Merge remote-tracking branches 'spi/topic/pxa', 'spi/topic/rb4xx', 'spi/topic/rspi...
[cascardo/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <linux/crash_dump.h>
45 #include <net/ip.h>
46 #include <net/ipv6.h>
47 #include <net/tcp.h>
48 #include <net/vxlan.h>
49 #include <net/checksum.h>
50 #include <net/ip6_checksum.h>
51 #include <linux/workqueue.h>
52 #include <linux/crc32.h>
53 #include <linux/crc32c.h>
54 #include <linux/prefetch.h>
55 #include <linux/zlib.h>
56 #include <linux/io.h>
57 #include <linux/semaphore.h>
58 #include <linux/stringify.h>
59 #include <linux/vmalloc.h>
60
61 #include "bnx2x.h"
62 #include "bnx2x_init.h"
63 #include "bnx2x_init_ops.h"
64 #include "bnx2x_cmn.h"
65 #include "bnx2x_vfpf.h"
66 #include "bnx2x_dcb.h"
67 #include "bnx2x_sp.h"
68 #include <linux/firmware.h>
69 #include "bnx2x_fw_file_hdr.h"
70 /* FW files */
71 #define FW_FILE_VERSION                                 \
72         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
73         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
74         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
75         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
76 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
79
80 /* Time in jiffies before concluding the transmitter is hung */
81 #define TX_TIMEOUT              (5*HZ)
82
83 static char version[] =
84         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
85         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
86
87 MODULE_AUTHOR("Eliezer Tamir");
88 MODULE_DESCRIPTION("Broadcom NetXtreme II "
89                    "BCM57710/57711/57711E/"
90                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
91                    "57840/57840_MF Driver");
92 MODULE_LICENSE("GPL");
93 MODULE_VERSION(DRV_MODULE_VERSION);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
96 MODULE_FIRMWARE(FW_FILE_NAME_E2);
97
98 int bnx2x_num_queues;
99 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
100 MODULE_PARM_DESC(num_queues,
101                  " Set number of queues (default is as a number of CPUs)");
102
103 static int disable_tpa;
104 module_param(disable_tpa, int, S_IRUGO);
105 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
106
107 static int int_mode;
108 module_param(int_mode, int, S_IRUGO);
109 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
110                                 "(1 INT#x; 2 MSI)");
111
112 static int dropless_fc;
113 module_param(dropless_fc, int, S_IRUGO);
114 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
115
116 static int mrrs = -1;
117 module_param(mrrs, int, S_IRUGO);
118 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
119
120 static int debug;
121 module_param(debug, int, S_IRUGO);
122 MODULE_PARM_DESC(debug, " Default debug msglevel");
123
124 static struct workqueue_struct *bnx2x_wq;
125 struct workqueue_struct *bnx2x_iov_wq;
126
127 struct bnx2x_mac_vals {
128         u32 xmac_addr;
129         u32 xmac_val;
130         u32 emac_addr;
131         u32 emac_val;
132         u32 umac_addr[2];
133         u32 umac_val[2];
134         u32 bmac_addr;
135         u32 bmac_val[2];
136 };
137
138 enum bnx2x_board_type {
139         BCM57710 = 0,
140         BCM57711,
141         BCM57711E,
142         BCM57712,
143         BCM57712_MF,
144         BCM57712_VF,
145         BCM57800,
146         BCM57800_MF,
147         BCM57800_VF,
148         BCM57810,
149         BCM57810_MF,
150         BCM57810_VF,
151         BCM57840_4_10,
152         BCM57840_2_20,
153         BCM57840_MF,
154         BCM57840_VF,
155         BCM57811,
156         BCM57811_MF,
157         BCM57840_O,
158         BCM57840_MFO,
159         BCM57811_VF
160 };
161
162 /* indexed by board_type, above */
163 static struct {
164         char *name;
165 } board_info[] = {
166         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
167         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
168         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
169         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
170         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
171         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
172         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
173         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
174         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
175         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
176         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
177         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
178         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
179         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
180         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
181         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
182         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
183         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
184         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
185         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
186         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
187 };
188
189 #ifndef PCI_DEVICE_ID_NX2_57710
190 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711
193 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57711E
196 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712
199 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_MF
202 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57712_VF
205 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800
208 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_MF
211 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57800_VF
214 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810
217 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57810_MF
220 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57840_O
223 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57810_VF
226 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
229 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
232 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
235 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_MF
238 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57840_VF
241 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811
244 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_MF
247 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
248 #endif
249 #ifndef PCI_DEVICE_ID_NX2_57811_VF
250 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
251 #endif
252
253 static const struct pci_device_id bnx2x_pci_tbl[] = {
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
273         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
274         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
275         { 0 }
276 };
277
278 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
279
280 /* Global resources for unloading a previously loaded device */
281 #define BNX2X_PREV_WAIT_NEEDED 1
282 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
283 static LIST_HEAD(bnx2x_prev_list);
284
285 /* Forward declaration */
286 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
287 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
288 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
289
290 /****************************************************************************
291 * General service functions
292 ****************************************************************************/
293
294 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
295
296 static void __storm_memset_dma_mapping(struct bnx2x *bp,
297                                        u32 addr, dma_addr_t mapping)
298 {
299         REG_WR(bp,  addr, U64_LO(mapping));
300         REG_WR(bp,  addr + 4, U64_HI(mapping));
301 }
302
303 static void storm_memset_spq_addr(struct bnx2x *bp,
304                                   dma_addr_t mapping, u16 abs_fid)
305 {
306         u32 addr = XSEM_REG_FAST_MEMORY +
307                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
308
309         __storm_memset_dma_mapping(bp, addr, mapping);
310 }
311
312 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
313                                   u16 pf_id)
314 {
315         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
316                 pf_id);
317         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
318                 pf_id);
319         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
320                 pf_id);
321         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
322                 pf_id);
323 }
324
325 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
326                                  u8 enable)
327 {
328         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
329                 enable);
330         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
331                 enable);
332         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
333                 enable);
334         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
335                 enable);
336 }
337
338 static void storm_memset_eq_data(struct bnx2x *bp,
339                                  struct event_ring_data *eq_data,
340                                 u16 pfid)
341 {
342         size_t size = sizeof(struct event_ring_data);
343
344         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
345
346         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
347 }
348
349 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
350                                  u16 pfid)
351 {
352         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
353         REG_WR16(bp, addr, eq_prod);
354 }
355
356 /* used only at init
357  * locking is done by mcp
358  */
359 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
360 {
361         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
362         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
363         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
364                                PCICFG_VENDOR_ID_OFFSET);
365 }
366
367 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
368 {
369         u32 val;
370
371         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
372         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
373         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
374                                PCICFG_VENDOR_ID_OFFSET);
375
376         return val;
377 }
378
379 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
380 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
381 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
382 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
383 #define DMAE_DP_DST_NONE        "dst_addr [none]"
384
385 static void bnx2x_dp_dmae(struct bnx2x *bp,
386                           struct dmae_command *dmae, int msglvl)
387 {
388         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
389         int i;
390
391         switch (dmae->opcode & DMAE_COMMAND_DST) {
392         case DMAE_CMD_DST_PCI:
393                 if (src_type == DMAE_CMD_SRC_PCI)
394                         DP(msglvl, "DMAE: opcode 0x%08x\n"
395                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
396                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
397                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
398                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
399                            dmae->comp_addr_hi, dmae->comp_addr_lo,
400                            dmae->comp_val);
401                 else
402                         DP(msglvl, "DMAE: opcode 0x%08x\n"
403                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
404                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
405                            dmae->opcode, dmae->src_addr_lo >> 2,
406                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
407                            dmae->comp_addr_hi, dmae->comp_addr_lo,
408                            dmae->comp_val);
409                 break;
410         case DMAE_CMD_DST_GRC:
411                 if (src_type == DMAE_CMD_SRC_PCI)
412                         DP(msglvl, "DMAE: opcode 0x%08x\n"
413                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
414                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
415                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
416                            dmae->len, dmae->dst_addr_lo >> 2,
417                            dmae->comp_addr_hi, dmae->comp_addr_lo,
418                            dmae->comp_val);
419                 else
420                         DP(msglvl, "DMAE: opcode 0x%08x\n"
421                            "src [%08x], len [%d*4], dst [%08x]\n"
422                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
423                            dmae->opcode, dmae->src_addr_lo >> 2,
424                            dmae->len, dmae->dst_addr_lo >> 2,
425                            dmae->comp_addr_hi, dmae->comp_addr_lo,
426                            dmae->comp_val);
427                 break;
428         default:
429                 if (src_type == DMAE_CMD_SRC_PCI)
430                         DP(msglvl, "DMAE: opcode 0x%08x\n"
431                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
432                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
433                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
434                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
435                            dmae->comp_val);
436                 else
437                         DP(msglvl, "DMAE: opcode 0x%08x\n"
438                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
439                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
440                            dmae->opcode, dmae->src_addr_lo >> 2,
441                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
442                            dmae->comp_val);
443                 break;
444         }
445
446         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
447                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
448                    i, *(((u32 *)dmae) + i));
449 }
450
451 /* copy command into DMAE command memory and set DMAE command go */
452 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
453 {
454         u32 cmd_offset;
455         int i;
456
457         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
458         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
459                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
460         }
461         REG_WR(bp, dmae_reg_go_c[idx], 1);
462 }
463
464 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
465 {
466         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
467                            DMAE_CMD_C_ENABLE);
468 }
469
470 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
471 {
472         return opcode & ~DMAE_CMD_SRC_RESET;
473 }
474
475 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
476                              bool with_comp, u8 comp_type)
477 {
478         u32 opcode = 0;
479
480         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
481                    (dst_type << DMAE_COMMAND_DST_SHIFT));
482
483         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
484
485         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
486         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
487                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
488         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
489
490 #ifdef __BIG_ENDIAN
491         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
492 #else
493         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
494 #endif
495         if (with_comp)
496                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
497         return opcode;
498 }
499
500 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
501                                       struct dmae_command *dmae,
502                                       u8 src_type, u8 dst_type)
503 {
504         memset(dmae, 0, sizeof(struct dmae_command));
505
506         /* set the opcode */
507         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
508                                          true, DMAE_COMP_PCI);
509
510         /* fill in the completion parameters */
511         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
512         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
513         dmae->comp_val = DMAE_COMP_VAL;
514 }
515
516 /* issue a dmae command over the init-channel and wait for completion */
517 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
518                                u32 *comp)
519 {
520         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
521         int rc = 0;
522
523         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
524
525         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
526          * as long as this code is called both from syscall context and
527          * from ndo_set_rx_mode() flow that may be called from BH.
