Merge branch 'genetlink_mcast'
[cascardo/linux.git] / drivers / mtd / nand / gpmi-nand / gpmi-lib.c
1 /*
2  * Freescale GPMI NAND Flash Driver
3  *
4  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 #include <linux/delay.h>
22 #include <linux/clk.h>
23
24 #include "gpmi-nand.h"
25 #include "gpmi-regs.h"
26 #include "bch-regs.h"
27
28 static struct timing_threshod timing_default_threshold = {
29         .max_data_setup_cycles       = (BM_GPMI_TIMING0_DATA_SETUP >>
30                                                 BP_GPMI_TIMING0_DATA_SETUP),
31         .internal_data_setup_in_ns   = 0,
32         .max_sample_delay_factor     = (BM_GPMI_CTRL1_RDN_DELAY >>
33                                                 BP_GPMI_CTRL1_RDN_DELAY),
34         .max_dll_clock_period_in_ns  = 32,
35         .max_dll_delay_in_ns         = 16,
36 };
37
38 #define MXS_SET_ADDR            0x4
39 #define MXS_CLR_ADDR            0x8
40 /*
41  * Clear the bit and poll it cleared.  This is usually called with
42  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
43  * (bit 30).
44  */
45 static int clear_poll_bit(void __iomem *addr, u32 mask)
46 {
47         int timeout = 0x400;
48
49         /* clear the bit */
50         writel(mask, addr + MXS_CLR_ADDR);
51
52         /*
53          * SFTRST needs 3 GPMI clocks to settle, the reference manual
54          * recommends to wait 1us.
55          */
56         udelay(1);
57
58         /* poll the bit becoming clear */
59         while ((readl(addr) & mask) && --timeout)
60                 /* nothing */;
61
62         return !timeout;
63 }
64
65 #define MODULE_CLKGATE          (1 << 30)
66 #define MODULE_SFTRST           (1 << 31)
67 /*
68  * The current mxs_reset_block() will do two things:
69  *  [1] enable the module.
70  *  [2] reset the module.
71  *
72  * In most of the cases, it's ok.
73  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
74  * If you try to soft reset the BCH block, it becomes unusable until
75  * the next hard reset. This case occurs in the NAND boot mode. When the board
76  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
77  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
78  * You will see a DMA timeout in this case. The bug has been fixed
79  * in the following chips, such as MX28.
80  *
81  * To avoid this bug, just add a new parameter `just_enable` for
82  * the mxs_reset_block(), and rewrite it here.
83  */
84 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
85 {
86         int ret;
87         int timeout = 0x400;
88
89         /* clear and poll SFTRST */
90         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
91         if (unlikely(ret))
92                 goto error;
93
94         /* clear CLKGATE */
95         writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
96
97         if (!just_enable) {
98                 /* set SFTRST to reset the block */
99                 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
100                 udelay(1);
101
102                 /* poll CLKGATE becoming set */
103                 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
104                         /* nothing */;
105                 if (unlikely(!timeout))
106                         goto error;
107         }
108
109         /* clear and poll SFTRST */
110         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
111         if (unlikely(ret))
112                 goto error;
113
114         /* clear and poll CLKGATE */
115         ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
116         if (unlikely(ret))
117                 goto error;
118
119         return 0;
120
121 error:
122         pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
123         return -ETIMEDOUT;
124 }
125
126 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
127 {
128         struct clk *clk;
129         int ret;
130         int i;
131
132         for (i = 0; i < GPMI_CLK_MAX; i++) {
133                 clk = this->resources.clock[i];
134                 if (!clk)
135                         break;
136
137                 if (v) {
138                         ret = clk_prepare_enable(clk);
139                         if (ret)
140                                 goto err_clk;
141                 } else {
142                         clk_disable_unprepare(clk);
143                 }
144         }
145         return 0;
146
147 err_clk:
148         for (; i > 0; i--)
149                 clk_disable_unprepare(this->resources.clock[i - 1]);
150         return ret;
151 }
152
153 #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
154 #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
155
156 int gpmi_init(struct gpmi_nand_data *this)
157 {
158         struct resources *r = &this->resources;
159         int ret;
160
161         ret = gpmi_enable_clk(this);
162         if (ret)
163                 goto err_out;
164         ret = gpmi_reset_block(r->gpmi_regs, false);
165         if (ret)
166                 goto err_out;
167
168         /*
169          * Reset BCH here, too. We got failures otherwise :(
170          * See later BCH reset for explanation of MX23 handling
171          */
172         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
173         if (ret)
174                 goto err_out;
175
176
177         /* Choose NAND mode. */
178         writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
179
180         /* Set the IRQ polarity. */
181         writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
182                                 r->gpmi_regs + HW_GPMI_CTRL1_SET);
183
184         /* Disable Write-Protection. */
185         writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
186
187         /* Select BCH ECC. */
188         writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
189
190         gpmi_disable_clk(this);
191         return 0;
192 err_out:
193         return ret;
194 }
195
196 /* This function is very useful. It is called only when the bug occur. */
197 void gpmi_dump_info(struct gpmi_nand_data *this)
198 {
199         struct resources *r = &this->resources;
200         struct bch_geometry *geo = &this->bch_geometry;
201         u32 reg;
202         int i;
203
204         pr_err("Show GPMI registers :\n");
205         for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
206                 reg = readl(r->gpmi_regs + i * 0x10);
207                 pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
208         }
209
210         /* start to print out the BCH info */
211         pr_err("Show BCH registers :\n");
212         for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
213                 reg = readl(r->bch_regs + i * 0x10);
214                 pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
215         }
216         pr_err("BCH Geometry :\n");
