Merge tag 'for-linus-20141215' of git://git.infradead.org/linux-mtd
[cascardo/linux.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/of_mtd.h>
38
39 #include <asm/mach/flash.h>
40 #include <linux/platform_data/mtd-mxc_nand.h>
41
42 #define DRIVER_NAME "mxc_nand"
43
44 /* Addresses for NFC registers */
45 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
46 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
47 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
48 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
49 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
50 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
51 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
52 #define NFC_V1_V2_RSLTSPARE_AREA        (host->regs + 0x10)
53 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
54 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
55 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
56 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
57 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
58 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
59 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
60 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
61 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
62 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
63 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
64 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
65 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
66 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
67
68 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
69 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
70 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
71 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
72 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
73 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
74 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
75 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
76 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
77 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
78
79 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
80
81 /*
82  * Operation modes for the NFC. Valid for v1, v2 and v3
83  * type controllers.
84  */
85 #define NFC_CMD                         (1 << 0)
86 #define NFC_ADDR                        (1 << 1)
87 #define NFC_INPUT                       (1 << 2)
88 #define NFC_OUTPUT                      (1 << 3)
89 #define NFC_ID                          (1 << 4)
90 #define NFC_STATUS                      (1 << 5)
91
92 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
93 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
94
95 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
96 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
97 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
98
99 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
100
101 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
102
103 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
104 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
105 #define NFC_V3_WRPROT_LOCK              (1 << 1)
106 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
107 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
108
109 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
110
111 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
112 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
113 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
114 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
115 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
116 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
117 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
118 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
119 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
120 #define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
121 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
122 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
123 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
124 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
125
126 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
127 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
128 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
129 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
130 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
131 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
132 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
133
134 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
135 #define NFC_V3_IPC_CREQ                 (1 << 0)
136 #define NFC_V3_IPC_INT                  (1 << 31)
137
138 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
139
140 struct mxc_nand_host;
141
142 struct mxc_nand_devtype_data {
143         void (*preset)(struct mtd_info *);
144         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
145         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
146         void (*send_page)(struct mtd_info *, unsigned int);
147         void (*send_read_id)(struct mxc_nand_host *);
148         uint16_t (*get_dev_status)(struct mxc_nand_host *);
149         int (*check_int)(struct mxc_nand_host *);
150         void (*irq_control)(struct mxc_nand_host *, int);
151         u32 (*get_ecc_status)(struct mxc_nand_host *);
152         struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
153         void (*select_chip)(struct mtd_info *mtd, int chip);
154         int (*correct_data)(struct mtd_info *mtd, u_char *dat,
155                         u_char *read_ecc, u_char *calc_ecc);
156
157         /*
158          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
159          * (CONFIG1:INT_MSK is set). To handle this the driver uses
160          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
161          */
162         int irqpending_quirk;
163         int needs_ip;
164
165         size_t regs_offset;
166         size_t spare0_offset;
167         size_t axi_offset;
168
169         int spare_len;
170         int eccbytes;
171         int eccsize;
172         int ppb_shift;
173 };
174
175 struct mxc_nand_host {
176         struct mtd_info         mtd;
177         struct nand_chip        nand;
178         struct device           *dev;
179
180         void __iomem            *spare0;
181         void __iomem            *main_area0;
182
183         void __iomem            *base;
184         void __iomem            *regs;
185         void __iomem            *regs_axi;
186         void __iomem            *regs_ip;
187         int                     status_request;
188         struct clk              *clk;
189         int                     clk_act;
190         int                     irq;
191         int                     eccsize;
192         int                     active_cs;
193
194         struct completion       op_completion;
195
196         uint8_t                 *data_buf;
197         unsigned int            buf_start;
198
199         const struct mxc_nand_devtype_data *devtype_data;
200         struct mxc_nand_platform_data pdata;
201 };
202
203 /* OOB placement block for use with hardware ecc generation */
204 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
205         .eccbytes = 5,
206         .eccpos = {6, 7, 8, 9, 10},
207         .oobfree = {{0, 5}, {12, 4}, }
208 };
209
210 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
211         .eccbytes = 20,
212         .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
213                    38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
214         .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