528          */
529
530         spin_lock_bh(&bp->dmae_lock);
531
532         /* reset completion */
533         *comp = 0;
534
535         /* post the command on the channel used for initializations */
536         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
537
538         /* wait for completion */
539         udelay(5);
540         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
541
542                 if (!cnt ||
543                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
544                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
545                         BNX2X_ERR("DMAE timeout!\n");
546                         rc = DMAE_TIMEOUT;
547                         goto unlock;
548                 }
549                 cnt--;
550                 udelay(50);
551         }
552         if (*comp & DMAE_PCI_ERR_FLAG) {
553                 BNX2X_ERR("DMAE PCI error!\n");
554                 rc = DMAE_PCI_ERROR;
555         }
556
557 unlock:
558
559         spin_unlock_bh(&bp->dmae_lock);
560
561         return rc;
562 }
563
564 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
565                       u32 len32)
566 {
567         int rc;
568         struct dmae_command dmae;
569
570         if (!bp->dmae_ready) {
571                 u32 *data = bnx2x_sp(bp, wb_data[0]);
572
573                 if (CHIP_IS_E1(bp))
574                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
575                 else
576                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
577                 return;
578         }
579
580         /* set opcode and fixed command fields */
581         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
582
583         /* fill in addresses and len */
584         dmae.src_addr_lo = U64_LO(dma_addr);
585         dmae.src_addr_hi = U64_HI(dma_addr);
586         dmae.dst_addr_lo = dst_addr >> 2;
587         dmae.dst_addr_hi = 0;
588         dmae.len = len32;
589
590         /* issue the command and wait for completion */
591         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
592         if (rc) {
593                 BNX2X_ERR("DMAE returned failure %d\n", rc);
594 #ifdef BNX2X_STOP_ON_ERROR
595                 bnx2x_panic();
596 #endif
597         }
598 }
599
600 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
601 {
602         int rc;
603         struct dmae_command dmae;
604
605         if (!bp->dmae_ready) {
606                 u32 *data = bnx2x_sp(bp, wb_data[0]);
607                 int i;
608
609                 if (CHIP_IS_E1(bp))
610                         for (i = 0; i < len32; i++)
611                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
612                 else
613                         for (i = 0; i < len32; i++)
614                                 data[i] = REG_RD(bp, src_addr + i*4);
615
616                 return;
617         }
618
619         /* set opcode and fixed command fields */
620         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
621
622         /* fill in addresses and len */
623         dmae.src_addr_lo = src_addr >> 2;
624         dmae.src_addr_hi = 0;
625         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
626         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
627         dmae.len = len32;
628
629         /* issue the command and wait for completion */
630         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
631         if (rc) {
632                 BNX2X_ERR("DMAE returned failure %d\n", rc);
633 #ifdef BNX2X_STOP_ON_ERROR
634                 bnx2x_panic();
635 #endif
636         }
637 }
638
639 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
640                                       u32 addr, u32 len)
641 {
642         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
643         int offset = 0;
644
645         while (len > dmae_wr_max) {
646                 bnx2x_write_dmae(bp, phys_addr + offset,
647                                  addr + offset, dmae_wr_max);
648                 offset += dmae_wr_max * 4;
649                 len -= dmae_wr_max;
650         }
651
652         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
653 }
654
655 enum storms {
656            XSTORM,
657            TSTORM,
658            CSTORM,
659            USTORM,
660            MAX_STORMS
661 };
662
663 #define STORMS_NUM 4
664 #define REGS_IN_ENTRY 4
665
666 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
667                                               enum storms storm,
668                                               int entry)
669 {
670         switch (storm) {
671         case XSTORM:
672                 return XSTORM_ASSERT_LIST_OFFSET(entry);
673         case TSTORM:
674                 return TSTORM_ASSERT_LIST_OFFSET(entry);
675         case CSTORM:
676                 return CSTORM_ASSERT_LIST_OFFSET(entry);
677         case USTORM:
678                 return USTORM_ASSERT_LIST_OFFSET(entry);
679         case MAX_STORMS:
680         default:
681                 BNX2X_ERR("unknown storm\n");
682         }
683         return -EINVAL;
684 }
685
686 static int bnx2x_mc_assert(struct bnx2x *bp)
687 {
688         char last_idx;
689         int i, j, rc = 0;
690         enum storms storm;
691         u32 regs[REGS_IN_ENTRY];
692         u32 bar_storm_intmem[STORMS_NUM] = {
693                 BAR_XSTRORM_INTMEM,
694                 BAR_TSTRORM_INTMEM,
695                 BAR_CSTRORM_INTMEM,
696                 BAR_USTRORM_INTMEM
697         };
698         u32 storm_assert_list_index[STORMS_NUM] = {
699                 XSTORM_ASSERT_LIST_INDEX_OFFSET,
700                 TSTORM_ASSERT_LIST_INDEX_OFFSET,
701                 CSTORM_ASSERT_LIST_INDEX_OFFSET,
702                 USTORM_ASSERT_LIST_INDEX_OFFSET
703         };
704         char *storms_string[STORMS_NUM] = {
705                 "XSTORM",
706                 "TSTORM",
707                 "CSTORM",
708                 "USTORM"
709         };
710
711         for (storm = XSTORM; storm < MAX_STORMS; storm++) {
712                 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
713                                    storm_assert_list_index[storm]);
714                 if (last_idx)
715                         BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
716                                   storms_string[storm], last_idx);
717
718                 /* print the asserts */
719                 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
720                         /* read a single assert entry */
721                         for (j = 0; j < REGS_IN_ENTRY; j++)
722                                 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
723                                           bnx2x_get_assert_list_entry(bp,
724                                                                       storm,
725                                                                       i) +
726                                           sizeof(u32) * j);
727
728                         /* log entry if it contains a valid assert */
729                         if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
730                                 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
731                                           storms_string[storm], i, regs[3],
732                                           regs[2], regs[1], regs[0]);
733                                 rc++;
734                         } else {
735                                 break;
736                         }
737                 }
738         }
739
740         BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
741                   CHIP_IS_E1(bp) ? "everest1" :
742                   CHIP_IS_E1H(bp) ? "everest1h" :
743                   CHIP_IS_E2(bp) ? "everest2" : "everest3",
744                   BCM_5710_FW_MAJOR_VERSION,
745                   BCM_5710_FW_MINOR_VERSION,
746                   BCM_5710_FW_REVISION_VERSION);
747
748         return rc;
749 }
750
751 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
752 #define SCRATCH_BUFFER_SIZE(bp) \
753         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
754
755 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
756 {
757         u32 addr, val;
758         u32 mark, offset;
759         __be32 data[9];
760         int word;
761         u32 trace_shmem_base;
762         if (BP_NOMCP(bp)) {
763                 BNX2X_ERR("NO MCP - can not dump\n");
764                 return;
765         }
766         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
767                 (bp->common.bc_ver & 0xff0000) >> 16,
768                 (bp->common.bc_ver & 0xff00) >> 8,
769                 (bp->common.bc_ver & 0xff));
770
771         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
772         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
773                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
774
775         if (BP_PATH(bp) == 0)
776                 trace_shmem_base = bp->common.shmem_base;
777         else
778                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
779
780         /* sanity */
781         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
782             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
783                                 SCRATCH_BUFFER_SIZE(bp)) {
784                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
785                           trace_shmem_base);
786                 return;
787         }
788
789         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
790
791         /* validate TRCB signature */
792         mark = REG_RD(bp, addr);
793         if (mark != MFW_TRACE_SIGNATURE) {
794                 BNX2X_ERR("Trace buffer signature is missing.");
795                 return ;
796         }
797
798         /* read cyclic buffer pointer */
799         addr += 4;
800         mark = REG_RD(bp, addr);
801         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
802         if (mark >= trace_shmem_base || mark < addr + 4) {
803                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
804                 return;
805         }
806         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
807
808         printk("%s", lvl);
809
810         /* dump buffer after the mark */
811         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
812                 for (word = 0; word < 8; word++)
813                         data[word] = htonl(REG_RD(bp, offset + 4*word));
814                 data[8] = 0x0;
815                 pr_cont("%s", (char *)data);
816         }
817
818         /* dump buffer before the mark */
819         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
820                 for (word = 0; word < 8; word++)
821                         data[word] = htonl(REG_RD(bp, offset + 4*word));
822                 data[8] = 0x0;
823                 pr_cont("%s", (char *)data);
824         }
825         printk("%s" "end of fw dump\n", lvl);
826 }
827
828 static void bnx2x_fw_dump(struct bnx2x *bp)
829 {
830         bnx2x_fw_dump_lvl(bp, KERN_ERR);
831 }
832
833 static void bnx2x_hc_int_disable(struct bnx2x *bp)
834 {
835         int port = BP_PORT(bp);
836         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
837         u32 val = REG_RD(bp, addr);
838
839         /* in E1 we must use only PCI configuration space to disable
840          * MSI/MSIX capability
841          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
842          */
843         if (CHIP_IS_E1(bp)) {
844                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
845                  * Use mask register to prevent from HC sending interrupts
846                  * after we exit the function
847                  */
848                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
849
850                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
851                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
852                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
853         } else
854                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
855                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
856                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
857                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
858
859         DP(NETIF_MSG_IFDOWN,
860            "write %x to HC %d (addr 0x%x)\n",
861            val, port, addr);
862
863         /* flush all outstanding writes */
864         mmiowb();
865
866         REG_WR(bp, addr, val);
867         if (REG_RD(bp, addr) != val)
868                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
869 }
870
871 static void bnx2x_igu_int_disable(struct bnx2x *bp)
872 {
873         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
874
875         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
876                  IGU_PF_CONF_INT_LINE_EN |
877                  IGU_PF_CONF_ATTN_BIT_EN);
878
879         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
880
881         /* flush all outstanding writes */
882         mmiowb();
883
884         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
885         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
886                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
887 }
888
889 static void bnx2x_int_disable(struct bnx2x *bp)
890 {
891         if (bp->common.int_block == INT_BLOCK_HC)
892                 bnx2x_hc_int_disable(bp);
893         else
894                 bnx2x_igu_int_disable(bp);
895 }
896
897 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
898 {
899         int i;
900         u16 j;
901         struct hc_sp_status_block_data sp_sb_data;
902         int func = BP_FUNC(bp);
903 #ifdef BNX2X_STOP_ON_ERROR
904         u16 start = 0, end = 0;
905         u8 cos;
906 #endif
907         if (IS_PF(bp) && disable_int)
908                 bnx2x_int_disable(bp);
909
910         bp->stats_state = STATS_STATE_DISABLED;
911         bp->eth_stats.unrecoverable_error++;
912         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
913
914         BNX2X_ERR("begin crash dump -----------------\n");
915
916         /* Indices */
917         /* Common */
918         if (IS_PF(bp)) {
919                 struct host_sp_status_block *def_sb = bp->def_status_blk;
920                 int data_size, cstorm_offset;
921
922                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
923                           bp->def_idx, bp->def_att_idx, bp->attn_state,
924                           bp->spq_prod_idx, bp->stats_counter);
925                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
926                           def_sb->atten_status_block.attn_bits,
927                           def_sb->atten_status_block.attn_bits_ack,
928                           def_sb->atten_status_block.status_block_id,
929                           def_sb->atten_status_block.attn_bits_index);
930                 BNX2X_ERR("     def (");
931                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
932                         pr_cont("0x%x%s",
933                                 def_sb->sp_sb.index_values[i],
934                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
935
936                 data_size = sizeof(struct hc_sp_status_block_data) /
937                             sizeof(u32);
938                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
939                 for (i = 0; i < data_size; i++)
940                         *((u32 *)&sp_sb_data + i) =
941                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
942                                            i * sizeof(u32));
943
944                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
945                         sp_sb_data.igu_sb_id,
946                         sp_sb_data.igu_seg_id,
947                         sp_sb_data.p_func.pf_id,
948                         sp_sb_data.p_func.vnic_id,
949                         sp_sb_data.p_func.vf_id,
950                         sp_sb_data.p_func.vf_valid,
951                         sp_sb_data.state);
952         }
953
954         for_each_eth_queue(bp, i) {
955                 struct bnx2x_fastpath *fp = &bp->fp[i];
956                 int loop;
957                 struct hc_status_block_data_e2 sb_data_e2;
958                 struct hc_status_block_data_e1x sb_data_e1x;
959                 struct hc_status_block_sm  *hc_sm_p =
960                         CHIP_IS_E1x(bp) ?
961                         sb_data_e1x.common.state_machine :
962                         sb_data_e2.common.state_machine;
963                 struct hc_index_data *hc_index_p =
964                         CHIP_IS_E1x(bp) ?
965                         sb_data_e1x.index_data :
966                         sb_data_e2.index_data;
967                 u8 data_size, cos;
968                 u32 *sb_data_p;
969                 struct bnx2x_fp_txdata txdata;
970
971                 if (!bp->fp)
972                         break;
973
974                 if (!fp->rx_cons_sb)
975                         continue;
976
977                 /* Rx */
978                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
979                           i, fp->rx_bd_prod, fp->rx_bd_cons,
980                           fp->rx_comp_prod,
981                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
982                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
983                           fp->rx_sge_prod, fp->last_max_sge,
984                           le16_to_cpu(fp->fp_hc_idx));
985
986                 /* Tx */
987                 for_each_cos_in_tx_queue(fp, cos)
988                 {
989                         if (!fp->txdata_ptr[cos])
990                                 break;
991
992                         txdata = *fp->txdata_ptr[cos];
993
994                         if (!txdata.tx_cons_sb)
995                                 continue;
996
997                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
998                                   i, txdata.tx_pkt_prod,
999                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1000                                   txdata.tx_bd_cons,
1001                                   le16_to_cpu(*txdata.tx_cons_sb));
1002                 }
1003
1004                 loop = CHIP_IS_E1x(bp) ?
