Merge remote-tracking branches 'asoc/topic/davinci', 'asoc/topic/fsl-card' and 'asoc...
[cascardo/linux.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/of_device.h>
61 #include <linux/pagemap.h>
62 #include <linux/platform_device.h>
63 #include <linux/pm_qos.h>
64 #include <linux/pm_runtime.h>
65 #include <linux/sh_dma.h>
66 #include <linux/spinlock.h>
67 #include <linux/module.h>
68
69 #define DRIVER_NAME     "sh_mmcif"
70 #define DRIVER_VERSION  "2010-04-28"
71
72 /* CE_CMD_SET */
73 #define CMD_MASK                0x3f000000
74 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
75 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
76 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
77 #define CMD_SET_RBSY            (1 << 21) /* R1b */
78 #define CMD_SET_CCSEN           (1 << 20)
79 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
80 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
81 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
82 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
83 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
84 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
85 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
86 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
87 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
88 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
89 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
90 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
91 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
92 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
93 #define CMD_SET_CCSH            (1 << 5)
94 #define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
95 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
96 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
97 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
98
99 /* CE_CMD_CTRL */
100 #define CMD_CTRL_BREAK          (1 << 0)
101
102 /* CE_BLOCK_SET */
103 #define BLOCK_SIZE_MASK         0x0000ffff
104
105 /* CE_INT */
106 #define INT_CCSDE               (1 << 29)
107 #define INT_CMD12DRE            (1 << 26)
108 #define INT_CMD12RBE            (1 << 25)
109 #define INT_CMD12CRE            (1 << 24)
110 #define INT_DTRANE              (1 << 23)
111 #define INT_BUFRE               (1 << 22)
112 #define INT_BUFWEN              (1 << 21)
113 #define INT_BUFREN              (1 << 20)
114 #define INT_CCSRCV              (1 << 19)
115 #define INT_RBSYE               (1 << 17)
116 #define INT_CRSPE               (1 << 16)
117 #define INT_CMDVIO              (1 << 15)
118 #define INT_BUFVIO              (1 << 14)
119 #define INT_WDATERR             (1 << 11)
120 #define INT_RDATERR             (1 << 10)
121 #define INT_RIDXERR             (1 << 9)
122 #define INT_RSPERR              (1 << 8)
123 #define INT_CCSTO               (1 << 5)
124 #define INT_CRCSTO              (1 << 4)
125 #define INT_WDATTO              (1 << 3)
126 #define INT_RDATTO              (1 << 2)
127 #define INT_RBSYTO              (1 << 1)
128 #define INT_RSPTO               (1 << 0)
129 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
130                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
131                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
132                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
133
134 #define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
135                                  INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
136                                  INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
137
138 #define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
139
140 /* CE_INT_MASK */
141 #define MASK_ALL                0x00000000
142 #define MASK_MCCSDE             (1 << 29)
143 #define MASK_MCMD12DRE          (1 << 26)
144 #define MASK_MCMD12RBE          (1 << 25)
145 #define MASK_MCMD12CRE          (1 << 24)
146 #define MASK_MDTRANE            (1 << 23)
147 #define MASK_MBUFRE             (1 << 22)
148 #define MASK_MBUFWEN            (1 << 21)
149 #define MASK_MBUFREN            (1 << 20)
150 #define MASK_MCCSRCV            (1 << 19)
151 #define MASK_MRBSYE             (1 << 17)
152 #define MASK_MCRSPE             (1 << 16)
153 #define MASK_MCMDVIO            (1 << 15)
154 #define MASK_MBUFVIO            (1 << 14)
155 #define MASK_MWDATERR           (1 << 11)
156 #define MASK_MRDATERR           (1 << 10)
157 #define MASK_MRIDXERR           (1 << 9)
158 #define MASK_MRSPERR            (1 << 8)
159 #define MASK_MCCSTO             (1 << 5)
160 #define MASK_MCRCSTO            (1 << 4)
161 #define MASK_MWDATTO            (1 << 3)
162 #define MASK_MRDATTO            (1 << 2)
163 #define MASK_MRBSYTO            (1 << 1)
164 #define MASK_MRSPTO             (1 << 0)
165
166 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
167                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
168                                  MASK_MCRCSTO | MASK_MWDATTO | \
169                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
170
171 #define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
172                                  MASK_MBUFREN | MASK_MBUFWEN |                  \
173                                  MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
174                                  MASK_MCMD12RBE | MASK_MCMD12CRE)
175
176 /* CE_HOST_STS1 */
177 #define STS1_CMDSEQ             (1 << 31)
178
179 /* CE_HOST_STS2 */
180 #define STS2_CRCSTE             (1 << 31)
181 #define STS2_CRC16E             (1 << 30)
182 #define STS2_AC12CRCE           (1 << 29)
183 #define STS2_RSPCRC7E           (1 << 28)
184 #define STS2_CRCSTEBE           (1 << 27)
185 #define STS2_RDATEBE            (1 << 26)
186 #define STS2_AC12REBE           (1 << 25)
187 #define STS2_RSPEBE             (1 << 24)
188 #define STS2_AC12IDXE           (1 << 23)
189 #define STS2_RSPIDXE            (1 << 22)
190 #define STS2_CCSTO              (1 << 15)
191 #define STS2_RDATTO             (1 << 14)
192 #define STS2_DATBSYTO           (1 << 13)
193 #define STS2_CRCSTTO            (1 << 12)
194 #define STS2_AC12BSYTO          (1 << 11)
195 #define STS2_RSPBSYTO           (1 << 10)
196 #define STS2_AC12RSPTO          (1 << 9)
197 #define STS2_RSPTO              (1 << 8)
198 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
199                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
200 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
201                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
202                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
203                                  STS2_AC12RSPTO | STS2_RSPTO)
204
205 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
206 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
207 #define CLKDEV_INIT             400000   /* 400 KHz */
208
209 enum sh_mmcif_state {
210         STATE_IDLE,
211         STATE_REQUEST,
212         STATE_IOS,
213         STATE_TIMEOUT,
214 };
215
216 enum sh_mmcif_wait_for {
217         MMCIF_WAIT_FOR_REQUEST,
218         MMCIF_WAIT_FOR_CMD,
219         MMCIF_WAIT_FOR_MREAD,
220         MMCIF_WAIT_FOR_MWRITE,
221         MMCIF_WAIT_FOR_READ,
222         MMCIF_WAIT_FOR_WRITE,
223         MMCIF_WAIT_FOR_READ_END,
224         MMCIF_WAIT_FOR_WRITE_END,
225         MMCIF_WAIT_FOR_STOP,
226 };
227
228 /*
229  * difference for each SoC
230  */
231 struct sh_mmcif_host {
232         struct mmc_host *mmc;
233         struct mmc_request *mrq;
234         struct platform_device *pd;
235         struct clk *clk;
236         int bus_width;
237         unsigned char timing;
238         bool sd_error;
239         bool dying;
240         long timeout;
241         void __iomem *addr;
242         u32 *pio_ptr;
