Merge tag 'for-linus-20131112' of git://git.infradead.org/linux-mtd
[cascardo/linux.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  *  Copyright © 2003 Rick Bronson
3  *
4  *  Derived from drivers/mtd/nand/autcpu12.c
5  *       Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6  *
7  *  Derived from drivers/mtd/spia.c
8  *       Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9  *
10  *
11  *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12  *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13  *
14  *     Derived from Das U-Boot source code
15  *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16  *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17  *
18  *  Add Programmable Multibit ECC support for various AT91 SoC
19  *     © Copyright 2012 ATMEL, Hong Xu
20  *
21  *  Add Nand Flash Controller support for SAMA5 SoC
22  *     © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29
30 #include <linux/dma-mapping.h>
31 #include <linux/slab.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/platform_device.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/of_gpio.h>
38 #include <linux/of_mtd.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/partitions.h>
42
43 #include <linux/delay.h>
44 #include <linux/dmaengine.h>
45 #include <linux/gpio.h>
46 #include <linux/interrupt.h>
47 #include <linux/io.h>
48 #include <linux/platform_data/atmel.h>
49
50 static int use_dma = 1;
51 module_param(use_dma, int, 0);
52
53 static int on_flash_bbt = 0;
54 module_param(on_flash_bbt, int, 0);
55
56 /* Register access macros */
57 #define ecc_readl(add, reg)                             \
58         __raw_readl(add + ATMEL_ECC_##reg)
59 #define ecc_writel(add, reg, value)                     \
60         __raw_writel((value), add + ATMEL_ECC_##reg)
61
62 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
63 #include "atmel_nand_nfc.h"     /* Nand Flash Controller definition */
64
65 /* oob layout for large page size
66  * bad block info is on bytes 0 and 1
67  * the bytes have to be consecutives to avoid
68  * several NAND_CMD_RNDOUT during read
69  */
70 static struct nand_ecclayout atmel_oobinfo_large = {
71         .eccbytes = 4,
72         .eccpos = {60, 61, 62, 63},
73         .oobfree = {
74                 {2, 58}
75         },
76 };
77
78 /* oob layout for small page size
79  * bad block info is on bytes 4 and 5
80  * the bytes have to be consecutives to avoid
81  * several NAND_CMD_RNDOUT during read
82  */
83 static struct nand_ecclayout atmel_oobinfo_small = {
84         .eccbytes = 4,
85         .eccpos = {0, 1, 2, 3},
86         .oobfree = {
87                 {6, 10}
88         },
89 };
90
91 struct atmel_nfc {
92         void __iomem            *base_cmd_regs;
93         void __iomem            *hsmc_regs;
94         void __iomem            *sram_bank0;
95         dma_addr_t              sram_bank0_phys;
96         bool                    use_nfc_sram;
97         bool                    write_by_sram;
98
99         bool                    is_initialized;
100         struct completion       comp_nfc;
101
102         /* Point to the sram bank which include readed data via NFC */
103         void __iomem            *data_in_sram;
104         bool                    will_write_sram;
105 };
106 static struct atmel_nfc nand_nfc;
107
108 struct atmel_nand_host {
109         struct nand_chip        nand_chip;
110         struct mtd_info         mtd;
111         void __iomem            *io_base;
112         dma_addr_t              io_phys;
113         struct atmel_nand_data  board;
114         struct device           *dev;
115         void __iomem            *ecc;
116
117         struct completion       comp;
118         struct dma_chan         *dma_chan;
119
120         struct atmel_nfc        *nfc;
121
122         bool                    has_pmecc;
123         u8                      pmecc_corr_cap;
124         u16                     pmecc_sector_size;
125         u32                     pmecc_lookup_table_offset;
126         u32                     pmecc_lookup_table_offset_512;
127         u32                     pmecc_lookup_table_offset_1024;
128
129         int                     pmecc_bytes_per_sector;
130         int                     pmecc_sector_number;
131         int                     pmecc_degree;   /* Degree of remainders */
132         int                     pmecc_cw_len;   /* Length of codeword */
133
134         void __iomem            *pmerrloc_base;
135         void __iomem            *pmecc_rom_base;
136
137         /* lookup table for alpha_to and index_of */
138         void __iomem            *pmecc_alpha_to;
139         void __iomem            *pmecc_index_of;
140
141         /* data for pmecc computation */
142         int16_t                 *pmecc_partial_syn;
143         int16_t                 *pmecc_si;
144         int16_t                 *pmecc_smu;     /* Sigma table */
145         int16_t                 *pmecc_lmu;     /* polynomal order */
146         int                     *pmecc_mu;
147         int                     *pmecc_dmu;
148         int                     *pmecc_delta;
149 };
150
151 static struct nand_ecclayout atmel_pmecc_oobinfo;
152
153 /*
154  * Enable NAND.
155  */
156 static void atmel_nand_enable(struct atmel_nand_host *host)
157 {
158         if (gpio_is_valid(host->board.enable_pin))
159                 gpio_set_value(host->board.enable_pin, 0);
160 }
161
162 /*
163  * Disable NAND.
164  */
165 static void atmel_nand_disable(struct atmel_nand_host *host)
166 {
167         if (gpio_is_valid(host->board.enable_pin))
168                 gpio_set_value(host->board.enable_pin, 1);
169 }
170
171 /*
172  * Hardware specific access to control-lines
173  */
174 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
175 {
176         struct nand_chip *nand_chip = mtd->priv;
177         struct atmel_nand_host *host = nand_chip->priv;
178
179         if (ctrl & NAND_CTRL_CHANGE) {
180                 if (ctrl & NAND_NCE)
181                         atmel_nand_enable(host);
182                 else
183                         atmel_nand_disable(host);
184         }
185         if (cmd == NAND_CMD_NONE)
186                 return;
187
188         if (ctrl & NAND_CLE)
189                 writeb(cmd, host->io_base + (1 << host->board.cle));
190         else
191                 writeb(cmd, host->io_base + (1 << host->board.ale));
192 }
193
194 /*
195  * Read the Device Ready pin.
196  */
197 static int atmel_nand_device_ready(struct mtd_info *mtd)
198 {
199         struct nand_chip *nand_chip = mtd->priv;
200         struct atmel_nand_host *host = nand_chip->priv;
201
202         return gpio_get_value(host->board.rdy_pin) ^
203                 !!host->board.rdy_pin_active_low;
204 }
205
206 /* Set up for hardware ready pin and enable pin. */
207 static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
208 {
209         struct nand_chip *chip = mtd->priv;
210         struct atmel_nand_host *host = chip->priv;
211         int res = 0;
212
213         if (gpio_is_valid(host->board.rdy_pin)) {
214                 res = devm_gpio_request(host->dev,
215                                 host->board.rdy_pin, "nand_rdy");
216                 if (res < 0) {
217                         dev_err(host->dev,
218                                 "can't request rdy gpio %d\n",
219                                 host->board.rdy_pin);
220                         return res;
221                 }
222
223                 res = gpio_direction_input(host->board.rdy_pin);
224                 if (res < 0) {
225                         dev_err(host->dev,
226                                 "can't request input direction rdy gpio %d\n",
227                                 host->board.rdy_pin);
228                         return res;
229                 }
230
231                 chip->dev_ready = atmel_nand_device_ready;
232         }
233
234         if (gpio_is_valid(host->board.enable_pin)) {
235                 res = devm_gpio_request(host->dev,
236                                 host->board.enable_pin, "nand_enable");
237                 if (res < 0) {
238                         dev_err(host->dev,
239                                 "can't request enable gpio %d\n",
240                                 host->board.enable_pin);
241                         return res;
242                 }
243
244                 res = gpio_direction_output(host->board.enable_pin, 1);
245                 if (res < 0) {
246                         dev_err(host->dev,
247                                 "can't request output direction enable gpio %d\n",
248                                 host->board.enable_pin);
249                         return res;
250                 }
251         }
252
253         return res;
254 }
255
256 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
257 {
258         int i;
259         u32 *t = trg;
260         const __iomem u32 *s = src;
261
262         for (i = 0; i < (size >> 2); i++)
263                 *t++ = readl_relaxed(s++);
264 }
265
266 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
267 {
268         int i;
269         u32 __iomem *t = trg;
270         const u32 *s = src;
271
272         for (i = 0; i < (size >> 2); i++)
273                 writel_relaxed(*s++, t++);
274 }
275
276 /*
277  * Minimal-overhead PIO for data access.
