Merge tag 'for-linus-20141215' of git://git.infradead.org/linux-mtd
[cascardo/linux.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  *  Copyright © 2003 Rick Bronson
3  *
4  *  Derived from drivers/mtd/nand/autcpu12.c
5  *       Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6  *
7  *  Derived from drivers/mtd/spia.c
8  *       Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9  *
10  *
11  *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12  *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13  *
14  *     Derived from Das U-Boot source code
15  *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16  *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17  *
18  *  Add Programmable Multibit ECC support for various AT91 SoC
19  *     © Copyright 2012 ATMEL, Hong Xu
20  *
21  *  Add Nand Flash Controller support for SAMA5 SoC
22  *     © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29
30 #include <linux/clk.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/slab.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/platform_device.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/of_gpio.h>
39 #include <linux/of_mtd.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/partitions.h>
43
44 #include <linux/delay.h>
45 #include <linux/dmaengine.h>
46 #include <linux/gpio.h>
47 #include <linux/interrupt.h>
48 #include <linux/io.h>
49 #include <linux/platform_data/atmel.h>
50
51 static int use_dma = 1;
52 module_param(use_dma, int, 0);
53
54 static int on_flash_bbt = 0;
55 module_param(on_flash_bbt, int, 0);
56
57 /* Register access macros */
58 #define ecc_readl(add, reg)                             \
59         __raw_readl(add + ATMEL_ECC_##reg)
60 #define ecc_writel(add, reg, value)                     \
61         __raw_writel((value), add + ATMEL_ECC_##reg)
62
63 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
64 #include "atmel_nand_nfc.h"     /* Nand Flash Controller definition */
65
66 /* oob layout for large page size
67  * bad block info is on bytes 0 and 1
68  * the bytes have to be consecutives to avoid
69  * several NAND_CMD_RNDOUT during read
70  */
71 static struct nand_ecclayout atmel_oobinfo_large = {
72         .eccbytes = 4,
73         .eccpos = {60, 61, 62, 63},
74         .oobfree = {
75                 {2, 58}
76         },
77 };
78
79 /* oob layout for small page size
80  * bad block info is on bytes 4 and 5
81  * the bytes have to be consecutives to avoid
82  * several NAND_CMD_RNDOUT during read
83  */
84 static struct nand_ecclayout atmel_oobinfo_small = {
85         .eccbytes = 4,
86         .eccpos = {0, 1, 2, 3},
87         .oobfree = {
88                 {6, 10}
89         },
90 };
91
92 struct atmel_nfc {
93         void __iomem            *base_cmd_regs;
94         void __iomem            *hsmc_regs;
95         void                    *sram_bank0;
96         dma_addr_t              sram_bank0_phys;
97         bool                    use_nfc_sram;
98         bool                    write_by_sram;
99
100         struct clk              *clk;
101
102         bool                    is_initialized;
103         struct completion       comp_ready;
104         struct completion       comp_cmd_done;
105         struct completion       comp_xfer_done;
106
107         /* Point to the sram bank which include readed data via NFC */
108         void                    *data_in_sram;
109         bool                    will_write_sram;
110 };
111 static struct atmel_nfc nand_nfc;
112
113 struct atmel_nand_host {
114         struct nand_chip        nand_chip;
115         struct mtd_info         mtd;
116         void __iomem            *io_base;
117         dma_addr_t              io_phys;
118         struct atmel_nand_data  board;
119         struct device           *dev;
120         void __iomem            *ecc;
121
122         struct completion       comp;
123         struct dma_chan         *dma_chan;
124
125         struct atmel_nfc        *nfc;
126
127         bool                    has_pmecc;
128         u8                      pmecc_corr_cap;
129         u16                     pmecc_sector_size;
130         bool                    has_no_lookup_table;
131         u32                     pmecc_lookup_table_offset;
132         u32                     pmecc_lookup_table_offset_512;
133         u32                     pmecc_lookup_table_offset_1024;
134
135         int                     pmecc_degree;   /* Degree of remainders */
136         int                     pmecc_cw_len;   /* Length of codeword */
137
138         void __iomem            *pmerrloc_base;
139         void __iomem            *pmecc_rom_base;
140
141         /* lookup table for alpha_to and index_of */
142         void __iomem            *pmecc_alpha_to;
143         void __iomem            *pmecc_index_of;
144
145         /* data for pmecc computation */
146         int16_t                 *pmecc_partial_syn;
147         int16_t                 *pmecc_si;
148         int16_t                 *pmecc_smu;     /* Sigma table */
149         int16_t                 *pmecc_lmu;     /* polynomal order */
150         int                     *pmecc_mu;
151         int                     *pmecc_dmu;
152         int                     *pmecc_delta;
153 };
154
155 static struct nand_ecclayout atmel_pmecc_oobinfo;
156
157 /*
158  * Enable NAND.
159  */
160 static void atmel_nand_enable(struct atmel_nand_host *host)
161 {
162         if (gpio_is_valid(host->board.enable_pin))
163                 gpio_set_value(host->board.enable_pin, 0);
164 }
165
166 /*
167  * Disable NAND.
168  */
169 static void atmel_nand_disable(struct atmel_nand_host *host)
170 {
171         if (gpio_is_valid(host->board.enable_pin))
172                 gpio_set_value(host->board.enable_pin, 1);
173 }
174
175 /*
176  * Hardware specific access to control-lines
177  */
178 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
179 {
180         struct nand_chip *nand_chip = mtd->priv;
181         struct atmel_nand_host *host = nand_chip->priv;
182
183         if (ctrl & NAND_CTRL_CHANGE) {
184                 if (ctrl & NAND_NCE)
185                         atmel_nand_enable(host);
186                 else
187                         atmel_nand_disable(host);
188         }
189         if (cmd == NAND_CMD_NONE)
190                 return;
191
192         if (ctrl & NAND_CLE)
193                 writeb(cmd, host->io_base + (1 << host->board.cle));
194         else
195                 writeb(cmd, host->io_base + (1 << host->board.ale));
196 }
197
198 /*
199  * Read the Device Ready pin.
200  */
201 static int atmel_nand_device_ready(struct mtd_info *mtd)
202 {
203         struct nand_chip *nand_chip = mtd->priv;
204         struct atmel_nand_host *host = nand_chip->priv;
205
206         return gpio_get_value(host->board.rdy_pin) ^
207                 !!host->board.rdy_pin_active_low;
208 }
209
210 /* Set up for hardware ready pin and enable pin. */
211 static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
212 {
213         struct nand_chip *chip = mtd->priv;
214         struct atmel_nand_host *host = chip->priv;
215         int res = 0;
216
217         if (gpio_is_valid(host->board.rdy_pin)) {
218                 res = devm_gpio_request(host->dev,
219                                 host->board.rdy_pin, "nand_rdy");
220                 if (res < 0) {
221                         dev_err(host->dev,
222                                 "can't request rdy gpio %d\n",
223                                 host->board.rdy_pin);
224                         return res;
225                 }
226
227                 res = gpio_direction_input(host->board.rdy_pin);
228                 if (res < 0) {
229                         dev_err(host->dev,
230                                 "can't request input direction rdy gpio %d\n",
231                                 host->board.rdy_pin);
232                         return res;
233                 }
234
235                 chip->dev_ready = atmel_nand_device_ready;
236         }
237
238         if (gpio_is_valid(host->board.enable_pin)) {
239                 res = devm_gpio_request(host->dev,
240                                 host->board.enable_pin, "nand_enable");
241                 if (res < 0) {
242                         dev_err(host->dev,
243                                 "can't request enable gpio %d\n",
244                                 host->board.enable_pin);
245                         return res;
246                 }
247
248                 res = gpio_direction_output(host->board.enable_pin, 1);
249                 if (res < 0) {
250                         dev_err(host->dev,
251                                 "can't request output direction enable gpio %d\n",
252                                 host->board.enable_pin);
253                         return res;
254                 }
255         }
256
257         return res;
258 }
259
260 /*
261  * Minimal-overhead PIO for data access.
