Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[cascardo/linux.git] / drivers / mtd / nand / gpmi-nand / gpmi-lib.c
1 /*
2  * Freescale GPMI NAND Flash Driver
3  *
4  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 #include <linux/delay.h>
22 #include <linux/clk.h>
23 #include <linux/slab.h>
24
25 #include "gpmi-nand.h"
26 #include "gpmi-regs.h"
27 #include "bch-regs.h"
28
29 static struct timing_threshod timing_default_threshold = {
30         .max_data_setup_cycles       = (BM_GPMI_TIMING0_DATA_SETUP >>
31                                                 BP_GPMI_TIMING0_DATA_SETUP),
32         .internal_data_setup_in_ns   = 0,
33         .max_sample_delay_factor     = (BM_GPMI_CTRL1_RDN_DELAY >>
34                                                 BP_GPMI_CTRL1_RDN_DELAY),
35         .max_dll_clock_period_in_ns  = 32,
36         .max_dll_delay_in_ns         = 16,
37 };
38
39 #define MXS_SET_ADDR            0x4
40 #define MXS_CLR_ADDR            0x8
41 /*
42  * Clear the bit and poll it cleared.  This is usually called with
43  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
44  * (bit 30).
45  */
46 static int clear_poll_bit(void __iomem *addr, u32 mask)
47 {
48         int timeout = 0x400;
49
50         /* clear the bit */
51         writel(mask, addr + MXS_CLR_ADDR);
52
53         /*
54          * SFTRST needs 3 GPMI clocks to settle, the reference manual
55          * recommends to wait 1us.
56          */
57         udelay(1);
58
59         /* poll the bit becoming clear */
60         while ((readl(addr) & mask) && --timeout)
61                 /* nothing */;
62
63         return !timeout;
64 }
65
66 #define MODULE_CLKGATE          (1 << 30)
67 #define MODULE_SFTRST           (1 << 31)
68 /*
69  * The current mxs_reset_block() will do two things:
70  *  [1] enable the module.
71  *  [2] reset the module.
72  *
73  * In most of the cases, it's ok.
74  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
75  * If you try to soft reset the BCH block, it becomes unusable until
76  * the next hard reset. This case occurs in the NAND boot mode. When the board
77  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
78  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
79  * You will see a DMA timeout in this case. The bug has been fixed
80  * in the following chips, such as MX28.
81  *
82  * To avoid this bug, just add a new parameter `just_enable` for
83  * the mxs_reset_block(), and rewrite it here.
84  */
85 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
86 {
87         int ret;
88         int timeout = 0x400;
89
90         /* clear and poll SFTRST */
91         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
92         if (unlikely(ret))
93                 goto error;
94
95         /* clear CLKGATE */
96         writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
97
98         if (!just_enable) {
99                 /* set SFTRST to reset the block */
100                 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
101                 udelay(1);
102
103                 /* poll CLKGATE becoming set */
104                 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
105                         /* nothing */;
106                 if (unlikely(!timeout))
107                         goto error;
108         }
109
110         /* clear and poll SFTRST */
111         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
112         if (unlikely(ret))
113                 goto error;
114
115         /* clear and poll CLKGATE */
116         ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
117         if (unlikely(ret))
118                 goto error;
119
120         return 0;
121
122 error:
123         pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
124         return -ETIMEDOUT;
125 }
126
127 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
128 {
129         struct clk *clk;
130         int ret;
131         int i;
132
133         for (i = 0; i < GPMI_CLK_MAX; i++) {
134                 clk = this->resources.clock[i];
135                 if (!clk)
136                         break;
137
138                 if (v) {
139                         ret = clk_prepare_enable(clk);
140                         if (ret)
141                                 goto err_clk;
142                 } else {
143                         clk_disable_unprepare(clk);
144                 }
145         }
146         return 0;
147
148 err_clk:
149         for (; i > 0; i--)
150                 clk_disable_unprepare(this->resources.clock[i - 1]);
151         return ret;
152 }
153
154 #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
155 #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
156
157 int gpmi_init(struct gpmi_nand_data *this)
158 {
159         struct resources *r = &this->resources;
160         int ret;
161
162         ret = gpmi_enable_clk(this);
163         if (ret)
164                 goto err_out;
165         ret = gpmi_reset_block(r->gpmi_regs, false);
166         if (ret)
167                 goto err_out;
168
169         /*
170          * Reset BCH here, too. We got failures otherwise :(
171          * See later BCH reset for explanation of MX23 handling
172          */
173         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
174         if (ret)
175                 goto err_out;
176
177
178         /* Choose NAND mode. */
179         writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
180
181         /* Set the IRQ polarity. */
182         writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
183                                 r->gpmi_regs + HW_GPMI_CTRL1_SET);
184
185         /* Disable Write-Protection. */
186         writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
187
188         /* Select BCH ECC. */
189         writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
190
191         /*
192          * Decouple the chip select from dma channel. We use dma0 for all
193          * the chips.
