Fix off-by-one in __pipe_get_pages()
[cascardo/linux.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 #include "wl.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140                                  struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142                             struct ubi_wl_entry *e);
143
144 /**
145  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146  * @e: the wear-leveling entry to add
147  * @root: the root of the tree
148  *
149  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150  * the @ubi->used and @ubi->free RB-trees.
151  */
152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153 {
154         struct rb_node **p, *parent = NULL;
155
156         p = &root->rb_node;
157         while (*p) {
158                 struct ubi_wl_entry *e1;
159
160                 parent = *p;
161                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162
163                 if (e->ec < e1->ec)
164                         p = &(*p)->rb_left;
165                 else if (e->ec > e1->ec)
166                         p = &(*p)->rb_right;
167                 else {
168                         ubi_assert(e->pnum != e1->pnum);
169                         if (e->pnum < e1->pnum)
170                                 p = &(*p)->rb_left;
171                         else
172                                 p = &(*p)->rb_right;
173                 }
174         }
175
176         rb_link_node(&e->u.rb, parent, p);
177         rb_insert_color(&e->u.rb, root);
178 }
179
180 /**
181  * wl_tree_destroy - destroy a wear-leveling entry.
182  * @ubi: UBI device description object
183  * @e: the wear-leveling entry to add
184  *
185  * This function destroys a wear leveling entry and removes
186  * the reference from the lookup table.
187  */
188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189 {
190         ubi->lookuptbl[e->pnum] = NULL;
191         kmem_cache_free(ubi_wl_entry_slab, e);
192 }
193
194 /**
195  * do_work - do one pending work.
196  * @ubi: UBI device description object
197  *
198  * This function returns zero in case of success and a negative error code in
199  * case of failure.
200  */
201 static int do_work(struct ubi_device *ubi)
202 {
203         int err;
204         struct ubi_work *wrk;
205
206         cond_resched();
207
208         /*
209          * @ubi->work_sem is used to synchronize with the workers. Workers take
210          * it in read mode, so many of them may be doing works at a time. But
211          * the queue flush code has to be sure the whole queue of works is
212          * done, and it takes the mutex in write mode.
213          */
214         down_read(&ubi->work_sem);
215         spin_lock(&ubi->wl_lock);
216         if (list_empty(&ubi->works)) {
217                 spin_unlock(&ubi->wl_lock);
218                 up_read(&ubi->work_sem);
219                 return 0;
220         }
221
222         wrk = list_entry(ubi->works.next, struct ubi_work, list);
223         list_del(&wrk->list);
224         ubi->works_count -= 1;
225         ubi_assert(ubi->works_count >= 0);
226         spin_unlock(&ubi->wl_lock);
227
228         /*
229          * Call the worker function. Do not touch the work structure
230          * after this call as it will have been freed or reused by that
231          * time by the worker function.
232          */
233         err = wrk->func(ubi, wrk, 0);
234         if (err)
235                 ubi_err(ubi, "work failed with error code %d", err);
236         up_read(&ubi->work_sem);
237
238         return err;
239 }
240
241 /**
242  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243  * @e: the wear-leveling entry to check
244  * @root: the root of the tree
245  *
246  * This function returns non-zero if @e is in the @root RB-tree and zero if it
247  * is not.
248  */
249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250 {
251         struct rb_node *p;
252
253         p = root->rb_node;
254         while (p) {
255                 struct ubi_wl_entry *e1;
256
257                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258
259                 if (e->pnum == e1->pnum) {
260                         ubi_assert(e == e1);
261                         return 1;
262                 }
263
264                 if (e->ec < e1->ec)
265                         p = p->rb_left;
266                 else if (e->ec > e1->ec)
267                         p = p->rb_right;
268                 else {
269                         ubi_assert(e->pnum != e1->pnum);
270                         if (e->pnum < e1->pnum)
271                                 p = p->rb_left;
272                         else
273                                 p = p->rb_right;
274                 }
275         }
276
277         return 0;
278 }
279
280 /**
281  * prot_queue_add - add physical eraseblock to the protection queue.
282  * @ubi: UBI device description object
283  * @e: the physical eraseblock to add
284  *
285  * This function adds @e to the tail of the protection queue @ubi->pq, where
286  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288  * be locked.
289  */
290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
291 {
292         int pq_tail = ubi->pq_head - 1;
293
294         if (pq_tail < 0)
295                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
296         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
299 }
300
301 /**
302  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303  * @ubi: UBI device description object
304  * @root: the RB-tree where to look for
305  * @diff: maximum possible difference from the smallest erase counter
306  *
307  * This function looks for a wear leveling entry with erase counter closest to
308  * min + @diff, where min is the smallest erase counter.
309  */
310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311                                           struct rb_root *root, int diff)
312 {
313         struct rb_node *p;
314         struct ubi_wl_entry *e, *prev_e = NULL;
315         int max;
316
317         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
318         max = e->ec + diff;
319
320         p = root->rb_node;
321         while (p) {
322                 struct ubi_wl_entry *e1;
323
324                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
325                 if (e1->ec >= max)
326                         p = p->rb_left;
327                 else {
328                         p = p->rb_right;
329                         prev_e = e;
330                         e = e1;
331                 }
332         }
333
334         /* If no fastmap has been written and this WL entry can be used
335          * as anchor PEB, hold it back and return the second best WL entry
336          * such that fastmap can use the anchor PEB later. */
337         if (prev_e && !ubi->fm_disabled &&
338             !ubi->fm && e->pnum < UBI_FM_MAX_START)
339                 return prev_e;
340
341         return e;
342 }
343
344 /**
345  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  *
349  * This function looks for a wear leveling entry with medium erase counter,
350  * but not greater or equivalent than the lowest erase counter plus
351  * %WL_FREE_MAX_DIFF/2.
352  */
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354                                                struct rb_root *root)
355 {
356         struct ubi_wl_entry *e, *first, *last;
357
358         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364                 /* If no fastmap has been written and this WL entry can be used
365                  * as anchor PEB, hold it back and return the second best
366                  * WL entry such that fastmap can use the anchor PEB later. */
367                 e = may_reserve_for_fm(ubi, e, root);
368         } else
369                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371         return e;
372 }
373
374 /**
375  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376  * refill_wl_user_pool().
377  * @ubi: UBI device description object
378  *
379  * This function returns a a wear leveling entry in case of success and
380  * NULL in case of failure.
381  */
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384         struct ubi_wl_entry *e;
385
386         e = find_mean_wl_entry(ubi, &ubi->free);
387         if (!e) {
388                 ubi_err(ubi, "no free eraseblocks");
389                 return NULL;
390         }
391
392         self_check_in_wl_tree(ubi, e, &ubi->free);
393
394         /*
395          * Move the physical eraseblock to the protection queue where it will
396          * be protected from being moved for some time.