262  */
263 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
264 {
265         struct nand_chip        *nand_chip = mtd->priv;
266         struct atmel_nand_host *host = nand_chip->priv;
267
268         if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
269                 memcpy(buf, host->nfc->data_in_sram, len);
270                 host->nfc->data_in_sram += len;
271         } else {
272                 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
273         }
274 }
275
276 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
277 {
278         struct nand_chip        *nand_chip = mtd->priv;
279         struct atmel_nand_host *host = nand_chip->priv;
280
281         if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
282                 memcpy(buf, host->nfc->data_in_sram, len);
283                 host->nfc->data_in_sram += len;
284         } else {
285                 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
286         }
287 }
288
289 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
290 {
291         struct nand_chip        *nand_chip = mtd->priv;
292
293         __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
294 }
295
296 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
297 {
298         struct nand_chip        *nand_chip = mtd->priv;
299
300         __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
301 }
302
303 static void dma_complete_func(void *completion)
304 {
305         complete(completion);
306 }
307
308 static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
309 {
310         /* NFC only has two banks. Must be 0 or 1 */
311         if (bank > 1)
312                 return -EINVAL;
313
314         if (bank) {
315                 /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
316                 if (host->mtd.writesize > 2048)
317                         return -EINVAL;
318                 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
319         } else {
320                 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
321         }
322
323         return 0;
324 }
325
326 static uint nfc_get_sram_off(struct atmel_nand_host *host)
327 {
328         if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
329                 return NFC_SRAM_BANK1_OFFSET;
330         else
331                 return 0;
332 }
333
334 static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
335 {
336         if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
337                 return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
338         else
339                 return host->nfc->sram_bank0_phys;
340 }
341
342 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
343                                int is_read)
344 {
345         struct dma_device *dma_dev;
346         enum dma_ctrl_flags flags;
347         dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
348         struct dma_async_tx_descriptor *tx = NULL;
349         dma_cookie_t cookie;
350         struct nand_chip *chip = mtd->priv;
351         struct atmel_nand_host *host = chip->priv;
352         void *p = buf;
353         int err = -EIO;
354         enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
355         struct atmel_nfc *nfc = host->nfc;
356
357         if (buf >= high_memory)
358                 goto err_buf;
359
360         dma_dev = host->dma_chan->device;
361
362         flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
363
364         phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
365         if (dma_mapping_error(dma_dev->dev, phys_addr)) {
366                 dev_err(host->dev, "Failed to dma_map_single\n");
367                 goto err_buf;
368         }
369
370         if (is_read) {
371                 if (nfc && nfc->data_in_sram)
372                         dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
373                                 - (nfc->sram_bank0 + nfc_get_sram_off(host)));
374                 else
375                         dma_src_addr = host->io_phys;
376
377                 dma_dst_addr = phys_addr;
378         } else {
379                 dma_src_addr = phys_addr;
380
381                 if (nfc && nfc->write_by_sram)
382                         dma_dst_addr = nfc_sram_phys(host);
383                 else
384                         dma_dst_addr = host->io_phys;
385         }
386
387         tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
388                                              dma_src_addr, len, flags);
389         if (!tx) {
390                 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
391                 goto err_dma;
392         }
393
394         init_completion(&host->comp);
395         tx->callback = dma_complete_func;
396         tx->callback_param = &host->comp;
397
398         cookie = tx->tx_submit(tx);
399         if (dma_submit_error(cookie)) {
400                 dev_err(host->dev, "Failed to do DMA tx_submit\n");
401                 goto err_dma;
402         }
403
404         dma_async_issue_pending(host->dma_chan);
405         wait_for_completion(&host->comp);
406
407         if (is_read && nfc && nfc->data_in_sram)
408                 /* After read data from SRAM, need to increase the position */
409                 nfc->data_in_sram += len;
410
411         err = 0;
412
413 err_dma:
414         dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
415 err_buf:
416         if (err != 0)
417                 dev_dbg(host->dev, "Fall back to CPU I/O\n");
418         return err;
419 }
420
421 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
422 {
423         struct nand_chip *chip = mtd->priv;
424         struct atmel_nand_host *host = chip->priv;
425
426         if (use_dma && len > mtd->oobsize)
427                 /* only use DMA for bigger than oob size: better performances */
428                 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
429                         return;
430
431         if (host->board.bus_width_16)
432                 atmel_read_buf16(mtd, buf, len);
433         else
434                 atmel_read_buf8(mtd, buf, len);
435 }
436
437 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
438 {
439         struct nand_chip *chip = mtd->priv;
440         struct atmel_nand_host *host = chip->priv;
441
442         if (use_dma && len > mtd->oobsize)
443                 /* only use DMA for bigger than oob size: better performances */
444                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
445                         return;
446
447         if (host->board.bus_width_16)
448                 atmel_write_buf16(mtd, buf, len);
449         else
450                 atmel_write_buf8(mtd, buf, len);
451 }
452
453 /*
454  * Return number of ecc bytes per sector according to sector size and
455  * correction capability
456  *
457  * Following table shows what at91 PMECC supported:
458  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
459  * =====================        ================        =================
460  *                2-bits                 4-bytes                  4-bytes
461  *                4-bits                 7-bytes                  7-bytes
462  *                8-bits                13-bytes                 14-bytes
463  *               12-bits                20-bytes                 21-bytes
464  *               24-bits                39-bytes                 42-bytes
465  */
466 static int pmecc_get_ecc_bytes(int cap, int sector_size)
467 {
468         int m = 12 + sector_size / 512;
469         return (m * cap + 7) / 8;
470 }
471
472 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
473                                     int oobsize, int ecc_len)
474 {
475         int i;
476
477         layout->eccbytes = ecc_len;
478
479         /* ECC will occupy the last ecc_len bytes continuously */
480         for (i = 0; i < ecc_len; i++)
481                 layout->eccpos[i] = oobsize - ecc_len + i;
482
483         layout->oobfree[0].offset = 2;
484         layout->oobfree[0].length =
485                 oobsize - ecc_len - layout->oobfree[0].offset;
486 }
487
488 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
489 {
490         int table_size;
491
492         table_size = host->pmecc_sector_size == 512 ?
493                 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
494
495         return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
496                         table_size * sizeof(int16_t);
497 }
498
499 static int pmecc_data_alloc(struct atmel_nand_host *host)
500 {
501         const int cap = host->pmecc_corr_cap;
502         int size;
503
504         size = (2 * cap + 1) * sizeof(int16_t);
505         host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
506         host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
507         host->pmecc_lmu = devm_kzalloc(host->dev,
508                         (cap + 1) * sizeof(int16_t), GFP_KERNEL);
509         host->pmecc_smu = devm_kzalloc(host->dev,
510                         (cap + 2) * size, GFP_KERNEL);
511
512         size = (cap + 1) * sizeof(int);
513         host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
514         host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
515         host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
516
517         if (!host->pmecc_partial_syn ||
518                 !host->pmecc_si ||
519                 !host->pmecc_lmu ||
520                 !host->pmecc_smu ||
521                 !host->pmecc_mu ||
522                 !host->pmecc_dmu ||
523                 !host->pmecc_delta)
524                 return -ENOMEM;
525
526         return 0;
527 }
528
529 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
530 {
531         struct nand_chip *nand_chip = mtd->priv;
532         struct atmel_nand_host *host = nand_chip->priv;
533         int i;
534         uint32_t value;
535
536         /* Fill odd syndromes */
537         for (i = 0; i < host->pmecc_corr_cap; i++) {
538                 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
539                 if (i & 1)
540                         value >>= 16;
541                 value &= 0xffff;
542                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
543         }
544 }
545
546 static void pmecc_substitute(struct mtd_info *mtd)
547 {
548         struct nand_chip *nand_chip = mtd->priv;
549         struct atmel_nand_host *host = nand_chip->priv;
550         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
551         int16_t __iomem *index_of = host->pmecc_index_of;
552         int16_t *partial_syn = host->pmecc_partial_syn;
553         const int cap = host->pmecc_corr_cap;
554         int16_t *si;
555         int i, j;
556
557         /* si[] is a table that holds the current syndrome value,
558          * an element of that table belongs to the field
559          */
560         si = host->pmecc_si;
561
562         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
563
564         /* Computation 2t syndromes based on S(x) */
565         /* Odd syndromes */
566         for (i = 1; i < 2 * cap; i += 2) {
567                 for (j = 0; j < host->pmecc_degree; j++) {
568                         if (partial_syn[i] & ((unsigned short)0x1 << j))
569                                 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
570                 }
571         }
572         /* Even syndrome = (Odd syndrome) ** 2 */
573         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
574                 if (si[j] == 0) {
575                         si[i] = 0;
576                 } else {
577                         int16_t tmp;
578
579                         tmp = readw_relaxed(index_of + si[j]);
580                         tmp = (tmp * 2) % host->pmecc_cw_len;
581                         si[i] = readw_relaxed(alpha_to + tmp);
582                 }
583         }
584
585         return;
586 }
587
588 static void pmecc_get_sigma(struct mtd_info *mtd)
589 {
590         struct nand_chip *nand_chip = mtd->priv;
591         struct atmel_nand_host *host = nand_chip->priv;
592
593         int16_t *lmu = host->pmecc_lmu;
594         int16_t *si = host->pmecc_si;
595         int *mu = host->pmecc_mu;
596         int *dmu = host->pmecc_dmu;     /* Discrepancy */
597         int *delta = host->pmecc_delta; /* Delta order */
598         int cw_len = host->pmecc_cw_len;
599         const int16_t cap = host->pmecc_corr_cap;
600         const int num = 2 * cap + 1;
601         int16_t __iomem *index_of = host->pmecc_index_of;
602         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
603         int i, j, k;