194          */
195         writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
196
197         gpmi_disable_clk(this);
198         return 0;
199 err_out:
200         return ret;
201 }
202
203 /* This function is very useful. It is called only when the bug occur. */
204 void gpmi_dump_info(struct gpmi_nand_data *this)
205 {
206         struct resources *r = &this->resources;
207         struct bch_geometry *geo = &this->bch_geometry;
208         u32 reg;
209         int i;
210
211         dev_err(this->dev, "Show GPMI registers :\n");
212         for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
213                 reg = readl(r->gpmi_regs + i * 0x10);
214                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
215         }
216
217         /* start to print out the BCH info */
218         dev_err(this->dev, "Show BCH registers :\n");
219         for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
220                 reg = readl(r->bch_regs + i * 0x10);
221                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
222         }
223         dev_err(this->dev, "BCH Geometry :\n"
224                 "GF length              : %u\n"
225                 "ECC Strength           : %u\n"
226                 "Page Size in Bytes     : %u\n"
227                 "Metadata Size in Bytes : %u\n"
228                 "ECC Chunk Size in Bytes: %u\n"
229                 "ECC Chunk Count        : %u\n"
230                 "Payload Size in Bytes  : %u\n"
231                 "Auxiliary Size in Bytes: %u\n"
232                 "Auxiliary Status Offset: %u\n"
233                 "Block Mark Byte Offset : %u\n"
234                 "Block Mark Bit Offset  : %u\n",
235                 geo->gf_len,
236                 geo->ecc_strength,
237                 geo->page_size,
238                 geo->metadata_size,
239                 geo->ecc_chunk_size,
240                 geo->ecc_chunk_count,
241                 geo->payload_size,
242                 geo->auxiliary_size,
243                 geo->auxiliary_status_offset,
244                 geo->block_mark_byte_offset,
245                 geo->block_mark_bit_offset);
246 }
247
248 /* Configures the geometry for BCH.  */
249 int bch_set_geometry(struct gpmi_nand_data *this)
250 {
251         struct resources *r = &this->resources;
252         struct bch_geometry *bch_geo = &this->bch_geometry;
253         unsigned int block_count;
254         unsigned int block_size;
255         unsigned int metadata_size;
256         unsigned int ecc_strength;
257         unsigned int page_size;
258         unsigned int gf_len;
259         int ret;
260
261         if (common_nfc_set_geometry(this))
262                 return !0;
263
264         block_count   = bch_geo->ecc_chunk_count - 1;
265         block_size    = bch_geo->ecc_chunk_size;
266         metadata_size = bch_geo->metadata_size;
267         ecc_strength  = bch_geo->ecc_strength >> 1;
268         page_size     = bch_geo->page_size;
269         gf_len        = bch_geo->gf_len;
270
271         ret = gpmi_enable_clk(this);
272         if (ret)
273                 goto err_out;
274
275         /*
276         * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
277         * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
278         * On the other hand, the MX28 needs the reset, because one case has been
279         * seen where the BCH produced ECC errors constantly after 10000
280         * consecutive reboots. The latter case has not been seen on the MX23
281         * yet, still we don't know if it could happen there as well.
282         */
283         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
284         if (ret)
285                 goto err_out;
286
287         /* Configure layout 0. */
288         writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
289                         | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
290                         | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
291                         | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
292                         | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
293                         r->bch_regs + HW_BCH_FLASH0LAYOUT0);
294
295         writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
296                         | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
297                         | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
298                         | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
299                         r->bch_regs + HW_BCH_FLASH0LAYOUT1);
300
301         /* Set *all* chip selects to use layout 0. */
302         writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
303
304         /* Enable interrupts. */
305         writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
306                                 r->bch_regs + HW_BCH_CTRL_SET);
307
308         gpmi_disable_clk(this);
309         return 0;
310 err_out:
311         return ret;
312 }
313
314 /* Converts time in nanoseconds to cycles. */
315 static unsigned int ns_to_cycles(unsigned int time,
316                         unsigned int period, unsigned int min)
317 {
318         unsigned int k;
319
320         k = (time + period - 1) / period;
321         return max(k, min);
322 }
323
324 #define DEF_MIN_PROP_DELAY      5
325 #define DEF_MAX_PROP_DELAY      9
326 /* Apply timing to current hardware conditions. */
327 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
328                                         struct gpmi_nfc_hardware_timing *hw)
329 {
330         struct timing_threshod *nfc = &timing_default_threshold;
331         struct resources *r = &this->resources;
332         struct nand_chip *nand = &this->nand;
333         struct nand_timing target = this->timing;
334         bool improved_timing_is_available;
335         unsigned long clock_frequency_in_hz;
336         unsigned int clock_period_in_ns;
337         bool dll_use_half_periods;
338         unsigned int dll_delay_shift;
339         unsigned int max_sample_delay_in_ns;
340         unsigned int address_setup_in_cycles;
341         unsigned int data_setup_in_ns;
342         unsigned int data_setup_in_cycles;
343         unsigned int data_hold_in_cycles;
344         int ideal_sample_delay_in_ns;
345         unsigned int sample_delay_factor;
346         int tEYE;
347         unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
348         unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
349
350         /*
351          * If there are multiple chips, we need to relax the timings to allow
352          * for signal distortion due to higher capacitance.
353          */
354         if (nand->numchips > 2) {
355                 target.data_setup_in_ns    += 10;
356                 target.data_hold_in_ns     += 10;
357                 target.address_setup_in_ns += 10;
358         } else if (nand->numchips > 1) {
359                 target.data_setup_in_ns    += 5;
360                 target.data_hold_in_ns     += 5;
361                 target.address_setup_in_ns += 5;
362         }
363
364         /* Check if improved timing information is available. */
365         improved_timing_is_available =
366                 (target.tREA_in_ns  >= 0) &&
367                 (target.tRLOH_in_ns >= 0) &&
368                 (target.tRHOH_in_ns >= 0);
369
370         /* Inspect the clock. */
371         nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
372         clock_frequency_in_hz = nfc->clock_frequency_in_hz;
373         clock_period_in_ns    = NSEC_PER_SEC / clock_frequency_in_hz;
374
375         /*
376          * The NFC quantizes setup and hold parameters in terms of clock cycles.
377          * Here, we quantize the setup and hold timing parameters to the
378          * next-highest clock period to make sure we apply at least the
379          * specified times.
380          *
381          * For data setup and data hold, the hardware interprets a value of zero
382          * as the largest possible delay. This is not what's intended by a zero
383          * in the input parameter, so we impose a minimum of one cycle.
384          */
385         data_setup_in_cycles    = ns_to_cycles(target.data_setup_in_ns,
386                                                         clock_period_in_ns, 1);
387         data_hold_in_cycles     = ns_to_cycles(target.data_hold_in_ns,
388                                                         clock_period_in_ns, 1);
389         address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
390                                                         clock_period_in_ns, 0);
391
392         /*
393          * The clock's period affects the sample delay in a number of ways:
394          *
395          * (1) The NFC HAL tells us the maximum clock period the sample delay
396          *     DLL can tolerate. If the clock period is greater than half that
397          *     maximum, we must configure the DLL to be driven by half periods.
398          *
399          * (2) We need to convert from an ideal sample delay, in ns, to a
400          *     "sample delay factor," which the NFC uses. This factor depends on
401          *     whether we're driving the DLL with full or half periods.
402          *     Paraphrasing the reference manual:
403          *
404          *         AD = SDF x 0.125 x RP
405          *
406          * where:
407          *
408          *     AD   is the applied delay, in ns.
