Merge branch 'master' of ../mine
[cascardo/linux.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright © 2006-2007, 2010 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *          Jack Lan <jack.lan@freescale.com>
8  *          Roy Zang <tie-fei.zang@freescale.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  */
24
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40
41 #include <asm/io.h>
42 #include <asm/fsl_lbc.h>
43
44 #define MAX_BANKS 8
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
47
48 /* mtd information per set */
49
50 struct fsl_elbc_mtd {
51         struct mtd_info mtd;
52         struct nand_chip chip;
53         struct fsl_lbc_ctrl *ctrl;
54
55         struct device *dev;
56         int bank;               /* Chip select bank number           */
57         u8 __iomem *vbase;      /* Chip select base virtual address  */
58         int page_size;          /* NAND page size (0=512, 1=2048)    */
59         unsigned int fmr;       /* FCM Flash Mode Register value     */
60 };
61
62 /* Freescale eLBC FCM controller infomation */
63
64 struct fsl_elbc_fcm_ctrl {
65         struct nand_hw_control controller;
66         struct fsl_elbc_mtd *chips[MAX_BANKS];
67
68         u8 __iomem *addr;        /* Address of assigned FCM buffer        */
69         unsigned int page;       /* Last page written to / read from      */
70         unsigned int read_bytes; /* Number of bytes read during command   */
71         unsigned int column;     /* Saved column from SEQIN               */
72         unsigned int index;      /* Pointer to next byte to 'read'        */
73         unsigned int status;     /* status read from LTESR after last op  */
74         unsigned int mdr;        /* UPM/FCM Data Register value           */
75         unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
76         unsigned int oob;        /* Non zero if operating on OOB data     */
77         unsigned int counter;    /* counter for the initializations       */
78         char *oob_poi;           /* Place to write ECC after read back    */
79 };
80
81 /* These map to the positions used by the FCM hardware ECC generator */
82
83 /* Small Page FLASH with FMR[ECCM] = 0 */
84 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
85         .eccbytes = 3,
86         .eccpos = {6, 7, 8},
87         .oobfree = { {0, 5}, {9, 7} },
88 };
89
90 /* Small Page FLASH with FMR[ECCM] = 1 */
91 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
92         .eccbytes = 3,
93         .eccpos = {8, 9, 10},
94         .oobfree = { {0, 5}, {6, 2}, {11, 5} },
95 };
96
97 /* Large Page FLASH with FMR[ECCM] = 0 */
98 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
99         .eccbytes = 12,
100         .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
101         .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
102 };
103
104 /* Large Page FLASH with FMR[ECCM] = 1 */
105 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
106         .eccbytes = 12,
107         .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
108         .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
109 };
110
111 /*
112  * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
113  * 1, so we have to adjust bad block pattern. This pattern should be used for
114  * x8 chips only. So far hardware does not support x16 chips anyway.
115  */
116 static u8 scan_ff_pattern[] = { 0xff, };
117
118 static struct nand_bbt_descr largepage_memorybased = {
119         .options = 0,
120         .offs = 0,
121         .len = 1,
122         .pattern = scan_ff_pattern,
123 };
124
125 /*
126  * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
127  * interfere with ECC positions, that's why we implement our own descriptors.
