x86/apic: Fix silent & fatal merge conflict in __generic_processor_info()
[cascardo/linux.git] / drivers / net / can / dev.c
1 /*
2  * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the version 2 of the GNU General Public License
8  * as published by the Free Software Foundation
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/can.h>
25 #include <linux/can/dev.h>
26 #include <linux/can/skb.h>
27 #include <linux/can/netlink.h>
28 #include <linux/can/led.h>
29 #include <net/rtnetlink.h>
30
31 #define MOD_DESC "CAN device driver interface"
32
33 MODULE_DESCRIPTION(MOD_DESC);
34 MODULE_LICENSE("GPL v2");
35 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
36
37 /* CAN DLC to real data length conversion helpers */
38
39 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
40                              8, 12, 16, 20, 24, 32, 48, 64};
41
42 /* get data length from can_dlc with sanitized can_dlc */
43 u8 can_dlc2len(u8 can_dlc)
44 {
45         return dlc2len[can_dlc & 0x0F];
46 }
47 EXPORT_SYMBOL_GPL(can_dlc2len);
48
49 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,         /* 0 - 8 */
50                              9, 9, 9, 9,                        /* 9 - 12 */
51                              10, 10, 10, 10,                    /* 13 - 16 */
52                              11, 11, 11, 11,                    /* 17 - 20 */
53                              12, 12, 12, 12,                    /* 21 - 24 */
54                              13, 13, 13, 13, 13, 13, 13, 13,    /* 25 - 32 */
55                              14, 14, 14, 14, 14, 14, 14, 14,    /* 33 - 40 */
56                              14, 14, 14, 14, 14, 14, 14, 14,    /* 41 - 48 */
57                              15, 15, 15, 15, 15, 15, 15, 15,    /* 49 - 56 */
58                              15, 15, 15, 15, 15, 15, 15, 15};   /* 57 - 64 */
59
60 /* map the sanitized data length to an appropriate data length code */
61 u8 can_len2dlc(u8 len)
62 {
63         if (unlikely(len > 64))
64                 return 0xF;
65
66         return len2dlc[len];
67 }
68 EXPORT_SYMBOL_GPL(can_len2dlc);
69
70 #ifdef CONFIG_CAN_CALC_BITTIMING
71 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
72 #define CAN_CALC_SYNC_SEG 1
73
74 /*
75  * Bit-timing calculation derived from:
76  *
77  * Code based on LinCAN sources and H8S2638 project
78  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
79  * Copyright 2005      Stanislav Marek
80  * email: pisa@cmp.felk.cvut.cz
81  *
82  * Calculates proper bit-timing parameters for a specified bit-rate
83  * and sample-point, which can then be used to set the bit-timing
84  * registers of the CAN controller. You can find more information
85  * in the header file linux/can/netlink.h.
86  */
87 static int can_update_sample_point(const struct can_bittiming_const *btc,
88                           unsigned int sample_point_nominal, unsigned int tseg,
89                           unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
90                           unsigned int *sample_point_error_ptr)
91 {
92         unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
93         unsigned int sample_point, best_sample_point = 0;
94         unsigned int tseg1, tseg2;
95         int i;
96
97         for (i = 0; i <= 1; i++) {
98                 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i;
99                 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
100                 tseg1 = tseg - tseg2;
101                 if (tseg1 > btc->tseg1_max) {
102                         tseg1 = btc->tseg1_max;
103                         tseg2 = tseg - tseg1;
104                 }
105
106                 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG);
107                 sample_point_error = abs(sample_point_nominal - sample_point);
108
109                 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) {
110                         best_sample_point = sample_point;
111                         best_sample_point_error = sample_point_error;
112                         *tseg1_ptr = tseg1;
113                         *tseg2_ptr = tseg2;
114                 }
115         }
116
117         if (sample_point_error_ptr)
118                 *sample_point_error_ptr = best_sample_point_error;
119
120         return best_sample_point;
121 }
122
123 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
124                               const struct can_bittiming_const *btc)
125 {
126         struct can_priv *priv = netdev_priv(dev);
127         unsigned int bitrate;                   /* current bitrate */
128         unsigned int bitrate_error;             /* difference between current and nominal value */
129         unsigned int best_bitrate_error = UINT_MAX;
130         unsigned int sample_point_error;        /* difference between current and nominal value */
131         unsigned int best_sample_point_error = UINT_MAX;
