Merge commit 'c0053bd50af5' into omap-for-v4.8/soc
[cascardo/linux.git] / drivers / mtd / nand / brcmnand / brcmnand.c
1 /*
2  * Copyright © 2010-2015 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/version.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/delay.h>
19 #include <linux/device.h>
20 #include <linux/platform_device.h>
21 #include <linux/err.h>
22 #include <linux/completion.h>
23 #include <linux/interrupt.h>
24 #include <linux/spinlock.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/ioport.h>
27 #include <linux/bug.h>
28 #include <linux/kernel.h>
29 #include <linux/bitops.h>
30 #include <linux/mm.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/nand.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/of.h>
35 #include <linux/of_platform.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/log2.h>
39
40 #include "brcmnand.h"
41
42 /*
43  * This flag controls if WP stays on between erase/write commands to mitigate
44  * flash corruption due to power glitches. Values:
45  * 0: NAND_WP is not used or not available
46  * 1: NAND_WP is set by default, cleared for erase/write operations
47  * 2: NAND_WP is always cleared
48  */
49 static int wp_on = 1;
50 module_param(wp_on, int, 0444);
51
52 /***********************************************************************
53  * Definitions
54  ***********************************************************************/
55
56 #define DRV_NAME                        "brcmnand"
57
58 #define CMD_NULL                        0x00
59 #define CMD_PAGE_READ                   0x01
60 #define CMD_SPARE_AREA_READ             0x02
61 #define CMD_STATUS_READ                 0x03
62 #define CMD_PROGRAM_PAGE                0x04
63 #define CMD_PROGRAM_SPARE_AREA          0x05
64 #define CMD_COPY_BACK                   0x06
65 #define CMD_DEVICE_ID_READ              0x07
66 #define CMD_BLOCK_ERASE                 0x08
67 #define CMD_FLASH_RESET                 0x09
68 #define CMD_BLOCKS_LOCK                 0x0a
69 #define CMD_BLOCKS_LOCK_DOWN            0x0b
70 #define CMD_BLOCKS_UNLOCK               0x0c
71 #define CMD_READ_BLOCKS_LOCK_STATUS     0x0d
72 #define CMD_PARAMETER_READ              0x0e
73 #define CMD_PARAMETER_CHANGE_COL        0x0f
74 #define CMD_LOW_LEVEL_OP                0x10
75
76 struct brcm_nand_dma_desc {
77         u32 next_desc;
78         u32 next_desc_ext;
79         u32 cmd_irq;
80         u32 dram_addr;
81         u32 dram_addr_ext;
82         u32 tfr_len;
83         u32 total_len;
84         u32 flash_addr;
85         u32 flash_addr_ext;
86         u32 cs;
87         u32 pad2[5];
88         u32 status_valid;
89 } __packed;
90
91 /* Bitfields for brcm_nand_dma_desc::status_valid */
92 #define FLASH_DMA_ECC_ERROR     (1 << 8)
93 #define FLASH_DMA_CORR_ERROR    (1 << 9)
94
95 /* 512B flash cache in the NAND controller HW */
96 #define FC_SHIFT                9U
97 #define FC_BYTES                512U
98 #define FC_WORDS                (FC_BYTES >> 2)
99
100 #define BRCMNAND_MIN_PAGESIZE   512
101 #define BRCMNAND_MIN_BLOCKSIZE  (8 * 1024)
102 #define BRCMNAND_MIN_DEVSIZE    (4ULL * 1024 * 1024)
103
104 /* Controller feature flags */
105 enum {
106         BRCMNAND_HAS_1K_SECTORS                 = BIT(0),
107         BRCMNAND_HAS_PREFETCH                   = BIT(1),
108         BRCMNAND_HAS_CACHE_MODE                 = BIT(2),
109         BRCMNAND_HAS_WP                         = BIT(3),
110 };
111
112 struct brcmnand_controller {
113         struct device           *dev;
114         struct nand_hw_control  controller;
115         void __iomem            *nand_base;
116         void __iomem            *nand_fc; /* flash cache */
117         void __iomem            *flash_dma_base;
118         unsigned int            irq;
119         unsigned int            dma_irq;
120         int                     nand_version;
121
122         /* Some SoCs provide custom interrupt status register(s) */
123         struct brcmnand_soc     *soc;
124
125         /* Some SoCs have a gateable clock for the controller */
126         struct clk              *clk;
127
128         int                     cmd_pending;
129         bool                    dma_pending;
130         struct completion       done;
131         struct completion       dma_done;
132
133         /* List of NAND hosts (one for each chip-select) */
134         struct list_head host_list;
135
136         struct brcm_nand_dma_desc *dma_desc;
137         dma_addr_t              dma_pa;
138
139         /* in-memory cache of the FLASH_CACHE, used only for some commands */
140         u8                      flash_cache[FC_BYTES];
141
142         /* Controller revision details */
143         const u16               *reg_offsets;
144         unsigned int            reg_spacing; /* between CS1, CS2, ... regs */
145         const u8                *cs_offsets; /* within each chip-select */
146         const u8                *cs0_offsets; /* within CS0, if different */
147         unsigned int            max_block_size;
148         const unsigned int      *block_sizes;
149         unsigned int            max_page_size;
150         const unsigned int      *page_sizes;
151         unsigned int            max_oob;
152         u32                     features;
153
154         /* for low-power standby/resume only */
155         u32                     nand_cs_nand_select;
156         u32                     nand_cs_nand_xor;
157         u32                     corr_stat_threshold;
158         u32                     flash_dma_mode;
159 };
160
161 struct brcmnand_cfg {
162         u64                     device_size;
163         unsigned int            block_size;
164         unsigned int            page_size;
165         unsigned int            spare_area_size;
166         unsigned int            device_width;
167         unsigned int            col_adr_bytes;
168         unsigned int            blk_adr_bytes;
169         unsigned int            ful_adr_bytes;
170         unsigned int            sector_size_1k;
171         unsigned int            ecc_level;
172         /* use for low-power standby/resume only */
173         u32                     acc_control;
174         u32                     config;
175         u32                     config_ext;
176         u32                     timing_1;
177         u32                     timing_2;
178 };
179
180 struct brcmnand_host {
181         struct list_head        node;
182
183         struct nand_chip        chip;
184         struct platform_device  *pdev;
185         int                     cs;
186
187         unsigned int            last_cmd;
188         unsigned int            last_byte;
189         u64                     last_addr;
190         struct brcmnand_cfg     hwcfg;
191         struct brcmnand_controller *ctrl;
192 };
193
194 enum brcmnand_reg {
195         BRCMNAND_CMD_START = 0,
196         BRCMNAND_CMD_EXT_ADDRESS,
197         BRCMNAND_CMD_ADDRESS,
198         BRCMNAND_INTFC_STATUS,
199         BRCMNAND_CS_SELECT,
200         BRCMNAND_CS_XOR,
201         BRCMNAND_LL_OP,
202         BRCMNAND_CS0_BASE,
203         BRCMNAND_CS1_BASE,              /* CS1 regs, if non-contiguous */
204         BRCMNAND_CORR_THRESHOLD,
205         BRCMNAND_CORR_THRESHOLD_EXT,
206         BRCMNAND_UNCORR_COUNT,
207         BRCMNAND_CORR_COUNT,
208         BRCMNAND_CORR_EXT_ADDR,
209         BRCMNAND_CORR_ADDR,
210         BRCMNAND_UNCORR_EXT_ADDR,
211         BRCMNAND_UNCORR_ADDR,
212         BRCMNAND_SEMAPHORE,
213         BRCMNAND_ID,
214         BRCMNAND_ID_EXT,
215         BRCMNAND_LL_RDATA,
216         BRCMNAND_OOB_READ_BASE,
217         BRCMNAND_OOB_READ_10_BASE,      /* offset 0x10, if non-contiguous */
218         BRCMNAND_OOB_WRITE_BASE,
219         BRCMNAND_OOB_WRITE_10_BASE,     /* offset 0x10, if non-contiguous */
220         BRCMNAND_FC_BASE,
221 };
222
223 /* BRCMNAND v4.0 */
224 static const u16 brcmnand_regs_v40[] = {
225         [BRCMNAND_CMD_START]            =  0x04,
226         [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
227         [BRCMNAND_CMD_ADDRESS]          =  0x0c,
228         [BRCMNAND_INTFC_STATUS]         =  0x6c,
229         [BRCMNAND_CS_SELECT]            =  0x14,
230         [BRCMNAND_CS_XOR]               =  0x18,
231         [BRCMNAND_LL_OP]                = 0x178,
232         [BRCMNAND_CS0_BASE]             =  0x40,
233         [BRCMNAND_CS1_BASE]             =  0xd0,
234         [BRCMNAND_CORR_THRESHOLD]       =  0x84,
235         [BRCMNAND_CORR_THRESHOLD_EXT]   =     0,
236         [BRCMNAND_UNCORR_COUNT]         =     0,
237         [BRCMNAND_CORR_COUNT]           =     0,
238         [BRCMNAND_CORR_EXT_ADDR]        =  0x70,
239         [BRCMNAND_CORR_ADDR]            =  0x74,
240         [BRCMNAND_UNCORR_EXT_ADDR]      =  0x78,
241         [BRCMNAND_UNCORR_ADDR]          =  0x7c,
242         [BRCMNAND_SEMAPHORE]            =  0x58,
243         [BRCMNAND_ID]                   =  0x60,
244         [BRCMNAND_ID_EXT]               =  0x64,
245         [BRCMNAND_LL_RDATA]             = 0x17c,
246         [BRCMNAND_OOB_READ_BASE]        =  0x20,
247         [BRCMNAND_OOB_READ_10_BASE]     = 0x130,
248         [BRCMNAND_OOB_WRITE_BASE]       =  0x30,
249         [BRCMNAND_OOB_WRITE_10_BASE]    =     0,
250         [BRCMNAND_FC_BASE]              = 0x200,
251 };
252
253 /* BRCMNAND v5.0 */
254 static const u16 brcmnand_regs_v50[] = {
255         [BRCMNAND_CMD_START]            =  0x04,
256         [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
257         [BRCMNAND_CMD_ADDRESS]          =  0x0c,
258         [BRCMNAND_INTFC_STATUS]         =  0x6c,
259         [BRCMNAND_CS_SELECT]            =  0x14,
260         [BRCMNAND_CS_XOR]               =  0x18,
261         [BRCMNAND_LL_OP]                = 0x178,
262         [BRCMNAND_CS0_BASE]             =  0x40,
263         [BRCMNAND_CS1_BASE]             =  0xd0,