397          */
398         rb_erase(&e->u.rb, &ubi->free);
399         ubi->free_count--;
400         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402         return e;
403 }
404
405 /**
406  * prot_queue_del - remove a physical eraseblock from the protection queue.
407  * @ubi: UBI device description object
408  * @pnum: the physical eraseblock to remove
409  *
410  * This function deletes PEB @pnum from the protection queue and returns zero
411  * in case of success and %-ENODEV if the PEB was not found.
412  */
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415         struct ubi_wl_entry *e;
416
417         e = ubi->lookuptbl[pnum];
418         if (!e)
419                 return -ENODEV;
420
421         if (self_check_in_pq(ubi, e))
422                 return -ENODEV;
423
424         list_del(&e->u.list);
425         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426         return 0;
427 }
428
429 /**
430  * sync_erase - synchronously erase a physical eraseblock.
431  * @ubi: UBI device description object
432  * @e: the the physical eraseblock to erase
433  * @torture: if the physical eraseblock has to be tortured
434  *
435  * This function returns zero in case of success and a negative error code in
436  * case of failure.
437  */
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439                       int torture)
440 {
441         int err;
442         struct ubi_ec_hdr *ec_hdr;
443         unsigned long long ec = e->ec;
444
445         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447         err = self_check_ec(ubi, e->pnum, e->ec);
448         if (err)
449                 return -EINVAL;
450
451         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452         if (!ec_hdr)
453                 return -ENOMEM;
454
455         err = ubi_io_sync_erase(ubi, e->pnum, torture);
456         if (err < 0)
457                 goto out_free;
458
459         ec += err;
460         if (ec > UBI_MAX_ERASECOUNTER) {
461                 /*
462                  * Erase counter overflow. Upgrade UBI and use 64-bit
463                  * erase counters internally.
464                  */
465                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466                         e->pnum, ec);
467                 err = -EINVAL;
468                 goto out_free;
469         }
470
471         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473         ec_hdr->ec = cpu_to_be64(ec);
474
475         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476         if (err)
477                 goto out_free;
478
479         e->ec = ec;
480         spin_lock(&ubi->wl_lock);
481         if (e->ec > ubi->max_ec)
482                 ubi->max_ec = e->ec;
483         spin_unlock(&ubi->wl_lock);
484
485 out_free:
486         kfree(ec_hdr);
487         return err;
488 }
489
490 /**
491  * serve_prot_queue - check if it is time to stop protecting PEBs.
492  * @ubi: UBI device description object
493  *
494  * This function is called after each erase operation and removes PEBs from the
495  * tail of the protection queue. These PEBs have been protected for long enough
496  * and should be moved to the used tree.
497  */
498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500         struct ubi_wl_entry *e, *tmp;
501         int count;
502
503         /*
504          * There may be several protected physical eraseblock to remove,
505          * process them all.
506          */
507 repeat:
508         count = 0;
509         spin_lock(&ubi->wl_lock);
510         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511                 dbg_wl("PEB %d EC %d protection over, move to used tree",
512                         e->pnum, e->ec);
513
514                 list_del(&e->u.list);
515                 wl_tree_add(e, &ubi->used);
516                 if (count++ > 32) {
517                         /*
518                          * Let's be nice and avoid holding the spinlock for
519                          * too long.
520                          */
521                         spin_unlock(&ubi->wl_lock);
522                         cond_resched();
523                         goto repeat;
524                 }
525         }
526
527         ubi->pq_head += 1;
528         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529                 ubi->pq_head = 0;
530         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531         spin_unlock(&ubi->wl_lock);
532 }
533
534 /**
535  * __schedule_ubi_work - schedule a work.
536  * @ubi: UBI device description object
537  * @wrk: the work to schedule
538  *
539  * This function adds a work defined by @wrk to the tail of the pending works
540  * list. Can only be used if ubi->work_sem is already held in read mode!
541  */
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544         spin_lock(&ubi->wl_lock);
545         list_add_tail(&wrk->list, &ubi->works);
546         ubi_assert(ubi->works_count >= 0);
547         ubi->works_count += 1;
548         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549                 wake_up_process(ubi->bgt_thread);
550         spin_unlock(&ubi->wl_lock);
551 }
552
553 /**
554  * schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list.
560  */
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563         down_read(&ubi->work_sem);
564         __schedule_ubi_work(ubi, wrk);
565         up_read(&ubi->work_sem);
566 }
567
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569                         int shutdown);
570
571 /**
572  * schedule_erase - schedule an erase work.
573  * @ubi: UBI device description object
574  * @e: the WL entry of the physical eraseblock to erase
575  * @vol_id: the volume ID that last used this PEB
576  * @lnum: the last used logical eraseblock number for the PEB
577  * @torture: if the physical eraseblock has to be tortured
578  *
579  * This function returns zero in case of success and a %-ENOMEM in case of
580  * failure.
581  */
582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583                           int vol_id, int lnum, int torture)
584 {
585         struct ubi_work *wl_wrk;
586
587         ubi_assert(e);
588
589         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590                e->pnum, e->ec, torture);
591
592         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593         if (!wl_wrk)
594                 return -ENOMEM;
595
596         wl_wrk->func = &erase_worker;
597         wl_wrk->e = e;
598         wl_wrk->vol_id = vol_id;
599         wl_wrk->lnum = lnum;
600         wl_wrk->torture = torture;
601
602         schedule_ubi_work(ubi, wl_wrk);
603         return 0;
604 }
605
606 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
607 /**
608  * do_sync_erase - run the erase worker synchronously.
609  * @ubi: UBI device description object
610  * @e: the WL entry of the physical eraseblock to erase
611  * @vol_id: the volume ID that last used this PEB
612  * @lnum: the last used logical eraseblock number for the PEB
613  * @torture: if the physical eraseblock has to be tortured
614  *
615  */
616 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
617                          int vol_id, int lnum, int torture)
618 {
619         struct ubi_work wl_wrk;
620
621         dbg_wl("sync erase of PEB %i", e->pnum);
622
623         wl_wrk.e = e;
624         wl_wrk.vol_id = vol_id;
625         wl_wrk.lnum = lnum;
626         wl_wrk.torture = torture;
627
628         return __erase_worker(ubi, &wl_wrk);
629 }
630
631 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
632 /**
633  * wear_leveling_worker - wear-leveling worker function.
634  * @ubi: UBI device description object
635  * @wrk: the work object
636  * @shutdown: non-zero if the worker has to free memory and exit
637  * because the WL-subsystem is shutting down
638  *
639  * This function copies a more worn out physical eraseblock to a less worn out
640  * one. Returns zero in case of success and a negative error code in case of
641  * failure.