1005                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1006
1007                 /* host sb data */
1008
1009                 if (IS_FCOE_FP(fp))
1010                         continue;
1011
1012                 BNX2X_ERR("     run indexes (");
1013                 for (j = 0; j < HC_SB_MAX_SM; j++)
1014                         pr_cont("0x%x%s",
1015                                fp->sb_running_index[j],
1016                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1017
1018                 BNX2X_ERR("     indexes (");
1019                 for (j = 0; j < loop; j++)
1020                         pr_cont("0x%x%s",
1021                                fp->sb_index_values[j],
1022                                (j == loop - 1) ? ")" : " ");
1023
1024                 /* VF cannot access FW refelection for status block */
1025                 if (IS_VF(bp))
1026                         continue;
1027
1028                 /* fw sb data */
1029                 data_size = CHIP_IS_E1x(bp) ?
1030                         sizeof(struct hc_status_block_data_e1x) :
1031                         sizeof(struct hc_status_block_data_e2);
1032                 data_size /= sizeof(u32);
1033                 sb_data_p = CHIP_IS_E1x(bp) ?
1034                         (u32 *)&sb_data_e1x :
1035                         (u32 *)&sb_data_e2;
1036                 /* copy sb data in here */
1037                 for (j = 0; j < data_size; j++)
1038                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1039                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1040                                 j * sizeof(u32));
1041
1042                 if (!CHIP_IS_E1x(bp)) {
1043                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1044                                 sb_data_e2.common.p_func.pf_id,
1045                                 sb_data_e2.common.p_func.vf_id,
1046                                 sb_data_e2.common.p_func.vf_valid,
1047                                 sb_data_e2.common.p_func.vnic_id,
1048                                 sb_data_e2.common.same_igu_sb_1b,
1049                                 sb_data_e2.common.state);
1050                 } else {
1051                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1052                                 sb_data_e1x.common.p_func.pf_id,
1053                                 sb_data_e1x.common.p_func.vf_id,
1054                                 sb_data_e1x.common.p_func.vf_valid,
1055                                 sb_data_e1x.common.p_func.vnic_id,
1056                                 sb_data_e1x.common.same_igu_sb_1b,
1057                                 sb_data_e1x.common.state);
1058                 }
1059
1060                 /* SB_SMs data */
1061                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1062                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1063                                 j, hc_sm_p[j].__flags,
1064                                 hc_sm_p[j].igu_sb_id,
1065                                 hc_sm_p[j].igu_seg_id,
1066                                 hc_sm_p[j].time_to_expire,
1067                                 hc_sm_p[j].timer_value);
1068                 }
1069
1070                 /* Indices data */
1071                 for (j = 0; j < loop; j++) {
1072                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1073                                hc_index_p[j].flags,
1074                                hc_index_p[j].timeout);
1075                 }
1076         }
1077
1078 #ifdef BNX2X_STOP_ON_ERROR
1079         if (IS_PF(bp)) {
1080                 /* event queue */
1081                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1082                 for (i = 0; i < NUM_EQ_DESC; i++) {
1083                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1084
1085                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1086                                   i, bp->eq_ring[i].message.opcode,
1087                                   bp->eq_ring[i].message.error);
1088                         BNX2X_ERR("data: %x %x %x\n",
1089                                   data[0], data[1], data[2]);
1090                 }
1091         }
1092
1093         /* Rings */
1094         /* Rx */
1095         for_each_valid_rx_queue(bp, i) {
1096                 struct bnx2x_fastpath *fp = &bp->fp[i];
1097
1098                 if (!bp->fp)
1099                         break;
1100
1101                 if (!fp->rx_cons_sb)
1102                         continue;
1103
1104                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1105                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1106                 for (j = start; j != end; j = RX_BD(j + 1)) {
1107                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1108                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1109
1110                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1111                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1112                 }
1113
1114                 start = RX_SGE(fp->rx_sge_prod);
1115                 end = RX_SGE(fp->last_max_sge);
1116                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1117                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1118                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1119
1120                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1121                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1122                 }
1123
1124                 start = RCQ_BD(fp->rx_comp_cons - 10);
1125                 end = RCQ_BD(fp->rx_comp_cons + 503);
1126                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1127                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1128
1129                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1130                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1131                 }
1132         }
1133
1134         /* Tx */
1135         for_each_valid_tx_queue(bp, i) {
1136                 struct bnx2x_fastpath *fp = &bp->fp[i];
1137
1138                 if (!bp->fp)
1139                         break;
1140
1141                 for_each_cos_in_tx_queue(fp, cos) {
1142                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1143
1144                         if (!fp->txdata_ptr[cos])
1145                                 break;
1146
1147                         if (!txdata->tx_cons_sb)
1148                                 continue;
1149
1150                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1151                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1152                         for (j = start; j != end; j = TX_BD(j + 1)) {
1153                                 struct sw_tx_bd *sw_bd =
1154                                         &txdata->tx_buf_ring[j];
1155
1156                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1157                                           i, cos, j, sw_bd->skb,
1158                                           sw_bd->first_bd);
1159                         }
1160
1161                         start = TX_BD(txdata->tx_bd_cons - 10);
1162                         end = TX_BD(txdata->tx_bd_cons + 254);
1163                         for (j = start; j != end; j = TX_BD(j + 1)) {
1164                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1165
1166                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1167                                           i, cos, j, tx_bd[0], tx_bd[1],
1168                                           tx_bd[2], tx_bd[3]);
1169                         }
1170                 }
1171         }
1172 #endif
1173         if (IS_PF(bp)) {
1174                 bnx2x_fw_dump(bp);
1175                 bnx2x_mc_assert(bp);
1176         }
1177         BNX2X_ERR("end crash dump -----------------\n");
1178 }
1179
1180 /*
1181  * FLR Support for E2
1182  *
1183  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1184  * initialization.
1185  */
1186 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1187 #define FLR_WAIT_INTERVAL       50      /* usec */
1188 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1189
1190 struct pbf_pN_buf_regs {
1191         int pN;
1192         u32 init_crd;
1193         u32 crd;
1194         u32 crd_freed;
1195 };
1196
1197 struct pbf_pN_cmd_regs {
1198         int pN;
1199         u32 lines_occup;
1200         u32 lines_freed;
1201 };
1202
1203 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1204                                      struct pbf_pN_buf_regs *regs,
1205                                      u32 poll_count)
1206 {
1207         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1208         u32 cur_cnt = poll_count;
1209
1210         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1211         crd = crd_start = REG_RD(bp, regs->crd);
1212         init_crd = REG_RD(bp, regs->init_crd);
1213
1214         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1215         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1216         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1217
1218         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1219                (init_crd - crd_start))) {
1220                 if (cur_cnt--) {
1221                         udelay(FLR_WAIT_INTERVAL);
1222                         crd = REG_RD(bp, regs->crd);
1223                         crd_freed = REG_RD(bp, regs->crd_freed);
1224                 } else {
1225                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1226                            regs->pN);
1227                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1228                            regs->pN, crd);
1229                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1230                            regs->pN, crd_freed);
1231                         break;
1232                 }
1233         }
1234         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1235            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1236 }
1237
1238 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1239                                      struct pbf_pN_cmd_regs *regs,
1240                                      u32 poll_count)
1241 {
1242         u32 occup, to_free, freed, freed_start;
1243         u32 cur_cnt = poll_count;
1244
1245         occup = to_free = REG_RD(bp, regs->lines_occup);
1246         freed = freed_start = REG_RD(bp, regs->lines_freed);
1247
1248         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1249         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1250
1251         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1252                 if (cur_cnt--) {
1253                         udelay(FLR_WAIT_INTERVAL);
1254                         occup = REG_RD(bp, regs->lines_occup);
1255                         freed = REG_RD(bp, regs->lines_freed);
1256                 } else {
1257                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1258                            regs->pN);
1259                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1260                            regs->pN, occup);
1261                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1262                            regs->pN, freed);
1263                         break;
1264                 }
1265         }
1266         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1267            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1268 }
1269
1270 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1271                                     u32 expected, u32 poll_count)
1272 {
1273         u32 cur_cnt = poll_count;
1274         u32 val;
1275
1276         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1277                 udelay(FLR_WAIT_INTERVAL);
1278
1279         return val;
1280 }
1281
1282 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1283                                     char *msg, u32 poll_cnt)
1284 {
1285         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1286         if (val != 0) {
1287                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1288                 return 1;
1289         }
1290         return 0;
1291 }
1292
1293 /* Common routines with VF FLR cleanup */
1294 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1295 {
1296         /* adjust polling timeout */
1297         if (CHIP_REV_IS_EMUL(bp))
1298                 return FLR_POLL_CNT * 2000;
1299
1300         if (CHIP_REV_IS_FPGA(bp))
1301                 return FLR_POLL_CNT * 120;
1302
1303         return FLR_POLL_CNT;
1304 }
1305
1306 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1307 {
1308         struct pbf_pN_cmd_regs cmd_regs[] = {
1309                 {0, (CHIP_IS_E3B0(bp)) ?
1310                         PBF_REG_TQ_OCCUPANCY_Q0 :
1311                         PBF_REG_P0_TQ_OCCUPANCY,
1312                     (CHIP_IS_E3B0(bp)) ?
1313                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1314                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1315                 {1, (CHIP_IS_E3B0(bp)) ?
1316                         PBF_REG_TQ_OCCUPANCY_Q1 :
1317                         PBF_REG_P1_TQ_OCCUPANCY,
1318                     (CHIP_IS_E3B0(bp)) ?
1319                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1320                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1321                 {4, (CHIP_IS_E3B0(bp)) ?
1322                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1323                         PBF_REG_P4_TQ_OCCUPANCY,
1324                     (CHIP_IS_E3B0(bp)) ?
1325                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1326                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1327         };
1328
1329         struct pbf_pN_buf_regs buf_regs[] = {
1330                 {0, (CHIP_IS_E3B0(bp)) ?