243         spinlock_t lock;                /* protect sh_mmcif_host::state */
244         enum sh_mmcif_state state;
245         enum sh_mmcif_wait_for wait_for;
246         struct delayed_work timeout_work;
247         size_t blocksize;
248         int sg_idx;
249         int sg_blkidx;
250         bool power;
251         bool card_present;
252         bool ccs_enable;                /* Command Completion Signal support */
253         bool clk_ctrl2_enable;
254         struct mutex thread_lock;
255         u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
256
257         /* DMA support */
258         struct dma_chan         *chan_rx;
259         struct dma_chan         *chan_tx;
260         struct completion       dma_complete;
261         bool                    dma_active;
262 };
263
264 static const struct of_device_id sh_mmcif_of_match[] = {
265         { .compatible = "renesas,sh-mmcif" },
266         { }
267 };
268 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
269
270 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
271
272 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
273                                         unsigned int reg, u32 val)
274 {
275         writel(val | readl(host->addr + reg), host->addr + reg);
276 }
277
278 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
279                                         unsigned int reg, u32 val)
280 {
281         writel(~val & readl(host->addr + reg), host->addr + reg);
282 }
283
284 static void sh_mmcif_dma_complete(void *arg)
285 {
286         struct sh_mmcif_host *host = arg;
287         struct mmc_request *mrq = host->mrq;
288         struct device *dev = sh_mmcif_host_to_dev(host);
289
290         dev_dbg(dev, "Command completed\n");
291
292         if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
293                  dev_name(dev)))
294                 return;
295
296         complete(&host->dma_complete);
297 }
298
299 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
300 {
301         struct mmc_data *data = host->mrq->data;
302         struct scatterlist *sg = data->sg;
303         struct dma_async_tx_descriptor *desc = NULL;
304         struct dma_chan *chan = host->chan_rx;
305         struct device *dev = sh_mmcif_host_to_dev(host);
306         dma_cookie_t cookie = -EINVAL;
307         int ret;
308
309         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
310                          DMA_FROM_DEVICE);
311         if (ret > 0) {
312                 host->dma_active = true;
313                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
314                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
315         }
316
317         if (desc) {
318                 desc->callback = sh_mmcif_dma_complete;
319                 desc->callback_param = host;
320                 cookie = dmaengine_submit(desc);
321                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
322                 dma_async_issue_pending(chan);
323         }
324         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
325                 __func__, data->sg_len, ret, cookie);
326
327         if (!desc) {
328                 /* DMA failed, fall back to PIO */
329                 if (ret >= 0)
330                         ret = -EIO;
331                 host->chan_rx = NULL;
332                 host->dma_active = false;
333                 dma_release_channel(chan);
334                 /* Free the Tx channel too */
335                 chan = host->chan_tx;
336                 if (chan) {
337                         host->chan_tx = NULL;
338                         dma_release_channel(chan);
339                 }
340                 dev_warn(dev,
341                          "DMA failed: %d, falling back to PIO\n", ret);
342                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
343         }
344
345         dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
346                 desc, cookie, data->sg_len);
347 }
348
349 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
350 {
351         struct mmc_data *data = host->mrq->data;
352         struct scatterlist *sg = data->sg;
353         struct dma_async_tx_descriptor *desc = NULL;
354         struct dma_chan *chan = host->chan_tx;
355         struct device *dev = sh_mmcif_host_to_dev(host);
356         dma_cookie_t cookie = -EINVAL;
357         int ret;
358
359         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
360                          DMA_TO_DEVICE);
361         if (ret > 0) {
362                 host->dma_active = true;
363                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
364                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
365         }
366
367         if (desc) {
368                 desc->callback = sh_mmcif_dma_complete;
369                 desc->callback_param = host;
370                 cookie = dmaengine_submit(desc);
371                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
372                 dma_async_issue_pending(chan);
373         }
374         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
375                 __func__, data->sg_len, ret, cookie);
376
377         if (!desc) {
378                 /* DMA failed, fall back to PIO */
379                 if (ret >= 0)
380                         ret = -EIO;
381                 host->chan_tx = NULL;
382                 host->dma_active = false;
383                 dma_release_channel(chan);
384                 /* Free the Rx channel too */
385                 chan = host->chan_rx;
386                 if (chan) {
387                         host->chan_rx = NULL;
388                         dma_release_channel(chan);
389                 }
390                 dev_warn(dev,
391                          "DMA failed: %d, falling back to PIO\n", ret);
392                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
393         }
394
395         dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
396                 desc, cookie);
397 }
398
399 static struct dma_chan *
400 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
401 {
402         dma_cap_mask_t mask;
403
404         dma_cap_zero(mask);
405         dma_cap_set(DMA_SLAVE, mask);
406         if (slave_id <= 0)
407                 return NULL;
408
409         return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
410 }
411
412 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
413                                      struct dma_chan *chan,
414                                      enum dma_transfer_direction direction)
415 {
416         struct resource *res;
417         struct dma_slave_config cfg = { 0, };
418
419         res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
420         cfg.direction = direction;
421
422         if (direction == DMA_DEV_TO_MEM) {
423                 cfg.src_addr = res->start + MMCIF_CE_DATA;
424                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
425         } else {
426                 cfg.dst_addr = res->start + MMCIF_CE_DATA;
427                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
428         }
429
430         return dmaengine_slave_config(chan, &cfg);
431 }
432
433 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
434 {
435         struct device *dev = sh_mmcif_host_to_dev(host);
436         host->dma_active = false;
437
438         /* We can only either use DMA for both Tx and Rx or not use it at all */
439         if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
440                 struct sh_mmcif_plat_data *pdata = dev->platform_data;
441
442                 host->chan_tx = sh_mmcif_request_dma_pdata(host,
443                                                         pdata->slave_id_tx);
444                 host->chan_rx = sh_mmcif_request_dma_pdata(host,