132         unsigned int sample_point_nominal;      /* nominal sample point */
133         unsigned int best_tseg = 0;             /* current best value for tseg */
134         unsigned int best_brp = 0;              /* current best value for brp */
135         unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
136         u64 v64;
137
138         /* Use CiA recommended sample points */
139         if (bt->sample_point) {
140                 sample_point_nominal = bt->sample_point;
141         } else {
142                 if (bt->bitrate > 800000)
143                         sample_point_nominal = 750;
144                 else if (bt->bitrate > 500000)
145                         sample_point_nominal = 800;
146                 else
147                         sample_point_nominal = 875;
148         }
149
150         /* tseg even = round down, odd = round up */
151         for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
152              tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
153                 tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
154
155                 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
156                 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
157
158                 /* choose brp step which is possible in system */
159                 brp = (brp / btc->brp_inc) * btc->brp_inc;
160                 if ((brp < btc->brp_min) || (brp > btc->brp_max))
161                         continue;
162
163                 bitrate = priv->clock.freq / (brp * tsegall);
164                 bitrate_error = abs(bt->bitrate - bitrate);
165
166                 /* tseg brp biterror */
167                 if (bitrate_error > best_bitrate_error)
168                         continue;
169
170                 /* reset sample point error if we have a better bitrate */
171                 if (bitrate_error < best_bitrate_error)
172                         best_sample_point_error = UINT_MAX;
173
174                 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error);
175                 if (sample_point_error > best_sample_point_error)
176                         continue;
177
178                 best_sample_point_error = sample_point_error;
179                 best_bitrate_error = bitrate_error;
180                 best_tseg = tseg / 2;
181                 best_brp = brp;
182
183                 if (bitrate_error == 0 && sample_point_error == 0)
184                         break;
185         }
186
187         if (best_bitrate_error) {
188                 /* Error in one-tenth of a percent */
189                 v64 = (u64)best_bitrate_error * 1000;
190                 do_div(v64, bt->bitrate);
191                 bitrate_error = (u32)v64;
192                 if (bitrate_error > CAN_CALC_MAX_ERROR) {
193                         netdev_err(dev,
194                                    "bitrate error %d.%d%% too high\n",
195                                    bitrate_error / 10, bitrate_error % 10);
196                         return -EDOM;
197                 }
198                 netdev_warn(dev, "bitrate error %d.%d%%\n",
199                             bitrate_error / 10, bitrate_error % 10);
200         }
201
202         /* real sample point */
203         bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg,
204                                           &tseg1, &tseg2, NULL);
205
206         v64 = (u64)best_brp * 1000 * 1000 * 1000;
207         do_div(v64, priv->clock.freq);
208         bt->tq = (u32)v64;
209         bt->prop_seg = tseg1 / 2;
210         bt->phase_seg1 = tseg1 - bt->prop_seg;
211         bt->phase_seg2 = tseg2;
212
213         /* check for sjw user settings */
214         if (!bt->sjw || !btc->sjw_max) {
215                 bt->sjw = 1;
216         } else {
217                 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
218                 if (bt->sjw > btc->sjw_max)
219                         bt->sjw = btc->sjw_max;
220                 /* bt->sjw must not be higher than tseg2 */
221                 if (tseg2 < bt->sjw)
222                         bt->sjw = tseg2;
223         }
224
225         bt->brp = best_brp;
226
227         /* real bitrate */
228         bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
229
230         return 0;
231 }
232 #else /* !CONFIG_CAN_CALC_BITTIMING */
233 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
234                               const struct can_bittiming_const *btc)
235 {
236         netdev_err(dev, "bit-timing calculation not available\n");
237         return -EINVAL;
238 }
239 #endif /* CONFIG_CAN_CALC_BITTIMING */
240
241 /*
242  * Checks the validity of the specified bit-timing parameters prop_seg,
243  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
244  * prescaler value brp. You can find more information in the header
245  * file linux/can/netlink.h.
