mtd: introduce the mtd_pairing_scheme concept
[cascardo/linux.git] / drivers / mtd / nand / bf5xx_nand.c
1 /* linux/drivers/mtd/nand/bf5xx_nand.c
2  *
3  * Copyright 2006-2008 Analog Devices Inc.
4  *      http://blackfin.uclinux.org/
5  *      Bryan Wu <bryan.wu@analog.com>
6  *
7  * Blackfin BF5xx on-chip NAND flash controller driver
8  *
9  * Derived from drivers/mtd/nand/s3c2410.c
10  * Copyright (c) 2007 Ben Dooks <ben@simtec.co.uk>
11  *
12  * Derived from drivers/mtd/nand/cafe.c
13  * Copyright © 2006 Red Hat, Inc.
14  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
15  *
16  * Changelog:
17  *      12-Jun-2007  Bryan Wu:  Initial version
18  *      18-Jul-2007  Bryan Wu:
19  *              - ECC_HW and ECC_SW supported
20  *              - DMA supported in ECC_HW
21  *              - YAFFS tested as rootfs in both ECC_HW and ECC_SW
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  *
33  * You should have received a copy of the GNU General Public License
34  * along with this program; if not, write to the Free Software
35  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
36 */
37
38 #include <linux/module.h>
39 #include <linux/types.h>
40 #include <linux/kernel.h>
41 #include <linux/string.h>
42 #include <linux/ioport.h>
43 #include <linux/platform_device.h>
44 #include <linux/delay.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/err.h>
47 #include <linux/slab.h>
48 #include <linux/io.h>
49 #include <linux/bitops.h>
50
51 #include <linux/mtd/mtd.h>
52 #include <linux/mtd/nand.h>
53 #include <linux/mtd/nand_ecc.h>
54 #include <linux/mtd/partitions.h>
55
56 #include <asm/blackfin.h>
57 #include <asm/dma.h>
58 #include <asm/cacheflush.h>
59 #include <asm/nand.h>
60 #include <asm/portmux.h>
61
62 #define DRV_NAME        "bf5xx-nand"
63 #define DRV_VERSION     "1.2"
64 #define DRV_AUTHOR      "Bryan Wu <bryan.wu@analog.com>"
65 #define DRV_DESC        "BF5xx on-chip NAND FLash Controller Driver"
66
67 /* NFC_STAT Masks */
68 #define NBUSY       0x01  /* Not Busy */
69 #define WB_FULL     0x02  /* Write Buffer Full */
70 #define PG_WR_STAT  0x04  /* Page Write Pending */
71 #define PG_RD_STAT  0x08  /* Page Read Pending */
72 #define WB_EMPTY    0x10  /* Write Buffer Empty */
73
74 /* NFC_IRQSTAT Masks */
75 #define NBUSYIRQ    0x01  /* Not Busy IRQ */
76 #define WB_OVF      0x02  /* Write Buffer Overflow */
77 #define WB_EDGE     0x04  /* Write Buffer Edge Detect */
78 #define RD_RDY      0x08  /* Read Data Ready */
79 #define WR_DONE     0x10  /* Page Write Done */
80
81 /* NFC_RST Masks */
82 #define ECC_RST     0x01  /* ECC (and NFC counters) Reset */
83
84 /* NFC_PGCTL Masks */
85 #define PG_RD_START 0x01  /* Page Read Start */
86 #define PG_WR_START 0x02  /* Page Write Start */
87
88 #ifdef CONFIG_MTD_NAND_BF5XX_HWECC
89 static int hardware_ecc = 1;
90 #else
91 static int hardware_ecc;
92 #endif
93
94 static const unsigned short bfin_nfc_pin_req[] =
95         {P_NAND_CE,
96          P_NAND_RB,
97          P_NAND_D0,
98          P_NAND_D1,
99          P_NAND_D2,
100          P_NAND_D3,
101          P_NAND_D4,
102          P_NAND_D5,
103          P_NAND_D6,
104          P_NAND_D7,
105          P_NAND_WE,
106          P_NAND_RE,
107          P_NAND_CLE,
108          P_NAND_ALE,
109          0};
110
111 #ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
112 static int bootrom_ooblayout_ecc(struct mtd_info *mtd, int section,
113                                  struct mtd_oob_region *oobregion)
114 {
115         if (section > 7)
116                 return -ERANGE;
117
118         oobregion->offset = section * 8;
119         oobregion->length = 3;
120
121         return 0;
122 }
123
124 static int bootrom_ooblayout_free(struct mtd_info *mtd, int section,
125                                   struct mtd_oob_region *oobregion)
126 {
127         if (section > 7)
128                 return -ERANGE;
129
130         oobregion->offset = (section * 8) + 3;
131         oobregion->length = 5;
132
133         return 0;
134 }
135
136 static const struct mtd_ooblayout_ops bootrom_ooblayout_ops = {
137         .ecc = bootrom_ooblayout_ecc,