278  */
279 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
280 {
281         struct nand_chip        *nand_chip = mtd->priv;
282         struct atmel_nand_host *host = nand_chip->priv;
283
284         if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
285                 memcpy32_fromio(buf, host->nfc->data_in_sram, len);
286                 host->nfc->data_in_sram += len;
287         } else {
288                 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
289         }
290 }
291
292 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
293 {
294         struct nand_chip        *nand_chip = mtd->priv;
295         struct atmel_nand_host *host = nand_chip->priv;
296
297         if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
298                 memcpy32_fromio(buf, host->nfc->data_in_sram, len);
299                 host->nfc->data_in_sram += len;
300         } else {
301                 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
302         }
303 }
304
305 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
306 {
307         struct nand_chip        *nand_chip = mtd->priv;
308
309         __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
310 }
311
312 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
313 {
314         struct nand_chip        *nand_chip = mtd->priv;
315
316         __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
317 }
318
319 static void dma_complete_func(void *completion)
320 {
321         complete(completion);
322 }
323
324 static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
325 {
326         /* NFC only has two banks. Must be 0 or 1 */
327         if (bank > 1)
328                 return -EINVAL;
329
330         if (bank) {
331                 /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
332                 if (host->mtd.writesize > 2048)
333                         return -EINVAL;
334                 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
335         } else {
336                 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
337         }
338
339         return 0;
340 }
341
342 static uint nfc_get_sram_off(struct atmel_nand_host *host)
343 {
344         if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
345                 return NFC_SRAM_BANK1_OFFSET;
346         else
347                 return 0;
348 }
349
350 static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
351 {
352         if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
353                 return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
354         else
355                 return host->nfc->sram_bank0_phys;
356 }
357
358 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
359                                int is_read)
360 {
361         struct dma_device *dma_dev;
362         enum dma_ctrl_flags flags;
363         dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
364         struct dma_async_tx_descriptor *tx = NULL;
365         dma_cookie_t cookie;
366         struct nand_chip *chip = mtd->priv;
367         struct atmel_nand_host *host = chip->priv;
368         void *p = buf;
369         int err = -EIO;
370         enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
371         struct atmel_nfc *nfc = host->nfc;
372
373         if (buf >= high_memory)
374                 goto err_buf;
375
376         dma_dev = host->dma_chan->device;
377
378         flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
379                 DMA_COMPL_SKIP_DEST_UNMAP;
380
381         phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
382         if (dma_mapping_error(dma_dev->dev, phys_addr)) {
383                 dev_err(host->dev, "Failed to dma_map_single\n");
384                 goto err_buf;
385         }
386
387         if (is_read) {
388                 if (nfc && nfc->data_in_sram)
389                         dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
390                                 - (nfc->sram_bank0 + nfc_get_sram_off(host)));
391                 else
392                         dma_src_addr = host->io_phys;
393
394                 dma_dst_addr = phys_addr;
395         } else {
396                 dma_src_addr = phys_addr;
397
398                 if (nfc && nfc->write_by_sram)
399                         dma_dst_addr = nfc_sram_phys(host);
400                 else
401                         dma_dst_addr = host->io_phys;
402         }
403
404         tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
405                                              dma_src_addr, len, flags);
406         if (!tx) {
407                 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
408                 goto err_dma;
409         }
410
411         init_completion(&host->comp);
412         tx->callback = dma_complete_func;
413         tx->callback_param = &host->comp;
414
415         cookie = tx->tx_submit(tx);
416         if (dma_submit_error(cookie)) {
417                 dev_err(host->dev, "Failed to do DMA tx_submit\n");
418                 goto err_dma;
419         }
420
421         dma_async_issue_pending(host->dma_chan);
422         wait_for_completion(&host->comp);
423
424         if (is_read && nfc && nfc->data_in_sram)
425                 /* After read data from SRAM, need to increase the position */
426                 nfc->data_in_sram += len;
427
428         err = 0;
429
430 err_dma:
431         dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
432 err_buf:
433         if (err != 0)
434                 dev_warn(host->dev, "Fall back to CPU I/O\n");
435         return err;
436 }
437
438 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
439 {
440         struct nand_chip *chip = mtd->priv;
441         struct atmel_nand_host *host = chip->priv;
442
443         if (use_dma && len > mtd->oobsize)
444                 /* only use DMA for bigger than oob size: better performances */
445                 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
446                         return;
447
448         if (host->board.bus_width_16)
449                 atmel_read_buf16(mtd, buf, len);
450         else
451                 atmel_read_buf8(mtd, buf, len);
452 }
453
454 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
455 {
456         struct nand_chip *chip = mtd->priv;
457         struct atmel_nand_host *host = chip->priv;
458
459         if (use_dma && len > mtd->oobsize)
460                 /* only use DMA for bigger than oob size: better performances */
461                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
462                         return;
463
464         if (host->board.bus_width_16)
465                 atmel_write_buf16(mtd, buf, len);
466         else
467                 atmel_write_buf8(mtd, buf, len);
468 }
469
470 /*
471  * Return number of ecc bytes per sector according to sector size and
472  * correction capability
473  *
474  * Following table shows what at91 PMECC supported:
475  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
476  * =====================        ================        =================
477  *                2-bits                 4-bytes                  4-bytes
478  *                4-bits                 7-bytes                  7-bytes
479  *                8-bits                13-bytes                 14-bytes
480  *               12-bits                20-bytes                 21-bytes
481  *               24-bits                39-bytes                 42-bytes
482  */
483 static int pmecc_get_ecc_bytes(int cap, int sector_size)
484 {
485         int m = 12 + sector_size / 512;
486         return (m * cap + 7) / 8;
487 }
488
489 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
490                                     int oobsize, int ecc_len)
491 {
492         int i;
493
494         layout->eccbytes = ecc_len;
495
496         /* ECC will occupy the last ecc_len bytes continuously */
497         for (i = 0; i < ecc_len; i++)
498                 layout->eccpos[i] = oobsize - ecc_len + i;
499
500         layout->oobfree[0].offset = 2;
501         layout->oobfree[0].length =
502                 oobsize - ecc_len - layout->oobfree[0].offset;
503 }
504
505 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
506 {
507         int table_size;
508
509         table_size = host->pmecc_sector_size == 512 ?
510                 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
511
512         return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
513                         table_size * sizeof(int16_t);
514 }
515
516 static int pmecc_data_alloc(struct atmel_nand_host *host)
517 {
518         const int cap = host->pmecc_corr_cap;
519         int size;
520
521         size = (2 * cap + 1) * sizeof(int16_t);
522         host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
523         host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
524         host->pmecc_lmu = devm_kzalloc(host->dev,
525                         (cap + 1) * sizeof(int16_t), GFP_KERNEL);
526         host->pmecc_smu = devm_kzalloc(host->dev,
527                         (cap + 2) * size, GFP_KERNEL);
528
529         size = (cap + 1) * sizeof(int);
530         host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
531         host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
532         host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
533
534         if (!host->pmecc_partial_syn ||
535                 !host->pmecc_si ||
536                 !host->pmecc_lmu ||
537                 !host->pmecc_smu ||
538                 !host->pmecc_mu ||
539                 !host->pmecc_dmu ||
540                 !host->pmecc_delta)
541                 return -ENOMEM;
542
543         return 0;
544 }
545
546 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
547 {
548         struct nand_chip *nand_chip = mtd->priv;
549         struct atmel_nand_host *host = nand_chip->priv;
550         int i;
551         uint32_t value;
552
553         /* Fill odd syndromes */
554         for (i = 0; i < host->pmecc_corr_cap; i++) {
555                 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
556                 if (i & 1)
557                         value >>= 16;
558                 value &= 0xffff;
559                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
560         }
561 }
562
563 static void pmecc_substitute(struct mtd_info *mtd)
564 {
565         struct nand_chip *nand_chip = mtd->priv;
566         struct atmel_nand_host *host = nand_chip->priv;
567         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
568         int16_t __iomem *index_of = host->pmecc_index_of;
569         int16_t *partial_syn = host->pmecc_partial_syn;
570         const int cap = host->pmecc_corr_cap;
571         int16_t *si;
572         int i, j;
573
574         /* si[] is a table that holds the current syndrome value,
575          * an element of that table belongs to the field
576          */
577         si = host->pmecc_si;
578
579         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
580
581         /* Computation 2t syndromes based on S(x) */
582         /* Odd syndromes */
583         for (i = 1; i < 2 * cap; i += 2) {
584                 for (j = 0; j < host->pmecc_degree; j++) {
585                         if (partial_syn[i] & ((unsigned short)0x1 << j))
586                                 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
587                 }
588         }
589         /* Even syndrome = (Odd syndrome) ** 2 */
590         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
591                 if (si[j] == 0) {
592                         si[i] = 0;
593                 } else {
594                         int16_t tmp;
595
596                         tmp = readw_relaxed(index_of + si[j]);