246  */
247 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
248                                const struct can_bittiming_const *btc)
249 {
250         struct can_priv *priv = netdev_priv(dev);
251         int tseg1, alltseg;
252         u64 brp64;
253
254         tseg1 = bt->prop_seg + bt->phase_seg1;
255         if (!bt->sjw)
256                 bt->sjw = 1;
257         if (bt->sjw > btc->sjw_max ||
258             tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
259             bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
260                 return -ERANGE;
261
262         brp64 = (u64)priv->clock.freq * (u64)bt->tq;
263         if (btc->brp_inc > 1)
264                 do_div(brp64, btc->brp_inc);
265         brp64 += 500000000UL - 1;
266         do_div(brp64, 1000000000UL); /* the practicable BRP */
267         if (btc->brp_inc > 1)
268                 brp64 *= btc->brp_inc;
269         bt->brp = (u32)brp64;
270
271         if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
272                 return -EINVAL;
273
274         alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
275         bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
276         bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
277
278         return 0;
279 }
280
281 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
282                              const struct can_bittiming_const *btc)
283 {
284         int err;
285
286         /* Check if the CAN device has bit-timing parameters */
287         if (!btc)
288                 return -EOPNOTSUPP;
289
290         /*
291          * Depending on the given can_bittiming parameter structure the CAN
292          * timing parameters are calculated based on the provided bitrate OR
293          * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
294          * provided directly which are then checked and fixed up.
295          */
296         if (!bt->tq && bt->bitrate)
297                 err = can_calc_bittiming(dev, bt, btc);
298         else if (bt->tq && !bt->bitrate)
299                 err = can_fixup_bittiming(dev, bt, btc);
300         else
301                 err = -EINVAL;
302
303         return err;
304 }
305
306 static void can_update_state_error_stats(struct net_device *dev,
307                                          enum can_state new_state)
308 {
309         struct can_priv *priv = netdev_priv(dev);
310
311         if (new_state <= priv->state)
312                 return;
313
314         switch (new_state) {
315         case CAN_STATE_ERROR_WARNING:
316                 priv->can_stats.error_warning++;
317                 break;
318         case CAN_STATE_ERROR_PASSIVE:
319                 priv->can_stats.error_passive++;
320                 break;
321         case CAN_STATE_BUS_OFF:
322                 priv->can_stats.bus_off++;
323                 break;
324         default:
325                 break;
326         }
327 }
328
329 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
330 {
331         switch (state) {
332         case CAN_STATE_ERROR_ACTIVE:
333                 return CAN_ERR_CRTL_ACTIVE;
334         case CAN_STATE_ERROR_WARNING:
335                 return CAN_ERR_CRTL_TX_WARNING;
336         case CAN_STATE_ERROR_PASSIVE:
337                 return CAN_ERR_CRTL_TX_PASSIVE;
338         default:
339                 return 0;
340         }
341 }
342
343 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
344 {
345         switch (state) {
346         case CAN_STATE_ERROR_ACTIVE:
347                 return CAN_ERR_CRTL_ACTIVE;
348         case CAN_STATE_ERROR_WARNING:
349                 return CAN_ERR_CRTL_RX_WARNING;
350         case CAN_STATE_ERROR_PASSIVE:
351                 return CAN_ERR_CRTL_RX_PASSIVE;
352         default:
353                 return 0;
354         }
355 }
356
357 void can_change_state(struct net_device *dev, struct can_frame *cf,
358                       enum can_state tx_state, enum can_state rx_state)
359 {
360         struct can_priv *priv = netdev_priv(dev);
361         enum can_state new_state = max(tx_state, rx_state);
362
363         if (unlikely(new_state == priv->state)) {
364                 netdev_warn(dev, "%s: oops, state did not change", __func__);
365                 return;
366         }
367
368         netdev_dbg(dev, "New error state: %d\n", new_state);
369
370         can_update_state_error_stats(dev, new_state);
371         priv->state = new_state;
372
373         if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
374                 cf->can_id |= CAN_ERR_BUSOFF;
375                 return;
376         }
377
378         cf->can_id |= CAN_ERR_CRTL;
379         cf->data[1] |= tx_state >= rx_state ?
380                        can_tx_state_to_frame(dev, tx_state) : 0;
381         cf->data[1] |= tx_state <= rx_state ?
382                        can_rx_state_to_frame(dev, rx_state) : 0;
383 }
384 EXPORT_SYMBOL_GPL(can_change_state);
385
386 /*
387  * Local echo of CAN messages
388  *
389  * CAN network devices *should* support a local echo functionality
390  * (see Documentation/networking/can.txt). To test the handling of CAN
391  * interfaces that do not support the local echo both driver types are
392  * implemented. In the case that the driver does not support the echo
393  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
394  * to perform the echo as a fallback solution.
