Merge branch 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm
[cascardo/linux.git] / drivers / net / can / dev.c
1 /*
2  * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the version 2 of the GNU General Public License
8  * as published by the Free Software Foundation
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/workqueue.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/skb.h>
28 #include <linux/can/netlink.h>
29 #include <linux/can/led.h>
30 #include <net/rtnetlink.h>
31
32 #define MOD_DESC "CAN device driver interface"
33
34 MODULE_DESCRIPTION(MOD_DESC);
35 MODULE_LICENSE("GPL v2");
36 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
37
38 /* CAN DLC to real data length conversion helpers */
39
40 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
41                              8, 12, 16, 20, 24, 32, 48, 64};
42
43 /* get data length from can_dlc with sanitized can_dlc */
44 u8 can_dlc2len(u8 can_dlc)
45 {
46         return dlc2len[can_dlc & 0x0F];
47 }
48 EXPORT_SYMBOL_GPL(can_dlc2len);
49
50 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,         /* 0 - 8 */
51                              9, 9, 9, 9,                        /* 9 - 12 */
52                              10, 10, 10, 10,                    /* 13 - 16 */
53                              11, 11, 11, 11,                    /* 17 - 20 */
54                              12, 12, 12, 12,                    /* 21 - 24 */
55                              13, 13, 13, 13, 13, 13, 13, 13,    /* 25 - 32 */
56                              14, 14, 14, 14, 14, 14, 14, 14,    /* 33 - 40 */
57                              14, 14, 14, 14, 14, 14, 14, 14,    /* 41 - 48 */
58                              15, 15, 15, 15, 15, 15, 15, 15,    /* 49 - 56 */
59                              15, 15, 15, 15, 15, 15, 15, 15};   /* 57 - 64 */
60
61 /* map the sanitized data length to an appropriate data length code */
62 u8 can_len2dlc(u8 len)
63 {
64         if (unlikely(len > 64))
65                 return 0xF;
66
67         return len2dlc[len];
68 }
69 EXPORT_SYMBOL_GPL(can_len2dlc);
70
71 #ifdef CONFIG_CAN_CALC_BITTIMING
72 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
73 #define CAN_CALC_SYNC_SEG 1
74
75 /*
76  * Bit-timing calculation derived from:
77  *
78  * Code based on LinCAN sources and H8S2638 project
79  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
80  * Copyright 2005      Stanislav Marek
81  * email: pisa@cmp.felk.cvut.cz
82  *
83  * Calculates proper bit-timing parameters for a specified bit-rate
84  * and sample-point, which can then be used to set the bit-timing
85  * registers of the CAN controller. You can find more information
86  * in the header file linux/can/netlink.h.
87  */
88 static int can_update_sample_point(const struct can_bittiming_const *btc,
89                           unsigned int sample_point_nominal, unsigned int tseg,
90                           unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
91                           unsigned int *sample_point_error_ptr)
92 {
93         unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
94         unsigned int sample_point, best_sample_point = 0;
95         unsigned int tseg1, tseg2;
96         int i;
97
98         for (i = 0; i <= 1; i++) {
99                 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i;
100                 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
101                 tseg1 = tseg - tseg2;
102                 if (tseg1 > btc->tseg1_max) {
103                         tseg1 = btc->tseg1_max;
104                         tseg2 = tseg - tseg1;
105                 }
106
107                 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG);
108                 sample_point_error = abs(sample_point_nominal - sample_point);
109
110                 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) {
111                         best_sample_point = sample_point;
112                         best_sample_point_error = sample_point_error;
113                         *tseg1_ptr = tseg1;
114                         *tseg2_ptr = tseg2;
115                 }
116         }
117
118         if (sample_point_error_ptr)
119                 *sample_point_error_ptr = best_sample_point_error;
120
121         return best_sample_point;
122 }
123
124 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
125                               const struct can_bittiming_const *btc)
126 {
127         struct can_priv *priv = netdev_priv(dev);
128         unsigned int bitrate;                   /* current bitrate */
129         unsigned int bitrate_error;             /* difference between current and nominal value */
130         unsigned int best_bitrate_error = UINT_MAX;
131         unsigned int sample_point_error;        /* difference between current and nominal value */
132         unsigned int best_sample_point_error = UINT_MAX;
133         unsigned int sample_point_nominal;      /* nominal sample point */
134         unsigned int best_tseg = 0;             /* current best value for tseg */
135         unsigned int best_brp = 0;              /* current best value for brp */
136         unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
137         u64 v64;
138
139         /* Use CiA recommended sample points */
140         if (bt->sample_point) {
141                 sample_point_nominal = bt->sample_point;
142         } else {
143                 if (bt->bitrate > 800000)
144                         sample_point_nominal = 750;
145                 else if (bt->bitrate > 500000)
146                         sample_point_nominal = 800;
147                 else
148                         sample_point_nominal = 875;
149         }
150
151         /* tseg even = round down, odd = round up */
152         for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