215 };
216
217 /* OOB description for 512 byte pages with 16 byte OOB */
218 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
219         .eccbytes = 1 * 9,
220         .eccpos = {
221                  7,  8,  9, 10, 11, 12, 13, 14, 15
222         },
223         .oobfree = {
224                 {.offset = 0, .length = 5}
225         }
226 };
227
228 /* OOB description for 2048 byte pages with 64 byte OOB */
229 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
230         .eccbytes = 4 * 9,
231         .eccpos = {
232                  7,  8,  9, 10, 11, 12, 13, 14, 15,
233                 23, 24, 25, 26, 27, 28, 29, 30, 31,
234                 39, 40, 41, 42, 43, 44, 45, 46, 47,
235                 55, 56, 57, 58, 59, 60, 61, 62, 63
236         },
237         .oobfree = {
238                 {.offset = 2, .length = 4},
239                 {.offset = 16, .length = 7},
240                 {.offset = 32, .length = 7},
241                 {.offset = 48, .length = 7}
242         }
243 };
244
245 /* OOB description for 4096 byte pages with 128 byte OOB */
246 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
247         .eccbytes = 8 * 9,
248         .eccpos = {
249                 7,  8,  9, 10, 11, 12, 13, 14, 15,
250                 23, 24, 25, 26, 27, 28, 29, 30, 31,
251                 39, 40, 41, 42, 43, 44, 45, 46, 47,
252                 55, 56, 57, 58, 59, 60, 61, 62, 63,
253                 71, 72, 73, 74, 75, 76, 77, 78, 79,
254                 87, 88, 89, 90, 91, 92, 93, 94, 95,
255                 103, 104, 105, 106, 107, 108, 109, 110, 111,
256                 119, 120, 121, 122, 123, 124, 125, 126, 127,
257         },
258         .oobfree = {
259                 {.offset = 2, .length = 4},
260                 {.offset = 16, .length = 7},
261                 {.offset = 32, .length = 7},
262                 {.offset = 48, .length = 7},
263                 {.offset = 64, .length = 7},
264                 {.offset = 80, .length = 7},
265                 {.offset = 96, .length = 7},
266                 {.offset = 112, .length = 7},
267         }
268 };
269
270 static const char * const part_probes[] = {
271         "cmdlinepart", "RedBoot", "ofpart", NULL };
272
273 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
274 {
275         int i;
276         u32 *t = trg;
277         const __iomem u32 *s = src;
278
279         for (i = 0; i < (size >> 2); i++)
280                 *t++ = __raw_readl(s++);
281 }
282
283 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
284 {
285         /* __iowrite32_copy use 32bit size values so divide by 4 */
286         __iowrite32_copy(trg, src, size / 4);
287 }
288
289 static int check_int_v3(struct mxc_nand_host *host)
290 {
291         uint32_t tmp;
292
293         tmp = readl(NFC_V3_IPC);
294         if (!(tmp & NFC_V3_IPC_INT))
295                 return 0;
296
297         tmp &= ~NFC_V3_IPC_INT;
298         writel(tmp, NFC_V3_IPC);
299
300         return 1;
301 }
302
303 static int check_int_v1_v2(struct mxc_nand_host *host)
304 {
305         uint32_t tmp;
306
307         tmp = readw(NFC_V1_V2_CONFIG2);
308         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
309                 return 0;
310
311         if (!host->devtype_data->irqpending_quirk)
312                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
313
314         return 1;
315 }
316
317 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
318 {
319         uint16_t tmp;
320
321         tmp = readw(NFC_V1_V2_CONFIG1);
322
323         if (activate)
324                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
325         else
326                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
327
328         writew(tmp, NFC_V1_V2_CONFIG1);
329 }
330
331 static void irq_control_v3(struct mxc_nand_host *host, int activate)
332 {
333         uint32_t tmp;
334
335         tmp = readl(NFC_V3_CONFIG2);
336
337         if (activate)
338                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
339         else
340                 tmp |= NFC_V3_CONFIG2_INT_MSK;
341
342         writel(tmp, NFC_V3_CONFIG2);
343 }
344
345 static void irq_control(struct mxc_nand_host *host, int activate)
346 {
347         if (host->devtype_data->irqpending_quirk) {
348                 if (activate)
349                         enable_irq(host->irq);
350                 else
351                         disable_irq_nosync(host->irq);
352         } else {
353                 host->devtype_data->irq_control(host, activate);
354         }
355 }
356
357 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
358 {
359         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
360 }
361
362 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
363 {
364         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
365 }
366
367 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
368 {
369         return readl(NFC_V3_ECC_STATUS_RESULT);
370 }
371
372 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
373 {
374         struct mxc_nand_host *host = dev_id;
375
376         if (!host->devtype_data->check_int(host))
377                 return IRQ_NONE;
378
379         irq_control(host, 0);
380
381         complete(&host->op_completion);
382
383         return IRQ_HANDLED;
384 }
385
386 /* This function polls the NANDFC to wait for the basic operation to
387  * complete by checking the INT bit of config2 register.
388  */
389 static void wait_op_done(struct mxc_nand_host *host, int useirq)
390 {
391         int max_retries = 8000;
392
393         if (useirq) {
394                 if (!host->devtype_data->check_int(host)) {
395                         reinit_completion(&host->op_completion);
396                         irq_control(host, 1);
397                         wait_for_completion(&host->op_completion);
398                 }
399         } else {
400                 while (max_retries-- > 0) {
401                         if (host->devtype_data->check_int(host))
402                                 break;
403
404                         udelay(1);
405                 }
406                 if (max_retries < 0)
407                         pr_debug("%s: INT not set\n", __func__);
408         }
409 }
410
411 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
412 {
413         /* fill command */
414         writel(cmd, NFC_V3_FLASH_CMD);
415
416         /* send out command */
417         writel(NFC_CMD, NFC_V3_LAUNCH);
418
419         /* Wait for operation to complete */
420         wait_op_done(host, useirq);
421 }
422
423 /* This function issues the specified command to the NAND device and
424  * waits for completion. */
425 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
426 {
427         pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
428
429         writew(cmd, NFC_V1_V2_FLASH_CMD);
430         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
431
432         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
433                 int max_retries = 100;
434                 /* Reset completion is indicated by NFC_CONFIG2 */
435                 /* being set to 0 */
436                 while (max_retries-- > 0) {
437                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
438                                 break;
439                         }
440                         udelay(1);
441                 }
442                 if (max_retries < 0)
443                         pr_debug("%s: RESET failed\n", __func__);
444         } else {
445                 /* Wait for operation to complete */
446                 wait_op_done(host, useirq);
447         }
448 }
449
450 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
451 {