395  */
396 static void can_flush_echo_skb(struct net_device *dev)
397 {
398         struct can_priv *priv = netdev_priv(dev);
399         struct net_device_stats *stats = &dev->stats;
400         int i;
401
402         for (i = 0; i < priv->echo_skb_max; i++) {
403                 if (priv->echo_skb[i]) {
404                         kfree_skb(priv->echo_skb[i]);
405                         priv->echo_skb[i] = NULL;
406                         stats->tx_dropped++;
407                         stats->tx_aborted_errors++;
408                 }
409         }
410 }
411
412 /*
413  * Put the skb on the stack to be looped backed locally lateron
414  *
415  * The function is typically called in the start_xmit function
416  * of the device driver. The driver must protect access to
417  * priv->echo_skb, if necessary.
418  */
419 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
420                       unsigned int idx)
421 {
422         struct can_priv *priv = netdev_priv(dev);
423
424         BUG_ON(idx >= priv->echo_skb_max);
425
426         /* check flag whether this packet has to be looped back */
427         if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
428             (skb->protocol != htons(ETH_P_CAN) &&
429              skb->protocol != htons(ETH_P_CANFD))) {
430                 kfree_skb(skb);
431                 return;
432         }
433
434         if (!priv->echo_skb[idx]) {
435
436                 skb = can_create_echo_skb(skb);
437                 if (!skb)
438                         return;
439
440                 /* make settings for echo to reduce code in irq context */
441                 skb->pkt_type = PACKET_BROADCAST;
442                 skb->ip_summed = CHECKSUM_UNNECESSARY;
443                 skb->dev = dev;
444
445                 /* save this skb for tx interrupt echo handling */
446                 priv->echo_skb[idx] = skb;
447         } else {
448                 /* locking problem with netif_stop_queue() ?? */
449                 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
450                 kfree_skb(skb);
451         }
452 }
453 EXPORT_SYMBOL_GPL(can_put_echo_skb);
454
455 /*
456  * Get the skb from the stack and loop it back locally
457  *
458  * The function is typically called when the TX done interrupt
459  * is handled in the device driver. The driver must protect
460  * access to priv->echo_skb, if necessary.
461  */
462 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
463 {
464         struct can_priv *priv = netdev_priv(dev);
465
466         BUG_ON(idx >= priv->echo_skb_max);
467
468         if (priv->echo_skb[idx]) {
469                 struct sk_buff *skb = priv->echo_skb[idx];
470                 struct can_frame *cf = (struct can_frame *)skb->data;
471                 u8 dlc = cf->can_dlc;
472
473                 netif_rx(priv->echo_skb[idx]);
474                 priv->echo_skb[idx] = NULL;
475
476                 return dlc;
477         }
478
479         return 0;
480 }
481 EXPORT_SYMBOL_GPL(can_get_echo_skb);
482
483 /*
484   * Remove the skb from the stack and free it.
485   *
486   * The function is typically called when TX failed.
487   */
488 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
489 {
490         struct can_priv *priv = netdev_priv(dev);
491
492         BUG_ON(idx >= priv->echo_skb_max);
493
494         if (priv->echo_skb[idx]) {
495                 dev_kfree_skb_any(priv->echo_skb[idx]);
496                 priv->echo_skb[idx] = NULL;
497         }
498 }
499 EXPORT_SYMBOL_GPL(can_free_echo_skb);
500
501 /*
502  * CAN device restart for bus-off recovery
503  */
504 static void can_restart(unsigned long data)
505 {
506         struct net_device *dev = (struct net_device *)data;
507         struct can_priv *priv = netdev_priv(dev);
508         struct net_device_stats *stats = &dev->stats;
509         struct sk_buff *skb;
510         struct can_frame *cf;
511         int err;
512
513         BUG_ON(netif_carrier_ok(dev));
514
515         /*
516          * No synchronization needed because the device is bus-off and
517          * no messages can come in or go out.
518          */
519         can_flush_echo_skb(dev);
520
521         /* send restart message upstream */
522         skb = alloc_can_err_skb(dev, &cf);
523         if (skb == NULL) {
524                 err = -ENOMEM;
525                 goto restart;
526         }
527         cf->can_id |= CAN_ERR_RESTARTED;
528
529         netif_rx(skb);
530
531         stats->rx_packets++;
532         stats->rx_bytes += cf->can_dlc;
533
534 restart:
535         netdev_dbg(dev, "restarted\n");
536         priv->can_stats.restarts++;
537
538         /* Now restart the device */
539         err = priv->do_set_mode(dev, CAN_MODE_START);
540
541         netif_carrier_on(dev);
542         if (err)
543                 netdev_err(dev, "Error %d during restart", err);
544 }
545
546 int can_restart_now(struct net_device *dev)
547 {
548         struct can_priv *priv = netdev_priv(dev);
549
550         /*
551          * A manual restart is only permitted if automatic restart is
552          * disabled and the device is in the bus-off state
553          */
554         if (priv->restart_ms)
555                 return -EINVAL;
556         if (priv->state != CAN_STATE_BUS_OFF)
557                 return -EBUSY;
558
559         /* Runs as soon as possible in the timer context */
560         mod_timer(&priv->restart_timer, jiffies);
561
562         return 0;
563 }
564
565 /*
566  * CAN bus-off
567  *
568  * This functions should be called when the device goes bus-off to
569  * tell the netif layer that no more packets can be sent or received.