409          *     SDF  is the sample delay factor, which is dimensionless.
410          *     RP   is the reference period, in ns, which is a full clock period
411          *          if the DLL is being driven by full periods, or half that if
412          *          the DLL is being driven by half periods.
413          *
414          * Let's re-arrange this in a way that's more useful to us:
415          *
416          *                        8
417          *         SDF  =  AD x ----
418          *                       RP
419          *
420          * The reference period is either the clock period or half that, so this
421          * is:
422          *
423          *                        8       AD x DDF
424          *         SDF  =  AD x -----  =  --------
425          *                      f x P        P
426          *
427          * where:
428          *
429          *       f  is 1 or 1/2, depending on how we're driving the DLL.
430          *       P  is the clock period.
431          *     DDF  is the DLL Delay Factor, a dimensionless value that
432          *          incorporates all the constants in the conversion.
433          *
434          * DDF will be either 8 or 16, both of which are powers of two. We can
435          * reduce the cost of this conversion by using bit shifts instead of
436          * multiplication or division. Thus:
437          *
438          *                 AD << DDS
439          *         SDF  =  ---------
440          *                     P
441          *
442          *     or
443          *
444          *         AD  =  (SDF >> DDS) x P
445          *
446          * where:
447          *
448          *     DDS  is the DLL Delay Shift, the logarithm to base 2 of the DDF.
449          */
450         if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
451                 dll_use_half_periods = true;
452                 dll_delay_shift      = 3 + 1;
453         } else {
454                 dll_use_half_periods = false;
455                 dll_delay_shift      = 3;
456         }
457
458         /*
459          * Compute the maximum sample delay the NFC allows, under current
460          * conditions. If the clock is running too slowly, no sample delay is
461          * possible.
462          */
463         if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
464                 max_sample_delay_in_ns = 0;
465         else {
466                 /*
467                  * Compute the delay implied by the largest sample delay factor
468                  * the NFC allows.
469                  */
470                 max_sample_delay_in_ns =
471                         (nfc->max_sample_delay_factor * clock_period_in_ns) >>
472                                                                 dll_delay_shift;
473
474                 /*
475                  * Check if the implied sample delay larger than the NFC
476                  * actually allows.
477                  */
478                 if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
479                         max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
480         }
481
482         /*
483          * Check if improved timing information is available. If not, we have to
484          * use a less-sophisticated algorithm.
485          */
486         if (!improved_timing_is_available) {
487                 /*
488                  * Fold the read setup time required by the NFC into the ideal
489                  * sample delay.
490                  */
491                 ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
492                                                 nfc->internal_data_setup_in_ns;
493
494                 /*
495                  * The ideal sample delay may be greater than the maximum
496                  * allowed by the NFC. If so, we can trade off sample delay time
497                  * for more data setup time.
498                  *
499                  * In each iteration of the following loop, we add a cycle to
500                  * the data setup time and subtract a corresponding amount from
501                  * the sample delay until we've satisified the constraints or
502                  * can't do any better.
503                  */
504                 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
505                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
506
507                         data_setup_in_cycles++;
508                         ideal_sample_delay_in_ns -= clock_period_in_ns;
509
510                         if (ideal_sample_delay_in_ns < 0)
511                                 ideal_sample_delay_in_ns = 0;
512
513                 }
514
515                 /*
516                  * Compute the sample delay factor that corresponds most closely
517                  * to the ideal sample delay. If the result is too large for the
518                  * NFC, use the maximum value.
519                  *
520                  * Notice that we use the ns_to_cycles function to compute the
521                  * sample delay factor. We do this because the form of the
522                  * computation is the same as that for calculating cycles.
523                  */
524                 sample_delay_factor =
525                         ns_to_cycles(
526                                 ideal_sample_delay_in_ns << dll_delay_shift,
527                                                         clock_period_in_ns, 0);
528
529                 if (sample_delay_factor > nfc->max_sample_delay_factor)
530                         sample_delay_factor = nfc->max_sample_delay_factor;
531
532                 /* Skip to the part where we return our results. */
533                 goto return_results;
534         }
535
536         /*
537          * If control arrives here, we have more detailed timing information,
538          * so we can use a better algorithm.
539          */
540
541         /*
542          * Fold the read setup time required by the NFC into the maximum
543          * propagation delay.
544          */
545         max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
546
547         /*
548          * Earlier, we computed the number of clock cycles required to satisfy
549          * the data setup time. Now, we need to know the actual nanoseconds.
550          */
551         data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
552
553         /*
554          * Compute tEYE, the width of the data eye when reading from the NAND
555          * Flash. The eye width is fundamentally determined by the data setup
556          * time, perturbed by propagation delays and some characteristics of the
557          * NAND Flash device.
558          *
559          * start of the eye = max_prop_delay + tREA
560          * end of the eye   = min_prop_delay + tRHOH + data_setup
561          */
562         tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
563                                                         (int)data_setup_in_ns;
564
565         tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
566
567         /*
568          * The eye must be open. If it's not, we can try to open it by
569          * increasing its main forcer, the data setup time.
570          *
571          * In each iteration of the following loop, we increase the data setup
572          * time by a single clock cycle. We do this until either the eye is
573          * open or we run into NFC limits.
574          */
575         while ((tEYE <= 0) &&
576                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
577                 /* Give a cycle to data setup. */
578                 data_setup_in_cycles++;
579                 /* Synchronize the data setup time with the cycles. */
580                 data_setup_in_ns += clock_period_in_ns;
581                 /* Adjust tEYE accordingly. */
582                 tEYE += clock_period_in_ns;
583         }
584
585         /*
586          * When control arrives here, the eye is open. The ideal time to sample
587          * the data is in the center of the eye:
588          *
589          *     end of the eye + start of the eye
590          *     ---------------------------------  -  data_setup
591          *                    2
592          *
593          * After some algebra, this simplifies to the code immediately below.