445                                                         pdata->slave_id_rx);
446         } else {
447                 host->chan_tx = dma_request_slave_channel(dev, "tx");
448                 host->chan_rx = dma_request_slave_channel(dev, "rx");
449         }
450         dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
451                 host->chan_rx);
452
453         if (!host->chan_tx || !host->chan_rx ||
454             sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
455             sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
456                 goto error;
457
458         return;
459
460 error:
461         if (host->chan_tx)
462                 dma_release_channel(host->chan_tx);
463         if (host->chan_rx)
464                 dma_release_channel(host->chan_rx);
465         host->chan_tx = host->chan_rx = NULL;
466 }
467
468 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
469 {
470         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
471         /* Descriptors are freed automatically */
472         if (host->chan_tx) {
473                 struct dma_chan *chan = host->chan_tx;
474                 host->chan_tx = NULL;
475                 dma_release_channel(chan);
476         }
477         if (host->chan_rx) {
478                 struct dma_chan *chan = host->chan_rx;
479                 host->chan_rx = NULL;
480                 dma_release_channel(chan);
481         }
482
483         host->dma_active = false;
484 }
485
486 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
487 {
488         struct device *dev = sh_mmcif_host_to_dev(host);
489         struct sh_mmcif_plat_data *p = dev->platform_data;
490         bool sup_pclk = p ? p->sup_pclk : false;
491         unsigned int current_clk = clk_get_rate(host->clk);
492         unsigned int clkdiv;
493
494         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
495         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
496
497         if (!clk)
498                 return;
499
500         if (host->clkdiv_map) {
501                 unsigned int freq, best_freq, myclk, div, diff_min, diff;
502                 int i;
503
504                 clkdiv = 0;
505                 diff_min = ~0;
506                 best_freq = 0;
507                 for (i = 31; i >= 0; i--) {
508                         if (!((1 << i) & host->clkdiv_map))
509                                 continue;
510
511                         /*
512                          * clk = parent_freq / div
513                          * -> parent_freq = clk x div
514                          */
515
516                         div = 1 << (i + 1);
517                         freq = clk_round_rate(host->clk, clk * div);
518                         myclk = freq / div;
519                         diff = (myclk > clk) ? myclk - clk : clk - myclk;
520
521                         if (diff <= diff_min) {
522                                 best_freq = freq;
523                                 clkdiv = i;
524                                 diff_min = diff;
525                         }
526                 }
527
528                 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
529                         (best_freq / (1 << (clkdiv + 1))), clk,
530                         best_freq, clkdiv);
531
532                 clk_set_rate(host->clk, best_freq);
533                 clkdiv = clkdiv << 16;
534         } else if (sup_pclk && clk == current_clk) {
535                 clkdiv = CLK_SUP_PCLK;
536         } else {
537                 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
538         }
539
540         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
541         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
542 }
543
544 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
545 {
546         u32 tmp;
547
548         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
549
550         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
551         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
552         if (host->ccs_enable)
553                 tmp |= SCCSTO_29;
554         if (host->clk_ctrl2_enable)
555                 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
556         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
557                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
558         /* byte swap on */
559         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
560 }
561
562 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
563 {
564         struct device *dev = sh_mmcif_host_to_dev(host);
565         u32 state1, state2;
566         int ret, timeout;
567
568         host->sd_error = false;
569
570         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
571         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
572         dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
573         dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
574
575         if (state1 & STS1_CMDSEQ) {
576                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
577                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
578                 for (timeout = 10000000; timeout; timeout--) {
579                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
580                               & STS1_CMDSEQ))
581                                 break;
582                         mdelay(1);
583                 }
584                 if (!timeout) {
585                         dev_err(dev,
586                                 "Forced end of command sequence timeout err\n");
587                         return -EIO;
588                 }
589                 sh_mmcif_sync_reset(host);
590                 dev_dbg(dev, "Forced end of command sequence\n");
591                 return -EIO;
592         }
593
594         if (state2 & STS2_CRC_ERR) {
595                 dev_err(dev, " CRC error: state %u, wait %u\n",
596                         host->state, host->wait_for);
597                 ret = -EIO;
598         } else if (state2 & STS2_TIMEOUT_ERR) {
599                 dev_err(dev, " Timeout: state %u, wait %u\n",
600                         host->state, host->wait_for);
601                 ret = -ETIMEDOUT;
602         } else {
603                 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
604                         host->state, host->wait_for);
605                 ret = -EIO;
606         }
607         return ret;
608 }
609
610 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
611 {
612         struct mmc_data *data = host->mrq->data;
613
614         host->sg_blkidx += host->blocksize;
615
616         /* data->sg->length must be a multiple of host->blocksize? */
617         BUG_ON(host->sg_blkidx > data->sg->length);
618
619         if (host->sg_blkidx == data->sg->length) {
620                 host->sg_blkidx = 0;
621                 if (++host->sg_idx < data->sg_len)
622                         host->pio_ptr = sg_virt(++data->sg);
623         } else {
624                 host->pio_ptr = p;
625         }
626
627         return host->sg_idx != data->sg_len;
628 }
629
630 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
631                                  struct mmc_request *mrq)
632 {
633         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
634                            BLOCK_SIZE_MASK) + 3;
635
636         host->wait_for = MMCIF_WAIT_FOR_READ;
637
638         /* buf read enable */
639         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
640 }
641
642 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
643 {
644         struct device *dev = sh_mmcif_host_to_dev(host);
645         struct mmc_data *data = host->mrq->data;
646         u32 *p = sg_virt(data->sg);
647         int i;
648