642  */
643 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
644                                 int shutdown)
645 {
646         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
647         int vol_id = -1, lnum = -1;
648 #ifdef CONFIG_MTD_UBI_FASTMAP
649         int anchor = wrk->anchor;
650 #endif
651         struct ubi_wl_entry *e1, *e2;
652         struct ubi_vid_hdr *vid_hdr;
653         int dst_leb_clean = 0;
654
655         kfree(wrk);
656         if (shutdown)
657                 return 0;
658
659         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
660         if (!vid_hdr)
661                 return -ENOMEM;
662
663         mutex_lock(&ubi->move_mutex);
664         spin_lock(&ubi->wl_lock);
665         ubi_assert(!ubi->move_from && !ubi->move_to);
666         ubi_assert(!ubi->move_to_put);
667
668         if (!ubi->free.rb_node ||
669             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
670                 /*
671                  * No free physical eraseblocks? Well, they must be waiting in
672                  * the queue to be erased. Cancel movement - it will be
673                  * triggered again when a free physical eraseblock appears.
674                  *
675                  * No used physical eraseblocks? They must be temporarily
676                  * protected from being moved. They will be moved to the
677                  * @ubi->used tree later and the wear-leveling will be
678                  * triggered again.
679                  */
680                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
681                        !ubi->free.rb_node, !ubi->used.rb_node);
682                 goto out_cancel;
683         }
684
685 #ifdef CONFIG_MTD_UBI_FASTMAP
686         /* Check whether we need to produce an anchor PEB */
687         if (!anchor)
688                 anchor = !anchor_pebs_avalible(&ubi->free);
689
690         if (anchor) {
691                 e1 = find_anchor_wl_entry(&ubi->used);
692                 if (!e1)
693                         goto out_cancel;
694                 e2 = get_peb_for_wl(ubi);
695                 if (!e2)
696                         goto out_cancel;
697
698                 self_check_in_wl_tree(ubi, e1, &ubi->used);
699                 rb_erase(&e1->u.rb, &ubi->used);
700                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
701         } else if (!ubi->scrub.rb_node) {
702 #else
703         if (!ubi->scrub.rb_node) {
704 #endif
705                 /*
706                  * Now pick the least worn-out used physical eraseblock and a
707                  * highly worn-out free physical eraseblock. If the erase
708                  * counters differ much enough, start wear-leveling.
709                  */
710                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
711                 e2 = get_peb_for_wl(ubi);
712                 if (!e2)
713                         goto out_cancel;
714
715                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
716                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
717                                e1->ec, e2->ec);
718
719                         /* Give the unused PEB back */
720                         wl_tree_add(e2, &ubi->free);
721                         ubi->free_count++;
722                         goto out_cancel;
723                 }
724                 self_check_in_wl_tree(ubi, e1, &ubi->used);
725                 rb_erase(&e1->u.rb, &ubi->used);
726                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
727                        e1->pnum, e1->ec, e2->pnum, e2->ec);
728         } else {
729                 /* Perform scrubbing */
730                 scrubbing = 1;
731                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
732                 e2 = get_peb_for_wl(ubi);
733                 if (!e2)
734                         goto out_cancel;
735
736                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
737                 rb_erase(&e1->u.rb, &ubi->scrub);
738                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
739         }
740
741         ubi->move_from = e1;
742         ubi->move_to = e2;
743         spin_unlock(&ubi->wl_lock);
744
745         /*
746          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
747          * We so far do not know which logical eraseblock our physical
748          * eraseblock (@e1) belongs to. We have to read the volume identifier
749          * header first.
750          *
751          * Note, we are protected from this PEB being unmapped and erased. The
752          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
753          * which is being moved was unmapped.
754          */
755
756         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
757         if (err && err != UBI_IO_BITFLIPS) {
758                 dst_leb_clean = 1;
759                 if (err == UBI_IO_FF) {
760                         /*
761                          * We are trying to move PEB without a VID header. UBI
762                          * always write VID headers shortly after the PEB was
763                          * given, so we have a situation when it has not yet
764                          * had a chance to write it, because it was preempted.
765                          * So add this PEB to the protection queue so far,
766                          * because presumably more data will be written there
767                          * (including the missing VID header), and then we'll
768                          * move it.
769                          */
770                         dbg_wl("PEB %d has no VID header", e1->pnum);
771                         protect = 1;
772                         goto out_not_moved;
773                 } else if (err == UBI_IO_FF_BITFLIPS) {
774                         /*
775                          * The same situation as %UBI_IO_FF, but bit-flips were
776                          * detected. It is better to schedule this PEB for
777                          * scrubbing.
778                          */
779                         dbg_wl("PEB %d has no VID header but has bit-flips",
780                                e1->pnum);
781                         scrubbing = 1;
782                         goto out_not_moved;
783                 }
784
785                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
786                         err, e1->pnum);
787                 goto out_error;
788         }
789
790         vol_id = be32_to_cpu(vid_hdr->vol_id);
791         lnum = be32_to_cpu(vid_hdr->lnum);
792
793         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
794         if (err) {
795                 if (err == MOVE_CANCEL_RACE) {
796                         /*
797                          * The LEB has not been moved because the volume is
798                          * being deleted or the PEB has been put meanwhile. We
799                          * should prevent this PEB from being selected for
800                          * wear-leveling movement again, so put it to the
801                          * protection queue.
802                          */
803                         protect = 1;
804                         dst_leb_clean = 1;
805                         goto out_not_moved;
806                 }
807                 if (err == MOVE_RETRY) {
808                         scrubbing = 1;
809                         dst_leb_clean = 1;
810                         goto out_not_moved;
811                 }
812                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
813                     err == MOVE_TARGET_RD_ERR) {
814                         /*
815                          * Target PEB had bit-flips or write error - torture it.
816                          */
817                         torture = 1;
818                         goto out_not_moved;
819                 }
820
821                 if (err == MOVE_SOURCE_RD_ERR) {
822                         /*
823                          * An error happened while reading the source PEB. Do
824                          * not switch to R/O mode in this case, and give the
825                          * upper layers a possibility to recover from this,
826                          * e.g. by unmapping corresponding LEB. Instead, just
827                          * put this PEB to the @ubi->erroneous list to prevent
828                          * UBI from trying to move it over and over again.
