powerpc/powernv/pci: Fix missed TCE invalidations that should fallback to OPAL
[cascardo/linux.git] / drivers / mmc / card / queue.c
1 /*
2  *  linux/drivers/mmc/card/queue.c
3  *
4  *  Copyright (C) 2003 Russell King, All Rights Reserved.
5  *  Copyright 2006-2007 Pierre Ossman
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  */
12 #include <linux/slab.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/freezer.h>
16 #include <linux/kthread.h>
17 #include <linux/scatterlist.h>
18 #include <linux/dma-mapping.h>
19
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/host.h>
22 #include "queue.h"
23
24 #define MMC_QUEUE_BOUNCESZ      65536
25
26 /*
27  * Prepare a MMC request. This just filters out odd stuff.
28  */
29 static int mmc_prep_request(struct request_queue *q, struct request *req)
30 {
31         struct mmc_queue *mq = q->queuedata;
32
33         /*
34          * We only like normal block requests and discards.
35          */
36         if (req->cmd_type != REQ_TYPE_FS && req_op(req) != REQ_OP_DISCARD) {
37                 blk_dump_rq_flags(req, "MMC bad request");
38                 return BLKPREP_KILL;
39         }
40
41         if (mq && (mmc_card_removed(mq->card) || mmc_access_rpmb(mq)))
42                 return BLKPREP_KILL;
43
44         req->cmd_flags |= REQ_DONTPREP;
45
46         return BLKPREP_OK;
47 }
48
49 static int mmc_queue_thread(void *d)
50 {
51         struct mmc_queue *mq = d;
52         struct request_queue *q = mq->queue;
53
54         current->flags |= PF_MEMALLOC;
55
56         down(&mq->thread_sem);
57         do {
58                 struct request *req = NULL;
59
60                 spin_lock_irq(q->queue_lock);
61                 set_current_state(TASK_INTERRUPTIBLE);
62                 req = blk_fetch_request(q);
63                 mq->mqrq_cur->req = req;
64                 spin_unlock_irq(q->queue_lock);
65
66                 if (req || mq->mqrq_prev->req) {
67                         set_current_state(TASK_RUNNING);
68                         mq->issue_fn(mq, req);
69                         cond_resched();
70                         if (mq->flags & MMC_QUEUE_NEW_REQUEST) {
71                                 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
72                                 continue; /* fetch again */
73                         }
74
75                         /*
76                          * Current request becomes previous request
77                          * and vice versa.
78                          * In case of special requests, current request
79                          * has been finished. Do not assign it to previous
80                          * request.
81                          */
82                         if (mmc_req_is_special(req))
83                                 mq->mqrq_cur->req = NULL;
84
85                         mq->mqrq_prev->brq.mrq.data = NULL;
86                         mq->mqrq_prev->req = NULL;
87                         swap(mq->mqrq_prev, mq->mqrq_cur);
88                 } else {
89                         if (kthread_should_stop()) {
90                                 set_current_state(TASK_RUNNING);
91                                 break;
92                         }
93                         up(&mq->thread_sem);
94                         schedule();
95                         down(&mq->thread_sem);
96                 }
97         } while (1);
98         up(&mq->thread_sem);
99
100         return 0;
101 }
102
103 /*
104  * Generic MMC request handler.  This is called for any queue on a
105  * particular host.  When the host is not busy, we look for a request
106  * on any queue on this host, and attempt to issue it.  This may
107  * not be the queue we were asked to process.