217         pr_err("GF length              : %u\n", geo->gf_len);
218         pr_err("ECC Strength           : %u\n", geo->ecc_strength);
219         pr_err("Page Size in Bytes     : %u\n", geo->page_size);
220         pr_err("Metadata Size in Bytes : %u\n", geo->metadata_size);
221         pr_err("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size);
222         pr_err("ECC Chunk Count        : %u\n", geo->ecc_chunk_count);
223         pr_err("Payload Size in Bytes  : %u\n", geo->payload_size);
224         pr_err("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size);
225         pr_err("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
226         pr_err("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
227         pr_err("Block Mark Bit Offset  : %u\n", geo->block_mark_bit_offset);
228 }
229
230 /* Configures the geometry for BCH.  */
231 int bch_set_geometry(struct gpmi_nand_data *this)
232 {
233         struct resources *r = &this->resources;
234         struct bch_geometry *bch_geo = &this->bch_geometry;
235         unsigned int block_count;
236         unsigned int block_size;
237         unsigned int metadata_size;
238         unsigned int ecc_strength;
239         unsigned int page_size;
240         unsigned int gf_len;
241         int ret;
242
243         if (common_nfc_set_geometry(this))
244                 return !0;
245
246         block_count   = bch_geo->ecc_chunk_count - 1;
247         block_size    = bch_geo->ecc_chunk_size;
248         metadata_size = bch_geo->metadata_size;
249         ecc_strength  = bch_geo->ecc_strength >> 1;
250         page_size     = bch_geo->page_size;
251         gf_len        = bch_geo->gf_len;
252
253         ret = gpmi_enable_clk(this);
254         if (ret)
255                 goto err_out;
256
257         /*
258         * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
259         * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
260         * On the other hand, the MX28 needs the reset, because one case has been
261         * seen where the BCH produced ECC errors constantly after 10000
262         * consecutive reboots. The latter case has not been seen on the MX23 yet,
263         * still we don't know if it could happen there as well.
264         */
265         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
266         if (ret)
267                 goto err_out;
268
269         /* Configure layout 0. */
270         writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
271                         | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
272                         | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
273                         | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
274                         | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
275                         r->bch_regs + HW_BCH_FLASH0LAYOUT0);
276
277         writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
278                         | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
279                         | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
280                         | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
281                         r->bch_regs + HW_BCH_FLASH0LAYOUT1);
282
283         /* Set *all* chip selects to use layout 0. */
284         writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
285
286         /* Enable interrupts. */
287         writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
288                                 r->bch_regs + HW_BCH_CTRL_SET);
289
290         gpmi_disable_clk(this);
291         return 0;
292 err_out:
293         return ret;
294 }
295
296 /* Converts time in nanoseconds to cycles. */
297 static unsigned int ns_to_cycles(unsigned int time,
298                         unsigned int period, unsigned int min)
299 {
300         unsigned int k;
301
302         k = (time + period - 1) / period;
303         return max(k, min);
304 }
305
306 #define DEF_MIN_PROP_DELAY      5
307 #define DEF_MAX_PROP_DELAY      9
308 /* Apply timing to current hardware conditions. */
309 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
310                                         struct gpmi_nfc_hardware_timing *hw)
311 {
312         struct timing_threshod *nfc = &timing_default_threshold;
313         struct resources *r = &this->resources;
314         struct nand_chip *nand = &this->nand;
315         struct nand_timing target = this->timing;
316         bool improved_timing_is_available;
317         unsigned long clock_frequency_in_hz;
318         unsigned int clock_period_in_ns;
319         bool dll_use_half_periods;
320         unsigned int dll_delay_shift;
321         unsigned int max_sample_delay_in_ns;
322         unsigned int address_setup_in_cycles;
323         unsigned int data_setup_in_ns;
324         unsigned int data_setup_in_cycles;
325         unsigned int data_hold_in_cycles;
326         int ideal_sample_delay_in_ns;
327         unsigned int sample_delay_factor;
328         int tEYE;
329         unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
330         unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
331
332         /*
333          * If there are multiple chips, we need to relax the timings to allow
334          * for signal distortion due to higher capacitance.
335          */
336         if (nand->numchips > 2) {
337                 target.data_setup_in_ns    += 10;
338                 target.data_hold_in_ns     += 10;
339                 target.address_setup_in_ns += 10;
340         } else if (nand->numchips > 1) {
341                 target.data_setup_in_ns    += 5;
342                 target.data_hold_in_ns     += 5;
343                 target.address_setup_in_ns += 5;
344         }
345
346         /* Check if improved timing information is available. */
347         improved_timing_is_available =
348                 (target.tREA_in_ns  >= 0) &&
349                 (target.tRLOH_in_ns >= 0) &&
350                 (target.tRHOH_in_ns >= 0) ;
351
352         /* Inspect the clock. */
353         nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
354         clock_frequency_in_hz = nfc->clock_frequency_in_hz;
355         clock_period_in_ns    = NSEC_PER_SEC / clock_frequency_in_hz;
356
357         /*
358          * The NFC quantizes setup and hold parameters in terms of clock cycles.
359          * Here, we quantize the setup and hold timing parameters to the
360          * next-highest clock period to make sure we apply at least the
361          * specified times.
362          *
363          * For data setup and data hold, the hardware interprets a value of zero
364          * as the largest possible delay. This is not what's intended by a zero
365          * in the input parameter, so we impose a minimum of one cycle.