138         .free = bootrom_ooblayout_free,
139 };
140 #endif
141
142 /*
143  * Data structures for bf5xx nand flash controller driver
144  */
145
146 /* bf5xx nand info */
147 struct bf5xx_nand_info {
148         /* mtd info */
149         struct nand_hw_control          controller;
150         struct nand_chip                chip;
151
152         /* platform info */
153         struct bf5xx_nand_platform      *platform;
154
155         /* device info */
156         struct device                   *device;
157
158         /* DMA stuff */
159         struct completion               dma_completion;
160 };
161
162 /*
163  * Conversion functions
164  */
165 static struct bf5xx_nand_info *mtd_to_nand_info(struct mtd_info *mtd)
166 {
167         return container_of(mtd_to_nand(mtd), struct bf5xx_nand_info,
168                             chip);
169 }
170
171 static struct bf5xx_nand_info *to_nand_info(struct platform_device *pdev)
172 {
173         return platform_get_drvdata(pdev);
174 }
175
176 static struct bf5xx_nand_platform *to_nand_plat(struct platform_device *pdev)
177 {
178         return dev_get_platdata(&pdev->dev);
179 }
180
181 /*
182  * struct nand_chip interface function pointers
183  */
184
185 /*
186  * bf5xx_nand_hwcontrol
187  *
188  * Issue command and address cycles to the chip
189  */
190 static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd,
191                                    unsigned int ctrl)
192 {
193         if (cmd == NAND_CMD_NONE)
194                 return;
195
196         while (bfin_read_NFC_STAT() & WB_FULL)
197                 cpu_relax();
198
199         if (ctrl & NAND_CLE)
200                 bfin_write_NFC_CMD(cmd);
201         else if (ctrl & NAND_ALE)
202                 bfin_write_NFC_ADDR(cmd);
203         SSYNC();
204 }
205
206 /*
207  * bf5xx_nand_devready()
208  *
209  * returns 0 if the nand is busy, 1 if it is ready
210  */
211 static int bf5xx_nand_devready(struct mtd_info *mtd)
212 {
213         unsigned short val = bfin_read_NFC_STAT();
214
215         if ((val & NBUSY) == NBUSY)
216                 return 1;
217         else
218                 return 0;
219 }
220
221 /*
222  * ECC functions
223  * These allow the bf5xx to use the controller's ECC
224  * generator block to ECC the data as it passes through
225  */
226
227 /*
228  * ECC error correction function
229  */
230 static int bf5xx_nand_correct_data_256(struct mtd_info *mtd, u_char *dat,
231                                         u_char *read_ecc, u_char *calc_ecc)
232 {
233         struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
234         u32 syndrome[5];
235         u32 calced, stored;
236         int i;
237         unsigned short failing_bit, failing_byte;
238         u_char data;
239
240         calced = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16);
241         stored = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16);
242
243         syndrome[0] = (calced ^ stored);
244
245         /*
246          * syndrome 0: all zero
247          * No error in data
248          * No action
249          */
250         if (!syndrome[0] || !calced || !stored)
251                 return 0;
252
253         /*
254          * sysdrome 0: only one bit is one
255          * ECC data was incorrect
256          * No action
257          */
258         if (hweight32(syndrome[0]) == 1) {
259                 dev_err(info->device, "ECC data was incorrect!\n");
260                 return -EBADMSG;
261         }
262
263         syndrome[1] = (calced & 0x7FF) ^ (stored & 0x7FF);
264         syndrome[2] = (calced & 0x7FF) ^ ((calced >> 11) & 0x7FF);
265         syndrome[3] = (stored & 0x7FF) ^ ((stored >> 11) & 0x7FF);
266         syndrome[4] = syndrome[2] ^ syndrome[3];
267
268         for (i = 0; i < 5; i++)
269                 dev_info(info->device, "syndrome[%d] 0x%08x\n", i, syndrome[i]);
270
271         dev_info(info->device,
272                 "calced[0x%08x], stored[0x%08x]\n",
273                 calced, stored);
274
275         /*
276          * sysdrome 0: exactly 11 bits are one, each parity
277          * and parity' pair is 1 & 0 or 0 & 1.