649         if (host->sd_error) {
650                 data->error = sh_mmcif_error_manage(host);
651                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
652                 return false;
653         }
654
655         for (i = 0; i < host->blocksize / 4; i++)
656                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
657
658         /* buffer read end */
659         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
660         host->wait_for = MMCIF_WAIT_FOR_READ_END;
661
662         return true;
663 }
664
665 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
666                                 struct mmc_request *mrq)
667 {
668         struct mmc_data *data = mrq->data;
669
670         if (!data->sg_len || !data->sg->length)
671                 return;
672
673         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
674                 BLOCK_SIZE_MASK;
675
676         host->wait_for = MMCIF_WAIT_FOR_MREAD;
677         host->sg_idx = 0;
678         host->sg_blkidx = 0;
679         host->pio_ptr = sg_virt(data->sg);
680
681         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
682 }
683
684 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
685 {
686         struct device *dev = sh_mmcif_host_to_dev(host);
687         struct mmc_data *data = host->mrq->data;
688         u32 *p = host->pio_ptr;
689         int i;
690
691         if (host->sd_error) {
692                 data->error = sh_mmcif_error_manage(host);
693                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
694                 return false;
695         }
696
697         BUG_ON(!data->sg->length);
698
699         for (i = 0; i < host->blocksize / 4; i++)
700                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
701
702         if (!sh_mmcif_next_block(host, p))
703                 return false;
704
705         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
706
707         return true;
708 }
709
710 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
711                                         struct mmc_request *mrq)
712 {
713         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
714                            BLOCK_SIZE_MASK) + 3;
715
716         host->wait_for = MMCIF_WAIT_FOR_WRITE;
717
718         /* buf write enable */
719         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
720 }
721
722 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
723 {
724         struct device *dev = sh_mmcif_host_to_dev(host);
725         struct mmc_data *data = host->mrq->data;
726         u32 *p = sg_virt(data->sg);
727         int i;
728
729         if (host->sd_error) {
730                 data->error = sh_mmcif_error_manage(host);
731                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
732                 return false;
733         }
734
735         for (i = 0; i < host->blocksize / 4; i++)
736                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
737
738         /* buffer write end */
739         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
740         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
741
742         return true;
743 }
744
745 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
746                                 struct mmc_request *mrq)
747 {
748         struct mmc_data *data = mrq->data;
749
750         if (!data->sg_len || !data->sg->length)
751                 return;
752
753         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
754                 BLOCK_SIZE_MASK;
755
756         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
757         host->sg_idx = 0;
758         host->sg_blkidx = 0;
759         host->pio_ptr = sg_virt(data->sg);
760
761         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
762 }
763
764 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
765 {
766         struct device *dev = sh_mmcif_host_to_dev(host);
767         struct mmc_data *data = host->mrq->data;
768         u32 *p = host->pio_ptr;
769         int i;
770
771         if (host->sd_error) {
772                 data->error = sh_mmcif_error_manage(host);
773                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
774                 return false;
775         }
776
777         BUG_ON(!data->sg->length);
778
779         for (i = 0; i < host->blocksize / 4; i++)
780                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
781
782         if (!sh_mmcif_next_block(host, p))
783                 return false;
784
785         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
786
787         return true;
788 }
789
790 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
791                                                 struct mmc_command *cmd)
792 {
793         if (cmd->flags & MMC_RSP_136) {
794                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
795                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
796                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
797                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
798         } else
799                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
800 }
801
802 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
803                                                 struct mmc_command *cmd)
804 {
805         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
806 }
807
808 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
809                             struct mmc_request *mrq)
810 {
811         struct device *dev = sh_mmcif_host_to_dev(host);
812         struct mmc_data *data = mrq->data;
813         struct mmc_command *cmd = mrq->cmd;
814         u32 opc = cmd->opcode;
815         u32 tmp = 0;
816
817         /* Response Type check */
818         switch (mmc_resp_type(cmd)) {
819         case MMC_RSP_NONE:
820                 tmp |= CMD_SET_RTYP_NO;
821                 break;
822         case MMC_RSP_R1:
823         case MMC_RSP_R1B:
824         case MMC_RSP_R3:
825                 tmp |= CMD_SET_RTYP_6B;
826                 break;
827         case MMC_RSP_R2:
828                 tmp |= CMD_SET_RTYP_17B;
829                 break;
830         default:
831                 dev_err(dev, "Unsupported response type.\n");
832                 break;
833         }
834         switch (opc) {
835         /* RBSY */
836         case MMC_SLEEP_AWAKE:
837         case MMC_SWITCH:
838         case MMC_STOP_TRANSMISSION:
839         case MMC_SET_WRITE_PROT:
840         case MMC_CLR_WRITE_PROT:
841         case MMC_ERASE:
842                 tmp |= CMD_SET_RBSY;
843                 break;
844         }
845         /* WDAT / DATW */
846         if (data) {
847                 tmp |= CMD_SET_WDAT;
848                 switch (host->bus_width) {
849                 case MMC_BUS_WIDTH_1:
850                         tmp |= CMD_SET_DATW_1;
851                         break;
852                 case MMC_BUS_WIDTH_4:
853                         tmp |= CMD_SET_DATW_4;
854                         break;
855                 case MMC_BUS_WIDTH_8:
856                         tmp |= CMD_SET_DATW_8;
857                         break;
858                 default:
859                         dev_err(dev, "Unsupported bus width.\n");
860                         break;
861                 }
862                 switch (host->timing) {
863                 case MMC_TIMING_MMC_DDR52:
864                         /*
865                          * MMC core will only set this timing, if the host
866                          * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
867                          * capability. MMCIF implementations with this
868                          * capability, e.g. sh73a0, will have to set it
869                          * in their platform data.
