mtd: introduce the mtd_pairing_scheme concept
[cascardo/linux.git] / drivers / mtd / nand / sh_flctl.c
1 /*
2  * SuperH FLCTL nand controller
3  *
4  * Copyright (c) 2008 Renesas Solutions Corp.
5  * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
6  *
7  * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; version 2 of the License.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/completion.h>
27 #include <linux/delay.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/platform_device.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/sh_dma.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/sh_flctl.h>
44
45 static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
46                                         struct mtd_oob_region *oobregion)
47 {
48         struct nand_chip *chip = mtd_to_nand(mtd);
49
50         if (section)
51                 return -ERANGE;
52
53         oobregion->offset = 0;
54         oobregion->length = chip->ecc.bytes;
55
56         return 0;
57 }
58
59 static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
60                                          struct mtd_oob_region *oobregion)
61 {
62         if (section)
63                 return -ERANGE;
64
65         oobregion->offset = 12;
66         oobregion->length = 4;
67
68         return 0;
69 }
70
71 static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
72         .ecc = flctl_4secc_ooblayout_sp_ecc,
73         .free = flctl_4secc_ooblayout_sp_free,
74 };
75
76 static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
77                                         struct mtd_oob_region *oobregion)
78 {
79         struct nand_chip *chip = mtd_to_nand(mtd);
80
81         if (section >= chip->ecc.steps)
82                 return -ERANGE;
83
84         oobregion->offset = (section * 16) + 6;
85         oobregion->length = chip->ecc.bytes;
86
87         return 0;
88 }
89
90 static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
91                                          struct mtd_oob_region *oobregion)
92 {
93         struct nand_chip *chip = mtd_to_nand(mtd);
94
95         if (section >= chip->ecc.steps)
96                 return -ERANGE;
97
98         oobregion->offset = section * 16;
99         oobregion->length = 6;
100
101         if (!section) {
102                 oobregion->offset += 2;
103                 oobregion->length -= 2;
104         }
105
106         return 0;
107 }
108
109 static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
110         .ecc = flctl_4secc_ooblayout_lp_ecc,
111         .free = flctl_4secc_ooblayout_lp_free,
112 };
113
114 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
115
116 static struct nand_bbt_descr flctl_4secc_smallpage = {
117         .options = NAND_BBT_SCAN2NDPAGE,
118         .offs = 11,
119         .len = 1,
120         .pattern = scan_ff_pattern,
121 };
122
123 static struct nand_bbt_descr flctl_4secc_largepage = {
124         .options = NAND_BBT_SCAN2NDPAGE,
125         .offs = 0,
126         .len = 2,
127         .pattern = scan_ff_pattern,
128 };
129
130 static void empty_fifo(struct sh_flctl *flctl)
131 {
132         writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
133         writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
134 }
135
136 static void start_translation(struct sh_flctl *flctl)
137 {
138         writeb(TRSTRT, FLTRCR(flctl));
139 }
140
141 static void timeout_error(struct sh_flctl *flctl, const char *str)
142 {
143         dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
144 }
145
146 static void wait_completion(struct sh_flctl *flctl)
147 {
148         uint32_t timeout = LOOP_TIMEOUT_MAX;
149
150         while (timeout--) {
151                 if (readb(FLTRCR(flctl)) & TREND) {
152                         writeb(0x0, FLTRCR(flctl));
153                         return;
154                 }
155                 udelay(1);
156         }
157
158         timeout_error(flctl, __func__);
159         writeb(0x0, FLTRCR(flctl));
160 }
161
162 static void flctl_dma_complete(void *param)
163 {
164         struct sh_flctl *flctl = param;
165
166         complete(&flctl->dma_complete);
167 }
168
169 static void flctl_release_dma(struct sh_flctl *flctl)
170 {
171         if (flctl->chan_fifo0_rx) {
172                 dma_release_channel(flctl->chan_fifo0_rx);
173                 flctl->chan_fifo0_rx = NULL;
174         }
175         if (flctl->chan_fifo0_tx) {
176                 dma_release_channel(flctl->chan_fifo0_tx);
177                 flctl->chan_fifo0_tx = NULL;
178         }
179 }
180
181 static void flctl_setup_dma(struct sh_flctl *flctl)
182 {
183         dma_cap_mask_t mask;
184         struct dma_slave_config cfg;