153              tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
154                 tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
155
156                 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
157                 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
158
159                 /* choose brp step which is possible in system */
160                 brp = (brp / btc->brp_inc) * btc->brp_inc;
161                 if ((brp < btc->brp_min) || (brp > btc->brp_max))
162                         continue;
163
164                 bitrate = priv->clock.freq / (brp * tsegall);
165                 bitrate_error = abs(bt->bitrate - bitrate);
166
167                 /* tseg brp biterror */
168                 if (bitrate_error > best_bitrate_error)
169                         continue;
170
171                 /* reset sample point error if we have a better bitrate */
172                 if (bitrate_error < best_bitrate_error)
173                         best_sample_point_error = UINT_MAX;
174
175                 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error);
176                 if (sample_point_error > best_sample_point_error)
177                         continue;
178
179                 best_sample_point_error = sample_point_error;
180                 best_bitrate_error = bitrate_error;
181                 best_tseg = tseg / 2;
182                 best_brp = brp;
183
184                 if (bitrate_error == 0 && sample_point_error == 0)
185                         break;
186         }
187
188         if (best_bitrate_error) {
189                 /* Error in one-tenth of a percent */
190                 v64 = (u64)best_bitrate_error * 1000;
191                 do_div(v64, bt->bitrate);
192                 bitrate_error = (u32)v64;
193                 if (bitrate_error > CAN_CALC_MAX_ERROR) {
194                         netdev_err(dev,
195                                    "bitrate error %d.%d%% too high\n",
196                                    bitrate_error / 10, bitrate_error % 10);
197                         return -EDOM;
198                 }
199                 netdev_warn(dev, "bitrate error %d.%d%%\n",
200                             bitrate_error / 10, bitrate_error % 10);
201         }
202
203         /* real sample point */
204         bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg,
205                                           &tseg1, &tseg2, NULL);
206
207         v64 = (u64)best_brp * 1000 * 1000 * 1000;
208         do_div(v64, priv->clock.freq);
209         bt->tq = (u32)v64;
210         bt->prop_seg = tseg1 / 2;
211         bt->phase_seg1 = tseg1 - bt->prop_seg;
212         bt->phase_seg2 = tseg2;
213
214         /* check for sjw user settings */
215         if (!bt->sjw || !btc->sjw_max) {
216                 bt->sjw = 1;
217         } else {
218                 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
219                 if (bt->sjw > btc->sjw_max)
220                         bt->sjw = btc->sjw_max;
221                 /* bt->sjw must not be higher than tseg2 */
222                 if (tseg2 < bt->sjw)
223                         bt->sjw = tseg2;
224         }
225
226         bt->brp = best_brp;
227
228         /* real bitrate */
229         bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
230
231         return 0;
232 }
233 #else /* !CONFIG_CAN_CALC_BITTIMING */
234 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
235                               const struct can_bittiming_const *btc)
236 {
237         netdev_err(dev, "bit-timing calculation not available\n");
238         return -EINVAL;
239 }
240 #endif /* CONFIG_CAN_CALC_BITTIMING */
241
242 /*
243  * Checks the validity of the specified bit-timing parameters prop_seg,
244  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
245  * prescaler value brp. You can find more information in the header
246  * file linux/can/netlink.h.
247  */
248 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
249                                const struct can_bittiming_const *btc)
250 {
251         struct can_priv *priv = netdev_priv(dev);
252         int tseg1, alltseg;
253         u64 brp64;
254
255         tseg1 = bt->prop_seg + bt->phase_seg1;
256         if (!bt->sjw)
257                 bt->sjw = 1;
258         if (bt->sjw > btc->sjw_max ||
259             tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
260             bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
261                 return -ERANGE;
262
263         brp64 = (u64)priv->clock.freq * (u64)bt->tq;
264         if (btc->brp_inc > 1)
265                 do_div(brp64, btc->brp_inc);
266         brp64 += 500000000UL - 1;
267         do_div(brp64, 1000000000UL); /* the practicable BRP */
268         if (btc->brp_inc > 1)
269                 brp64 *= btc->brp_inc;
270         bt->brp = (u32)brp64;
271
272         if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
273                 return -EINVAL;
274
275         alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
276         bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
277         bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
278
279         return 0;
280 }
281
282 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
283                              const struct can_bittiming_const *btc)
284 {
285         int err;
286
287         /* Check if the CAN device has bit-timing parameters */
288         if (!btc)
289                 return -EOPNOTSUPP;
290
291         /*
292          * Depending on the given can_bittiming parameter structure the CAN
293          * timing parameters are calculated based on the provided bitrate OR
294          * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
295          * provided directly which are then checked and fixed up.