570  * If enabled, a timer is started to trigger bus-off recovery.
571  */
572 void can_bus_off(struct net_device *dev)
573 {
574         struct can_priv *priv = netdev_priv(dev);
575
576         netdev_dbg(dev, "bus-off\n");
577
578         netif_carrier_off(dev);
579
580         if (priv->restart_ms)
581                 mod_timer(&priv->restart_timer,
582                           jiffies + (priv->restart_ms * HZ) / 1000);
583 }
584 EXPORT_SYMBOL_GPL(can_bus_off);
585
586 static void can_setup(struct net_device *dev)
587 {
588         dev->type = ARPHRD_CAN;
589         dev->mtu = CAN_MTU;
590         dev->hard_header_len = 0;
591         dev->addr_len = 0;
592         dev->tx_queue_len = 10;
593
594         /* New-style flags. */
595         dev->flags = IFF_NOARP;
596         dev->features = NETIF_F_HW_CSUM;
597 }
598
599 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
600 {
601         struct sk_buff *skb;
602
603         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
604                                sizeof(struct can_frame));
605         if (unlikely(!skb))
606                 return NULL;
607
608         skb->protocol = htons(ETH_P_CAN);
609         skb->pkt_type = PACKET_BROADCAST;
610         skb->ip_summed = CHECKSUM_UNNECESSARY;
611
612         skb_reset_mac_header(skb);
613         skb_reset_network_header(skb);
614         skb_reset_transport_header(skb);
615
616         can_skb_reserve(skb);
617         can_skb_prv(skb)->ifindex = dev->ifindex;
618         can_skb_prv(skb)->skbcnt = 0;
619
620         *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
621         memset(*cf, 0, sizeof(struct can_frame));
622
623         return skb;
624 }
625 EXPORT_SYMBOL_GPL(alloc_can_skb);
626
627 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
628                                 struct canfd_frame **cfd)
629 {
630         struct sk_buff *skb;
631
632         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
633                                sizeof(struct canfd_frame));
634         if (unlikely(!skb))
635                 return NULL;
636
637         skb->protocol = htons(ETH_P_CANFD);
638         skb->pkt_type = PACKET_BROADCAST;
639         skb->ip_summed = CHECKSUM_UNNECESSARY;
640
641         skb_reset_mac_header(skb);
642         skb_reset_network_header(skb);
643         skb_reset_transport_header(skb);
644
645         can_skb_reserve(skb);
646         can_skb_prv(skb)->ifindex = dev->ifindex;
647         can_skb_prv(skb)->skbcnt = 0;
648
649         *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
650         memset(*cfd, 0, sizeof(struct canfd_frame));
651
652         return skb;
653 }
654 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
655
656 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
657 {
658         struct sk_buff *skb;
659
660         skb = alloc_can_skb(dev, cf);
661         if (unlikely(!skb))
662                 return NULL;
663
664         (*cf)->can_id = CAN_ERR_FLAG;
665         (*cf)->can_dlc = CAN_ERR_DLC;
666
667         return skb;
668 }
669 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
670
671 /*
672  * Allocate and setup space for the CAN network device
673  */
674 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
675 {
676         struct net_device *dev;
677         struct can_priv *priv;
678         int size;
679
680         if (echo_skb_max)
681                 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
682                         echo_skb_max * sizeof(struct sk_buff *);
683         else
684                 size = sizeof_priv;
685
686         dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
687         if (!dev)
688                 return NULL;
689
690         priv = netdev_priv(dev);
691
692         if (echo_skb_max) {
693                 priv->echo_skb_max = echo_skb_max;
694                 priv->echo_skb = (void *)priv +
695                         ALIGN(sizeof_priv, sizeof(struct sk_buff *));
696         }
697
698         priv->state = CAN_STATE_STOPPED;
699
700         init_timer(&priv->restart_timer);
701
702         return dev;
703 }
704 EXPORT_SYMBOL_GPL(alloc_candev);
705
706 /*
707  * Free space of the CAN network device
708  */
709 void free_candev(struct net_device *dev)
710 {
711         free_netdev(dev);
712 }
713 EXPORT_SYMBOL_GPL(free_candev);
714
715 /*
716  * changing MTU and control mode for CAN/CANFD devices
717  */
718 int can_change_mtu(struct net_device *dev, int new_mtu)
719 {
720         struct can_priv *priv = netdev_priv(dev);
721
722         /* Do not allow changing the MTU while running */
723         if (dev->flags & IFF_UP)
724                 return -EBUSY;
725
726         /* allow change of MTU according to the CANFD ability of the device */
727         switch (new_mtu) {
728         case CAN_MTU:
729                 /* 'CANFD-only' controllers can not switch to CAN_MTU */