128  * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
129  */
130 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
131 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
132
133 static struct nand_bbt_descr bbt_main_descr = {
134         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
135                    NAND_BBT_2BIT | NAND_BBT_VERSION,
136         .offs = 11,
137         .len = 4,
138         .veroffs = 15,
139         .maxblocks = 4,
140         .pattern = bbt_pattern,
141 };
142
143 static struct nand_bbt_descr bbt_mirror_descr = {
144         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
145                    NAND_BBT_2BIT | NAND_BBT_VERSION,
146         .offs = 11,
147         .len = 4,
148         .veroffs = 15,
149         .maxblocks = 4,
150         .pattern = mirror_pattern,
151 };
152
153 /*=================================*/
154
155 /*
156  * Set up the FCM hardware block and page address fields, and the fcm
157  * structure addr field to point to the correct FCM buffer in memory
158  */
159 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
160 {
161         struct nand_chip *chip = mtd->priv;
162         struct fsl_elbc_mtd *priv = chip->priv;
163         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
164         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
165         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
166         int buf_num;
167
168         elbc_fcm_ctrl->page = page_addr;
169
170         out_be32(&lbc->fbar,
171                  page_addr >> (chip->phys_erase_shift - chip->page_shift));
172
173         if (priv->page_size) {
174                 out_be32(&lbc->fpar,
175                          ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
176                          (oob ? FPAR_LP_MS : 0) | column);
177                 buf_num = (page_addr & 1) << 2;
178         } else {
179                 out_be32(&lbc->fpar,
180                          ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
181                          (oob ? FPAR_SP_MS : 0) | column);
182                 buf_num = page_addr & 7;
183         }
184
185         elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
186         elbc_fcm_ctrl->index = column;
187
188         /* for OOB data point to the second half of the buffer */
189         if (oob)
190                 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
191
192         dev_vdbg(priv->dev, "set_addr: bank=%d, "
193                             "elbc_fcm_ctrl->addr=0x%p (0x%p), "
194                             "index %x, pes %d ps %d\n",
195                  buf_num, elbc_fcm_ctrl->addr, priv->vbase,
196                  elbc_fcm_ctrl->index,
197                  chip->phys_erase_shift, chip->page_shift);
198 }
199
200 /*
201  * execute FCM command and wait for it to complete
202  */
203 static int fsl_elbc_run_command(struct mtd_info *mtd)
204 {
205         struct nand_chip *chip = mtd->priv;
206         struct fsl_elbc_mtd *priv = chip->priv;
207         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
208         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
209         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
210
211         /* Setup the FMR[OP] to execute without write protection */
212         out_be32(&lbc->fmr, priv->fmr | 3);
213         if (elbc_fcm_ctrl->use_mdr)
214                 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
215
216         dev_vdbg(priv->dev,
217                  "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
218                  in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
219         dev_vdbg(priv->dev,
220                  "fsl_elbc_run_command: fbar=%08x fpar=%08x "
221                  "fbcr=%08x bank=%d\n",
222                  in_be32(&lbc->fbar), in_be32(&lbc->fpar),
223                  in_be32(&lbc->fbcr), priv->bank);
224
225         ctrl->irq_status = 0;
226         /* execute special operation */
227         out_be32(&lbc->lsor, priv->bank);
228
229         /* wait for FCM complete flag or timeout */
230         wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
231                            FCM_TIMEOUT_MSECS * HZ/1000);
232         elbc_fcm_ctrl->status = ctrl->irq_status;
233         /* store mdr value in case it was needed */
234         if (elbc_fcm_ctrl->use_mdr)
235                 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
236
237         elbc_fcm_ctrl->use_mdr = 0;
238
239         if (elbc_fcm_ctrl->status != LTESR_CC) {
240                 dev_info(priv->dev,
241                          "command failed: fir %x fcr %x status %x mdr %x\n",
242                          in_be32(&lbc->fir), in_be32(&lbc->fcr),
243                          elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
244                 return -EIO;
245         }
246
247         return 0;
248 }
249
250 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
251 {
252         struct fsl_elbc_mtd *priv = chip->priv;
253         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
254         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
255
256         if (priv->page_size) {
257                 out_be32(&lbc->fir,
258                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
259                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
260                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
261                          (FIR_OP_CM1 << FIR_OP3_SHIFT) |
262                          (FIR_OP_RBW << FIR_OP4_SHIFT));
263
264                 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
265                                     (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
266         } else {
267                 out_be32(&lbc->fir,
268                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
269                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
270                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
271                          (FIR_OP_RBW << FIR_OP3_SHIFT));
272
273                 if (oob)
274                         out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
275                 else
276                         out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
277         }
278 }
279
280 /* cmdfunc send commands to the FCM */
281 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
282                              int column, int page_addr)
283 {
284         struct nand_chip *chip = mtd->priv;
285         struct fsl_elbc_mtd *priv = chip->priv;
286         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
287         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
288         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
289
290         elbc_fcm_ctrl->use_mdr = 0;
291
292         /* clear the read buffer */
293         elbc_fcm_ctrl->read_bytes = 0;
294         if (command != NAND_CMD_PAGEPROG)
295                 elbc_fcm_ctrl->index = 0;