366          */
367         data_setup_in_cycles    = ns_to_cycles(target.data_setup_in_ns,
368                                                         clock_period_in_ns, 1);
369         data_hold_in_cycles     = ns_to_cycles(target.data_hold_in_ns,
370                                                         clock_period_in_ns, 1);
371         address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
372                                                         clock_period_in_ns, 0);
373
374         /*
375          * The clock's period affects the sample delay in a number of ways:
376          *
377          * (1) The NFC HAL tells us the maximum clock period the sample delay
378          *     DLL can tolerate. If the clock period is greater than half that
379          *     maximum, we must configure the DLL to be driven by half periods.
380          *
381          * (2) We need to convert from an ideal sample delay, in ns, to a
382          *     "sample delay factor," which the NFC uses. This factor depends on
383          *     whether we're driving the DLL with full or half periods.
384          *     Paraphrasing the reference manual:
385          *
386          *         AD = SDF x 0.125 x RP
387          *
388          * where:
389          *
390          *     AD   is the applied delay, in ns.
391          *     SDF  is the sample delay factor, which is dimensionless.
392          *     RP   is the reference period, in ns, which is a full clock period
393          *          if the DLL is being driven by full periods, or half that if
394          *          the DLL is being driven by half periods.
395          *
396          * Let's re-arrange this in a way that's more useful to us:
397          *
398          *                        8
399          *         SDF  =  AD x ----
400          *                       RP
401          *
402          * The reference period is either the clock period or half that, so this
403          * is:
404          *
405          *                        8       AD x DDF
406          *         SDF  =  AD x -----  =  --------
407          *                      f x P        P
408          *
409          * where:
410          *
411          *       f  is 1 or 1/2, depending on how we're driving the DLL.
412          *       P  is the clock period.
413          *     DDF  is the DLL Delay Factor, a dimensionless value that
414          *          incorporates all the constants in the conversion.
415          *
416          * DDF will be either 8 or 16, both of which are powers of two. We can
417          * reduce the cost of this conversion by using bit shifts instead of
418          * multiplication or division. Thus:
419          *
420          *                 AD << DDS
421          *         SDF  =  ---------
422          *                     P
423          *
424          *     or
425          *
426          *         AD  =  (SDF >> DDS) x P
427          *
428          * where:
429          *
430          *     DDS  is the DLL Delay Shift, the logarithm to base 2 of the DDF.
431          */
432         if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
433                 dll_use_half_periods = true;
434                 dll_delay_shift      = 3 + 1;
435         } else {
436                 dll_use_half_periods = false;
437                 dll_delay_shift      = 3;
438         }
439
440         /*
441          * Compute the maximum sample delay the NFC allows, under current
442          * conditions. If the clock is running too slowly, no sample delay is
443          * possible.
444          */
445         if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
446                 max_sample_delay_in_ns = 0;
447         else {
448                 /*
449                  * Compute the delay implied by the largest sample delay factor
450                  * the NFC allows.
451                  */
452                 max_sample_delay_in_ns =
453                         (nfc->max_sample_delay_factor * clock_period_in_ns) >>
454                                                                 dll_delay_shift;
455
456                 /*
457                  * Check if the implied sample delay larger than the NFC
458                  * actually allows.
459                  */
460                 if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
461                         max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
462         }
463
464         /*
465          * Check if improved timing information is available. If not, we have to
466          * use a less-sophisticated algorithm.
467          */
468         if (!improved_timing_is_available) {
469                 /*
470                  * Fold the read setup time required by the NFC into the ideal
471                  * sample delay.
472                  */
473                 ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
474                                                 nfc->internal_data_setup_in_ns;
475
476                 /*
477                  * The ideal sample delay may be greater than the maximum
478                  * allowed by the NFC. If so, we can trade off sample delay time
479                  * for more data setup time.
480                  *
481                  * In each iteration of the following loop, we add a cycle to
482                  * the data setup time and subtract a corresponding amount from
483                  * the sample delay until we've satisified the constraints or
484                  * can't do any better.
485                  */
486                 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
487                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
488
489                         data_setup_in_cycles++;
490                         ideal_sample_delay_in_ns -= clock_period_in_ns;
491
492                         if (ideal_sample_delay_in_ns < 0)
493                                 ideal_sample_delay_in_ns = 0;
494
495                 }
496
497                 /*
498                  * Compute the sample delay factor that corresponds most closely
499                  * to the ideal sample delay. If the result is too large for the
500                  * NFC, use the maximum value.
501                  *
502                  * Notice that we use the ns_to_cycles function to compute the
503                  * sample delay factor. We do this because the form of the
504                  * computation is the same as that for calculating cycles.
505                  */
506                 sample_delay_factor =
507                         ns_to_cycles(
508                                 ideal_sample_delay_in_ns << dll_delay_shift,
509                                                         clock_period_in_ns, 0);
510
511                 if (sample_delay_factor > nfc->max_sample_delay_factor)
512                         sample_delay_factor = nfc->max_sample_delay_factor;
513
514                 /* Skip to the part where we return our results. */
515                 goto return_results;
516         }
517
518         /*
519          * If control arrives here, we have more detailed timing information,
520          * so we can use a better algorithm.
521          */
522
523         /*
524          * Fold the read setup time required by the NFC into the maximum
525          * propagation delay.
526          */
527         max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
528
529         /*
530          * Earlier, we computed the number of clock cycles required to satisfy
531          * the data setup time. Now, we need to know the actual nanoseconds.