1331                         PBF_REG_INIT_CRD_Q0 :
1332                         PBF_REG_P0_INIT_CRD ,
1333                     (CHIP_IS_E3B0(bp)) ?
1334                         PBF_REG_CREDIT_Q0 :
1335                         PBF_REG_P0_CREDIT,
1336                     (CHIP_IS_E3B0(bp)) ?
1337                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1338                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1339                 {1, (CHIP_IS_E3B0(bp)) ?
1340                         PBF_REG_INIT_CRD_Q1 :
1341                         PBF_REG_P1_INIT_CRD,
1342                     (CHIP_IS_E3B0(bp)) ?
1343                         PBF_REG_CREDIT_Q1 :
1344                         PBF_REG_P1_CREDIT,
1345                     (CHIP_IS_E3B0(bp)) ?
1346                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1347                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1348                 {4, (CHIP_IS_E3B0(bp)) ?
1349                         PBF_REG_INIT_CRD_LB_Q :
1350                         PBF_REG_P4_INIT_CRD,
1351                     (CHIP_IS_E3B0(bp)) ?
1352                         PBF_REG_CREDIT_LB_Q :
1353                         PBF_REG_P4_CREDIT,
1354                     (CHIP_IS_E3B0(bp)) ?
1355                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1356                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1357         };
1358
1359         int i;
1360
1361         /* Verify the command queues are flushed P0, P1, P4 */
1362         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1363                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1364
1365         /* Verify the transmission buffers are flushed P0, P1, P4 */
1366         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1367                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1368 }
1369
1370 #define OP_GEN_PARAM(param) \
1371         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1372
1373 #define OP_GEN_TYPE(type) \
1374         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1375
1376 #define OP_GEN_AGG_VECT(index) \
1377         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1378
1379 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1380 {
1381         u32 op_gen_command = 0;
1382         u32 comp_addr = BAR_CSTRORM_INTMEM +
1383                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1384         int ret = 0;
1385
1386         if (REG_RD(bp, comp_addr)) {
1387                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1388                 return 1;
1389         }
1390
1391         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1392         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1393         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1394         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1395
1396         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1397         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1398
1399         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1400                 BNX2X_ERR("FW final cleanup did not succeed\n");
1401                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1402                    (REG_RD(bp, comp_addr)));
1403                 bnx2x_panic();
1404                 return 1;
1405         }
1406         /* Zero completion for next FLR */
1407         REG_WR(bp, comp_addr, 0);
1408
1409         return ret;
1410 }
1411
1412 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1413 {
1414         u16 status;
1415
1416         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1417         return status & PCI_EXP_DEVSTA_TRPND;
1418 }
1419
1420 /* PF FLR specific routines
1421 */
1422 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1423 {
1424         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1425         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1426                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1427                         "CFC PF usage counter timed out",
1428                         poll_cnt))
1429                 return 1;
1430
1431         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1432         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433                         DORQ_REG_PF_USAGE_CNT,
1434                         "DQ PF usage counter timed out",
1435                         poll_cnt))
1436                 return 1;
1437
1438         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1439         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1440                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1441                         "QM PF usage counter timed out",
1442                         poll_cnt))
1443                 return 1;
1444
1445         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1446         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1447                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1448                         "Timers VNIC usage counter timed out",
1449                         poll_cnt))
1450                 return 1;
1451         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1452                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1453                         "Timers NUM_SCANS usage counter timed out",
1454                         poll_cnt))
1455                 return 1;
1456
1457         /* Wait DMAE PF usage counter to zero */
1458         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1459                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1460                         "DMAE command register timed out",
1461                         poll_cnt))
1462                 return 1;
1463
1464         return 0;
1465 }
1466
1467 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1468 {
1469         u32 val;
1470
1471         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1472         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1473
1474         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1475         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1476
1477         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1478         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1479
1480         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1481         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1482
1483         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1484         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1485
1486         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1487         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1488
1489         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1490         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1491
1492         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1493         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1494            val);
1495 }
1496
1497 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1498 {
1499         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1500
1501         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1502
1503         /* Re-enable PF target read access */
1504         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1505
1506         /* Poll HW usage counters */
1507         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1508         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1509                 return -EBUSY;
1510
1511         /* Zero the igu 'trailing edge' and 'leading edge' */
1512
1513         /* Send the FW cleanup command */
1514         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1515                 return -EBUSY;
1516
1517         /* ATC cleanup */
1518
1519         /* Verify TX hw is flushed */
1520         bnx2x_tx_hw_flushed(bp, poll_cnt);
1521
1522         /* Wait 100ms (not adjusted according to platform) */
1523         msleep(100);
1524
1525         /* Verify no pending pci transactions */
1526         if (bnx2x_is_pcie_pending(bp->pdev))
1527                 BNX2X_ERR("PCIE Transactions still pending\n");
1528
1529         /* Debug */
1530         bnx2x_hw_enable_status(bp);
1531
1532         /*
1533          * Master enable - Due to WB DMAE writes performed before this
1534          * register is re-initialized as part of the regular function init
1535          */
1536         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1537
1538         return 0;
1539 }
1540
1541 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1542 {
1543         int port = BP_PORT(bp);
1544         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1545         u32 val = REG_RD(bp, addr);
1546         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1547         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1548         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1549
1550         if (msix) {
1551                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1552                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1553                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1554                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1555                 if (single_msix)
1556                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1557         } else if (msi) {
1558                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1559                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1560                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1561                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1562         } else {
1563                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1564                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1565                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1566                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1567
1568                 if (!CHIP_IS_E1(bp)) {
1569                         DP(NETIF_MSG_IFUP,
1570                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1571
1572                         REG_WR(bp, addr, val);
1573
1574                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1575                 }
1576         }
1577
1578         if (CHIP_IS_E1(bp))
1579                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1580
1581         DP(NETIF_MSG_IFUP,
1582            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1583            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1584
1585         REG_WR(bp, addr, val);
1586         /*
1587          * Ensure that HC_CONFIG is written before leading/trailing edge config
1588          */
1589         mmiowb();
1590         barrier();
1591
1592         if (!CHIP_IS_E1(bp)) {
1593                 /* init leading/trailing edge */
1594                 if (IS_MF(bp)) {
1595                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1596                         if (bp->port.pmf)
1597                                 /* enable nig and gpio3 attention */
1598                                 val |= 0x1100;
1599                 } else
1600                         val = 0xffff;
1601
1602                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1603                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1604         }
1605
1606         /* Make sure that interrupts are indeed enabled from here on */
1607         mmiowb();
1608 }
1609
1610 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1611 {
1612         u32 val;
1613         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1614         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1615         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1616
1617         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1618
1619         if (msix) {
1620                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1621                          IGU_PF_CONF_SINGLE_ISR_EN);
1622                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1623                         IGU_PF_CONF_ATTN_BIT_EN);
1624
1625                 if (single_msix)
1626                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1627         } else if (msi) {
1628                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1629                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1630                         IGU_PF_CONF_ATTN_BIT_EN |
1631                         IGU_PF_CONF_SINGLE_ISR_EN);
1632         } else {
1633                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1634                 val |= (IGU_PF_CONF_INT_LINE_EN |
1635                         IGU_PF_CONF_ATTN_BIT_EN |
1636                         IGU_PF_CONF_SINGLE_ISR_EN);
1637         }
1638
1639         /* Clean previous status - need to configure igu prior to ack*/
1640         if ((!msix) || single_msix) {
1641                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1642                 bnx2x_ack_int(bp);
1643         }
1644
1645         val |= IGU_PF_CONF_FUNC_EN;
1646
1647         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1648            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1649
1650         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651
1652         if (val & IGU_PF_CONF_INT_LINE_EN)
1653                 pci_intx(bp->pdev, true);
1654
1655         barrier();
1656
1657         /* init leading/trailing edge */
1658         if (IS_MF(bp)) {
1659                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1660                 if (bp->port.pmf)
1661                         /* enable nig and gpio3 attention */
1662                         val |= 0x1100;
1663         } else
1664                 val = 0xffff;
1665
1666         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1667         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1668
1669         /* Make sure that interrupts are indeed enabled from here on */
1670         mmiowb();
1671 }
1672
1673 void bnx2x_int_enable(struct bnx2x *bp)
1674 {
1675         if (bp->common.int_block == INT_BLOCK_HC)
1676                 bnx2x_hc_int_enable(bp);
1677         else
1678                 bnx2x_igu_int_enable(bp);
1679 }
1680
1681 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1682 {
1683         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1684         int i, offset;
1685
1686         if (disable_hw)
1687                 /* prevent the HW from sending interrupts */
1688                 bnx2x_int_disable(bp);
1689
1690         /* make sure all ISRs are done */
1691         if (msix) {
1692                 synchronize_irq(bp->msix_table[0].vector);
1693                 offset = 1;
1694                 if (CNIC_SUPPORT(bp))
1695                         offset++;
1696                 for_each_eth_queue(bp, i)
1697                         synchronize_irq(bp->msix_table[offset++].vector);
1698         } else
1699                 synchronize_irq(bp->pdev->irq);
1700
1701         /* make sure sp_task is not running */
1702         cancel_delayed_work(&bp->sp_task);
1703         cancel_delayed_work(&bp->period_task);
1704         flush_workqueue(bnx2x_wq);
1705 }
1706
1707 /* fast path */
1708
1709 /*
1710  * General service functions
1711  */
1712
1713 /* Return true if succeeded to acquire the lock */
1714 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1715 {
1716         u32 lock_status;
1717         u32 resource_bit = (1 << resource);
1718         int func = BP_FUNC(bp);
1719         u32 hw_lock_control_reg;
1720
1721         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1722            "Trying to take a lock on resource %d\n", resource);
1723
1724         /* Validating that the resource is within range */
1725         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1726                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1727                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1728                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1729                 return false;
1730         }
1731
1732         if (func <= 5)
1733                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1734         else
1735                 hw_lock_control_reg =
1736                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1737
1738         /* Try to acquire the lock */
1739         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1740         lock_status = REG_RD(bp, hw_lock_control_reg);
1741         if (lock_status & resource_bit)
1742                 return true;
1743
1744         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1745            "Failed to get a lock on resource %d\n", resource);
1746         return false;
1747 }
1748
1749 /**
1750  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1751  *
1752  * @bp: driver handle
1753  *
1754  * Returns the recovery leader resource id according to the engine this function
1755  * belongs to. Currently only only 2 engines is supported.
1756  */
1757 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1758 {
1759         if (BP_PATH(bp))
1760                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1761         else
1762                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1763 }
1764
1765 /**
1766  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1767  *
1768  * @bp: driver handle
1769  *
1770  * Tries to acquire a leader lock for current engine.
1771  */
1772 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1773 {
1774         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1775 }
1776
1777 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1778
1779 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1780 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1781 {
1782         /* Set the interrupt occurred bit for the sp-task to recognize it
1783          * must ack the interrupt and transition according to the IGU
1784          * state machine.
1785          */
1786         atomic_set(&bp->interrupt_occurred, 1);
1787
1788         /* The sp_task must execute only after this bit
1789          * is set, otherwise we will get out of sync and miss all
1790          * further interrupts. Hence, the barrier.