296
297         switch (command) {
298         /* READ0 and READ1 read the entire buffer to use hardware ECC. */
299         case NAND_CMD_READ1:
300                 column += 256;
301
302         /* fall-through */
303         case NAND_CMD_READ0:
304                 dev_dbg(priv->dev,
305                         "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
306                         " 0x%x, column: 0x%x.\n", page_addr, column);
307
308
309                 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
310                 set_addr(mtd, 0, page_addr, 0);
311
312                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
313                 elbc_fcm_ctrl->index += column;
314
315                 fsl_elbc_do_read(chip, 0);
316                 fsl_elbc_run_command(mtd);
317                 return;
318
319         /* READOOB reads only the OOB because no ECC is performed. */
320         case NAND_CMD_READOOB:
321                 dev_vdbg(priv->dev,
322                          "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
323                          " 0x%x, column: 0x%x.\n", page_addr, column);
324
325                 out_be32(&lbc->fbcr, mtd->oobsize - column);
326                 set_addr(mtd, column, page_addr, 1);
327
328                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
329
330                 fsl_elbc_do_read(chip, 1);
331                 fsl_elbc_run_command(mtd);
332                 return;
333
334         /* READID must read all 5 possible bytes while CEB is active */
335         case NAND_CMD_READID:
336                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
337
338                 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
339                                     (FIR_OP_UA  << FIR_OP1_SHIFT) |
340                                     (FIR_OP_RBW << FIR_OP2_SHIFT));
341                 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
342                 /* 5 bytes for manuf, device and exts */
343                 out_be32(&lbc->fbcr, 5);
344                 elbc_fcm_ctrl->read_bytes = 5;
345                 elbc_fcm_ctrl->use_mdr = 1;
346                 elbc_fcm_ctrl->mdr = 0;
347
348                 set_addr(mtd, 0, 0, 0);
349                 fsl_elbc_run_command(mtd);
350                 return;
351
352         /* ERASE1 stores the block and page address */
353         case NAND_CMD_ERASE1:
354                 dev_vdbg(priv->dev,
355                          "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
356                          "page_addr: 0x%x.\n", page_addr);
357                 set_addr(mtd, 0, page_addr, 0);
358                 return;
359
360         /* ERASE2 uses the block and page address from ERASE1 */
361         case NAND_CMD_ERASE2:
362                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
363
364                 out_be32(&lbc->fir,
365                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
366                          (FIR_OP_PA  << FIR_OP1_SHIFT) |
367                          (FIR_OP_CM2 << FIR_OP2_SHIFT) |
368                          (FIR_OP_CW1 << FIR_OP3_SHIFT) |
369                          (FIR_OP_RS  << FIR_OP4_SHIFT));
370
371                 out_be32(&lbc->fcr,
372                          (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
373                          (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
374                          (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
375
376                 out_be32(&lbc->fbcr, 0);
377                 elbc_fcm_ctrl->read_bytes = 0;
378                 elbc_fcm_ctrl->use_mdr = 1;
379
380                 fsl_elbc_run_command(mtd);
381                 return;
382
383         /* SEQIN sets up the addr buffer and all registers except the length */
384         case NAND_CMD_SEQIN: {
385                 __be32 fcr;
386                 dev_vdbg(priv->dev,
387                          "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
388                          "page_addr: 0x%x, column: 0x%x.\n",
389                          page_addr, column);
390
391                 elbc_fcm_ctrl->use_mdr = 1;
392
393                 fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
394                       (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
395                       (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
396
397                 if (priv->page_size) {
398                         out_be32(&lbc->fir,
399                                  (FIR_OP_CM2 << FIR_OP0_SHIFT) |
400                                  (FIR_OP_CA  << FIR_OP1_SHIFT) |
401                                  (FIR_OP_PA  << FIR_OP2_SHIFT) |
402                                  (FIR_OP_WB  << FIR_OP3_SHIFT) |
403                                  (FIR_OP_CM3 << FIR_OP4_SHIFT) |
404                                  (FIR_OP_CW1 << FIR_OP5_SHIFT) |
405                                  (FIR_OP_RS  << FIR_OP6_SHIFT));
406                 } else {
407                         out_be32(&lbc->fir,
408                                  (FIR_OP_CM0 << FIR_OP0_SHIFT) |
409                                  (FIR_OP_CM2 << FIR_OP1_SHIFT) |
410                                  (FIR_OP_CA  << FIR_OP2_SHIFT) |
411                                  (FIR_OP_PA  << FIR_OP3_SHIFT) |
412                                  (FIR_OP_WB  << FIR_OP4_SHIFT) |
413                                  (FIR_OP_CM3 << FIR_OP5_SHIFT) |
414                                  (FIR_OP_CW1 << FIR_OP6_SHIFT) |
415                                  (FIR_OP_RS  << FIR_OP7_SHIFT));
416
417                         if (column >= mtd->writesize) {
418                                 /* OOB area --> READOOB */
419                                 column -= mtd->writesize;
420                                 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
421                                 elbc_fcm_ctrl->oob = 1;
422                         } else {
423                                 WARN_ON(column != 0);
424                                 /* First 256 bytes --> READ0 */
425                                 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
426                         }
427                 }
428
429                 out_be32(&lbc->fcr, fcr);
430                 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
431                 return;
432         }
433
434         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
435         case NAND_CMD_PAGEPROG: {
436                 int full_page;
437                 dev_vdbg(priv->dev,
438                          "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
439                          "writing %d bytes.\n", elbc_fcm_ctrl->index);
440
441                 /* if the write did not start at 0 or is not a full page
442                  * then set the exact length, otherwise use a full page
443                  * write so the HW generates the ECC.