108  */
109 static void mmc_request_fn(struct request_queue *q)
110 {
111         struct mmc_queue *mq = q->queuedata;
112         struct request *req;
113         unsigned long flags;
114         struct mmc_context_info *cntx;
115
116         if (!mq) {
117                 while ((req = blk_fetch_request(q)) != NULL) {
118                         req->cmd_flags |= REQ_QUIET;
119                         __blk_end_request_all(req, -EIO);
120                 }
121                 return;
122         }
123
124         cntx = &mq->card->host->context_info;
125         if (!mq->mqrq_cur->req && mq->mqrq_prev->req) {
126                 /*
127                  * New MMC request arrived when MMC thread may be
128                  * blocked on the previous request to be complete
129                  * with no current request fetched
130                  */
131                 spin_lock_irqsave(&cntx->lock, flags);
132                 if (cntx->is_waiting_last_req) {
133                         cntx->is_new_req = true;
134                         wake_up_interruptible(&cntx->wait);
135                 }
136                 spin_unlock_irqrestore(&cntx->lock, flags);
137         } else if (!mq->mqrq_cur->req && !mq->mqrq_prev->req)
138                 wake_up_process(mq->thread);
139 }
140
141 static struct scatterlist *mmc_alloc_sg(int sg_len, int *err)
142 {
143         struct scatterlist *sg;
144
145         sg = kmalloc(sizeof(struct scatterlist)*sg_len, GFP_KERNEL);
146         if (!sg)
147                 *err = -ENOMEM;
148         else {
149                 *err = 0;
150                 sg_init_table(sg, sg_len);
151         }
152
153         return sg;
154 }
155
156 static void mmc_queue_setup_discard(struct request_queue *q,
157                                     struct mmc_card *card)
158 {
159         unsigned max_discard;
160
161         max_discard = mmc_calc_max_discard(card);
162         if (!max_discard)
163                 return;
164
165         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
166         blk_queue_max_discard_sectors(q, max_discard);
167         if (card->erased_byte == 0 && !mmc_can_discard(card))
168                 q->limits.discard_zeroes_data = 1;
169         q->limits.discard_granularity = card->pref_erase << 9;
170         /* granularity must not be greater than max. discard */
171         if (card->pref_erase > max_discard)
172                 q->limits.discard_granularity = 0;
173         if (mmc_can_secure_erase_trim(card))
174                 queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, q);
175 }
176
177 /**
178  * mmc_init_queue - initialise a queue structure.
179  * @mq: mmc queue
180  * @card: mmc card to attach this queue
181  * @lock: queue lock
182  * @subname: partition subname
183  *
184  * Initialise a MMC card request queue.
185  */
186 int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card,
187                    spinlock_t *lock, const char *subname)
188 {
189         struct mmc_host *host = card->host;
190         u64 limit = BLK_BOUNCE_HIGH;
191         int ret;
192         struct mmc_queue_req *mqrq_cur = &mq->mqrq[0];
193         struct mmc_queue_req *mqrq_prev = &mq->mqrq[1];
194
195         if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
196                 limit = (u64)dma_max_pfn(mmc_dev(host)) << PAGE_SHIFT;
197
198         mq->card = card;
199         mq->queue = blk_init_queue(mmc_request_fn, lock);
200         if (!mq->queue)
201                 return -ENOMEM;
202
203         mq->mqrq_cur = mqrq_cur;
204         mq->mqrq_prev = mqrq_prev;
205         mq->queue->queuedata = mq;
206
207         blk_queue_prep_rq(mq->queue, mmc_prep_request);
208         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue);