532          */
533         data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
534
535         /*
536          * Compute tEYE, the width of the data eye when reading from the NAND
537          * Flash. The eye width is fundamentally determined by the data setup
538          * time, perturbed by propagation delays and some characteristics of the
539          * NAND Flash device.
540          *
541          * start of the eye = max_prop_delay + tREA
542          * end of the eye   = min_prop_delay + tRHOH + data_setup
543          */
544         tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
545                                                         (int)data_setup_in_ns;
546
547         tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
548
549         /*
550          * The eye must be open. If it's not, we can try to open it by
551          * increasing its main forcer, the data setup time.
552          *
553          * In each iteration of the following loop, we increase the data setup
554          * time by a single clock cycle. We do this until either the eye is
555          * open or we run into NFC limits.
556          */
557         while ((tEYE <= 0) &&
558                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
559                 /* Give a cycle to data setup. */
560                 data_setup_in_cycles++;
561                 /* Synchronize the data setup time with the cycles. */
562                 data_setup_in_ns += clock_period_in_ns;
563                 /* Adjust tEYE accordingly. */
564                 tEYE += clock_period_in_ns;
565         }
566
567         /*
568          * When control arrives here, the eye is open. The ideal time to sample
569          * the data is in the center of the eye:
570          *
571          *     end of the eye + start of the eye
572          *     ---------------------------------  -  data_setup
573          *                    2
574          *
575          * After some algebra, this simplifies to the code immediately below.
576          */
577         ideal_sample_delay_in_ns =
578                 ((int)max_prop_delay_in_ns +
579                         (int)target.tREA_in_ns +
580                                 (int)min_prop_delay_in_ns +
581                                         (int)target.tRHOH_in_ns -
582                                                 (int)data_setup_in_ns) >> 1;
583
584         /*
585          * The following figure illustrates some aspects of a NAND Flash read:
586          *
587          *
588          *           __                   _____________________________________
589          * RDN         \_________________/
590          *
591          *                                         <---- tEYE ----->
592          *                                        /-----------------\
593          * Read Data ----------------------------<                   >---------
594          *                                        \-----------------/
595          *             ^                 ^                 ^              ^
596          *             |                 |                 |              |
597          *             |<--Data Setup -->|<--Delay Time -->|              |
598          *             |                 |                 |              |
599          *             |                 |                                |
600          *             |                 |<--   Quantized Delay Time   -->|
601          *             |                 |                                |
602          *
603          *
604          * We have some issues we must now address:
605          *
606          * (1) The *ideal* sample delay time must not be negative. If it is, we
607          *     jam it to zero.
608          *
609          * (2) The *ideal* sample delay time must not be greater than that
610          *     allowed by the NFC. If it is, we can increase the data setup
611          *     time, which will reduce the delay between the end of the data
612          *     setup and the center of the eye. It will also make the eye
613          *     larger, which might help with the next issue...
614          *
615          * (3) The *quantized* sample delay time must not fall either before the
616          *     eye opens or after it closes (the latter is the problem
617          *     illustrated in the above figure).
618          */
619
620         /* Jam a negative ideal sample delay to zero. */
621         if (ideal_sample_delay_in_ns < 0)
622                 ideal_sample_delay_in_ns = 0;
623
624         /*
625          * Extend the data setup as needed to reduce the ideal sample delay
626          * below the maximum permitted by the NFC.
627          */
628         while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
629                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
630
631                 /* Give a cycle to data setup. */
632                 data_setup_in_cycles++;
633                 /* Synchronize the data setup time with the cycles. */
634                 data_setup_in_ns += clock_period_in_ns;
635                 /* Adjust tEYE accordingly. */
636                 tEYE += clock_period_in_ns;
637
638                 /*
639                  * Decrease the ideal sample delay by one half cycle, to keep it
640                  * in the middle of the eye.
641                  */
642                 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
643
644                 /* Jam a negative ideal sample delay to zero. */
645                 if (ideal_sample_delay_in_ns < 0)
646                         ideal_sample_delay_in_ns = 0;
647         }
648
649         /*
650          * Compute the sample delay factor that corresponds to the ideal sample
651          * delay. If the result is too large, then use the maximum allowed
652          * value.
653          *
654          * Notice that we use the ns_to_cycles function to compute the sample
655          * delay factor. We do this because the form of the computation is the
656          * same as that for calculating cycles.
657          */
658         sample_delay_factor =
659                 ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
660                                                         clock_period_in_ns, 0);
661
662         if (sample_delay_factor > nfc->max_sample_delay_factor)
663                 sample_delay_factor = nfc->max_sample_delay_factor;
664
665         /*
666          * These macros conveniently encapsulate a computation we'll use to
667          * continuously evaluate whether or not the data sample delay is inside
668          * the eye.
669          */
670         #define IDEAL_DELAY  ((int) ideal_sample_delay_in_ns)
671
672         #define QUANTIZED_DELAY  \
673                 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
674                                                         dll_delay_shift))
675
676         #define DELAY_ERROR  (abs(QUANTIZED_DELAY - IDEAL_DELAY))
677
678         #define SAMPLE_IS_NOT_WITHIN_THE_EYE  (DELAY_ERROR > (tEYE >> 1))
679
680         /*
681          * While the quantized sample time falls outside the eye, reduce the
682          * sample delay or extend the data setup to move the sampling point back
683          * toward the eye. Do not allow the number of data setup cycles to
684          * exceed the maximum allowed by the NFC.
685          */
686         while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
687                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
688                 /*
689                  * If control arrives here, the quantized sample delay falls
690                  * outside the eye. Check if it's before the eye opens, or after
691                  * the eye closes.