870                          */
871                         tmp |= CMD_SET_DARS;
872                         break;
873                 }
874         }
875         /* DWEN */
876         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
877                 tmp |= CMD_SET_DWEN;
878         /* CMLTE/CMD12EN */
879         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
880                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
881                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
882                                 data->blocks << 16);
883         }
884         /* RIDXC[1:0] check bits */
885         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
886             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
887                 tmp |= CMD_SET_RIDXC_BITS;
888         /* RCRC7C[1:0] check bits */
889         if (opc == MMC_SEND_OP_COND)
890                 tmp |= CMD_SET_CRC7C_BITS;
891         /* RCRC7C[1:0] internal CRC7 */
892         if (opc == MMC_ALL_SEND_CID ||
893                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
894                 tmp |= CMD_SET_CRC7C_INTERNAL;
895
896         return (opc << 24) | tmp;
897 }
898
899 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
900                                struct mmc_request *mrq, u32 opc)
901 {
902         struct device *dev = sh_mmcif_host_to_dev(host);
903
904         switch (opc) {
905         case MMC_READ_MULTIPLE_BLOCK:
906                 sh_mmcif_multi_read(host, mrq);
907                 return 0;
908         case MMC_WRITE_MULTIPLE_BLOCK:
909                 sh_mmcif_multi_write(host, mrq);
910                 return 0;
911         case MMC_WRITE_BLOCK:
912                 sh_mmcif_single_write(host, mrq);
913                 return 0;
914         case MMC_READ_SINGLE_BLOCK:
915         case MMC_SEND_EXT_CSD:
916                 sh_mmcif_single_read(host, mrq);
917                 return 0;
918         default:
919                 dev_err(dev, "Unsupported CMD%d\n", opc);
920                 return -EINVAL;
921         }
922 }
923
924 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
925                                struct mmc_request *mrq)
926 {
927         struct mmc_command *cmd = mrq->cmd;
928         u32 opc = cmd->opcode;
929         u32 mask;
930         unsigned long flags;
931
932         switch (opc) {
933         /* response busy check */
934         case MMC_SLEEP_AWAKE:
935         case MMC_SWITCH:
936         case MMC_STOP_TRANSMISSION:
937         case MMC_SET_WRITE_PROT:
938         case MMC_CLR_WRITE_PROT:
939         case MMC_ERASE:
940                 mask = MASK_START_CMD | MASK_MRBSYE;
941                 break;
942         default:
943                 mask = MASK_START_CMD | MASK_MCRSPE;
944                 break;
945         }
946
947         if (host->ccs_enable)
948                 mask |= MASK_MCCSTO;
949
950         if (mrq->data) {
951                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
952                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
953                                 mrq->data->blksz);
954         }
955         opc = sh_mmcif_set_cmd(host, mrq);
956
957         if (host->ccs_enable)
958                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
959         else
960                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
961         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
962         /* set arg */
963         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
964         /* set cmd */
965         spin_lock_irqsave(&host->lock, flags);
966         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
967
968         host->wait_for = MMCIF_WAIT_FOR_CMD;
969         schedule_delayed_work(&host->timeout_work, host->timeout);
970         spin_unlock_irqrestore(&host->lock, flags);
971 }
972
973 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
974                               struct mmc_request *mrq)
975 {
976         struct device *dev = sh_mmcif_host_to_dev(host);
977
978         switch (mrq->cmd->opcode) {
979         case MMC_READ_MULTIPLE_BLOCK:
980                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
981                 break;
982         case MMC_WRITE_MULTIPLE_BLOCK:
983                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
984                 break;
985         default:
986                 dev_err(dev, "unsupported stop cmd\n");
987                 mrq->stop->error = sh_mmcif_error_manage(host);
988                 return;
989         }
990
991         host->wait_for = MMCIF_WAIT_FOR_STOP;
992 }
993
994 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
995 {
996         struct sh_mmcif_host *host = mmc_priv(mmc);
997         struct device *dev = sh_mmcif_host_to_dev(host);
998         unsigned long flags;
999
1000         spin_lock_irqsave(&host->lock, flags);
1001         if (host->state != STATE_IDLE) {
1002                 dev_dbg(dev, "%s() rejected, state %u\n",
1003                         __func__, host->state);
1004                 spin_unlock_irqrestore(&host->lock, flags);
1005                 mrq->cmd->error = -EAGAIN;
1006                 mmc_request_done(mmc, mrq);
1007                 return;
1008         }
1009
1010         host->state = STATE_REQUEST;
1011         spin_unlock_irqrestore(&host->lock, flags);
1012
1013         switch (mrq->cmd->opcode) {
1014         /* MMCIF does not support SD/SDIO command */
1015         case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
1016         case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
1017                 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
1018                         break;
1019         case MMC_APP_CMD:
1020         case SD_IO_RW_DIRECT:
1021                 host->state = STATE_IDLE;
1022                 mrq->cmd->error = -ETIMEDOUT;
1023                 mmc_request_done(mmc, mrq);
1024                 return;
1025         default:
1026                 break;
1027         }
1028
1029         host->mrq = mrq;
1030
1031         sh_mmcif_start_cmd(host, mrq);
1032 }
1033
1034 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1035 {
1036         struct device *dev = sh_mmcif_host_to_dev(host);
1037
1038         if (host->mmc->f_max) {
1039                 unsigned int f_max, f_min = 0, f_min_old;
1040
1041                 f_max = host->mmc->f_max;
1042                 for (f_min_old = f_max; f_min_old > 2;) {
1043                         f_min = clk_round_rate(host->clk, f_min_old / 2);
1044                         if (f_min == f_min_old)
1045                                 break;
1046                         f_min_old = f_min;
1047                 }
1048
1049                 /*
1050                  * This driver assumes this SoC is R-Car Gen2 or later
1051                  */
1052                 host->clkdiv_map = 0x3ff;
1053
1054                 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1055                 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1056         } else {
1057                 unsigned int clk = clk_get_rate(host->clk);
1058
1059                 host->mmc->f_max = clk / 2;
1060                 host->mmc->f_min = clk / 512;
1061         }
1062
1063         dev_dbg(dev, "clk max/min = %d/%d\n",
1064                 host->mmc->f_max, host->mmc->f_min);
1065 }
1066