730                 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
731                         return -EINVAL;
732
733                 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
734                 break;
735
736         case CANFD_MTU:
737                 /* check for potential CANFD ability */
738                 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
739                     !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
740                         return -EINVAL;
741
742                 priv->ctrlmode |= CAN_CTRLMODE_FD;
743                 break;
744
745         default:
746                 return -EINVAL;
747         }
748
749         dev->mtu = new_mtu;
750         return 0;
751 }
752 EXPORT_SYMBOL_GPL(can_change_mtu);
753
754 /*
755  * Common open function when the device gets opened.
756  *
757  * This function should be called in the open function of the device
758  * driver.
759  */
760 int open_candev(struct net_device *dev)
761 {
762         struct can_priv *priv = netdev_priv(dev);
763
764         if (!priv->bittiming.bitrate) {
765                 netdev_err(dev, "bit-timing not yet defined\n");
766                 return -EINVAL;
767         }
768
769         /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
770         if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
771             (!priv->data_bittiming.bitrate ||
772              (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
773                 netdev_err(dev, "incorrect/missing data bit-timing\n");
774                 return -EINVAL;
775         }
776
777         /* Switch carrier on if device was stopped while in bus-off state */
778         if (!netif_carrier_ok(dev))
779                 netif_carrier_on(dev);
780
781         setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
782
783         return 0;
784 }
785 EXPORT_SYMBOL_GPL(open_candev);
786
787 /*
788  * Common close function for cleanup before the device gets closed.
789  *
790  * This function should be called in the close function of the device
791  * driver.
792  */
793 void close_candev(struct net_device *dev)
794 {
795         struct can_priv *priv = netdev_priv(dev);
796
797         del_timer_sync(&priv->restart_timer);
798         can_flush_echo_skb(dev);
799 }
800 EXPORT_SYMBOL_GPL(close_candev);
801
802 /*
803  * CAN netlink interface
804  */
805 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
806         [IFLA_CAN_STATE]        = { .type = NLA_U32 },
807         [IFLA_CAN_CTRLMODE]     = { .len = sizeof(struct can_ctrlmode) },
808         [IFLA_CAN_RESTART_MS]   = { .type = NLA_U32 },
809         [IFLA_CAN_RESTART]      = { .type = NLA_U32 },
810         [IFLA_CAN_BITTIMING]    = { .len = sizeof(struct can_bittiming) },
811         [IFLA_CAN_BITTIMING_CONST]
812                                 = { .len = sizeof(struct can_bittiming_const) },
813         [IFLA_CAN_CLOCK]        = { .len = sizeof(struct can_clock) },
814         [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
815         [IFLA_CAN_DATA_BITTIMING]
816                                 = { .len = sizeof(struct can_bittiming) },
817         [IFLA_CAN_DATA_BITTIMING_CONST]
818                                 = { .len = sizeof(struct can_bittiming_const) },
819 };
820
821 static int can_validate(struct nlattr *tb[], struct nlattr *data[])
822 {
823         bool is_can_fd = false;
824
825         /* Make sure that valid CAN FD configurations always consist of
826          * - nominal/arbitration bittiming
827          * - data bittiming
828          * - control mode with CAN_CTRLMODE_FD set
829          */
830
831         if (!data)
832                 return 0;
833
834         if (data[IFLA_CAN_CTRLMODE]) {
835                 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
836
837                 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
838         }
839
840         if (is_can_fd) {
841                 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
842                         return -EOPNOTSUPP;
843         }
844
845         if (data[IFLA_CAN_DATA_BITTIMING]) {
846                 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
847                         return -EOPNOTSUPP;
848         }
849
850         return 0;
851 }
852
853 static int can_changelink(struct net_device *dev,
854                           struct nlattr *tb[], struct nlattr *data[])
855 {
856         struct can_priv *priv = netdev_priv(dev);
857         int err;
858
859         /* We need synchronization with dev->stop() */
860         ASSERT_RTNL();
861
862         if (data[IFLA_CAN_BITTIMING]) {
863                 struct can_bittiming bt;
864
865                 /* Do not allow changing bittiming while running */
866                 if (dev->flags & IFF_UP)
867                         return -EBUSY;