597                         tmp = (tmp * 2) % host->pmecc_cw_len;
598                         si[i] = readw_relaxed(alpha_to + tmp);
599                 }
600         }
601
602         return;
603 }
604
605 static void pmecc_get_sigma(struct mtd_info *mtd)
606 {
607         struct nand_chip *nand_chip = mtd->priv;
608         struct atmel_nand_host *host = nand_chip->priv;
609
610         int16_t *lmu = host->pmecc_lmu;
611         int16_t *si = host->pmecc_si;
612         int *mu = host->pmecc_mu;
613         int *dmu = host->pmecc_dmu;     /* Discrepancy */
614         int *delta = host->pmecc_delta; /* Delta order */
615         int cw_len = host->pmecc_cw_len;
616         const int16_t cap = host->pmecc_corr_cap;
617         const int num = 2 * cap + 1;
618         int16_t __iomem *index_of = host->pmecc_index_of;
619         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
620         int i, j, k;
621         uint32_t dmu_0_count, tmp;
622         int16_t *smu = host->pmecc_smu;
623
624         /* index of largest delta */
625         int ro;
626         int largest;
627         int diff;
628
629         dmu_0_count = 0;
630
631         /* First Row */
632
633         /* Mu */
634         mu[0] = -1;
635
636         memset(smu, 0, sizeof(int16_t) * num);
637         smu[0] = 1;
638
639         /* discrepancy set to 1 */
640         dmu[0] = 1;
641         /* polynom order set to 0 */
642         lmu[0] = 0;
643         delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
644
645         /* Second Row */
646
647         /* Mu */
648         mu[1] = 0;
649         /* Sigma(x) set to 1 */
650         memset(&smu[num], 0, sizeof(int16_t) * num);
651         smu[num] = 1;
652
653         /* discrepancy set to S1 */
654         dmu[1] = si[1];
655
656         /* polynom order set to 0 */
657         lmu[1] = 0;
658
659         delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
660
661         /* Init the Sigma(x) last row */
662         memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
663
664         for (i = 1; i <= cap; i++) {
665                 mu[i + 1] = i << 1;
666                 /* Begin Computing Sigma (Mu+1) and L(mu) */
667                 /* check if discrepancy is set to 0 */
668                 if (dmu[i] == 0) {
669                         dmu_0_count++;
670
671                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
672                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
673                                 tmp += 2;
674                         else
675                                 tmp += 1;
676
677                         if (dmu_0_count == tmp) {
678                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
679                                         smu[(cap + 1) * num + j] =
680                                                         smu[i * num + j];
681
682                                 lmu[cap + 1] = lmu[i];
683                                 return;
684                         }
685
686                         /* copy polynom */
687                         for (j = 0; j <= lmu[i] >> 1; j++)
688                                 smu[(i + 1) * num + j] = smu[i * num + j];
689
690                         /* copy previous polynom order to the next */
691                         lmu[i + 1] = lmu[i];
692                 } else {
693                         ro = 0;
694                         largest = -1;
695                         /* find largest delta with dmu != 0 */
696                         for (j = 0; j < i; j++) {
697                                 if ((dmu[j]) && (delta[j] > largest)) {
698                                         largest = delta[j];
699                                         ro = j;
700                                 }
701                         }
702
703                         /* compute difference */
704                         diff = (mu[i] - mu[ro]);
705
706                         /* Compute degree of the new smu polynomial */
707                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
708                                 lmu[i + 1] = lmu[i];
709                         else
710                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
711
712                         /* Init smu[i+1] with 0 */
713                         for (k = 0; k < num; k++)
714                                 smu[(i + 1) * num + k] = 0;
715
716                         /* Compute smu[i+1] */
717                         for (k = 0; k <= lmu[ro] >> 1; k++) {
718                                 int16_t a, b, c;
719
720                                 if (!(smu[ro * num + k] && dmu[i]))
721                                         continue;
722                                 a = readw_relaxed(index_of + dmu[i]);
723                                 b = readw_relaxed(index_of + dmu[ro]);
724                                 c = readw_relaxed(index_of + smu[ro * num + k]);
725                                 tmp = a + (cw_len - b) + c;
726                                 a = readw_relaxed(alpha_to + tmp % cw_len);
727                                 smu[(i + 1) * num + (k + diff)] = a;
728                         }
729
730                         for (k = 0; k <= lmu[i] >> 1; k++)
731                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
732                 }
733
734                 /* End Computing Sigma (Mu+1) and L(mu) */
735                 /* In either case compute delta */
736                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
737
738                 /* Do not compute discrepancy for the last iteration */
739                 if (i >= cap)
740                         continue;
741
742                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
743                         tmp = 2 * (i - 1);
744                         if (k == 0) {
745                                 dmu[i + 1] = si[tmp + 3];
746                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
747                                 int16_t a, b, c;
748                                 a = readw_relaxed(index_of +
749                                                 smu[(i + 1) * num + k]);
750                                 b = si[2 * (i - 1) + 3 - k];
751                                 c = readw_relaxed(index_of + b);
752                                 tmp = a + c;
753                                 tmp %= cw_len;
754                                 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
755                                         dmu[i + 1];
756                         }
757                 }
758         }
759
760         return;
761 }
762
763 static int pmecc_err_location(struct mtd_info *mtd)
764 {
765         struct nand_chip *nand_chip = mtd->priv;
766         struct atmel_nand_host *host = nand_chip->priv;
767         unsigned long end_time;
768         const int cap = host->pmecc_corr_cap;
769         const int num = 2 * cap + 1;
770         int sector_size = host->pmecc_sector_size;
771         int err_nbr = 0;        /* number of error */
772         int roots_nbr;          /* number of roots */
773         int i;
774         uint32_t val;
775         int16_t *smu = host->pmecc_smu;
776
777         pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
778
779         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
780                 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
781                                       smu[(cap + 1) * num + i]);
782                 err_nbr++;
783         }
784
785         val = (err_nbr - 1) << 16;
786         if (sector_size == 1024)
787                 val |= 1;
788
789         pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
790         pmerrloc_writel(host->pmerrloc_base, ELEN,
791                         sector_size * 8 + host->pmecc_degree * cap);
792
793         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
794         while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
795                  & PMERRLOC_CALC_DONE)) {
796                 if (unlikely(time_after(jiffies, end_time))) {
797                         dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
798                         return -1;
799                 }
800                 cpu_relax();
801         }
802
803         roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
804                 & PMERRLOC_ERR_NUM_MASK) >> 8;
805         /* Number of roots == degree of smu hence <= cap */
806         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
807                 return err_nbr - 1;
808
809         /* Number of roots does not match the degree of smu
810          * unable to correct error */
811         return -1;
812 }
813
814 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
815                 int sector_num, int extra_bytes, int err_nbr)
816 {
817         struct nand_chip *nand_chip = mtd->priv;
818         struct atmel_nand_host *host = nand_chip->priv;
819         int i = 0;
820         int byte_pos, bit_pos, sector_size, pos;
821         uint32_t tmp;
822         uint8_t err_byte;
823
824         sector_size = host->pmecc_sector_size;
825
826         while (err_nbr) {
827                 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
828                 byte_pos = tmp / 8;
829                 bit_pos  = tmp % 8;
830
831                 if (byte_pos >= (sector_size + extra_bytes))
832                         BUG();  /* should never happen */
833
834                 if (byte_pos < sector_size) {
835                         err_byte = *(buf + byte_pos);
836                         *(buf + byte_pos) ^= (1 << bit_pos);
837
838                         pos = sector_num * host->pmecc_sector_size + byte_pos;
839                         dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
840                                 pos, bit_pos, err_byte, *(buf + byte_pos));
841                 } else {
842                         /* Bit flip in OOB area */
843                         tmp = sector_num * host->pmecc_bytes_per_sector
844                                         + (byte_pos - sector_size);
845                         err_byte = ecc[tmp];
846                         ecc[tmp] ^= (1 << bit_pos);
847
848                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
849                         dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
850                                 pos, bit_pos, err_byte, ecc[tmp]);
851                 }
852
853                 i++;
854                 err_nbr--;
855         }
856
857         return;
858 }
859
860 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
861         u8 *ecc)
862 {
863         struct nand_chip *nand_chip = mtd->priv;
864         struct atmel_nand_host *host = nand_chip->priv;
865         int i, err_nbr, eccbytes;
866         uint8_t *buf_pos;
867         int total_err = 0;
868
869         eccbytes = nand_chip->ecc.bytes;
870         for (i = 0; i < eccbytes; i++)
871                 if (ecc[i] != 0xff)
872                         goto normal_check;
873         /* Erased page, return OK */
874         return 0;
875
876 normal_check:
877         for (i = 0; i < host->pmecc_sector_number; i++) {
878                 err_nbr = 0;
879                 if (pmecc_stat & 0x1) {
880                         buf_pos = buf + i * host->pmecc_sector_size;
881
882                         pmecc_gen_syndrome(mtd, i);
883                         pmecc_substitute(mtd);
884                         pmecc_get_sigma(mtd);
885
886                         err_nbr = pmecc_err_location(mtd);
887                         if (err_nbr == -1) {
888                                 dev_err(host->dev, "PMECC: Too many errors\n");