829                          */
830                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
831                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
832                                         ubi->erroneous_peb_count);
833                                 goto out_error;
834                         }
835                         dst_leb_clean = 1;
836                         erroneous = 1;
837                         goto out_not_moved;
838                 }
839
840                 if (err < 0)
841                         goto out_error;
842
843                 ubi_assert(0);
844         }
845
846         /* The PEB has been successfully moved */
847         if (scrubbing)
848                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
849                         e1->pnum, vol_id, lnum, e2->pnum);
850         ubi_free_vid_hdr(ubi, vid_hdr);
851
852         spin_lock(&ubi->wl_lock);
853         if (!ubi->move_to_put) {
854                 wl_tree_add(e2, &ubi->used);
855                 e2 = NULL;
856         }
857         ubi->move_from = ubi->move_to = NULL;
858         ubi->move_to_put = ubi->wl_scheduled = 0;
859         spin_unlock(&ubi->wl_lock);
860
861         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
862         if (err) {
863                 if (e2)
864                         wl_entry_destroy(ubi, e2);
865                 goto out_ro;
866         }
867
868         if (e2) {
869                 /*
870                  * Well, the target PEB was put meanwhile, schedule it for
871                  * erasure.
872                  */
873                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
874                        e2->pnum, vol_id, lnum);
875                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
876                 if (err)
877                         goto out_ro;
878         }
879
880         dbg_wl("done");
881         mutex_unlock(&ubi->move_mutex);
882         return 0;
883
884         /*
885          * For some reasons the LEB was not moved, might be an error, might be
886          * something else. @e1 was not changed, so return it back. @e2 might
887          * have been changed, schedule it for erasure.
888          */
889 out_not_moved:
890         if (vol_id != -1)
891                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
892                        e1->pnum, vol_id, lnum, e2->pnum, err);
893         else
894                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
895                        e1->pnum, e2->pnum, err);
896         spin_lock(&ubi->wl_lock);
897         if (protect)
898                 prot_queue_add(ubi, e1);
899         else if (erroneous) {
900                 wl_tree_add(e1, &ubi->erroneous);
901                 ubi->erroneous_peb_count += 1;
902         } else if (scrubbing)
903                 wl_tree_add(e1, &ubi->scrub);
904         else
905                 wl_tree_add(e1, &ubi->used);
906         if (dst_leb_clean) {
907                 wl_tree_add(e2, &ubi->free);
908                 ubi->free_count++;
909         }
910
911         ubi_assert(!ubi->move_to_put);
912         ubi->move_from = ubi->move_to = NULL;
913         ubi->wl_scheduled = 0;
914         spin_unlock(&ubi->wl_lock);
915
916         ubi_free_vid_hdr(ubi, vid_hdr);
917         if (dst_leb_clean) {
918                 ensure_wear_leveling(ubi, 1);
919         } else {
920                 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
921                 if (err)
922                         goto out_ro;
923         }
924
925         mutex_unlock(&ubi->move_mutex);
926         return 0;
927
928 out_error:
929         if (vol_id != -1)
930                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
931                         err, e1->pnum, e2->pnum);
932         else
933                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
934                         err, e1->pnum, vol_id, lnum, e2->pnum);
935         spin_lock(&ubi->wl_lock);
936         ubi->move_from = ubi->move_to = NULL;
937         ubi->move_to_put = ubi->wl_scheduled = 0;
938         spin_unlock(&ubi->wl_lock);
939
940         ubi_free_vid_hdr(ubi, vid_hdr);
941         wl_entry_destroy(ubi, e1);
942         wl_entry_destroy(ubi, e2);
943
944 out_ro:
945         ubi_ro_mode(ubi);
946         mutex_unlock(&ubi->move_mutex);
947         ubi_assert(err != 0);
948         return err < 0 ? err : -EIO;
949
950 out_cancel:
951         ubi->wl_scheduled = 0;
952         spin_unlock(&ubi->wl_lock);
953         mutex_unlock(&ubi->move_mutex);
954         ubi_free_vid_hdr(ubi, vid_hdr);
955         return 0;
956 }
957
958 /**
959  * ensure_wear_leveling - schedule wear-leveling if it is needed.
960  * @ubi: UBI device description object
961  * @nested: set to non-zero if this function is called from UBI worker
962  *
963  * This function checks if it is time to start wear-leveling and schedules it
964  * if yes. This function returns zero in case of success and a negative error
965  * code in case of failure.
966  */
967 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
968 {
969         int err = 0;
970         struct ubi_wl_entry *e1;
971         struct ubi_wl_entry *e2;
972         struct ubi_work *wrk;
973
974         spin_lock(&ubi->wl_lock);
975         if (ubi->wl_scheduled)
976                 /* Wear-leveling is already in the work queue */
977                 goto out_unlock;
978
979         /*
980          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
981          * the WL worker has to be scheduled anyway.
982          */
983         if (!ubi->scrub.rb_node) {
984                 if (!ubi->used.rb_node || !ubi->free.rb_node)
985                         /* No physical eraseblocks - no deal */
986                         goto out_unlock;
987
988                 /*
989                  * We schedule wear-leveling only if the difference between the
990                  * lowest erase counter of used physical eraseblocks and a high
991                  * erase counter of free physical eraseblocks is greater than
992                  * %UBI_WL_THRESHOLD.
993                  */
994                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
995                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
996
997                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
998                         goto out_unlock;
999                 dbg_wl("schedule wear-leveling");
1000         } else
1001                 dbg_wl("schedule scrubbing");
1002
1003         ubi->wl_scheduled = 1;
1004         spin_unlock(&ubi->wl_lock);
1005
1006         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1007         if (!wrk) {
1008                 err = -ENOMEM;
1009                 goto out_cancel;
1010         }
1011
1012         wrk->anchor = 0;
1013         wrk->func = &wear_leveling_worker;
1014         if (nested)
1015                 __schedule_ubi_work(ubi, wrk);
1016         else
1017                 schedule_ubi_work(ubi, wrk);
1018         return err;
1019
1020 out_cancel:
1021         spin_lock(&ubi->wl_lock);
1022         ubi->wl_scheduled = 0;
1023 out_unlock:
1024         spin_unlock(&ubi->wl_lock);
1025         return err;
1026 }
1027
1028 /**
1029  * __erase_worker - physical eraseblock erase worker function.
1030  * @ubi: UBI device description object
1031  * @wl_wrk: the work object
1032  * @shutdown: non-zero if the worker has to free memory and exit
1033  * because the WL sub-system is shutting down
1034  *
1035  * This function erases a physical eraseblock and perform torture testing if
1036  * needed. It also takes care about marking the physical eraseblock bad if
1037  * needed. Returns zero in case of success and a negative error code in case of
1038  * failure.