1067 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
1068 {
1069         struct mmc_host *mmc = host->mmc;
1070
1071         if (!IS_ERR(mmc->supply.vmmc))
1072                 /* Errors ignored... */
1073                 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1074                                       ios->power_mode ? ios->vdd : 0);
1075 }
1076
1077 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1078 {
1079         struct sh_mmcif_host *host = mmc_priv(mmc);
1080         struct device *dev = sh_mmcif_host_to_dev(host);
1081         unsigned long flags;
1082
1083         spin_lock_irqsave(&host->lock, flags);
1084         if (host->state != STATE_IDLE) {
1085                 dev_dbg(dev, "%s() rejected, state %u\n",
1086                         __func__, host->state);
1087                 spin_unlock_irqrestore(&host->lock, flags);
1088                 return;
1089         }
1090
1091         host->state = STATE_IOS;
1092         spin_unlock_irqrestore(&host->lock, flags);
1093
1094         if (ios->power_mode == MMC_POWER_UP) {
1095                 if (!host->card_present) {
1096                         /* See if we also get DMA */
1097                         sh_mmcif_request_dma(host);
1098                         host->card_present = true;
1099                 }
1100                 sh_mmcif_set_power(host, ios);
1101         } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1102                 /* clock stop */
1103                 sh_mmcif_clock_control(host, 0);
1104                 if (ios->power_mode == MMC_POWER_OFF) {
1105                         if (host->card_present) {
1106                                 sh_mmcif_release_dma(host);
1107                                 host->card_present = false;
1108                         }
1109                 }
1110                 if (host->power) {
1111                         pm_runtime_put_sync(dev);
1112                         clk_disable_unprepare(host->clk);
1113                         host->power = false;
1114                         if (ios->power_mode == MMC_POWER_OFF)
1115                                 sh_mmcif_set_power(host, ios);
1116                 }
1117                 host->state = STATE_IDLE;
1118                 return;
1119         }
1120
1121         if (ios->clock) {
1122                 if (!host->power) {
1123                         clk_prepare_enable(host->clk);
1124
1125                         pm_runtime_get_sync(dev);
1126                         host->power = true;
1127                         sh_mmcif_sync_reset(host);
1128                 }
1129                 sh_mmcif_clock_control(host, ios->clock);
1130         }
1131
1132         host->timing = ios->timing;
1133         host->bus_width = ios->bus_width;
1134         host->state = STATE_IDLE;
1135 }
1136
1137 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1138 {
1139         struct sh_mmcif_host *host = mmc_priv(mmc);
1140         struct device *dev = sh_mmcif_host_to_dev(host);
1141         struct sh_mmcif_plat_data *p = dev->platform_data;
1142         int ret = mmc_gpio_get_cd(mmc);
1143
1144         if (ret >= 0)
1145                 return ret;
1146
1147         if (!p || !p->get_cd)
1148                 return -ENOSYS;
1149         else
1150                 return p->get_cd(host->pd);
1151 }
1152
1153 static struct mmc_host_ops sh_mmcif_ops = {
1154         .request        = sh_mmcif_request,
1155         .set_ios        = sh_mmcif_set_ios,
1156         .get_cd         = sh_mmcif_get_cd,
1157 };
1158
1159 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1160 {
1161         struct mmc_command *cmd = host->mrq->cmd;
1162         struct mmc_data *data = host->mrq->data;
1163         struct device *dev = sh_mmcif_host_to_dev(host);
1164         long time;
1165
1166         if (host->sd_error) {
1167                 switch (cmd->opcode) {
1168                 case MMC_ALL_SEND_CID:
1169                 case MMC_SELECT_CARD:
1170                 case MMC_APP_CMD:
1171                         cmd->error = -ETIMEDOUT;
1172                         break;
1173                 default:
1174                         cmd->error = sh_mmcif_error_manage(host);
1175                         break;
1176                 }
1177                 dev_dbg(dev, "CMD%d error %d\n",
1178                         cmd->opcode, cmd->error);
1179                 host->sd_error = false;
1180                 return false;
1181         }
1182         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1183                 cmd->error = 0;
1184                 return false;
1185         }
1186
1187         sh_mmcif_get_response(host, cmd);
1188
1189         if (!data)
1190                 return false;
1191
1192         /*
1193          * Completion can be signalled from DMA callback and error, so, have to
1194          * reset here, before setting .dma_active
1195          */
1196         init_completion(&host->dma_complete);
1197
1198         if (data->flags & MMC_DATA_READ) {
1199                 if (host->chan_rx)
1200                         sh_mmcif_start_dma_rx(host);
1201         } else {
1202                 if (host->chan_tx)
1203                         sh_mmcif_start_dma_tx(host);
1204         }
1205
1206         if (!host->dma_active) {
1207                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1208                 return !data->error;
1209         }
1210
1211         /* Running in the IRQ thread, can sleep */
1212         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1213                                                          host->timeout);
1214
1215         if (data->flags & MMC_DATA_READ)
1216                 dma_unmap_sg(host->chan_rx->device->dev,
1217                              data->sg, data->sg_len,
1218                              DMA_FROM_DEVICE);
1219         else
1220                 dma_unmap_sg(host->chan_tx->device->dev,
1221                              data->sg, data->sg_len,
1222                              DMA_TO_DEVICE);
1223
1224         if (host->sd_error) {
1225                 dev_err(host->mmc->parent,
1226                         "Error IRQ while waiting for DMA completion!\n");
1227                 /* Woken up by an error IRQ: abort DMA */
1228                 data->error = sh_mmcif_error_manage(host);
1229         } else if (!time) {
1230                 dev_err(host->mmc->parent, "DMA timeout!\n");
1231                 data->error = -ETIMEDOUT;
1232         } else if (time < 0) {
1233                 dev_err(host->mmc->parent,
1234                         "wait_for_completion_...() error %ld!\n", time);
1235                 data->error = time;
1236         }
1237         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1238                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1239         host->dma_active = false;
1240
1241         if (data->error) {
1242                 data->bytes_xfered = 0;
1243                 /* Abort DMA */
1244                 if (data->flags & MMC_DATA_READ)
1245                         dmaengine_terminate_all(host->chan_rx);
1246                 else
1247                         dmaengine_terminate_all(host->chan_tx);
1248         }
1249
1250         return false;
1251 }
1252
1253 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1254 {
1255         struct sh_mmcif_host *host = dev_id;
1256         struct mmc_request *mrq;