604         uint32_t dmu_0_count, tmp;
605         int16_t *smu = host->pmecc_smu;
606
607         /* index of largest delta */
608         int ro;
609         int largest;
610         int diff;
611
612         dmu_0_count = 0;
613
614         /* First Row */
615
616         /* Mu */
617         mu[0] = -1;
618
619         memset(smu, 0, sizeof(int16_t) * num);
620         smu[0] = 1;
621
622         /* discrepancy set to 1 */
623         dmu[0] = 1;
624         /* polynom order set to 0 */
625         lmu[0] = 0;
626         delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
627
628         /* Second Row */
629
630         /* Mu */
631         mu[1] = 0;
632         /* Sigma(x) set to 1 */
633         memset(&smu[num], 0, sizeof(int16_t) * num);
634         smu[num] = 1;
635
636         /* discrepancy set to S1 */
637         dmu[1] = si[1];
638
639         /* polynom order set to 0 */
640         lmu[1] = 0;
641
642         delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
643
644         /* Init the Sigma(x) last row */
645         memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
646
647         for (i = 1; i <= cap; i++) {
648                 mu[i + 1] = i << 1;
649                 /* Begin Computing Sigma (Mu+1) and L(mu) */
650                 /* check if discrepancy is set to 0 */
651                 if (dmu[i] == 0) {
652                         dmu_0_count++;
653
654                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
655                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
656                                 tmp += 2;
657                         else
658                                 tmp += 1;
659
660                         if (dmu_0_count == tmp) {
661                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
662                                         smu[(cap + 1) * num + j] =
663                                                         smu[i * num + j];
664
665                                 lmu[cap + 1] = lmu[i];
666                                 return;
667                         }
668
669                         /* copy polynom */
670                         for (j = 0; j <= lmu[i] >> 1; j++)
671                                 smu[(i + 1) * num + j] = smu[i * num + j];
672
673                         /* copy previous polynom order to the next */
674                         lmu[i + 1] = lmu[i];
675                 } else {
676                         ro = 0;
677                         largest = -1;
678                         /* find largest delta with dmu != 0 */
679                         for (j = 0; j < i; j++) {
680                                 if ((dmu[j]) && (delta[j] > largest)) {
681                                         largest = delta[j];
682                                         ro = j;
683                                 }
684                         }
685
686                         /* compute difference */
687                         diff = (mu[i] - mu[ro]);
688
689                         /* Compute degree of the new smu polynomial */
690                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
691                                 lmu[i + 1] = lmu[i];
692                         else
693                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
694
695                         /* Init smu[i+1] with 0 */
696                         for (k = 0; k < num; k++)
697                                 smu[(i + 1) * num + k] = 0;
698
699                         /* Compute smu[i+1] */
700                         for (k = 0; k <= lmu[ro] >> 1; k++) {
701                                 int16_t a, b, c;
702
703                                 if (!(smu[ro * num + k] && dmu[i]))
704                                         continue;
705                                 a = readw_relaxed(index_of + dmu[i]);
706                                 b = readw_relaxed(index_of + dmu[ro]);
707                                 c = readw_relaxed(index_of + smu[ro * num + k]);
708                                 tmp = a + (cw_len - b) + c;
709                                 a = readw_relaxed(alpha_to + tmp % cw_len);
710                                 smu[(i + 1) * num + (k + diff)] = a;
711                         }
712
713                         for (k = 0; k <= lmu[i] >> 1; k++)
714                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
715                 }
716
717                 /* End Computing Sigma (Mu+1) and L(mu) */
718                 /* In either case compute delta */
719                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
720
721                 /* Do not compute discrepancy for the last iteration */
722                 if (i >= cap)
723                         continue;
724
725                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
726                         tmp = 2 * (i - 1);
727                         if (k == 0) {
728                                 dmu[i + 1] = si[tmp + 3];
729                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
730                                 int16_t a, b, c;
731                                 a = readw_relaxed(index_of +
732                                                 smu[(i + 1) * num + k]);
733                                 b = si[2 * (i - 1) + 3 - k];
734                                 c = readw_relaxed(index_of + b);
735                                 tmp = a + c;
736                                 tmp %= cw_len;
737                                 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
738                                         dmu[i + 1];
739                         }
740                 }
741         }
742
743         return;
744 }
745
746 static int pmecc_err_location(struct mtd_info *mtd)
747 {
748         struct nand_chip *nand_chip = mtd->priv;
749         struct atmel_nand_host *host = nand_chip->priv;
750         unsigned long end_time;
751         const int cap = host->pmecc_corr_cap;
752         const int num = 2 * cap + 1;
753         int sector_size = host->pmecc_sector_size;
754         int err_nbr = 0;        /* number of error */
755         int roots_nbr;          /* number of roots */
756         int i;
757         uint32_t val;
758         int16_t *smu = host->pmecc_smu;
759
760         pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
761
762         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
763                 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
764                                       smu[(cap + 1) * num + i]);
765                 err_nbr++;
766         }
767
768         val = (err_nbr - 1) << 16;
769         if (sector_size == 1024)
770                 val |= 1;
771
772         pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
773         pmerrloc_writel(host->pmerrloc_base, ELEN,
774                         sector_size * 8 + host->pmecc_degree * cap);
775
776         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
777         while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
778                  & PMERRLOC_CALC_DONE)) {
779                 if (unlikely(time_after(jiffies, end_time))) {
780                         dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
781                         return -1;
782                 }
783                 cpu_relax();
784         }
785
786         roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
787                 & PMERRLOC_ERR_NUM_MASK) >> 8;
788         /* Number of roots == degree of smu hence <= cap */
789         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
790                 return err_nbr - 1;
791
792         /* Number of roots does not match the degree of smu
793          * unable to correct error */
794         return -1;
795 }
796
797 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
798                 int sector_num, int extra_bytes, int err_nbr)
799 {
800         struct nand_chip *nand_chip = mtd->priv;
801         struct atmel_nand_host *host = nand_chip->priv;
802         int i = 0;
803         int byte_pos, bit_pos, sector_size, pos;
804         uint32_t tmp;
805         uint8_t err_byte;
806
807         sector_size = host->pmecc_sector_size;
808
809         while (err_nbr) {
810                 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
811                 byte_pos = tmp / 8;
812                 bit_pos  = tmp % 8;
813
814                 if (byte_pos >= (sector_size + extra_bytes))
815                         BUG();  /* should never happen */
816
817                 if (byte_pos < sector_size) {
818                         err_byte = *(buf + byte_pos);
819                         *(buf + byte_pos) ^= (1 << bit_pos);
820
821                         pos = sector_num * host->pmecc_sector_size + byte_pos;
822                         dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
823                                 pos, bit_pos, err_byte, *(buf + byte_pos));
824                 } else {
825                         /* Bit flip in OOB area */
826                         tmp = sector_num * nand_chip->ecc.bytes
827                                         + (byte_pos - sector_size);
828                         err_byte = ecc[tmp];
829                         ecc[tmp] ^= (1 << bit_pos);
830
831                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
832                         dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
833                                 pos, bit_pos, err_byte, ecc[tmp]);
834                 }
835
836                 i++;
837                 err_nbr--;
838         }
839
840         return;
841 }
842
843 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
844         u8 *ecc)
845 {
846         struct nand_chip *nand_chip = mtd->priv;
847         struct atmel_nand_host *host = nand_chip->priv;
848         int i, err_nbr;
849         uint8_t *buf_pos;
850         int total_err = 0;
851
852         for (i = 0; i < nand_chip->ecc.total; i++)
853                 if (ecc[i] != 0xff)
854                         goto normal_check;
855         /* Erased page, return OK */
856         return 0;
857
858 normal_check:
859         for (i = 0; i < nand_chip->ecc.steps; i++) {
860                 err_nbr = 0;
861                 if (pmecc_stat & 0x1) {
862                         buf_pos = buf + i * host->pmecc_sector_size;
863
864                         pmecc_gen_syndrome(mtd, i);
865                         pmecc_substitute(mtd);
866                         pmecc_get_sigma(mtd);
867
868                         err_nbr = pmecc_err_location(mtd);
869                         if (err_nbr == -1) {
870                                 dev_err(host->dev, "PMECC: Too many errors\n");
871                                 mtd->ecc_stats.failed++;
872                                 return -EIO;
873                         } else {
874                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
875                                         nand_chip->ecc.bytes, err_nbr);
876                                 mtd->ecc_stats.corrected += err_nbr;
877                                 total_err += err_nbr;
878                         }
879                 }
880                 pmecc_stat >>= 1;
881         }
882
883         return total_err;
884 }
885
886 static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
887 {
888         u32 val;
889
890         if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
891                 dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
892                 return;
893         }
894
895         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
896         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
897         val = pmecc_readl_relaxed(host->ecc, CFG);
898
899         if (ecc_op == NAND_ECC_READ)
900                 pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
901                         | PMECC_CFG_AUTO_ENABLE);
902         else
903                 pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
904                         & ~PMECC_CFG_AUTO_ENABLE);
905
906         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
907         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
908 }
909
910 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
911         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
912 {
913         struct atmel_nand_host *host = chip->priv;
914         int eccsize = chip->ecc.size * chip->ecc.steps;
915         uint8_t *oob = chip->oob_poi;
916         uint32_t *eccpos = chip->ecc.layout->eccpos;