264         [BRCMNAND_CORR_THRESHOLD]       =  0x84,
265         [BRCMNAND_CORR_THRESHOLD_EXT]   =     0,
266         [BRCMNAND_UNCORR_COUNT]         =     0,
267         [BRCMNAND_CORR_COUNT]           =     0,
268         [BRCMNAND_CORR_EXT_ADDR]        =  0x70,
269         [BRCMNAND_CORR_ADDR]            =  0x74,
270         [BRCMNAND_UNCORR_EXT_ADDR]      =  0x78,
271         [BRCMNAND_UNCORR_ADDR]          =  0x7c,
272         [BRCMNAND_SEMAPHORE]            =  0x58,
273         [BRCMNAND_ID]                   =  0x60,
274         [BRCMNAND_ID_EXT]               =  0x64,
275         [BRCMNAND_LL_RDATA]             = 0x17c,
276         [BRCMNAND_OOB_READ_BASE]        =  0x20,
277         [BRCMNAND_OOB_READ_10_BASE]     = 0x130,
278         [BRCMNAND_OOB_WRITE_BASE]       =  0x30,
279         [BRCMNAND_OOB_WRITE_10_BASE]    = 0x140,
280         [BRCMNAND_FC_BASE]              = 0x200,
281 };
282
283 /* BRCMNAND v6.0 - v7.1 */
284 static const u16 brcmnand_regs_v60[] = {
285         [BRCMNAND_CMD_START]            =  0x04,
286         [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
287         [BRCMNAND_CMD_ADDRESS]          =  0x0c,
288         [BRCMNAND_INTFC_STATUS]         =  0x14,
289         [BRCMNAND_CS_SELECT]            =  0x18,
290         [BRCMNAND_CS_XOR]               =  0x1c,
291         [BRCMNAND_LL_OP]                =  0x20,
292         [BRCMNAND_CS0_BASE]             =  0x50,
293         [BRCMNAND_CS1_BASE]             =     0,
294         [BRCMNAND_CORR_THRESHOLD]       =  0xc0,
295         [BRCMNAND_CORR_THRESHOLD_EXT]   =  0xc4,
296         [BRCMNAND_UNCORR_COUNT]         =  0xfc,
297         [BRCMNAND_CORR_COUNT]           = 0x100,
298         [BRCMNAND_CORR_EXT_ADDR]        = 0x10c,
299         [BRCMNAND_CORR_ADDR]            = 0x110,
300         [BRCMNAND_UNCORR_EXT_ADDR]      = 0x114,
301         [BRCMNAND_UNCORR_ADDR]          = 0x118,
302         [BRCMNAND_SEMAPHORE]            = 0x150,
303         [BRCMNAND_ID]                   = 0x194,
304         [BRCMNAND_ID_EXT]               = 0x198,
305         [BRCMNAND_LL_RDATA]             = 0x19c,
306         [BRCMNAND_OOB_READ_BASE]        = 0x200,
307         [BRCMNAND_OOB_READ_10_BASE]     =     0,
308         [BRCMNAND_OOB_WRITE_BASE]       = 0x280,
309         [BRCMNAND_OOB_WRITE_10_BASE]    =     0,
310         [BRCMNAND_FC_BASE]              = 0x400,
311 };
312
313 /* BRCMNAND v7.1 */
314 static const u16 brcmnand_regs_v71[] = {
315         [BRCMNAND_CMD_START]            =  0x04,
316         [BRCMNAND_CMD_EXT_ADDRESS]      =  0x08,
317         [BRCMNAND_CMD_ADDRESS]          =  0x0c,
318         [BRCMNAND_INTFC_STATUS]         =  0x14,
319         [BRCMNAND_CS_SELECT]            =  0x18,
320         [BRCMNAND_CS_XOR]               =  0x1c,
321         [BRCMNAND_LL_OP]                =  0x20,
322         [BRCMNAND_CS0_BASE]             =  0x50,
323         [BRCMNAND_CS1_BASE]             =     0,
324         [BRCMNAND_CORR_THRESHOLD]       =  0xdc,
325         [BRCMNAND_CORR_THRESHOLD_EXT]   =  0xe0,
326         [BRCMNAND_UNCORR_COUNT]         =  0xfc,
327         [BRCMNAND_CORR_COUNT]           = 0x100,
328         [BRCMNAND_CORR_EXT_ADDR]        = 0x10c,
329         [BRCMNAND_CORR_ADDR]            = 0x110,
330         [BRCMNAND_UNCORR_EXT_ADDR]      = 0x114,
331         [BRCMNAND_UNCORR_ADDR]          = 0x118,
332         [BRCMNAND_SEMAPHORE]            = 0x150,
333         [BRCMNAND_ID]                   = 0x194,
334         [BRCMNAND_ID_EXT]               = 0x198,
335         [BRCMNAND_LL_RDATA]             = 0x19c,
336         [BRCMNAND_OOB_READ_BASE]        = 0x200,
337         [BRCMNAND_OOB_READ_10_BASE]     =     0,
338         [BRCMNAND_OOB_WRITE_BASE]       = 0x280,
339         [BRCMNAND_OOB_WRITE_10_BASE]    =     0,
340         [BRCMNAND_FC_BASE]              = 0x400,
341 };
342
343 enum brcmnand_cs_reg {
344         BRCMNAND_CS_CFG_EXT = 0,
345         BRCMNAND_CS_CFG,
346         BRCMNAND_CS_ACC_CONTROL,
347         BRCMNAND_CS_TIMING1,
348         BRCMNAND_CS_TIMING2,
349 };
350
351 /* Per chip-select offsets for v7.1 */
352 static const u8 brcmnand_cs_offsets_v71[] = {
353         [BRCMNAND_CS_ACC_CONTROL]       = 0x00,
354         [BRCMNAND_CS_CFG_EXT]           = 0x04,
355         [BRCMNAND_CS_CFG]               = 0x08,
356         [BRCMNAND_CS_TIMING1]           = 0x0c,
357         [BRCMNAND_CS_TIMING2]           = 0x10,
358 };
359
360 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
361 static const u8 brcmnand_cs_offsets[] = {
362         [BRCMNAND_CS_ACC_CONTROL]       = 0x00,
363         [BRCMNAND_CS_CFG_EXT]           = 0x04,
364         [BRCMNAND_CS_CFG]               = 0x04,
365         [BRCMNAND_CS_TIMING1]           = 0x08,
366         [BRCMNAND_CS_TIMING2]           = 0x0c,
367 };
368
369 /* Per chip-select offset for <= v5.0 on CS0 only */
370 static const u8 brcmnand_cs_offsets_cs0[] = {
371         [BRCMNAND_CS_ACC_CONTROL]       = 0x00,
372         [BRCMNAND_CS_CFG_EXT]           = 0x08,
373         [BRCMNAND_CS_CFG]               = 0x08,
374         [BRCMNAND_CS_TIMING1]           = 0x10,
375         [BRCMNAND_CS_TIMING2]           = 0x14,
376 };
377
378 /*
379  * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
380  * one config register, but once the bitfields overflowed, newer controllers
381  * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
382  */
383 enum {
384         CFG_BLK_ADR_BYTES_SHIFT         = 8,
385         CFG_COL_ADR_BYTES_SHIFT         = 12,
386         CFG_FUL_ADR_BYTES_SHIFT         = 16,
387         CFG_BUS_WIDTH_SHIFT             = 23,
388         CFG_BUS_WIDTH                   = BIT(CFG_BUS_WIDTH_SHIFT),
389         CFG_DEVICE_SIZE_SHIFT           = 24,
390
391         /* Only for pre-v7.1 (with no CFG_EXT register) */
392         CFG_PAGE_SIZE_SHIFT             = 20,
393         CFG_BLK_SIZE_SHIFT              = 28,
394
395         /* Only for v7.1+ (with CFG_EXT register) */
396         CFG_EXT_PAGE_SIZE_SHIFT         = 0,
397         CFG_EXT_BLK_SIZE_SHIFT          = 4,
398 };
399
400 /* BRCMNAND_INTFC_STATUS */
401 enum {
402         INTFC_FLASH_STATUS              = GENMASK(7, 0),
403
404         INTFC_ERASED                    = BIT(27),
405         INTFC_OOB_VALID                 = BIT(28),
406         INTFC_CACHE_VALID               = BIT(29),
407         INTFC_FLASH_READY               = BIT(30),
408         INTFC_CTLR_READY                = BIT(31),
409 };
410
411 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
412 {
413         return brcmnand_readl(ctrl->nand_base + offs);
414 }
415
416 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
417                                  u32 val)
418 {
419         brcmnand_writel(val, ctrl->nand_base + offs);
420 }
421
422 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
423 {
424         static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
425         static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
426         static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
427
428         ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
429
430         /* Only support v4.0+? */
431         if (ctrl->nand_version < 0x0400) {
432                 dev_err(ctrl->dev, "version %#x not supported\n",
433                         ctrl->nand_version);
434                 return -ENODEV;
435         }
436
437         /* Register offsets */
438         if (ctrl->nand_version >= 0x0701)
439                 ctrl->reg_offsets = brcmnand_regs_v71;
440         else if (ctrl->nand_version >= 0x0600)
441                 ctrl->reg_offsets = brcmnand_regs_v60;
442         else if (ctrl->nand_version >= 0x0500)
443                 ctrl->reg_offsets = brcmnand_regs_v50;
444         else if (ctrl->nand_version >= 0x0400)
445                 ctrl->reg_offsets = brcmnand_regs_v40;
446
447         /* Chip-select stride */
448         if (ctrl->nand_version >= 0x0701)
449                 ctrl->reg_spacing = 0x14;
450         else
451                 ctrl->reg_spacing = 0x10;
452
453         /* Per chip-select registers */
454         if (ctrl->nand_version >= 0x0701) {
455                 ctrl->cs_offsets = brcmnand_cs_offsets_v71;
456         } else {
457                 ctrl->cs_offsets = brcmnand_cs_offsets;
458
459                 /* v5.0 and earlier has a different CS0 offset layout */
460                 if (ctrl->nand_version <= 0x0500)
461                         ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
462         }
463
464         /* Page / block sizes */
465         if (ctrl->nand_version >= 0x0701) {
466                 /* >= v7.1 use nice power-of-2 values! */
467                 ctrl->max_page_size = 16 * 1024;
468                 ctrl->max_block_size = 2 * 1024 * 1024;
469         } else {
470                 ctrl->page_sizes = page_sizes;
471                 if (ctrl->nand_version >= 0x0600)
472                         ctrl->block_sizes = block_sizes_v6;
473                 else
474                         ctrl->block_sizes = block_sizes_v4;
475
476                 if (ctrl->nand_version < 0x0400) {
477                         ctrl->max_page_size = 4096;
478                         ctrl->max_block_size = 512 * 1024;
479                 }
480         }
481
482         /* Maximum spare area sector size (per 512B) */
483         if (ctrl->nand_version >= 0x0600)
484                 ctrl->max_oob = 64;
485         else if (ctrl->nand_version >= 0x0500)
486                 ctrl->max_oob = 32;
487         else
488                 ctrl->max_oob = 16;
489
490         /* v6.0 and newer (except v6.1) have prefetch support */
491         if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
492                 ctrl->features |= BRCMNAND_HAS_PREFETCH;
493
494         /*
495          * v6.x has cache mode, but it's implemented differently. Ignore it for
496          * now.