1257         struct device *dev = sh_mmcif_host_to_dev(host);
1258         bool wait = false;
1259         unsigned long flags;
1260         int wait_work;
1261
1262         spin_lock_irqsave(&host->lock, flags);
1263         wait_work = host->wait_for;
1264         spin_unlock_irqrestore(&host->lock, flags);
1265
1266         cancel_delayed_work_sync(&host->timeout_work);
1267
1268         mutex_lock(&host->thread_lock);
1269
1270         mrq = host->mrq;
1271         if (!mrq) {
1272                 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1273                         host->state, host->wait_for);
1274                 mutex_unlock(&host->thread_lock);
1275                 return IRQ_HANDLED;
1276         }
1277
1278         /*
1279          * All handlers return true, if processing continues, and false, if the
1280          * request has to be completed - successfully or not
1281          */
1282         switch (wait_work) {
1283         case MMCIF_WAIT_FOR_REQUEST:
1284                 /* We're too late, the timeout has already kicked in */
1285                 mutex_unlock(&host->thread_lock);
1286                 return IRQ_HANDLED;
1287         case MMCIF_WAIT_FOR_CMD:
1288                 /* Wait for data? */
1289                 wait = sh_mmcif_end_cmd(host);
1290                 break;
1291         case MMCIF_WAIT_FOR_MREAD:
1292                 /* Wait for more data? */
1293                 wait = sh_mmcif_mread_block(host);
1294                 break;
1295         case MMCIF_WAIT_FOR_READ:
1296                 /* Wait for data end? */
1297                 wait = sh_mmcif_read_block(host);
1298                 break;
1299         case MMCIF_WAIT_FOR_MWRITE:
1300                 /* Wait data to write? */
1301                 wait = sh_mmcif_mwrite_block(host);
1302                 break;
1303         case MMCIF_WAIT_FOR_WRITE:
1304                 /* Wait for data end? */
1305                 wait = sh_mmcif_write_block(host);
1306                 break;
1307         case MMCIF_WAIT_FOR_STOP:
1308                 if (host->sd_error) {
1309                         mrq->stop->error = sh_mmcif_error_manage(host);
1310                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1311                         break;
1312                 }
1313                 sh_mmcif_get_cmd12response(host, mrq->stop);
1314                 mrq->stop->error = 0;
1315                 break;
1316         case MMCIF_WAIT_FOR_READ_END:
1317         case MMCIF_WAIT_FOR_WRITE_END:
1318                 if (host->sd_error) {
1319                         mrq->data->error = sh_mmcif_error_manage(host);
1320                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1321                 }
1322                 break;
1323         default:
1324                 BUG();
1325         }
1326
1327         if (wait) {
1328                 schedule_delayed_work(&host->timeout_work, host->timeout);
1329                 /* Wait for more data */
1330                 mutex_unlock(&host->thread_lock);
1331                 return IRQ_HANDLED;
1332         }
1333
1334         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1335                 struct mmc_data *data = mrq->data;
1336                 if (!mrq->cmd->error && data && !data->error)
1337                         data->bytes_xfered =
1338                                 data->blocks * data->blksz;
1339
1340                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1341                         sh_mmcif_stop_cmd(host, mrq);
1342                         if (!mrq->stop->error) {
1343                                 schedule_delayed_work(&host->timeout_work, host->timeout);
1344                                 mutex_unlock(&host->thread_lock);
1345                                 return IRQ_HANDLED;
1346                         }
1347                 }
1348         }
1349
1350         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1351         host->state = STATE_IDLE;
1352         host->mrq = NULL;
1353         mmc_request_done(host->mmc, mrq);
1354
1355         mutex_unlock(&host->thread_lock);
1356
1357         return IRQ_HANDLED;
1358 }
1359
1360 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1361 {
1362         struct sh_mmcif_host *host = dev_id;
1363         struct device *dev = sh_mmcif_host_to_dev(host);
1364         u32 state, mask;
1365
1366         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1367         mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1368         if (host->ccs_enable)
1369                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1370         else
1371                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1372         sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1373
1374         if (state & ~MASK_CLEAN)
1375                 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1376                         state);
1377
1378         if (state & INT_ERR_STS || state & ~INT_ALL) {
1379                 host->sd_error = true;
1380                 dev_dbg(dev, "int err state = 0x%08x\n", state);
1381         }
1382         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1383                 if (!host->mrq)
1384                         dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1385                 if (!host->dma_active)
1386                         return IRQ_WAKE_THREAD;
1387                 else if (host->sd_error)
1388                         sh_mmcif_dma_complete(host);
1389         } else {
1390                 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1391         }
1392
1393         return IRQ_HANDLED;
1394 }
1395
1396 static void sh_mmcif_timeout_work(struct work_struct *work)
1397 {
1398         struct delayed_work *d = container_of(work, struct delayed_work, work);
1399         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1400         struct mmc_request *mrq = host->mrq;
1401         struct device *dev = sh_mmcif_host_to_dev(host);
1402         unsigned long flags;
1403
1404         if (host->dying)
1405                 /* Don't run after mmc_remove_host() */
1406                 return;
1407
1408         spin_lock_irqsave(&host->lock, flags);
1409         if (host->state == STATE_IDLE) {
1410                 spin_unlock_irqrestore(&host->lock, flags);
1411                 return;
1412         }
1413
1414         dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1415                 host->wait_for, mrq->cmd->opcode);
1416
1417         host->state = STATE_TIMEOUT;
1418         spin_unlock_irqrestore(&host->lock, flags);
1419
1420         /*
1421          * Handle races with cancel_delayed_work(), unless
1422          * cancel_delayed_work_sync() is used
1423          */
1424         switch (host->wait_for) {
1425         case MMCIF_WAIT_FOR_CMD:
1426                 mrq->cmd->error = sh_mmcif_error_manage(host);
1427                 break;
1428         case MMCIF_WAIT_FOR_STOP:
1429                 mrq->stop->error = sh_mmcif_error_manage(host);
1430                 break;
1431         case MMCIF_WAIT_FOR_MREAD:
1432         case MMCIF_WAIT_FOR_MWRITE:
1433         case MMCIF_WAIT_FOR_READ:
1434         case MMCIF_WAIT_FOR_WRITE:
1435         case MMCIF_WAIT_FOR_READ_END:
1436         case MMCIF_WAIT_FOR_WRITE_END:
1437                 mrq->data->error = sh_mmcif_error_manage(host);
1438                 break;
1439         default:
1440                 BUG();