692                  */
693                 if (QUANTIZED_DELAY > IDEAL_DELAY) {
694                         /*
695                          * If control arrives here, the quantized sample delay
696                          * falls after the eye closes. Decrease the quantized
697                          * delay time and then go back to re-evaluate.
698                          */
699                         if (sample_delay_factor != 0)
700                                 sample_delay_factor--;
701                         continue;
702                 }
703
704                 /*
705                  * If control arrives here, the quantized sample delay falls
706                  * before the eye opens. Shift the sample point by increasing
707                  * data setup time. This will also make the eye larger.
708                  */
709
710                 /* Give a cycle to data setup. */
711                 data_setup_in_cycles++;
712                 /* Synchronize the data setup time with the cycles. */
713                 data_setup_in_ns += clock_period_in_ns;
714                 /* Adjust tEYE accordingly. */
715                 tEYE += clock_period_in_ns;
716
717                 /*
718                  * Decrease the ideal sample delay by one half cycle, to keep it
719                  * in the middle of the eye.
720                  */
721                 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
722
723                 /* ...and one less period for the delay time. */
724                 ideal_sample_delay_in_ns -= clock_period_in_ns;
725
726                 /* Jam a negative ideal sample delay to zero. */
727                 if (ideal_sample_delay_in_ns < 0)
728                         ideal_sample_delay_in_ns = 0;
729
730                 /*
731                  * We have a new ideal sample delay, so re-compute the quantized
732                  * delay.
733                  */
734                 sample_delay_factor =
735                         ns_to_cycles(
736                                 ideal_sample_delay_in_ns << dll_delay_shift,
737                                                         clock_period_in_ns, 0);
738
739                 if (sample_delay_factor > nfc->max_sample_delay_factor)
740                         sample_delay_factor = nfc->max_sample_delay_factor;
741         }
742
743         /* Control arrives here when we're ready to return our results. */
744 return_results:
745         hw->data_setup_in_cycles    = data_setup_in_cycles;
746         hw->data_hold_in_cycles     = data_hold_in_cycles;
747         hw->address_setup_in_cycles = address_setup_in_cycles;
748         hw->use_half_periods        = dll_use_half_periods;
749         hw->sample_delay_factor     = sample_delay_factor;
750         hw->device_busy_timeout     = GPMI_DEFAULT_BUSY_TIMEOUT;
751         hw->wrn_dly_sel             = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
752
753         /* Return success. */
754         return 0;
755 }
756
757 /*
758  * <1> Firstly, we should know what's the GPMI-clock means.
759  *     The GPMI-clock is the internal clock in the gpmi nand controller.
760  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
761  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
762  *
763  * <2> Secondly, we should know what's the frequency on the nand chip pins.
764  *     The frequency on the nand chip pins is derived from the GPMI-clock.
765  *     We can get it from the following equation:
766  *
767  *         F = G / (DS + DH)
768  *
769  *         F  : the frequency on the nand chip pins.
770  *         G  : the GPMI clock, such as 100MHz.
771  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
772  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
773  *
774  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
775  *     the nand EDO(extended Data Out) timing could be applied.
776  *     The GPMI implements a feedback read strobe to sample the read data.
777  *     The feedback read strobe can be delayed to support the nand EDO timing
778  *     where the read strobe may deasserts before the read data is valid, and
779  *     read data is valid for some time after read strobe.
780  *
781  *     The following figure illustrates some aspects of a NAND Flash read:
782  *
783  *                   |<---tREA---->|
784  *                   |             |
785  *                   |         |   |
786  *                   |<--tRP-->|   |
787  *                   |         |   |
788  *                  __          ___|__________________________________
789  *     RDN            \________/   |
790  *                                 |
791  *                                 /---------\
792  *     Read Data    --------------<           >---------
793  *                                 \---------/
794  *                                |     |
795  *                                |<-D->|
796  *     FeedbackRDN  ________             ____________
797  *                          \___________/
798  *
799  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
800  *
801  *
802  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
803  *
804  *  4.1) From the aspect of the nand chip pins:
805  *        Delay = (tREA + C - tRP)               {1}
806  *
807  *        tREA : the maximum read access time. From the ONFI nand standards,
808  *               we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
809  *               Please check it in : www.onfi.org
810  *        C    : a constant for adjust the delay. default is 4.
811  *        tRP  : the read pulse width.
812  *               Specified by the HW_GPMI_TIMING0:DATA_SETUP:
813  *                    tRP = (GPMI-clock-period) * DATA_SETUP
814  *
815  *  4.2) From the aspect of the GPMI nand controller:
816  *         Delay = RDN_DELAY * 0.125 * RP        {2}
817  *
818  *         RP   : the DLL reference period.
819  *            if (GPMI-clock-period > DLL_THRETHOLD)
820  *                   RP = GPMI-clock-period / 2;
821  *            else
822  *                   RP = GPMI-clock-period;
823  *
824  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
825  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
826  *            is 16ns, but in mx6q, we use 12ns.
827  *
828  *  4.3) since {1} equals {2}, we get:
829  *
830  *                    (tREA + 4 - tRP) * 8
831  *         RDN_DELAY = ---------------------     {3}
832  *                           RP
833  *
834  *  4.4) We only support the fastest asynchronous mode of ONFI nand.
835  *       For some ONFI nand, the mode 4 is the fastest mode;
836  *       while for some ONFI nand, the mode 5 is the fastest mode.
837  *       So we only support the mode 4 and mode 5. It is no need to
838  *       support other modes.