497          */
498         if (ctrl->nand_version >= 0x0700)
499                 ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
500
501         if (ctrl->nand_version >= 0x0500)
502                 ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
503
504         if (ctrl->nand_version >= 0x0700)
505                 ctrl->features |= BRCMNAND_HAS_WP;
506         else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
507                 ctrl->features |= BRCMNAND_HAS_WP;
508
509         return 0;
510 }
511
512 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
513                 enum brcmnand_reg reg)
514 {
515         u16 offs = ctrl->reg_offsets[reg];
516
517         if (offs)
518                 return nand_readreg(ctrl, offs);
519         else
520                 return 0;
521 }
522
523 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
524                                       enum brcmnand_reg reg, u32 val)
525 {
526         u16 offs = ctrl->reg_offsets[reg];
527
528         if (offs)
529                 nand_writereg(ctrl, offs, val);
530 }
531
532 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
533                                     enum brcmnand_reg reg, u32 mask, unsigned
534                                     int shift, u32 val)
535 {
536         u32 tmp = brcmnand_read_reg(ctrl, reg);
537
538         tmp &= ~mask;
539         tmp |= val << shift;
540         brcmnand_write_reg(ctrl, reg, tmp);
541 }
542
543 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
544 {
545         return __raw_readl(ctrl->nand_fc + word * 4);
546 }
547
548 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
549                                      int word, u32 val)
550 {
551         __raw_writel(val, ctrl->nand_fc + word * 4);
552 }
553
554 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
555                                      enum brcmnand_cs_reg reg)
556 {
557         u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
558         u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
559         u8 cs_offs;
560
561         if (cs == 0 && ctrl->cs0_offsets)
562                 cs_offs = ctrl->cs0_offsets[reg];
563         else
564                 cs_offs = ctrl->cs_offsets[reg];
565
566         if (cs && offs_cs1)
567                 return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
568
569         return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
570 }
571
572 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
573 {
574         if (ctrl->nand_version < 0x0600)
575                 return 1;
576         return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
577 }
578
579 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
580 {
581         struct brcmnand_controller *ctrl = host->ctrl;
582         unsigned int shift = 0, bits;
583         enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
584         int cs = host->cs;
585
586         if (ctrl->nand_version >= 0x0600)
587                 bits = 6;
588         else if (ctrl->nand_version >= 0x0500)
589                 bits = 5;
590         else
591                 bits = 4;
592
593         if (ctrl->nand_version >= 0x0600) {
594                 if (cs >= 5)
595                         reg = BRCMNAND_CORR_THRESHOLD_EXT;
596                 shift = (cs % 5) * bits;
597         }
598         brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
599 }
600
601 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
602 {
603         if (ctrl->nand_version < 0x0602)
604                 return 24;
605         return 0;
606 }
607
608 /***********************************************************************
609  * NAND ACC CONTROL bitfield
610  *
611  * Some bits have remained constant throughout hardware revision, while
612  * others have shifted around.
613  ***********************************************************************/
614
615 /* Constant for all versions (where supported) */
616 enum {
617         /* See BRCMNAND_HAS_CACHE_MODE */
618         ACC_CONTROL_CACHE_MODE                          = BIT(22),
619
620         /* See BRCMNAND_HAS_PREFETCH */
621         ACC_CONTROL_PREFETCH                            = BIT(23),
622
623         ACC_CONTROL_PAGE_HIT                            = BIT(24),
624         ACC_CONTROL_WR_PREEMPT                          = BIT(25),
625         ACC_CONTROL_PARTIAL_PAGE                        = BIT(26),
626         ACC_CONTROL_RD_ERASED                           = BIT(27),
627         ACC_CONTROL_FAST_PGM_RDIN                       = BIT(28),
628         ACC_CONTROL_WR_ECC                              = BIT(30),
629         ACC_CONTROL_RD_ECC                              = BIT(31),
630 };
631
632 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
633 {
634         if (ctrl->nand_version >= 0x0600)
635                 return GENMASK(6, 0);
636         else
637                 return GENMASK(5, 0);
638 }
639
640 #define NAND_ACC_CONTROL_ECC_SHIFT      16
641
642 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
643 {
644         u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
645
646         return mask << NAND_ACC_CONTROL_ECC_SHIFT;
647 }
648
649 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
650 {
651         struct brcmnand_controller *ctrl = host->ctrl;
652         u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
653         u32 acc_control = nand_readreg(ctrl, offs);
654         u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
655
656         if (en) {
657                 acc_control |= ecc_flags; /* enable RD/WR ECC */
658                 acc_control |= host->hwcfg.ecc_level
659                                << NAND_ACC_CONTROL_ECC_SHIFT;
660         } else {
661                 acc_control &= ~ecc_flags; /* disable RD/WR ECC */
662                 acc_control &= ~brcmnand_ecc_level_mask(ctrl);
663         }
664
665         nand_writereg(ctrl, offs, acc_control);
666 }
667
668 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
669 {
670         if (ctrl->nand_version >= 0x0600)
671                 return 7;
672         else if (ctrl->nand_version >= 0x0500)
673                 return 6;
674         else
675                 return -1;
676 }
677
678 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
679 {
680         struct brcmnand_controller *ctrl = host->ctrl;
681         int shift = brcmnand_sector_1k_shift(ctrl);
682         u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
683                                                   BRCMNAND_CS_ACC_CONTROL);
684
685         if (shift < 0)
686                 return 0;
687
688         return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
689 }
690
691 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
692 {
693         struct brcmnand_controller *ctrl = host->ctrl;
694         int shift = brcmnand_sector_1k_shift(ctrl);
695         u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
696                                                   BRCMNAND_CS_ACC_CONTROL);
697         u32 tmp;
698
699         if (shift < 0)
700                 return;
701
702         tmp = nand_readreg(ctrl, acc_control_offs);
703         tmp &= ~(1 << shift);
704         tmp |= (!!val) << shift;
705         nand_writereg(ctrl, acc_control_offs, tmp);
706 }
707
708 /***********************************************************************
709  * CS_NAND_SELECT
710  ***********************************************************************/
711
712 enum {
713         CS_SELECT_NAND_WP                       = BIT(29),
714         CS_SELECT_AUTO_DEVICE_ID_CFG            = BIT(30),
715 };
716
717 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
718 {
719         u32 val = en ? CS_SELECT_NAND_WP : 0;
720
721         brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
722 }
723
724 /***********************************************************************
725  * Flash DMA
726  ***********************************************************************/
727
728 enum flash_dma_reg {
729         FLASH_DMA_REVISION              = 0x00,
730         FLASH_DMA_FIRST_DESC            = 0x04,
731         FLASH_DMA_FIRST_DESC_EXT        = 0x08,
732         FLASH_DMA_CTRL                  = 0x0c,
733         FLASH_DMA_MODE                  = 0x10,
734         FLASH_DMA_STATUS                = 0x14,
735         FLASH_DMA_INTERRUPT_DESC        = 0x18,
736         FLASH_DMA_INTERRUPT_DESC_EXT    = 0x1c,
737         FLASH_DMA_ERROR_STATUS          = 0x20,
738         FLASH_DMA_CURRENT_DESC          = 0x24,
739         FLASH_DMA_CURRENT_DESC_EXT      = 0x28,
740 };
741
742 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
743 {
744         return ctrl->flash_dma_base;
745 }
746
747 static inline bool flash_dma_buf_ok(const void *buf)
748 {
749         return buf && !is_vmalloc_addr(buf) &&
750                 likely(IS_ALIGNED((uintptr_t)buf, 4));
751 }
752
753 static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
754                                     u32 val)
755 {
756         brcmnand_writel(val, ctrl->flash_dma_base + offs);
757 }
758
759 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
760 {
761         return brcmnand_readl(ctrl->flash_dma_base + offs);
762 }
763
764 /* Low-level operation types: command, address, write, or read */
765 enum brcmnand_llop_type {
766         LL_OP_CMD,
767         LL_OP_ADDR,
768         LL_OP_WR,
769         LL_OP_RD,
770 };
771
772 /***********************************************************************
773  * Internal support functions
774  ***********************************************************************/
775
776 static inline bool is_hamming_ecc(struct brcmnand_cfg *cfg)
777 {
778         return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
779                 cfg->ecc_level == 15;
780 }
781
782 /*
783  * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
784  * the layout/configuration.
785  * Returns -ERRCODE on failure.
786  */
787 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
788                                           struct mtd_oob_region *oobregion)
789 {
790         struct nand_chip *chip = mtd_to_nand(mtd);
791         struct brcmnand_host *host = nand_get_controller_data(chip);
792         struct brcmnand_cfg *cfg = &host->hwcfg;
793         int sas = cfg->spare_area_size << cfg->sector_size_1k;
794         int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
795
796         if (section >= sectors)
797                 return -ERANGE;
798
799         oobregion->offset = (section * sas) + 6;
800         oobregion->length = 3;
801
802         return 0;
803 }
804
805 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
806                                            struct mtd_oob_region *oobregion)
807 {
808         struct nand_chip *chip = mtd_to_nand(mtd);
809         struct brcmnand_host *host = nand_get_controller_data(chip);
810         struct brcmnand_cfg *cfg = &host->hwcfg;
811         int sas = cfg->spare_area_size << cfg->sector_size_1k;
812         int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
813
814         if (section >= sectors * 2)
815                 return -ERANGE;
816
817         oobregion->offset = (section / 2) * sas;
818
819         if (section & 1) {
820                 oobregion->offset += 9;
821                 oobregion->length = 7;
822         } else {
823                 oobregion->length = 6;
824
825                 /* First sector of each page may have BBI */
826                 if (!section) {
827                         /*
828                          * Small-page NAND use byte 6 for BBI while large-page
829                          * NAND use byte 0.