452         /* fill address */
453         writel(addr, NFC_V3_FLASH_ADDR0);
454
455         /* send out address */
456         writel(NFC_ADDR, NFC_V3_LAUNCH);
457
458         wait_op_done(host, 0);
459 }
460
461 /* This function sends an address (or partial address) to the
462  * NAND device. The address is used to select the source/destination for
463  * a NAND command. */
464 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
465 {
466         pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
467
468         writew(addr, NFC_V1_V2_FLASH_ADDR);
469         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
470
471         /* Wait for operation to complete */
472         wait_op_done(host, islast);
473 }
474
475 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
476 {
477         struct nand_chip *nand_chip = mtd->priv;
478         struct mxc_nand_host *host = nand_chip->priv;
479         uint32_t tmp;
480
481         tmp = readl(NFC_V3_CONFIG1);
482         tmp &= ~(7 << 4);
483         writel(tmp, NFC_V3_CONFIG1);
484
485         /* transfer data from NFC ram to nand */
486         writel(ops, NFC_V3_LAUNCH);
487
488         wait_op_done(host, false);
489 }
490
491 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
492 {
493         struct nand_chip *nand_chip = mtd->priv;
494         struct mxc_nand_host *host = nand_chip->priv;
495
496         /* NANDFC buffer 0 is used for page read/write */
497         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
498
499         writew(ops, NFC_V1_V2_CONFIG2);
500
501         /* Wait for operation to complete */
502         wait_op_done(host, true);
503 }
504
505 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
506 {
507         struct nand_chip *nand_chip = mtd->priv;
508         struct mxc_nand_host *host = nand_chip->priv;
509         int bufs, i;
510
511         if (mtd->writesize > 512)
512                 bufs = 4;
513         else
514                 bufs = 1;
515
516         for (i = 0; i < bufs; i++) {
517
518                 /* NANDFC buffer 0 is used for page read/write */
519                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
520
521                 writew(ops, NFC_V1_V2_CONFIG2);
522
523                 /* Wait for operation to complete */
524                 wait_op_done(host, true);
525         }
526 }
527
528 static void send_read_id_v3(struct mxc_nand_host *host)
529 {
530         struct nand_chip *this = &host->nand;
531
532         /* Read ID into main buffer */
533         writel(NFC_ID, NFC_V3_LAUNCH);
534
535         wait_op_done(host, true);
536
537         memcpy32_fromio(host->data_buf, host->main_area0, 16);
538
539         if (this->options & NAND_BUSWIDTH_16) {
540                 /* compress the ID info */
541                 host->data_buf[1] = host->data_buf[2];
542                 host->data_buf[2] = host->data_buf[4];
543                 host->data_buf[3] = host->data_buf[6];
544                 host->data_buf[4] = host->data_buf[8];
545                 host->data_buf[5] = host->data_buf[10];
546         }
547 }
548
549 /* Request the NANDFC to perform a read of the NAND device ID. */
550 static void send_read_id_v1_v2(struct mxc_nand_host *host)
551 {
552         struct nand_chip *this = &host->nand;
553
554         /* NANDFC buffer 0 is used for device ID output */
555         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
556
557         writew(NFC_ID, NFC_V1_V2_CONFIG2);
558
559         /* Wait for operation to complete */
560         wait_op_done(host, true);
561
562         memcpy32_fromio(host->data_buf, host->main_area0, 16);
563
564         if (this->options & NAND_BUSWIDTH_16) {
565                 /* compress the ID info */
566                 host->data_buf[1] = host->data_buf[2];
567                 host->data_buf[2] = host->data_buf[4];
568                 host->data_buf[3] = host->data_buf[6];
569                 host->data_buf[4] = host->data_buf[8];
570                 host->data_buf[5] = host->data_buf[10];
571         }
572 }
573
574 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
575 {
576         writew(NFC_STATUS, NFC_V3_LAUNCH);
577         wait_op_done(host, true);
578
579         return readl(NFC_V3_CONFIG1) >> 16;
580 }
581
582 /* This function requests the NANDFC to perform a read of the
583  * NAND device status and returns the current status. */
584 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
585 {
586         void __iomem *main_buf = host->main_area0;
587         uint32_t store;
588         uint16_t ret;
589
590         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
591
592         /*
593          * The device status is stored in main_area0. To
594          * prevent corruption of the buffer save the value
595          * and restore it afterwards.
596          */
597         store = readl(main_buf);
598
599         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
600         wait_op_done(host, true);
601
602         ret = readw(main_buf);
603
604         writel(store, main_buf);
605
606         return ret;
607 }
608
609 /* This functions is used by upper layer to checks if device is ready */
610 static int mxc_nand_dev_ready(struct mtd_info *mtd)
611 {
612         /*
613          * NFC handles R/B internally. Therefore, this function
614          * always returns status as ready.
615          */
616         return 1;
617 }
618
619 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
620 {
621         /*
622          * If HW ECC is enabled, we turn it on during init. There is
623          * no need to enable again here.
624          */
625 }
626
627 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
628                                  u_char *read_ecc, u_char *calc_ecc)
629 {
630         struct nand_chip *nand_chip = mtd->priv;
631         struct mxc_nand_host *host = nand_chip->priv;
632
633         /*
634          * 1-Bit errors are automatically corrected in HW.  No need for
635          * additional correction.  2-Bit errors cannot be corrected by
636          * HW ECC, so we need to return failure
637          */
638         uint16_t ecc_status = get_ecc_status_v1(host);
639
640         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
641                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
642                 return -1;
643         }
644
645         return 0;
646 }
647
648 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
649                                  u_char *read_ecc, u_char *calc_ecc)
650 {
651         struct nand_chip *nand_chip = mtd->priv;
652         struct mxc_nand_host *host = nand_chip->priv;
653         u32 ecc_stat, err;
654         int no_subpages = 1;
655         int ret = 0;
656         u8 ecc_bit_mask, err_limit;
657
658         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
659         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
660
661         no_subpages = mtd->writesize >> 9;
662
663         ecc_stat = host->devtype_data->get_ecc_status(host);
664
665         do {
666                 err = ecc_stat & ecc_bit_mask;
667                 if (err > err_limit) {
668                         printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
669                         return -1;
670                 } else {
671                         ret += err;
672                 }
673                 ecc_stat >>= 4;
674         } while (--no_subpages);
675
676         pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
677
678         return ret;
679 }
680
681 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
682                                   u_char *ecc_code)
683 {
684         return 0;
685 }
686
687 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