1039  */
1040 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1041 {
1042         struct ubi_wl_entry *e = wl_wrk->e;
1043         int pnum = e->pnum;
1044         int vol_id = wl_wrk->vol_id;
1045         int lnum = wl_wrk->lnum;
1046         int err, available_consumed = 0;
1047
1048         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1049                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1050
1051         err = sync_erase(ubi, e, wl_wrk->torture);
1052         if (!err) {
1053                 spin_lock(&ubi->wl_lock);
1054                 wl_tree_add(e, &ubi->free);
1055                 ubi->free_count++;
1056                 spin_unlock(&ubi->wl_lock);
1057
1058                 /*
1059                  * One more erase operation has happened, take care about
1060                  * protected physical eraseblocks.
1061                  */
1062                 serve_prot_queue(ubi);
1063
1064                 /* And take care about wear-leveling */
1065                 err = ensure_wear_leveling(ubi, 1);
1066                 return err;
1067         }
1068
1069         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1070
1071         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1072             err == -EBUSY) {
1073                 int err1;
1074
1075                 /* Re-schedule the LEB for erasure */
1076                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1077                 if (err1) {
1078                         wl_entry_destroy(ubi, e);
1079                         err = err1;
1080                         goto out_ro;
1081                 }
1082                 return err;
1083         }
1084
1085         wl_entry_destroy(ubi, e);
1086         if (err != -EIO)
1087                 /*
1088                  * If this is not %-EIO, we have no idea what to do. Scheduling
1089                  * this physical eraseblock for erasure again would cause
1090                  * errors again and again. Well, lets switch to R/O mode.
1091                  */
1092                 goto out_ro;
1093
1094         /* It is %-EIO, the PEB went bad */
1095
1096         if (!ubi->bad_allowed) {
1097                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1098                 goto out_ro;
1099         }
1100
1101         spin_lock(&ubi->volumes_lock);
1102         if (ubi->beb_rsvd_pebs == 0) {
1103                 if (ubi->avail_pebs == 0) {
1104                         spin_unlock(&ubi->volumes_lock);
1105                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1106                         goto out_ro;
1107                 }
1108                 ubi->avail_pebs -= 1;
1109                 available_consumed = 1;
1110         }
1111         spin_unlock(&ubi->volumes_lock);
1112
1113         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1114         err = ubi_io_mark_bad(ubi, pnum);
1115         if (err)
1116                 goto out_ro;
1117
1118         spin_lock(&ubi->volumes_lock);
1119         if (ubi->beb_rsvd_pebs > 0) {
1120                 if (available_consumed) {
1121                         /*
1122                          * The amount of reserved PEBs increased since we last
1123                          * checked.
1124                          */
1125                         ubi->avail_pebs += 1;
1126                         available_consumed = 0;
1127                 }
1128                 ubi->beb_rsvd_pebs -= 1;
1129         }
1130         ubi->bad_peb_count += 1;
1131         ubi->good_peb_count -= 1;
1132         ubi_calculate_reserved(ubi);
1133         if (available_consumed)
1134                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1135         else if (ubi->beb_rsvd_pebs)
1136                 ubi_msg(ubi, "%d PEBs left in the reserve",
1137                         ubi->beb_rsvd_pebs);
1138         else
1139                 ubi_warn(ubi, "last PEB from the reserve was used");
1140         spin_unlock(&ubi->volumes_lock);
1141
1142         return err;
1143
1144 out_ro:
1145         if (available_consumed) {
1146                 spin_lock(&ubi->volumes_lock);
1147                 ubi->avail_pebs += 1;
1148                 spin_unlock(&ubi->volumes_lock);
1149         }
1150         ubi_ro_mode(ubi);
1151         return err;
1152 }
1153
1154 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1155                           int shutdown)
1156 {
1157         int ret;
1158
1159         if (shutdown) {
1160                 struct ubi_wl_entry *e = wl_wrk->e;
1161
1162                 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1163                 kfree(wl_wrk);
1164                 wl_entry_destroy(ubi, e);
1165                 return 0;
1166         }
1167
1168         ret = __erase_worker(ubi, wl_wrk);
1169         kfree(wl_wrk);
1170         return ret;
1171 }
1172
1173 /**
1174  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1175  * @ubi: UBI device description object
1176  * @vol_id: the volume ID that last used this PEB
1177  * @lnum: the last used logical eraseblock number for the PEB
1178  * @pnum: physical eraseblock to return
1179  * @torture: if this physical eraseblock has to be tortured
1180  *
1181  * This function is called to return physical eraseblock @pnum to the pool of
1182  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1183  * occurred to this @pnum and it has to be tested. This function returns zero
1184  * in case of success, and a negative error code in case of failure.
1185  */
1186 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1187                    int pnum, int torture)
1188 {
1189         int err;
1190         struct ubi_wl_entry *e;
1191
1192         dbg_wl("PEB %d", pnum);
1193         ubi_assert(pnum >= 0);
1194         ubi_assert(pnum < ubi->peb_count);
1195
1196         down_read(&ubi->fm_protect);
1197
1198 retry:
1199         spin_lock(&ubi->wl_lock);
1200         e = ubi->lookuptbl[pnum];
1201         if (e == ubi->move_from) {
1202                 /*
1203                  * User is putting the physical eraseblock which was selected to
1204                  * be moved. It will be scheduled for erasure in the
1205                  * wear-leveling worker.
1206                  */
1207                 dbg_wl("PEB %d is being moved, wait", pnum);
1208                 spin_unlock(&ubi->wl_lock);
1209
1210                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1211                 mutex_lock(&ubi->move_mutex);
1212                 mutex_unlock(&ubi->move_mutex);
1213                 goto retry;
1214         } else if (e == ubi->move_to) {
1215                 /*
1216                  * User is putting the physical eraseblock which was selected
1217                  * as the target the data is moved to. It may happen if the EBA
1218                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1219                  * but the WL sub-system has not put the PEB to the "used" tree
1220                  * yet, but it is about to do this. So we just set a flag which
1221                  * will tell the WL worker that the PEB is not needed anymore
1222                  * and should be scheduled for erasure.