296          */
297         if (!bt->tq && bt->bitrate)
298                 err = can_calc_bittiming(dev, bt, btc);
299         else if (bt->tq && !bt->bitrate)
300                 err = can_fixup_bittiming(dev, bt, btc);
301         else
302                 err = -EINVAL;
303
304         return err;
305 }
306
307 static void can_update_state_error_stats(struct net_device *dev,
308                                          enum can_state new_state)
309 {
310         struct can_priv *priv = netdev_priv(dev);
311
312         if (new_state <= priv->state)
313                 return;
314
315         switch (new_state) {
316         case CAN_STATE_ERROR_WARNING:
317                 priv->can_stats.error_warning++;
318                 break;
319         case CAN_STATE_ERROR_PASSIVE:
320                 priv->can_stats.error_passive++;
321                 break;
322         case CAN_STATE_BUS_OFF:
323                 priv->can_stats.bus_off++;
324                 break;
325         default:
326                 break;
327         }
328 }
329
330 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
331 {
332         switch (state) {
333         case CAN_STATE_ERROR_ACTIVE:
334                 return CAN_ERR_CRTL_ACTIVE;
335         case CAN_STATE_ERROR_WARNING:
336                 return CAN_ERR_CRTL_TX_WARNING;
337         case CAN_STATE_ERROR_PASSIVE:
338                 return CAN_ERR_CRTL_TX_PASSIVE;
339         default:
340                 return 0;
341         }
342 }
343
344 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
345 {
346         switch (state) {
347         case CAN_STATE_ERROR_ACTIVE:
348                 return CAN_ERR_CRTL_ACTIVE;
349         case CAN_STATE_ERROR_WARNING:
350                 return CAN_ERR_CRTL_RX_WARNING;
351         case CAN_STATE_ERROR_PASSIVE:
352                 return CAN_ERR_CRTL_RX_PASSIVE;
353         default:
354                 return 0;
355         }
356 }
357
358 void can_change_state(struct net_device *dev, struct can_frame *cf,
359                       enum can_state tx_state, enum can_state rx_state)
360 {
361         struct can_priv *priv = netdev_priv(dev);
362         enum can_state new_state = max(tx_state, rx_state);
363
364         if (unlikely(new_state == priv->state)) {
365                 netdev_warn(dev, "%s: oops, state did not change", __func__);
366                 return;
367         }
368
369         netdev_dbg(dev, "New error state: %d\n", new_state);
370
371         can_update_state_error_stats(dev, new_state);
372         priv->state = new_state;
373
374         if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
375                 cf->can_id |= CAN_ERR_BUSOFF;
376                 return;
377         }
378
379         cf->can_id |= CAN_ERR_CRTL;
380         cf->data[1] |= tx_state >= rx_state ?
381                        can_tx_state_to_frame(dev, tx_state) : 0;
382         cf->data[1] |= tx_state <= rx_state ?
383                        can_rx_state_to_frame(dev, rx_state) : 0;
384 }
385 EXPORT_SYMBOL_GPL(can_change_state);
386
387 /*
388  * Local echo of CAN messages
389  *
390  * CAN network devices *should* support a local echo functionality
391  * (see Documentation/networking/can.txt). To test the handling of CAN
392  * interfaces that do not support the local echo both driver types are
393  * implemented. In the case that the driver does not support the echo
394  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
395  * to perform the echo as a fallback solution.
396  */
397 static void can_flush_echo_skb(struct net_device *dev)
398 {
399         struct can_priv *priv = netdev_priv(dev);
400         struct net_device_stats *stats = &dev->stats;
401         int i;
402
403         for (i = 0; i < priv->echo_skb_max; i++) {
404                 if (priv->echo_skb[i]) {
405                         kfree_skb(priv->echo_skb[i]);
406                         priv->echo_skb[i] = NULL;
407                         stats->tx_dropped++;
408                         stats->tx_aborted_errors++;
409                 }
410         }
411 }
412
413 /*
414  * Put the skb on the stack to be looped backed locally lateron
415  *
416  * The function is typically called in the start_xmit function
417  * of the device driver. The driver must protect access to
418  * priv->echo_skb, if necessary.