1791          */
1792         smp_wmb();
1793
1794         /* schedule sp_task to workqueue */
1795         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1796 }
1797
1798 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1799 {
1800         struct bnx2x *bp = fp->bp;
1801         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1802         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1803         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1804         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1805
1806         DP(BNX2X_MSG_SP,
1807            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1808            fp->index, cid, command, bp->state,
1809            rr_cqe->ramrod_cqe.ramrod_type);
1810
1811         /* If cid is within VF range, replace the slowpath object with the
1812          * one corresponding to this VF
1813          */
1814         if (cid >= BNX2X_FIRST_VF_CID  &&
1815             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1816                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1817
1818         switch (command) {
1819         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1820                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1821                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1822                 break;
1823
1824         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1825                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1826                 drv_cmd = BNX2X_Q_CMD_SETUP;
1827                 break;
1828
1829         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1830                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1831                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1832                 break;
1833
1834         case (RAMROD_CMD_ID_ETH_HALT):
1835                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1836                 drv_cmd = BNX2X_Q_CMD_HALT;
1837                 break;
1838
1839         case (RAMROD_CMD_ID_ETH_TERMINATE):
1840                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1841                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1842                 break;
1843
1844         case (RAMROD_CMD_ID_ETH_EMPTY):
1845                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1846                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1847                 break;
1848
1849         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1850                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1851                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1852                 break;
1853
1854         default:
1855                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1856                           command, fp->index);
1857                 return;
1858         }
1859
1860         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1861             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1862                 /* q_obj->complete_cmd() failure means that this was
1863                  * an unexpected completion.
1864                  *
1865                  * In this case we don't want to increase the bp->spq_left
1866                  * because apparently we haven't sent this command the first
1867                  * place.
1868                  */
1869 #ifdef BNX2X_STOP_ON_ERROR
1870                 bnx2x_panic();
1871 #else
1872                 return;
1873 #endif
1874
1875         smp_mb__before_atomic();
1876         atomic_inc(&bp->cq_spq_left);
1877         /* push the change in bp->spq_left and towards the memory */
1878         smp_mb__after_atomic();
1879
1880         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1881
1882         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1883             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1884                 /* if Q update ramrod is completed for last Q in AFEX vif set
1885                  * flow, then ACK MCP at the end
1886                  *
1887                  * mark pending ACK to MCP bit.
1888                  * prevent case that both bits are cleared.
1889                  * At the end of load/unload driver checks that
1890                  * sp_state is cleared, and this order prevents
1891                  * races
1892                  */
1893                 smp_mb__before_atomic();
1894                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1895                 wmb();
1896                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1897                 smp_mb__after_atomic();
1898
1899                 /* schedule the sp task as mcp ack is required */
1900                 bnx2x_schedule_sp_task(bp);
1901         }
1902
1903         return;
1904 }
1905
1906 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1907 {
1908         struct bnx2x *bp = netdev_priv(dev_instance);
1909         u16 status = bnx2x_ack_int(bp);
1910         u16 mask;
1911         int i;
1912         u8 cos;
1913
1914         /* Return here if interrupt is shared and it's not for us */
1915         if (unlikely(status == 0)) {
1916                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1917                 return IRQ_NONE;
1918         }
1919         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1920
1921 #ifdef BNX2X_STOP_ON_ERROR
1922         if (unlikely(bp->panic))
1923                 return IRQ_HANDLED;
1924 #endif
1925
1926         for_each_eth_queue(bp, i) {
1927                 struct bnx2x_fastpath *fp = &bp->fp[i];
1928
1929                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1930                 if (status & mask) {
1931                         /* Handle Rx or Tx according to SB id */
1932                         for_each_cos_in_tx_queue(fp, cos)
1933                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1934                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1935                         napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1936                         status &= ~mask;
1937                 }
1938         }
1939
1940         if (CNIC_SUPPORT(bp)) {
1941                 mask = 0x2;
1942                 if (status & (mask | 0x1)) {
1943                         struct cnic_ops *c_ops = NULL;
1944
1945                         rcu_read_lock();
1946                         c_ops = rcu_dereference(bp->cnic_ops);
1947                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1948                                       CNIC_DRV_STATE_HANDLES_IRQ))
1949                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1950                         rcu_read_unlock();
1951
1952                         status &= ~mask;
1953                 }
1954         }
1955
1956         if (unlikely(status & 0x1)) {
1957
1958                 /* schedule sp task to perform default status block work, ack
1959                  * attentions and enable interrupts.
1960                  */
1961                 bnx2x_schedule_sp_task(bp);
1962
1963                 status &= ~0x1;
1964                 if (!status)
1965                         return IRQ_HANDLED;
1966         }
1967
1968         if (unlikely(status))
1969                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1970                    status);
1971
1972         return IRQ_HANDLED;
1973 }
1974
1975 /* Link */
1976
1977 /*
1978  * General service functions
1979  */
1980
1981 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1982 {
1983         u32 lock_status;
1984         u32 resource_bit = (1 << resource);
1985         int func = BP_FUNC(bp);
1986         u32 hw_lock_control_reg;
1987         int cnt;
1988
1989         /* Validating that the resource is within range */
1990         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1991                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1992                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1993                 return -EINVAL;
1994         }
1995
1996         if (func <= 5) {
1997                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1998         } else {
1999                 hw_lock_control_reg =
2000                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2001         }
2002
2003         /* Validating that the resource is not already taken */
2004         lock_status = REG_RD(bp, hw_lock_control_reg);
2005         if (lock_status & resource_bit) {
2006                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2007                    lock_status, resource_bit);
2008                 return -EEXIST;
2009         }
2010
2011         /* Try for 5 second every 5ms */
2012         for (cnt = 0; cnt < 1000; cnt++) {
2013                 /* Try to acquire the lock */
2014                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2015                 lock_status = REG_RD(bp, hw_lock_control_reg);
2016                 if (lock_status & resource_bit)
2017                         return 0;
2018
2019                 usleep_range(5000, 10000);
2020         }
2021         BNX2X_ERR("Timeout\n");
2022         return -EAGAIN;
2023 }
2024
2025 int bnx2x_release_leader_lock(struct bnx2x *bp)
2026 {
2027         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2028 }
2029
2030 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2031 {
2032         u32 lock_status;
2033         u32 resource_bit = (1 << resource);
2034         int func = BP_FUNC(bp);
2035         u32 hw_lock_control_reg;
2036
2037         /* Validating that the resource is within range */
2038         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2039                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2040                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2041                 return -EINVAL;
2042         }
2043
2044         if (func <= 5) {
2045                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2046         } else {
2047                 hw_lock_control_reg =
2048                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2049         }
2050
2051         /* Validating that the resource is currently taken */
2052         lock_status = REG_RD(bp, hw_lock_control_reg);
2053         if (!(lock_status & resource_bit)) {
2054                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2055                           lock_status, resource_bit);
2056                 return -EFAULT;
2057         }
2058
2059         REG_WR(bp, hw_lock_control_reg, resource_bit);
2060         return 0;
2061 }
2062
2063 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2064 {
2065         /* The GPIO should be swapped if swap register is set and active */
2066         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2067                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2068         int gpio_shift = gpio_num +
2069                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2070         u32 gpio_mask = (1 << gpio_shift);
2071         u32 gpio_reg;
2072         int value;
2073
2074         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2075                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2076                 return -EINVAL;
2077         }
2078
2079         /* read GPIO value */
2080         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2081
2082         /* get the requested pin value */
2083         if ((gpio_reg & gpio_mask) == gpio_mask)
2084                 value = 1;
2085         else
2086                 value = 0;
2087
2088         return value;
2089 }
2090
2091 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2092 {
2093         /* The GPIO should be swapped if swap register is set and active */
2094         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2095                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2096         int gpio_shift = gpio_num +
2097                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2098         u32 gpio_mask = (1 << gpio_shift);
2099         u32 gpio_reg;
2100
2101         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2102                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2103                 return -EINVAL;
2104         }
2105
2106         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2107         /* read GPIO and mask except the float bits */
2108         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2109
2110         switch (mode) {
2111         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2112                 DP(NETIF_MSG_LINK,
2113                    "Set GPIO %d (shift %d) -> output low\n",
2114                    gpio_num, gpio_shift);
2115                 /* clear FLOAT and set CLR */
2116                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2117                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2118                 break;
2119
2120         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2121                 DP(NETIF_MSG_LINK,
2122                    "Set GPIO %d (shift %d) -> output high\n",
2123                    gpio_num, gpio_shift);
2124                 /* clear FLOAT and set SET */
2125                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2126                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2127                 break;
2128
2129         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2130                 DP(NETIF_MSG_LINK,
2131                    "Set GPIO %d (shift %d) -> input\n",
2132                    gpio_num, gpio_shift);
2133                 /* set FLOAT */
2134                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135                 break;
2136
2137         default:
2138                 break;
2139         }
2140
2141         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2142         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2143
2144         return 0;
2145 }
2146
2147 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2148 {
2149         u32 gpio_reg = 0;
2150         int rc = 0;
2151
2152         /* Any port swapping should be handled by caller. */
2153
2154         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2155         /* read GPIO and mask except the float bits */
2156         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2157         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2158         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2159         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2160
2161         switch (mode) {
2162         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2163                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2164                 /* set CLR */
2165                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2166                 break;
2167
2168         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2169                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2170                 /* set SET */
2171                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2172                 break;
2173
2174         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2175                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2176                 /* set FLOAT */
2177                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2178                 break;
2179
2180         default:
2181                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2182                 rc = -EINVAL;
2183                 break;
2184         }
2185
2186         if (rc == 0)
2187                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2188
2189         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2190
2191         return rc;
2192 }
2193
2194 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2195 {
2196         /* The GPIO should be swapped if swap register is set and active */
2197         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2198                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2199         int gpio_shift = gpio_num +
2200                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2201         u32 gpio_mask = (1 << gpio_shift);
2202         u32 gpio_reg;
2203
2204         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2205                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2206                 return -EINVAL;
2207         }
2208
2209         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2210         /* read GPIO int */
2211         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2212
2213         switch (mode) {
2214         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2215                 DP(NETIF_MSG_LINK,
2216                    "Clear GPIO INT %d (shift %d) -> output low\n",
2217                    gpio_num, gpio_shift);
2218                 /* clear SET and set CLR */
2219                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2220                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2221                 break;
2222
2223         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2224                 DP(NETIF_MSG_LINK,
2225                    "Set GPIO INT %d (shift %d) -> output high\n",
2226                    gpio_num, gpio_shift);
2227                 /* clear CLR and set SET */
2228                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2229                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2230                 break;
2231
2232         default:
2233                 break;
2234         }
2235
2236         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2237         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2238
2239         return 0;
2240 }
2241
2242 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2243 {
2244         u32 spio_reg;
2245
2246         /* Only 2 SPIOs are configurable */
2247         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2248                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2249                 return -EINVAL;
2250         }
2251
2252         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2253         /* read SPIO and mask except the float bits */
2254         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2255
2256         switch (mode) {
2257         case MISC_SPIO_OUTPUT_LOW:
2258                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2259                 /* clear FLOAT and set CLR */
2260                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2261                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2262                 break;