1223                  */
1224                 dbg_wl("PEB %d is the target of data moving", pnum);
1225                 ubi_assert(!ubi->move_to_put);
1226                 ubi->move_to_put = 1;
1227                 spin_unlock(&ubi->wl_lock);
1228                 up_read(&ubi->fm_protect);
1229                 return 0;
1230         } else {
1231                 if (in_wl_tree(e, &ubi->used)) {
1232                         self_check_in_wl_tree(ubi, e, &ubi->used);
1233                         rb_erase(&e->u.rb, &ubi->used);
1234                 } else if (in_wl_tree(e, &ubi->scrub)) {
1235                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1236                         rb_erase(&e->u.rb, &ubi->scrub);
1237                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1238                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1239                         rb_erase(&e->u.rb, &ubi->erroneous);
1240                         ubi->erroneous_peb_count -= 1;
1241                         ubi_assert(ubi->erroneous_peb_count >= 0);
1242                         /* Erroneous PEBs should be tortured */
1243                         torture = 1;
1244                 } else {
1245                         err = prot_queue_del(ubi, e->pnum);
1246                         if (err) {
1247                                 ubi_err(ubi, "PEB %d not found", pnum);
1248                                 ubi_ro_mode(ubi);
1249                                 spin_unlock(&ubi->wl_lock);
1250                                 up_read(&ubi->fm_protect);
1251                                 return err;
1252                         }
1253                 }
1254         }
1255         spin_unlock(&ubi->wl_lock);
1256
1257         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1258         if (err) {
1259                 spin_lock(&ubi->wl_lock);
1260                 wl_tree_add(e, &ubi->used);
1261                 spin_unlock(&ubi->wl_lock);
1262         }
1263
1264         up_read(&ubi->fm_protect);
1265         return err;
1266 }
1267
1268 /**
1269  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1270  * @ubi: UBI device description object
1271  * @pnum: the physical eraseblock to schedule
1272  *
1273  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1274  * needs scrubbing. This function schedules a physical eraseblock for
1275  * scrubbing which is done in background. This function returns zero in case of
1276  * success and a negative error code in case of failure.
1277  */
1278 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1279 {
1280         struct ubi_wl_entry *e;
1281
1282         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1283
1284 retry:
1285         spin_lock(&ubi->wl_lock);
1286         e = ubi->lookuptbl[pnum];
1287         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1288                                    in_wl_tree(e, &ubi->erroneous)) {
1289                 spin_unlock(&ubi->wl_lock);
1290                 return 0;
1291         }
1292
1293         if (e == ubi->move_to) {
1294                 /*
1295                  * This physical eraseblock was used to move data to. The data
1296                  * was moved but the PEB was not yet inserted to the proper
1297                  * tree. We should just wait a little and let the WL worker
1298                  * proceed.
1299                  */
1300                 spin_unlock(&ubi->wl_lock);
1301                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1302                 yield();
1303                 goto retry;
1304         }
1305
1306         if (in_wl_tree(e, &ubi->used)) {
1307                 self_check_in_wl_tree(ubi, e, &ubi->used);
1308                 rb_erase(&e->u.rb, &ubi->used);
1309         } else {
1310                 int err;
1311
1312                 err = prot_queue_del(ubi, e->pnum);
1313                 if (err) {
1314                         ubi_err(ubi, "PEB %d not found", pnum);
1315                         ubi_ro_mode(ubi);
1316                         spin_unlock(&ubi->wl_lock);
1317                         return err;
1318                 }
1319         }
1320
1321         wl_tree_add(e, &ubi->scrub);
1322         spin_unlock(&ubi->wl_lock);
1323
1324         /*
1325          * Technically scrubbing is the same as wear-leveling, so it is done
1326          * by the WL worker.
1327          */
1328         return ensure_wear_leveling(ubi, 0);
1329 }
1330
1331 /**
1332  * ubi_wl_flush - flush all pending works.
1333  * @ubi: UBI device description object
1334  * @vol_id: the volume id to flush for
1335  * @lnum: the logical eraseblock number to flush for
1336  *
1337  * This function executes all pending works for a particular volume id /
1338  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1339  * acts as a wildcard for all of the corresponding volume numbers or logical
1340  * eraseblock numbers. It returns zero in case of success and a negative error
1341  * code in case of failure.
1342  */
1343 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1344 {
1345         int err = 0;
1346         int found = 1;
1347
1348         /*
1349          * Erase while the pending works queue is not empty, but not more than
1350          * the number of currently pending works.
1351          */
1352         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1353                vol_id, lnum, ubi->works_count);
1354
1355         while (found) {
1356                 struct ubi_work *wrk, *tmp;
1357                 found = 0;
1358
1359                 down_read(&ubi->work_sem);
1360                 spin_lock(&ubi->wl_lock);
1361                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1362                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1363                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1364                                 list_del(&wrk->list);
1365                                 ubi->works_count -= 1;
1366                                 ubi_assert(ubi->works_count >= 0);
1367                                 spin_unlock(&ubi->wl_lock);
1368
1369                                 err = wrk->func(ubi, wrk, 0);
1370                                 if (err) {
1371                                         up_read(&ubi->work_sem);
1372                                         return err;
1373                                 }
1374
1375                                 spin_lock(&ubi->wl_lock);
1376                                 found = 1;
1377                                 break;
1378                         }
1379                 }
1380                 spin_unlock(&ubi->wl_lock);
1381                 up_read(&ubi->work_sem);
1382         }
1383
1384         /*
1385          * Make sure all the works which have been done in parallel are
1386          * finished.
1387          */
1388         down_write(&ubi->work_sem);
1389         up_write(&ubi->work_sem);
1390
1391         return err;
1392 }
1393
1394 /**
1395  * tree_destroy - destroy an RB-tree.
1396  * @ubi: UBI device description object
1397  * @root: the root of the tree to destroy
1398  */
1399 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1400 {
1401         struct rb_node *rb;
1402         struct ubi_wl_entry *e;
1403
1404         rb = root->rb_node;
1405         while (rb) {
1406                 if (rb->rb_left)
1407                         rb = rb->rb_left;
1408                 else if (rb->rb_right)
1409                         rb = rb->rb_right;
1410                 else {
1411                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1412
1413                         rb = rb_parent(rb);
1414                         if (rb) {
1415                                 if (rb->rb_left == &e->u.rb)
1416                                         rb->rb_left = NULL;
1417                                 else
1418                                         rb->rb_right = NULL;
1419                         }
1420
1421                         wl_entry_destroy(ubi, e);
1422                 }
1423         }
1424 }
1425
1426 /**
1427  * ubi_thread - UBI background thread.
1428  * @u: the UBI device description object pointer
1429  */
1430 int ubi_thread(void *u)
1431 {
1432         int failures = 0;
1433         struct ubi_device *ubi = u;
1434
1435         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1436                 ubi->bgt_name, task_pid_nr(current));
1437
1438         set_freezable();
1439         for (;;) {
1440                 int err;
1441
1442                 if (kthread_should_stop())
1443                         break;
1444
1445                 if (try_to_freeze())
1446                         continue;
1447
1448                 spin_lock(&ubi->wl_lock);
1449                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1450                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1451                         set_current_state(TASK_INTERRUPTIBLE);
1452                         spin_unlock(&ubi->wl_lock);
1453                         schedule();
1454                         continue;
1455                 }
1456                 spin_unlock(&ubi->wl_lock);
1457
1458                 err = do_work(ubi);
1459                 if (err) {
1460                         ubi_err(ubi, "%s: work failed with error code %d",
1461                                 ubi->bgt_name, err);
1462                         if (failures++ > WL_MAX_FAILURES) {
1463                                 /*
1464                                  * Too many failures, disable the thread and
1465                                  * switch to read-only mode.