917         uint32_t stat;
918         unsigned long end_time;
919         int bitflips = 0;
920
921         if (!host->nfc || !host->nfc->use_nfc_sram)
922                 pmecc_enable(host, NAND_ECC_READ);
923
924         chip->read_buf(mtd, buf, eccsize);
925         chip->read_buf(mtd, oob, mtd->oobsize);
926
927         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
928         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
929                 if (unlikely(time_after(jiffies, end_time))) {
930                         dev_err(host->dev, "PMECC: Timeout to get error status.\n");
931                         return -EIO;
932                 }
933                 cpu_relax();
934         }
935
936         stat = pmecc_readl_relaxed(host->ecc, ISR);
937         if (stat != 0) {
938                 bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
939                 if (bitflips < 0)
940                         /* uncorrectable errors */
941                         return 0;
942         }
943
944         return bitflips;
945 }
946
947 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
948                 struct nand_chip *chip, const uint8_t *buf, int oob_required)
949 {
950         struct atmel_nand_host *host = chip->priv;
951         uint32_t *eccpos = chip->ecc.layout->eccpos;
952         int i, j;
953         unsigned long end_time;
954
955         if (!host->nfc || !host->nfc->write_by_sram) {
956                 pmecc_enable(host, NAND_ECC_WRITE);
957                 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
958         }
959
960         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
961         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
962                 if (unlikely(time_after(jiffies, end_time))) {
963                         dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
964                         return -EIO;
965                 }
966                 cpu_relax();
967         }
968
969         for (i = 0; i < chip->ecc.steps; i++) {
970                 for (j = 0; j < chip->ecc.bytes; j++) {
971                         int pos;
972
973                         pos = i * chip->ecc.bytes + j;
974                         chip->oob_poi[eccpos[pos]] =
975                                 pmecc_readb_ecc_relaxed(host->ecc, i, j);
976                 }
977         }
978         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
979
980         return 0;
981 }
982
983 static void atmel_pmecc_core_init(struct mtd_info *mtd)
984 {
985         struct nand_chip *nand_chip = mtd->priv;
986         struct atmel_nand_host *host = nand_chip->priv;
987         uint32_t val = 0;
988         struct nand_ecclayout *ecc_layout;
989
990         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
991         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
992
993         switch (host->pmecc_corr_cap) {
994         case 2:
995                 val = PMECC_CFG_BCH_ERR2;
996                 break;
997         case 4:
998                 val = PMECC_CFG_BCH_ERR4;
999                 break;
1000         case 8:
1001                 val = PMECC_CFG_BCH_ERR8;
1002                 break;
1003         case 12:
1004                 val = PMECC_CFG_BCH_ERR12;
1005                 break;
1006         case 24:
1007                 val = PMECC_CFG_BCH_ERR24;
1008                 break;
1009         }
1010
1011         if (host->pmecc_sector_size == 512)
1012                 val |= PMECC_CFG_SECTOR512;
1013         else if (host->pmecc_sector_size == 1024)
1014                 val |= PMECC_CFG_SECTOR1024;
1015
1016         switch (nand_chip->ecc.steps) {
1017         case 1:
1018                 val |= PMECC_CFG_PAGE_1SECTOR;
1019                 break;
1020         case 2:
1021                 val |= PMECC_CFG_PAGE_2SECTORS;
1022                 break;
1023         case 4:
1024                 val |= PMECC_CFG_PAGE_4SECTORS;
1025                 break;
1026         case 8:
1027                 val |= PMECC_CFG_PAGE_8SECTORS;
1028                 break;
1029         }
1030
1031         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1032                 | PMECC_CFG_AUTO_DISABLE);
1033         pmecc_writel(host->ecc, CFG, val);
1034
1035         ecc_layout = nand_chip->ecc.layout;
1036         pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1037         pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1038         pmecc_writel(host->ecc, EADDR,
1039                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1040         /* See datasheet about PMECC Clock Control Register */
1041         pmecc_writel(host->ecc, CLK, 2);
1042         pmecc_writel(host->ecc, IDR, 0xff);
1043         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1044 }
1045
1046 /*
1047  * Get minimum ecc requirements from NAND.
1048  * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1049  * will set them according to minimum ecc requirement. Otherwise, use the
1050  * value in DTS file.
1051  * return 0 if success. otherwise return error code.
1052  */
1053 static int pmecc_choose_ecc(struct atmel_nand_host *host,
1054                 int *cap, int *sector_size)
1055 {
1056         /* Get minimum ECC requirements */
1057         if (host->nand_chip.ecc_strength_ds) {
1058                 *cap = host->nand_chip.ecc_strength_ds;
1059                 *sector_size = host->nand_chip.ecc_step_ds;
1060                 dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
1061                                 *cap, *sector_size);
1062         } else {
1063                 *cap = 2;
1064                 *sector_size = 512;
1065                 dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1066         }
1067
1068         /* If device tree doesn't specify, use NAND's minimum ECC parameters */
1069         if (host->pmecc_corr_cap == 0) {
1070                 /* use the most fitable ecc bits (the near bigger one ) */
1071                 if (*cap <= 2)
1072                         host->pmecc_corr_cap = 2;
1073                 else if (*cap <= 4)
1074                         host->pmecc_corr_cap = 4;
1075                 else if (*cap <= 8)
1076                         host->pmecc_corr_cap = 8;
1077                 else if (*cap <= 12)
1078                         host->pmecc_corr_cap = 12;
1079                 else if (*cap <= 24)
1080                         host->pmecc_corr_cap = 24;
1081                 else
1082                         return -EINVAL;
1083         }
1084         if (host->pmecc_sector_size == 0) {
1085                 /* use the most fitable sector size (the near smaller one ) */
1086                 if (*sector_size >= 1024)
1087                         host->pmecc_sector_size = 1024;
1088                 else if (*sector_size >= 512)
1089                         host->pmecc_sector_size = 512;
1090                 else
1091                         return -EINVAL;
1092         }
1093         return 0;
1094 }
1095
1096 static inline int deg(unsigned int poly)
1097 {
1098         /* polynomial degree is the most-significant bit index */
1099         return fls(poly) - 1;
1100 }
1101
1102 static int build_gf_tables(int mm, unsigned int poly,
1103                 int16_t *index_of, int16_t *alpha_to)
1104 {
1105         unsigned int i, x = 1;
1106         const unsigned int k = 1 << deg(poly);
1107         unsigned int nn = (1 << mm) - 1;
1108
1109         /* primitive polynomial must be of degree m */
1110         if (k != (1u << mm))
1111                 return -EINVAL;
1112
1113         for (i = 0; i < nn; i++) {
1114                 alpha_to[i] = x;
1115                 index_of[x] = i;
1116                 if (i && (x == 1))
1117                         /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1118                         return -EINVAL;
1119                 x <<= 1;
1120                 if (x & k)
1121                         x ^= poly;
1122         }
1123         alpha_to[nn] = 1;
1124         index_of[0] = 0;
1125
1126         return 0;
1127 }
1128
1129 static uint16_t *create_lookup_table(struct device *dev, int sector_size)
1130 {
1131         int degree = (sector_size == 512) ?
1132                         PMECC_GF_DIMENSION_13 :
1133                         PMECC_GF_DIMENSION_14;
1134         unsigned int poly = (sector_size == 512) ?
1135                         PMECC_GF_13_PRIMITIVE_POLY :
1136                         PMECC_GF_14_PRIMITIVE_POLY;
1137         int table_size = (sector_size == 512) ?
1138                         PMECC_LOOKUP_TABLE_SIZE_512 :
1139                         PMECC_LOOKUP_TABLE_SIZE_1024;
1140
1141         int16_t *addr = devm_kzalloc(dev, 2 * table_size * sizeof(uint16_t),
1142                         GFP_KERNEL);
1143         if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
1144                 return NULL;
1145
1146         return addr;
1147 }
1148
1149 static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1150                                          struct atmel_nand_host *host)
1151 {
1152         struct mtd_info *mtd = &host->mtd;
1153         struct nand_chip *nand_chip = &host->nand_chip;
1154         struct resource *regs, *regs_pmerr, *regs_rom;
1155         uint16_t *galois_table;
1156         int cap, sector_size, err_no;
1157
1158         err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1159         if (err_no) {
1160                 dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1161                 return err_no;
1162         }
1163
1164         if (cap > host->pmecc_corr_cap ||
1165                         sector_size != host->pmecc_sector_size)
1166                 dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1167
1168         cap = host->pmecc_corr_cap;
1169         sector_size = host->pmecc_sector_size;
1170         host->pmecc_lookup_table_offset = (sector_size == 512) ?
1171                         host->pmecc_lookup_table_offset_512 :
1172                         host->pmecc_lookup_table_offset_1024;
1173
1174         dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1175                  cap, sector_size);
1176
1177         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1178         if (!regs) {
1179                 dev_warn(host->dev,
1180                         "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1181                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1182                 return 0;
1183         }
1184
1185         host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1186         if (IS_ERR(host->ecc)) {
1187                 err_no = PTR_ERR(host->ecc);
1188                 goto err;
1189         }
1190
1191         regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1192         host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1193         if (IS_ERR(host->pmerrloc_base)) {
1194                 err_no = PTR_ERR(host->pmerrloc_base);
1195                 goto err;
1196         }
1197
1198         regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1199         host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
1200         if (IS_ERR(host->pmecc_rom_base)) {
1201                 if (!host->has_no_lookup_table)
1202                         /* Don't display the information again */
1203                         dev_err(host->dev, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n");
1204
1205                 host->has_no_lookup_table = true;
1206         }
1207
1208         if (host->has_no_lookup_table) {
1209                 /* Build the look-up table in runtime */
1210                 galois_table = create_lookup_table(host->dev, sector_size);
1211                 if (!galois_table) {
1212                         dev_err(host->dev, "Failed to build a lookup table in runtime!\n");
1213                         err_no = -EINVAL;
1214                         goto err;
1215                 }
1216
1217                 host->pmecc_rom_base = (void __iomem *)galois_table;
1218                 host->pmecc_lookup_table_offset = 0;
1219         }
1220
1221         nand_chip->ecc.size = sector_size;
1222
1223         /* set ECC page size and oob layout */
1224         switch (mtd->writesize) {
1225         case 512:
1226         case 1024:
1227         case 2048:
1228         case 4096:
1229         case 8192:
1230                 if (sector_size > mtd->writesize) {
1231                         dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
1232                         err_no = -EINVAL;
1233                         goto err;
1234                 }
1235
1236                 host->pmecc_degree = (sector_size == 512) ?