688 {
689         struct nand_chip *nand_chip = mtd->priv;
690         struct mxc_nand_host *host = nand_chip->priv;
691         uint8_t ret;
692
693         /* Check for status request */
694         if (host->status_request)
695                 return host->devtype_data->get_dev_status(host) & 0xFF;
696
697         ret = *(uint8_t *)(host->data_buf + host->buf_start);
698         host->buf_start++;
699
700         return ret;
701 }
702
703 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
704 {
705         struct nand_chip *nand_chip = mtd->priv;
706         struct mxc_nand_host *host = nand_chip->priv;
707         uint16_t ret;
708
709         ret = *(uint16_t *)(host->data_buf + host->buf_start);
710         host->buf_start += 2;
711
712         return ret;
713 }
714
715 /* Write data of length len to buffer buf. The data to be
716  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
717  * Operation by the NFC, the data is written to NAND Flash */
718 static void mxc_nand_write_buf(struct mtd_info *mtd,
719                                 const u_char *buf, int len)
720 {
721         struct nand_chip *nand_chip = mtd->priv;
722         struct mxc_nand_host *host = nand_chip->priv;
723         u16 col = host->buf_start;
724         int n = mtd->oobsize + mtd->writesize - col;
725
726         n = min(n, len);
727
728         memcpy(host->data_buf + col, buf, n);
729
730         host->buf_start += n;
731 }
732
733 /* Read the data buffer from the NAND Flash. To read the data from NAND
734  * Flash first the data output cycle is initiated by the NFC, which copies
735  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
736  */
737 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
738 {
739         struct nand_chip *nand_chip = mtd->priv;
740         struct mxc_nand_host *host = nand_chip->priv;
741         u16 col = host->buf_start;
742         int n = mtd->oobsize + mtd->writesize - col;
743
744         n = min(n, len);
745
746         memcpy(buf, host->data_buf + col, n);
747
748         host->buf_start += n;
749 }
750
751 /* This function is used by upper layer for select and
752  * deselect of the NAND chip */
753 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
754 {
755         struct nand_chip *nand_chip = mtd->priv;
756         struct mxc_nand_host *host = nand_chip->priv;
757
758         if (chip == -1) {
759                 /* Disable the NFC clock */
760                 if (host->clk_act) {
761                         clk_disable_unprepare(host->clk);
762                         host->clk_act = 0;
763                 }
764                 return;
765         }
766
767         if (!host->clk_act) {
768                 /* Enable the NFC clock */
769                 clk_prepare_enable(host->clk);
770                 host->clk_act = 1;
771         }
772 }
773
774 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
775 {
776         struct nand_chip *nand_chip = mtd->priv;
777         struct mxc_nand_host *host = nand_chip->priv;
778
779         if (chip == -1) {
780                 /* Disable the NFC clock */
781                 if (host->clk_act) {
782                         clk_disable_unprepare(host->clk);
783                         host->clk_act = 0;
784                 }
785                 return;
786         }
787
788         if (!host->clk_act) {
789                 /* Enable the NFC clock */
790                 clk_prepare_enable(host->clk);
791                 host->clk_act = 1;
792         }
793
794         host->active_cs = chip;
795         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
796 }
797
798 /*
799  * Function to transfer data to/from spare area.
800  */
801 static void copy_spare(struct mtd_info *mtd, bool bfrom)
802 {
803         struct nand_chip *this = mtd->priv;
804         struct mxc_nand_host *host = this->priv;
805         u16 i, j;
806         u16 n = mtd->writesize >> 9;
807         u8 *d = host->data_buf + mtd->writesize;
808         u8 __iomem *s = host->spare0;
809         u16 t = host->devtype_data->spare_len;
810
811         j = (mtd->oobsize / n >> 1) << 1;
812
813         if (bfrom) {
814                 for (i = 0; i < n - 1; i++)
815                         memcpy32_fromio(d + i * j, s + i * t, j);
816
817                 /* the last section */
818                 memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
819         } else {
820                 for (i = 0; i < n - 1; i++)
821                         memcpy32_toio(&s[i * t], &d[i * j], j);
822
823                 /* the last section */
824                 memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
825         }
826 }
827
828 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
829 {
830         struct nand_chip *nand_chip = mtd->priv;
831         struct mxc_nand_host *host = nand_chip->priv;
832
833         /* Write out column address, if necessary */
834         if (column != -1) {
835                 /*
836                  * MXC NANDFC can only perform full page+spare or
837                  * spare-only read/write.  When the upper layers
838                  * perform a read/write buf operation, the saved column
839                   * address is used to index into the full page.
840                  */
841                 host->devtype_data->send_addr(host, 0, page_addr == -1);
842                 if (mtd->writesize > 512)
843                         /* another col addr cycle for 2k page */
844                         host->devtype_data->send_addr(host, 0, false);
845         }
846
847         /* Write out page address, if necessary */
848         if (page_addr != -1) {
849                 /* paddr_0 - p_addr_7 */
850                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
851
852                 if (mtd->writesize > 512) {
853                         if (mtd->size >= 0x10000000) {
854                                 /* paddr_8 - paddr_15 */
855                                 host->devtype_data->send_addr(host,
856                                                 (page_addr >> 8) & 0xff,
857                                                 false);
858                                 host->devtype_data->send_addr(host,
859                                                 (page_addr >> 16) & 0xff,
860                                                 true);
861                         } else
862                                 /* paddr_8 - paddr_15 */
863                                 host->devtype_data->send_addr(host,
864                                                 (page_addr >> 8) & 0xff, true);
865                 } else {
866                         /* One more address cycle for higher density devices */
867                         if (mtd->size >= 0x4000000) {
868                                 /* paddr_8 - paddr_15 */
869                                 host->devtype_data->send_addr(host,
870                                                 (page_addr >> 8) & 0xff,
871                                                 false);
872                                 host->devtype_data->send_addr(host,
873                                                 (page_addr >> 16) & 0xff,
874                                                 true);
875                         } else
876                                 /* paddr_8 - paddr_15 */
877                                 host->devtype_data->send_addr(host,
878                                                 (page_addr >> 8) & 0xff, true);
879                 }
880         }
881 }
882
883 /*
884  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
885  * on how much oob the nand chip has. For 8bit ecc we need at least
886  * 26 bytes of oob data per 512 byte block.