278          * 1-bit correctable error
279          * Correct the error
280          */
281         if (hweight32(syndrome[0]) == 11 && syndrome[4] == 0x7FF) {
282                 dev_info(info->device,
283                         "1-bit correctable error, correct it.\n");
284                 dev_info(info->device,
285                         "syndrome[1] 0x%08x\n", syndrome[1]);
286
287                 failing_bit = syndrome[1] & 0x7;
288                 failing_byte = syndrome[1] >> 0x3;
289                 data = *(dat + failing_byte);
290                 data = data ^ (0x1 << failing_bit);
291                 *(dat + failing_byte) = data;
292
293                 return 1;
294         }
295
296         /*
297          * sysdrome 0: random data
298          * More than 1-bit error, non-correctable error
299          * Discard data, mark bad block
300          */
301         dev_err(info->device,
302                 "More than 1-bit error, non-correctable error.\n");
303         dev_err(info->device,
304                 "Please discard data, mark bad block\n");
305
306         return -EBADMSG;
307 }
308
309 static int bf5xx_nand_correct_data(struct mtd_info *mtd, u_char *dat,
310                                         u_char *read_ecc, u_char *calc_ecc)
311 {
312         struct nand_chip *chip = mtd_to_nand(mtd);
313         int ret, bitflips = 0;
314
315         ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
316         if (ret < 0)
317                 return ret;
318
319         bitflips = ret;
320
321         /* If ecc size is 512, correct second 256 bytes */
322         if (chip->ecc.size == 512) {
323                 dat += 256;
324                 read_ecc += 3;
325                 calc_ecc += 3;
326                 ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
327                 if (ret < 0)
328                         return ret;
329
330                 bitflips += ret;
331         }
332
333         return bitflips;
334 }
335
336 static void bf5xx_nand_enable_hwecc(struct mtd_info *mtd, int mode)
337 {
338         return;
339 }
340
341 static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd,
342                 const u_char *dat, u_char *ecc_code)
343 {
344         struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
345         struct nand_chip *chip = mtd_to_nand(mtd);
346         u16 ecc0, ecc1;
347         u32 code[2];
348         u8 *p;
349
350         /* first 3 bytes ECC code for 256 page size */
351         ecc0 = bfin_read_NFC_ECC0();
352         ecc1 = bfin_read_NFC_ECC1();
353
354         code[0] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
355
356         dev_dbg(info->device, "returning ecc 0x%08x\n", code[0]);
357
358         p = (u8 *) code;
359         memcpy(ecc_code, p, 3);
360
361         /* second 3 bytes ECC code for 512 ecc size */
362         if (chip->ecc.size == 512) {
363                 ecc0 = bfin_read_NFC_ECC2();
364                 ecc1 = bfin_read_NFC_ECC3();
365                 code[1] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
366
367                 /* second 3 bytes in ecc_code for second 256
368                  * bytes of 512 page size
369                  */
370                 p = (u8 *) (code + 1);
371                 memcpy((ecc_code + 3), p, 3);
372                 dev_dbg(info->device, "returning ecc 0x%08x\n", code[1]);
373         }
374
375         return 0;
376 }
377
378 /*
379  * PIO mode for buffer writing and reading
380  */
381 static void bf5xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
382 {
383         int i;
384         unsigned short val;
385
386         /*
387          * Data reads are requested by first writing to NFC_DATA_RD
388          * and then reading back from NFC_READ.