1237                         PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1238                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1239                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1240                 host->pmecc_index_of = host->pmecc_rom_base +
1241                         host->pmecc_lookup_table_offset;
1242
1243                 nand_chip->ecc.strength = cap;
1244                 nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
1245                 nand_chip->ecc.steps = mtd->writesize / sector_size;
1246                 nand_chip->ecc.total = nand_chip->ecc.bytes *
1247                         nand_chip->ecc.steps;
1248                 if (nand_chip->ecc.total > mtd->oobsize - 2) {
1249                         dev_err(host->dev, "No room for ECC bytes\n");
1250                         err_no = -EINVAL;
1251                         goto err;
1252                 }
1253                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1254                                         mtd->oobsize,
1255                                         nand_chip->ecc.total);
1256
1257                 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1258                 break;
1259         default:
1260                 dev_warn(host->dev,
1261                         "Unsupported page size for PMECC, use Software ECC\n");
1262                 /* page size not handled by HW ECC */
1263                 /* switching back to soft ECC */
1264                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1265                 return 0;
1266         }
1267
1268         /* Allocate data for PMECC computation */
1269         err_no = pmecc_data_alloc(host);
1270         if (err_no) {
1271                 dev_err(host->dev,
1272                                 "Cannot allocate memory for PMECC computation!\n");
1273                 goto err;
1274         }
1275
1276         nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
1277         nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1278         nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1279
1280         atmel_pmecc_core_init(mtd);
1281
1282         return 0;
1283
1284 err:
1285         return err_no;
1286 }
1287
1288 /*
1289  * Calculate HW ECC
1290  *
1291  * function called after a write
1292  *
1293  * mtd:        MTD block structure
1294  * dat:        raw data (unused)
1295  * ecc_code:   buffer for ECC
1296  */
1297 static int atmel_nand_calculate(struct mtd_info *mtd,
1298                 const u_char *dat, unsigned char *ecc_code)
1299 {
1300         struct nand_chip *nand_chip = mtd->priv;
1301         struct atmel_nand_host *host = nand_chip->priv;
1302         unsigned int ecc_value;
1303
1304         /* get the first 2 ECC bytes */
1305         ecc_value = ecc_readl(host->ecc, PR);
1306
1307         ecc_code[0] = ecc_value & 0xFF;
1308         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1309
1310         /* get the last 2 ECC bytes */
1311         ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1312
1313         ecc_code[2] = ecc_value & 0xFF;
1314         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1315
1316         return 0;
1317 }
1318
1319 /*
1320  * HW ECC read page function
1321  *
1322  * mtd:        mtd info structure
1323  * chip:       nand chip info structure
1324  * buf:        buffer to store read data
1325  * oob_required:    caller expects OOB data read to chip->oob_poi
1326  */
1327 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1328                                 uint8_t *buf, int oob_required, int page)
1329 {
1330         int eccsize = chip->ecc.size;
1331         int eccbytes = chip->ecc.bytes;
1332         uint32_t *eccpos = chip->ecc.layout->eccpos;
1333         uint8_t *p = buf;
1334         uint8_t *oob = chip->oob_poi;
1335         uint8_t *ecc_pos;
1336         int stat;
1337         unsigned int max_bitflips = 0;
1338
1339         /*
1340          * Errata: ALE is incorrectly wired up to the ECC controller
1341          * on the AP7000, so it will include the address cycles in the
1342          * ECC calculation.
1343          *
1344          * Workaround: Reset the parity registers before reading the
1345          * actual data.
1346          */
1347         struct atmel_nand_host *host = chip->priv;
1348         if (host->board.need_reset_workaround)
1349                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1350
1351         /* read the page */
1352         chip->read_buf(mtd, p, eccsize);
1353
1354         /* move to ECC position if needed */
1355         if (eccpos[0] != 0) {
1356                 /* This only works on large pages
1357                  * because the ECC controller waits for
1358                  * NAND_CMD_RNDOUTSTART after the
1359                  * NAND_CMD_RNDOUT.
1360                  * anyway, for small pages, the eccpos[0] == 0
1361                  */
1362                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1363                                 mtd->writesize + eccpos[0], -1);
1364         }
1365
1366         /* the ECC controller needs to read the ECC just after the data */
1367         ecc_pos = oob + eccpos[0];
1368         chip->read_buf(mtd, ecc_pos, eccbytes);
1369
1370         /* check if there's an error */
1371         stat = chip->ecc.correct(mtd, p, oob, NULL);
1372
1373         if (stat < 0) {
1374                 mtd->ecc_stats.failed++;
1375         } else {
1376                 mtd->ecc_stats.corrected += stat;
1377                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1378         }
1379
1380         /* get back to oob start (end of page) */
1381         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1382
1383         /* read the oob */
1384         chip->read_buf(mtd, oob, mtd->oobsize);
1385
1386         return max_bitflips;
1387 }
1388
1389 /*
1390  * HW ECC Correction
1391  *
1392  * function called after a read
1393  *
1394  * mtd:        MTD block structure
1395  * dat:        raw data read from the chip
1396  * read_ecc:   ECC from the chip (unused)
1397  * isnull:     unused
1398  *
1399  * Detect and correct a 1 bit error for a page
1400  */
1401 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1402                 u_char *read_ecc, u_char *isnull)
1403 {
1404         struct nand_chip *nand_chip = mtd->priv;
1405         struct atmel_nand_host *host = nand_chip->priv;
1406         unsigned int ecc_status;
1407         unsigned int ecc_word, ecc_bit;
1408
1409         /* get the status from the Status Register */
1410         ecc_status = ecc_readl(host->ecc, SR);
1411
1412         /* if there's no error */
1413         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1414                 return 0;
1415
1416         /* get error bit offset (4 bits) */
1417         ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1418         /* get word address (12 bits) */
1419         ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1420         ecc_word >>= 4;
1421
1422         /* if there are multiple errors */
1423         if (ecc_status & ATMEL_ECC_MULERR) {
1424                 /* check if it is a freshly erased block
1425                  * (filled with 0xff) */
1426                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1427                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1428                         /* the block has just been erased, return OK */
1429                         return 0;
1430                 }
1431                 /* it doesn't seems to be a freshly
1432                  * erased block.
1433                  * We can't correct so many errors */
1434                 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1435                                 " Unable to correct.\n");
1436                 return -EIO;
1437         }
1438
1439         /* if there's a single bit error : we can correct it */
1440         if (ecc_status & ATMEL_ECC_ECCERR) {
1441                 /* there's nothing much to do here.
1442                  * the bit error is on the ECC itself.
1443                  */
1444                 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1445                                 " Nothing to correct\n");
1446                 return 0;
1447         }
1448
1449         dev_dbg(host->dev, "atmel_nand : one bit error on data."
1450                         " (word offset in the page :"
1451                         " 0x%x bit offset : 0x%x)\n",
1452                         ecc_word, ecc_bit);
1453         /* correct the error */
1454         if (nand_chip->options & NAND_BUSWIDTH_16) {
1455                 /* 16 bits words */
1456                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1457         } else {
1458                 /* 8 bits words */
1459                 dat[ecc_word] ^= (1 << ecc_bit);
1460         }
1461         dev_dbg(host->dev, "atmel_nand : error corrected\n");
1462         return 1;
1463 }
1464
1465 /*
1466  * Enable HW ECC : unused on most chips
1467  */
1468 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1469 {
1470         struct nand_chip *nand_chip = mtd->priv;
1471         struct atmel_nand_host *host = nand_chip->priv;
1472
1473         if (host->board.need_reset_workaround)
1474                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1475 }
1476
1477 static int atmel_of_init_port(struct atmel_nand_host *host,
1478                               struct device_node *np)
1479 {
1480         u32 val;
1481         u32 offset[2];
1482         int ecc_mode;
1483         struct atmel_nand_data *board = &host->board;
1484         enum of_gpio_flags flags = 0;
1485
1486         if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1487                 if (val >= 32) {
1488                         dev_err(host->dev, "invalid addr-offset %u\n", val);
1489                         return -EINVAL;
1490                 }
1491                 board->ale = val;
1492         }
1493
1494         if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1495                 if (val >= 32) {
1496                         dev_err(host->dev, "invalid cmd-offset %u\n", val);
1497                         return -EINVAL;
1498                 }
1499                 board->cle = val;
1500         }
1501
1502         ecc_mode = of_get_nand_ecc_mode(np);
1503
1504         board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1505
1506         board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1507
1508         board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1509
1510         if (of_get_nand_bus_width(np) == 16)
1511                 board->bus_width_16 = 1;
1512
1513         board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1514         board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1515
1516         board->enable_pin = of_get_gpio(np, 1);
1517         board->det_pin = of_get_gpio(np, 2);
1518
1519         host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1520
1521         /* load the nfc driver if there is */
1522         of_platform_populate(np, NULL, NULL, host->dev);
1523
1524         if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1525                 return 0;       /* Not using PMECC */
1526
1527         /* use PMECC, get correction capability, sector size and lookup
1528          * table offset.
1529          * If correction bits and sector size are not specified, then find
1530          * them from NAND ONFI parameters.