1441         }
1442
1443         host->state = STATE_IDLE;
1444         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1445         host->mrq = NULL;
1446         mmc_request_done(host->mmc, mrq);
1447 }
1448
1449 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1450 {
1451         struct device *dev = sh_mmcif_host_to_dev(host);
1452         struct sh_mmcif_plat_data *pd = dev->platform_data;
1453         struct mmc_host *mmc = host->mmc;
1454
1455         mmc_regulator_get_supply(mmc);
1456
1457         if (!pd)
1458                 return;
1459
1460         if (!mmc->ocr_avail)
1461                 mmc->ocr_avail = pd->ocr;
1462         else if (pd->ocr)
1463                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1464 }
1465
1466 static int sh_mmcif_probe(struct platform_device *pdev)
1467 {
1468         int ret = 0, irq[2];
1469         struct mmc_host *mmc;
1470         struct sh_mmcif_host *host;
1471         struct device *dev = &pdev->dev;
1472         struct sh_mmcif_plat_data *pd = dev->platform_data;
1473         struct resource *res;
1474         void __iomem *reg;
1475         const char *name;
1476
1477         irq[0] = platform_get_irq(pdev, 0);
1478         irq[1] = platform_get_irq(pdev, 1);
1479         if (irq[0] < 0) {
1480                 dev_err(dev, "Get irq error\n");
1481                 return -ENXIO;
1482         }
1483
1484         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1485         reg = devm_ioremap_resource(dev, res);
1486         if (IS_ERR(reg))
1487                 return PTR_ERR(reg);
1488
1489         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1490         if (!mmc)
1491                 return -ENOMEM;
1492
1493         ret = mmc_of_parse(mmc);
1494         if (ret < 0)
1495                 goto err_host;
1496
1497         host            = mmc_priv(mmc);
1498         host->mmc       = mmc;
1499         host->addr      = reg;
1500         host->timeout   = msecs_to_jiffies(10000);
1501         host->ccs_enable = !pd || !pd->ccs_unsupported;
1502         host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1503
1504         host->pd = pdev;
1505
1506         spin_lock_init(&host->lock);
1507
1508         mmc->ops = &sh_mmcif_ops;
1509         sh_mmcif_init_ocr(host);
1510
1511         mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1512         if (pd && pd->caps)
1513                 mmc->caps |= pd->caps;
1514         mmc->max_segs = 32;
1515         mmc->max_blk_size = 512;
1516         mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1517         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1518         mmc->max_seg_size = mmc->max_req_size;
1519
1520         platform_set_drvdata(pdev, host);
1521
1522         pm_runtime_enable(dev);
1523         host->power = false;
1524
1525         host->clk = devm_clk_get(dev, NULL);
1526         if (IS_ERR(host->clk)) {
1527                 ret = PTR_ERR(host->clk);
1528                 dev_err(dev, "cannot get clock: %d\n", ret);
1529                 goto err_pm;
1530         }
1531
1532         ret = clk_prepare_enable(host->clk);
1533         if (ret < 0)
1534                 goto err_pm;
1535
1536         sh_mmcif_clk_setup(host);
1537
1538         ret = pm_runtime_resume(dev);
1539         if (ret < 0)
1540                 goto err_clk;
1541
1542         INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1543
1544         sh_mmcif_sync_reset(host);
1545         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1546
1547         name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1548         ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1549                                         sh_mmcif_irqt, 0, name, host);
1550         if (ret) {
1551                 dev_err(dev, "request_irq error (%s)\n", name);
1552                 goto err_clk;
1553         }
1554         if (irq[1] >= 0) {
1555                 ret = devm_request_threaded_irq(dev, irq[1],
1556                                                 sh_mmcif_intr, sh_mmcif_irqt,
1557                                                 0, "sh_mmc:int", host);
1558                 if (ret) {
1559                         dev_err(dev, "request_irq error (sh_mmc:int)\n");
1560                         goto err_clk;
1561                 }
1562         }
1563
1564         if (pd && pd->use_cd_gpio) {
1565                 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1566                 if (ret < 0)
1567                         goto err_clk;
1568         }
1569
1570         mutex_init(&host->thread_lock);
1571
1572         ret = mmc_add_host(mmc);
1573         if (ret < 0)
1574                 goto err_clk;
1575
1576         dev_pm_qos_expose_latency_limit(dev, 100);
1577
1578         dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1579                  sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1580                  clk_get_rate(host->clk) / 1000000UL);
1581
1582         clk_disable_unprepare(host->clk);
1583         return ret;
1584
1585 err_clk:
1586         clk_disable_unprepare(host->clk);
1587 err_pm:
1588         pm_runtime_disable(dev);
1589 err_host:
1590         mmc_free_host(mmc);
1591         return ret;
1592 }
1593
1594 static int sh_mmcif_remove(struct platform_device *pdev)
1595 {
1596         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1597
1598         host->dying = true;
1599         clk_prepare_enable(host->clk);
1600         pm_runtime_get_sync(&pdev->dev);
1601
1602         dev_pm_qos_hide_latency_limit(&pdev->dev);
1603
1604         mmc_remove_host(host->mmc);
1605         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1606
1607         /*
1608          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1609          * mmc_remove_host() call above. But swapping order doesn't help either
1610          * (a query on the linux-mmc mailing list didn't bring any replies).
1611          */
1612         cancel_delayed_work_sync(&host->timeout_work);
1613
1614         clk_disable_unprepare(host->clk);
1615         mmc_free_host(host->mmc);
1616         pm_runtime_put_sync(&pdev->dev);
1617         pm_runtime_disable(&pdev->dev);
1618
1619         return 0;
1620 }
1621
1622 #ifdef CONFIG_PM_SLEEP
1623 static int sh_mmcif_suspend(struct device *dev)
1624 {
1625         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1626
1627         pm_runtime_get_sync(dev);
1628         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1629         pm_runtime_put(dev);
1630
1631         return 0;
1632 }
1633
1634 static int sh_mmcif_resume(struct device *dev)
1635 {
1636         return 0;
1637 }
1638 #endif
1639
1640 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1641         SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1642 };
1643
1644 static struct platform_driver sh_mmcif_driver = {
1645         .probe          = sh_mmcif_probe,
1646         .remove         = sh_mmcif_remove,
1647         .driver         = {
1648                 .name   = DRIVER_NAME,
1649                 .pm     = &sh_mmcif_dev_pm_ops,
1650                 .of_match_table = sh_mmcif_of_match,
1651         },
1652 };
1653
1654 module_platform_driver(sh_mmcif_driver);
1655
1656 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1657 MODULE_LICENSE("GPL");
1658 MODULE_ALIAS("platform:" DRIVER_NAME);
1659 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");