887  */
888 static int get_eccsize(struct mtd_info *mtd)
889 {
890         int oobbytes_per_512 = 0;
891
892         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
893
894         if (oobbytes_per_512 < 26)
895                 return 4;
896         else
897                 return 8;
898 }
899
900 static void preset_v1(struct mtd_info *mtd)
901 {
902         struct nand_chip *nand_chip = mtd->priv;
903         struct mxc_nand_host *host = nand_chip->priv;
904         uint16_t config1 = 0;
905
906         if (nand_chip->ecc.mode == NAND_ECC_HW)
907                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
908
909         if (!host->devtype_data->irqpending_quirk)
910                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
911
912         host->eccsize = 1;
913
914         writew(config1, NFC_V1_V2_CONFIG1);
915         /* preset operation */
916
917         /* Unlock the internal RAM Buffer */
918         writew(0x2, NFC_V1_V2_CONFIG);
919
920         /* Blocks to be unlocked */
921         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
922         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
923
924         /* Unlock Block Command for given address range */
925         writew(0x4, NFC_V1_V2_WRPROT);
926 }
927
928 static void preset_v2(struct mtd_info *mtd)
929 {
930         struct nand_chip *nand_chip = mtd->priv;
931         struct mxc_nand_host *host = nand_chip->priv;
932         uint16_t config1 = 0;
933
934         if (nand_chip->ecc.mode == NAND_ECC_HW)
935                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
936
937         config1 |= NFC_V2_CONFIG1_FP_INT;
938
939         if (!host->devtype_data->irqpending_quirk)
940                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
941
942         if (mtd->writesize) {
943                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
944
945                 host->eccsize = get_eccsize(mtd);
946                 if (host->eccsize == 4)
947                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
948
949                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
950         } else {
951                 host->eccsize = 1;
952         }
953
954         writew(config1, NFC_V1_V2_CONFIG1);
955         /* preset operation */
956
957         /* Unlock the internal RAM Buffer */
958         writew(0x2, NFC_V1_V2_CONFIG);
959
960         /* Blocks to be unlocked */
961         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
962         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
963         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
964         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
965         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
966         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
967         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
968         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
969
970         /* Unlock Block Command for given address range */
971         writew(0x4, NFC_V1_V2_WRPROT);
972 }
973
974 static void preset_v3(struct mtd_info *mtd)
975 {
976         struct nand_chip *chip = mtd->priv;
977         struct mxc_nand_host *host = chip->priv;
978         uint32_t config2, config3;
979         int i, addr_phases;
980
981         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
982         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
983
984         /* Unlock the internal RAM Buffer */
985         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
986                         NFC_V3_WRPROT);
987
988         /* Blocks to be unlocked */
989         for (i = 0; i < NAND_MAX_CHIPS; i++)
990                 writel(0x0 |    (0xffff << 16),
991                                 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
992
993         writel(0, NFC_V3_IPC);
994
995         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
996                 NFC_V3_CONFIG2_2CMD_PHASES |
997                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
998                 NFC_V3_CONFIG2_ST_CMD(0x70) |
999                 NFC_V3_CONFIG2_INT_MSK |
1000                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1001
1002         if (chip->ecc.mode == NAND_ECC_HW)
1003                 config2 |= NFC_V3_CONFIG2_ECC_EN;
1004
1005         addr_phases = fls(chip->pagemask) >> 3;
1006
1007         if (mtd->writesize == 2048) {
1008                 config2 |= NFC_V3_CONFIG2_PS_2048;
1009                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1010         } else if (mtd->writesize == 4096) {
1011                 config2 |= NFC_V3_CONFIG2_PS_4096;
1012                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1013         } else {
1014                 config2 |= NFC_V3_CONFIG2_PS_512;
1015                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1016         }
1017
1018         if (mtd->writesize) {
1019                 config2 |= NFC_V3_CONFIG2_PPB(
1020                                 ffs(mtd->erasesize / mtd->writesize) - 6,
1021                                 host->devtype_data->ppb_shift);
1022                 host->eccsize = get_eccsize(mtd);
1023                 if (host->eccsize == 8)
1024                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1025         }
1026
1027         writel(config2, NFC_V3_CONFIG2);
1028
1029         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1030                         NFC_V3_CONFIG3_NO_SDMA |
1031                         NFC_V3_CONFIG3_RBB_MODE |
1032                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1033                         NFC_V3_CONFIG3_ADD_OP(0);
1034
1035         if (!(chip->options & NAND_BUSWIDTH_16))
1036                 config3 |= NFC_V3_CONFIG3_FW8;
1037
1038         writel(config3, NFC_V3_CONFIG3);
1039
1040         writel(0, NFC_V3_DELAY_LINE);
1041 }
1042
1043 /* Used by the upper layer to write command to NAND Flash for
1044  * different operations to be carried out on NAND Flash */
1045 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1046                                 int column, int page_addr)
1047 {
1048         struct nand_chip *nand_chip = mtd->priv;
1049         struct mxc_nand_host *host = nand_chip->priv;
1050
1051         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1052               command, column, page_addr);
1053
1054         /* Reset command state information */
1055         host->status_request = false;
1056
1057         /* Command pre-processing step */
1058         switch (command) {
1059         case NAND_CMD_RESET:
1060                 host->devtype_data->preset(mtd);
1061                 host->devtype_data->send_cmd(host, command, false);
1062                 break;
1063
1064         case NAND_CMD_STATUS:
1065                 host->buf_start = 0;