2263
2264         case MISC_SPIO_OUTPUT_HIGH:
2265                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2266                 /* clear FLOAT and set SET */
2267                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2268                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2269                 break;
2270
2271         case MISC_SPIO_INPUT_HI_Z:
2272                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2273                 /* set FLOAT */
2274                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2275                 break;
2276
2277         default:
2278                 break;
2279         }
2280
2281         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2282         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2283
2284         return 0;
2285 }
2286
2287 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2288 {
2289         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2290         switch (bp->link_vars.ieee_fc &
2291                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2292         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2293                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2294                                                    ADVERTISED_Pause);
2295                 break;
2296
2297         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2298                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2299                                                   ADVERTISED_Pause);
2300                 break;
2301
2302         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2303                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2304                 break;
2305
2306         default:
2307                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2308                                                    ADVERTISED_Pause);
2309                 break;
2310         }
2311 }
2312
2313 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2314 {
2315         /* Initialize link parameters structure variables
2316          * It is recommended to turn off RX FC for jumbo frames
2317          *  for better performance
2318          */
2319         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2320                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2321         else
2322                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2323 }
2324
2325 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2326 {
2327         u32 pause_enabled = 0;
2328
2329         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2330                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2331                         pause_enabled = 1;
2332
2333                 REG_WR(bp, BAR_USTRORM_INTMEM +
2334                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2335                        pause_enabled);
2336         }
2337
2338         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2339            pause_enabled ? "enabled" : "disabled");
2340 }
2341
2342 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2343 {
2344         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2345         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2346
2347         if (!BP_NOMCP(bp)) {
2348                 bnx2x_set_requested_fc(bp);
2349                 bnx2x_acquire_phy_lock(bp);
2350
2351                 if (load_mode == LOAD_DIAG) {
2352                         struct link_params *lp = &bp->link_params;
2353                         lp->loopback_mode = LOOPBACK_XGXS;
2354                         /* do PHY loopback at 10G speed, if possible */
2355                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2356                                 if (lp->speed_cap_mask[cfx_idx] &
2357                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2358                                         lp->req_line_speed[cfx_idx] =
2359                                         SPEED_10000;
2360                                 else
2361                                         lp->req_line_speed[cfx_idx] =
2362                                         SPEED_1000;
2363                         }
2364                 }
2365
2366                 if (load_mode == LOAD_LOOPBACK_EXT) {
2367                         struct link_params *lp = &bp->link_params;
2368                         lp->loopback_mode = LOOPBACK_EXT;
2369                 }
2370
2371                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2372
2373                 bnx2x_release_phy_lock(bp);
2374
2375                 bnx2x_init_dropless_fc(bp);
2376
2377                 bnx2x_calc_fc_adv(bp);
2378
2379                 if (bp->link_vars.link_up) {
2380                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2381                         bnx2x_link_report(bp);
2382                 }
2383                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2384                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2385                 return rc;
2386         }
2387         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2388         return -EINVAL;
2389 }
2390
2391 void bnx2x_link_set(struct bnx2x *bp)
2392 {
2393         if (!BP_NOMCP(bp)) {
2394                 bnx2x_acquire_phy_lock(bp);
2395                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2396                 bnx2x_release_phy_lock(bp);
2397
2398                 bnx2x_init_dropless_fc(bp);
2399
2400                 bnx2x_calc_fc_adv(bp);
2401         } else
2402                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2403 }
2404
2405 static void bnx2x__link_reset(struct bnx2x *bp)
2406 {
2407         if (!BP_NOMCP(bp)) {
2408                 bnx2x_acquire_phy_lock(bp);
2409                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2410                 bnx2x_release_phy_lock(bp);
2411         } else
2412                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2413 }
2414
2415 void bnx2x_force_link_reset(struct bnx2x *bp)
2416 {
2417         bnx2x_acquire_phy_lock(bp);
2418         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2419         bnx2x_release_phy_lock(bp);
2420 }
2421
2422 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2423 {
2424         u8 rc = 0;
2425
2426         if (!BP_NOMCP(bp)) {
2427                 bnx2x_acquire_phy_lock(bp);
2428                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2429                                      is_serdes);
2430                 bnx2x_release_phy_lock(bp);
2431         } else
2432                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2433
2434         return rc;
2435 }
2436
2437 /* Calculates the sum of vn_min_rates.
2438    It's needed for further normalizing of the min_rates.
2439    Returns:
2440      sum of vn_min_rates.
2441        or
2442      0 - if all the min_rates are 0.
2443      In the later case fairness algorithm should be deactivated.
2444      If not all min_rates are zero then those that are zeroes will be set to 1.
2445  */
2446 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2447                                       struct cmng_init_input *input)
2448 {
2449         int all_zero = 1;
2450         int vn;
2451
2452         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2453                 u32 vn_cfg = bp->mf_config[vn];
2454                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2455                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2456
2457                 /* Skip hidden vns */
2458                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2459                         vn_min_rate = 0;
2460                 /* If min rate is zero - set it to 1 */
2461                 else if (!vn_min_rate)
2462                         vn_min_rate = DEF_MIN_RATE;
2463                 else
2464                         all_zero = 0;
2465
2466                 input->vnic_min_rate[vn] = vn_min_rate;
2467         }
2468
2469         /* if ETS or all min rates are zeros - disable fairness */
2470         if (BNX2X_IS_ETS_ENABLED(bp)) {
2471                 input->flags.cmng_enables &=
2472                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2473                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2474         } else if (all_zero) {
2475                 input->flags.cmng_enables &=
2476                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2477                 DP(NETIF_MSG_IFUP,
2478                    "All MIN values are zeroes fairness will be disabled\n");
2479         } else
2480                 input->flags.cmng_enables |=
2481                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482 }
2483
2484 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2485                                     struct cmng_init_input *input)
2486 {
2487         u16 vn_max_rate;
2488         u32 vn_cfg = bp->mf_config[vn];
2489
2490         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2491                 vn_max_rate = 0;
2492         else {
2493                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2494
2495                 if (IS_MF_SI(bp)) {
2496                         /* maxCfg in percents of linkspeed */
2497                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2498                 } else /* SD modes */
2499                         /* maxCfg is absolute in 100Mb units */
2500                         vn_max_rate = maxCfg * 100;
2501         }
2502
2503         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2504
2505         input->vnic_max_rate[vn] = vn_max_rate;
2506 }
2507
2508 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2509 {
2510         if (CHIP_REV_IS_SLOW(bp))
2511                 return CMNG_FNS_NONE;
2512         if (IS_MF(bp))
2513                 return CMNG_FNS_MINMAX;
2514
2515         return CMNG_FNS_NONE;
2516 }
2517
2518 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2519 {
2520         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2521
2522         if (BP_NOMCP(bp))
2523                 return; /* what should be the default value in this case */
2524
2525         /* For 2 port configuration the absolute function number formula
2526          * is:
2527          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2528          *
2529          *      and there are 4 functions per port
2530          *
2531          * For 4 port configuration it is
2532          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2533          *
2534          *      and there are 2 functions per port
2535          */
2536         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2537                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2538
2539                 if (func >= E1H_FUNC_MAX)
2540                         break;
2541
2542                 bp->mf_config[vn] =
2543                         MF_CFG_RD(bp, func_mf_config[func].config);
2544         }
2545         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2546                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2547                 bp->flags |= MF_FUNC_DIS;
2548         } else {
2549                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2550                 bp->flags &= ~MF_FUNC_DIS;
2551         }
2552 }
2553
2554 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2555 {
2556         struct cmng_init_input input;
2557         memset(&input, 0, sizeof(struct cmng_init_input));
2558
2559         input.port_rate = bp->link_vars.line_speed;
2560
2561         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2562                 int vn;
2563
2564                 /* read mf conf from shmem */
2565                 if (read_cfg)
2566                         bnx2x_read_mf_cfg(bp);
2567
2568                 /* vn_weight_sum and enable fairness if not 0 */
2569                 bnx2x_calc_vn_min(bp, &input);
2570
2571                 /* calculate and set min-max rate for each vn */
2572                 if (bp->port.pmf)
2573                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2574                                 bnx2x_calc_vn_max(bp, vn, &input);
2575
2576                 /* always enable rate shaping and fairness */
2577                 input.flags.cmng_enables |=
2578                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2579
2580                 bnx2x_init_cmng(&input, &bp->cmng);
2581                 return;
2582         }
2583
2584         /* rate shaping and fairness are disabled */
2585         DP(NETIF_MSG_IFUP,
2586            "rate shaping and fairness are disabled\n");
2587 }
2588
2589 static void storm_memset_cmng(struct bnx2x *bp,
2590                               struct cmng_init *cmng,
2591                               u8 port)
2592 {
2593         int vn;
2594         size_t size = sizeof(struct cmng_struct_per_port);
2595
2596         u32 addr = BAR_XSTRORM_INTMEM +
2597                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2598
2599         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2600
2601         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2602                 int func = func_by_vn(bp, vn);
2603
2604                 addr = BAR_XSTRORM_INTMEM +
2605                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2606                 size = sizeof(struct rate_shaping_vars_per_vn);
2607                 __storm_memset_struct(bp, addr, size,
2608                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2609
2610                 addr = BAR_XSTRORM_INTMEM +
2611                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2612                 size = sizeof(struct fairness_vars_per_vn);
2613                 __storm_memset_struct(bp, addr, size,
2614                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2615         }
2616 }
2617
2618 /* init cmng mode in HW according to local configuration */
2619 void bnx2x_set_local_cmng(struct bnx2x *bp)
2620 {
2621         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2622
2623         if (cmng_fns != CMNG_FNS_NONE) {
2624                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2625                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2626         } else {
2627                 /* rate shaping and fairness are disabled */
2628                 DP(NETIF_MSG_IFUP,
2629                    "single function mode without fairness\n");
2630         }
2631 }
2632
2633 /* This function is called upon link interrupt */
2634 static void bnx2x_link_attn(struct bnx2x *bp)
2635 {
2636         /* Make sure that we are synced with the current statistics */
2637         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2638
2639         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2640
2641         bnx2x_init_dropless_fc(bp);
2642
2643         if (bp->link_vars.link_up) {
2644
2645                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2646                         struct host_port_stats *pstats;
2647
2648                         pstats = bnx2x_sp(bp, port_stats);
2649                         /* reset old mac stats */
2650                         memset(&(pstats->mac_stx[0]), 0,
2651                                sizeof(struct mac_stx));
2652                 }
2653                 if (bp->state == BNX2X_STATE_OPEN)
2654                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2655         }
2656
2657         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2658                 bnx2x_set_local_cmng(bp);
2659
2660         __bnx2x_link_report(bp);
2661
2662         if (IS_MF(bp))
2663                 bnx2x_link_sync_notify(bp);
2664 }
2665
2666 void bnx2x__link_status_update(struct bnx2x *bp)
2667 {
2668         if (bp->state != BNX2X_STATE_OPEN)
2669                 return;
2670
2671         /* read updated dcb configuration */
2672         if (IS_PF(bp)) {
2673                 bnx2x_dcbx_pmf_update(bp);
2674                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2675                 if (bp->link_vars.link_up)
2676                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2677                 else
2678                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2679                         /* indicate link status */
2680                 bnx2x_link_report(bp);
2681
2682         } else { /* VF */
2683                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2684                                           SUPPORTED_10baseT_Full |
2685                                           SUPPORTED_100baseT_Half |
2686                                           SUPPORTED_100baseT_Full |
2687                                           SUPPORTED_1000baseT_Full |
2688                                           SUPPORTED_2500baseX_Full |
2689                                           SUPPORTED_10000baseT_Full |
2690                                           SUPPORTED_TP |
2691                                           SUPPORTED_FIBRE |
2692                                           SUPPORTED_Autoneg |
2693                                           SUPPORTED_Pause |
2694                                           SUPPORTED_Asym_Pause);
2695                 bp->port.advertising[0] = bp->port.supported[0];
2696
2697                 bp->link_params.bp = bp;
2698                 bp->link_params.port = BP_PORT(bp);
2699                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2700                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2701                 bp->link_params.req_line_speed[0] = SPEED_10000;
2702                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2703                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2704                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2705                 bp->link_vars.line_speed = SPEED_10000;
2706                 bp->link_vars.link_status =
2707                         (LINK_STATUS_LINK_UP |
2708                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2709                 bp->link_vars.link_up = 1;
2710                 bp->link_vars.duplex = DUPLEX_FULL;
2711                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2712                 __bnx2x_link_report(bp);
2713
2714                 bnx2x_sample_bulletin(bp);
2715
2716                 /* if bulletin board did not have an update for link status
2717                  * __bnx2x_link_report will report current status
2718                  * but it will NOT duplicate report in case of already reported
2719                  * during sampling bulletin board.