419  */
420 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
421                       unsigned int idx)
422 {
423         struct can_priv *priv = netdev_priv(dev);
424
425         BUG_ON(idx >= priv->echo_skb_max);
426
427         /* check flag whether this packet has to be looped back */
428         if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
429             (skb->protocol != htons(ETH_P_CAN) &&
430              skb->protocol != htons(ETH_P_CANFD))) {
431                 kfree_skb(skb);
432                 return;
433         }
434
435         if (!priv->echo_skb[idx]) {
436
437                 skb = can_create_echo_skb(skb);
438                 if (!skb)
439                         return;
440
441                 /* make settings for echo to reduce code in irq context */
442                 skb->pkt_type = PACKET_BROADCAST;
443                 skb->ip_summed = CHECKSUM_UNNECESSARY;
444                 skb->dev = dev;
445
446                 /* save this skb for tx interrupt echo handling */
447                 priv->echo_skb[idx] = skb;
448         } else {
449                 /* locking problem with netif_stop_queue() ?? */
450                 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
451                 kfree_skb(skb);
452         }
453 }
454 EXPORT_SYMBOL_GPL(can_put_echo_skb);
455
456 /*
457  * Get the skb from the stack and loop it back locally
458  *
459  * The function is typically called when the TX done interrupt
460  * is handled in the device driver. The driver must protect
461  * access to priv->echo_skb, if necessary.
462  */
463 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
464 {
465         struct can_priv *priv = netdev_priv(dev);
466
467         BUG_ON(idx >= priv->echo_skb_max);
468
469         if (priv->echo_skb[idx]) {
470                 struct sk_buff *skb = priv->echo_skb[idx];
471                 struct can_frame *cf = (struct can_frame *)skb->data;
472                 u8 dlc = cf->can_dlc;
473
474                 netif_rx(priv->echo_skb[idx]);
475                 priv->echo_skb[idx] = NULL;
476
477                 return dlc;
478         }
479
480         return 0;
481 }
482 EXPORT_SYMBOL_GPL(can_get_echo_skb);
483
484 /*
485   * Remove the skb from the stack and free it.
486   *
487   * The function is typically called when TX failed.
488   */
489 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
490 {
491         struct can_priv *priv = netdev_priv(dev);
492
493         BUG_ON(idx >= priv->echo_skb_max);
494
495         if (priv->echo_skb[idx]) {
496                 dev_kfree_skb_any(priv->echo_skb[idx]);
497                 priv->echo_skb[idx] = NULL;
498         }
499 }
500 EXPORT_SYMBOL_GPL(can_free_echo_skb);
501
502 /*
503  * CAN device restart for bus-off recovery
504  */
505 static void can_restart(struct net_device *dev)
506 {
507         struct can_priv *priv = netdev_priv(dev);
508         struct net_device_stats *stats = &dev->stats;
509         struct sk_buff *skb;
510         struct can_frame *cf;
511         int err;
512
513         BUG_ON(netif_carrier_ok(dev));
514
515         /*
516          * No synchronization needed because the device is bus-off and
517          * no messages can come in or go out.
518          */
519         can_flush_echo_skb(dev);
520
521         /* send restart message upstream */
522         skb = alloc_can_err_skb(dev, &cf);
523         if (skb == NULL) {
524                 err = -ENOMEM;
525                 goto restart;
526         }
527         cf->can_id |= CAN_ERR_RESTARTED;
528
529         netif_rx(skb);
530
531         stats->rx_packets++;
532         stats->rx_bytes += cf->can_dlc;
533
534 restart:
535         netdev_dbg(dev, "restarted\n");
536         priv->can_stats.restarts++;
537
538         /* Now restart the device */
539         err = priv->do_set_mode(dev, CAN_MODE_START);
540
541         netif_carrier_on(dev);
542         if (err)
543                 netdev_err(dev, "Error %d during restart", err);
544 }
545
546 static void can_restart_work(struct work_struct *work)
547 {
548         struct delayed_work *dwork = to_delayed_work(work);
549         struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
550
551         can_restart(priv->dev);
552 }
553
554 int can_restart_now(struct net_device *dev)
555 {
556         struct can_priv *priv = netdev_priv(dev);
557
558         /*
559          * A manual restart is only permitted if automatic restart is
560          * disabled and the device is in the bus-off state
561          */
562         if (priv->restart_ms)
563                 return -EINVAL;
564         if (priv->state != CAN_STATE_BUS_OFF)
565                 return -EBUSY;
566
567         cancel_delayed_work_sync(&priv->restart_work);
568         can_restart(dev);
569
570         return 0;
571 }
572
573 /*
574  * CAN bus-off
575  *
576  * This functions should be called when the device goes bus-off to
577  * tell the netif layer that no more packets can be sent or received.