1066                 host->status_request = true;
1067
1068                 host->devtype_data->send_cmd(host, command, true);
1069                 mxc_do_addr_cycle(mtd, column, page_addr);
1070                 break;
1071
1072         case NAND_CMD_READ0:
1073         case NAND_CMD_READOOB:
1074                 if (command == NAND_CMD_READ0)
1075                         host->buf_start = column;
1076                 else
1077                         host->buf_start = column + mtd->writesize;
1078
1079                 command = NAND_CMD_READ0; /* only READ0 is valid */
1080
1081                 host->devtype_data->send_cmd(host, command, false);
1082                 mxc_do_addr_cycle(mtd, column, page_addr);
1083
1084                 if (mtd->writesize > 512)
1085                         host->devtype_data->send_cmd(host,
1086                                         NAND_CMD_READSTART, true);
1087
1088                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1089
1090                 memcpy32_fromio(host->data_buf, host->main_area0,
1091                                 mtd->writesize);
1092                 copy_spare(mtd, true);
1093                 break;
1094
1095         case NAND_CMD_SEQIN:
1096                 if (column >= mtd->writesize)
1097                         /* call ourself to read a page */
1098                         mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1099
1100                 host->buf_start = column;
1101
1102                 host->devtype_data->send_cmd(host, command, false);
1103                 mxc_do_addr_cycle(mtd, column, page_addr);
1104                 break;
1105
1106         case NAND_CMD_PAGEPROG:
1107                 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1108                 copy_spare(mtd, false);
1109                 host->devtype_data->send_page(mtd, NFC_INPUT);
1110                 host->devtype_data->send_cmd(host, command, true);
1111                 mxc_do_addr_cycle(mtd, column, page_addr);
1112                 break;
1113
1114         case NAND_CMD_READID:
1115                 host->devtype_data->send_cmd(host, command, true);
1116                 mxc_do_addr_cycle(mtd, column, page_addr);
1117                 host->devtype_data->send_read_id(host);
1118                 host->buf_start = column;
1119                 break;
1120
1121         case NAND_CMD_ERASE1:
1122         case NAND_CMD_ERASE2:
1123                 host->devtype_data->send_cmd(host, command, false);
1124                 mxc_do_addr_cycle(mtd, column, page_addr);
1125
1126                 break;
1127         }
1128 }
1129
1130 /*
1131  * The generic flash bbt decriptors overlap with our ecc
1132  * hardware, so define some i.MX specific ones.
1133  */
1134 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1135 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1136
1137 static struct nand_bbt_descr bbt_main_descr = {
1138         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1139             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1140         .offs = 0,
1141         .len = 4,
1142         .veroffs = 4,
1143         .maxblocks = 4,
1144         .pattern = bbt_pattern,
1145 };
1146
1147 static struct nand_bbt_descr bbt_mirror_descr = {
1148         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1149             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1150         .offs = 0,
1151         .len = 4,
1152         .veroffs = 4,
1153         .maxblocks = 4,
1154         .pattern = mirror_pattern,
1155 };
1156
1157 /* v1 + irqpending_quirk: i.MX21 */
1158 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1159         .preset = preset_v1,
1160         .send_cmd = send_cmd_v1_v2,
1161         .send_addr = send_addr_v1_v2,
1162         .send_page = send_page_v1,
1163         .send_read_id = send_read_id_v1_v2,
1164         .get_dev_status = get_dev_status_v1_v2,
1165         .check_int = check_int_v1_v2,
1166         .irq_control = irq_control_v1_v2,
1167         .get_ecc_status = get_ecc_status_v1,
1168         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1169         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1170         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1171         .select_chip = mxc_nand_select_chip_v1_v3,
1172         .correct_data = mxc_nand_correct_data_v1,
1173         .irqpending_quirk = 1,
1174         .needs_ip = 0,
1175         .regs_offset = 0xe00,
1176         .spare0_offset = 0x800,
1177         .spare_len = 16,
1178         .eccbytes = 3,
1179         .eccsize = 1,
1180 };
1181
1182 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1183 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1184         .preset = preset_v1,
1185         .send_cmd = send_cmd_v1_v2,
1186         .send_addr = send_addr_v1_v2,
1187         .send_page = send_page_v1,
1188         .send_read_id = send_read_id_v1_v2,
1189         .get_dev_status = get_dev_status_v1_v2,
1190         .check_int = check_int_v1_v2,
1191         .irq_control = irq_control_v1_v2,
1192         .get_ecc_status = get_ecc_status_v1,
1193         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1194         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1195         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1196         .select_chip = mxc_nand_select_chip_v1_v3,
1197         .correct_data = mxc_nand_correct_data_v1,
1198         .irqpending_quirk = 0,
1199         .needs_ip = 0,
1200         .regs_offset = 0xe00,
1201         .spare0_offset = 0x800,
1202         .axi_offset = 0,
1203         .spare_len = 16,
1204         .eccbytes = 3,
1205         .eccsize = 1,
1206 };
1207
1208 /* v21: i.MX25, i.MX35 */
1209 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1210         .preset = preset_v2,
1211         .send_cmd = send_cmd_v1_v2,
1212         .send_addr = send_addr_v1_v2,
1213         .send_page = send_page_v2,
1214         .send_read_id = send_read_id_v1_v2,
1215         .get_dev_status = get_dev_status_v1_v2,
1216         .check_int = check_int_v1_v2,
1217         .irq_control = irq_control_v1_v2,
1218         .get_ecc_status = get_ecc_status_v2,
1219         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1220         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1221         .ecclayout_4k = &nandv2_hw_eccoob_4k,
1222         .select_chip = mxc_nand_select_chip_v2,
1223         .correct_data = mxc_nand_correct_data_v2_v3,
1224         .irqpending_quirk = 0,
1225         .needs_ip = 0,
1226         .regs_offset = 0x1e00,
1227         .spare0_offset = 0x1000,
1228         .axi_offset = 0,
1229         .spare_len = 64,
1230         .eccbytes = 9,
1231         .eccsize = 0,
1232 };
1233
1234 /* v3.2a: i.MX51 */
1235 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1236         .preset = preset_v3,