1531          */
1532         if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1533                 if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1534                                 (val != 24)) {
1535                         dev_err(host->dev,
1536                                 "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1537                                 val);
1538                         return -EINVAL;
1539                 }
1540                 host->pmecc_corr_cap = (u8)val;
1541         }
1542
1543         if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1544                 if ((val != 512) && (val != 1024)) {
1545                         dev_err(host->dev,
1546                                 "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1547                                 val);
1548                         return -EINVAL;
1549                 }
1550                 host->pmecc_sector_size = (u16)val;
1551         }
1552
1553         if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1554                         offset, 2) != 0) {
1555                 dev_err(host->dev, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n");
1556                 host->has_no_lookup_table = true;
1557                 /* Will build a lookup table and initialize the offset later */
1558                 return 0;
1559         }
1560         if (!offset[0] && !offset[1]) {
1561                 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1562                 return -EINVAL;
1563         }
1564         host->pmecc_lookup_table_offset_512 = offset[0];
1565         host->pmecc_lookup_table_offset_1024 = offset[1];
1566
1567         return 0;
1568 }
1569
1570 static int atmel_hw_nand_init_params(struct platform_device *pdev,
1571                                          struct atmel_nand_host *host)
1572 {
1573         struct mtd_info *mtd = &host->mtd;
1574         struct nand_chip *nand_chip = &host->nand_chip;
1575         struct resource         *regs;
1576
1577         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1578         if (!regs) {
1579                 dev_err(host->dev,
1580                         "Can't get I/O resource regs, use software ECC\n");
1581                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1582                 return 0;
1583         }
1584
1585         host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1586         if (IS_ERR(host->ecc))
1587                 return PTR_ERR(host->ecc);
1588
1589         /* ECC is calculated for the whole page (1 step) */
1590         nand_chip->ecc.size = mtd->writesize;
1591
1592         /* set ECC page size and oob layout */
1593         switch (mtd->writesize) {
1594         case 512:
1595                 nand_chip->ecc.layout = &atmel_oobinfo_small;
1596                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1597                 break;
1598         case 1024:
1599                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1600                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1601                 break;
1602         case 2048:
1603                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1604                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1605                 break;
1606         case 4096:
1607                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1608                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1609                 break;
1610         default:
1611                 /* page size not handled by HW ECC */
1612                 /* switching back to soft ECC */
1613                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1614                 return 0;
1615         }
1616
1617         /* set up for HW ECC */
1618         nand_chip->ecc.calculate = atmel_nand_calculate;
1619         nand_chip->ecc.correct = atmel_nand_correct;
1620         nand_chip->ecc.hwctl = atmel_nand_hwctl;
1621         nand_chip->ecc.read_page = atmel_nand_read_page;
1622         nand_chip->ecc.bytes = 4;
1623         nand_chip->ecc.strength = 1;
1624
1625         return 0;
1626 }
1627
1628 static inline u32 nfc_read_status(struct atmel_nand_host *host)
1629 {
1630         u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
1631         u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
1632
1633         if (unlikely(nfc_status & err_flags)) {
1634                 if (nfc_status & NFC_SR_DTOE)
1635                         dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
1636                 else if (nfc_status & NFC_SR_UNDEF)
1637                         dev_err(host->dev, "NFC: Access Undefined Area Error\n");
1638                 else if (nfc_status & NFC_SR_AWB)
1639                         dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
1640                 else if (nfc_status & NFC_SR_ASE)
1641                         dev_err(host->dev, "NFC: Access memory Size Error\n");
1642         }
1643
1644         return nfc_status;
1645 }
1646
1647 /* SMC interrupt service routine */
1648 static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1649 {
1650         struct atmel_nand_host *host = dev_id;
1651         u32 status, mask, pending;
1652         irqreturn_t ret = IRQ_NONE;
1653
1654         status = nfc_read_status(host);
1655         mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1656         pending = status & mask;
1657
1658         if (pending & NFC_SR_XFR_DONE) {
1659                 complete(&host->nfc->comp_xfer_done);
1660                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1661                 ret = IRQ_HANDLED;
1662         }
1663         if (pending & NFC_SR_RB_EDGE) {
1664                 complete(&host->nfc->comp_ready);
1665                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1666                 ret = IRQ_HANDLED;
1667         }
1668         if (pending & NFC_SR_CMD_DONE) {
1669                 complete(&host->nfc->comp_cmd_done);
1670                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1671                 ret = IRQ_HANDLED;
1672         }
1673
1674         return ret;
1675 }
1676
1677 /* NFC(Nand Flash Controller) related functions */
1678 static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
1679 {
1680         if (flag & NFC_SR_XFR_DONE)
1681                 init_completion(&host->nfc->comp_xfer_done);
1682
1683         if (flag & NFC_SR_RB_EDGE)
1684                 init_completion(&host->nfc->comp_ready);
1685
1686         if (flag & NFC_SR_CMD_DONE)
1687                 init_completion(&host->nfc->comp_cmd_done);
1688
1689         /* Enable interrupt that need to wait for */
1690         nfc_writel(host->nfc->hsmc_regs, IER, flag);
1691 }
1692
1693 static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1694 {
1695         int i, index = 0;
1696         struct completion *comp[3];     /* Support 3 interrupt completion */
1697
1698         if (flag & NFC_SR_XFR_DONE)
1699                 comp[index++] = &host->nfc->comp_xfer_done;
1700
1701         if (flag & NFC_SR_RB_EDGE)
1702                 comp[index++] = &host->nfc->comp_ready;
1703
1704         if (flag & NFC_SR_CMD_DONE)
1705                 comp[index++] = &host->nfc->comp_cmd_done;
1706
1707         if (index == 0) {
1708                 dev_err(host->dev, "Unkown interrupt flag: 0x%08x\n", flag);
1709                 return -EINVAL;
1710         }
1711
1712         for (i = 0; i < index; i++) {
1713                 if (wait_for_completion_timeout(comp[i],
1714                                 msecs_to_jiffies(NFC_TIME_OUT_MS)))
1715                         continue;       /* wait for next completion */
1716                 else
1717                         goto err_timeout;
1718         }
1719
1720         return 0;
1721
1722 err_timeout:
1723         dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1724         /* Disable the interrupt as it is not handled by interrupt handler */
1725         nfc_writel(host->nfc->hsmc_regs, IDR, flag);
1726         return -ETIMEDOUT;
1727 }
1728
1729 static int nfc_send_command(struct atmel_nand_host *host,
1730         unsigned int cmd, unsigned int addr, unsigned char cycle0)
1731 {
1732         unsigned long timeout;
1733         u32 flag = NFC_SR_CMD_DONE;
1734         flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
1735
1736         dev_dbg(host->dev,
1737                 "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1738                 cmd, addr, cycle0);
1739
1740         timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1741         while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs)
1742                         & NFCADDR_CMD_NFCBUSY) {
1743                 if (time_after(jiffies, timeout)) {
1744                         dev_err(host->dev,
1745                                 "Time out to wait CMD_NFCBUSY ready!\n");
1746                         return -ETIMEDOUT;
1747                 }
1748         }
1749
1750         nfc_prepare_interrupt(host, flag);
1751         nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1752         nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1753         return nfc_wait_interrupt(host, flag);
1754 }
1755
1756 static int nfc_device_ready(struct mtd_info *mtd)
1757 {
1758         u32 status, mask;
1759         struct nand_chip *nand_chip = mtd->priv;
1760         struct atmel_nand_host *host = nand_chip->priv;
1761
1762         status = nfc_read_status(host);
1763         mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1764
1765         /* The mask should be 0. If not we may lost interrupts */
1766         if (unlikely(mask & status))
1767                 dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
1768                                 mask & status);
1769
1770         return status & NFC_SR_RB_EDGE;
1771 }
1772
1773 static void nfc_select_chip(struct mtd_info *mtd, int chip)
1774 {
1775         struct nand_chip *nand_chip = mtd->priv;
1776         struct atmel_nand_host *host = nand_chip->priv;
1777
1778         if (chip == -1)
1779                 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1780         else
1781                 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1782 }
1783
1784 static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
1785                 int page_addr, unsigned int *addr1234, unsigned int *cycle0)
1786 {
1787         struct nand_chip *chip = mtd->priv;
1788
1789         int acycle = 0;
1790         unsigned char addr_bytes[8];
1791         int index = 0, bit_shift;
1792
1793         BUG_ON(addr1234 == NULL || cycle0 == NULL);
1794
1795         *cycle0 = 0;
1796         *addr1234 = 0;
1797
1798         if (column != -1) {
1799                 if (chip->options & NAND_BUSWIDTH_16 &&
1800                                 !nand_opcode_8bits(command))
1801                         column >>= 1;
1802                 addr_bytes[acycle++] = column & 0xff;
1803                 if (mtd->writesize > 512)
1804                         addr_bytes[acycle++] = (column >> 8) & 0xff;
1805         }
1806
1807         if (page_addr != -1) {
1808                 addr_bytes[acycle++] = page_addr & 0xff;
1809                 addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1810                 if (chip->chipsize > (128 << 20))
1811                         addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1812         }
1813
1814         if (acycle > 4)
1815                 *cycle0 = addr_bytes[index++];
1816
1817         for (bit_shift = 0; index < acycle; bit_shift += 8)
1818                 *addr1234 += addr_bytes[index++] << bit_shift;
1819
1820         /* return acycle in cmd register */
1821         return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1822 }
1823
1824 static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1825                                 int column, int page_addr)
1826 {
1827         struct nand_chip *chip = mtd->priv;
1828         struct atmel_nand_host *host = chip->priv;
1829         unsigned long timeout;
1830         unsigned int nfc_addr_cmd = 0;
1831
1832         unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1833
1834         /* Set default settings: no cmd2, no addr cycle. read from nand */
1835         unsigned int cmd2 = 0;
1836         unsigned int vcmd2 = 0;
1837         int acycle = NFCADDR_CMD_ACYCLE_NONE;
1838         int csid = NFCADDR_CMD_CSID_3;
1839         int dataen = NFCADDR_CMD_DATADIS;
1840         int nfcwr = NFCADDR_CMD_NFCRD;
1841         unsigned int addr1234 = 0;
1842         unsigned int cycle0 = 0;
1843         bool do_addr = true;
1844         host->nfc->data_in_sram = NULL;
1845
1846         dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1847              __func__, command, column, page_addr);
1848
1849         switch (command) {
1850         case NAND_CMD_RESET:
1851                 nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1852                 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1853                 udelay(chip->chip_delay);
1854
1855                 nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1856                 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1857                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1858                         if (time_after(jiffies, timeout)) {
1859                                 dev_err(host->dev,
1860                                         "Time out to wait status ready!\n");
1861                                 break;
1862                         }
1863                 }
1864                 return;
1865         case NAND_CMD_STATUS:
1866                 do_addr = false;
1867                 break;
1868         case NAND_CMD_PARAM:
1869         case NAND_CMD_READID:
1870                 do_addr = false;
1871                 acycle = NFCADDR_CMD_ACYCLE_1;
1872                 if (column != -1)
1873                         addr1234 = column;
1874                 break;
1875         case NAND_CMD_RNDOUT:
1876                 cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1877                 vcmd2 = NFCADDR_CMD_VCMD2;
1878                 break;
1879         case NAND_CMD_READ0:
1880         case NAND_CMD_READOOB:
1881                 if (command == NAND_CMD_READOOB) {
1882                         column += mtd->writesize;
1883                         command = NAND_CMD_READ0; /* only READ0 is valid */
1884                         cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1885                 }
1886                 if (host->nfc->use_nfc_sram) {
1887                         /* Enable Data transfer to sram */
1888                         dataen = NFCADDR_CMD_DATAEN;
1889
1890                         /* Need enable PMECC now, since NFC will transfer
1891                          * data in bus after sending nfc read command.