578  * If enabled, a timer is started to trigger bus-off recovery.
579  */
580 void can_bus_off(struct net_device *dev)
581 {
582         struct can_priv *priv = netdev_priv(dev);
583
584         netdev_dbg(dev, "bus-off\n");
585
586         netif_carrier_off(dev);
587
588         if (priv->restart_ms)
589                 schedule_delayed_work(&priv->restart_work,
590                                       msecs_to_jiffies(priv->restart_ms));
591 }
592 EXPORT_SYMBOL_GPL(can_bus_off);
593
594 static void can_setup(struct net_device *dev)
595 {
596         dev->type = ARPHRD_CAN;
597         dev->mtu = CAN_MTU;
598         dev->hard_header_len = 0;
599         dev->addr_len = 0;
600         dev->tx_queue_len = 10;
601
602         /* New-style flags. */
603         dev->flags = IFF_NOARP;
604         dev->features = NETIF_F_HW_CSUM;
605 }
606
607 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
608 {
609         struct sk_buff *skb;
610
611         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
612                                sizeof(struct can_frame));
613         if (unlikely(!skb))
614                 return NULL;
615
616         skb->protocol = htons(ETH_P_CAN);
617         skb->pkt_type = PACKET_BROADCAST;
618         skb->ip_summed = CHECKSUM_UNNECESSARY;
619
620         skb_reset_mac_header(skb);
621         skb_reset_network_header(skb);
622         skb_reset_transport_header(skb);
623
624         can_skb_reserve(skb);
625         can_skb_prv(skb)->ifindex = dev->ifindex;
626         can_skb_prv(skb)->skbcnt = 0;
627
628         *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
629         memset(*cf, 0, sizeof(struct can_frame));
630
631         return skb;
632 }
633 EXPORT_SYMBOL_GPL(alloc_can_skb);
634
635 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
636                                 struct canfd_frame **cfd)
637 {
638         struct sk_buff *skb;
639
640         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
641                                sizeof(struct canfd_frame));
642         if (unlikely(!skb))
643                 return NULL;
644
645         skb->protocol = htons(ETH_P_CANFD);
646         skb->pkt_type = PACKET_BROADCAST;
647         skb->ip_summed = CHECKSUM_UNNECESSARY;
648
649         skb_reset_mac_header(skb);
650         skb_reset_network_header(skb);
651         skb_reset_transport_header(skb);
652
653         can_skb_reserve(skb);
654         can_skb_prv(skb)->ifindex = dev->ifindex;
655         can_skb_prv(skb)->skbcnt = 0;
656
657         *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
658         memset(*cfd, 0, sizeof(struct canfd_frame));
659
660         return skb;
661 }
662 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
663
664 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
665 {
666         struct sk_buff *skb;
667
668         skb = alloc_can_skb(dev, cf);
669         if (unlikely(!skb))
670                 return NULL;
671
672         (*cf)->can_id = CAN_ERR_FLAG;
673         (*cf)->can_dlc = CAN_ERR_DLC;
674
675         return skb;
676 }
677 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
678
679 /*
680  * Allocate and setup space for the CAN network device
681  */
682 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
683 {
684         struct net_device *dev;
685         struct can_priv *priv;
686         int size;
687
688         if (echo_skb_max)
689                 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
690                         echo_skb_max * sizeof(struct sk_buff *);
691         else
692                 size = sizeof_priv;
693
694         dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
695         if (!dev)
696                 return NULL;
697
698         priv = netdev_priv(dev);
699         priv->dev = dev;
700
701         if (echo_skb_max) {
702                 priv->echo_skb_max = echo_skb_max;
703                 priv->echo_skb = (void *)priv +
704                         ALIGN(sizeof_priv, sizeof(struct sk_buff *));
705         }
706
707         priv->state = CAN_STATE_STOPPED;
708
709         INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
710
711         return dev;
712 }
713 EXPORT_SYMBOL_GPL(alloc_candev);
714
715 /*
716  * Free space of the CAN network device
717  */
718 void free_candev(struct net_device *dev)
719 {
720         free_netdev(dev);
721 }
722 EXPORT_SYMBOL_GPL(free_candev);
723
724 /*
725  * changing MTU and control mode for CAN/CANFD devices
726  */
727 int can_change_mtu(struct net_device *dev, int new_mtu)
728 {
729         struct can_priv *priv = netdev_priv(dev);
730
731         /* Do not allow changing the MTU while running */
732         if (dev->flags & IFF_UP)
733                 return -EBUSY;
734
735         /* allow change of MTU according to the CANFD ability of the device */
736         switch (new_mtu) {
737         case CAN_MTU:
738                 /* 'CANFD-only' controllers can not switch to CAN_MTU */
739                 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
740                         return -EINVAL;
741
742                 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
743                 break;
744
745         case CANFD_MTU:
746                 /* check for potential CANFD ability */
747                 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
748                     !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
749                         return -EINVAL;
750
751                 priv->ctrlmode |= CAN_CTRLMODE_FD;
752                 break;
753
754         default:
755                 return -EINVAL;
756         }
757
758         dev->mtu = new_mtu;
759         return 0;
760 }
761 EXPORT_SYMBOL_GPL(can_change_mtu);
762
763 /*
764  * Common open function when the device gets opened.
765  *
766  * This function should be called in the open function of the device
767  * driver.
768  */
769 int open_candev(struct net_device *dev)
770 {
771         struct can_priv *priv = netdev_priv(dev);
772
773         if (!priv->bittiming.bitrate) {
774                 netdev_err(dev, "bit-timing not yet defined\n");
775                 return -EINVAL;
776         }
777
778         /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
779         if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
780             (!priv->data_bittiming.bitrate ||
781              (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
782                 netdev_err(dev, "incorrect/missing data bit-timing\n");
783                 return -EINVAL;
784         }
785
786         /* Switch carrier on if device was stopped while in bus-off state */
787         if (!netif_carrier_ok(dev))
788                 netif_carrier_on(dev);
789
790         return 0;
791 }
792 EXPORT_SYMBOL_GPL(open_candev);
793
794 /*
795  * Common close function for cleanup before the device gets closed.
796  *
797  * This function should be called in the close function of the device
798  * driver.
799  */
800 void close_candev(struct net_device *dev)
801 {
802         struct can_priv *priv = netdev_priv(dev);
803
804         cancel_delayed_work_sync(&priv->restart_work);
805         can_flush_echo_skb(dev);
806 }
807 EXPORT_SYMBOL_GPL(close_candev);
808
809 /*
810  * CAN netlink interface
811  */
812 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
813         [IFLA_CAN_STATE]        = { .type = NLA_U32 },
814         [IFLA_CAN_CTRLMODE]     = { .len = sizeof(struct can_ctrlmode) },
815         [IFLA_CAN_RESTART_MS]   = { .type = NLA_U32 },
816         [IFLA_CAN_RESTART]      = { .type = NLA_U32 },
817         [IFLA_CAN_BITTIMING]    = { .len = sizeof(struct can_bittiming) },
818         [IFLA_CAN_BITTIMING_CONST]
819                                 = { .len = sizeof(struct can_bittiming_const) },
820         [IFLA_CAN_CLOCK]        = { .len = sizeof(struct can_clock) },
821         [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
822         [IFLA_CAN_DATA_BITTIMING]
823                                 = { .len = sizeof(struct can_bittiming) },
824         [IFLA_CAN_DATA_BITTIMING_CONST]
825                                 = { .len = sizeof(struct can_bittiming_const) },
826 };
827
828 static int can_validate(struct nlattr *tb[], struct nlattr *data[])
829 {
830         bool is_can_fd = false;
831
832         /* Make sure that valid CAN FD configurations always consist of
833          * - nominal/arbitration bittiming
834          * - data bittiming
835          * - control mode with CAN_CTRLMODE_FD set
836          */
837
838         if (!data)
839                 return 0;
840
841         if (data[IFLA_CAN_CTRLMODE]) {
842                 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
843
844                 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
845         }
846
847         if (is_can_fd) {
848                 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
849                         return -EOPNOTSUPP;
850         }
851
852         if (data[IFLA_CAN_DATA_BITTIMING]) {
853                 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
854                         return -EOPNOTSUPP;
855         }
856
857         return 0;
858 }
859
860 static int can_changelink(struct net_device *dev,
861                           struct nlattr *tb[], struct nlattr *data[])
862 {
863         struct can_priv *priv = netdev_priv(dev);
864         int err;
865
866         /* We need synchronization with dev->stop() */
867         ASSERT_RTNL();
868
869         if (data[IFLA_CAN_BITTIMING]) {
870                 struct can_bittiming bt;
871
872                 /* Do not allow changing bittiming while running */
873                 if (dev->flags & IFF_UP)
874                         return -EBUSY;