185         struct platform_device *pdev = flctl->pdev;
186         struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
187         int ret;
188
189         if (!pdata)
190                 return;
191
192         if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
193                 return;
194
195         /* We can only either use DMA for both Tx and Rx or not use it at all */
196         dma_cap_zero(mask);
197         dma_cap_set(DMA_SLAVE, mask);
198
199         flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
200                                 (void *)(uintptr_t)pdata->slave_id_fifo0_tx);
201         dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
202                 flctl->chan_fifo0_tx);
203
204         if (!flctl->chan_fifo0_tx)
205                 return;
206
207         memset(&cfg, 0, sizeof(cfg));
208         cfg.direction = DMA_MEM_TO_DEV;
209         cfg.dst_addr = flctl->fifo;
210         cfg.src_addr = 0;
211         ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
212         if (ret < 0)
213                 goto err;
214
215         flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
216                                 (void *)(uintptr_t)pdata->slave_id_fifo0_rx);
217         dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
218                 flctl->chan_fifo0_rx);
219
220         if (!flctl->chan_fifo0_rx)
221                 goto err;
222
223         cfg.direction = DMA_DEV_TO_MEM;
224         cfg.dst_addr = 0;
225         cfg.src_addr = flctl->fifo;
226         ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
227         if (ret < 0)
228                 goto err;
229
230         init_completion(&flctl->dma_complete);
231
232         return;
233
234 err:
235         flctl_release_dma(flctl);
236 }
237
238 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
239 {
240         struct sh_flctl *flctl = mtd_to_flctl(mtd);
241         uint32_t addr = 0;
242
243         if (column == -1) {
244                 addr = page_addr;       /* ERASE1 */
245         } else if (page_addr != -1) {
246                 /* SEQIN, READ0, etc.. */
247                 if (flctl->chip.options & NAND_BUSWIDTH_16)
248                         column >>= 1;
249                 if (flctl->page_size) {
250                         addr = column & 0x0FFF;
251                         addr |= (page_addr & 0xff) << 16;
252                         addr |= ((page_addr >> 8) & 0xff) << 24;
253                         /* big than 128MB */
254                         if (flctl->rw_ADRCNT == ADRCNT2_E) {
255                                 uint32_t        addr2;
256                                 addr2 = (page_addr >> 16) & 0xff;
257                                 writel(addr2, FLADR2(flctl));
258                         }
259                 } else {
260                         addr = column;
261                         addr |= (page_addr & 0xff) << 8;
262                         addr |= ((page_addr >> 8) & 0xff) << 16;
263                         addr |= ((page_addr >> 16) & 0xff) << 24;
264                 }
265         }
266         writel(addr, FLADR(flctl));
267 }
268
269 static void wait_rfifo_ready(struct sh_flctl *flctl)
270 {
271         uint32_t timeout = LOOP_TIMEOUT_MAX;
272
273         while (timeout--) {
274                 uint32_t val;
275                 /* check FIFO */
276                 val = readl(FLDTCNTR(flctl)) >> 16;
277                 if (val & 0xFF)
278                         return;
279                 udelay(1);
280         }
281         timeout_error(flctl, __func__);
282 }
283
284 static void wait_wfifo_ready(struct sh_flctl *flctl)
285 {
286         uint32_t len, timeout = LOOP_TIMEOUT_MAX;
287
288         while (timeout--) {
289                 /* check FIFO */
290                 len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
291                 if (len >= 4)
292                         return;
293                 udelay(1);
294         }
295         timeout_error(flctl, __func__);
296 }
297
298 static enum flctl_ecc_res_t wait_recfifo_ready
299                 (struct sh_flctl *flctl, int sector_number)
300 {
301         uint32_t timeout = LOOP_TIMEOUT_MAX;
302         void __iomem *ecc_reg[4];
303         int i;
304         int state = FL_SUCCESS;
305         uint32_t data, size;
306
307         /*
308          * First this loops checks in FLDTCNTR if we are ready to read out the
309          * oob data. This is the case if either all went fine without errors or
310          * if the bottom part of the loop corrected the errors or marked them as
311          * uncorrectable and the controller is given time to push the data into
312          * the FIFO.