889                                 mtd->ecc_stats.failed++;
890                                 return -EIO;
891                         } else {
892                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
893                                         host->pmecc_bytes_per_sector, err_nbr);
894                                 mtd->ecc_stats.corrected += err_nbr;
895                                 total_err += err_nbr;
896                         }
897                 }
898                 pmecc_stat >>= 1;
899         }
900
901         return total_err;
902 }
903
904 static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
905 {
906         u32 val;
907
908         if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
909                 dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
910                 return;
911         }
912
913         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
914         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
915         val = pmecc_readl_relaxed(host->ecc, CFG);
916
917         if (ecc_op == NAND_ECC_READ)
918                 pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
919                         | PMECC_CFG_AUTO_ENABLE);
920         else
921                 pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
922                         & ~PMECC_CFG_AUTO_ENABLE);
923
924         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
925         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
926 }
927
928 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
929         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
930 {
931         struct atmel_nand_host *host = chip->priv;
932         int eccsize = chip->ecc.size;
933         uint8_t *oob = chip->oob_poi;
934         uint32_t *eccpos = chip->ecc.layout->eccpos;
935         uint32_t stat;
936         unsigned long end_time;
937         int bitflips = 0;
938
939         if (!host->nfc || !host->nfc->use_nfc_sram)
940                 pmecc_enable(host, NAND_ECC_READ);
941
942         chip->read_buf(mtd, buf, eccsize);
943         chip->read_buf(mtd, oob, mtd->oobsize);
944
945         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
946         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
947                 if (unlikely(time_after(jiffies, end_time))) {
948                         dev_err(host->dev, "PMECC: Timeout to get error status.\n");
949                         return -EIO;
950                 }
951                 cpu_relax();
952         }
953
954         stat = pmecc_readl_relaxed(host->ecc, ISR);
955         if (stat != 0) {
956                 bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
957                 if (bitflips < 0)
958                         /* uncorrectable errors */
959                         return 0;
960         }
961
962         return bitflips;
963 }
964
965 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
966                 struct nand_chip *chip, const uint8_t *buf, int oob_required)
967 {
968         struct atmel_nand_host *host = chip->priv;
969         uint32_t *eccpos = chip->ecc.layout->eccpos;
970         int i, j;
971         unsigned long end_time;
972
973         if (!host->nfc || !host->nfc->write_by_sram) {
974                 pmecc_enable(host, NAND_ECC_WRITE);
975                 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
976         }
977
978         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
979         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
980                 if (unlikely(time_after(jiffies, end_time))) {
981                         dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
982                         return -EIO;
983                 }
984                 cpu_relax();
985         }
986
987         for (i = 0; i < host->pmecc_sector_number; i++) {
988                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
989                         int pos;
990
991                         pos = i * host->pmecc_bytes_per_sector + j;
992                         chip->oob_poi[eccpos[pos]] =
993                                 pmecc_readb_ecc_relaxed(host->ecc, i, j);
994                 }
995         }
996         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
997
998         return 0;
999 }
1000
1001 static void atmel_pmecc_core_init(struct mtd_info *mtd)
1002 {
1003         struct nand_chip *nand_chip = mtd->priv;
1004         struct atmel_nand_host *host = nand_chip->priv;
1005         uint32_t val = 0;
1006         struct nand_ecclayout *ecc_layout;
1007
1008         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1009         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1010
1011         switch (host->pmecc_corr_cap) {
1012         case 2:
1013                 val = PMECC_CFG_BCH_ERR2;
1014                 break;
1015         case 4:
1016                 val = PMECC_CFG_BCH_ERR4;
1017                 break;
1018         case 8:
1019                 val = PMECC_CFG_BCH_ERR8;
1020                 break;
1021         case 12:
1022                 val = PMECC_CFG_BCH_ERR12;
1023                 break;
1024         case 24:
1025                 val = PMECC_CFG_BCH_ERR24;
1026                 break;
1027         }
1028
1029         if (host->pmecc_sector_size == 512)
1030                 val |= PMECC_CFG_SECTOR512;
1031         else if (host->pmecc_sector_size == 1024)
1032                 val |= PMECC_CFG_SECTOR1024;
1033
1034         switch (host->pmecc_sector_number) {
1035         case 1:
1036                 val |= PMECC_CFG_PAGE_1SECTOR;
1037                 break;
1038         case 2:
1039                 val |= PMECC_CFG_PAGE_2SECTORS;
1040                 break;
1041         case 4:
1042                 val |= PMECC_CFG_PAGE_4SECTORS;
1043                 break;
1044         case 8:
1045                 val |= PMECC_CFG_PAGE_8SECTORS;
1046                 break;
1047         }
1048
1049         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1050                 | PMECC_CFG_AUTO_DISABLE);
1051         pmecc_writel(host->ecc, CFG, val);
1052
1053         ecc_layout = nand_chip->ecc.layout;
1054         pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1055         pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1056         pmecc_writel(host->ecc, EADDR,
1057                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1058         /* See datasheet about PMECC Clock Control Register */
1059         pmecc_writel(host->ecc, CLK, 2);
1060         pmecc_writel(host->ecc, IDR, 0xff);
1061         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1062 }
1063
1064 /*
1065  * Get minimum ecc requirements from NAND.
1066  * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1067  * will set them according to minimum ecc requirement. Otherwise, use the
1068  * value in DTS file.
1069  * return 0 if success. otherwise return error code.
1070  */
1071 static int pmecc_choose_ecc(struct atmel_nand_host *host,
1072                 int *cap, int *sector_size)
1073 {
1074         /* Get minimum ECC requirements */
1075         if (host->nand_chip.ecc_strength_ds) {
1076                 *cap = host->nand_chip.ecc_strength_ds;
1077                 *sector_size = host->nand_chip.ecc_step_ds;
1078                 dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
1079                                 *cap, *sector_size);
1080         } else {
1081                 *cap = 2;
1082                 *sector_size = 512;
1083                 dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1084         }
1085
1086         /* If device tree doesn't specify, use NAND's minimum ECC parameters */
1087         if (host->pmecc_corr_cap == 0) {
1088                 /* use the most fitable ecc bits (the near bigger one ) */
1089                 if (*cap <= 2)
1090                         host->pmecc_corr_cap = 2;
1091                 else if (*cap <= 4)
1092                         host->pmecc_corr_cap = 4;
1093                 else if (*cap <= 8)
1094                         host->pmecc_corr_cap = 8;
1095                 else if (*cap <= 12)
1096                         host->pmecc_corr_cap = 12;
1097                 else if (*cap <= 24)
1098                         host->pmecc_corr_cap = 24;
1099                 else
1100                         return -EINVAL;
1101         }
1102         if (host->pmecc_sector_size == 0) {
1103                 /* use the most fitable sector size (the near smaller one ) */
1104                 if (*sector_size >= 1024)
1105                         host->pmecc_sector_size = 1024;
1106                 else if (*sector_size >= 512)
1107                         host->pmecc_sector_size = 512;
1108                 else
1109                         return -EINVAL;
1110         }
1111         return 0;
1112 }
1113
1114 static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1115                                          struct atmel_nand_host *host)
1116 {
1117         struct mtd_info *mtd = &host->mtd;
1118         struct nand_chip *nand_chip = &host->nand_chip;
1119         struct resource *regs, *regs_pmerr, *regs_rom;
1120         int cap, sector_size, err_no;
1121
1122         err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1123         if (err_no) {
1124                 dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1125                 return err_no;
1126         }
1127
1128         if (cap > host->pmecc_corr_cap ||
1129                         sector_size != host->pmecc_sector_size)
1130                 dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1131
1132         cap = host->pmecc_corr_cap;
1133         sector_size = host->pmecc_sector_size;
1134         host->pmecc_lookup_table_offset = (sector_size == 512) ?
1135                         host->pmecc_lookup_table_offset_512 :
1136                         host->pmecc_lookup_table_offset_1024;
1137
1138         dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1139                  cap, sector_size);
1140
1141         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1142         if (!regs) {
1143                 dev_warn(host->dev,
1144                         "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1145                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1146                 return 0;
1147         }
1148
1149         host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1150         if (IS_ERR(host->ecc)) {
1151                 dev_err(host->dev, "ioremap failed\n");
1152                 err_no = PTR_ERR(host->ecc);
1153                 goto err;
1154         }
1155
1156         regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1157         host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1158         if (IS_ERR(host->pmerrloc_base)) {
1159                 dev_err(host->dev,
1160                         "Can not get I/O resource for PMECC ERRLOC controller!\n");
1161                 err_no = PTR_ERR(host->pmerrloc_base);
1162                 goto err;
1163         }
1164
1165         regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1166         host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
1167         if (IS_ERR(host->pmecc_rom_base)) {
1168                 dev_err(host->dev, "Can not get I/O resource for ROM!\n");
1169                 err_no = PTR_ERR(host->pmecc_rom_base);
1170                 goto err;
1171         }
1172
1173         /* ECC is calculated for the whole page (1 step) */
1174         nand_chip->ecc.size = mtd->writesize;
1175
1176         /* set ECC page size and oob layout */
1177         switch (mtd->writesize) {
1178         case 2048:
1179                 host->pmecc_degree = (sector_size == 512) ?