830                          */
831                         if (cfg->page_size > 512)
832                                 oobregion->offset++;
833                         oobregion->length--;
834                 }
835         }
836
837         return 0;
838 }
839
840 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
841         .ecc = brcmnand_hamming_ooblayout_ecc,
842         .free = brcmnand_hamming_ooblayout_free,
843 };
844
845 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
846                                       struct mtd_oob_region *oobregion)
847 {
848         struct nand_chip *chip = mtd_to_nand(mtd);
849         struct brcmnand_host *host = nand_get_controller_data(chip);
850         struct brcmnand_cfg *cfg = &host->hwcfg;
851         int sas = cfg->spare_area_size << cfg->sector_size_1k;
852         int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
853
854         if (section >= sectors)
855                 return -ERANGE;
856
857         oobregion->offset = (section * (sas + 1)) - chip->ecc.bytes;
858         oobregion->length = chip->ecc.bytes;
859
860         return 0;
861 }
862
863 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
864                                           struct mtd_oob_region *oobregion)
865 {
866         struct nand_chip *chip = mtd_to_nand(mtd);
867         struct brcmnand_host *host = nand_get_controller_data(chip);
868         struct brcmnand_cfg *cfg = &host->hwcfg;
869         int sas = cfg->spare_area_size << cfg->sector_size_1k;
870         int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
871
872         if (section >= sectors)
873                 return -ERANGE;
874
875         if (sas <= chip->ecc.bytes)
876                 return 0;
877
878         oobregion->offset = section * sas;
879         oobregion->length = sas - chip->ecc.bytes;
880
881         if (!section) {
882                 oobregion->offset++;
883                 oobregion->length--;
884         }
885
886         return 0;
887 }
888
889 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
890                                           struct mtd_oob_region *oobregion)
891 {
892         struct nand_chip *chip = mtd_to_nand(mtd);
893         struct brcmnand_host *host = nand_get_controller_data(chip);
894         struct brcmnand_cfg *cfg = &host->hwcfg;
895         int sas = cfg->spare_area_size << cfg->sector_size_1k;
896
897         if (section > 1 || sas - chip->ecc.bytes < 6 ||
898             (section && sas - chip->ecc.bytes == 6))
899                 return -ERANGE;
900
901         if (!section) {
902                 oobregion->offset = 0;
903                 oobregion->length = 5;
904         } else {
905                 oobregion->offset = 6;
906                 oobregion->length = sas - chip->ecc.bytes - 6;
907         }
908
909         return 0;
910 }
911
912 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
913         .ecc = brcmnand_bch_ooblayout_ecc,
914         .free = brcmnand_bch_ooblayout_free_lp,
915 };
916
917 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
918         .ecc = brcmnand_bch_ooblayout_ecc,
919         .free = brcmnand_bch_ooblayout_free_sp,
920 };
921
922 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
923 {
924         struct brcmnand_cfg *p = &host->hwcfg;
925         struct mtd_info *mtd = nand_to_mtd(&host->chip);
926         struct nand_ecc_ctrl *ecc = &host->chip.ecc;
927         unsigned int ecc_level = p->ecc_level;
928         int sas = p->spare_area_size << p->sector_size_1k;
929         int sectors = p->page_size / (512 << p->sector_size_1k);
930
931         if (p->sector_size_1k)
932                 ecc_level <<= 1;
933
934         if (is_hamming_ecc(p)) {
935                 ecc->bytes = 3 * sectors;
936                 mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
937                 return 0;
938         }
939
940         /*
941          * CONTROLLER_VERSION:
942          *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
943          *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
944          * But we will just be conservative.
945          */
946         ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
947         if (p->page_size == 512)
948                 mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
949         else
950                 mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
951
952         if (ecc->bytes >= sas) {
953                 dev_err(&host->pdev->dev,
954                         "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
955                         ecc->bytes, sas);
956                 return -EINVAL;
957         }
958
959         return 0;
960 }
961
962 static void brcmnand_wp(struct mtd_info *mtd, int wp)
963 {
964         struct nand_chip *chip = mtd_to_nand(mtd);
965         struct brcmnand_host *host = nand_get_controller_data(chip);
966         struct brcmnand_controller *ctrl = host->ctrl;
967
968         if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
969                 static int old_wp = -1;
970
971                 if (old_wp != wp) {
972                         dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
973                         old_wp = wp;
974                 }
975                 brcmnand_set_wp(ctrl, wp);
976         }
977 }
978
979 /* Helper functions for reading and writing OOB registers */
980 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
981 {
982         u16 offset0, offset10, reg_offs;
983
984         offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
985         offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
986
987         if (offs >= ctrl->max_oob)
988                 return 0x77;
989
990         if (offs >= 16 && offset10)
991                 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
992         else
993                 reg_offs = offset0 + (offs & ~0x03);
994
995         return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
996 }
997
998 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
999                                  u32 data)
1000 {
1001         u16 offset0, offset10, reg_offs;
1002
1003         offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1004         offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1005
1006         if (offs >= ctrl->max_oob)
1007                 return;
1008
1009         if (offs >= 16 && offset10)
1010                 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1011         else
1012                 reg_offs = offset0 + (offs & ~0x03);
1013
1014         nand_writereg(ctrl, reg_offs, data);
1015 }
1016
1017 /*
1018  * read_oob_from_regs - read data from OOB registers
1019  * @ctrl: NAND controller
1020  * @i: sub-page sector index
1021  * @oob: buffer to read to
1022  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1023  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1024  */
1025 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1026                               int sas, int sector_1k)
1027 {
1028         int tbytes = sas << sector_1k;
1029         int j;
1030
1031         /* Adjust OOB values for 1K sector size */
1032         if (sector_1k && (i & 0x01))
1033                 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1034         tbytes = min_t(int, tbytes, ctrl->max_oob);
1035
1036         for (j = 0; j < tbytes; j++)
1037                 oob[j] = oob_reg_read(ctrl, j);
1038         return tbytes;
1039 }
1040
1041 /*
1042  * write_oob_to_regs - write data to OOB registers
1043  * @i: sub-page sector index
1044  * @oob: buffer to write from
1045  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1046  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1047  */
1048 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1049                              const u8 *oob, int sas, int sector_1k)
1050 {
1051         int tbytes = sas << sector_1k;
1052         int j;
1053
1054         /* Adjust OOB values for 1K sector size */
1055         if (sector_1k && (i & 0x01))
1056                 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1057         tbytes = min_t(int, tbytes, ctrl->max_oob);
1058
1059         for (j = 0; j < tbytes; j += 4)
1060                 oob_reg_write(ctrl, j,
1061                                 (oob[j + 0] << 24) |
1062                                 (oob[j + 1] << 16) |
1063                                 (oob[j + 2] <<  8) |
1064                                 (oob[j + 3] <<  0));
1065         return tbytes;
1066 }
1067
1068 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1069 {
1070         struct brcmnand_controller *ctrl = data;
1071
1072         /* Discard all NAND_CTLRDY interrupts during DMA */
1073         if (ctrl->dma_pending)
1074                 return IRQ_HANDLED;
1075
1076         complete(&ctrl->done);
1077         return IRQ_HANDLED;
1078 }
1079
1080 /* Handle SoC-specific interrupt hardware */
1081 static irqreturn_t brcmnand_irq(int irq, void *data)
1082 {
1083         struct brcmnand_controller *ctrl = data;
1084
1085         if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1086                 return brcmnand_ctlrdy_irq(irq, data);
1087
1088         return IRQ_NONE;
1089 }
1090
1091 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1092 {
1093         struct brcmnand_controller *ctrl = data;
1094
1095         complete(&ctrl->dma_done);
1096
1097         return IRQ_HANDLED;
1098 }
1099
1100 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1101 {
1102         struct brcmnand_controller *ctrl = host->ctrl;
1103         u32 intfc;
1104
1105         dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
1106                 brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
1107         BUG_ON(ctrl->cmd_pending != 0);
1108         ctrl->cmd_pending = cmd;
1109
1110         intfc = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1111         BUG_ON(!(intfc & INTFC_CTLR_READY));
1112
1113         mb(); /* flush previous writes */
1114         brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1115                            cmd << brcmnand_cmd_shift(ctrl));
1116 }
1117
1118 /***********************************************************************
1119  * NAND MTD API: read/program/erase
1120  ***********************************************************************/
1121
1122 static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat,
1123         unsigned int ctrl)
1124 {
1125         /* intentionally left blank */
1126 }
1127
1128 static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
1129 {
1130         struct nand_chip *chip = mtd_to_nand(mtd);
1131         struct brcmnand_host *host = nand_get_controller_data(chip);
1132         struct brcmnand_controller *ctrl = host->ctrl;