313          */
314         while (timeout--) {
315                 /* check if all is ok and we can read out the OOB */
316                 size = readl(FLDTCNTR(flctl)) >> 24;
317                 if ((size & 0xFF) == 4)
318                         return state;
319
320                 /* check if a correction code has been calculated */
321                 if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
322                         /*
323                          * either we wait for the fifo to be filled or a
324                          * correction pattern is being generated
325                          */
326                         udelay(1);
327                         continue;
328                 }
329
330                 /* check for an uncorrectable error */
331                 if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
332                         /* check if we face a non-empty page */
333                         for (i = 0; i < 512; i++) {
334                                 if (flctl->done_buff[i] != 0xff) {
335                                         state = FL_ERROR; /* can't correct */
336                                         break;
337                                 }
338                         }
339
340                         if (state == FL_SUCCESS)
341                                 dev_dbg(&flctl->pdev->dev,
342                                 "reading empty sector %d, ecc error ignored\n",
343                                 sector_number);
344
345                         writel(0, FL4ECCCR(flctl));
346                         continue;
347                 }
348
349                 /* start error correction */
350                 ecc_reg[0] = FL4ECCRESULT0(flctl);
351                 ecc_reg[1] = FL4ECCRESULT1(flctl);
352                 ecc_reg[2] = FL4ECCRESULT2(flctl);
353                 ecc_reg[3] = FL4ECCRESULT3(flctl);
354
355                 for (i = 0; i < 3; i++) {
356                         uint8_t org;
357                         unsigned int index;
358
359                         data = readl(ecc_reg[i]);
360
361                         if (flctl->page_size)
362                                 index = (512 * sector_number) +
363                                         (data >> 16);
364                         else
365                                 index = data >> 16;
366
367                         org = flctl->done_buff[index];
368                         flctl->done_buff[index] = org ^ (data & 0xFF);
369                 }
370                 state = FL_REPAIRABLE;
371                 writel(0, FL4ECCCR(flctl));
372         }
373
374         timeout_error(flctl, __func__);
375         return FL_TIMEOUT;      /* timeout */
376 }
377
378 static void wait_wecfifo_ready(struct sh_flctl *flctl)
379 {
380         uint32_t timeout = LOOP_TIMEOUT_MAX;
381         uint32_t len;
382
383         while (timeout--) {
384                 /* check FLECFIFO */
385                 len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
386                 if (len >= 4)
387                         return;
388                 udelay(1);
389         }
390         timeout_error(flctl, __func__);
391 }
392
393 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
394                                         int len, enum dma_data_direction dir)
395 {
396         struct dma_async_tx_descriptor *desc = NULL;
397         struct dma_chan *chan;
398         enum dma_transfer_direction tr_dir;
399         dma_addr_t dma_addr;
400         dma_cookie_t cookie = -EINVAL;
401         uint32_t reg;
402         int ret;
403
404         if (dir == DMA_FROM_DEVICE) {
405                 chan = flctl->chan_fifo0_rx;
406                 tr_dir = DMA_DEV_TO_MEM;
407         } else {
408                 chan = flctl->chan_fifo0_tx;
409                 tr_dir = DMA_MEM_TO_DEV;
410         }
411
412         dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
413
414         if (dma_addr)
415                 desc = dmaengine_prep_slave_single(chan, dma_addr, len,
416                         tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
417
418         if (desc) {
419                 reg = readl(FLINTDMACR(flctl));
420                 reg |= DREQ0EN;
421                 writel(reg, FLINTDMACR(flctl));
422
423                 desc->callback = flctl_dma_complete;
424                 desc->callback_param = flctl;
425                 cookie = dmaengine_submit(desc);
426
427                 dma_async_issue_pending(chan);
428         } else {
429                 /* DMA failed, fall back to PIO */
430                 flctl_release_dma(flctl);
431                 dev_warn(&flctl->pdev->dev,
432                          "DMA failed, falling back to PIO\n");
433                 ret = -EIO;
434                 goto out;
435         }
436
437         ret =
438         wait_for_completion_timeout(&flctl->dma_complete,
439                                 msecs_to_jiffies(3000));
440
441         if (ret <= 0) {
442                 dmaengine_terminate_all(chan);
443                 dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
444         }
445
446 out:
447         reg = readl(FLINTDMACR(flctl));
448         reg &= ~DREQ0EN;
449         writel(reg, FLINTDMACR(flctl));
450
451         dma_unmap_single(chan->device->dev, dma_addr, len, dir);
452
453         /* ret > 0 is success */
454         return ret;
455 }
456
457 static void read_datareg(struct sh_flctl *flctl, int offset)
458 {
459         unsigned long data;
460         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
461
462         wait_completion(flctl);
463
464         data = readl(FLDATAR(flctl));
465         *buf = le32_to_cpu(data);
466 }
467
468 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
469 {
470         int i, len_4align;