389          */
390         for (i = 0; i < len; i++) {
391                 while (bfin_read_NFC_STAT() & WB_FULL)
392                         cpu_relax();
393
394                 /* Contents do not matter */
395                 bfin_write_NFC_DATA_RD(0x0000);
396                 SSYNC();
397
398                 while ((bfin_read_NFC_IRQSTAT() & RD_RDY) != RD_RDY)
399                         cpu_relax();
400
401                 buf[i] = bfin_read_NFC_READ();
402
403                 val = bfin_read_NFC_IRQSTAT();
404                 val |= RD_RDY;
405                 bfin_write_NFC_IRQSTAT(val);
406                 SSYNC();
407         }
408 }
409
410 static uint8_t bf5xx_nand_read_byte(struct mtd_info *mtd)
411 {
412         uint8_t val;
413
414         bf5xx_nand_read_buf(mtd, &val, 1);
415
416         return val;
417 }
418
419 static void bf5xx_nand_write_buf(struct mtd_info *mtd,
420                                 const uint8_t *buf, int len)
421 {
422         int i;
423
424         for (i = 0; i < len; i++) {
425                 while (bfin_read_NFC_STAT() & WB_FULL)
426                         cpu_relax();
427
428                 bfin_write_NFC_DATA_WR(buf[i]);
429                 SSYNC();
430         }
431 }
432
433 static void bf5xx_nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
434 {
435         int i;
436         u16 *p = (u16 *) buf;
437         len >>= 1;
438
439         /*
440          * Data reads are requested by first writing to NFC_DATA_RD
441          * and then reading back from NFC_READ.
442          */
443         bfin_write_NFC_DATA_RD(0x5555);
444
445         SSYNC();
446
447         for (i = 0; i < len; i++)
448                 p[i] = bfin_read_NFC_READ();
449 }
450
451 static void bf5xx_nand_write_buf16(struct mtd_info *mtd,
452                                 const uint8_t *buf, int len)
453 {
454         int i;
455         u16 *p = (u16 *) buf;
456         len >>= 1;
457
458         for (i = 0; i < len; i++)
459                 bfin_write_NFC_DATA_WR(p[i]);
460
461         SSYNC();
462 }
463
464 /*
465  * DMA functions for buffer writing and reading
466  */
467 static irqreturn_t bf5xx_nand_dma_irq(int irq, void *dev_id)
468 {
469         struct bf5xx_nand_info *info = dev_id;
470
471         clear_dma_irqstat(CH_NFC);
472         disable_dma(CH_NFC);
473         complete(&info->dma_completion);
474
475         return IRQ_HANDLED;
476 }
477
478 static void bf5xx_nand_dma_rw(struct mtd_info *mtd,
479                                 uint8_t *buf, int is_read)
480 {
481         struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
482         struct nand_chip *chip = mtd_to_nand(mtd);
483         unsigned short val;
484
485         dev_dbg(info->device, " mtd->%p, buf->%p, is_read %d\n",
486                         mtd, buf, is_read);
487
488         /*
489          * Before starting a dma transfer, be sure to invalidate/flush
490          * the cache over the address range of your DMA buffer to
491          * prevent cache coherency problems. Otherwise very subtle bugs
492          * can be introduced to your driver.
493          */
494         if (is_read)
495                 invalidate_dcache_range((unsigned int)buf,
496                                 (unsigned int)(buf + chip->ecc.size));
497         else
498                 flush_dcache_range((unsigned int)buf,
499                                 (unsigned int)(buf + chip->ecc.size));
500
501         /*
502          * This register must be written before each page is
503          * transferred to generate the correct ECC register
504          * values.