1466                                  */
1467                                 ubi_msg(ubi, "%s: %d consecutive failures",
1468                                         ubi->bgt_name, WL_MAX_FAILURES);
1469                                 ubi_ro_mode(ubi);
1470                                 ubi->thread_enabled = 0;
1471                                 continue;
1472                         }
1473                 } else
1474                         failures = 0;
1475
1476                 cond_resched();
1477         }
1478
1479         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1480         return 0;
1481 }
1482
1483 /**
1484  * shutdown_work - shutdown all pending works.
1485  * @ubi: UBI device description object
1486  */
1487 static void shutdown_work(struct ubi_device *ubi)
1488 {
1489 #ifdef CONFIG_MTD_UBI_FASTMAP
1490         flush_work(&ubi->fm_work);
1491 #endif
1492         while (!list_empty(&ubi->works)) {
1493                 struct ubi_work *wrk;
1494
1495                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1496                 list_del(&wrk->list);
1497                 wrk->func(ubi, wrk, 1);
1498                 ubi->works_count -= 1;
1499                 ubi_assert(ubi->works_count >= 0);
1500         }
1501 }
1502
1503 /**
1504  * ubi_wl_init - initialize the WL sub-system using attaching information.
1505  * @ubi: UBI device description object
1506  * @ai: attaching information
1507  *
1508  * This function returns zero in case of success, and a negative error code in
1509  * case of failure.
1510  */
1511 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1512 {
1513         int err, i, reserved_pebs, found_pebs = 0;
1514         struct rb_node *rb1, *rb2;
1515         struct ubi_ainf_volume *av;
1516         struct ubi_ainf_peb *aeb, *tmp;
1517         struct ubi_wl_entry *e;
1518
1519         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1520         spin_lock_init(&ubi->wl_lock);
1521         mutex_init(&ubi->move_mutex);
1522         init_rwsem(&ubi->work_sem);
1523         ubi->max_ec = ai->max_ec;
1524         INIT_LIST_HEAD(&ubi->works);
1525
1526         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1527
1528         err = -ENOMEM;
1529         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1530         if (!ubi->lookuptbl)
1531                 return err;
1532
1533         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1534                 INIT_LIST_HEAD(&ubi->pq[i]);
1535         ubi->pq_head = 0;
1536
1537         ubi->free_count = 0;
1538         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1539                 cond_resched();
1540
1541                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1542                 if (!e)
1543                         goto out_free;
1544
1545                 e->pnum = aeb->pnum;
1546                 e->ec = aeb->ec;
1547                 ubi->lookuptbl[e->pnum] = e;
1548                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1549                         wl_entry_destroy(ubi, e);
1550                         goto out_free;
1551                 }
1552
1553                 found_pebs++;
1554         }
1555
1556         list_for_each_entry(aeb, &ai->free, u.list) {
1557                 cond_resched();
1558
1559                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1560                 if (!e)
1561                         goto out_free;
1562
1563                 e->pnum = aeb->pnum;
1564                 e->ec = aeb->ec;
1565                 ubi_assert(e->ec >= 0);
1566
1567                 wl_tree_add(e, &ubi->free);
1568                 ubi->free_count++;
1569
1570                 ubi->lookuptbl[e->pnum] = e;
1571
1572                 found_pebs++;
1573         }
1574
1575         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1576                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1577                         cond_resched();
1578
1579                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1580                         if (!e)
1581                                 goto out_free;
1582
1583                         e->pnum = aeb->pnum;
1584                         e->ec = aeb->ec;
1585                         ubi->lookuptbl[e->pnum] = e;
1586
1587                         if (!aeb->scrub) {
1588                                 dbg_wl("add PEB %d EC %d to the used tree",
1589                                        e->pnum, e->ec);
1590                                 wl_tree_add(e, &ubi->used);
1591                         } else {
1592                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1593                                        e->pnum, e->ec);
1594                                 wl_tree_add(e, &ubi->scrub);
1595                         }
1596
1597                         found_pebs++;
1598                 }
1599         }
1600
1601         list_for_each_entry(aeb, &ai->fastmap, u.list) {
1602                 cond_resched();
1603
1604                 e = ubi_find_fm_block(ubi, aeb->pnum);
1605
1606                 if (e) {
1607                         ubi_assert(!ubi->lookuptbl[e->pnum]);
1608                         ubi->lookuptbl[e->pnum] = e;
1609                 } else {
1610                         /*
1611                          * Usually old Fastmap PEBs are scheduled for erasure
1612                          * and we don't have to care about them but if we face
1613                          * an power cut before scheduling them we need to
1614                          * take care of them here.
1615                          */
1616                         if (ubi->lookuptbl[aeb->pnum])
1617                                 continue;
1618
1619                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1620                         if (!e)
1621                                 goto out_free;
1622
1623                         e->pnum = aeb->pnum;
1624                         e->ec = aeb->ec;
1625                         ubi_assert(!ubi->lookuptbl[e->pnum]);
1626                         ubi->lookuptbl[e->pnum] = e;
1627                         if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1628                                 wl_entry_destroy(ubi, e);
1629                                 goto out_free;
1630                         }
1631                 }
1632
1633                 found_pebs++;
1634         }
1635
1636         dbg_wl("found %i PEBs", found_pebs);
1637
1638         ubi_assert(ubi->good_peb_count == found_pebs);
1639
1640         reserved_pebs = WL_RESERVED_PEBS;
1641         ubi_fastmap_init(ubi, &reserved_pebs);
1642
1643         if (ubi->avail_pebs < reserved_pebs) {
1644                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1645                         ubi->avail_pebs, reserved_pebs);
1646                 if (ubi->corr_peb_count)
1647                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1648                                 ubi->corr_peb_count);
1649                 err = -ENOSPC;
1650                 goto out_free;
1651         }
1652         ubi->avail_pebs -= reserved_pebs;
1653         ubi->rsvd_pebs += reserved_pebs;
1654
1655         /* Schedule wear-leveling if needed */
1656         err = ensure_wear_leveling(ubi, 0);
1657         if (err)
1658                 goto out_free;
1659
1660         return 0;
1661
1662 out_free:
1663         shutdown_work(ubi);
1664         tree_destroy(ubi, &ubi->used);
1665         tree_destroy(ubi, &ubi->free);
1666         tree_destroy(ubi, &ubi->scrub);
1667         kfree(ubi->lookuptbl);
1668         return err;
1669 }
1670
1671 /**
1672  * protection_queue_destroy - destroy the protection queue.