471         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
472
473         len_4align = (rlen + 3) / 4;
474
475         /* initiate DMA transfer */
476         if (flctl->chan_fifo0_rx && rlen >= 32 &&
477                 flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0)
478                         goto convert;   /* DMA success */
479
480         /* do polling transfer */
481         for (i = 0; i < len_4align; i++) {
482                 wait_rfifo_ready(flctl);
483                 buf[i] = readl(FLDTFIFO(flctl));
484         }
485
486 convert:
487         for (i = 0; i < len_4align; i++)
488                 buf[i] = be32_to_cpu(buf[i]);
489 }
490
491 static enum flctl_ecc_res_t read_ecfiforeg
492                 (struct sh_flctl *flctl, uint8_t *buff, int sector)
493 {
494         int i;
495         enum flctl_ecc_res_t res;
496         unsigned long *ecc_buf = (unsigned long *)buff;
497
498         res = wait_recfifo_ready(flctl , sector);
499
500         if (res != FL_ERROR) {
501                 for (i = 0; i < 4; i++) {
502                         ecc_buf[i] = readl(FLECFIFO(flctl));
503                         ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
504                 }
505         }
506
507         return res;
508 }
509
510 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
511                                                 unsigned int offset)
512 {
513         int i, len_4align;
514         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
515
516         len_4align = (rlen + 3) / 4;
517         for (i = 0; i < len_4align; i++) {
518                 wait_wfifo_ready(flctl);
519                 writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
520         }
521 }
522
523 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
524                                                 unsigned int offset)
525 {
526         int i, len_4align;
527         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
528
529         len_4align = (rlen + 3) / 4;
530
531         for (i = 0; i < len_4align; i++)
532                 buf[i] = cpu_to_be32(buf[i]);
533
534         /* initiate DMA transfer */
535         if (flctl->chan_fifo0_tx && rlen >= 32 &&
536                 flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0)
537                         return; /* DMA success */
538
539         /* do polling transfer */
540         for (i = 0; i < len_4align; i++) {
541                 wait_wecfifo_ready(flctl);
542                 writel(buf[i], FLECFIFO(flctl));
543         }
544 }
545
546 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
547 {
548         struct sh_flctl *flctl = mtd_to_flctl(mtd);
549         uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
550         uint32_t flcmdcr_val, addr_len_bytes = 0;
551
552         /* Set SNAND bit if page size is 2048byte */
553         if (flctl->page_size)
554                 flcmncr_val |= SNAND_E;
555         else
556                 flcmncr_val &= ~SNAND_E;
557
558         /* default FLCMDCR val */
559         flcmdcr_val = DOCMD1_E | DOADR_E;
560
561         /* Set for FLCMDCR */
562         switch (cmd) {
563         case NAND_CMD_ERASE1:
564                 addr_len_bytes = flctl->erase_ADRCNT;
565                 flcmdcr_val |= DOCMD2_E;
566                 break;
567         case NAND_CMD_READ0:
568         case NAND_CMD_READOOB:
569         case NAND_CMD_RNDOUT:
570                 addr_len_bytes = flctl->rw_ADRCNT;
571                 flcmdcr_val |= CDSRC_E;
572                 if (flctl->chip.options & NAND_BUSWIDTH_16)
573                         flcmncr_val |= SEL_16BIT;
574                 break;
575         case NAND_CMD_SEQIN:
576                 /* This case is that cmd is READ0 or READ1 or READ00 */
577                 flcmdcr_val &= ~DOADR_E;        /* ONLY execute 1st cmd */
578                 break;
579         case NAND_CMD_PAGEPROG:
580                 addr_len_bytes = flctl->rw_ADRCNT;
581                 flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
582                 if (flctl->chip.options & NAND_BUSWIDTH_16)
583                         flcmncr_val |= SEL_16BIT;
584                 break;
585         case NAND_CMD_READID:
586                 flcmncr_val &= ~SNAND_E;
587                 flcmdcr_val |= CDSRC_E;
588                 addr_len_bytes = ADRCNT_1;
589                 break;
590         case NAND_CMD_STATUS:
591         case NAND_CMD_RESET:
592                 flcmncr_val &= ~SNAND_E;
593                 flcmdcr_val &= ~(DOADR_E | DOSR_E);
594                 break;
595         default:
596                 break;
597         }
598
599         /* Set address bytes parameter */
600         flcmdcr_val |= addr_len_bytes;
601
602         /* Now actually write */
603         writel(flcmncr_val, FLCMNCR(flctl));
604         writel(flcmdcr_val, FLCMDCR(flctl));
605         writel(flcmcdr_val, FLCMCDR(flctl));
606 }
607
608 static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
609                                 uint8_t *buf, int oob_required, int page)
610 {
611         chip->read_buf(mtd, buf, mtd->writesize);
612         if (oob_required)
613                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
614         return 0;
615 }
616
617 static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
618                                   const uint8_t *buf, int oob_required,
619                                   int page)
620 {
621         chip->write_buf(mtd, buf, mtd->writesize);
622         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
623         return 0;
624 }
625
626 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
627 {
628         struct sh_flctl *flctl = mtd_to_flctl(mtd);
629         int sector, page_sectors;
630         enum flctl_ecc_res_t ecc_result;