505          */
506         bfin_write_NFC_RST(ECC_RST);
507         SSYNC();
508         while (bfin_read_NFC_RST() & ECC_RST)
509                 cpu_relax();
510
511         disable_dma(CH_NFC);
512         clear_dma_irqstat(CH_NFC);
513
514         /* setup DMA register with Blackfin DMA API */
515         set_dma_config(CH_NFC, 0x0);
516         set_dma_start_addr(CH_NFC, (unsigned long) buf);
517
518         /* The DMAs have different size on BF52x and BF54x */
519 #ifdef CONFIG_BF52x
520         set_dma_x_count(CH_NFC, (chip->ecc.size >> 1));
521         set_dma_x_modify(CH_NFC, 2);
522         val = DI_EN | WDSIZE_16;
523 #endif
524
525 #ifdef CONFIG_BF54x
526         set_dma_x_count(CH_NFC, (chip->ecc.size >> 2));
527         set_dma_x_modify(CH_NFC, 4);
528         val = DI_EN | WDSIZE_32;
529 #endif
530         /* setup write or read operation */
531         if (is_read)
532                 val |= WNR;
533         set_dma_config(CH_NFC, val);
534         enable_dma(CH_NFC);
535
536         /* Start PAGE read/write operation */
537         if (is_read)
538                 bfin_write_NFC_PGCTL(PG_RD_START);
539         else
540                 bfin_write_NFC_PGCTL(PG_WR_START);
541         wait_for_completion(&info->dma_completion);
542 }
543
544 static void bf5xx_nand_dma_read_buf(struct mtd_info *mtd,
545                                         uint8_t *buf, int len)
546 {
547         struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
548         struct nand_chip *chip = mtd_to_nand(mtd);
549
550         dev_dbg(info->device, "mtd->%p, buf->%p, int %d\n", mtd, buf, len);
551
552         if (len == chip->ecc.size)
553                 bf5xx_nand_dma_rw(mtd, buf, 1);
554         else
555                 bf5xx_nand_read_buf(mtd, buf, len);
556 }
557
558 static void bf5xx_nand_dma_write_buf(struct mtd_info *mtd,
559                                 const uint8_t *buf, int len)
560 {
561         struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
562         struct nand_chip *chip = mtd_to_nand(mtd);
563
564         dev_dbg(info->device, "mtd->%p, buf->%p, len %d\n", mtd, buf, len);
565
566         if (len == chip->ecc.size)
567                 bf5xx_nand_dma_rw(mtd, (uint8_t *)buf, 0);
568         else
569                 bf5xx_nand_write_buf(mtd, buf, len);
570 }
571
572 static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
573                 uint8_t *buf, int oob_required, int page)
574 {
575         bf5xx_nand_read_buf(mtd, buf, mtd->writesize);
576         bf5xx_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
577
578         return 0;
579 }
580
581 static int bf5xx_nand_write_page_raw(struct mtd_info *mtd,
582                 struct nand_chip *chip, const uint8_t *buf, int oob_required,
583                 int page)
584 {
585         bf5xx_nand_write_buf(mtd, buf, mtd->writesize);
586         bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
587
588         return 0;
589 }
590
591 /*
592  * System initialization functions
593  */
594 static int bf5xx_nand_dma_init(struct bf5xx_nand_info *info)
595 {
596         int ret;
597
598         /* Do not use dma */
599         if (!hardware_ecc)
600                 return 0;
601
602         init_completion(&info->dma_completion);
603
604         /* Request NFC DMA channel */
605         ret = request_dma(CH_NFC, "BF5XX NFC driver");
606         if (ret < 0) {
607                 dev_err(info->device, " unable to get DMA channel\n");
608                 return ret;
609         }
610
611 #ifdef CONFIG_BF54x
612         /* Setup DMAC1 channel mux for NFC which shared with SDH */
613         bfin_write_DMAC1_PERIMUX(bfin_read_DMAC1_PERIMUX() & ~1);
614         SSYNC();
615 #endif
616
617         set_dma_callback(CH_NFC, bf5xx_nand_dma_irq, info);
618
619         /* Turn off the DMA channel first */
620         disable_dma(CH_NFC);
621         return 0;
622 }
623
624 static void bf5xx_nand_dma_remove(struct bf5xx_nand_info *info)
625 {
626         /* Free NFC DMA channel */
627         if (hardware_ecc)
628                 free_dma(CH_NFC);
629 }
630
631 /*
632  * BF5XX NFC hardware initialization
633  *  - pin mux setup
634  *  - clear interrupt status
635  */
636 static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info)
637 {
638         int err = 0;
639         unsigned short val;
640         struct bf5xx_nand_platform *plat = info->platform;
641
642         /* setup NFC_CTL register */
643         dev_info(info->device,