1133         unsigned long timeo = msecs_to_jiffies(100);
1134
1135         dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1136         if (ctrl->cmd_pending &&
1137                         wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
1138                 u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1139                                         >> brcmnand_cmd_shift(ctrl);
1140
1141                 dev_err_ratelimited(ctrl->dev,
1142                         "timeout waiting for command %#02x\n", cmd);
1143                 dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1144                         brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1145         }
1146         ctrl->cmd_pending = 0;
1147         return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1148                                  INTFC_FLASH_STATUS;
1149 }
1150
1151 enum {
1152         LLOP_RE                         = BIT(16),
1153         LLOP_WE                         = BIT(17),
1154         LLOP_ALE                        = BIT(18),
1155         LLOP_CLE                        = BIT(19),
1156         LLOP_RETURN_IDLE                = BIT(31),
1157
1158         LLOP_DATA_MASK                  = GENMASK(15, 0),
1159 };
1160
1161 static int brcmnand_low_level_op(struct brcmnand_host *host,
1162                                  enum brcmnand_llop_type type, u32 data,
1163                                  bool last_op)
1164 {
1165         struct mtd_info *mtd = nand_to_mtd(&host->chip);
1166         struct nand_chip *chip = &host->chip;
1167         struct brcmnand_controller *ctrl = host->ctrl;
1168         u32 tmp;
1169
1170         tmp = data & LLOP_DATA_MASK;
1171         switch (type) {
1172         case LL_OP_CMD:
1173                 tmp |= LLOP_WE | LLOP_CLE;
1174                 break;
1175         case LL_OP_ADDR:
1176                 /* WE | ALE */
1177                 tmp |= LLOP_WE | LLOP_ALE;
1178                 break;
1179         case LL_OP_WR:
1180                 /* WE */
1181                 tmp |= LLOP_WE;
1182                 break;
1183         case LL_OP_RD:
1184                 /* RE */
1185                 tmp |= LLOP_RE;
1186                 break;
1187         }
1188         if (last_op)
1189                 /* RETURN_IDLE */
1190                 tmp |= LLOP_RETURN_IDLE;
1191
1192         dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1193
1194         brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1195         (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1196
1197         brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1198         return brcmnand_waitfunc(mtd, chip);
1199 }
1200
1201 static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command,
1202                              int column, int page_addr)
1203 {
1204         struct nand_chip *chip = mtd_to_nand(mtd);
1205         struct brcmnand_host *host = nand_get_controller_data(chip);
1206         struct brcmnand_controller *ctrl = host->ctrl;
1207         u64 addr = (u64)page_addr << chip->page_shift;
1208         int native_cmd = 0;
1209
1210         if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1211                         command == NAND_CMD_RNDOUT)
1212                 addr = (u64)column;
1213         /* Avoid propagating a negative, don't-care address */
1214         else if (page_addr < 0)
1215                 addr = 0;
1216
1217         dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1218                 (unsigned long long)addr);
1219
1220         host->last_cmd = command;
1221         host->last_byte = 0;
1222         host->last_addr = addr;
1223
1224         switch (command) {
1225         case NAND_CMD_RESET:
1226                 native_cmd = CMD_FLASH_RESET;
1227                 break;
1228         case NAND_CMD_STATUS:
1229                 native_cmd = CMD_STATUS_READ;
1230                 break;
1231         case NAND_CMD_READID:
1232                 native_cmd = CMD_DEVICE_ID_READ;
1233                 break;
1234         case NAND_CMD_READOOB:
1235                 native_cmd = CMD_SPARE_AREA_READ;
1236                 break;
1237         case NAND_CMD_ERASE1:
1238                 native_cmd = CMD_BLOCK_ERASE;
1239                 brcmnand_wp(mtd, 0);
1240                 break;
1241         case NAND_CMD_PARAM:
1242                 native_cmd = CMD_PARAMETER_READ;
1243                 break;
1244         case NAND_CMD_SET_FEATURES:
1245         case NAND_CMD_GET_FEATURES:
1246                 brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1247                 brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1248                 break;
1249         case NAND_CMD_RNDOUT:
1250                 native_cmd = CMD_PARAMETER_CHANGE_COL;
1251                 addr &= ~((u64)(FC_BYTES - 1));
1252                 /*
1253                  * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1254                  * NB: hwcfg.sector_size_1k may not be initialized yet
1255                  */
1256                 if (brcmnand_get_sector_size_1k(host)) {
1257                         host->hwcfg.sector_size_1k =
1258                                 brcmnand_get_sector_size_1k(host);
1259                         brcmnand_set_sector_size_1k(host, 0);
1260                 }
1261                 break;
1262         }
1263
1264         if (!native_cmd)
1265                 return;
1266
1267         brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1268                 (host->cs << 16) | ((addr >> 32) & 0xffff));
1269         (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1270         brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
1271         (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1272
1273         brcmnand_send_cmd(host, native_cmd);
1274         brcmnand_waitfunc(mtd, chip);
1275
1276         if (native_cmd == CMD_PARAMETER_READ ||
1277                         native_cmd == CMD_PARAMETER_CHANGE_COL) {
1278                 /* Copy flash cache word-wise */
1279                 u32 *flash_cache = (u32 *)ctrl->flash_cache;
1280                 int i;
1281
1282                 brcmnand_soc_data_bus_prepare(ctrl->soc);
1283
1284                 /*
1285                  * Must cache the FLASH_CACHE now, since changes in
1286                  * SECTOR_SIZE_1K may invalidate it
1287                  */
1288                 for (i = 0; i < FC_WORDS; i++)
1289                         /*
1290                          * Flash cache is big endian for parameter pages, at
1291                          * least on STB SoCs
1292                          */
1293                         flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1294
1295                 brcmnand_soc_data_bus_unprepare(ctrl->soc);
1296
1297                 /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1298                 if (host->hwcfg.sector_size_1k)
1299                         brcmnand_set_sector_size_1k(host,
1300                                                     host->hwcfg.sector_size_1k);
1301         }
1302
1303         /* Re-enable protection is necessary only after erase */
1304         if (command == NAND_CMD_ERASE1)
1305                 brcmnand_wp(mtd, 1);
1306 }
1307
1308 static uint8_t brcmnand_read_byte(struct mtd_info *mtd)
1309 {
1310         struct nand_chip *chip = mtd_to_nand(mtd);
1311         struct brcmnand_host *host = nand_get_controller_data(chip);
1312         struct brcmnand_controller *ctrl = host->ctrl;
1313         uint8_t ret = 0;
1314         int addr, offs;
1315
1316         switch (host->last_cmd) {
1317         case NAND_CMD_READID:
1318                 if (host->last_byte < 4)
1319                         ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1320                                 (24 - (host->last_byte << 3));
1321                 else if (host->last_byte < 8)
1322                         ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1323                                 (56 - (host->last_byte << 3));
1324                 break;
1325
1326         case NAND_CMD_READOOB:
1327                 ret = oob_reg_read(ctrl, host->last_byte);
1328                 break;
1329
1330         case NAND_CMD_STATUS:
1331                 ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1332                                         INTFC_FLASH_STATUS;
1333                 if (wp_on) /* hide WP status */
1334                         ret |= NAND_STATUS_WP;
1335                 break;
1336
1337         case NAND_CMD_PARAM:
1338         case NAND_CMD_RNDOUT:
1339                 addr = host->last_addr + host->last_byte;
1340                 offs = addr & (FC_BYTES - 1);
1341
1342                 /* At FC_BYTES boundary, switch to next column */
1343                 if (host->last_byte > 0 && offs == 0)
1344                         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, addr, -1);
1345
1346                 ret = ctrl->flash_cache[offs];
1347                 break;
1348         case NAND_CMD_GET_FEATURES:
1349                 if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1350                         ret = 0;
1351                 } else {
1352                         bool last = host->last_byte ==
1353                                 ONFI_SUBFEATURE_PARAM_LEN - 1;
1354                         brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1355                         ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1356                 }
1357         }
1358
1359         dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1360         host->last_byte++;
1361
1362         return ret;
1363 }
1364
1365 static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1366 {
1367         int i;
1368
1369         for (i = 0; i < len; i++, buf++)
1370                 *buf = brcmnand_read_byte(mtd);
1371 }
1372
1373 static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
1374                                    int len)
1375 {
1376         int i;
1377         struct nand_chip *chip = mtd_to_nand(mtd);
1378         struct brcmnand_host *host = nand_get_controller_data(chip);
1379
1380         switch (host->last_cmd) {
1381         case NAND_CMD_SET_FEATURES:
1382                 for (i = 0; i < len; i++)
1383                         brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1384                                                   (i + 1) == len);
1385                 break;
1386         default:
1387                 BUG();
1388                 break;
1389         }
1390 }
1391
1392 /**
1393  * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1394  * following ahead of time:
1395  *  - Is this descriptor the beginning or end of a linked list?
1396  *  - What is the (DMA) address of the next descriptor in the linked list?