1180                         PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1181                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1182                 host->pmecc_sector_number = mtd->writesize / sector_size;
1183                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
1184                         cap, sector_size);
1185                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1186                 host->pmecc_index_of = host->pmecc_rom_base +
1187                         host->pmecc_lookup_table_offset;
1188
1189                 nand_chip->ecc.steps = 1;
1190                 nand_chip->ecc.strength = cap;
1191                 nand_chip->ecc.bytes = host->pmecc_bytes_per_sector *
1192                                        host->pmecc_sector_number;
1193                 if (nand_chip->ecc.bytes > mtd->oobsize - 2) {
1194                         dev_err(host->dev, "No room for ECC bytes\n");
1195                         err_no = -EINVAL;
1196                         goto err;
1197                 }
1198                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1199                                         mtd->oobsize,
1200                                         nand_chip->ecc.bytes);
1201                 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1202                 break;
1203         case 512:
1204         case 1024:
1205         case 4096:
1206                 /* TODO */
1207                 dev_warn(host->dev,
1208                         "Unsupported page size for PMECC, use Software ECC\n");
1209         default:
1210                 /* page size not handled by HW ECC */
1211                 /* switching back to soft ECC */
1212                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1213                 return 0;
1214         }
1215
1216         /* Allocate data for PMECC computation */
1217         err_no = pmecc_data_alloc(host);
1218         if (err_no) {
1219                 dev_err(host->dev,
1220                                 "Cannot allocate memory for PMECC computation!\n");
1221                 goto err;
1222         }
1223
1224         nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1225         nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1226
1227         atmel_pmecc_core_init(mtd);
1228
1229         return 0;
1230
1231 err:
1232         return err_no;
1233 }
1234
1235 /*
1236  * Calculate HW ECC
1237  *
1238  * function called after a write
1239  *
1240  * mtd:        MTD block structure
1241  * dat:        raw data (unused)
1242  * ecc_code:   buffer for ECC
1243  */
1244 static int atmel_nand_calculate(struct mtd_info *mtd,
1245                 const u_char *dat, unsigned char *ecc_code)
1246 {
1247         struct nand_chip *nand_chip = mtd->priv;
1248         struct atmel_nand_host *host = nand_chip->priv;
1249         unsigned int ecc_value;
1250
1251         /* get the first 2 ECC bytes */
1252         ecc_value = ecc_readl(host->ecc, PR);
1253
1254         ecc_code[0] = ecc_value & 0xFF;
1255         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1256
1257         /* get the last 2 ECC bytes */
1258         ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1259
1260         ecc_code[2] = ecc_value & 0xFF;
1261         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1262
1263         return 0;
1264 }
1265
1266 /*
1267  * HW ECC read page function
1268  *
1269  * mtd:        mtd info structure
1270  * chip:       nand chip info structure
1271  * buf:        buffer to store read data
1272  * oob_required:    caller expects OOB data read to chip->oob_poi
1273  */
1274 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1275                                 uint8_t *buf, int oob_required, int page)
1276 {
1277         int eccsize = chip->ecc.size;
1278         int eccbytes = chip->ecc.bytes;
1279         uint32_t *eccpos = chip->ecc.layout->eccpos;
1280         uint8_t *p = buf;
1281         uint8_t *oob = chip->oob_poi;
1282         uint8_t *ecc_pos;
1283         int stat;
1284         unsigned int max_bitflips = 0;
1285
1286         /*
1287          * Errata: ALE is incorrectly wired up to the ECC controller
1288          * on the AP7000, so it will include the address cycles in the
1289          * ECC calculation.
1290          *
1291          * Workaround: Reset the parity registers before reading the
1292          * actual data.
1293          */
1294         struct atmel_nand_host *host = chip->priv;
1295         if (host->board.need_reset_workaround)
1296                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1297
1298         /* read the page */
1299         chip->read_buf(mtd, p, eccsize);
1300
1301         /* move to ECC position if needed */
1302         if (eccpos[0] != 0) {
1303                 /* This only works on large pages
1304                  * because the ECC controller waits for
1305                  * NAND_CMD_RNDOUTSTART after the
1306                  * NAND_CMD_RNDOUT.
1307                  * anyway, for small pages, the eccpos[0] == 0
1308                  */
1309                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1310                                 mtd->writesize + eccpos[0], -1);
1311         }
1312
1313         /* the ECC controller needs to read the ECC just after the data */
1314         ecc_pos = oob + eccpos[0];
1315         chip->read_buf(mtd, ecc_pos, eccbytes);
1316
1317         /* check if there's an error */
1318         stat = chip->ecc.correct(mtd, p, oob, NULL);
1319
1320         if (stat < 0) {
1321                 mtd->ecc_stats.failed++;
1322         } else {
1323                 mtd->ecc_stats.corrected += stat;
1324                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1325         }
1326
1327         /* get back to oob start (end of page) */
1328         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1329
1330         /* read the oob */
1331         chip->read_buf(mtd, oob, mtd->oobsize);
1332
1333         return max_bitflips;
1334 }
1335
1336 /*
1337  * HW ECC Correction
1338  *
1339  * function called after a read
1340  *
1341  * mtd:        MTD block structure
1342  * dat:        raw data read from the chip
1343  * read_ecc:   ECC from the chip (unused)
1344  * isnull:     unused
1345  *
1346  * Detect and correct a 1 bit error for a page
1347  */
1348 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1349                 u_char *read_ecc, u_char *isnull)
1350 {
1351         struct nand_chip *nand_chip = mtd->priv;
1352         struct atmel_nand_host *host = nand_chip->priv;
1353         unsigned int ecc_status;
1354         unsigned int ecc_word, ecc_bit;
1355
1356         /* get the status from the Status Register */
1357         ecc_status = ecc_readl(host->ecc, SR);
1358
1359         /* if there's no error */
1360         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1361                 return 0;
1362
1363         /* get error bit offset (4 bits) */
1364         ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1365         /* get word address (12 bits) */
1366         ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1367         ecc_word >>= 4;
1368
1369         /* if there are multiple errors */
1370         if (ecc_status & ATMEL_ECC_MULERR) {
1371                 /* check if it is a freshly erased block
1372                  * (filled with 0xff) */
1373                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1374                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1375                         /* the block has just been erased, return OK */
1376                         return 0;
1377                 }
1378                 /* it doesn't seems to be a freshly
1379                  * erased block.
1380                  * We can't correct so many errors */
1381                 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1382                                 " Unable to correct.\n");
1383                 return -EIO;
1384         }
1385
1386         /* if there's a single bit error : we can correct it */
1387         if (ecc_status & ATMEL_ECC_ECCERR) {
1388                 /* there's nothing much to do here.
1389                  * the bit error is on the ECC itself.
1390                  */
1391                 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1392                                 " Nothing to correct\n");
1393                 return 0;
1394         }
1395
1396         dev_dbg(host->dev, "atmel_nand : one bit error on data."
1397                         " (word offset in the page :"
1398                         " 0x%x bit offset : 0x%x)\n",
1399                         ecc_word, ecc_bit);
1400         /* correct the error */
1401         if (nand_chip->options & NAND_BUSWIDTH_16) {
1402                 /* 16 bits words */
1403                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1404         } else {
1405                 /* 8 bits words */
1406                 dat[ecc_word] ^= (1 << ecc_bit);
1407         }
1408         dev_dbg(host->dev, "atmel_nand : error corrected\n");
1409         return 1;
1410 }
1411
1412 /*
1413  * Enable HW ECC : unused on most chips
1414  */
1415 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1416 {
1417         struct nand_chip *nand_chip = mtd->priv;
1418         struct atmel_nand_host *host = nand_chip->priv;
1419
1420         if (host->board.need_reset_workaround)
1421                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1422 }
1423
1424 static int atmel_of_init_port(struct atmel_nand_host *host,
1425                               struct device_node *np)
1426 {
1427         u32 val;
1428         u32 offset[2];
1429         int ecc_mode;
1430         struct atmel_nand_data *board = &host->board;
1431         enum of_gpio_flags flags = 0;
1432
1433         if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1434                 if (val >= 32) {
1435                         dev_err(host->dev, "invalid addr-offset %u\n", val);
1436                         return -EINVAL;
1437                 }
1438                 board->ale = val;
1439         }
1440
1441         if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1442                 if (val >= 32) {
1443                         dev_err(host->dev, "invalid cmd-offset %u\n", val);
1444                         return -EINVAL;
1445                 }
1446                 board->cle = val;
1447         }
1448
1449         ecc_mode = of_get_nand_ecc_mode(np);
1450
1451         board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1452
1453         board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1454
1455         board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1456
1457         if (of_get_nand_bus_width(np) == 16)
1458                 board->bus_width_16 = 1;
1459
1460         board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1461         board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1462
1463         board->enable_pin = of_get_gpio(np, 1);
1464         board->det_pin = of_get_gpio(np, 2);
1465
1466         host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1467
1468         /* load the nfc driver if there is */
1469         of_platform_populate(np, NULL, NULL, host->dev);
1470
1471         if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1472                 return 0;       /* Not using PMECC */
1473
1474         /* use PMECC, get correction capability, sector size and lookup
1475          * table offset.