631
632         page_sectors = flctl->page_size ? 4 : 1;
633
634         set_cmd_regs(mtd, NAND_CMD_READ0,
635                 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
636
637         writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
638                  FLCMNCR(flctl));
639         writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
640         writel(page_addr << 2, FLADR(flctl));
641
642         empty_fifo(flctl);
643         start_translation(flctl);
644
645         for (sector = 0; sector < page_sectors; sector++) {
646                 read_fiforeg(flctl, 512, 512 * sector);
647
648                 ecc_result = read_ecfiforeg(flctl,
649                         &flctl->done_buff[mtd->writesize + 16 * sector],
650                         sector);
651
652                 switch (ecc_result) {
653                 case FL_REPAIRABLE:
654                         dev_info(&flctl->pdev->dev,
655                                 "applied ecc on page 0x%x", page_addr);
656                         mtd->ecc_stats.corrected++;
657                         break;
658                 case FL_ERROR:
659                         dev_warn(&flctl->pdev->dev,
660                                 "page 0x%x contains corrupted data\n",
661                                 page_addr);
662                         mtd->ecc_stats.failed++;
663                         break;
664                 default:
665                         ;
666                 }
667         }
668
669         wait_completion(flctl);
670
671         writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
672                         FLCMNCR(flctl));
673 }
674
675 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
676 {
677         struct sh_flctl *flctl = mtd_to_flctl(mtd);
678         int page_sectors = flctl->page_size ? 4 : 1;
679         int i;
680
681         set_cmd_regs(mtd, NAND_CMD_READ0,
682                 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
683
684         empty_fifo(flctl);
685
686         for (i = 0; i < page_sectors; i++) {
687                 set_addr(mtd, (512 + 16) * i + 512 , page_addr);
688                 writel(16, FLDTCNTR(flctl));
689
690                 start_translation(flctl);
691                 read_fiforeg(flctl, 16, 16 * i);
692                 wait_completion(flctl);
693         }
694 }
695
696 static void execmd_write_page_sector(struct mtd_info *mtd)
697 {
698         struct sh_flctl *flctl = mtd_to_flctl(mtd);
699         int page_addr = flctl->seqin_page_addr;
700         int sector, page_sectors;
701
702         page_sectors = flctl->page_size ? 4 : 1;
703
704         set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
705                         (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
706
707         empty_fifo(flctl);
708         writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
709         writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
710         writel(page_addr << 2, FLADR(flctl));
711         start_translation(flctl);
712
713         for (sector = 0; sector < page_sectors; sector++) {
714                 write_fiforeg(flctl, 512, 512 * sector);
715                 write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
716         }
717
718         wait_completion(flctl);
719         writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
720 }
721
722 static void execmd_write_oob(struct mtd_info *mtd)
723 {
724         struct sh_flctl *flctl = mtd_to_flctl(mtd);
725         int page_addr = flctl->seqin_page_addr;
726         int sector, page_sectors;
727
728         page_sectors = flctl->page_size ? 4 : 1;
729
730         set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
731                         (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
732
733         for (sector = 0; sector < page_sectors; sector++) {
734                 empty_fifo(flctl);
735                 set_addr(mtd, sector * 528 + 512, page_addr);
736                 writel(16, FLDTCNTR(flctl));    /* set read size */
737
738                 start_translation(flctl);
739                 write_fiforeg(flctl, 16, 16 * sector);
740                 wait_completion(flctl);
741         }
742 }
743
744 static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
745                         int column, int page_addr)
746 {
747         struct sh_flctl *flctl = mtd_to_flctl(mtd);
748         uint32_t read_cmd = 0;
749
750         pm_runtime_get_sync(&flctl->pdev->dev);
751
752         flctl->read_bytes = 0;
753         if (command != NAND_CMD_PAGEPROG)
754                 flctl->index = 0;
755
756         switch (command) {
757         case NAND_CMD_READ1:
758         case NAND_CMD_READ0:
759                 if (flctl->hwecc) {
760                         /* read page with hwecc */
761                         execmd_read_page_sector(mtd, page_addr);
762                         break;
763                 }
764                 if (flctl->page_size)
765                         set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
766                                 | command);
767                 else
768                         set_cmd_regs(mtd, command, command);
769
770                 set_addr(mtd, 0, page_addr);
771
772                 flctl->read_bytes = mtd->writesize + mtd->oobsize;
773                 if (flctl->chip.options & NAND_BUSWIDTH_16)
774                         column >>= 1;
775                 flctl->index += column;
776                 goto read_normal_exit;
777
778         case NAND_CMD_READOOB:
779                 if (flctl->hwecc) {
780                         /* read page with hwecc */
781                         execmd_read_oob(mtd, page_addr);
782                         break;
783                 }
784
785                 if (flctl->page_size) {