1673  * @ubi: UBI device description object
1674  */
1675 static void protection_queue_destroy(struct ubi_device *ubi)
1676 {
1677         int i;
1678         struct ubi_wl_entry *e, *tmp;
1679
1680         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1681                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1682                         list_del(&e->u.list);
1683                         wl_entry_destroy(ubi, e);
1684                 }
1685         }
1686 }
1687
1688 /**
1689  * ubi_wl_close - close the wear-leveling sub-system.
1690  * @ubi: UBI device description object
1691  */
1692 void ubi_wl_close(struct ubi_device *ubi)
1693 {
1694         dbg_wl("close the WL sub-system");
1695         ubi_fastmap_close(ubi);
1696         shutdown_work(ubi);
1697         protection_queue_destroy(ubi);
1698         tree_destroy(ubi, &ubi->used);
1699         tree_destroy(ubi, &ubi->erroneous);
1700         tree_destroy(ubi, &ubi->free);
1701         tree_destroy(ubi, &ubi->scrub);
1702         kfree(ubi->lookuptbl);
1703 }
1704
1705 /**
1706  * self_check_ec - make sure that the erase counter of a PEB is correct.
1707  * @ubi: UBI device description object
1708  * @pnum: the physical eraseblock number to check
1709  * @ec: the erase counter to check
1710  *
1711  * This function returns zero if the erase counter of physical eraseblock @pnum
1712  * is equivalent to @ec, and a negative error code if not or if an error
1713  * occurred.
1714  */
1715 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1716 {
1717         int err;
1718         long long read_ec;
1719         struct ubi_ec_hdr *ec_hdr;
1720
1721         if (!ubi_dbg_chk_gen(ubi))
1722                 return 0;
1723
1724         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1725         if (!ec_hdr)
1726                 return -ENOMEM;
1727
1728         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1729         if (err && err != UBI_IO_BITFLIPS) {
1730                 /* The header does not have to exist */
1731                 err = 0;
1732                 goto out_free;
1733         }
1734
1735         read_ec = be64_to_cpu(ec_hdr->ec);
1736         if (ec != read_ec && read_ec - ec > 1) {
1737                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1738                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1739                 dump_stack();
1740                 err = 1;
1741         } else
1742                 err = 0;
1743
1744 out_free:
1745         kfree(ec_hdr);
1746         return err;
1747 }
1748
1749 /**
1750  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1751  * @ubi: UBI device description object
1752  * @e: the wear-leveling entry to check
1753  * @root: the root of the tree
1754  *
1755  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1756  * is not.
1757  */
1758 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1759                                  struct ubi_wl_entry *e, struct rb_root *root)
1760 {
1761         if (!ubi_dbg_chk_gen(ubi))
1762                 return 0;
1763
1764         if (in_wl_tree(e, root))
1765                 return 0;
1766
1767         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1768                 e->pnum, e->ec, root);
1769         dump_stack();
1770         return -EINVAL;
1771 }
1772
1773 /**
1774  * self_check_in_pq - check if wear-leveling entry is in the protection
1775  *                        queue.
1776  * @ubi: UBI device description object
1777  * @e: the wear-leveling entry to check
1778  *
1779  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1780  */
1781 static int self_check_in_pq(const struct ubi_device *ubi,
1782                             struct ubi_wl_entry *e)
1783 {
1784         struct ubi_wl_entry *p;
1785         int i;
1786
1787         if (!ubi_dbg_chk_gen(ubi))
1788                 return 0;
1789
1790         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1791                 list_for_each_entry(p, &ubi->pq[i], u.list)
1792                         if (p == e)
1793                                 return 0;
1794
1795         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1796                 e->pnum, e->ec);
1797         dump_stack();
1798         return -EINVAL;
1799 }
1800 #ifndef CONFIG_MTD_UBI_FASTMAP
1801 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1802 {
1803         struct ubi_wl_entry *e;
1804
1805         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1806         self_check_in_wl_tree(ubi, e, &ubi->free);
1807         ubi->free_count--;
1808         ubi_assert(ubi->free_count >= 0);
1809         rb_erase(&e->u.rb, &ubi->free);
1810
1811         return e;
1812 }
1813
1814 /**
1815  * produce_free_peb - produce a free physical eraseblock.
1816  * @ubi: UBI device description object
1817  *
1818  * This function tries to make a free PEB by means of synchronous execution of
1819  * pending works. This may be needed if, for example the background thread is
1820  * disabled. Returns zero in case of success and a negative error code in case
1821  * of failure.
1822  */
1823 static int produce_free_peb(struct ubi_device *ubi)
1824 {
1825         int err;
1826
1827         while (!ubi->free.rb_node && ubi->works_count) {
1828                 spin_unlock(&ubi->wl_lock);
1829
1830                 dbg_wl("do one work synchronously");
1831                 err = do_work(ubi);
1832
1833                 spin_lock(&ubi->wl_lock);
1834                 if (err)
1835                         return err;
1836         }
1837
1838         return 0;
1839 }
1840
1841 /**
1842  * ubi_wl_get_peb - get a physical eraseblock.
1843  * @ubi: UBI device description object
1844  *
1845  * This function returns a physical eraseblock in case of success and a
1846  * negative error code in case of failure.
1847  * Returns with ubi->fm_eba_sem held in read mode!
1848  */
1849 int ubi_wl_get_peb(struct ubi_device *ubi)
1850 {
1851         int err;
1852         struct ubi_wl_entry *e;
1853
1854 retry:
1855         down_read(&ubi->fm_eba_sem);
1856         spin_lock(&ubi->wl_lock);
1857         if (!ubi->free.rb_node) {
1858                 if (ubi->works_count == 0) {
1859                         ubi_err(ubi, "no free eraseblocks");
1860                         ubi_assert(list_empty(&ubi->works));
1861                         spin_unlock(&ubi->wl_lock);
1862                         return -ENOSPC;
1863                 }
1864
1865                 err = produce_free_peb(ubi);
1866                 if (err < 0) {
1867                         spin_unlock(&ubi->wl_lock);
1868                         return err;
1869                 }
1870                 spin_unlock(&ubi->wl_lock);
1871                 up_read(&ubi->fm_eba_sem);
1872                 goto retry;
1873
1874         }
1875         e = wl_get_wle(ubi);
1876         prot_queue_add(ubi, e);
1877         spin_unlock(&ubi->wl_lock);
1878
1879         err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1880                                     ubi->peb_size - ubi->vid_hdr_aloffset);
1881         if (err) {
1882                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1883                 return err;
1884         }
1885
1886         return e->pnum;
1887 }
1888 #else
1889 #include "fastmap-wl.c"
1890 #endif