1476          * If correction bits and sector size are not specified, then find
1477          * them from NAND ONFI parameters.
1478          */
1479         if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1480                 if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1481                                 (val != 24)) {
1482                         dev_err(host->dev,
1483                                 "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1484                                 val);
1485                         return -EINVAL;
1486                 }
1487                 host->pmecc_corr_cap = (u8)val;
1488         }
1489
1490         if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1491                 if ((val != 512) && (val != 1024)) {
1492                         dev_err(host->dev,
1493                                 "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1494                                 val);
1495                         return -EINVAL;
1496                 }
1497                 host->pmecc_sector_size = (u16)val;
1498         }
1499
1500         if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1501                         offset, 2) != 0) {
1502                 dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1503                 return -EINVAL;
1504         }
1505         if (!offset[0] && !offset[1]) {
1506                 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1507                 return -EINVAL;
1508         }
1509         host->pmecc_lookup_table_offset_512 = offset[0];
1510         host->pmecc_lookup_table_offset_1024 = offset[1];
1511
1512         return 0;
1513 }
1514
1515 static int atmel_hw_nand_init_params(struct platform_device *pdev,
1516                                          struct atmel_nand_host *host)
1517 {
1518         struct mtd_info *mtd = &host->mtd;
1519         struct nand_chip *nand_chip = &host->nand_chip;
1520         struct resource         *regs;
1521
1522         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1523         if (!regs) {
1524                 dev_err(host->dev,
1525                         "Can't get I/O resource regs, use software ECC\n");
1526                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1527                 return 0;
1528         }
1529
1530         host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1531         if (IS_ERR(host->ecc)) {
1532                 dev_err(host->dev, "ioremap failed\n");
1533                 return PTR_ERR(host->ecc);
1534         }
1535
1536         /* ECC is calculated for the whole page (1 step) */
1537         nand_chip->ecc.size = mtd->writesize;
1538
1539         /* set ECC page size and oob layout */
1540         switch (mtd->writesize) {
1541         case 512:
1542                 nand_chip->ecc.layout = &atmel_oobinfo_small;
1543                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1544                 break;
1545         case 1024:
1546                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1547                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1548                 break;
1549         case 2048:
1550                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1551                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1552                 break;
1553         case 4096:
1554                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1555                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1556                 break;
1557         default:
1558                 /* page size not handled by HW ECC */
1559                 /* switching back to soft ECC */
1560                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1561                 return 0;
1562         }
1563
1564         /* set up for HW ECC */
1565         nand_chip->ecc.calculate = atmel_nand_calculate;
1566         nand_chip->ecc.correct = atmel_nand_correct;
1567         nand_chip->ecc.hwctl = atmel_nand_hwctl;
1568         nand_chip->ecc.read_page = atmel_nand_read_page;
1569         nand_chip->ecc.bytes = 4;
1570         nand_chip->ecc.strength = 1;
1571
1572         return 0;
1573 }
1574
1575 /* SMC interrupt service routine */
1576 static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1577 {
1578         struct atmel_nand_host *host = dev_id;
1579         u32 status, mask, pending;
1580         irqreturn_t ret = IRQ_HANDLED;
1581
1582         status = nfc_readl(host->nfc->hsmc_regs, SR);
1583         mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1584         pending = status & mask;
1585
1586         if (pending & NFC_SR_XFR_DONE) {
1587                 complete(&host->nfc->comp_nfc);
1588                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1589         } else if (pending & NFC_SR_RB_EDGE) {
1590                 complete(&host->nfc->comp_nfc);
1591                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1592         } else if (pending & NFC_SR_CMD_DONE) {
1593                 complete(&host->nfc->comp_nfc);
1594                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1595         } else {
1596                 ret = IRQ_NONE;
1597         }
1598
1599         return ret;
1600 }
1601
1602 /* NFC(Nand Flash Controller) related functions */
1603 static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1604 {
1605         unsigned long timeout;
1606         init_completion(&host->nfc->comp_nfc);
1607
1608         /* Enable interrupt that need to wait for */
1609         nfc_writel(host->nfc->hsmc_regs, IER, flag);
1610
1611         timeout = wait_for_completion_timeout(&host->nfc->comp_nfc,
1612                         msecs_to_jiffies(NFC_TIME_OUT_MS));
1613         if (timeout)
1614                 return 0;
1615
1616         /* Time out to wait for the interrupt */
1617         dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1618         return -ETIMEDOUT;
1619 }
1620
1621 static int nfc_send_command(struct atmel_nand_host *host,
1622         unsigned int cmd, unsigned int addr, unsigned char cycle0)
1623 {
1624         unsigned long timeout;
1625         dev_dbg(host->dev,
1626                 "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1627                 cmd, addr, cycle0);
1628
1629         timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1630         while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs)
1631                         & NFCADDR_CMD_NFCBUSY) {
1632                 if (time_after(jiffies, timeout)) {
1633                         dev_err(host->dev,
1634                                 "Time out to wait CMD_NFCBUSY ready!\n");
1635                         return -ETIMEDOUT;
1636                 }
1637         }
1638         nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1639         nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1640         return nfc_wait_interrupt(host, NFC_SR_CMD_DONE);
1641 }
1642
1643 static int nfc_device_ready(struct mtd_info *mtd)
1644 {
1645         struct nand_chip *nand_chip = mtd->priv;
1646         struct atmel_nand_host *host = nand_chip->priv;
1647         if (!nfc_wait_interrupt(host, NFC_SR_RB_EDGE))
1648                 return 1;
1649         return 0;
1650 }
1651
1652 static void nfc_select_chip(struct mtd_info *mtd, int chip)
1653 {
1654         struct nand_chip *nand_chip = mtd->priv;
1655         struct atmel_nand_host *host = nand_chip->priv;
1656
1657         if (chip == -1)
1658                 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1659         else
1660                 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1661 }
1662
1663 static int nfc_make_addr(struct mtd_info *mtd, int column, int page_addr,
1664                 unsigned int *addr1234, unsigned int *cycle0)
1665 {
1666         struct nand_chip *chip = mtd->priv;
1667
1668         int acycle = 0;
1669         unsigned char addr_bytes[8];
1670         int index = 0, bit_shift;
1671
1672         BUG_ON(addr1234 == NULL || cycle0 == NULL);
1673
1674         *cycle0 = 0;
1675         *addr1234 = 0;
1676
1677         if (column != -1) {
1678                 if (chip->options & NAND_BUSWIDTH_16)
1679                         column >>= 1;
1680                 addr_bytes[acycle++] = column & 0xff;
1681                 if (mtd->writesize > 512)
1682                         addr_bytes[acycle++] = (column >> 8) & 0xff;
1683         }
1684
1685         if (page_addr != -1) {
1686                 addr_bytes[acycle++] = page_addr & 0xff;
1687                 addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1688                 if (chip->chipsize > (128 << 20))
1689                         addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1690         }
1691
1692         if (acycle > 4)
1693                 *cycle0 = addr_bytes[index++];
1694
1695         for (bit_shift = 0; index < acycle; bit_shift += 8)
1696                 *addr1234 += addr_bytes[index++] << bit_shift;
1697
1698         /* return acycle in cmd register */
1699         return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1700 }
1701
1702 static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1703                                 int column, int page_addr)
1704 {
1705         struct nand_chip *chip = mtd->priv;
1706         struct atmel_nand_host *host = chip->priv;
1707         unsigned long timeout;
1708         unsigned int nfc_addr_cmd = 0;
1709
1710         unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1711
1712         /* Set default settings: no cmd2, no addr cycle. read from nand */
1713         unsigned int cmd2 = 0;
1714         unsigned int vcmd2 = 0;
1715         int acycle = NFCADDR_CMD_ACYCLE_NONE;
1716         int csid = NFCADDR_CMD_CSID_3;
1717         int dataen = NFCADDR_CMD_DATADIS;
1718         int nfcwr = NFCADDR_CMD_NFCRD;
1719         unsigned int addr1234 = 0;
1720         unsigned int cycle0 = 0;
1721         bool do_addr = true;
1722         host->nfc->data_in_sram = NULL;
1723
1724         dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1725              __func__, command, column, page_addr);
1726
1727         switch (command) {
1728         case NAND_CMD_RESET:
1729                 nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1730                 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1731                 udelay(chip->chip_delay);
1732
1733                 nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1734                 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1735                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1736                         if (time_after(jiffies, timeout)) {
1737                                 dev_err(host->dev,
1738                                         "Time out to wait status ready!\n");
1739                                 break;
1740                         }
1741                 }
1742                 return;
1743         case NAND_CMD_STATUS:
1744                 do_addr = false;
1745                 break;
1746         case NAND_CMD_PARAM:
1747         case NAND_CMD_READID:
1748                 do_addr = false;
1749                 acycle = NFCADDR_CMD_ACYCLE_1;
1750                 if (column != -1)
1751                         addr1234 = column;
1752                 break;
1753         case NAND_CMD_RNDOUT:
1754                 cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1755                 vcmd2 = NFCADDR_CMD_VCMD2;
1756                 break;
1757         case NAND_CMD_READ0:
1758         case NAND_CMD_READOOB:
1759                 if (command == NAND_CMD_READOOB) {
1760                         column += mtd->writesize;
1761                         command = NAND_CMD_READ0; /* only READ0 is valid */
1762                         cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1763                 }
1764                 if (host->nfc->use_nfc_sram) {
1765                         /* Enable Data transfer to sram */
1766                         dataen = NFCADDR_CMD_DATAEN;
1767
1768                         /* Need enable PMECC now, since NFC will transfer
1769                          * data in bus after sending nfc read command.