839  */
840 static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
841                         struct gpmi_nfc_hardware_timing *hw)
842 {
843         struct resources *r = &this->resources;
844         unsigned long rate = clk_get_rate(r->clock[0]);
845         int mode = this->timing_mode;
846         int dll_threshold = 16; /* in ns */
847         unsigned long delay;
848         unsigned long clk_period;
849         int t_rea;
850         int c = 4;
851         int t_rp;
852         int rp;
853
854         /*
855          * [1] for GPMI_HW_GPMI_TIMING0:
856          *     The async mode requires 40MHz for mode 4, 50MHz for mode 5.
857          *     The GPMI can support 100MHz at most. So if we want to
858          *     get the 40MHz or 50MHz, we have to set DS=1, DH=1.
859          *     Set the ADDRESS_SETUP to 0 in mode 4.
860          */
861         hw->data_setup_in_cycles = 1;
862         hw->data_hold_in_cycles = 1;
863         hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);
864
865         /* [2] for GPMI_HW_GPMI_TIMING1 */
866         hw->device_busy_timeout = 0x9000;
867
868         /* [3] for GPMI_HW_GPMI_CTRL1 */
869         hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
870
871         if (GPMI_IS_MX6Q(this))
872                 dll_threshold = 12;
873
874         /*
875          * Enlarge 10 times for the numerator and denominator in {3}.
876          * This make us to get more accurate result.
877          */
878         clk_period = NSEC_PER_SEC / (rate / 10);
879         dll_threshold *= 10;
880         t_rea = ((mode == 5) ? 16 : 20) * 10;
881         c *= 10;
882
883         t_rp = clk_period * 1; /* DATA_SETUP is 1 */
884
885         if (clk_period > dll_threshold) {
886                 hw->use_half_periods = 1;
887                 rp = clk_period / 2;
888         } else {
889                 hw->use_half_periods = 0;
890                 rp = clk_period;
891         }
892
893         /*
894          * Multiply the numerator with 10, we could do a round off:
895          *      7.8 round up to 8; 7.4 round down to 7.
896          */
897         delay  = (((t_rea + c - t_rp) * 8) * 10) / rp;
898         delay = (delay + 5) / 10;
899
900         hw->sample_delay_factor = delay;
901 }
902
903 static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
904 {
905         struct resources  *r = &this->resources;
906         struct nand_chip *nand = &this->nand;
907         struct mtd_info  *mtd = &this->mtd;
908         uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
909         unsigned long rate;
910         int ret;
911
912         nand->select_chip(mtd, 0);
913
914         /* [1] send SET FEATURE commond to NAND */
915         feature[0] = mode;
916         ret = nand->onfi_set_features(mtd, nand,
917                                 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
918         if (ret)
919                 goto err_out;
920
921         /* [2] send GET FEATURE command to double-check the timing mode */
922         memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
923         ret = nand->onfi_get_features(mtd, nand,
924                                 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
925         if (ret || feature[0] != mode)
926                 goto err_out;
927
928         nand->select_chip(mtd, -1);
929
930         /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
931         rate = (mode == 5) ? 100000000 : 80000000;
932         clk_set_rate(r->clock[0], rate);
933
934         /* Let the gpmi_begin() re-compute the timing again. */
935         this->flags &= ~GPMI_TIMING_INIT_OK;
936
937         this->flags |= GPMI_ASYNC_EDO_ENABLED;
938         this->timing_mode = mode;
939         dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
940         return 0;
941
942 err_out:
943         nand->select_chip(mtd, -1);
944         dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
945         return -EINVAL;
946 }
947
948 int gpmi_extra_init(struct gpmi_nand_data *this)
949 {
950         struct nand_chip *chip = &this->nand;
951
952         /* Enable the asynchronous EDO feature. */
953         if (GPMI_IS_MX6Q(this) && chip->onfi_version) {
954                 int mode = onfi_get_async_timing_mode(chip);
955
956                 /* We only support the timing mode 4 and mode 5. */
957                 if (mode & ONFI_TIMING_MODE_5)
958                         mode = 5;
959                 else if (mode & ONFI_TIMING_MODE_4)
960                         mode = 4;
961                 else
962                         return 0;
963
964                 return enable_edo_mode(this, mode);
965         }
966         return 0;
967 }
968
969 /* Begin the I/O */
970 void gpmi_begin(struct gpmi_nand_data *this)
971 {
972         struct resources *r = &this->resources;
973         void __iomem *gpmi_regs = r->gpmi_regs;
974         unsigned int   clock_period_in_ns;
975         uint32_t       reg;
976         unsigned int   dll_wait_time_in_us;
977         struct gpmi_nfc_hardware_timing  hw;
978         int ret;
979
980         /* Enable the clock. */
981         ret = gpmi_enable_clk(this);
982         if (ret) {
983                 pr_err("We failed in enable the clk\n");
984                 goto err_out;
985         }
986
987         /* Only initialize the timing once */
988         if (this->flags & GPMI_TIMING_INIT_OK)
989                 return;
990         this->flags |= GPMI_TIMING_INIT_OK;
991
992         if (this->flags & GPMI_ASYNC_EDO_ENABLED)
993                 gpmi_compute_edo_timing(this, &hw);
994         else
995                 gpmi_nfc_compute_hardware_timing(this, &hw);
996
997         /* [1] Set HW_GPMI_TIMING0 */
998         reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
999                 BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles)         |
1000                 BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles)       ;
1001
1002         writel(reg, gpmi_regs + HW_GPMI_TIMING0);
1003
1004         /* [2] Set HW_GPMI_TIMING1 */
1005         writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
1006                 gpmi_regs + HW_GPMI_TIMING1);
1007
1008         /* [3] The following code is to set the HW_GPMI_CTRL1. */
1009
1010         /* Set the WRN_DLY_SEL */
1011         writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
1012         writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
1013                                         gpmi_regs + HW_GPMI_CTRL1_SET);
1014
1015         /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1016         writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
1017
1018         /* Clear out the DLL control fields. */
1019         reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
1020         writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
1021
1022         /* If no sample delay is called for, return immediately. */
1023         if (!hw.sample_delay_factor)
1024                 return;
1025
1026         /* Set RDN_DELAY or HALF_PERIOD. */
1027         reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
1028                 | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
1029
1030         writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
1031
1032         /* At last, we enable the DLL. */
1033         writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
1034
1035         /*
1036          * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1037          * we can use the GPMI. Calculate the amount of time we need to wait,
1038          * in microseconds.
