver->major                   = 0;
935         pti_tty_driver->minor_start             = PTITTY_MINOR_START;
936         pti_tty_driver->type                    = TTY_DRIVER_TYPE_SYSTEM;
937         pti_tty_driver->subtype                 = SYSTEM_TYPE_SYSCONS;
938         pti_tty_driver->flags                   = TTY_DRIVER_REAL_RAW |
939                                                   TTY_DRIVER_DYNAMIC_DEV;
940         pti_tty_driver->init_termios            = tty_std_termios;
941
942         tty_set_operations(pti_tty_driver, &pti_tty_driver_ops);
943
944         retval = tty_register_driver(pti_tty_driver);
945         if (retval) {
946                 pr_err("%s(%d): TTY registration failed of pti driver\n",
947                         __func__, __LINE__);
948                 pr_err("%s(%d): Error value returned: %d\n",
949                         __func__, __LINE__, retval);
950
951                 goto put_tty;
952         }
953
954         retval = pci_register_driver(&pti_pci_driver);
955         if (retval) {
956                 pr_err("%s(%d): PCI registration failed of pti driver\n",
957                         __func__, __LINE__);
958                 pr_err("%s(%d): Error value returned: %d\n",
959                         __func__, __LINE__, retval);
960                 goto unreg_tty;
961         }
962
963         return 0;
964 unreg_tty:
965         tty_unregister_driver(pti_tty_driver);
966 put_tty:
967         put_tty_driver(pti_tty_driver);
968         pti_tty_driver = NULL;
969         return retval;
970 }
971
972 /**
973  * pti_exit()- Unregisters this module as a tty and pci driver.
974  */
975 static void __exit pti_exit(void)
976 {
977         tty_unregister_driver(pti_tty_driver);
978         pci_unregister_driver(&pti_pci_driver);
979         put_tty_driver(pti_tty_driver);
980 }
981
982 module_init(pti_init);
983 module_exit(pti_exit);
984
985 MODULE_LICENSE("GPL");
986 MODULE_AUTHOR("Ken Mills, Jay Freyensee");
987 MODULE_DESCRIPTION("PTI Driver");
988