1237         .send_cmd = send_cmd_v3,
1238         .send_addr = send_addr_v3,
1239         .send_page = send_page_v3,
1240         .send_read_id = send_read_id_v3,
1241         .get_dev_status = get_dev_status_v3,
1242         .check_int = check_int_v3,
1243         .irq_control = irq_control_v3,
1244         .get_ecc_status = get_ecc_status_v3,
1245         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1246         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1247         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1248         .select_chip = mxc_nand_select_chip_v1_v3,
1249         .correct_data = mxc_nand_correct_data_v2_v3,
1250         .irqpending_quirk = 0,
1251         .needs_ip = 1,
1252         .regs_offset = 0,
1253         .spare0_offset = 0x1000,
1254         .axi_offset = 0x1e00,
1255         .spare_len = 64,
1256         .eccbytes = 0,
1257         .eccsize = 0,
1258         .ppb_shift = 7,
1259 };
1260
1261 /* v3.2b: i.MX53 */
1262 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1263         .preset = preset_v3,
1264         .send_cmd = send_cmd_v3,
1265         .send_addr = send_addr_v3,
1266         .send_page = send_page_v3,
1267         .send_read_id = send_read_id_v3,
1268         .get_dev_status = get_dev_status_v3,
1269         .check_int = check_int_v3,
1270         .irq_control = irq_control_v3,
1271         .get_ecc_status = get_ecc_status_v3,
1272         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1273         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1274         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1275         .select_chip = mxc_nand_select_chip_v1_v3,
1276         .correct_data = mxc_nand_correct_data_v2_v3,
1277         .irqpending_quirk = 0,
1278         .needs_ip = 1,
1279         .regs_offset = 0,
1280         .spare0_offset = 0x1000,
1281         .axi_offset = 0x1e00,
1282         .spare_len = 64,
1283         .eccbytes = 0,
1284         .eccsize = 0,
1285         .ppb_shift = 8,
1286 };
1287
1288 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1289 {
1290         return host->devtype_data == &imx21_nand_devtype_data;
1291 }
1292
1293 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1294 {
1295         return host->devtype_data == &imx27_nand_devtype_data;
1296 }
1297
1298 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1299 {
1300         return host->devtype_data == &imx25_nand_devtype_data;
1301 }
1302
1303 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1304 {
1305         return host->devtype_data == &imx51_nand_devtype_data;
1306 }
1307
1308 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1309 {
1310         return host->devtype_data == &imx53_nand_devtype_data;
1311 }
1312
1313 static struct platform_device_id mxcnd_devtype[] = {
1314         {
1315                 .name = "imx21-nand",
1316                 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1317         }, {
1318                 .name = "imx27-nand",
1319                 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1320         }, {
1321                 .name = "imx25-nand",
1322                 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1323         }, {
1324                 .name = "imx51-nand",
1325                 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1326         }, {
1327                 .name = "imx53-nand",
1328                 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1329         }, {
1330                 /* sentinel */
1331         }
1332 };
1333 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1334
1335 #ifdef CONFIG_OF_MTD
1336 static const struct of_device_id mxcnd_dt_ids[] = {
1337         {
1338                 .compatible = "fsl,imx21-nand",
1339                 .data = &imx21_nand_devtype_data,
1340         }, {
1341                 .compatible = "fsl,imx27-nand",
1342                 .data = &imx27_nand_devtype_data,
1343         }, {
1344                 .compatible = "fsl,imx25-nand",
1345                 .data = &imx25_nand_devtype_data,
1346         }, {
1347                 .compatible = "fsl,imx51-nand",
1348                 .data = &imx51_nand_devtype_data,
1349         }, {
1350                 .compatible = "fsl,imx53-nand",
1351                 .data = &imx53_nand_devtype_data,
1352         },
1353         { /* sentinel */ }
1354 };
1355
1356 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1357 {
1358         struct device_node *np = host->dev->of_node;
1359         struct mxc_nand_platform_data *pdata = &host->pdata;
1360         const struct of_device_id *of_id =
1361                 of_match_device(mxcnd_dt_ids, host->dev);
1362         int buswidth;
1363
1364         if (!np)
1365                 return 1;
1366
1367         if (of_get_nand_ecc_mode(np) >= 0)
1368                 pdata->hw_ecc = 1;
1369
1370         pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1371
1372         buswidth = of_get_nand_bus_width(np);
1373         if (buswidth < 0)
1374                 return buswidth;
1375
1376         pdata->width = buswidth / 8;
1377
1378         host->devtype_data = of_id->data;
1379
1380         return 0;
1381 }
1382 #else
1383 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1384 {
1385         return 1;
1386 }
1387 #endif
1388
1389 static int mxcnd_probe(struct platform_device *pdev)
1390 {
1391         struct nand_chip *this;
1392         struct mtd_info *mtd;
1393         struct mxc_nand_host *host;
1394         struct resource *res;
1395         int err = 0;
1396
1397         /* Allocate memory for MTD device structure and private data */
1398         host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1399                         GFP_KERNEL);
1400         if (!host)
1401                 return -ENOMEM;
1402
1403         /* allocate a temporary buffer for the nand_scan_ident() */
1404         host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1405         if (!host->data_buf)
1406                 return -ENOMEM;
1407
1408         host->dev = &pdev->dev;
1409         /* structures must be linked */
1410         this = &host->nand;
1411         mtd = &host->mtd;
1412         mtd->priv = this;
1413         mtd->owner = THIS_MODULE;
1414         mtd->dev.parent = &pdev->dev;
1415         mtd->name = DRIVER_NAME;
1416
1417         /* 50 us command delay time */
1418         this->chip_delay = 5;
1419
1420         this->priv = host;
1421         this->dev_ready = mxc_nand_dev_ready;
1422         this->cmdfunc = mxc_nand_command;
1423         this->read_byte = mxc_nand_read_byte;
1424         this->read_word = mxc_nand_read_word;
1425         this->write_buf = mxc_nand_write_buf;
1426         this->read_buf = mxc_nand_read_buf;
1427
1428         host->clk = devm_clk_get(&pdev->dev, NULL);
1429         if (IS_ERR(host->clk))