209         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, mq->queue);
210         if (mmc_can_erase(card))
211                 mmc_queue_setup_discard(mq->queue, card);
212
213 #ifdef CONFIG_MMC_BLOCK_BOUNCE
214         if (host->max_segs == 1) {
215                 unsigned int bouncesz;
216
217                 bouncesz = MMC_QUEUE_BOUNCESZ;
218
219                 if (bouncesz > host->max_req_size)
220                         bouncesz = host->max_req_size;
221                 if (bouncesz > host->max_seg_size)
222                         bouncesz = host->max_seg_size;
223                 if (bouncesz > (host->max_blk_count * 512))
224                         bouncesz = host->max_blk_count * 512;
225
226                 if (bouncesz > 512) {
227                         mqrq_cur->bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
228                         if (!mqrq_cur->bounce_buf) {
229                                 pr_warn("%s: unable to allocate bounce cur buffer\n",
230                                         mmc_card_name(card));
231                         } else {
232                                 mqrq_prev->bounce_buf =
233                                                 kmalloc(bouncesz, GFP_KERNEL);
234                                 if (!mqrq_prev->bounce_buf) {
235                                         pr_warn("%s: unable to allocate bounce prev buffer\n",
236                                                 mmc_card_name(card));
237                                         kfree(mqrq_cur->bounce_buf);
238                                         mqrq_cur->bounce_buf = NULL;
239                                 }
240                         }
241                 }
242
243                 if (mqrq_cur->bounce_buf && mqrq_prev->bounce_buf) {
244                         blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_ANY);
245                         blk_queue_max_hw_sectors(mq->queue, bouncesz / 512);
246                         blk_queue_max_segments(mq->queue, bouncesz / 512);
247                         blk_queue_max_segment_size(mq->queue, bouncesz);
248
249                         mqrq_cur->sg = mmc_alloc_sg(1, &ret);
250                         if (ret)
251                                 goto cleanup_queue;
252
253                         mqrq_cur->bounce_sg =
254                                 mmc_alloc_sg(bouncesz / 512, &ret);
255                         if (ret)
256                                 goto cleanup_queue;
257
258                         mqrq_prev->sg = mmc_alloc_sg(1, &ret);
259                         if (ret)
260                                 goto cleanup_queue;
261
262                         mqrq_prev->bounce_sg =
263                                 mmc_alloc_sg(bouncesz / 512, &ret);
264                         if (ret)
265                                 goto cleanup_queue;
266                 }
267         }
268 #endif
269
270         if (!mqrq_cur->bounce_buf && !mqrq_prev->bounce_buf) {
271                 blk_queue_bounce_limit(mq->queue, limit);
272                 blk_queue_max_hw_sectors(mq->queue,
273                         min(host->max_blk_count, host->max_req_size / 512));
274                 blk_queue_max_segments(mq->queue, host->max_segs);
275                 blk_queue_max_segment_size(mq->queue, host->max_seg_size);
276
277                 mqrq_cur->sg = mmc_alloc_sg(host->max_segs, &ret);
278                 if (ret)
279                         goto cleanup_queue;
280
281
282                 mqrq_prev->sg = mmc_alloc_sg(host->max_segs, &ret);
283                 if (ret)
284                         goto cleanup_queue;
285         }
286
287         sema_init(&mq->thread_sem, 1);
288
289         mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd/%d%s",