786                         set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
787                                 | NAND_CMD_READ0);
788                         set_addr(mtd, mtd->writesize, page_addr);
789                 } else {
790                         set_cmd_regs(mtd, command, command);
791                         set_addr(mtd, 0, page_addr);
792                 }
793                 flctl->read_bytes = mtd->oobsize;
794                 goto read_normal_exit;
795
796         case NAND_CMD_RNDOUT:
797                 if (flctl->hwecc)
798                         break;
799
800                 if (flctl->page_size)
801                         set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
802                                 | command);
803                 else
804                         set_cmd_regs(mtd, command, command);
805
806                 set_addr(mtd, column, 0);
807
808                 flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
809                 goto read_normal_exit;
810
811         case NAND_CMD_READID:
812                 set_cmd_regs(mtd, command, command);
813
814                 /* READID is always performed using an 8-bit bus */
815                 if (flctl->chip.options & NAND_BUSWIDTH_16)
816                         column <<= 1;
817                 set_addr(mtd, column, 0);
818
819                 flctl->read_bytes = 8;
820                 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
821                 empty_fifo(flctl);
822                 start_translation(flctl);
823                 read_fiforeg(flctl, flctl->read_bytes, 0);
824                 wait_completion(flctl);
825                 break;
826
827         case NAND_CMD_ERASE1:
828                 flctl->erase1_page_addr = page_addr;
829                 break;
830
831         case NAND_CMD_ERASE2:
832                 set_cmd_regs(mtd, NAND_CMD_ERASE1,
833                         (command << 8) | NAND_CMD_ERASE1);
834                 set_addr(mtd, -1, flctl->erase1_page_addr);
835                 start_translation(flctl);
836                 wait_completion(flctl);
837                 break;
838
839         case NAND_CMD_SEQIN:
840                 if (!flctl->page_size) {
841                         /* output read command */
842                         if (column >= mtd->writesize) {
843                                 column -= mtd->writesize;
844                                 read_cmd = NAND_CMD_READOOB;
845                         } else if (column < 256) {
846                                 read_cmd = NAND_CMD_READ0;
847                         } else {
848                                 column -= 256;
849                                 read_cmd = NAND_CMD_READ1;
850                         }
851                 }
852                 flctl->seqin_column = column;
853                 flctl->seqin_page_addr = page_addr;
854                 flctl->seqin_read_cmd = read_cmd;
855                 break;
856
857         case NAND_CMD_PAGEPROG:
858                 empty_fifo(flctl);
859                 if (!flctl->page_size) {
860                         set_cmd_regs(mtd, NAND_CMD_SEQIN,
861                                         flctl->seqin_read_cmd);
862                         set_addr(mtd, -1, -1);
863                         writel(0, FLDTCNTR(flctl));     /* set 0 size */
864                         start_translation(flctl);
865                         wait_completion(flctl);
866                 }
867                 if (flctl->hwecc) {
868                         /* write page with hwecc */
869                         if (flctl->seqin_column == mtd->writesize)
870                                 execmd_write_oob(mtd);
871                         else if (!flctl->seqin_column)
872                                 execmd_write_page_sector(mtd);
873                         else
874                                 printk(KERN_ERR "Invalid address !?\n");
875                         break;
876                 }
877                 set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
878                 set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
879                 writel(flctl->index, FLDTCNTR(flctl));  /* set write size */
880                 start_translation(flctl);
881                 write_fiforeg(flctl, flctl->index, 0);
882                 wait_completion(flctl);
883                 break;
884
885         case NAND_CMD_STATUS:
886                 set_cmd_regs(mtd, command, command);
887                 set_addr(mtd, -1, -1);
888
889                 flctl->read_bytes = 1;
890                 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
891                 start_translation(flctl);
892                 read_datareg(flctl, 0); /* read and end */
893                 break;
894
895         case NAND_CMD_RESET:
896                 set_cmd_regs(mtd, command, command);
897                 set_addr(mtd, -1, -1);
898
899                 writel(0, FLDTCNTR(flctl));     /* set 0 size */
900                 start_translation(flctl);
901                 wait_completion(flctl);
902                 break;
903
904         default:
905                 break;
906         }
907         goto runtime_exit;
908
909 read_normal_exit:
910         writel(flctl->read_bytes, FLDTCNTR(flctl));     /* set read size */
911         empty_fifo(flctl);
912         start_translation(flctl);
913         read_fiforeg(flctl, flctl->read_bytes, 0);
914         wait_completion(flctl);
915 runtime_exit:
916         pm_runtime_put_sync(&flctl->pdev->dev);
917         return;
918 }
919
920 static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
921 {
922         struct sh_flctl *flctl = mtd_to_flctl(mtd);
923         int ret;
924
925         switch (chipnr) {
926         case -1:
927                 flctl->flcmncr_base &= ~CE0_ENABLE;
928
929                 pm_runtime_get_sync(&flctl->pdev->dev);
930                 writel(flctl->flcmncr_base, FLCMNCR(flctl));
931
932                 if (flctl->qos_request) {
933                         dev_pm_qos_remove_request(&flctl->pm_qos);
934                         flctl->qos_request = 0;
935                 }
936
937                 pm_runtime_put_sync(&flctl->pdev->dev);
938                 break;
939         case 0:
940                 flctl->flcmncr_base |= CE0_ENABLE;
941
942                 if (!flctl->qos_request) {
943                         ret = dev_pm_qos_add_request(&flctl->pdev->dev,
944                                                         &flctl->pm_qos,
945                                                         DEV_PM_QOS_RESUME_LATENCY,
946                                                         100);
947                         if (ret < 0)
948                                 dev_err(&flctl->pdev->dev,
949                                         "PM QoS request failed: %d\n", ret);
950                         flctl->qos_request = 1;
951                 }
952
953                 if (flctl->holden) {
954                         pm_runtime_get_sync(&flctl->pdev->dev);
955                         writel(HOLDEN, FLHOLDCR(flctl));
956                         pm_runtime_put_sync(&flctl->pdev->dev);
957                 }
958                 break;
959         default:
960                 BUG();
961         }
962 }
963
964 static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
965 {
966         struct sh_flctl *flctl = mtd_to_flctl(mtd);
967
968         memcpy(&flctl->done_buff[flctl->index], buf, len);
969         flctl->index += len;
970 }
971
972 static uint8_t flctl_read_byte(struct mtd_info *mtd)
973 {
974         struct sh_flctl *flctl = mtd_to_flctl(mtd);
975         uint8_t data;
976
977         data = flctl->done_buff[flctl->index];
978         flctl->index++;
979         return data;
980 }
981
982 static uint16_t flctl_read_word(struct mtd_info *mtd)
983 {
984         struct sh_flctl *flctl = mtd_to_flctl(mtd);
985         uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index];
986
987         flctl->index += 2;
988         return *buf;
989 }
990
991 static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
992 {
993         struct sh_flctl *flctl = mtd_to_flctl(mtd);
994
995         memcpy(buf, &flctl->done_buff[flctl->index], len);
996         flctl->index += len;
997 }
998
999 static int flctl_chip_init_tail(struct mtd_info *mtd)
1000 {
1001         struct sh_flctl *flctl = mtd_to_flctl(mtd);
1002         struct nand_chip *chip = &flctl->chip;
1003
1004         if (mtd->writesize == 512) {
1005                 flctl->page_size = 0;
1006                 if (chip->chipsize > (32 << 20)) {
1007                         /* big than 32MB */
1008                         flctl->rw_ADRCNT = ADRCNT_4;
1009                         flctl->erase_ADRCNT = ADRCNT_3;
1010                 } else if (chip->chipsize > (2 << 16)) {
1011                         /* big than 128KB */
1012                         flctl->rw_ADRCNT = ADRCNT_3;
1013                         flctl->erase_ADRCNT = ADRCNT_2;
1014                 } else {
1015                         flctl->rw_ADRCNT = ADRCNT_2;
1016                         flctl->erase_ADRCNT = ADRCNT_1;
1017                 }
1018         } else {
1019                 flctl->page_size = 1;
1020                 if (chip->chipsize > (128 << 20)) {
1021                         /* big than 128MB */
1022                         flctl->rw_ADRCNT = ADRCNT2_E;
1023                         flctl->erase_ADRCNT = ADRCNT_3;
1024                 } else if (chip->chipsize > (8 << 16)) {
1025                         /* big than 512KB */
1026                         flctl->rw_ADRCNT = ADRCNT_4;
1027                         flctl->erase_ADRCNT = ADRCNT_2;
1028                 } else {
1029                         flctl->rw_ADRCNT = ADRCNT_3;
1030                         flctl->erase_ADRCNT = ADRCNT_1;
1031                 }
1032         }
1033
1034         if (flctl->hwecc) {
1035                 if (mtd->writesize == 512) {
1036                         mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1037                         chip->badblock_pattern = &flctl_4secc_smallpage;
1038                 } else {
1039                         mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1040                         chip->badblock_pattern = &flctl_4secc_largepage;
1041                 }
1042
1043                 chip->ecc.size = 512;
1044                 chip->ecc.bytes = 10;
1045                 chip->ecc.strength = 4;
1046                 chip->ecc.read_page = flctl_read_page_hwecc;
1047                 chip->ecc.write_page = flctl_write_page_hwecc;
1048                 chip->ecc.mode = NAND_ECC_HW;
1049
1050                 /* 4 symbols ECC enabled */
1051                 flctl->flcmncr_base |= _4ECCEN;
1052         } else {
1053                 chip->ecc.mode = NAND_ECC_SOFT;
1054                 chip->ecc.algo = NAND_ECC_HAMMING;
1055         }
1056
1057         return 0;
1058 }
1059
1060 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1061 {
1062         struct sh_flctl *flctl = dev_id;
1063
1064         dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1065         writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1066
1067         return IRQ_HANDLED;
1068 }
1069
1070 struct flctl_soc_config {
1071         unsigned long flcmncr_val;
1072         unsigned has_hwecc:1;
1073         unsigned use_holden:1;
1074 };
1075
1076 static struct flctl_soc_config flctl_sh7372_config = {
1077         .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1078         .has_hwecc = 1,
1079         .use_holden = 1,