1892                          */
1893                         if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1894                                 pmecc_enable(host, NAND_ECC_READ);
1895                 }
1896
1897                 cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1898                 vcmd2 = NFCADDR_CMD_VCMD2;
1899                 break;
1900         /* For prgramming command, the cmd need set to write enable */
1901         case NAND_CMD_PAGEPROG:
1902         case NAND_CMD_SEQIN:
1903         case NAND_CMD_RNDIN:
1904                 nfcwr = NFCADDR_CMD_NFCWR;
1905                 if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1906                         dataen = NFCADDR_CMD_DATAEN;
1907                 break;
1908         default:
1909                 break;
1910         }
1911
1912         if (do_addr)
1913                 acycle = nfc_make_addr(mtd, command, column, page_addr,
1914                                 &addr1234, &cycle0);
1915
1916         nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1917         nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1918
1919         /*
1920          * Program and erase have their own busy handlers status, sequential
1921          * in, and deplete1 need no delay.
1922          */
1923         switch (command) {
1924         case NAND_CMD_CACHEDPROG:
1925         case NAND_CMD_PAGEPROG:
1926         case NAND_CMD_ERASE1:
1927         case NAND_CMD_ERASE2:
1928         case NAND_CMD_RNDIN:
1929         case NAND_CMD_STATUS:
1930         case NAND_CMD_RNDOUT:
1931         case NAND_CMD_SEQIN:
1932         case NAND_CMD_READID:
1933                 return;
1934
1935         case NAND_CMD_READ0:
1936                 if (dataen == NFCADDR_CMD_DATAEN) {
1937                         host->nfc->data_in_sram = host->nfc->sram_bank0 +
1938                                 nfc_get_sram_off(host);
1939                         return;
1940                 }
1941                 /* fall through */
1942         default:
1943                 nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
1944                 nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1945         }
1946 }
1947
1948 static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1949                         uint32_t offset, int data_len, const uint8_t *buf,
1950                         int oob_required, int page, int cached, int raw)
1951 {
1952         int cfg, len;
1953         int status = 0;
1954         struct atmel_nand_host *host = chip->priv;
1955         void *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1956
1957         /* Subpage write is not supported */
1958         if (offset || (data_len < mtd->writesize))
1959                 return -EINVAL;
1960
1961         len = mtd->writesize;
1962         /* Copy page data to sram that will write to nand via NFC */
1963         if (use_dma) {
1964                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1965                         /* Fall back to use cpu copy */
1966                         memcpy(sram, buf, len);
1967         } else {
1968                 memcpy(sram, buf, len);
1969         }
1970
1971         cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1972         if (unlikely(raw) && oob_required) {
1973                 memcpy(sram + len, chip->oob_poi, mtd->oobsize);
1974                 len += mtd->oobsize;
1975                 nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1976         } else {
1977                 nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1978         }
1979
1980         if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1981                 /*
1982                  * When use NFC sram, need set up PMECC before send
1983                  * NAND_CMD_SEQIN command. Since when the nand command
1984                  * is sent, nfc will do transfer from sram and nand.
1985                  */
1986                 pmecc_enable(host, NAND_ECC_WRITE);
1987
1988         host->nfc->will_write_sram = true;
1989         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1990         host->nfc->will_write_sram = false;
1991
1992         if (likely(!raw))
1993                 /* Need to write ecc into oob */
1994                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
1995
1996         if (status < 0)
1997                 return status;
1998
1999         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2000         status = chip->waitfunc(mtd, chip);
2001
2002         if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2003                 status = chip->errstat(mtd, chip, FL_WRITING, status, page);
2004
2005         if (status & NAND_STATUS_FAIL)
2006                 return -EIO;
2007
2008         return 0;
2009 }
2010
2011 static int nfc_sram_init(struct mtd_info *mtd)
2012 {
2013         struct nand_chip *chip = mtd->priv;
2014         struct atmel_nand_host *host = chip->priv;
2015         int res = 0;
2016
2017         /* Initialize the NFC CFG register */
2018         unsigned int cfg_nfc = 0;
2019
2020         /* set page size and oob layout */
2021         switch (mtd->writesize) {
2022         case 512:
2023                 cfg_nfc = NFC_CFG_PAGESIZE_512;
2024                 break;
2025         case 1024:
2026                 cfg_nfc = NFC_CFG_PAGESIZE_1024;
2027                 break;
2028         case 2048:
2029                 cfg_nfc = NFC_CFG_PAGESIZE_2048;
2030                 break;
2031         case 4096:
2032                 cfg_nfc = NFC_CFG_PAGESIZE_4096;
2033                 break;
2034         case 8192:
2035                 cfg_nfc = NFC_CFG_PAGESIZE_8192;
2036                 break;
2037         default:
2038                 dev_err(host->dev, "Unsupported page size for NFC.\n");
2039                 res = -ENXIO;
2040                 return res;
2041         }
2042
2043         /* oob bytes size = (NFCSPARESIZE + 1) * 4
2044          * Max support spare size is 512 bytes. */
2045         cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
2046                 & NFC_CFG_NFC_SPARESIZE);
2047         /* default set a max timeout */
2048         cfg_nfc |= NFC_CFG_RSPARE |
2049                         NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
2050
2051         nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
2052
2053         host->nfc->will_write_sram = false;
2054         nfc_set_sram_bank(host, 0);
2055
2056         /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
2057         if (host->nfc->write_by_sram) {
2058                 if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
2059                                 chip->ecc.mode == NAND_ECC_NONE)
2060                         chip->write_page = nfc_sram_write_page;
2061                 else
2062                         host->nfc->write_by_sram = false;
2063         }
2064
2065         dev_info(host->dev, "Using NFC Sram read %s\n",
2066                         host->nfc->write_by_sram ? "and write" : "");
2067         return 0;
2068 }
2069
2070 static struct platform_driver atmel_nand_nfc_driver;
2071 /*
2072  * Probe for the NAND device.