1397  */
1398 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1399                                   struct brcm_nand_dma_desc *desc, u64 addr,
1400                                   dma_addr_t buf, u32 len, u8 dma_cmd,
1401                                   bool begin, bool end,
1402                                   dma_addr_t next_desc)
1403 {
1404         memset(desc, 0, sizeof(*desc));
1405         /* Descriptors are written in native byte order (wordwise) */
1406         desc->next_desc = lower_32_bits(next_desc);
1407         desc->next_desc_ext = upper_32_bits(next_desc);
1408         desc->cmd_irq = (dma_cmd << 24) |
1409                 (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1410                 (!!begin) | ((!!end) << 1); /* head, tail */
1411 #ifdef CONFIG_CPU_BIG_ENDIAN
1412         desc->cmd_irq |= 0x01 << 12;
1413 #endif
1414         desc->dram_addr = lower_32_bits(buf);
1415         desc->dram_addr_ext = upper_32_bits(buf);
1416         desc->tfr_len = len;
1417         desc->total_len = len;
1418         desc->flash_addr = lower_32_bits(addr);
1419         desc->flash_addr_ext = upper_32_bits(addr);
1420         desc->cs = host->cs;
1421         desc->status_valid = 0x01;
1422         return 0;
1423 }
1424
1425 /**
1426  * Kick the FLASH_DMA engine, with a given DMA descriptor
1427  */
1428 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1429 {
1430         struct brcmnand_controller *ctrl = host->ctrl;
1431         unsigned long timeo = msecs_to_jiffies(100);
1432
1433         flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1434         (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1435         flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
1436         (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1437
1438         /* Start FLASH_DMA engine */
1439         ctrl->dma_pending = true;
1440         mb(); /* flush previous writes */
1441         flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1442
1443         if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1444                 dev_err(ctrl->dev,
1445                                 "timeout waiting for DMA; status %#x, error status %#x\n",
1446                                 flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1447                                 flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1448         }
1449         ctrl->dma_pending = false;
1450         flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1451 }
1452
1453 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1454                               u32 len, u8 dma_cmd)
1455 {
1456         struct brcmnand_controller *ctrl = host->ctrl;
1457         dma_addr_t buf_pa;
1458         int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1459
1460         buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1461         if (dma_mapping_error(ctrl->dev, buf_pa)) {
1462                 dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1463                 return -ENOMEM;
1464         }
1465
1466         brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1467                                    dma_cmd, true, true, 0);
1468
1469         brcmnand_dma_run(host, ctrl->dma_pa);
1470
1471         dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1472
1473         if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1474                 return -EBADMSG;
1475         else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1476                 return -EUCLEAN;
1477
1478         return 0;
1479 }
1480
1481 /*
1482  * Assumes proper CS is already set
1483  */
1484 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1485                                 u64 addr, unsigned int trans, u32 *buf,
1486                                 u8 *oob, u64 *err_addr)
1487 {
1488         struct brcmnand_host *host = nand_get_controller_data(chip);
1489         struct brcmnand_controller *ctrl = host->ctrl;
1490         int i, j, ret = 0;
1491
1492         /* Clear error addresses */
1493         brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
1494         brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
1495         brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
1496         brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
1497
1498         brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1499                         (host->cs << 16) | ((addr >> 32) & 0xffff));
1500         (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1501
1502         for (i = 0; i < trans; i++, addr += FC_BYTES) {
1503                 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1504                                    lower_32_bits(addr));
1505                 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1506                 /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1507                 brcmnand_send_cmd(host, CMD_PAGE_READ);
1508                 brcmnand_waitfunc(mtd, chip);
1509
1510                 if (likely(buf)) {
1511                         brcmnand_soc_data_bus_prepare(ctrl->soc);
1512
1513                         for (j = 0; j < FC_WORDS; j++, buf++)
1514                                 *buf = brcmnand_read_fc(ctrl, j);
1515
1516                         brcmnand_soc_data_bus_unprepare(ctrl->soc);
1517                 }
1518
1519                 if (oob)
1520                         oob += read_oob_from_regs(ctrl, i, oob,
1521                                         mtd->oobsize / trans,
1522                                         host->hwcfg.sector_size_1k);
1523
1524                 if (!ret) {
1525                         *err_addr = brcmnand_read_reg(ctrl,
1526                                         BRCMNAND_UNCORR_ADDR) |
1527                                 ((u64)(brcmnand_read_reg(ctrl,
1528                                                 BRCMNAND_UNCORR_EXT_ADDR)
1529                                         & 0xffff) << 32);
1530                         if (*err_addr)
1531                                 ret = -EBADMSG;
1532                 }
1533
1534                 if (!ret) {
1535                         *err_addr = brcmnand_read_reg(ctrl,
1536                                         BRCMNAND_CORR_ADDR) |
1537                                 ((u64)(brcmnand_read_reg(ctrl,
1538                                                 BRCMNAND_CORR_EXT_ADDR)
1539                                         & 0xffff) << 32);
1540                         if (*err_addr)
1541                                 ret = -EUCLEAN;
1542                 }
1543         }
1544
1545         return ret;
1546 }
1547
1548 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
1549                          u64 addr, unsigned int trans, u32 *buf, u8 *oob)
1550 {
1551         struct brcmnand_host *host = nand_get_controller_data(chip);
1552         struct brcmnand_controller *ctrl = host->ctrl;
1553         u64 err_addr = 0;
1554         int err;
1555
1556         dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
1557
1558         brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
1559
1560         if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1561                 err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
1562                                              CMD_PAGE_READ);
1563                 if (err) {
1564                         if (mtd_is_bitflip_or_eccerr(err))
1565                                 err_addr = addr;
1566                         else
1567                                 return -EIO;
1568                 }
1569         } else {
1570                 if (oob)
1571                         memset(oob, 0x99, mtd->oobsize);
1572
1573                 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1574                                                oob, &err_addr);
1575         }
1576
1577         if (mtd_is_eccerr(err)) {
1578                 dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
1579                         (unsigned long long)err_addr);
1580                 mtd->ecc_stats.failed++;
1581                 /* NAND layer expects zero on ECC errors */
1582                 return 0;
1583         }
1584
1585         if (mtd_is_bitflip(err)) {
1586                 unsigned int corrected = brcmnand_count_corrected(ctrl);
1587
1588                 dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
1589                         (unsigned long long)err_addr);
1590                 mtd->ecc_stats.corrected += corrected;
1591                 /* Always exceed the software-imposed threshold */
1592                 return max(mtd->bitflip_threshold, corrected);
1593         }
1594
1595         return 0;
1596 }
1597
1598 static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1599                               uint8_t *buf, int oob_required, int page)
1600 {
1601         struct brcmnand_host *host = nand_get_controller_data(chip);
1602         u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1603
1604         return brcmnand_read(mtd, chip, host->last_addr,
1605                         mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1606 }
1607
1608 static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1609                                   uint8_t *buf, int oob_required, int page)
1610 {
1611         struct brcmnand_host *host = nand_get_controller_data(chip);
1612         u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1613         int ret;
1614
1615         brcmnand_set_ecc_enabled(host, 0);
1616         ret = brcmnand_read(mtd, chip, host->last_addr,
1617                         mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1618         brcmnand_set_ecc_enabled(host, 1);
1619         return ret;
1620 }
1621
1622 static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1623                              int page)
1624 {
1625         return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1626                         mtd->writesize >> FC_SHIFT,
1627                         NULL, (u8 *)chip->oob_poi);
1628 }
1629
1630 static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1631                                  int page)
1632 {
1633         struct brcmnand_host *host = nand_get_controller_data(chip);
1634
1635         brcmnand_set_ecc_enabled(host, 0);
1636         brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1637                 mtd->writesize >> FC_SHIFT,
1638                 NULL, (u8 *)chip->oob_poi);
1639         brcmnand_set_ecc_enabled(host, 1);
1640         return 0;
1641 }
1642
1643 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
1644                           u64 addr, const u32 *buf, u8 *oob)
1645 {
1646         struct brcmnand_host *host = nand_get_controller_data(chip);
1647         struct brcmnand_controller *ctrl = host->ctrl;
1648         unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
1649         int status, ret = 0;
1650
1651         dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
1652
1653         if (unlikely((unsigned long)buf & 0x03)) {
1654                 dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
1655                 buf = (u32 *)((unsigned long)buf & ~0x03);
1656         }
1657
1658         brcmnand_wp(mtd, 0);
1659
1660         for (i = 0; i < ctrl->max_oob; i += 4)
1661                 oob_reg_write(ctrl, i, 0xffffffff);
1662
1663         if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1664                 if (brcmnand_dma_trans(host, addr, (u32 *)buf,
1665                                         mtd->writesize, CMD_PROGRAM_PAGE))
1666                         ret = -EIO;
1667                 goto out;
1668         }
1669
1670         brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1671                         (host->cs << 16) | ((addr >> 32) & 0xffff));
1672         (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1673
1674         for (i = 0; i < trans; i++, addr += FC_BYTES) {
1675                 /* full address MUST be set before populating FC */
1676                 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1677                                    lower_32_bits(addr));
1678                 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1679
1680                 if (buf) {
1681                         brcmnand_soc_data_bus_prepare(ctrl->soc);
1682
1683                         for (j = 0; j < FC_WORDS; j++, buf++)
1684                                 brcmnand_write_fc(ctrl, j, *buf);
1685
1686                         brcmnand_soc_data_bus_unprepare(ctrl->soc);
1687                 } else if (oob) {
1688                         for (j = 0; j < FC_WORDS; j++)
1689                                 brcmnand_write_fc(ctrl, j, 0xffffffff);
1690                 }
1691
1692                 if (oob) {
1693                         oob += write_oob_to_regs(ctrl, i, oob,
1694                                         mtd->oobsize / trans,
1695                                         host->hwcfg.sector_size_1k);
1696                 }
1697
1698                 /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
1699                 brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
1700                 status = brcmnand_waitfunc(mtd, chip);
1701
1702                 if (status & NAND_STATUS_FAIL) {
1703                         dev_info(ctrl->dev, "program failed at %llx\n",
1704                                 (unsigned long long)addr);
1705                         ret = -EIO;
1706                         goto out;
1707                 }
1708         }
1709 out:
1710         brcmnand_wp(mtd, 1);
1711         return ret;
1712 }
1713
1714 static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1715                                const uint8_t *buf, int oob_required, int page)
1716 {
1717         struct brcmnand_host *host = nand_get_controller_data(chip);
1718         void *oob = oob_required ? chip->oob_poi : NULL;
1719
1720         brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1721         return 0;
1722 }
1723
1724 static int brcmnand_write_page_raw(struct mtd_info *mtd,
1725                                    struct nand_chip *chip, const uint8_t *buf,
1726                                    int oob_required, int page)
1727 {
1728         struct brcmnand_host *host = nand_get_controller_data(chip);
1729         void *oob = oob_required ? chip->oob_poi : NULL;
1730
1731         brcmnand_set_ecc_enabled(host, 0);
1732         brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1733         brcmnand_set_ecc_enabled(host, 1);
1734         return 0;
1735 }
1736
1737 static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1738                                   int page)
1739 {
1740         return brcmnand_write(mtd, chip, (u64)page << chip->page_shift,
1741                                   NULL, chip->oob_poi);
1742 }
1743
1744 static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1745                                   int page)
1746 {
1747         struct brcmnand_host *host = nand_get_controller_data(chip);
1748         int ret;
1749
1750         brcmnand_set_ecc_enabled(host, 0);
1751         ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
1752                                  (u8 *)chip->oob_poi);
1753         brcmnand_set_ecc_enabled(host, 1);
1754
1755         return ret;
1756 }
1757
1758 /***********************************************************************
1759  * Per-CS setup (1 NAND device)
1760  ***********************************************************************/
1761
1762 static int brcmnand_set_cfg(struct brcmnand_host *host,
1763                             struct brcmnand_cfg *cfg)
1764 {
1765         struct brcmnand_controller *ctrl = host->ctrl;
1766         struct nand_chip *chip = &host->chip;
1767         u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
1768         u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
1769                         BRCMNAND_CS_CFG_EXT);
1770         u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1771                         BRCMNAND_CS_ACC_CONTROL);
1772         u8 block_size = 0, page_size = 0, device_size = 0;
1773         u32 tmp;
1774
1775         if (ctrl->block_sizes) {
1776                 int i, found;
1777
1778                 for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
1779                         if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
1780                                 block_size = i;
1781                                 found = 1;
1782                         }
1783                 if (!found) {
1784                         dev_warn(ctrl->dev, "invalid block size %u\n",
1785                                         cfg->block_size);
1786                         return -EINVAL;
1787                 }
1788         } else {
1789                 block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
1790         }
1791
1792         if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
1793                                 cfg->block_size > ctrl->max_block_size)) {
1794                 dev_warn(ctrl->dev, "invalid block size %u\n",
1795                                 cfg->block_size);
1796                 block_size = 0;
1797         }
1798
1799         if (ctrl->page_sizes) {
1800                 int i, found;
1801
1802                 for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
1803                         if (ctrl->page_sizes[i] == cfg->page_size) {
1804                                 page_size = i;
1805                                 found = 1;
1806                         }
1807                 if (!found) {
1808                         dev_warn(ctrl->dev, "invalid page size %u\n",
1809                                         cfg->page_size);
1810                         return -EINVAL;
1811                 }
1812         } else {
1813                 page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
1814         }
1815
1816         if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
1817                                 cfg->page_size > ctrl->max_page_size)) {
1818                 dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
1819                 return -EINVAL;
1820         }
1821
1822         if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
1823                 dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
1824                         (unsigned long long)cfg->device_size);
1825                 return -EINVAL;
1826         }
1827         device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
1828
1829         tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
1830                 (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
1831                 (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
1832                 (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
1833                 (device_size << CFG_DEVICE_SIZE_SHIFT);
1834         if (cfg_offs == cfg_ext_offs) {
1835                 tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
1836                        (block_size << CFG_BLK_SIZE_SHIFT);
1837                 nand_writereg(ctrl, cfg_offs, tmp);
1838         } else {
1839                 nand_writereg(ctrl, cfg_offs, tmp);
1840                 tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
1841                       (block_size << CFG_EXT_BLK_SIZE_SHIFT);
1842                 nand_writereg(ctrl, cfg_ext_offs, tmp);
1843         }
1844
1845         tmp = nand_readreg(ctrl, acc_control_offs);
1846         tmp &= ~brcmnand_ecc_level_mask(ctrl);
1847         tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
1848         tmp &= ~brcmnand_spare_area_mask(ctrl);
1849         tmp |= cfg->spare_area_size;
1850         nand_writereg(ctrl, acc_control_offs, tmp);
1851
1852         brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
1853
1854         /* threshold = ceil(BCH-level * 0.75) */
1855         brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
1856
1857         return 0;
1858 }
1859
1860 static void brcmnand_print_cfg(char *buf, struct brcmnand_cfg *cfg)
1861 {
1862         buf += sprintf(buf,
1863                 "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
1864                 (unsigned long long)cfg->device_size >> 20,
1865                 cfg->block_size >> 10,
1866                 cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
1867                 cfg->page_size >= 1024 ? "KiB" : "B",
1868                 cfg->spare_area_size, cfg->device_width);
1869
1870         /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
1871         if (is_hamming_ecc(cfg))
1872                 sprintf(buf, ", Hamming ECC");
1873         else if (cfg->sector_size_1k)
1874                 sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
1875         else
1876                 sprintf(buf, ", BCH-%u", cfg->ecc_level);
1877 }
1878
1879 /*
1880  * Minimum number of bytes to address a page. Calculated as:
1881  *     roundup(log2(size / page-size) / 8)
1882  *
1883  * NB: the following does not "round up" for non-power-of-2 'size'; but this is
1884  *     OK because many other things will break if 'size' is irregular...