644                 "data_width=%d, wr_dly=%d, rd_dly=%d\n",
645                 (plat->data_width ? 16 : 8),
646                 plat->wr_dly, plat->rd_dly);
647
648         val = (1 << NFC_PG_SIZE_OFFSET) |
649                 (plat->data_width << NFC_NWIDTH_OFFSET) |
650                 (plat->rd_dly << NFC_RDDLY_OFFSET) |
651                 (plat->wr_dly << NFC_WRDLY_OFFSET);
652         dev_dbg(info->device, "NFC_CTL is 0x%04x\n", val);
653
654         bfin_write_NFC_CTL(val);
655         SSYNC();
656
657         /* clear interrupt status */
658         bfin_write_NFC_IRQMASK(0x0);
659         SSYNC();
660         val = bfin_read_NFC_IRQSTAT();
661         bfin_write_NFC_IRQSTAT(val);
662         SSYNC();
663
664         /* DMA initialization  */
665         if (bf5xx_nand_dma_init(info))
666                 err = -ENXIO;
667
668         return err;
669 }
670
671 /*
672  * Device management interface
673  */
674 static int bf5xx_nand_add_partition(struct bf5xx_nand_info *info)
675 {
676         struct mtd_info *mtd = nand_to_mtd(&info->chip);
677         struct mtd_partition *parts = info->platform->partitions;
678         int nr = info->platform->nr_partitions;
679
680         return mtd_device_register(mtd, parts, nr);
681 }
682
683 static int bf5xx_nand_remove(struct platform_device *pdev)
684 {
685         struct bf5xx_nand_info *info = to_nand_info(pdev);
686
687         /* first thing we need to do is release all our mtds
688          * and their partitions, then go through freeing the
689          * resources used
690          */
691         nand_release(nand_to_mtd(&info->chip));
692
693         peripheral_free_list(bfin_nfc_pin_req);
694         bf5xx_nand_dma_remove(info);
695
696         return 0;
697 }
698
699 static int bf5xx_nand_scan(struct mtd_info *mtd)
700 {
701         struct nand_chip *chip = mtd_to_nand(mtd);
702         int ret;
703
704         ret = nand_scan_ident(mtd, 1, NULL);
705         if (ret)
706                 return ret;
707
708         if (hardware_ecc) {
709                 /*
710                  * for nand with page size > 512B, think it as several sections with 512B
711                  */
712                 if (likely(mtd->writesize >= 512)) {
713                         chip->ecc.size = 512;
714                         chip->ecc.bytes = 6;
715                         chip->ecc.strength = 2;
716                 } else {
717                         chip->ecc.size = 256;
718                         chip->ecc.bytes = 3;
719                         chip->ecc.strength = 1;
720                         bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET));
721                         SSYNC();
722                 }
723         }
724
725         return  nand_scan_tail(mtd);
726 }
727
728 /*
729  * bf5xx_nand_probe
730  *
731  * called by device layer when it finds a device matching
732  * one our driver can handled. This code checks to see if
733  * it can allocate all necessary resources then calls the
734  * nand layer to look for devices
735  */
736 static int bf5xx_nand_probe(struct platform_device *pdev)
737 {
738         struct bf5xx_nand_platform *plat = to_nand_plat(pdev);
739         struct bf5xx_nand_info *info = NULL;
740         struct nand_chip *chip = NULL;
741         struct mtd_info *mtd = NULL;
742         int err = 0;
743
744         dev_dbg(&pdev->dev, "(%p)\n", pdev);
745
746         if (!plat) {
747                 dev_err(&pdev->dev, "no platform specific information\n");
748                 return -EINVAL;
749         }
750
751         if (peripheral_request_list(bfin_nfc_pin_req, DRV_NAME)) {
752                 dev_err(&pdev->dev, "requesting Peripherals failed\n");
753                 return -EFAULT;
754         }
755
756         info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
757         if (info == NULL) {
758                 err = -ENOMEM;
759                 goto out_err;
760         }
761
762         platform_set_drvdata(pdev, info);
763
764         spin_lock_init(&info->controller.lock);
765         init_waitqueue_head(&info->controller.wq);
766
767         info->device     = &pdev->dev;
768         info->platform   = plat;
769
770         /* initialise chip data struct */
771         chip = &info->chip;
772         mtd = nand_to_mtd(&info->chip);
773
774         if (plat->data_width)
775                 chip->options |= NAND_BUSWIDTH_16;
776
777         chip->options |= NAND_CACHEPRG | NAND_SKIP_BBTSCAN;
778
779         chip->read_buf = (plat->data_width) ?