2073  */
2074 static int atmel_nand_probe(struct platform_device *pdev)
2075 {
2076         struct atmel_nand_host *host;
2077         struct mtd_info *mtd;
2078         struct nand_chip *nand_chip;
2079         struct resource *mem;
2080         struct mtd_part_parser_data ppdata = {};
2081         int res, irq;
2082
2083         /* Allocate memory for the device structure (and zero it) */
2084         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
2085         if (!host)
2086                 return -ENOMEM;
2087
2088         res = platform_driver_register(&atmel_nand_nfc_driver);
2089         if (res)
2090                 dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
2091
2092         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2093         host->io_base = devm_ioremap_resource(&pdev->dev, mem);
2094         if (IS_ERR(host->io_base)) {
2095                 res = PTR_ERR(host->io_base);
2096                 goto err_nand_ioremap;
2097         }
2098         host->io_phys = (dma_addr_t)mem->start;
2099
2100         mtd = &host->mtd;
2101         nand_chip = &host->nand_chip;
2102         host->dev = &pdev->dev;
2103         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2104                 /* Only when CONFIG_OF is enabled of_node can be parsed */
2105                 res = atmel_of_init_port(host, pdev->dev.of_node);
2106                 if (res)
2107                         goto err_nand_ioremap;
2108         } else {
2109                 memcpy(&host->board, dev_get_platdata(&pdev->dev),
2110                        sizeof(struct atmel_nand_data));
2111         }
2112
2113         nand_chip->priv = host;         /* link the private data structures */
2114         mtd->priv = nand_chip;
2115         mtd->owner = THIS_MODULE;
2116
2117         /* Set address of NAND IO lines */
2118         nand_chip->IO_ADDR_R = host->io_base;
2119         nand_chip->IO_ADDR_W = host->io_base;
2120
2121         if (nand_nfc.is_initialized) {
2122                 /* NFC driver is probed and initialized */
2123                 host->nfc = &nand_nfc;
2124
2125                 nand_chip->select_chip = nfc_select_chip;
2126                 nand_chip->dev_ready = nfc_device_ready;
2127                 nand_chip->cmdfunc = nfc_nand_command;
2128
2129                 /* Initialize the interrupt for NFC */
2130                 irq = platform_get_irq(pdev, 0);
2131                 if (irq < 0) {
2132                         dev_err(host->dev, "Cannot get HSMC irq!\n");
2133                         res = irq;
2134                         goto err_nand_ioremap;
2135                 }
2136
2137                 res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2138                                 0, "hsmc", host);
2139                 if (res) {
2140                         dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2141                                 irq);
2142                         goto err_nand_ioremap;
2143                 }
2144         } else {
2145                 res = atmel_nand_set_enable_ready_pins(mtd);
2146                 if (res)
2147                         goto err_nand_ioremap;
2148
2149                 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2150         }
2151
2152         nand_chip->ecc.mode = host->board.ecc_mode;
2153         nand_chip->chip_delay = 40;             /* 40us command delay time */
2154
2155         if (host->board.bus_width_16)   /* 16-bit bus width */
2156                 nand_chip->options |= NAND_BUSWIDTH_16;
2157
2158         nand_chip->read_buf = atmel_read_buf;
2159         nand_chip->write_buf = atmel_write_buf;
2160
2161         platform_set_drvdata(pdev, host);
2162         atmel_nand_enable(host);
2163
2164         if (gpio_is_valid(host->board.det_pin)) {
2165                 res = devm_gpio_request(&pdev->dev,
2166                                 host->board.det_pin, "nand_det");
2167                 if (res < 0) {
2168                         dev_err(&pdev->dev,
2169                                 "can't request det gpio %d\n",
2170                                 host->board.det_pin);
2171                         goto err_no_card;
2172                 }
2173
2174                 res = gpio_direction_input(host->board.det_pin);
2175                 if (res < 0) {
2176                         dev_err(&pdev->dev,
2177                                 "can't request input direction det gpio %d\n",
2178                                 host->board.det_pin);
2179                         goto err_no_card;
2180                 }
2181
2182                 if (gpio_get_value(host->board.det_pin)) {
2183                         dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
2184                         res = -ENXIO;
2185                         goto err_no_card;
2186                 }
2187         }
2188
2189         if (host->board.on_flash_bbt || on_flash_bbt) {
2190                 dev_info(&pdev->dev, "Use On Flash BBT\n");
2191                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2192         }
2193
2194         if (!host->board.has_dma)
2195                 use_dma = 0;
2196
2197         if (use_dma) {
2198                 dma_cap_mask_t mask;
2199
2200                 dma_cap_zero(mask);
2201                 dma_cap_set(DMA_MEMCPY, mask);
2202                 host->dma_chan = dma_request_channel(mask, NULL, NULL);
2203                 if (!host->dma_chan) {
2204                         dev_err(host->dev, "Failed to request DMA channel\n");
2205                         use_dma = 0;
2206                 }
2207         }
2208         if (use_dma)
2209                 dev_info(host->dev, "Using %s for DMA transfers.\n",
2210                                         dma_chan_name(host->dma_chan));
2211         else
2212                 dev_info(host->dev, "No DMA support for NAND access.\n");
2213
2214         /* first scan to find the device and get the page size */
2215         if (nand_scan_ident(mtd, 1, NULL)) {
2216                 res = -ENXIO;
2217                 goto err_scan_ident;
2218         }
2219
2220         if (nand_chip->ecc.mode == NAND_ECC_HW) {
2221                 if (host->has_pmecc)
2222                         res = atmel_pmecc_nand_init_params(pdev, host);
2223                 else
2224                         res = atmel_hw_nand_init_params(pdev, host);
2225
2226                 if (res != 0)
2227                         goto err_hw_ecc;
2228         }
2229
2230         /* initialize the nfc configuration register */
2231         if (host->nfc && host->nfc->use_nfc_sram) {
2232                 res = nfc_sram_init(mtd);
2233                 if (res) {
2234                         host->nfc->use_nfc_sram = false;
2235                         dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2236                 }
2237         }
2238
2239         /* second phase scan */
2240         if (nand_scan_tail(mtd)) {
2241                 res = -ENXIO;
2242                 goto err_scan_tail;
2243         }
2244
2245         mtd->name = "atmel_nand";
2246         ppdata.of_node = pdev->dev.of_node;
2247         res = mtd_device_parse_register(mtd, NULL, &ppdata,
2248                         host->board.parts, host->board.num_parts);
2249         if (!res)
2250                 return res;
2251
2252 err_scan_tail:
2253         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2254                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2255 err_hw_ecc:
2256 err_scan_ident:
2257 err_no_card:
2258         atmel_nand_disable(host);
2259         if (host->dma_chan)
2260                 dma_release_channel(host->dma_chan);
2261 err_nand_ioremap:
2262         return res;
2263 }
2264
2265 /*
2266  * Remove a NAND device.
2267  */
2268 static int atmel_nand_remove(struct platform_device *pdev)
2269 {
2270         struct atmel_nand_host *host = platform_get_drvdata(pdev);
2271         struct mtd_info *mtd = &host->mtd;
2272
2273         nand_release(mtd);
2274
2275         atmel_nand_disable(host);
2276
2277         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2278                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2279                 pmerrloc_writel(host->pmerrloc_base, ELDIS,
2280                                 PMERRLOC_DISABLE);
2281         }
2282
2283         if (host->dma_chan)
2284                 dma_release_channel(host->dma_chan);
2285
2286         platform_driver_unregister(&atmel_nand_nfc_driver);
2287
2288         return 0;
2289 }
2290
2291 static const struct of_device_id atmel_nand_dt_ids[] = {
2292         { .compatible = "atmel,at91rm9200-nand" },
2293         { /* sentinel */ }
2294 };
2295
2296 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2297
2298 static int atmel_nand_nfc_probe(struct platform_device *pdev)
2299 {
2300         struct atmel_nfc *nfc = &nand_nfc;
2301         struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2302         int ret;
2303
2304         nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2305         nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2306         if (IS_ERR(nfc->base_cmd_regs))
2307                 return PTR_ERR(nfc->base_cmd_regs);
2308
2309         nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2310         nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2311         if (IS_ERR(nfc->hsmc_regs))
2312                 return PTR_ERR(nfc->hsmc_regs);
2313
2314         nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2315         if (nfc_sram) {
2316                 nfc->sram_bank0 = (void * __force)
2317                                 devm_ioremap_resource(&pdev->dev, nfc_sram);
2318                 if (IS_ERR(nfc->sram_bank0)) {
2319                         dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2320                                         PTR_ERR(nfc->sram_bank0));
2321                 } else {
2322                         nfc->use_nfc_sram = true;
2323                         nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2324
2325                         if (pdev->dev.of_node)
2326                                 nfc->write_by_sram = of_property_read_bool(
2327                                                 pdev->dev.of_node,
2328                                                 "atmel,write-by-sram");
2329                 }
2330         }
2331
2332         nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
2333         nfc_readl(nfc->hsmc_regs, SR);  /* clear the NFC_SR */
2334
2335         nfc->clk = devm_clk_get(&pdev->dev, NULL);
2336         if (!IS_ERR(nfc->clk)) {
2337                 ret = clk_prepare_enable(nfc->clk);
2338                 if (ret)
2339                         return ret;
2340         } else {
2341                 dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
2342         }
2343
2344         nfc->is_initialized = true;
2345         dev_info(&pdev->dev, "NFC is probed.\n");
2346
2347         return 0;
2348 }
2349
2350 static int atmel_nand_nfc_remove(struct platform_device *pdev)
2351 {
2352         struct atmel_nfc *nfc = &nand_nfc;
2353
2354         if (!IS_ERR(nfc->clk))
2355                 clk_disable_unprepare(nfc->clk);
2356
2357         return 0;
2358 }
2359
2360 static const struct of_device_id atmel_nand_nfc_match[] = {
2361         { .compatible = "atmel,sama5d3-nfc" },
2362         { /* sentinel */ }
2363 };
2364 MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2365
2366 static struct platform_driver atmel_nand_nfc_driver = {
2367         .driver = {
2368                 .name = "atmel_nand_nfc",
2369                 .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2370         },
2371         .probe = atmel_nand_nfc_probe,
2372         .remove = atmel_nand_nfc_remove,
2373 };
2374
2375 static struct platform_driver atmel_nand_driver = {
2376         .probe          = atmel_nand_probe,
2377         .remove         = atmel_nand_remove,
2378         .driver         = {
2379                 .name   = "atmel_nand",
2380                 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
2381         },
2382 };
2383
2384 module_platform_driver(atmel_nand_driver);
2385
2386 MODULE_LICENSE("GPL");
2387 MODULE_AUTHOR("Rick Bronson");
2388 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2389 MODULE_ALIAS("platform:atmel_nand");