1039          */
1040         clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
1041         dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
1042
1043         if (!dll_wait_time_in_us)
1044                 dll_wait_time_in_us = 1;
1045
1046         /* Wait for the DLL to settle. */
1047         udelay(dll_wait_time_in_us);
1048
1049 err_out:
1050         return;
1051 }
1052
1053 void gpmi_end(struct gpmi_nand_data *this)
1054 {
1055         gpmi_disable_clk(this);
1056 }
1057
1058 /* Clears a BCH interrupt. */
1059 void gpmi_clear_bch(struct gpmi_nand_data *this)
1060 {
1061         struct resources *r = &this->resources;
1062         writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1063 }
1064
1065 /* Returns the Ready/Busy status of the given chip. */
1066 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
1067 {
1068         struct resources *r = &this->resources;
1069         uint32_t mask = 0;
1070         uint32_t reg = 0;
1071
1072         if (GPMI_IS_MX23(this)) {
1073                 mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
1074                 reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
1075         } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6Q(this)) {
1076                 /* MX28 shares the same R/B register as MX6Q. */
1077                 mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
1078                 reg = readl(r->gpmi_regs + HW_GPMI_STAT);
1079         } else
1080                 pr_err("unknow arch.\n");
1081         return reg & mask;
1082 }
1083
1084 static inline void set_dma_type(struct gpmi_nand_data *this,
1085                                         enum dma_ops_type type)
1086 {
1087         this->last_dma_type = this->dma_type;
1088         this->dma_type = type;
1089 }
1090
1091 int gpmi_send_command(struct gpmi_nand_data *this)
1092 {
1093         struct dma_chan *channel = get_dma_chan(this);
1094         struct dma_async_tx_descriptor *desc;
1095         struct scatterlist *sgl;
1096         int chip = this->current_chip;
1097         u32 pio[3];
1098
1099         /* [1] send out the PIO words */
1100         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
1101                 | BM_GPMI_CTRL0_WORD_LENGTH
1102                 | BF_GPMI_CTRL0_CS(chip, this)
1103                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1104                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
1105                 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
1106                 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
1107         pio[1] = pio[2] = 0;
1108         desc = dmaengine_prep_slave_sg(channel,
1109                                         (struct scatterlist *)pio,
1110                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1111         if (!desc) {
1112                 pr_err("step 1 error\n");
1113                 return -1;
1114         }
1115
1116         /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
1117         sgl = &this->cmd_sgl;
1118
1119         sg_init_one(sgl, this->cmd_buffer, this->command_length);
1120         dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
1121         desc = dmaengine_prep_slave_sg(channel,
1122                                 sgl, 1, DMA_MEM_TO_DEV,
1123                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1124
1125         if (!desc) {
1126                 pr_err("step 2 error\n");
1127                 return -1;
1128         }
1129
1130         /* [3] submit the DMA */
1131         set_dma_type(this, DMA_FOR_COMMAND);
1132         return start_dma_without_bch_irq(this, desc);
1133 }
1134
1135 int gpmi_send_data(struct gpmi_nand_data *this)
1136 {
1137         struct dma_async_tx_descriptor *desc;
1138         struct dma_chan *channel = get_dma_chan(this);
1139         int chip = this->current_chip;
1140         uint32_t command_mode;
1141         uint32_t address;
1142         u32 pio[2];
1143
1144         /* [1] PIO */
1145         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1146         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1147
1148         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1149                 | BM_GPMI_CTRL0_WORD_LENGTH
1150                 | BF_GPMI_CTRL0_CS(chip, this)
1151                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1152                 | BF_GPMI_CTRL0_ADDRESS(address)
1153                 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1154         pio[1] = 0;
1155         desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
1156                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1157         if (!desc) {
1158                 pr_err("step 1 error\n");
1159                 return -1;
1160         }
1161
1162         /* [2] send DMA request */
1163         prepare_data_dma(this, DMA_TO_DEVICE);
1164         desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1165                                         1, DMA_MEM_TO_DEV,
1166                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1167         if (!desc) {
1168                 pr_err("step 2 error\n");
1169                 return -1;
1170         }
1171         /* [3] submit the DMA */
1172         set_dma_type(this, DMA_FOR_WRITE_DATA);
1173         return start_dma_without_bch_irq(this, desc);
1174 }
1175
1176 int gpmi_read_data(struct gpmi_nand_data *this)
1177 {
1178         struct dma_async_tx_descriptor *desc;
1179         struct dma_chan *channel = get_dma_chan(this);
1180         int chip = this->current_chip;
1181         u32 pio[2];
1182
1183         /* [1] : send PIO */
1184         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
1185                 | BM_GPMI_CTRL0_WORD_LENGTH
1186                 | BF_GPMI_CTRL0_CS(chip, this)
1187                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1188                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
1189                 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1190         pio[1] = 0;
1191         desc = dmaengine_prep_slave_sg(channel,
1192                                         (struct scatterlist *)pio,
1193                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1194         if (!desc) {
1195                 pr_err("step 1 error\n");
1196                 return -1;
1197         }
1198
1199         /* [2] : send DMA request */
1200         prepare_data_dma(this, DMA_FROM_DEVICE);
1201         desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1202                                         1, DMA_DEV_TO_MEM,