1770                          */
1771                         if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1772                                 pmecc_enable(host, NAND_ECC_READ);
1773                 }
1774
1775                 cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1776                 vcmd2 = NFCADDR_CMD_VCMD2;
1777                 break;
1778         /* For prgramming command, the cmd need set to write enable */
1779         case NAND_CMD_PAGEPROG:
1780         case NAND_CMD_SEQIN:
1781         case NAND_CMD_RNDIN:
1782                 nfcwr = NFCADDR_CMD_NFCWR;
1783                 if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1784                         dataen = NFCADDR_CMD_DATAEN;
1785                 break;
1786         default:
1787                 break;
1788         }
1789
1790         if (do_addr)
1791                 acycle = nfc_make_addr(mtd, column, page_addr, &addr1234,
1792                                 &cycle0);
1793
1794         nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1795         nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1796
1797         if (dataen == NFCADDR_CMD_DATAEN)
1798                 if (nfc_wait_interrupt(host, NFC_SR_XFR_DONE))
1799                         dev_err(host->dev, "something wrong, No XFR_DONE interrupt comes.\n");
1800
1801         /*
1802          * Program and erase have their own busy handlers status, sequential
1803          * in, and deplete1 need no delay.
1804          */
1805         switch (command) {
1806         case NAND_CMD_CACHEDPROG:
1807         case NAND_CMD_PAGEPROG:
1808         case NAND_CMD_ERASE1:
1809         case NAND_CMD_ERASE2:
1810         case NAND_CMD_RNDIN:
1811         case NAND_CMD_STATUS:
1812         case NAND_CMD_RNDOUT:
1813         case NAND_CMD_SEQIN:
1814         case NAND_CMD_READID:
1815                 return;
1816
1817         case NAND_CMD_READ0:
1818                 if (dataen == NFCADDR_CMD_DATAEN) {
1819                         host->nfc->data_in_sram = host->nfc->sram_bank0 +
1820                                 nfc_get_sram_off(host);
1821                         return;
1822                 }
1823                 /* fall through */
1824         default:
1825                 nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1826         }
1827 }
1828
1829 static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1830                         uint32_t offset, int data_len, const uint8_t *buf,
1831                         int oob_required, int page, int cached, int raw)
1832 {
1833         int cfg, len;
1834         int status = 0;
1835         struct atmel_nand_host *host = chip->priv;
1836         void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1837
1838         /* Subpage write is not supported */
1839         if (offset || (data_len < mtd->writesize))
1840                 return -EINVAL;
1841
1842         cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1843         len = mtd->writesize;
1844
1845         if (unlikely(raw)) {
1846                 len += mtd->oobsize;
1847                 nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1848         } else
1849                 nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1850
1851         /* Copy page data to sram that will write to nand via NFC */
1852         if (use_dma) {
1853                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1854                         /* Fall back to use cpu copy */
1855                         memcpy32_toio(sram, buf, len);
1856         } else {
1857                 memcpy32_toio(sram, buf, len);
1858         }
1859
1860         if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1861                 /*
1862                  * When use NFC sram, need set up PMECC before send
1863                  * NAND_CMD_SEQIN command. Since when the nand command
1864                  * is sent, nfc will do transfer from sram and nand.
1865                  */
1866                 pmecc_enable(host, NAND_ECC_WRITE);
1867
1868         host->nfc->will_write_sram = true;
1869         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1870         host->nfc->will_write_sram = false;
1871
1872         if (likely(!raw))
1873                 /* Need to write ecc into oob */
1874                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
1875
1876         if (status < 0)
1877                 return status;
1878
1879         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1880         status = chip->waitfunc(mtd, chip);
1881
1882         if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1883                 status = chip->errstat(mtd, chip, FL_WRITING, status, page);
1884
1885         if (status & NAND_STATUS_FAIL)
1886                 return -EIO;
1887
1888         return 0;
1889 }
1890
1891 static int nfc_sram_init(struct mtd_info *mtd)
1892 {
1893         struct nand_chip *chip = mtd->priv;
1894         struct atmel_nand_host *host = chip->priv;
1895         int res = 0;
1896
1897         /* Initialize the NFC CFG register */
1898         unsigned int cfg_nfc = 0;
1899
1900         /* set page size and oob layout */
1901         switch (mtd->writesize) {
1902         case 512:
1903                 cfg_nfc = NFC_CFG_PAGESIZE_512;
1904                 break;
1905         case 1024:
1906                 cfg_nfc = NFC_CFG_PAGESIZE_1024;
1907                 break;
1908         case 2048:
1909                 cfg_nfc = NFC_CFG_PAGESIZE_2048;
1910                 break;
1911         case 4096:
1912                 cfg_nfc = NFC_CFG_PAGESIZE_4096;
1913                 break;
1914         case 8192:
1915                 cfg_nfc = NFC_CFG_PAGESIZE_8192;
1916                 break;
1917         default:
1918                 dev_err(host->dev, "Unsupported page size for NFC.\n");
1919                 res = -ENXIO;
1920                 return res;
1921         }
1922
1923         /* oob bytes size = (NFCSPARESIZE + 1) * 4
1924          * Max support spare size is 512 bytes. */
1925         cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
1926                 & NFC_CFG_NFC_SPARESIZE);
1927         /* default set a max timeout */
1928         cfg_nfc |= NFC_CFG_RSPARE |
1929                         NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
1930
1931         nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
1932
1933         host->nfc->will_write_sram = false;
1934         nfc_set_sram_bank(host, 0);
1935
1936         /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
1937         if (host->nfc->write_by_sram) {
1938                 if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
1939                                 chip->ecc.mode == NAND_ECC_NONE)
1940                         chip->write_page = nfc_sram_write_page;
1941                 else
1942                         host->nfc->write_by_sram = false;
1943         }
1944
1945         dev_info(host->dev, "Using NFC Sram read %s\n",
1946                         host->nfc->write_by_sram ? "and write" : "");
1947         return 0;
1948 }
1949
1950 static struct platform_driver atmel_nand_nfc_driver;
1951 /*
1952  * Probe for the NAND device.