875                 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
876                 err = can_get_bittiming(dev, &bt, priv->bittiming_const);
877                 if (err)
878                         return err;
879                 memcpy(&priv->bittiming, &bt, sizeof(bt));
880
881                 if (priv->do_set_bittiming) {
882                         /* Finally, set the bit-timing registers */
883                         err = priv->do_set_bittiming(dev);
884                         if (err)
885                                 return err;
886                 }
887         }
888
889         if (data[IFLA_CAN_CTRLMODE]) {
890                 struct can_ctrlmode *cm;
891                 u32 ctrlstatic;
892                 u32 maskedflags;
893
894                 /* Do not allow changing controller mode while running */
895                 if (dev->flags & IFF_UP)
896                         return -EBUSY;
897                 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
898                 ctrlstatic = priv->ctrlmode_static;
899                 maskedflags = cm->flags & cm->mask;
900
901                 /* check whether provided bits are allowed to be passed */
902                 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
903                         return -EOPNOTSUPP;
904
905                 /* do not check for static fd-non-iso if 'fd' is disabled */
906                 if (!(maskedflags & CAN_CTRLMODE_FD))
907                         ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
908
909                 /* make sure static options are provided by configuration */
910                 if ((maskedflags & ctrlstatic) != ctrlstatic)
911                         return -EOPNOTSUPP;
912
913                 /* clear bits to be modified and copy the flag values */
914                 priv->ctrlmode &= ~cm->mask;
915                 priv->ctrlmode |= maskedflags;
916
917                 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
918                 if (priv->ctrlmode & CAN_CTRLMODE_FD)
919                         dev->mtu = CANFD_MTU;
920                 else
921                         dev->mtu = CAN_MTU;
922         }
923
924         if (data[IFLA_CAN_RESTART_MS]) {
925                 /* Do not allow changing restart delay while running */
926                 if (dev->flags & IFF_UP)
927                         return -EBUSY;
928                 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
929         }
930
931         if (data[IFLA_CAN_RESTART]) {
932                 /* Do not allow a restart while not running */
933                 if (!(dev->flags & IFF_UP))
934                         return -EINVAL;
935                 err = can_restart_now(dev);
936                 if (err)
937                         return err;
938         }
939
940         if (data[IFLA_CAN_DATA_BITTIMING]) {
941                 struct can_bittiming dbt;
942
943                 /* Do not allow changing bittiming while running */
944                 if (dev->flags & IFF_UP)
945                         return -EBUSY;
946                 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
947                        sizeof(dbt));
948                 err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
949                 if (err)
950                         return err;
951                 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
952
953                 if (priv->do_set_data_bittiming) {
954                         /* Finally, set the bit-timing registers */
955                         err = priv->do_set_data_bittiming(dev);
956                         if (err)
957                                 return err;
958                 }
959         }
960
961         return 0;
962 }
963
964 static size_t can_get_size(const struct net_device *dev)
965 {
966         struct can_priv *priv = netdev_priv(dev);
967         size_t size = 0;
968
969         if (priv->bittiming.bitrate)                            /* IFLA_CAN_BITTIMING */
970                 size += nla_total_size(sizeof(struct can_bittiming));
971         if (priv->bittiming_const)                              /* IFLA_CAN_BITTIMING_CONST */
972                 size += nla_total_size(sizeof(struct can_bittiming_const));
973         size += nla_total_size(sizeof(struct can_clock));       /* IFLA_CAN_CLOCK */
974         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_STATE */
975         size += nla_total_size(sizeof(struct can_ctrlmode));    /* IFLA_CAN_CTRLMODE */
976         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_RESTART_MS */
977         if (priv->do_get_berr_counter)                          /* IFLA_CAN_BERR_COUNTER */
978                 size += nla_total_size(sizeof(struct can_berr_counter));
979         if (priv->data_bittiming.bitrate)                       /* IFLA_CAN_DATA_BITTIMING */