1203                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1204         if (!desc) {
1205                 pr_err("step 2 error\n");
1206                 return -1;
1207         }
1208
1209         /* [3] : submit the DMA */
1210         set_dma_type(this, DMA_FOR_READ_DATA);
1211         return start_dma_without_bch_irq(this, desc);
1212 }
1213
1214 int gpmi_send_page(struct gpmi_nand_data *this,
1215                         dma_addr_t payload, dma_addr_t auxiliary)
1216 {
1217         struct bch_geometry *geo = &this->bch_geometry;
1218         uint32_t command_mode;
1219         uint32_t address;
1220         uint32_t ecc_command;
1221         uint32_t buffer_mask;
1222         struct dma_async_tx_descriptor *desc;
1223         struct dma_chan *channel = get_dma_chan(this);
1224         int chip = this->current_chip;
1225         u32 pio[6];
1226
1227         /* A DMA descriptor that does an ECC page read. */
1228         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1229         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1230         ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
1231         buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
1232                                 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1233
1234         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1235                 | BM_GPMI_CTRL0_WORD_LENGTH
1236                 | BF_GPMI_CTRL0_CS(chip, this)
1237                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1238                 | BF_GPMI_CTRL0_ADDRESS(address)
1239                 | BF_GPMI_CTRL0_XFER_COUNT(0);
1240         pio[1] = 0;
1241         pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1242                 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1243                 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1244         pio[3] = geo->page_size;
1245         pio[4] = payload;
1246         pio[5] = auxiliary;
1247
1248         desc = dmaengine_prep_slave_sg(channel,
1249                                         (struct scatterlist *)pio,
1250                                         ARRAY_SIZE(pio), DMA_TRANS_NONE,
1251                                         DMA_CTRL_ACK);
1252         if (!desc) {
1253                 pr_err("step 2 error\n");
1254                 return -1;
1255         }
1256         set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
1257         return start_dma_with_bch_irq(this, desc);
1258 }
1259
1260 int gpmi_read_page(struct gpmi_nand_data *this,
1261                                 dma_addr_t payload, dma_addr_t auxiliary)
1262 {
1263         struct bch_geometry *geo = &this->bch_geometry;
1264         uint32_t command_mode;
1265         uint32_t address;
1266         uint32_t ecc_command;
1267         uint32_t buffer_mask;
1268         struct dma_async_tx_descriptor *desc;
1269         struct dma_chan *channel = get_dma_chan(this);
1270         int chip = this->current_chip;
1271         u32 pio[6];
1272
1273         /* [1] Wait for the chip to report ready. */
1274         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1275         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1276
1277         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1278                 | BM_GPMI_CTRL0_WORD_LENGTH
1279                 | BF_GPMI_CTRL0_CS(chip, this)
1280                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1281                 | BF_GPMI_CTRL0_ADDRESS(address)
1282                 | BF_GPMI_CTRL0_XFER_COUNT(0);
1283         pio[1] = 0;
1284         desc = dmaengine_prep_slave_sg(channel,
1285                                 (struct scatterlist *)pio, 2,
1286                                 DMA_TRANS_NONE, 0);
1287         if (!desc) {
1288                 pr_err("step 1 error\n");
1289                 return -1;
1290         }
1291
1292         /* [2] Enable the BCH block and read. */
1293         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
1294         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1295         ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
1296         buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1297                         | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1298
1299         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1300                 | BM_GPMI_CTRL0_WORD_LENGTH
1301                 | BF_GPMI_CTRL0_CS(chip, this)
1302                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1303                 | BF_GPMI_CTRL0_ADDRESS(address)
1304                 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1305
1306         pio[1] = 0;
1307         pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
1308                 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1309                 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1310         pio[3] = geo->page_size;
1311         pio[4] = payload;
1312         pio[5] = auxiliary;
1313         desc = dmaengine_prep_slave_sg(channel,
1314                                         (struct scatterlist *)pio,
1315                                         ARRAY_SIZE(pio), DMA_TRANS_NONE,
1316                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1317         if (!desc) {
1318                 pr_err("step 2 error\n");
1319                 return -1;
1320         }
1321
1322         /* [3] Disable the BCH block */
1323         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1324         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1325
1326         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1327                 | BM_GPMI_CTRL0_WORD_LENGTH
1328                 | BF_GPMI_CTRL0_CS(chip, this)
1329                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1330                 | BF_GPMI_CTRL0_ADDRESS(address)
1331                 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1332         pio[1] = 0;
1333         pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1334         desc = dmaengine_prep_slave_sg(channel,
1335                                 (struct scatterlist *)pio, 3,
1336                                 DMA_TRANS_NONE,
1337                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1338         if (!desc) {
1339                 pr_err("step 3 error\n");
1340                 return -1;
1341         }
1342
1343         /* [4] submit the DMA */
1344         set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
1345         return start_dma_with_bch_irq(this, desc);
1346 }