1885  */
1886 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
1887 {
1888         return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
1889 }
1890
1891 static int brcmnand_setup_dev(struct brcmnand_host *host)
1892 {
1893         struct mtd_info *mtd = nand_to_mtd(&host->chip);
1894         struct nand_chip *chip = &host->chip;
1895         struct brcmnand_controller *ctrl = host->ctrl;
1896         struct brcmnand_cfg *cfg = &host->hwcfg;
1897         char msg[128];
1898         u32 offs, tmp, oob_sector;
1899         int ret;
1900
1901         memset(cfg, 0, sizeof(*cfg));
1902
1903         ret = of_property_read_u32(nand_get_flash_node(chip),
1904                                    "brcm,nand-oob-sector-size",
1905                                    &oob_sector);
1906         if (ret) {
1907                 /* Use detected size */
1908                 cfg->spare_area_size = mtd->oobsize /
1909                                         (mtd->writesize >> FC_SHIFT);
1910         } else {
1911                 cfg->spare_area_size = oob_sector;
1912         }
1913         if (cfg->spare_area_size > ctrl->max_oob)
1914                 cfg->spare_area_size = ctrl->max_oob;
1915         /*
1916          * Set oobsize to be consistent with controller's spare_area_size, as
1917          * the rest is inaccessible.
1918          */
1919         mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
1920
1921         cfg->device_size = mtd->size;
1922         cfg->block_size = mtd->erasesize;
1923         cfg->page_size = mtd->writesize;
1924         cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
1925         cfg->col_adr_bytes = 2;
1926         cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
1927
1928         if (chip->ecc.mode != NAND_ECC_HW) {
1929                 dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
1930                         chip->ecc.mode);
1931                 return -EINVAL;
1932         }
1933
1934         if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
1935                 if (chip->ecc.strength == 1 && chip->ecc.size == 512)
1936                         /* Default to Hamming for 1-bit ECC, if unspecified */
1937                         chip->ecc.algo = NAND_ECC_HAMMING;
1938                 else
1939                         /* Otherwise, BCH */
1940                         chip->ecc.algo = NAND_ECC_BCH;
1941         }
1942
1943         if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 ||
1944                                                    chip->ecc.size != 512)) {
1945                 dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
1946                         chip->ecc.strength, chip->ecc.size);
1947                 return -EINVAL;
1948         }
1949
1950         switch (chip->ecc.size) {
1951         case 512:
1952                 if (chip->ecc.algo == NAND_ECC_HAMMING)
1953                         cfg->ecc_level = 15;
1954                 else
1955                         cfg->ecc_level = chip->ecc.strength;
1956                 cfg->sector_size_1k = 0;
1957                 break;
1958         case 1024:
1959                 if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
1960                         dev_err(ctrl->dev, "1KB sectors not supported\n");
1961                         return -EINVAL;
1962                 }
1963                 if (chip->ecc.strength & 0x1) {
1964                         dev_err(ctrl->dev,
1965                                 "odd ECC not supported with 1KB sectors\n");
1966                         return -EINVAL;
1967                 }
1968
1969                 cfg->ecc_level = chip->ecc.strength >> 1;
1970                 cfg->sector_size_1k = 1;
1971                 break;
1972         default:
1973                 dev_err(ctrl->dev, "unsupported ECC size: %d\n",
1974                         chip->ecc.size);
1975                 return -EINVAL;
1976         }
1977
1978         cfg->ful_adr_bytes = cfg->blk_adr_bytes;
1979         if (mtd->writesize > 512)
1980                 cfg->ful_adr_bytes += cfg->col_adr_bytes;
1981         else
1982                 cfg->ful_adr_bytes += 1;
1983
1984         ret = brcmnand_set_cfg(host, cfg);
1985         if (ret)
1986                 return ret;
1987
1988         brcmnand_set_ecc_enabled(host, 1);
1989
1990         brcmnand_print_cfg(msg, cfg);
1991         dev_info(ctrl->dev, "detected %s\n", msg);
1992
1993         /* Configure ACC_CONTROL */
1994         offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
1995         tmp = nand_readreg(ctrl, offs);
1996         tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
1997         tmp &= ~ACC_CONTROL_RD_ERASED;
1998         tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
1999         if (ctrl->features & BRCMNAND_HAS_PREFETCH) {
2000                 /*
2001                  * FIXME: Flash DMA + prefetch may see spurious erased-page ECC
2002                  * errors
2003                  */
2004                 if (has_flash_dma(ctrl))
2005                         tmp &= ~ACC_CONTROL_PREFETCH;
2006                 else
2007                         tmp |= ACC_CONTROL_PREFETCH;
2008         }
2009         nand_writereg(ctrl, offs, tmp);
2010
2011         return 0;
2012 }
2013
2014 static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2015 {
2016         struct brcmnand_controller *ctrl = host->ctrl;
2017         struct platform_device *pdev = host->pdev;
2018         struct mtd_info *mtd;
2019         struct nand_chip *chip;
2020         int ret;
2021         u16 cfg_offs;
2022
2023         ret = of_property_read_u32(dn, "reg", &host->cs);
2024         if (ret) {
2025                 dev_err(&pdev->dev, "can't get chip-select\n");
2026                 return -ENXIO;
2027         }
2028
2029         mtd = nand_to_mtd(&host->chip);
2030         chip = &host->chip;
2031
2032         nand_set_flash_node(chip, dn);
2033         nand_set_controller_data(chip, host);
2034         mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2035                                    host->cs);
2036         mtd->owner = THIS_MODULE;
2037         mtd->dev.parent = &pdev->dev;
2038
2039         chip->IO_ADDR_R = (void __iomem *)0xdeadbeef;
2040         chip->IO_ADDR_W = (void __iomem *)0xdeadbeef;
2041
2042         chip->cmd_ctrl = brcmnand_cmd_ctrl;
2043         chip->cmdfunc = brcmnand_cmdfunc;
2044         chip->waitfunc = brcmnand_waitfunc;
2045         chip->read_byte = brcmnand_read_byte;
2046         chip->read_buf = brcmnand_read_buf;
2047         chip->write_buf = brcmnand_write_buf;
2048
2049         chip->ecc.mode = NAND_ECC_HW;
2050         chip->ecc.read_page = brcmnand_read_page;
2051         chip->ecc.write_page = brcmnand_write_page;
2052         chip->ecc.read_page_raw = brcmnand_read_page_raw;
2053         chip->ecc.write_page_raw = brcmnand_write_page_raw;
2054         chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2055         chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2056         chip->ecc.read_oob = brcmnand_read_oob;
2057         chip->ecc.write_oob = brcmnand_write_oob;
2058
2059         chip->controller = &ctrl->controller;
2060
2061         /*
2062          * The bootloader might have configured 16bit mode but
2063          * NAND READID command only works in 8bit mode. We force
2064          * 8bit mode here to ensure that NAND READID commands works.
2065          */
2066         cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2067         nand_writereg(ctrl, cfg_offs,
2068                       nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2069
2070         if (nand_scan_ident(mtd, 1, NULL))
2071                 return -ENXIO;
2072
2073         chip->options |= NAND_NO_SUBPAGE_WRITE;
2074         /*
2075          * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2076          * to/from, and have nand_base pass us a bounce buffer instead, as
2077          * needed.