2720                  */
2721                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2722         }
2723 }
2724
2725 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2726                                   u16 vlan_val, u8 allowed_prio)
2727 {
2728         struct bnx2x_func_state_params func_params = {NULL};
2729         struct bnx2x_func_afex_update_params *f_update_params =
2730                 &func_params.params.afex_update;
2731
2732         func_params.f_obj = &bp->func_obj;
2733         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2734
2735         /* no need to wait for RAMROD completion, so don't
2736          * set RAMROD_COMP_WAIT flag
2737          */
2738
2739         f_update_params->vif_id = vifid;
2740         f_update_params->afex_default_vlan = vlan_val;
2741         f_update_params->allowed_priorities = allowed_prio;
2742
2743         /* if ramrod can not be sent, response to MCP immediately */
2744         if (bnx2x_func_state_change(bp, &func_params) < 0)
2745                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2746
2747         return 0;
2748 }
2749
2750 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2751                                           u16 vif_index, u8 func_bit_map)
2752 {
2753         struct bnx2x_func_state_params func_params = {NULL};
2754         struct bnx2x_func_afex_viflists_params *update_params =
2755                 &func_params.params.afex_viflists;
2756         int rc;
2757         u32 drv_msg_code;
2758
2759         /* validate only LIST_SET and LIST_GET are received from switch */
2760         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2761                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2762                           cmd_type);
2763
2764         func_params.f_obj = &bp->func_obj;
2765         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2766
2767         /* set parameters according to cmd_type */
2768         update_params->afex_vif_list_command = cmd_type;
2769         update_params->vif_list_index = vif_index;
2770         update_params->func_bit_map =
2771                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2772         update_params->func_to_clear = 0;
2773         drv_msg_code =
2774                 (cmd_type == VIF_LIST_RULE_GET) ?
2775                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2776                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2777
2778         /* if ramrod can not be sent, respond to MCP immediately for
2779          * SET and GET requests (other are not triggered from MCP)
2780          */
2781         rc = bnx2x_func_state_change(bp, &func_params);
2782         if (rc < 0)
2783                 bnx2x_fw_command(bp, drv_msg_code, 0);
2784
2785         return 0;
2786 }
2787
2788 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2789 {
2790         struct afex_stats afex_stats;
2791         u32 func = BP_ABS_FUNC(bp);
2792         u32 mf_config;
2793         u16 vlan_val;
2794         u32 vlan_prio;
2795         u16 vif_id;
2796         u8 allowed_prio;
2797         u8 vlan_mode;
2798         u32 addr_to_write, vifid, addrs, stats_type, i;
2799
2800         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2801                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2802                 DP(BNX2X_MSG_MCP,
2803                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2804                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2805         }
2806
2807         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2808                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2809                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2810                 DP(BNX2X_MSG_MCP,
2811                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2812                    vifid, addrs);
2813                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2814                                                addrs);
2815         }
2816
2817         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2818                 addr_to_write = SHMEM2_RD(bp,
2819                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2820                 stats_type = SHMEM2_RD(bp,
2821                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2822
2823                 DP(BNX2X_MSG_MCP,
2824                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2825                    addr_to_write);
2826
2827                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2828
2829                 /* write response to scratchpad, for MCP */
2830                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2831                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2832                                *(((u32 *)(&afex_stats))+i));
2833
2834                 /* send ack message to MCP */
2835                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2836         }
2837
2838         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2839                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2840                 bp->mf_config[BP_VN(bp)] = mf_config;
2841                 DP(BNX2X_MSG_MCP,
2842                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2843                    mf_config);
2844
2845                 /* if VIF_SET is "enabled" */
2846                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2847                         /* set rate limit directly to internal RAM */
2848                         struct cmng_init_input cmng_input;
2849                         struct rate_shaping_vars_per_vn m_rs_vn;
2850                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2851                         u32 addr = BAR_XSTRORM_INTMEM +
2852                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2853
2854                         bp->mf_config[BP_VN(bp)] = mf_config;
2855
2856                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2857                         m_rs_vn.vn_counter.rate =
2858                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2859                         m_rs_vn.vn_counter.quota =
2860                                 (m_rs_vn.vn_counter.rate *
2861                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2862
2863                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2864
2865                         /* read relevant values from mf_cfg struct in shmem */
2866                         vif_id =
2867                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2868                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2869                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2870                         vlan_val =
2871                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2872                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2873                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2874                         vlan_prio = (mf_config &
2875                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2876                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2877                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2878                         vlan_mode =
2879                                 (MF_CFG_RD(bp,
2880                                            func_mf_config[func].afex_config) &
2881                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2882                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2883                         allowed_prio =
2884                                 (MF_CFG_RD(bp,
2885                                            func_mf_config[func].afex_config) &
2886                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2887                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2888
2889                         /* send ramrod to FW, return in case of failure */
2890                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2891                                                    allowed_prio))
2892                                 return;
2893
2894                         bp->afex_def_vlan_tag = vlan_val;
2895                         bp->afex_vlan_mode = vlan_mode;
2896                 } else {
2897                         /* notify link down because BP->flags is disabled */
2898                         bnx2x_link_report(bp);
2899
2900                         /* send INVALID VIF ramrod to FW */
2901                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2902
2903                         /* Reset the default afex VLAN */
2904                         bp->afex_def_vlan_tag = -1;
2905                 }
2906         }
2907 }
2908
2909 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2910 {
2911         struct bnx2x_func_switch_update_params *switch_update_params;
2912         struct bnx2x_func_state_params func_params;
2913
2914         memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2915         switch_update_params = &func_params.params.switch_update;
2916         func_params.f_obj = &bp->func_obj;
2917         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2918
2919         if (IS_MF_UFP(bp)) {
2920                 int func = BP_ABS_FUNC(bp);
2921                 u32 val;
2922
2923                 /* Re-learn the S-tag from shmem */
2924                 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2925                                 FUNC_MF_CFG_E1HOV_TAG_MASK;
2926                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2927                         bp->mf_ov = val;
2928                 } else {
2929                         BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2930                         goto fail;
2931                 }
2932
2933                 /* Configure new S-tag in LLH */
2934                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2935                        bp->mf_ov);
2936
2937                 /* Send Ramrod to update FW of change */
2938                 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2939                           &switch_update_params->changes);
2940                 switch_update_params->vlan = bp->mf_ov;
2941
2942                 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2943                         BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2944                                   bp->mf_ov);
2945                         goto fail;
2946                 }
2947
2948                 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", bp->mf_ov);
2949
2950                 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2951
2952                 return;
2953         }
2954
2955         /* not supported by SW yet */
2956 fail:
2957         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2958 }
2959
2960 static void bnx2x_pmf_update(struct bnx2x *bp)
2961 {
2962         int port = BP_PORT(bp);
2963         u32 val;
2964
2965         bp->port.pmf = 1;
2966         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2967
2968         /*
2969          * We need the mb() to ensure the ordering between the writing to
2970          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2971          */
2972         smp_mb();
2973
2974         /* queue a periodic task */
2975         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2976
2977         bnx2x_dcbx_pmf_update(bp);
2978
2979         /* enable nig attention */
2980         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2981         if (bp->common.int_block == INT_BLOCK_HC) {
2982                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2983                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2984         } else if (!CHIP_IS_E1x(bp)) {
2985                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2986                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2987         }
2988
2989         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2990 }
2991
2992 /* end of Link */
2993
2994 /* slow path */
2995
2996 /*
2997  * General service functions
2998  */
2999
3000 /* send the MCP a request, block until there is a reply */
3001 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3002 {
3003         int mb_idx = BP_FW_MB_IDX(bp);
3004         u32 seq;
3005         u32 rc = 0;
3006         u32 cnt = 1;
3007         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3008
3009         mutex_lock(&bp->fw_mb_mutex);
3010         seq = ++bp->fw_seq;
3011         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3012         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3013
3014         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3015                         (command | seq), param);
3016
3017         do {
3018                 /* let the FW do it's magic ... */
3019                 msleep(delay);
3020
3021                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3022
3023                 /* Give the FW up to 5 second (500*10ms) */
3024         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3025
3026         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3027            cnt*delay, rc, seq);
3028
3029         /* is this a reply to our command? */
3030         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3031                 rc &= FW_MSG_CODE_MASK;
3032         else {
3033                 /* FW BUG! */
3034                 BNX2X_ERR("FW failed to respond!\n");
3035                 bnx2x_fw_dump(bp);
3036                 rc = 0;
3037         }
3038         mutex_unlock(&bp->fw_mb_mutex);
3039
3040         return rc;
3041 }
3042
3043 static void storm_memset_func_cfg(struct bnx2x *bp,
3044                                  struct tstorm_eth_function_common_config *tcfg,
3045                                  u16 abs_fid)
3046 {
3047         size_t size = sizeof(struct tstorm_eth_function_common_config);
3048
3049         u32 addr = BAR_TSTRORM_INTMEM +
3050                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3051
3052         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3053 }
3054
3055 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3056 {
3057         if (CHIP_IS_E1x(bp)) {
3058                 struct tstorm_eth_function_common_config tcfg = {0};
3059
3060                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3061         }
3062
3063         /* Enable the function in the FW */
3064         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3065         storm_memset_func_en(bp, p->func_id, 1);
3066
3067         /* spq */
3068         if (p->func_flgs & FUNC_FLG_SPQ) {
3069                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3070                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3071                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3072         }
3073 }
3074
3075 /**
3076  * bnx2x_get_common_flags - Return common flags
3077  *
3078  * @bp          device handle
3079  * @fp          queue handle
3080  * @zero_stats  TRUE if statistics zeroing is needed
3081  *
3082  * Return the flags that are common for the Tx-only and not normal connections.
3083  */
3084 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3085                                             struct bnx2x_fastpath *fp,
3086                                             bool zero_stats)
3087 {
3088         unsigned long flags = 0;
3089
3090         /* PF driver will always initialize the Queue to an ACTIVE state */
3091         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3092
3093         /* tx only connections collect statistics (on the same index as the
3094          * parent connection). The statistics are zeroed when the parent
3095          * connection is initialized.