594          */
595         ideal_sample_delay_in_ns =
596                 ((int)max_prop_delay_in_ns +
597                         (int)target.tREA_in_ns +
598                                 (int)min_prop_delay_in_ns +
599                                         (int)target.tRHOH_in_ns -
600                                                 (int)data_setup_in_ns) >> 1;
601
602         /*
603          * The following figure illustrates some aspects of a NAND Flash read:
604          *
605          *
606          *           __                   _____________________________________
607          * RDN         \_________________/
608          *
609          *                                         <---- tEYE ----->
610          *                                        /-----------------\
611          * Read Data ----------------------------<                   >---------
612          *                                        \-----------------/
613          *             ^                 ^                 ^              ^
614          *             |                 |                 |              |
615          *             |<--Data Setup -->|<--Delay Time -->|              |
616          *             |                 |                 |              |
617          *             |                 |                                |
618          *             |                 |<--   Quantized Delay Time   -->|
619          *             |                 |                                |
620          *
621          *
622          * We have some issues we must now address:
623          *
624          * (1) The *ideal* sample delay time must not be negative. If it is, we
625          *     jam it to zero.
626          *
627          * (2) The *ideal* sample delay time must not be greater than that
628          *     allowed by the NFC. If it is, we can increase the data setup
629          *     time, which will reduce the delay between the end of the data
630          *     setup and the center of the eye. It will also make the eye
631          *     larger, which might help with the next issue...
632          *
633          * (3) The *quantized* sample delay time must not fall either before the
634          *     eye opens or after it closes (the latter is the problem
635          *     illustrated in the above figure).
636          */
637
638         /* Jam a negative ideal sample delay to zero. */
639         if (ideal_sample_delay_in_ns < 0)
640                 ideal_sample_delay_in_ns = 0;
641
642         /*
643          * Extend the data setup as needed to reduce the ideal sample delay
644          * below the maximum permitted by the NFC.
645          */
646         while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
647                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
648
649                 /* Give a cycle to data setup. */
650                 data_setup_in_cycles++;
651                 /* Synchronize the data setup time with the cycles. */
652                 data_setup_in_ns += clock_period_in_ns;
653                 /* Adjust tEYE accordingly. */
654                 tEYE += clock_period_in_ns;
655
656                 /*
657                  * Decrease the ideal sample delay by one half cycle, to keep it
658                  * in the middle of the eye.
659                  */
660                 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
661
662                 /* Jam a negative ideal sample delay to zero. */
663                 if (ideal_sample_delay_in_ns < 0)
664                         ideal_sample_delay_in_ns = 0;
665         }
666
667         /*
668          * Compute the sample delay factor that corresponds to the ideal sample
669          * delay. If the result is too large, then use the maximum allowed
670          * value.
671          *
672          * Notice that we use the ns_to_cycles function to compute the sample
673          * delay factor. We do this because the form of the computation is the
674          * same as that for calculating cycles.
675          */
676         sample_delay_factor =
677                 ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
678                                                         clock_period_in_ns, 0);
679
680         if (sample_delay_factor > nfc->max_sample_delay_factor)
681                 sample_delay_factor = nfc->max_sample_delay_factor;
682
683         /*
684          * These macros conveniently encapsulate a computation we'll use to
685          * continuously evaluate whether or not the data sample delay is inside
686          * the eye.
687          */
688         #define IDEAL_DELAY  ((int) ideal_sample_delay_in_ns)
689
690         #define QUANTIZED_DELAY  \
691                 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
692                                                         dll_delay_shift))
693
694         #define DELAY_ERROR  (abs(QUANTIZED_DELAY - IDEAL_DELAY))
695
696         #define SAMPLE_IS_NOT_WITHIN_THE_EYE  (DELAY_ERROR > (tEYE >> 1))
697
698         /*
699          * While the quantized sample time falls outside the eye, reduce the
700          * sample delay or extend the data setup to move the sampling point back
701          * toward the eye. Do not allow the number of data setup cycles to
702          * exceed the maximum allowed by the NFC.
703          */
704         while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
705                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
706                 /*
707                  * If control arrives here, the quantized sample delay falls
708                  * outside the eye. Check if it's before the eye opens, or after
709                  * the eye closes.
710                  */
711                 if (QUANTIZED_DELAY > IDEAL_DELAY) {
712                         /*
713                          * If control arrives here, the quantized sample delay
714                          * falls after the eye closes. Decrease the quantized
715                          * delay time and then go back to re-evaluate.
716                          */
717                         if (sample_delay_factor != 0)
718                                 sample_delay_factor--;
719                         continue;
720                 }
721
722                 /*
723                  * If control arrives here, the quantized sample delay falls
724                  * before the eye opens. Shift the sample point by increasing
725                  * data setup time. This will also make the eye larger.
726                  */
727
728                 /* Give a cycle to data setup. */
729                 data_setup_in_cycles++;
730                 /* Synchronize the data setup time with the cycles. */
731                 data_setup_in_ns += clock_period_in_ns;
732                 /* Adjust tEYE accordingly. */
733                 tEYE += clock_period_in_ns;
734
735                 /*
736                  * Decrease the ideal sample delay by one half cycle, to keep it
737                  * in the middle of the eye.
738                  */
739                 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
740
741                 /* ...and one less period for the delay time. */
742                 ideal_sample_delay_in_ns -= clock_period_in_ns;
743
744                 /* Jam a negative ideal sample delay to zero. */
745                 if (ideal_sample_delay_in_ns < 0)
746                         ideal_sample_delay_in_ns = 0;
747
748                 /*
749                  * We have a new ideal sample delay, so re-compute the quantized
750                  * delay.
751                  */
752                 sample_delay_factor =
753                         ns_to_cycles(
754                                 ideal_sample_delay_in_ns << dll_delay_shift,
755                                                         clock_period_in_ns, 0);
756
757                 if (sample_delay_factor > nfc->max_sample_delay_factor)
758                         sample_delay_factor = nfc->max_sample_delay_factor;
759         }
760
761         /* Control arrives here when we're ready to return our results. */
762 return_results:
763         hw->data_setup_in_cycles    = data_setup_in_cycles;
764         hw->data_hold_in_cycles     = data_hold_in_cycles;
765         hw->address_setup_in_cycles = address_setup_in_cycles;
766         hw->use_half_periods        = dll_use_half_periods;
767         hw->sample_delay_factor     = sample_delay_factor;
768         hw->device_busy_timeout     = GPMI_DEFAULT_BUSY_TIMEOUT;
769         hw->wrn_dly_sel             = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
770
771         /* Return success. */
772         return 0;
773 }
774
775 /*
776  * <1> Firstly, we should know what's the GPMI-clock means.