868                 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
869                 err = can_get_bittiming(dev, &bt, priv->bittiming_const);
870                 if (err)
871                         return err;
872                 memcpy(&priv->bittiming, &bt, sizeof(bt));
873
874                 if (priv->do_set_bittiming) {
875                         /* Finally, set the bit-timing registers */
876                         err = priv->do_set_bittiming(dev);
877                         if (err)
878                                 return err;
879                 }
880         }
881
882         if (data[IFLA_CAN_CTRLMODE]) {
883                 struct can_ctrlmode *cm;
884                 u32 ctrlstatic;
885                 u32 maskedflags;
886
887                 /* Do not allow changing controller mode while running */
888                 if (dev->flags & IFF_UP)
889                         return -EBUSY;
890                 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
891                 ctrlstatic = priv->ctrlmode_static;
892                 maskedflags = cm->flags & cm->mask;
893
894                 /* check whether provided bits are allowed to be passed */
895                 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
896                         return -EOPNOTSUPP;
897
898                 /* do not check for static fd-non-iso if 'fd' is disabled */
899                 if (!(maskedflags & CAN_CTRLMODE_FD))
900                         ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
901
902                 /* make sure static options are provided by configuration */
903                 if ((maskedflags & ctrlstatic) != ctrlstatic)
904                         return -EOPNOTSUPP;
905
906                 /* clear bits to be modified and copy the flag values */
907                 priv->ctrlmode &= ~cm->mask;
908                 priv->ctrlmode |= maskedflags;
909
910                 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
911                 if (priv->ctrlmode & CAN_CTRLMODE_FD)
912                         dev->mtu = CANFD_MTU;
913                 else
914                         dev->mtu = CAN_MTU;
915         }
916
917         if (data[IFLA_CAN_RESTART_MS]) {
918                 /* Do not allow changing restart delay while running */
919                 if (dev->flags & IFF_UP)
920                         return -EBUSY;
921                 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
922         }
923
924         if (data[IFLA_CAN_RESTART]) {
925                 /* Do not allow a restart while not running */
926                 if (!(dev->flags & IFF_UP))
927                         return -EINVAL;
928                 err = can_restart_now(dev);
929                 if (err)
930                         return err;
931         }
932
933         if (data[IFLA_CAN_DATA_BITTIMING]) {
934                 struct can_bittiming dbt;
935
936                 /* Do not allow changing bittiming while running */
937                 if (dev->flags & IFF_UP)
938                         return -EBUSY;
939                 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
940                        sizeof(dbt));
941                 err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
942                 if (err)
943                         return err;
944                 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
945
946                 if (priv->do_set_data_bittiming) {
947                         /* Finally, set the bit-timing registers */
948                         err = priv->do_set_data_bittiming(dev);
949                         if (err)
950                                 return err;
951                 }
952         }
953
954         return 0;
955 }
956
957 static size_t can_get_size(const struct net_device *dev)
958 {
959         struct can_priv *priv = netdev_priv(dev);
960         size_t size = 0;
961
962         if (priv->bittiming.bitrate)                            /* IFLA_CAN_BITTIMING */
963                 size += nla_total_size(sizeof(struct can_bittiming));
964         if (priv->bittiming_const)                              /* IFLA_CAN_BITTIMING_CONST */
965                 size += nla_total_size(sizeof(struct can_bittiming_const));
966         size += nla_total_size(sizeof(struct can_clock));       /* IFLA_CAN_CLOCK */
967         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_STATE */
968         size += nla_total_size(sizeof(struct can_ctrlmode));    /* IFLA_CAN_CTRLMODE */
969         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_RESTART_MS */
970         if (priv->do_get_berr_counter)                          /* IFLA_CAN_BERR_COUNTER */
971                 size += nla_total_size(sizeof(struct can_berr_counter));
972         if (priv->data_bittiming.bitrate)                       /* IFLA_CAN_DATA_BITTIMING */