1430                 return PTR_ERR(host->clk);
1431
1432         err = mxcnd_probe_dt(host);
1433         if (err > 0) {
1434                 struct mxc_nand_platform_data *pdata =
1435                                         dev_get_platdata(&pdev->dev);
1436                 if (pdata) {
1437                         host->pdata = *pdata;
1438                         host->devtype_data = (struct mxc_nand_devtype_data *)
1439                                                 pdev->id_entry->driver_data;
1440                 } else {
1441                         err = -ENODEV;
1442                 }
1443         }
1444         if (err < 0)
1445                 return err;
1446
1447         if (host->devtype_data->needs_ip) {
1448                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1449                 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1450                 if (IS_ERR(host->regs_ip))
1451                         return PTR_ERR(host->regs_ip);
1452
1453                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1454         } else {
1455                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1456         }
1457
1458         host->base = devm_ioremap_resource(&pdev->dev, res);
1459         if (IS_ERR(host->base))
1460                 return PTR_ERR(host->base);
1461
1462         host->main_area0 = host->base;
1463
1464         if (host->devtype_data->regs_offset)
1465                 host->regs = host->base + host->devtype_data->regs_offset;
1466         host->spare0 = host->base + host->devtype_data->spare0_offset;
1467         if (host->devtype_data->axi_offset)
1468                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1469
1470         this->ecc.bytes = host->devtype_data->eccbytes;
1471         host->eccsize = host->devtype_data->eccsize;
1472
1473         this->select_chip = host->devtype_data->select_chip;
1474         this->ecc.size = 512;
1475         this->ecc.layout = host->devtype_data->ecclayout_512;
1476
1477         if (host->pdata.hw_ecc) {
1478                 this->ecc.calculate = mxc_nand_calculate_ecc;
1479                 this->ecc.hwctl = mxc_nand_enable_hwecc;
1480                 this->ecc.correct = host->devtype_data->correct_data;
1481                 this->ecc.mode = NAND_ECC_HW;
1482         } else {
1483                 this->ecc.mode = NAND_ECC_SOFT;
1484         }
1485
1486         /* NAND bus width determines access functions used by upper layer */
1487         if (host->pdata.width == 2)
1488                 this->options |= NAND_BUSWIDTH_16;
1489
1490         if (host->pdata.flash_bbt) {
1491                 this->bbt_td = &bbt_main_descr;
1492                 this->bbt_md = &bbt_mirror_descr;
1493                 /* update flash based bbt */
1494                 this->bbt_options |= NAND_BBT_USE_FLASH;
1495         }
1496
1497         init_completion(&host->op_completion);
1498
1499         host->irq = platform_get_irq(pdev, 0);
1500         if (host->irq < 0)
1501                 return host->irq;
1502
1503         /*
1504          * Use host->devtype_data->irq_control() here instead of irq_control()
1505          * because we must not disable_irq_nosync without having requested the
1506          * irq.
1507          */
1508         host->devtype_data->irq_control(host, 0);
1509
1510         err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1511                         0, DRIVER_NAME, host);
1512         if (err)
1513                 return err;
1514
1515         err = clk_prepare_enable(host->clk);
1516         if (err)
1517                 return err;
1518         host->clk_act = 1;
1519
1520         /*
1521          * Now that we "own" the interrupt make sure the interrupt mask bit is
1522          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1523          * on this machine.
1524          */
1525         if (host->devtype_data->irqpending_quirk) {
1526                 disable_irq_nosync(host->irq);
1527                 host->devtype_data->irq_control(host, 1);
1528         }
1529
1530         /* first scan to find the device and get the page size */
1531         if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1532                 err = -ENXIO;
1533                 goto escan;
1534         }
1535
1536         /* allocate the right size buffer now */
1537         devm_kfree(&pdev->dev, (void *)host->data_buf);
1538         host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1539                                         GFP_KERNEL);
1540         if (!host->data_buf) {
1541                 err = -ENOMEM;
1542                 goto escan;
1543         }
1544
1545         /* Call preset again, with correct writesize this time */
1546         host->devtype_data->preset(mtd);
1547
1548         if (mtd->writesize == 2048)
1549                 this->ecc.layout = host->devtype_data->ecclayout_2k;
1550         else if (mtd->writesize == 4096)
1551                 this->ecc.layout = host->devtype_data->ecclayout_4k;
1552
1553         if (this->ecc.mode == NAND_ECC_HW) {
1554                 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1555                         this->ecc.strength = 1;
1556                 else
1557                         this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1558         }
1559
1560         /* second phase scan */
1561         if (nand_scan_tail(mtd)) {
1562                 err = -ENXIO;
1563                 goto escan;
1564         }
1565
1566         /* Register the partitions */
1567         mtd_device_parse_register(mtd, part_probes,
1568                         &(struct mtd_part_parser_data){
1569                                 .of_node = pdev->dev.of_node,
1570                         },
1571                         host->pdata.parts,
1572                         host->pdata.nr_parts);
1573
1574         platform_set_drvdata(pdev, host);
1575
1576         return 0;
1577
1578 escan:
1579         if (host->clk_act)
1580                 clk_disable_unprepare(host->clk);
1581
1582         return err;
1583 }
1584
1585 static int mxcnd_remove(struct platform_device *pdev)
1586 {
1587         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1588
1589         nand_release(&host->mtd);
1590         if (host->clk_act)
1591                 clk_disable_unprepare(host->clk);
1592
1593         return 0;
1594 }
1595
1596 static struct platform_driver mxcnd_driver = {
1597         .driver = {
1598                    .name = DRIVER_NAME,
1599                    .of_match_table = of_match_ptr(mxcnd_dt_ids),
1600         },
1601         .id_table = mxcnd_devtype,
1602         .probe = mxcnd_probe,
1603         .remove = mxcnd_remove,
1604 };
1605 module_platform_driver(mxcnd_driver);
1606
1607 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1608 MODULE_DESCRIPTION("MXC NAND MTD driver");
1609 MODULE_LICENSE("GPL");