444                  */
445                 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
446                     elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize) {
447                         out_be32(&lbc->fbcr, elbc_fcm_ctrl->index);
448                         full_page = 0;
449                 } else {
450                         out_be32(&lbc->fbcr, 0);
451                         full_page = 1;
452                 }
453
454                 fsl_elbc_run_command(mtd);
455
456                 /* Read back the page in order to fill in the ECC for the
457                  * caller.  Is this really needed?
458                  */
459                 if (full_page && elbc_fcm_ctrl->oob_poi) {
460                         out_be32(&lbc->fbcr, 3);
461                         set_addr(mtd, 6, page_addr, 1);
462
463                         elbc_fcm_ctrl->read_bytes = mtd->writesize + 9;
464
465                         fsl_elbc_do_read(chip, 1);
466                         fsl_elbc_run_command(mtd);
467
468                         memcpy_fromio(elbc_fcm_ctrl->oob_poi + 6,
469                                 &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], 3);
470                         elbc_fcm_ctrl->index += 3;
471                 }
472
473                 elbc_fcm_ctrl->oob_poi = NULL;
474                 return;
475         }
476
477         /* CMD_STATUS must read the status byte while CEB is active */
478         /* Note - it does not wait for the ready line */
479         case NAND_CMD_STATUS:
480                 out_be32(&lbc->fir,
481                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
482                          (FIR_OP_RBW << FIR_OP1_SHIFT));
483                 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
484                 out_be32(&lbc->fbcr, 1);
485                 set_addr(mtd, 0, 0, 0);
486                 elbc_fcm_ctrl->read_bytes = 1;
487
488                 fsl_elbc_run_command(mtd);
489
490                 /* The chip always seems to report that it is
491                  * write-protected, even when it is not.
492                  */
493                 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
494                 return;
495
496         /* RESET without waiting for the ready line */
497         case NAND_CMD_RESET:
498                 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
499                 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
500                 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
501                 fsl_elbc_run_command(mtd);
502                 return;
503
504         default:
505                 dev_err(priv->dev,
506                         "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
507                         command);
508         }
509 }
510
511 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
512 {
513         /* The hardware does not seem to support multiple
514          * chips per bank.
515          */
516 }
517
518 /*
519  * Write buf to the FCM Controller Data Buffer
520  */
521 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
522 {
523         struct nand_chip *chip = mtd->priv;
524         struct fsl_elbc_mtd *priv = chip->priv;
525         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
526         unsigned int bufsize = mtd->writesize + mtd->oobsize;
527
528         if (len <= 0) {
529                 dev_err(priv->dev, "write_buf of %d bytes", len);
530                 elbc_fcm_ctrl->status = 0;
531                 return;
532         }
533
534         if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
535                 dev_err(priv->dev,
536                         "write_buf beyond end of buffer "
537                         "(%d requested, %u available)\n",
538                         len, bufsize - elbc_fcm_ctrl->index);
539                 len = bufsize - elbc_fcm_ctrl->index;
540         }
541
542         memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
543         /*
544          * This is workaround for the weird elbc hangs during nand write,
545          * Scott Wood says: "...perhaps difference in how long it takes a
546          * write to make it through the localbus compared to a write to IMMR
547          * is causing problems, and sync isn't helping for some reason."
548          * Reading back the last byte helps though.
549          */
550         in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
551
552         elbc_fcm_ctrl->index += len;
553 }
554
555 /*
556  * read a byte from either the FCM hardware buffer if it has any data left
557  * otherwise issue a command to read a single byte.