1080 };
1081
1082 static const struct of_device_id of_flctl_match[] = {
1083         { .compatible = "renesas,shmobile-flctl-sh7372",
1084                                 .data = &flctl_sh7372_config },
1085         {},
1086 };
1087 MODULE_DEVICE_TABLE(of, of_flctl_match);
1088
1089 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1090 {
1091         const struct of_device_id *match;
1092         struct flctl_soc_config *config;
1093         struct sh_flctl_platform_data *pdata;
1094
1095         match = of_match_device(of_flctl_match, dev);
1096         if (match)
1097                 config = (struct flctl_soc_config *)match->data;
1098         else {
1099                 dev_err(dev, "%s: no OF configuration attached\n", __func__);
1100                 return NULL;
1101         }
1102
1103         pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1104                                                                 GFP_KERNEL);
1105         if (!pdata)
1106                 return NULL;
1107
1108         /* set SoC specific options */
1109         pdata->flcmncr_val = config->flcmncr_val;
1110         pdata->has_hwecc = config->has_hwecc;
1111         pdata->use_holden = config->use_holden;
1112
1113         return pdata;
1114 }
1115
1116 static int flctl_probe(struct platform_device *pdev)
1117 {
1118         struct resource *res;
1119         struct sh_flctl *flctl;
1120         struct mtd_info *flctl_mtd;
1121         struct nand_chip *nand;
1122         struct sh_flctl_platform_data *pdata;
1123         int ret;
1124         int irq;
1125
1126         flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1127         if (!flctl)
1128                 return -ENOMEM;
1129
1130         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1131         flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1132         if (IS_ERR(flctl->reg))
1133                 return PTR_ERR(flctl->reg);
1134         flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1135
1136         irq = platform_get_irq(pdev, 0);
1137         if (irq < 0) {
1138                 dev_err(&pdev->dev, "failed to get flste irq data\n");
1139                 return -ENXIO;
1140         }
1141
1142         ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1143                                "flste", flctl);
1144         if (ret) {
1145                 dev_err(&pdev->dev, "request interrupt failed.\n");
1146                 return ret;
1147         }
1148
1149         if (pdev->dev.of_node)
1150                 pdata = flctl_parse_dt(&pdev->dev);
1151         else
1152                 pdata = dev_get_platdata(&pdev->dev);
1153
1154         if (!pdata) {
1155                 dev_err(&pdev->dev, "no setup data defined\n");
1156                 return -EINVAL;
1157         }
1158
1159         platform_set_drvdata(pdev, flctl);
1160         nand = &flctl->chip;
1161         flctl_mtd = nand_to_mtd(nand);
1162         nand_set_flash_node(nand, pdev->dev.of_node);
1163         flctl_mtd->dev.parent = &pdev->dev;
1164         flctl->pdev = pdev;
1165         flctl->hwecc = pdata->has_hwecc;
1166         flctl->holden = pdata->use_holden;
1167         flctl->flcmncr_base = pdata->flcmncr_val;
1168         flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1169
1170         /* Set address of hardware control function */
1171         /* 20 us command delay time */
1172         nand->chip_delay = 20;
1173
1174         nand->read_byte = flctl_read_byte;
1175         nand->read_word = flctl_read_word;
1176         nand->write_buf = flctl_write_buf;
1177         nand->read_buf = flctl_read_buf;
1178         nand->select_chip = flctl_select_chip;
1179         nand->cmdfunc = flctl_cmdfunc;
1180
1181         if (pdata->flcmncr_val & SEL_16BIT)
1182                 nand->options |= NAND_BUSWIDTH_16;
1183
1184         pm_runtime_enable(&pdev->dev);
1185         pm_runtime_resume(&pdev->dev);
1186
1187         flctl_setup_dma(flctl);
1188
1189         ret = nand_scan_ident(flctl_mtd, 1, NULL);
1190         if (ret)
1191                 goto err_chip;
1192
1193         if (nand->options & NAND_BUSWIDTH_16) {
1194                 /*
1195                  * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
1196                  * Add the SEL_16BIT flag in pdata->flcmncr_val and re-assign
1197                  * flctl->flcmncr_base to pdata->flcmncr_val.
1198                  */
1199                 pdata->flcmncr_val |= SEL_16BIT;
1200                 flctl->flcmncr_base = pdata->flcmncr_val;
1201         }
1202
1203         ret = flctl_chip_init_tail(flctl_mtd);
1204         if (ret)
1205                 goto err_chip;
1206
1207         ret = nand_scan_tail(flctl_mtd);
1208         if (ret)
1209                 goto err_chip;
1210
1211         ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1212
1213         return 0;
1214
1215 err_chip:
1216         flctl_release_dma(flctl);
1217         pm_runtime_disable(&pdev->dev);
1218         return ret;
1219 }
1220
1221 static int flctl_remove(struct platform_device *pdev)
1222 {
1223         struct sh_flctl *flctl = platform_get_drvdata(pdev);
1224
1225         flctl_release_dma(flctl);
1226         nand_release(nand_to_mtd(&flctl->chip));
1227         pm_runtime_disable(&pdev->dev);
1228
1229         return 0;
1230 }
1231
1232 static struct platform_driver flctl_driver = {
1233         .remove         = flctl_remove,
1234         .driver = {
1235                 .name   = "sh_flctl",
1236                 .of_match_table = of_match_ptr(of_flctl_match),
1237         },
1238 };
1239
1240 module_platform_driver_probe(flctl_driver, flctl_probe);
1241
1242 MODULE_LICENSE("GPL");
1243 MODULE_AUTHOR("Yoshihiro Shimoda");
1244 MODULE_DESCRIPTION("SuperH FLCTL driver");
1245 MODULE_ALIAS("platform:sh_flctl");