980                 size += nla_total_size(sizeof(struct can_bittiming));
981         if (priv->data_bittiming_const)                         /* IFLA_CAN_DATA_BITTIMING_CONST */
982                 size += nla_total_size(sizeof(struct can_bittiming_const));
983
984         return size;
985 }
986
987 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
988 {
989         struct can_priv *priv = netdev_priv(dev);
990         struct can_ctrlmode cm = {.flags = priv->ctrlmode};
991         struct can_berr_counter bec;
992         enum can_state state = priv->state;
993
994         if (priv->do_get_state)
995                 priv->do_get_state(dev, &state);
996
997         if ((priv->bittiming.bitrate &&
998              nla_put(skb, IFLA_CAN_BITTIMING,
999                      sizeof(priv->bittiming), &priv->bittiming)) ||
1000
1001             (priv->bittiming_const &&
1002              nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1003                      sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1004
1005             nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1006             nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1007             nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1008             nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1009
1010             (priv->do_get_berr_counter &&
1011              !priv->do_get_berr_counter(dev, &bec) &&
1012              nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1013
1014             (priv->data_bittiming.bitrate &&
1015              nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1016                      sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1017
1018             (priv->data_bittiming_const &&
1019              nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1020                      sizeof(*priv->data_bittiming_const),
1021                      priv->data_bittiming_const)))
1022                 return -EMSGSIZE;
1023
1024         return 0;
1025 }
1026
1027 static size_t can_get_xstats_size(const struct net_device *dev)
1028 {
1029         return sizeof(struct can_device_stats);
1030 }
1031
1032 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1033 {
1034         struct can_priv *priv = netdev_priv(dev);
1035
1036         if (nla_put(skb, IFLA_INFO_XSTATS,
1037                     sizeof(priv->can_stats), &priv->can_stats))
1038                 goto nla_put_failure;
1039         return 0;
1040
1041 nla_put_failure:
1042         return -EMSGSIZE;
1043 }
1044
1045 static int can_newlink(struct net *src_net, struct net_device *dev,
1046                        struct nlattr *tb[], struct nlattr *data[])
1047 {
1048         return -EOPNOTSUPP;
1049 }
1050
1051 static void can_dellink(struct net_device *dev, struct list_head *head)
1052 {
1053         return;
1054 }
1055
1056 static struct rtnl_link_ops can_link_ops __read_mostly = {
1057         .kind           = "can",
1058         .maxtype        = IFLA_CAN_MAX,
1059         .policy         = can_policy,
1060         .setup          = can_setup,
1061         .validate       = can_validate,
1062         .newlink        = can_newlink,
1063         .changelink     = can_changelink,
1064         .dellink        = can_dellink,
1065         .get_size       = can_get_size,
1066         .fill_info      = can_fill_info,
1067         .get_xstats_size = can_get_xstats_size,
1068         .fill_xstats    = can_fill_xstats,
1069 };
1070
1071 /*
1072  * Register the CAN network device
1073  */
1074 int register_candev(struct net_device *dev)
1075 {
1076         dev->rtnl_link_ops = &can_link_ops;
1077         return register_netdev(dev);
1078 }
1079 EXPORT_SYMBOL_GPL(register_candev);
1080
1081 /*
1082  * Unregister the CAN network device
1083  */
1084 void unregister_candev(struct net_device *dev)
1085 {
1086         unregister_netdev(dev);
1087 }
1088 EXPORT_SYMBOL_GPL(unregister_candev);
1089
1090 /*
1091  * Test if a network device is a candev based device
1092  * and return the can_priv* if so.
1093  */
1094 struct can_priv *safe_candev_priv(struct net_device *dev)
1095 {
1096         if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1097                 return NULL;
1098
1099         return netdev_priv(dev);
1100 }
1101 EXPORT_SYMBOL_GPL(safe_candev_priv);
1102
1103 static __init int can_dev_init(void)
1104 {
1105         int err;
1106
1107         can_led_notifier_init();
1108
1109         err = rtnl_link_register(&can_link_ops);
1110         if (!err)
1111                 printk(KERN_INFO MOD_DESC "\n");
1112
1113         return err;
1114 }
1115 module_init(can_dev_init);
1116
1117 static __exit void can_dev_exit(void)
1118 {
1119         rtnl_link_unregister(&can_link_ops);
1120
1121         can_led_notifier_exit();
1122 }
1123 module_exit(can_dev_exit);
1124
1125 MODULE_ALIAS_RTNL_LINK("can");