2078          */
2079         chip->options |= NAND_USE_BOUNCE_BUFFER;
2080
2081         if (chip->bbt_options & NAND_BBT_USE_FLASH)
2082                 chip->bbt_options |= NAND_BBT_NO_OOB;
2083
2084         if (brcmnand_setup_dev(host))
2085                 return -ENXIO;
2086
2087         chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2088         /* only use our internal HW threshold */
2089         mtd->bitflip_threshold = 1;
2090
2091         ret = brcmstb_choose_ecc_layout(host);
2092         if (ret)
2093                 return ret;
2094
2095         if (nand_scan_tail(mtd))
2096                 return -ENXIO;
2097
2098         return mtd_device_register(mtd, NULL, 0);
2099 }
2100
2101 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2102                                             int restore)
2103 {
2104         struct brcmnand_controller *ctrl = host->ctrl;
2105         u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2106         u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2107                         BRCMNAND_CS_CFG_EXT);
2108         u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2109                         BRCMNAND_CS_ACC_CONTROL);
2110         u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2111         u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2112
2113         if (restore) {
2114                 nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2115                 if (cfg_offs != cfg_ext_offs)
2116                         nand_writereg(ctrl, cfg_ext_offs,
2117                                       host->hwcfg.config_ext);
2118                 nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2119                 nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2120                 nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2121         } else {
2122                 host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2123                 if (cfg_offs != cfg_ext_offs)
2124                         host->hwcfg.config_ext =
2125                                 nand_readreg(ctrl, cfg_ext_offs);
2126                 host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2127                 host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2128                 host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2129         }
2130 }
2131
2132 static int brcmnand_suspend(struct device *dev)
2133 {
2134         struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2135         struct brcmnand_host *host;
2136
2137         list_for_each_entry(host, &ctrl->host_list, node)
2138                 brcmnand_save_restore_cs_config(host, 0);
2139
2140         ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2141         ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2142         ctrl->corr_stat_threshold =
2143                 brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2144
2145         if (has_flash_dma(ctrl))
2146                 ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2147
2148         return 0;
2149 }
2150
2151 static int brcmnand_resume(struct device *dev)
2152 {
2153         struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2154         struct brcmnand_host *host;
2155
2156         if (has_flash_dma(ctrl)) {
2157                 flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2158                 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2159         }
2160
2161         brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2162         brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2163         brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2164                         ctrl->corr_stat_threshold);
2165         if (ctrl->soc) {
2166                 /* Clear/re-enable interrupt */
2167                 ctrl->soc->ctlrdy_ack(ctrl->soc);
2168                 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2169         }
2170
2171         list_for_each_entry(host, &ctrl->host_list, node) {
2172                 struct nand_chip *chip = &host->chip;
2173                 struct mtd_info *mtd = nand_to_mtd(chip);
2174
2175                 brcmnand_save_restore_cs_config(host, 1);
2176
2177                 /* Reset the chip, required by some chips after power-up */
2178                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2179         }
2180
2181         return 0;
2182 }
2183
2184 const struct dev_pm_ops brcmnand_pm_ops = {
2185         .suspend                = brcmnand_suspend,
2186         .resume                 = brcmnand_resume,
2187 };
2188 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2189
2190 static const struct of_device_id brcmnand_of_match[] = {
2191         { .compatible = "brcm,brcmnand-v4.0" },
2192         { .compatible = "brcm,brcmnand-v5.0" },
2193         { .compatible = "brcm,brcmnand-v6.0" },
2194         { .compatible = "brcm,brcmnand-v6.1" },
2195         { .compatible = "brcm,brcmnand-v6.2" },
2196         { .compatible = "brcm,brcmnand-v7.0" },
2197         { .compatible = "brcm,brcmnand-v7.1" },
2198         {},
2199 };
2200 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2201
2202 /***********************************************************************
2203  * Platform driver setup (per controller)
2204  ***********************************************************************/
2205
2206 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2207 {
2208         struct device *dev = &pdev->dev;
2209         struct device_node *dn = dev->of_node, *child;
2210         struct brcmnand_controller *ctrl;
2211         struct resource *res;
2212         int ret;
2213
2214         /* We only support device-tree instantiation */
2215         if (!dn)
2216                 return -ENODEV;
2217
2218         if (!of_match_node(brcmnand_of_match, dn))
2219                 return -ENODEV;
2220
2221         ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2222         if (!ctrl)
2223                 return -ENOMEM;
2224
2225         dev_set_drvdata(dev, ctrl);
2226         ctrl->dev = dev;
2227
2228         init_completion(&ctrl->done);
2229         init_completion(&ctrl->dma_done);
2230         spin_lock_init(&ctrl->controller.lock);
2231         init_waitqueue_head(&ctrl->controller.wq);
2232         INIT_LIST_HEAD(&ctrl->host_list);
2233
2234         /* NAND register range */
2235         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2236         ctrl->nand_base = devm_ioremap_resource(dev, res);
2237         if (IS_ERR(ctrl->nand_base))
2238                 return PTR_ERR(ctrl->nand_base);
2239
2240         /* Enable clock before using NAND registers */
2241         ctrl->clk = devm_clk_get(dev, "nand");
2242         if (!IS_ERR(ctrl->clk)) {
2243                 ret = clk_prepare_enable(ctrl->clk);
2244                 if (ret)
2245                         return ret;
2246         } else {
2247                 ret = PTR_ERR(ctrl->clk);
2248                 if (ret == -EPROBE_DEFER)
2249                         return ret;
2250
2251                 ctrl->clk = NULL;
2252         }
2253
2254         /* Initialize NAND revision */
2255         ret = brcmnand_revision_init(ctrl);
2256         if (ret)
2257                 goto err;
2258
2259         /*
2260          * Most chips have this cache at a fixed offset within 'nand' block.
2261          * Some must specify this region separately.
2262          */
2263         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2264         if (res) {
2265                 ctrl->nand_fc = devm_ioremap_resource(dev, res);
2266                 if (IS_ERR(ctrl->nand_fc)) {
2267                         ret = PTR_ERR(ctrl->nand_fc);
2268                         goto err;
2269                 }
2270         } else {
2271                 ctrl->nand_fc = ctrl->nand_base +
2272                                 ctrl->reg_offsets[BRCMNAND_FC_BASE];
2273         }
2274
2275         /* FLASH_DMA */
2276         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
2277         if (res) {
2278                 ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
2279                 if (IS_ERR(ctrl->flash_dma_base)) {
2280                         ret = PTR_ERR(ctrl->flash_dma_base);
2281                         goto err;
2282                 }
2283
2284                 flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
2285                 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2286
2287                 /* Allocate descriptor(s) */
2288                 ctrl->dma_desc = dmam_alloc_coherent(dev,
2289                                                      sizeof(*ctrl->dma_desc),
2290                                                      &ctrl->dma_pa, GFP_KERNEL);
2291                 if (!ctrl->dma_desc) {
2292                         ret = -ENOMEM;
2293                         goto err;
2294                 }
2295
2296                 ctrl->dma_irq = platform_get_irq(pdev, 1);
2297                 if ((int)ctrl->dma_irq < 0) {
2298                         dev_err(dev, "missing FLASH_DMA IRQ\n");
2299                         ret = -ENODEV;
2300                         goto err;
2301                 }
2302
2303                 ret = devm_request_irq(dev, ctrl->dma_irq,
2304                                 brcmnand_dma_irq, 0, DRV_NAME,
2305                                 ctrl);
2306                 if (ret < 0) {
2307                         dev_err(dev, "can't allocate IRQ %d: error %d\n",
2308                                         ctrl->dma_irq, ret);
2309                         goto err;
2310                 }
2311
2312                 dev_info(dev, "enabling FLASH_DMA\n");
2313         }
2314
2315         /* Disable automatic device ID config, direct addressing */
2316         brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
2317                          CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
2318         /* Disable XOR addressing */
2319         brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
2320
2321         if (ctrl->features & BRCMNAND_HAS_WP) {
2322                 /* Permanently disable write protection */
2323                 if (wp_on == 2)
2324                         brcmnand_set_wp(ctrl, false);
2325         } else {
2326                 wp_on = 0;
2327         }
2328
2329         /* IRQ */
2330         ctrl->irq = platform_get_irq(pdev, 0);
2331         if ((int)ctrl->irq < 0) {
2332                 dev_err(dev, "no IRQ defined\n");
2333                 ret = -ENODEV;
2334                 goto err;
2335         }
2336
2337         /*
2338          * Some SoCs integrate this controller (e.g., its interrupt bits) in
2339          * interesting ways
2340          */
2341         if (soc) {
2342                 ctrl->soc = soc;
2343
2344                 ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
2345                                        DRV_NAME, ctrl);
2346
2347                 /* Enable interrupt */
2348                 ctrl->soc->ctlrdy_ack(ctrl->soc);
2349                 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2350         } else {
2351                 /* Use standard interrupt infrastructure */
2352                 ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
2353                                        DRV_NAME, ctrl);
2354         }
2355         if (ret < 0) {
2356                 dev_err(dev, "can't allocate IRQ %d: error %d\n",
2357                         ctrl->irq, ret);
2358                 goto err;
2359         }
2360
2361         for_each_available_child_of_node(dn, child) {
2362                 if (of_device_is_compatible(child, "brcm,nandcs")) {
2363                         struct brcmnand_host *host;
2364
2365                         host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2366                         if (!host) {
2367                                 of_node_put(child);
2368                                 ret = -ENOMEM;
2369                                 goto err;
2370                         }
2371                         host->pdev = pdev;
2372                         host->ctrl = ctrl;
2373
2374                         ret = brcmnand_init_cs(host, child);
2375                         if (ret) {
2376                                 devm_kfree(dev, host);
2377                                 continue; /* Try all chip-selects */
2378                         }
2379
2380                         list_add_tail(&host->node, &ctrl->host_list);
2381                 }
2382         }
2383
2384         /* No chip-selects could initialize properly */
2385         if (list_empty(&ctrl->host_list)) {
2386                 ret = -ENODEV;
2387                 goto err;
2388         }
2389
2390         return 0;
2391
2392 err:
2393         clk_disable_unprepare(ctrl->clk);
2394         return ret;
2395
2396 }
2397 EXPORT_SYMBOL_GPL(brcmnand_probe);
2398
2399 int brcmnand_remove(struct platform_device *pdev)
2400 {
2401         struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2402         struct brcmnand_host *host;
2403
2404         list_for_each_entry(host, &ctrl->host_list, node)
2405                 nand_release(nand_to_mtd(&host->chip));
2406
2407         clk_disable_unprepare(ctrl->clk);
2408
2409         dev_set_drvdata(&pdev->dev, NULL);
2410
2411         return 0;
2412 }
2413 EXPORT_SYMBOL_GPL(brcmnand_remove);
2414
2415 MODULE_LICENSE("GPL v2");
2416 MODULE_AUTHOR("Kevin Cernekee");
2417 MODULE_AUTHOR("Brian Norris");
2418 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
2419 MODULE_ALIAS("platform:brcmnand");