777  *     The GPMI-clock is the internal clock in the gpmi nand controller.
778  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
779  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
780  *
781  * <2> Secondly, we should know what's the frequency on the nand chip pins.
782  *     The frequency on the nand chip pins is derived from the GPMI-clock.
783  *     We can get it from the following equation:
784  *
785  *         F = G / (DS + DH)
786  *
787  *         F  : the frequency on the nand chip pins.
788  *         G  : the GPMI clock, such as 100MHz.
789  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
790  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
791  *
792  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
793  *     the nand EDO(extended Data Out) timing could be applied.
794  *     The GPMI implements a feedback read strobe to sample the read data.
795  *     The feedback read strobe can be delayed to support the nand EDO timing
796  *     where the read strobe may deasserts before the read data is valid, and
797  *     read data is valid for some time after read strobe.
798  *
799  *     The following figure illustrates some aspects of a NAND Flash read:
800  *
801  *                   |<---tREA---->|
802  *                   |             |
803  *                   |         |   |
804  *                   |<--tRP-->|   |
805  *                   |         |   |
806  *                  __          ___|__________________________________
807  *     RDN            \________/   |
808  *                                 |
809  *                                 /---------\
810  *     Read Data    --------------<           >---------
811  *                                 \---------/
812  *                                |     |
813  *                                |<-D->|
814  *     FeedbackRDN  ________             ____________
815  *                          \___________/
816  *
817  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
818  *
819  *
820  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
821  *
822  *  4.1) From the aspect of the nand chip pins:
823  *        Delay = (tREA + C - tRP)               {1}
824  *
825  *        tREA : the maximum read access time. From the ONFI nand standards,
826  *               we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
827  *               Please check it in : www.onfi.org
828  *        C    : a constant for adjust the delay. default is 4.
829  *        tRP  : the read pulse width.
830  *               Specified by the HW_GPMI_TIMING0:DATA_SETUP:
831  *                    tRP = (GPMI-clock-period) * DATA_SETUP
832  *
833  *  4.2) From the aspect of the GPMI nand controller:
834  *         Delay = RDN_DELAY * 0.125 * RP        {2}
835  *
836  *         RP   : the DLL reference period.
837  *            if (GPMI-clock-period > DLL_THRETHOLD)
838  *                   RP = GPMI-clock-period / 2;
839  *            else
840  *                   RP = GPMI-clock-period;
841  *
842  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
843  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
844  *            is 16ns, but in mx6q, we use 12ns.
845  *
846  *  4.3) since {1} equals {2}, we get:
847  *
848  *                    (tREA + 4 - tRP) * 8
849  *         RDN_DELAY = ---------------------     {3}
850  *                           RP
851  *
852  *  4.4) We only support the fastest asynchronous mode of ONFI nand.
853  *       For some ONFI nand, the mode 4 is the fastest mode;
854  *       while for some ONFI nand, the mode 5 is the fastest mode.
855  *       So we only support the mode 4 and mode 5. It is no need to
856  *       support other modes.
857  */
858 static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
859                         struct gpmi_nfc_hardware_timing *hw)
860 {
861         struct resources *r = &this->resources;
862         unsigned long rate = clk_get_rate(r->clock[0]);
863         int mode = this->timing_mode;
864         int dll_threshold = this->devdata->max_chain_delay;
865         unsigned long delay;
866         unsigned long clk_period;
867         int t_rea;
868         int c = 4;
869         int t_rp;
870         int rp;
871
872         /*
873          * [1] for GPMI_HW_GPMI_TIMING0:
874          *     The async mode requires 40MHz for mode 4, 50MHz for mode 5.
875          *     The GPMI can support 100MHz at most. So if we want to
876          *     get the 40MHz or 50MHz, we have to set DS=1, DH=1.
877          *     Set the ADDRESS_SETUP to 0 in mode 4.
878          */
879         hw->data_setup_in_cycles = 1;
880         hw->data_hold_in_cycles = 1;
881         hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);
882
883         /* [2] for GPMI_HW_GPMI_TIMING1 */
884         hw->device_busy_timeout = 0x9000;
885
886         /* [3] for GPMI_HW_GPMI_CTRL1 */
887         hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
888
889         /*
890          * Enlarge 10 times for the numerator and denominator in {3}.
891          * This make us to get more accurate result.
892          */
893         clk_period = NSEC_PER_SEC / (rate / 10);
894         dll_threshold *= 10;
895         t_rea = ((mode == 5) ? 16 : 20) * 10;
896         c *= 10;
897
898         t_rp = clk_period * 1; /* DATA_SETUP is 1 */
899
900         if (clk_period > dll_threshold) {
901                 hw->use_half_periods = 1;
902                 rp = clk_period / 2;
903         } else {
904                 hw->use_half_periods = 0;
905                 rp = clk_period;
906         }
907
908         /*
909          * Multiply the numerator with 10, we could do a round off:
910          *      7.8 round up to 8; 7.4 round down to 7.