1953  */
1954 static int atmel_nand_probe(struct platform_device *pdev)
1955 {
1956         struct atmel_nand_host *host;
1957         struct mtd_info *mtd;
1958         struct nand_chip *nand_chip;
1959         struct resource *mem;
1960         struct mtd_part_parser_data ppdata = {};
1961         int res, irq;
1962
1963         /* Allocate memory for the device structure (and zero it) */
1964         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1965         if (!host) {
1966                 printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
1967                 return -ENOMEM;
1968         }
1969
1970         res = platform_driver_register(&atmel_nand_nfc_driver);
1971         if (res)
1972                 dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
1973
1974         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1975         host->io_base = devm_ioremap_resource(&pdev->dev, mem);
1976         if (IS_ERR(host->io_base)) {
1977                 dev_err(&pdev->dev, "atmel_nand: ioremap resource failed\n");
1978                 res = PTR_ERR(host->io_base);
1979                 goto err_nand_ioremap;
1980         }
1981         host->io_phys = (dma_addr_t)mem->start;
1982
1983         mtd = &host->mtd;
1984         nand_chip = &host->nand_chip;
1985         host->dev = &pdev->dev;
1986         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1987                 /* Only when CONFIG_OF is enabled of_node can be parsed */
1988                 res = atmel_of_init_port(host, pdev->dev.of_node);
1989                 if (res)
1990                         goto err_nand_ioremap;
1991         } else {
1992                 memcpy(&host->board, dev_get_platdata(&pdev->dev),
1993                        sizeof(struct atmel_nand_data));
1994         }
1995
1996         nand_chip->priv = host;         /* link the private data structures */
1997         mtd->priv = nand_chip;
1998         mtd->owner = THIS_MODULE;
1999
2000         /* Set address of NAND IO lines */
2001         nand_chip->IO_ADDR_R = host->io_base;
2002         nand_chip->IO_ADDR_W = host->io_base;
2003
2004         if (nand_nfc.is_initialized) {
2005                 /* NFC driver is probed and initialized */
2006                 host->nfc = &nand_nfc;
2007
2008                 nand_chip->select_chip = nfc_select_chip;
2009                 nand_chip->dev_ready = nfc_device_ready;
2010                 nand_chip->cmdfunc = nfc_nand_command;
2011
2012                 /* Initialize the interrupt for NFC */
2013                 irq = platform_get_irq(pdev, 0);
2014                 if (irq < 0) {
2015                         dev_err(host->dev, "Cannot get HSMC irq!\n");
2016                         res = irq;
2017                         goto err_nand_ioremap;
2018                 }
2019
2020                 res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2021                                 0, "hsmc", host);
2022                 if (res) {
2023                         dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2024                                 irq);
2025                         goto err_nand_ioremap;
2026                 }
2027         } else {
2028                 res = atmel_nand_set_enable_ready_pins(mtd);
2029                 if (res)
2030                         goto err_nand_ioremap;
2031
2032                 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2033         }
2034
2035         nand_chip->ecc.mode = host->board.ecc_mode;
2036         nand_chip->chip_delay = 20;             /* 20us command delay time */
2037
2038         if (host->board.bus_width_16)   /* 16-bit bus width */
2039                 nand_chip->options |= NAND_BUSWIDTH_16;
2040
2041         nand_chip->read_buf = atmel_read_buf;
2042         nand_chip->write_buf = atmel_write_buf;
2043
2044         platform_set_drvdata(pdev, host);
2045         atmel_nand_enable(host);
2046
2047         if (gpio_is_valid(host->board.det_pin)) {
2048                 res = devm_gpio_request(&pdev->dev,
2049                                 host->board.det_pin, "nand_det");
2050                 if (res < 0) {
2051                         dev_err(&pdev->dev,
2052                                 "can't request det gpio %d\n",
2053                                 host->board.det_pin);
2054                         goto err_no_card;
2055                 }
2056
2057                 res = gpio_direction_input(host->board.det_pin);
2058                 if (res < 0) {
2059                         dev_err(&pdev->dev,
2060                                 "can't request input direction det gpio %d\n",
2061                                 host->board.det_pin);
2062                         goto err_no_card;
2063                 }
2064
2065                 if (gpio_get_value(host->board.det_pin)) {
2066                         printk(KERN_INFO "No SmartMedia card inserted.\n");
2067                         res = -ENXIO;
2068                         goto err_no_card;
2069                 }
2070         }
2071
2072         if (host->board.on_flash_bbt || on_flash_bbt) {
2073                 printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
2074                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2075         }
2076
2077         if (!host->board.has_dma)
2078                 use_dma = 0;
2079
2080         if (use_dma) {
2081                 dma_cap_mask_t mask;
2082
2083                 dma_cap_zero(mask);
2084                 dma_cap_set(DMA_MEMCPY, mask);
2085                 host->dma_chan = dma_request_channel(mask, NULL, NULL);
2086                 if (!host->dma_chan) {
2087                         dev_err(host->dev, "Failed to request DMA channel\n");
2088                         use_dma = 0;
2089                 }
2090         }
2091         if (use_dma)
2092                 dev_info(host->dev, "Using %s for DMA transfers.\n",
2093                                         dma_chan_name(host->dma_chan));
2094         else
2095                 dev_info(host->dev, "No DMA support for NAND access.\n");
2096
2097         /* first scan to find the device and get the page size */
2098         if (nand_scan_ident(mtd, 1, NULL)) {
2099                 res = -ENXIO;
2100                 goto err_scan_ident;
2101         }
2102
2103         if (nand_chip->ecc.mode == NAND_ECC_HW) {
2104                 if (host->has_pmecc)
2105                         res = atmel_pmecc_nand_init_params(pdev, host);
2106                 else
2107                         res = atmel_hw_nand_init_params(pdev, host);
2108
2109                 if (res != 0)
2110                         goto err_hw_ecc;
2111         }
2112
2113         /* initialize the nfc configuration register */
2114         if (host->nfc && host->nfc->use_nfc_sram) {
2115                 res = nfc_sram_init(mtd);
2116                 if (res) {
2117                         host->nfc->use_nfc_sram = false;
2118                         dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2119                 }
2120         }
2121
2122         /* second phase scan */
2123         if (nand_scan_tail(mtd)) {
2124                 res = -ENXIO;
2125                 goto err_scan_tail;
2126         }
2127
2128         mtd->name = "atmel_nand";
2129         ppdata.of_node = pdev->dev.of_node;
2130         res = mtd_device_parse_register(mtd, NULL, &ppdata,
2131                         host->board.parts, host->board.num_parts);
2132         if (!res)
2133                 return res;
2134
2135 err_scan_tail:
2136         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2137                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2138 err_hw_ecc:
2139 err_scan_ident:
2140 err_no_card:
2141         atmel_nand_disable(host);
2142         if (host->dma_chan)
2143                 dma_release_channel(host->dma_chan);
2144 err_nand_ioremap:
2145         return res;
2146 }
2147
2148 /*
2149  * Remove a NAND device.
2150  */
2151 static int atmel_nand_remove(struct platform_device *pdev)
2152 {
2153         struct atmel_nand_host *host = platform_get_drvdata(pdev);
2154         struct mtd_info *mtd = &host->mtd;
2155
2156         nand_release(mtd);
2157
2158         atmel_nand_disable(host);
2159
2160         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2161                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2162                 pmerrloc_writel(host->pmerrloc_base, ELDIS,
2163                                 PMERRLOC_DISABLE);
2164         }
2165
2166         if (host->dma_chan)
2167                 dma_release_channel(host->dma_chan);
2168
2169         platform_driver_unregister(&atmel_nand_nfc_driver);
2170
2171         return 0;
2172 }
2173
2174 static const struct of_device_id atmel_nand_dt_ids[] = {
2175         { .compatible = "atmel,at91rm9200-nand" },
2176         { /* sentinel */ }
2177 };
2178
2179 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2180
2181 static int atmel_nand_nfc_probe(struct platform_device *pdev)
2182 {
2183         struct atmel_nfc *nfc = &nand_nfc;
2184         struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2185
2186         nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2187         nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2188         if (IS_ERR(nfc->base_cmd_regs))
2189                 return PTR_ERR(nfc->base_cmd_regs);
2190
2191         nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2192         nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2193         if (IS_ERR(nfc->hsmc_regs))
2194                 return PTR_ERR(nfc->hsmc_regs);
2195
2196         nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2197         if (nfc_sram) {
2198                 nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram);
2199                 if (IS_ERR(nfc->sram_bank0)) {
2200                         dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2201                                         PTR_ERR(nfc->sram_bank0));
2202                 } else {
2203                         nfc->use_nfc_sram = true;
2204                         nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2205
2206                         if (pdev->dev.of_node)
2207                                 nfc->write_by_sram = of_property_read_bool(
2208                                                 pdev->dev.of_node,
2209                                                 "atmel,write-by-sram");
2210                 }
2211         }
2212
2213         nfc->is_initialized = true;
2214         dev_info(&pdev->dev, "NFC is probed.\n");
2215         return 0;
2216 }
2217
2218 static const struct of_device_id atmel_nand_nfc_match[] = {
2219         { .compatible = "atmel,sama5d3-nfc" },
2220         { /* sentinel */ }
2221 };
2222 MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2223
2224 static struct platform_driver atmel_nand_nfc_driver = {
2225         .driver = {
2226                 .name = "atmel_nand_nfc",
2227                 .owner = THIS_MODULE,
2228                 .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2229         },
2230         .probe = atmel_nand_nfc_probe,
2231 };
2232
2233 static struct platform_driver atmel_nand_driver = {
2234         .probe          = atmel_nand_probe,
2235         .remove         = atmel_nand_remove,
2236         .driver         = {
2237                 .name   = "atmel_nand",
2238                 .owner  = THIS_MODULE,
2239                 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
2240         },
2241 };
2242
2243 module_platform_driver(atmel_nand_driver);
2244
2245 MODULE_LICENSE("GPL");
2246 MODULE_AUTHOR("Rick Bronson");
2247 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2248 MODULE_ALIAS("platform:atmel_nand");