558  */
559 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
560 {
561         struct nand_chip *chip = mtd->priv;
562         struct fsl_elbc_mtd *priv = chip->priv;
563         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
564
565         /* If there are still bytes in the FCM, then use the next byte. */
566         if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
567                 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
568
569         dev_err(priv->dev, "read_byte beyond end of buffer\n");
570         return ERR_BYTE;
571 }
572
573 /*
574  * Read from the FCM Controller Data Buffer
575  */
576 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
577 {
578         struct nand_chip *chip = mtd->priv;
579         struct fsl_elbc_mtd *priv = chip->priv;
580         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
581         int avail;
582
583         if (len < 0)
584                 return;
585
586         avail = min((unsigned int)len,
587                         elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
588         memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
589         elbc_fcm_ctrl->index += avail;
590
591         if (len > avail)
592                 dev_err(priv->dev,
593                         "read_buf beyond end of buffer "
594                         "(%d requested, %d available)\n",
595                         len, avail);
596 }
597
598 /*
599  * Verify buffer against the FCM Controller Data Buffer
600  */
601 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
602 {
603         struct nand_chip *chip = mtd->priv;
604         struct fsl_elbc_mtd *priv = chip->priv;
605         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
606         int i;
607
608         if (len < 0) {
609                 dev_err(priv->dev, "write_buf of %d bytes", len);
610                 return -EINVAL;
611         }
612
613         if ((unsigned int)len >
614                         elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
615                 dev_err(priv->dev,
616                         "verify_buf beyond end of buffer "
617                         "(%d requested, %u available)\n",
618                         len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
619
620                 elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
621                 return -EINVAL;
622         }
623
624         for (i = 0; i < len; i++)
625                 if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
626                                 != buf[i])
627                         break;
628
629         elbc_fcm_ctrl->index += len;
630         return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
631 }
632
633 /* This function is called after Program and Erase Operations to
634  * check for success or failure.
635  */
636 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
637 {
638         struct fsl_elbc_mtd *priv = chip->priv;
639         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
640
641         if (elbc_fcm_ctrl->status != LTESR_CC)
642                 return NAND_STATUS_FAIL;
643
644         /* The chip always seems to report that it is
645          * write-protected, even when it is not.
646          */
647         return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
648 }
649
650 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
651 {
652         struct nand_chip *chip = mtd->priv;
653         struct fsl_elbc_mtd *priv = chip->priv;
654         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
655         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
656         unsigned int al;
657
658         /* calculate FMR Address Length field */
659         al = 0;
660         if (chip->pagemask & 0xffff0000)
661                 al++;
662         if (chip->pagemask & 0xff000000)
663                 al++;
664
665         /* add to ECCM mode set in fsl_elbc_init */
666         priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
667                      (al << FMR_AL_SHIFT);
668
669         dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
670                 chip->numchips);
671         dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
672                 chip->chipsize);
673         dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
674                 chip->pagemask);
675         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
676                 chip->chip_delay);
677         dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
678                 chip->badblockpos);
679         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
680                 chip->chip_shift);
681         dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
682                 chip->page_shift);
683         dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
684                 chip->phys_erase_shift);
685         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
686                 chip->ecclayout);
687         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
688                 chip->ecc.mode);
689         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
690                 chip->ecc.steps);
691         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
692                 chip->ecc.bytes);
693         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
694                 chip->ecc.total);
695         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
696                 chip->ecc.layout);
697         dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
698         dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
699         dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
700                 mtd->erasesize);
701         dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
702                 mtd->writesize);
703         dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
704                 mtd->oobsize);
705
706         /* adjust Option Register and ECC to match Flash page size */
707         if (mtd->writesize == 512) {
708                 priv->page_size = 0;
709                 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
710         } else if (mtd->writesize == 2048) {
711                 priv->page_size = 1;
712                 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
713                 /* adjust ecc setup if needed */
714                 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
715                     BR_DECC_CHK_GEN) {
716                         chip->ecc.size = 512;
717                         chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
718                                            &fsl_elbc_oob_lp_eccm1 :
719                                            &fsl_elbc_oob_lp_eccm0;
720                         chip->badblock_pattern = &largepage_memorybased;
721                 }
722         } else {
723                 dev_err(priv->dev,
724                         "fsl_elbc_init: page size %d is not supported\n",
725                         mtd->writesize);
726                 return -1;
727         }
728
729         return 0;
730 }
731
732 static int fsl_elbc_read_page(struct mtd_info *mtd,
733                               struct nand_chip *chip,
734                               uint8_t *buf,
735                               int page)
736 {
737         fsl_elbc_read_buf(mtd, buf, mtd->writesize);
738         fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
739
740         if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
741                 mtd->ecc_stats.failed++;
742
743         return 0;
744 }
745
746 /* ECC will be calculated automatically, and errors will be detected in
747  * waitfunc.