290                 host->index, subname ? subname : "");
291
292         if (IS_ERR(mq->thread)) {
293                 ret = PTR_ERR(mq->thread);
294                 goto free_bounce_sg;
295         }
296
297         return 0;
298  free_bounce_sg:
299         kfree(mqrq_cur->bounce_sg);
300         mqrq_cur->bounce_sg = NULL;
301         kfree(mqrq_prev->bounce_sg);
302         mqrq_prev->bounce_sg = NULL;
303
304  cleanup_queue:
305         kfree(mqrq_cur->sg);
306         mqrq_cur->sg = NULL;
307         kfree(mqrq_cur->bounce_buf);
308         mqrq_cur->bounce_buf = NULL;
309
310         kfree(mqrq_prev->sg);
311         mqrq_prev->sg = NULL;
312         kfree(mqrq_prev->bounce_buf);
313         mqrq_prev->bounce_buf = NULL;
314
315         blk_cleanup_queue(mq->queue);
316         return ret;
317 }
318
319 void mmc_cleanup_queue(struct mmc_queue *mq)
320 {
321         struct request_queue *q = mq->queue;
322         unsigned long flags;
323         struct mmc_queue_req *mqrq_cur = mq->mqrq_cur;
324         struct mmc_queue_req *mqrq_prev = mq->mqrq_prev;
325
326         /* Make sure the queue isn't suspended, as that will deadlock */
327         mmc_queue_resume(mq);
328
329         /* Then terminate our worker thread */
330         kthread_stop(mq->thread);
331
332         /* Empty the queue */
333         spin_lock_irqsave(q->queue_lock, flags);
334         q->queuedata = NULL;
335         blk_start_queue(q);
336         spin_unlock_irqrestore(q->queue_lock, flags);
337
338         kfree(mqrq_cur->bounce_sg);
339         mqrq_cur->bounce_sg = NULL;
340
341         kfree(mqrq_cur->sg);
342         mqrq_cur->sg = NULL;
343
344         kfree(mqrq_cur->bounce_buf);
345         mqrq_cur->bounce_buf = NULL;
346
347         kfree(mqrq_prev->bounce_sg);
348         mqrq_prev->bounce_sg = NULL;
349
350         kfree(mqrq_prev->sg);
351         mqrq_prev->sg = NULL;
352
353         kfree(mqrq_prev->bounce_buf);
354         mqrq_prev->bounce_buf = NULL;
355
356         mq->card = NULL;
357 }
358 EXPORT_SYMBOL(mmc_cleanup_queue);
359
360 int mmc_packed_init(struct mmc_queue *mq, struct mmc_card *card)
361 {
362         struct mmc_queue_req *mqrq_cur = &mq->mqrq[0];
363         struct mmc_queue_req *mqrq_prev = &mq->mqrq[1];
364         int ret = 0;
365
366
367         mqrq_cur->packed = kzalloc(sizeof(struct mmc_packed), GFP_KERNEL);
368         if (!mqrq_cur->packed) {
369                 pr_warn("%s: unable to allocate packed cmd for mqrq_cur\n",
370                         mmc_card_name(card));
371                 ret = -ENOMEM;
372                 goto out;
373         }
374
375         mqrq_prev->packed = kzalloc(sizeof(struct mmc_packed), GFP_KERNEL);
376         if (!mqrq_prev->packed) {
377                 pr_warn("%s: unable to allocate packed cmd for mqrq_prev\n",
378                         mmc_card_name(card));
379                 kfree(mqrq_cur->packed);
380                 mqrq_cur->packed = NULL;
381                 ret = -ENOMEM;
382                 goto out;
383         }
384
385         INIT_LIST_HEAD(&mqrq_cur->packed->list);
386         INIT_LIST_HEAD(&mqrq_prev->packed->list);
387
388 out:
389         return ret;
390 }
391
392 void mmc_packed_clean(struct mmc_queue *mq)
393 {
394         struct mmc_queue_req *mqrq_cur = &mq->mqrq[0];
395         struct mmc_queue_req *mqrq_prev = &mq->mqrq[1];
396
397         kfree(mqrq_cur->packed);
398         mqrq_cur->packed = NULL;
399         kfree(mqrq_prev->packed);
400         mqrq_prev->packed = NULL;
401 }
402
403 /**
404  * mmc_queue_suspend - suspend a MMC request queue
405  * @mq: MMC queue to suspend
406  *
407  * Stop the block request queue, and wait for our thread to
408  * complete any outstanding requests.  This ensures that we
409  * won't suspend while a request is being processed.