911          */
912         delay  = (((t_rea + c - t_rp) * 8) * 10) / rp;
913         delay = (delay + 5) / 10;
914
915         hw->sample_delay_factor = delay;
916 }
917
918 static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
919 {
920         struct resources  *r = &this->resources;
921         struct nand_chip *nand = &this->nand;
922         struct mtd_info  *mtd = &this->mtd;
923         uint8_t *feature;
924         unsigned long rate;
925         int ret;
926
927         feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL);
928         if (!feature)
929                 return -ENOMEM;
930
931         nand->select_chip(mtd, 0);
932
933         /* [1] send SET FEATURE commond to NAND */
934         feature[0] = mode;
935         ret = nand->onfi_set_features(mtd, nand,
936                                 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
937         if (ret)
938                 goto err_out;
939
940         /* [2] send GET FEATURE command to double-check the timing mode */
941         memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
942         ret = nand->onfi_get_features(mtd, nand,
943                                 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
944         if (ret || feature[0] != mode)
945                 goto err_out;
946
947         nand->select_chip(mtd, -1);
948
949         /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
950         rate = (mode == 5) ? 100000000 : 80000000;
951         clk_set_rate(r->clock[0], rate);
952
953         /* Let the gpmi_begin() re-compute the timing again. */
954         this->flags &= ~GPMI_TIMING_INIT_OK;
955
956         this->flags |= GPMI_ASYNC_EDO_ENABLED;
957         this->timing_mode = mode;
958         kfree(feature);
959         dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
960         return 0;
961
962 err_out:
963         nand->select_chip(mtd, -1);
964         kfree(feature);
965         dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
966         return -EINVAL;
967 }
968
969 int gpmi_extra_init(struct gpmi_nand_data *this)
970 {
971         struct nand_chip *chip = &this->nand;
972
973         /* Enable the asynchronous EDO feature. */
974         if (GPMI_IS_MX6(this) && chip->onfi_version) {
975                 int mode = onfi_get_async_timing_mode(chip);
976
977                 /* We only support the timing mode 4 and mode 5. */
978                 if (mode & ONFI_TIMING_MODE_5)
979                         mode = 5;
980                 else if (mode & ONFI_TIMING_MODE_4)
981                         mode = 4;
982                 else
983                         return 0;
984
985                 return enable_edo_mode(this, mode);
986         }
987         return 0;
988 }
989
990 /* Begin the I/O */
991 void gpmi_begin(struct gpmi_nand_data *this)
992 {
993         struct resources *r = &this->resources;
994         void __iomem *gpmi_regs = r->gpmi_regs;
995         unsigned int   clock_period_in_ns;
996         uint32_t       reg;
997         unsigned int   dll_wait_time_in_us;
998         struct gpmi_nfc_hardware_timing  hw;
999         int ret;
1000
1001         /* Enable the clock. */
1002         ret = gpmi_enable_clk(this);
1003         if (ret) {
1004                 dev_err(this->dev, "We failed in enable the clk\n");
1005                 goto err_out;
1006         }
1007
1008         /* Only initialize the timing once */
1009         if (this->flags & GPMI_TIMING_INIT_OK)
1010                 return;
1011         this->flags |= GPMI_TIMING_INIT_OK;
1012
1013         if (this->flags & GPMI_ASYNC_EDO_ENABLED)
1014                 gpmi_compute_edo_timing(this, &hw);
1015         else
1016                 gpmi_nfc_compute_hardware_timing(this, &hw);
1017
1018         /* [1] Set HW_GPMI_TIMING0 */
1019         reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
1020                 BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles)         |
1021                 BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles);
1022
1023         writel(reg, gpmi_regs + HW_GPMI_TIMING0);
1024
1025         /* [2] Set HW_GPMI_TIMING1 */
1026         writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
1027                 gpmi_regs + HW_GPMI_TIMING1);
1028
1029         /* [3] The following code is to set the HW_GPMI_CTRL1. */
1030
1031         /* Set the WRN_DLY_SEL */
1032         writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
1033         writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
1034                                         gpmi_regs + HW_GPMI_CTRL1_SET);
1035
1036         /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1037         writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
1038
1039         /* Clear out the DLL control fields. */
1040         reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
1041         writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
1042
1043         /* If no sample delay is called for, return immediately. */
1044         if (!hw.sample_delay_factor)
1045                 return;
1046
1047         /* Set RDN_DELAY or HALF_PERIOD. */
1048         reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
1049                 | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
1050
1051         writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
1052
1053         /* At last, we enable the DLL. */
1054         writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
1055
1056         /*
1057          * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1058          * we can use the GPMI. Calculate the amount of time we need to wait,
1059          * in microseconds.
1060          */
1061         clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
1062         dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
1063
1064         if (!dll_wait_time_in_us)
1065                 dll_wait_time_in_us = 1;
1066
1067         /* Wait for the DLL to settle. */
1068         udelay(dll_wait_time_in_us);
1069
1070 err_out:
1071         return;
1072 }
1073
1074 void gpmi_end(struct gpmi_nand_data *this)
1075 {
1076         gpmi_disable_clk(this);
1077 }
1078
1079 /* Clears a BCH interrupt. */
1080 void gpmi_clear_bch(struct gpmi_nand_data *this)
1081 {
1082         struct resources *r = &this->resources;
1083         writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1084 }
1085
1086 /* Returns the Ready/Busy status of the given chip. */
1087 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
1088 {
1089         struct resources *r = &this->resources;
1090         uint32_t mask = 0;
1091         uint32_t reg = 0;
1092
1093         if (GPMI_IS_MX23(this)) {
1094                 mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
1095                 reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
1096         } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
1097                 /*
1098                  * In the imx6, all the ready/busy pins are bound
1099                  * together. So we only need to check chip 0.