748  */
749 static void fsl_elbc_write_page(struct mtd_info *mtd,
750                                 struct nand_chip *chip,
751                                 const uint8_t *buf)
752 {
753         struct fsl_elbc_mtd *priv = chip->priv;
754         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
755
756         fsl_elbc_write_buf(mtd, buf, mtd->writesize);
757         fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
758
759         elbc_fcm_ctrl->oob_poi = chip->oob_poi;
760 }
761
762 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
763 {
764         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
765         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
766         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
767         struct nand_chip *chip = &priv->chip;
768
769         dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
770
771         /* Fill in fsl_elbc_mtd structure */
772         priv->mtd.priv = chip;
773         priv->mtd.owner = THIS_MODULE;
774
775         /* Set the ECCM according to the settings in bootloader.*/
776         priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
777
778         /* fill in nand_chip structure */
779         /* set up function call table */
780         chip->read_byte = fsl_elbc_read_byte;
781         chip->write_buf = fsl_elbc_write_buf;
782         chip->read_buf = fsl_elbc_read_buf;
783         chip->verify_buf = fsl_elbc_verify_buf;
784         chip->select_chip = fsl_elbc_select_chip;
785         chip->cmdfunc = fsl_elbc_cmdfunc;
786         chip->waitfunc = fsl_elbc_wait;
787
788         chip->bbt_td = &bbt_main_descr;
789         chip->bbt_md = &bbt_mirror_descr;
790
791         /* set up nand options */
792         chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
793                         NAND_USE_FLASH_BBT;
794
795         chip->controller = &elbc_fcm_ctrl->controller;
796         chip->priv = priv;
797
798         chip->ecc.read_page = fsl_elbc_read_page;
799         chip->ecc.write_page = fsl_elbc_write_page;
800
801         /* If CS Base Register selects full hardware ECC then use it */
802         if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
803             BR_DECC_CHK_GEN) {
804                 chip->ecc.mode = NAND_ECC_HW;
805                 /* put in small page settings and adjust later if needed */
806                 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
807                                 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
808                 chip->ecc.size = 512;
809                 chip->ecc.bytes = 3;
810         } else {
811                 /* otherwise fall back to default software ECC */
812                 chip->ecc.mode = NAND_ECC_SOFT;
813         }
814
815         return 0;
816 }
817
818 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
819 {
820         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
821         nand_release(&priv->mtd);
822
823         kfree(priv->mtd.name);
824
825         if (priv->vbase)
826                 iounmap(priv->vbase);
827
828         elbc_fcm_ctrl->chips[priv->bank] = NULL;
829         kfree(priv);
830         kfree(elbc_fcm_ctrl);
831         return 0;
832 }
833
834 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
835
836 static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
837 {
838         struct fsl_lbc_regs __iomem *lbc;
839         struct fsl_elbc_mtd *priv;
840         struct resource res;
841         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
842
843 #ifdef CONFIG_MTD_PARTITIONS
844         static const char *part_probe_types[]
845                 = { "cmdlinepart", "RedBoot", NULL };
846         struct mtd_partition *parts;
847 #endif
848         int ret;
849         int bank;
850         struct device *dev;
851         struct device_node *node = pdev->dev.of_node;
852
853         if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
854                 return -ENODEV;
855         lbc = fsl_lbc_ctrl_dev->regs;
856         dev = fsl_lbc_ctrl_dev->dev;
857
858         /* get, allocate and map the memory resource */
859         ret = of_address_to_resource(node, 0, &res);
860         if (ret) {
861                 dev_err(dev, "failed to get resource\n");
862                 return ret;
863         }
864
865         /* find which chip select it is connected to */
866         for (bank = 0; bank < MAX_BANKS; bank++)
867                 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
868                     (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
869                     (in_be32(&lbc->bank[bank].br) &
870                      in_be32(&lbc->bank[bank].or) & BR_BA)
871                      == fsl_lbc_addr(res.start))