780                 bf5xx_nand_read_buf16 : bf5xx_nand_read_buf;
781         chip->write_buf = (plat->data_width) ?
782                 bf5xx_nand_write_buf16 : bf5xx_nand_write_buf;
783
784         chip->read_byte    = bf5xx_nand_read_byte;
785
786         chip->cmd_ctrl     = bf5xx_nand_hwcontrol;
787         chip->dev_ready    = bf5xx_nand_devready;
788
789         nand_set_controller_data(chip, mtd);
790         chip->controller   = &info->controller;
791
792         chip->IO_ADDR_R    = (void __iomem *) NFC_READ;
793         chip->IO_ADDR_W    = (void __iomem *) NFC_DATA_WR;
794
795         chip->chip_delay   = 0;
796
797         /* initialise mtd info data struct */
798         mtd->dev.parent = &pdev->dev;
799
800         /* initialise the hardware */
801         err = bf5xx_nand_hw_init(info);
802         if (err)
803                 goto out_err;
804
805         /* setup hardware ECC data struct */
806         if (hardware_ecc) {
807 #ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
808                 mtd_set_ooblayout(mtd, &bootrom_ooblayout_ops);
809 #endif
810                 chip->read_buf      = bf5xx_nand_dma_read_buf;
811                 chip->write_buf     = bf5xx_nand_dma_write_buf;
812                 chip->ecc.calculate = bf5xx_nand_calculate_ecc;
813                 chip->ecc.correct   = bf5xx_nand_correct_data;
814                 chip->ecc.mode      = NAND_ECC_HW;
815                 chip->ecc.hwctl     = bf5xx_nand_enable_hwecc;
816                 chip->ecc.read_page_raw = bf5xx_nand_read_page_raw;
817                 chip->ecc.write_page_raw = bf5xx_nand_write_page_raw;
818         } else {
819                 chip->ecc.mode      = NAND_ECC_SOFT;
820                 chip->ecc.algo  = NAND_ECC_HAMMING;
821         }
822
823         /* scan hardware nand chip and setup mtd info data struct */
824         if (bf5xx_nand_scan(mtd)) {
825                 err = -ENXIO;
826                 goto out_err_nand_scan;
827         }
828
829 #ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
830         chip->badblockpos = 63;
831 #endif
832
833         /* add NAND partition */
834         bf5xx_nand_add_partition(info);
835
836         dev_dbg(&pdev->dev, "initialised ok\n");
837         return 0;
838
839 out_err_nand_scan:
840         bf5xx_nand_dma_remove(info);
841 out_err:
842         peripheral_free_list(bfin_nfc_pin_req);
843
844         return err;
845 }
846
847 /* driver device registration */
848 static struct platform_driver bf5xx_nand_driver = {
849         .probe          = bf5xx_nand_probe,
850         .remove         = bf5xx_nand_remove,
851         .driver         = {
852                 .name   = DRV_NAME,
853         },
854 };
855
856 module_platform_driver(bf5xx_nand_driver);
857
858 MODULE_LICENSE("GPL");
859 MODULE_AUTHOR(DRV_AUTHOR);
860 MODULE_DESCRIPTION(DRV_DESC);
861 MODULE_ALIAS("platform:" DRV_NAME);