1100                  */
1101                 if (GPMI_IS_MX6(this))
1102                         chip = 0;
1103
1104                 /* MX28 shares the same R/B register as MX6Q. */
1105                 mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
1106                 reg = readl(r->gpmi_regs + HW_GPMI_STAT);
1107         } else
1108                 dev_err(this->dev, "unknown arch.\n");
1109         return reg & mask;
1110 }
1111
1112 static inline void set_dma_type(struct gpmi_nand_data *this,
1113                                         enum dma_ops_type type)
1114 {
1115         this->last_dma_type = this->dma_type;
1116         this->dma_type = type;
1117 }
1118
1119 int gpmi_send_command(struct gpmi_nand_data *this)
1120 {
1121         struct dma_chan *channel = get_dma_chan(this);
1122         struct dma_async_tx_descriptor *desc;
1123         struct scatterlist *sgl;
1124         int chip = this->current_chip;
1125         u32 pio[3];
1126
1127         /* [1] send out the PIO words */
1128         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
1129                 | BM_GPMI_CTRL0_WORD_LENGTH
1130                 | BF_GPMI_CTRL0_CS(chip, this)
1131                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1132                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
1133                 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
1134                 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
1135         pio[1] = pio[2] = 0;
1136         desc = dmaengine_prep_slave_sg(channel,
1137                                         (struct scatterlist *)pio,
1138                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1139         if (!desc)
1140                 return -EINVAL;
1141
1142         /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
1143         sgl = &this->cmd_sgl;
1144
1145         sg_init_one(sgl, this->cmd_buffer, this->command_length);
1146         dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
1147         desc = dmaengine_prep_slave_sg(channel,
1148                                 sgl, 1, DMA_MEM_TO_DEV,
1149                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1150         if (!desc)
1151                 return -EINVAL;
1152
1153         /* [3] submit the DMA */
1154         set_dma_type(this, DMA_FOR_COMMAND);
1155         return start_dma_without_bch_irq(this, desc);
1156 }
1157
1158 int gpmi_send_data(struct gpmi_nand_data *this)
1159 {
1160         struct dma_async_tx_descriptor *desc;
1161         struct dma_chan *channel = get_dma_chan(this);
1162         int chip = this->current_chip;
1163         uint32_t command_mode;
1164         uint32_t address;
1165         u32 pio[2];
1166
1167         /* [1] PIO */
1168         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1169         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1170
1171         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1172                 | BM_GPMI_CTRL0_WORD_LENGTH
1173                 | BF_GPMI_CTRL0_CS(chip, this)
1174                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1175                 | BF_GPMI_CTRL0_ADDRESS(address)
1176                 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1177         pio[1] = 0;
1178         desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
1179                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1180         if (!desc)
1181                 return -EINVAL;
1182
1183         /* [2] send DMA request */
1184         prepare_data_dma(this, DMA_TO_DEVICE);
1185         desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1186                                         1, DMA_MEM_TO_DEV,
1187                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1188         if (!desc)
1189                 return -EINVAL;
1190
1191         /* [3] submit the DMA */
1192         set_dma_type(this, DMA_FOR_WRITE_DATA);
1193         return start_dma_without_bch_irq(this, desc);
1194 }
1195
1196 int gpmi_read_data(struct gpmi_nand_data *this)
1197 {
1198         struct dma_async_tx_descriptor *desc;
1199         struct dma_chan *channel = get_dma_chan(this);
1200         int chip = this->current_chip;
1201         u32 pio[2];
1202
1203         /* [1] : send PIO */
1204         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
1205                 | BM_GPMI_CTRL0_WORD_LENGTH
1206                 | BF_GPMI_CTRL0_CS(chip, this)
1207                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1208                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
1209                 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1210         pio[1] = 0;
1211         desc = dmaengine_prep_slave_sg(channel,
1212                                         (struct scatterlist *)pio,
1213                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1214         if (!desc)
1215                 return -EINVAL;
1216
1217         /* [2] : send DMA request */
1218         prepare_data_dma(this, DMA_FROM_DEVICE);
1219         desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1220                                         1, DMA_DEV_TO_MEM,
1221                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1222         if (!desc)
1223                 return -EINVAL;
1224
1225         /* [3] : submit the DMA */
1226         set_dma_type(this, DMA_FOR_READ_DATA);
1227         return start_dma_without_bch_irq(this, desc);
1228 }
1229
1230 int gpmi_send_page(struct gpmi_nand_data *this,
1231                         dma_addr_t payload, dma_addr_t auxiliary)
1232 {
1233         struct bch_geometry *geo = &this->bch_geometry;
1234         uint32_t command_mode;
1235         uint32_t address;
1236         uint32_t ecc_command;
1237         uint32_t buffer_mask;
1238         struct dma_async_tx_descriptor *desc;
1239         struct dma_chan *channel = get_dma_chan(this);
1240         int chip = this->current_chip;
1241         u32 pio[6];
1242
1243         /* A DMA descriptor that does an ECC page read. */
1244         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1245         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1246         ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
1247         buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
1248                                 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1249
1250         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1251                 | BM_GPMI_CTRL0_WORD_LENGTH
1252                 | BF_GPMI_CTRL0_CS(chip, this)
1253                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1254                 | BF_GPMI_CTRL0_ADDRESS(address)
1255                 | BF_GPMI_CTRL0_XFER_COUNT(0);
1256         pio[1] = 0;
1257         pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1258                 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1259                 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1260         pio[3] = geo->page_size;
1261         pio[4] = payload;
1262         pio[5] = auxiliary;
1263
1264         desc = dmaengine_prep_slave_sg(channel,
1265                                         (struct scatterlist *)pio,
1266                                         ARRAY_SIZE(pio), DMA_TRANS_NONE,
1267                                         DMA_CTRL_ACK);
1268         if (!desc)
1269                 return -EINVAL;
1270
1271         set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
1272         return start_dma_with_bch_irq(this, desc);
1273 }
1274
1275 int gpmi_read_page(struct gpmi_nand_data *this,
1276                                 dma_addr_t payload, dma_addr_t auxiliary)
1277 {
1278         struct bch_geometry *geo = &this->bch_geometry;
1279         uint32_t command_mode;
1280         uint32_t address;
1281         uint32_t ecc_command;
1282         uint32_t buffer_mask;
1283         struct dma_async_tx_descriptor *desc;
1284         struct dma_chan *channel = get_dma_chan(this);
1285         int chip = this->current_chip;
1286         u32 pio[6];
1287
1288         /* [1] Wait for the chip to report ready. */
1289         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1290         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1291
1292         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1293                 | BM_GPMI_CTRL0_WORD_LENGTH
1294                 | BF_GPMI_CTRL0_CS(chip, this)
1295                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1296                 | BF_GPMI_CTRL0_ADDRESS(address)
1297                 | BF_GPMI_CTRL0_XFER_COUNT(0);
1298         pio[1] = 0;
1299         desc = dmaengine_prep_slave_sg(channel,
1300                                 (struct scatterlist *)pio, 2,
1301                                 DMA_TRANS_NONE, 0);
1302         if (!desc)
1303                 return -EINVAL;
1304
1305         /* [2] Enable the BCH block and read. */
1306         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
1307         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1308         ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
1309         buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1310                         | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1311
1312         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1313                 | BM_GPMI_CTRL0_WORD_LENGTH
1314                 | BF_GPMI_CTRL0_CS(chip, this)
1315                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1316                 | BF_GPMI_CTRL0_ADDRESS(address)
1317                 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1318
1319         pio[1] = 0;
1320         pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
1321                 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1322                 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1323         pio[3] = geo->page_size;
1324         pio[4] = payload;
1325         pio[5] = auxiliary;
1326         desc = dmaengine_prep_slave_sg(channel,
1327                                         (struct scatterlist *)pio,
1328                                         ARRAY_SIZE(pio), DMA_TRANS_NONE,
1329                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1330         if (!desc)
1331                 return -EINVAL;
1332
1333         /* [3] Disable the BCH block */
1334         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1335         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1336
1337         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1338                 | BM_GPMI_CTRL0_WORD_LENGTH
1339                 | BF_GPMI_CTRL0_CS(chip, this)
1340                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1341                 | BF_GPMI_CTRL0_ADDRESS(address)
1342                 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1343         pio[1] = 0;
1344         pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1345         desc = dmaengine_prep_slave_sg(channel,
1346                                 (struct scatterlist *)pio, 3,
1347                                 DMA_TRANS_NONE,
1348                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1349         if (!desc)
1350                 return -EINVAL;
1351
1352         /* [4] submit the DMA */
1353         set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
1354         return start_dma_with_bch_irq(this, desc);
1355 }
1356
1357 /**
1358  * gpmi_copy_bits - copy bits from one memory region to another
1359  * @dst: destination buffer
1360  * @dst_bit_off: bit offset we're starting to write at
1361  * @src: source buffer
1362  * @src_bit_off: bit offset we're starting to read from
1363  * @nbits: number of bits to copy
1364  *
1365  * This functions copies bits from one memory region to another, and is used by
1366  * the GPMI driver to copy ECC sections which are not guaranteed to be byte
1367  * aligned.