872                         break;
873
874         if (bank >= MAX_BANKS) {
875                 dev_err(dev, "address did not match any chip selects\n");
876                 return -ENODEV;
877         }
878
879         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
880         if (!priv)
881                 return -ENOMEM;
882
883         mutex_lock(&fsl_elbc_nand_mutex);
884         if (!fsl_lbc_ctrl_dev->nand) {
885                 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
886                 if (!elbc_fcm_ctrl) {
887                         dev_err(dev, "failed to allocate memory\n");
888                         mutex_unlock(&fsl_elbc_nand_mutex);
889                         ret = -ENOMEM;
890                         goto err;
891                 }
892                 elbc_fcm_ctrl->counter++;
893
894                 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
895                 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
896                 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
897         } else {
898                 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
899         }
900         mutex_unlock(&fsl_elbc_nand_mutex);
901
902         elbc_fcm_ctrl->chips[bank] = priv;
903         priv->bank = bank;
904         priv->ctrl = fsl_lbc_ctrl_dev;
905         priv->dev = dev;
906
907         priv->vbase = ioremap(res.start, resource_size(&res));
908         if (!priv->vbase) {
909                 dev_err(dev, "failed to map chip region\n");
910                 ret = -ENOMEM;
911                 goto err;
912         }
913
914         priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
915         if (!priv->mtd.name) {
916                 ret = -ENOMEM;
917                 goto err;
918         }
919
920         ret = fsl_elbc_chip_init(priv);
921         if (ret)
922                 goto err;
923
924         ret = nand_scan_ident(&priv->mtd, 1, NULL);
925         if (ret)
926                 goto err;
927
928         ret = fsl_elbc_chip_init_tail(&priv->mtd);
929         if (ret)
930                 goto err;
931
932         ret = nand_scan_tail(&priv->mtd);
933         if (ret)
934                 goto err;
935
936 #ifdef CONFIG_MTD_PARTITIONS
937         /* First look for RedBoot table or partitions on the command
938          * line, these take precedence over device tree information */
939         ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
940         if (ret < 0)
941                 goto err;
942
943 #ifdef CONFIG_MTD_OF_PARTS
944         if (ret == 0) {
945                 ret = of_mtd_parse_partitions(priv->dev, node, &parts);
946                 if (ret < 0)
947                         goto err;
948         }
949 #endif
950
951         if (ret > 0)
952                 add_mtd_partitions(&priv->mtd, parts, ret);
953         else
954 #endif
955                 add_mtd_device(&priv->mtd);
956
957         printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
958                (unsigned long long)res.start, priv->bank);
959         return 0;
960
961 err:
962         fsl_elbc_chip_remove(priv);
963         return ret;
964 }
965
966 static int fsl_elbc_nand_remove(struct platform_device *pdev)
967 {
968         int i;
969         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
970         for (i = 0; i < MAX_BANKS; i++)
971                 if (elbc_fcm_ctrl->chips[i])
972                         fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);
973
974         mutex_lock(&fsl_elbc_nand_mutex);
975         elbc_fcm_ctrl->counter--;
976         if (!elbc_fcm_ctrl->counter) {
977                 fsl_lbc_ctrl_dev->nand = NULL;
978                 kfree(elbc_fcm_ctrl);
979         }
980         mutex_unlock(&fsl_elbc_nand_mutex);
981
982         return 0;
983
984 }
985
986 static const struct of_device_id fsl_elbc_nand_match[] = {
987         { .compatible = "fsl,elbc-fcm-nand", },
988         {}
989 };
990
991 static struct platform_driver fsl_elbc_nand_driver = {
992         .driver = {
993                 .name = "fsl,elbc-fcm-nand",
994                 .owner = THIS_MODULE,
995                 .of_match_table = fsl_elbc_nand_match,
996         },
997         .probe = fsl_elbc_nand_probe,
998         .remove = fsl_elbc_nand_remove,
999 };
1000
1001 static int __init fsl_elbc_nand_init(void)
1002 {
1003         return platform_driver_register(&fsl_elbc_nand_driver);
1004 }
1005
1006 static void __exit fsl_elbc_nand_exit(void)
1007 {
1008         platform_driver_unregister(&fsl_elbc_nand_driver);
1009 }
1010
1011 module_init(fsl_elbc_nand_init);
1012 module_exit(fsl_elbc_nand_exit);
1013
1014 MODULE_LICENSE("GPL");
1015 MODULE_AUTHOR("Freescale");
1016 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");