410  */
411 void mmc_queue_suspend(struct mmc_queue *mq)
412 {
413         struct request_queue *q = mq->queue;
414         unsigned long flags;
415
416         if (!(mq->flags & MMC_QUEUE_SUSPENDED)) {
417                 mq->flags |= MMC_QUEUE_SUSPENDED;
418
419                 spin_lock_irqsave(q->queue_lock, flags);
420                 blk_stop_queue(q);
421                 spin_unlock_irqrestore(q->queue_lock, flags);
422
423                 down(&mq->thread_sem);
424         }
425 }
426
427 /**
428  * mmc_queue_resume - resume a previously suspended MMC request queue
429  * @mq: MMC queue to resume
430  */
431 void mmc_queue_resume(struct mmc_queue *mq)
432 {
433         struct request_queue *q = mq->queue;
434         unsigned long flags;
435
436         if (mq->flags & MMC_QUEUE_SUSPENDED) {
437                 mq->flags &= ~MMC_QUEUE_SUSPENDED;
438
439                 up(&mq->thread_sem);
440
441                 spin_lock_irqsave(q->queue_lock, flags);
442                 blk_start_queue(q);
443                 spin_unlock_irqrestore(q->queue_lock, flags);
444         }
445 }
446
447 static unsigned int mmc_queue_packed_map_sg(struct mmc_queue *mq,
448                                             struct mmc_packed *packed,
449                                             struct scatterlist *sg,
450                                             enum mmc_packed_type cmd_type)
451 {
452         struct scatterlist *__sg = sg;
453         unsigned int sg_len = 0;
454         struct request *req;
455
456         if (mmc_packed_wr(cmd_type)) {
457                 unsigned int hdr_sz = mmc_large_sector(mq->card) ? 4096 : 512;
458                 unsigned int max_seg_sz = queue_max_segment_size(mq->queue);
459                 unsigned int len, remain, offset = 0;
460                 u8 *buf = (u8 *)packed->cmd_hdr;
461
462                 remain = hdr_sz;
463                 do {
464                         len = min(remain, max_seg_sz);
465                         sg_set_buf(__sg, buf + offset, len);
466                         offset += len;
467                         remain -= len;
468                         sg_unmark_end(__sg++);
469                         sg_len++;
470                 } while (remain);
471         }
472
473         list_for_each_entry(req, &packed->list, queuelist) {
474                 sg_len += blk_rq_map_sg(mq->queue, req, __sg);
475                 __sg = sg + (sg_len - 1);
476                 sg_unmark_end(__sg++);
477         }
478         sg_mark_end(sg + (sg_len - 1));
479         return sg_len;
480 }
481
482 /*
483  * Prepare the sg list(s) to be handed of to the host driver
484  */
485 unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
486 {
487         unsigned int sg_len;
488         size_t buflen;
489         struct scatterlist *sg;
490         enum mmc_packed_type cmd_type;
491         int i;
492
493         cmd_type = mqrq->cmd_type;
494
495         if (!mqrq->bounce_buf) {
496                 if (mmc_packed_cmd(cmd_type))
497                         return mmc_queue_packed_map_sg(mq, mqrq->packed,
498                                                        mqrq->sg, cmd_type);
499                 else
500                         return blk_rq_map_sg(mq->queue, mqrq->req, mqrq->sg);
501         }
502
503         BUG_ON(!mqrq->bounce_sg);
504
505         if (mmc_packed_cmd(cmd_type))
506                 sg_len = mmc_queue_packed_map_sg(mq, mqrq->packed,
507                                                  mqrq->bounce_sg, cmd_type);
508         else
509                 sg_len = blk_rq_map_sg(mq->queue, mqrq->req, mqrq->bounce_sg);
510
511         mqrq->bounce_sg_len = sg_len;
512
513         buflen = 0;
514         for_each_sg(mqrq->bounce_sg, sg, sg_len, i)
515                 buflen += sg->length;
516
517         sg_init_one(mqrq->sg, mqrq->bounce_buf, buflen);
518
519         return 1;
520 }
521
522 /*
523  * If writing, bounce the data to the buffer before the request
524  * is sent to the host driver
525  */
526 void mmc_queue_bounce_pre(struct mmc_queue_req *mqrq)
527 {
528         if (!mqrq->bounce_buf)
529                 return;
530
531         if (rq_data_dir(mqrq->req) != WRITE)
532                 return;
533
534         sg_copy_to_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
535                 mqrq->bounce_buf, mqrq->sg[0].length);
536 }
537
538 /*
539  * If reading, bounce the data from the buffer after the request
540  * has been handled by the host driver
541  */
542 void mmc_queue_bounce_post(struct mmc_queue_req *mqrq)
543 {
544         if (!mqrq->bounce_buf)
545                 return;
546
547         if (rq_data_dir(mqrq->req) != READ)
548                 return;
549
550         sg_copy_from_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
551                 mqrq->bounce_buf, mqrq->sg[0].length);
552 }