1368  *
1369  * src and dst should not overlap.
1370  *
1371  */
1372 void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
1373                     const u8 *src, size_t src_bit_off,
1374                     size_t nbits)
1375 {
1376         size_t i;
1377         size_t nbytes;
1378         u32 src_buffer = 0;
1379         size_t bits_in_src_buffer = 0;
1380
1381         if (!nbits)
1382                 return;
1383
1384         /*
1385          * Move src and dst pointers to the closest byte pointer and store bit
1386          * offsets within a byte.
1387          */
1388         src += src_bit_off / 8;
1389         src_bit_off %= 8;
1390
1391         dst += dst_bit_off / 8;
1392         dst_bit_off %= 8;
1393
1394         /*
1395          * Initialize the src_buffer value with bits available in the first
1396          * byte of data so that we end up with a byte aligned src pointer.
1397          */
1398         if (src_bit_off) {
1399                 src_buffer = src[0] >> src_bit_off;
1400                 if (nbits >= (8 - src_bit_off)) {
1401                         bits_in_src_buffer += 8 - src_bit_off;
1402                 } else {
1403                         src_buffer &= GENMASK(nbits - 1, 0);
1404                         bits_in_src_buffer += nbits;
1405                 }
1406                 nbits -= bits_in_src_buffer;
1407                 src++;
1408         }
1409
1410         /* Calculate the number of bytes that can be copied from src to dst. */
1411         nbytes = nbits / 8;
1412
1413         /* Try to align dst to a byte boundary. */
1414         if (dst_bit_off) {
1415                 if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
1416                         src_buffer |= src[0] << bits_in_src_buffer;
1417                         bits_in_src_buffer += 8;
1418                         src++;
1419                         nbytes--;
1420                 }
1421
1422                 if (bits_in_src_buffer >= (8 - dst_bit_off)) {
1423                         dst[0] &= GENMASK(dst_bit_off - 1, 0);
1424                         dst[0] |= src_buffer << dst_bit_off;
1425                         src_buffer >>= (8 - dst_bit_off);
1426                         bits_in_src_buffer -= (8 - dst_bit_off);
1427                         dst_bit_off = 0;
1428                         dst++;
1429                         if (bits_in_src_buffer > 7) {
1430                                 bits_in_src_buffer -= 8;
1431                                 dst[0] = src_buffer;
1432                                 dst++;
1433                                 src_buffer >>= 8;
1434                         }
1435                 }
1436         }
1437
1438         if (!bits_in_src_buffer && !dst_bit_off) {
1439                 /*
1440                  * Both src and dst pointers are byte aligned, thus we can
1441                  * just use the optimized memcpy function.
1442                  */
1443                 if (nbytes)
1444                         memcpy(dst, src, nbytes);
1445         } else {
1446                 /*
1447                  * src buffer is not byte aligned, hence we have to copy each
1448                  * src byte to the src_buffer variable before extracting a byte
1449                  * to store in dst.
1450                  */
1451                 for (i = 0; i < nbytes; i++) {
1452                         src_buffer |= src[i] << bits_in_src_buffer;
1453                         dst[i] = src_buffer;
1454                         src_buffer >>= 8;
1455                 }
1456         }
1457         /* Update dst and src pointers */
1458         dst += nbytes;
1459         src += nbytes;
1460
1461         /*
1462          * nbits is the number of remaining bits. It should not exceed 8 as
1463          * we've already copied as much bytes as possible.
1464          */
1465         nbits %= 8;
1466
1467         /*
1468          * If there's no more bits to copy to the destination and src buffer
1469          * was already byte aligned, then we're done.
1470          */
1471         if (!nbits && !bits_in_src_buffer)
1472                 return;
1473
1474         /* Copy the remaining bits to src_buffer */
1475         if (nbits)
1476                 src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
1477                               bits_in_src_buffer;
1478         bits_in_src_buffer += nbits;
1479
1480         /*
1481          * In case there were not enough bits to get a byte aligned dst buffer
1482          * prepare the src_buffer variable to match the dst organization (shift
1483          * src_buffer by dst_bit_off and retrieve the least significant bits
1484          * from dst).
1485          */
1486         if (dst_bit_off)
1487                 src_buffer = (src_buffer << dst_bit_off) |
1488                              (*dst & GENMASK(dst_bit_off - 1, 0));
1489         bits_in_src_buffer += dst_bit_off;
1490
1491         /*
1492          * Keep most significant bits from dst if we end up with an unaligned
1493          * number of bits.
1494          */
1495         nbytes = bits_in_src_buffer / 8;
1496         if (bits_in_src_buffer % 8) {
1497                 src_buffer |= (dst[nbytes] &
1498                                GENMASK(7, bits_in_src_buffer % 8)) <<
1499                               (nbytes * 8);
1500                 nbytes++;
1501         }
1502
1503         /* Copy the remaining bytes to dst */
1504         for (i = 0; i < nbytes; i++) {
1505                 dst[i] = src_buffer;
1506                 src_buffer >>= 8;
1507         }
1508 }