973                 size += nla_total_size(sizeof(struct can_bittiming));
974         if (priv->data_bittiming_const)                         /* IFLA_CAN_DATA_BITTIMING_CONST */
975                 size += nla_total_size(sizeof(struct can_bittiming_const));
976
977         return size;
978 }
979
980 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
981 {
982         struct can_priv *priv = netdev_priv(dev);
983         struct can_ctrlmode cm = {.flags = priv->ctrlmode};
984         struct can_berr_counter bec;
985         enum can_state state = priv->state;
986
987         if (priv->do_get_state)
988                 priv->do_get_state(dev, &state);
989
990         if ((priv->bittiming.bitrate &&
991              nla_put(skb, IFLA_CAN_BITTIMING,
992                      sizeof(priv->bittiming), &priv->bittiming)) ||
993
994             (priv->bittiming_const &&
995              nla_put(skb, IFLA_CAN_BITTIMING_CONST,
996                      sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
997
998             nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
999             nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1000             nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1001             nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1002
1003             (priv->do_get_berr_counter &&
1004              !priv->do_get_berr_counter(dev, &bec) &&
1005              nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1006
1007             (priv->data_bittiming.bitrate &&
1008              nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1009                      sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1010
1011             (priv->data_bittiming_const &&
1012              nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1013                      sizeof(*priv->data_bittiming_const),
1014                      priv->data_bittiming_const)))
1015                 return -EMSGSIZE;
1016
1017         return 0;
1018 }
1019
1020 static size_t can_get_xstats_size(const struct net_device *dev)
1021 {
1022         return sizeof(struct can_device_stats);
1023 }
1024
1025 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1026 {
1027         struct can_priv *priv = netdev_priv(dev);
1028
1029         if (nla_put(skb, IFLA_INFO_XSTATS,
1030                     sizeof(priv->can_stats), &priv->can_stats))
1031                 goto nla_put_failure;
1032         return 0;
1033
1034 nla_put_failure:
1035         return -EMSGSIZE;
1036 }
1037
1038 static int can_newlink(struct net *src_net, struct net_device *dev,
1039                        struct nlattr *tb[], struct nlattr *data[])
1040 {
1041         return -EOPNOTSUPP;
1042 }
1043
1044 static void can_dellink(struct net_device *dev, struct list_head *head)
1045 {
1046         return;
1047 }
1048
1049 static struct rtnl_link_ops can_link_ops __read_mostly = {
1050         .kind           = "can",
1051         .maxtype        = IFLA_CAN_MAX,
1052         .policy         = can_policy,
1053         .setup          = can_setup,
1054         .validate       = can_validate,
1055         .newlink        = can_newlink,
1056         .changelink     = can_changelink,
1057         .dellink        = can_dellink,
1058         .get_size       = can_get_size,
1059         .fill_info      = can_fill_info,
1060         .get_xstats_size = can_get_xstats_size,
1061         .fill_xstats    = can_fill_xstats,
1062 };
1063
1064 /*
1065  * Register the CAN network device
1066  */
1067 int register_candev(struct net_device *dev)
1068 {
1069         dev->rtnl_link_ops = &can_link_ops;
1070         return register_netdev(dev);
1071 }
1072 EXPORT_SYMBOL_GPL(register_candev);
1073
1074 /*
1075  * Unregister the CAN network device
1076  */
1077 void unregister_candev(struct net_device *dev)
1078 {
1079         unregister_netdev(dev);
1080 }
1081 EXPORT_SYMBOL_GPL(unregister_candev);
1082
1083 /*
1084  * Test if a network device is a candev based device
1085  * and return the can_priv* if so.
1086  */
1087 struct can_priv *safe_candev_priv(struct net_device *dev)
1088 {
1089         if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1090                 return NULL;
1091
1092         return netdev_priv(dev);
1093 }
1094 EXPORT_SYMBOL_GPL(safe_candev_priv);
1095
1096 static __init int can_dev_init(void)
1097 {
1098         int err;
1099
1100         can_led_notifier_init();
1101
1102         err = rtnl_link_register(&can_link_ops);
1103         if (!err)
1104                 printk(KERN_INFO MOD_DESC "\n");
1105
1106         return err;
1107 }
1108 module_init(can_dev_init);
1109
1110 static __exit void can_dev_exit(void)
1111 {
1112         rtnl_link_unregister(&can_link_ops);
1113
1114         can_led_notifier_exit();
1115 }
1116 module_exit(can_dev_exit);
1117
1118 MODULE_ALIAS_RTNL_LINK("can");