3096          */
3097
3098         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3099         if (zero_stats)
3100                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3101
3102         if (bp->flags & TX_SWITCHING)
3103                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3104
3105         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3106         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3107
3108 #ifdef BNX2X_STOP_ON_ERROR
3109         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3110 #endif
3111
3112         return flags;
3113 }
3114
3115 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3116                                        struct bnx2x_fastpath *fp,
3117                                        bool leading)
3118 {
3119         unsigned long flags = 0;
3120
3121         /* calculate other queue flags */
3122         if (IS_MF_SD(bp))
3123                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3124
3125         if (IS_FCOE_FP(fp)) {
3126                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3127                 /* For FCoE - force usage of default priority (for afex) */
3128                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3129         }
3130
3131         if (fp->mode != TPA_MODE_DISABLED) {
3132                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3133                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3134                 if (fp->mode == TPA_MODE_GRO)
3135                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3136         }
3137
3138         if (leading) {
3139                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3140                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3141         }
3142
3143         /* Always set HW VLAN stripping */
3144         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3145
3146         /* configure silent vlan removal */
3147         if (IS_MF_AFEX(bp))
3148                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3149
3150         return flags | bnx2x_get_common_flags(bp, fp, true);
3151 }
3152
3153 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3154         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3155         u8 cos)
3156 {
3157         gen_init->stat_id = bnx2x_stats_id(fp);
3158         gen_init->spcl_id = fp->cl_id;
3159
3160         /* Always use mini-jumbo MTU for FCoE L2 ring */
3161         if (IS_FCOE_FP(fp))
3162                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3163         else
3164                 gen_init->mtu = bp->dev->mtu;
3165
3166         gen_init->cos = cos;
3167
3168         gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3169 }
3170
3171 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3172         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3173         struct bnx2x_rxq_setup_params *rxq_init)
3174 {
3175         u8 max_sge = 0;
3176         u16 sge_sz = 0;
3177         u16 tpa_agg_size = 0;
3178
3179         if (fp->mode != TPA_MODE_DISABLED) {
3180                 pause->sge_th_lo = SGE_TH_LO(bp);
3181                 pause->sge_th_hi = SGE_TH_HI(bp);
3182
3183                 /* validate SGE ring has enough to cross high threshold */
3184                 WARN_ON(bp->dropless_fc &&
3185                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3186                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3187
3188                 tpa_agg_size = TPA_AGG_SIZE;
3189                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3190                         SGE_PAGE_SHIFT;
3191                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3192                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3193                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3194         }
3195
3196         /* pause - not for e1 */
3197         if (!CHIP_IS_E1(bp)) {
3198                 pause->bd_th_lo = BD_TH_LO(bp);
3199                 pause->bd_th_hi = BD_TH_HI(bp);
3200
3201                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3202                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3203                 /*
3204                  * validate that rings have enough entries to cross
3205                  * high thresholds
3206                  */
3207                 WARN_ON(bp->dropless_fc &&
3208                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3209                                 bp->rx_ring_size);
3210                 WARN_ON(bp->dropless_fc &&
3211                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3212                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3213
3214                 pause->pri_map = 1;
3215         }
3216
3217         /* rxq setup */
3218         rxq_init->dscr_map = fp->rx_desc_mapping;
3219         rxq_init->sge_map = fp->rx_sge_mapping;
3220         rxq_init->rcq_map = fp->rx_comp_mapping;
3221         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3222
3223         /* This should be a maximum number of data bytes that may be
3224          * placed on the BD (not including paddings).
3225          */
3226         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3227                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3228
3229         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3230         rxq_init->tpa_agg_sz = tpa_agg_size;
3231         rxq_init->sge_buf_sz = sge_sz;
3232         rxq_init->max_sges_pkt = max_sge;
3233         rxq_init->rss_engine_id = BP_FUNC(bp);
3234         rxq_init->mcast_engine_id = BP_FUNC(bp);
3235
3236         /* Maximum number or simultaneous TPA aggregation for this Queue.
3237          *
3238          * For PF Clients it should be the maximum available number.
3239          * VF driver(s) may want to define it to a smaller value.
3240          */
3241         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3242
3243         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3244         rxq_init->fw_sb_id = fp->fw_sb_id;
3245
3246         if (IS_FCOE_FP(fp))
3247                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3248         else
3249                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3250         /* configure silent vlan removal
3251          * if multi function mode is afex, then mask default vlan
3252          */
3253         if (IS_MF_AFEX(bp)) {
3254                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3255                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3256         }
3257 }
3258
3259 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3260         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3261         u8 cos)
3262 {
3263         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3264         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3265         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3266         txq_init->fw_sb_id = fp->fw_sb_id;
3267
3268         /*
3269          * set the tss leading client id for TX classification ==
3270          * leading RSS client id
3271          */
3272         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3273
3274         if (IS_FCOE_FP(fp)) {
3275                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3276                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3277         }
3278 }
3279
3280 static void bnx2x_pf_init(struct bnx2x *bp)
3281 {
3282         struct bnx2x_func_init_params func_init = {0};
3283         struct event_ring_data eq_data = { {0} };
3284         u16 flags;
3285
3286         if (!CHIP_IS_E1x(bp)) {
3287                 /* reset IGU PF statistics: MSIX + ATTN */
3288                 /* PF */
3289                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3290                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3291                            (CHIP_MODE_IS_4_PORT(bp) ?
3292                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3293                 /* ATTN */
3294                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3295                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3296                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3297                            (CHIP_MODE_IS_4_PORT(bp) ?
3298                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3299         }
3300
3301         /* function setup flags */
3302         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3303
3304         /* This flag is relevant for E1x only.
3305          * E2 doesn't have a TPA configuration in a function level.
3306          */
3307         flags |= (bp->dev->features & NETIF_F_LRO) ? FUNC_FLG_TPA : 0;
3308
3309         func_init.func_flgs = flags;
3310         func_init.pf_id = BP_FUNC(bp);
3311         func_init.func_id = BP_FUNC(bp);
3312         func_init.spq_map = bp->spq_mapping;
3313         func_init.spq_prod = bp->spq_prod_idx;
3314
3315         bnx2x_func_init(bp, &func_init);
3316
3317         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3318
3319         /*
3320          * Congestion management values depend on the link rate
3321          * There is no active link so initial link rate is set to 10 Gbps.
3322          * When the link comes up The congestion management values are
3323          * re-calculated according to the actual link rate.
3324          */
3325         bp->link_vars.line_speed = SPEED_10000;
3326         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3327
3328         /* Only the PMF sets the HW */
3329         if (bp->port.pmf)
3330                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3331
3332         /* init Event Queue - PCI bus guarantees correct endianity*/
3333         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3334         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3335         eq_data.producer = bp->eq_prod;
3336         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3337         eq_data.sb_id = DEF_SB_ID;
3338         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3339 }
3340
3341 static void bnx2x_e1h_disable(struct bnx2x *bp)
3342 {
3343         int port = BP_PORT(bp);
3344
3345         bnx2x_tx_disable(bp);
3346
3347         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3348 }
3349
3350 static void bnx2x_e1h_enable(struct bnx2x *bp)
3351 {
3352         int port = BP_PORT(bp);
3353
3354         if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3355                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3356
3357         /* Tx queue should be only re-enabled */
3358         netif_tx_wake_all_queues(bp->dev);
3359
3360         /*
3361          * Should not call netif_carrier_on since it will be called if the link
3362          * is up when checking for link state
3363          */
3364 }
3365
3366 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3367
3368 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3369 {
3370         struct eth_stats_info *ether_stat =
3371                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3372         struct bnx2x_vlan_mac_obj *mac_obj =
3373                 &bp->sp_objs->mac_obj;
3374         int i;
3375
3376         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3377                 ETH_STAT_INFO_VERSION_LEN);
3378
3379         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3380          * mac_local field in ether_stat struct. The base address is offset by 2
3381          * bytes to account for the field being 8 bytes but a mac address is
3382          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3383          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3384          * allocated by the ether_stat struct, so the macs will land in their
3385          * proper positions.
3386          */
3387         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3388                 memset(ether_stat->mac_local + i, 0,
3389                        sizeof(ether_stat->mac_local[0]));
3390         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3391                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3392                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3393                                 ETH_ALEN);
3394         ether_stat->mtu_size = bp->dev->mtu;
3395         if (bp->dev->features & NETIF_F_RXCSUM)
3396                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3397         if (bp->dev->features & NETIF_F_TSO)
3398                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3399         ether_stat->feature_flags |= bp->common.boot_mode;
3400
3401         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3402
3403         ether_stat->txq_size = bp->tx_ring_size;
3404         ether_stat->rxq_size = bp->rx_ring_size;
3405
3406 #ifdef CONFIG_BNX2X_SRIOV
3407         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3408 #endif
3409 }
3410
3411 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3412 {
3413         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3414         struct fcoe_stats_info *fcoe_stat =
3415                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3416
3417         if (!CNIC_LOADED(bp))
3418                 return;
3419
3420         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3421
3422         fcoe_stat->qos_priority =
3423                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3424
3425         /* insert FCoE stats from ramrod response */
3426         if (!NO_FCOE(bp)) {
3427                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3428                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429                         tstorm_queue_statistics;
3430
3431                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3432                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3433                         xstorm_queue_statistics;
3434
3435                 struct fcoe_statistics_params *fw_fcoe_stat =
3436                         &bp->fw_stats_data->fcoe;
3437
3438                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3439                           fcoe_stat->rx_bytes_lo,
3440                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3441
3442                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3443                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3444                           fcoe_stat->rx_bytes_lo,
3445                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3446
3447                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3448                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3449                           fcoe_stat->rx_bytes_lo,
3450                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3451
3452                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3453                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3454                           fcoe_stat->rx_bytes_lo,
3455                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3456
3457                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458                           fcoe_stat->rx_frames_lo,
3459                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3460
3461                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462                           fcoe_stat->rx_frames_lo,
3463                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3464
3465                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466                           fcoe_stat->rx_frames_lo,
3467                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3468
3469                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470                           fcoe_stat->rx_frames_lo,
3471                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3472
3473                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3474                           fcoe_stat->tx_bytes_lo,
3475                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3476
3477                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3478                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3479                           fcoe_stat->tx_bytes_lo,
3480                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3481
3482                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3483                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3484                           fcoe_stat->tx_bytes_lo,
3485                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3486
3487                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3488                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3489                           fcoe_stat->tx_bytes_lo,
3490                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3491
3492                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493                           fcoe_stat->tx_frames_lo,
3494                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3495
3496                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497                           fcoe_stat->tx_frames_lo,
3498                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3499
3500                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501                           fcoe_stat->tx_frames_lo,
3502                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3503
3504                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505                           fcoe_stat->tx_frames_lo,
3506                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3507         }
3508
3509         /* ask L5 driver to add data to the struct */
3510         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3511 }
3512
3513 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3514 {
3515         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3516         struct iscsi_stats_info *iscsi_stat =
3517                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3518
3519         if (!CNIC_LOADED(bp))
3520                 return;
3521
3522         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3523                ETH_ALEN);
3524
3525         iscsi_stat->qos_priority =
3526                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3527
3528         /* ask L5 driver to add data to the struct */
3529         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3530 }
3531
3532 /* called due to MCP event (on pmf):
3533  *      reread new bandwidth configuration
3534  *      configure FW
3535  *      notify others function about the change
3536  */
3537 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3538 {
3539         if (bp->link_vars.link_up) {
3540                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3541                 bnx2x_link_sync_notify(bp);
3542         }
3543         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3544 }
3545
3546 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3547 {
3548         bnx2x_config_mf_bw(bp);
3549         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3550 }
3551
3552 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3553 {
3554         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3555         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3556 }
3557
3558 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3559 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3560
3561 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3562 {
3563         enum drv_info_opcode op_code;
3564         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3565         bool release = false;
3566         int wait;
3567
3568         /* if drv_info version supported by MFW doesn't match - send NACK */
3569         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3570                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3571                 return;
3572         }
3573
3574         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3575                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3576
3577         /* Must prevent other flows from accessing drv_info_to_mcp */
3578         mutex_lock(&bp->drv_info_mutex);
3579
3580         memset(&bp->slowpath->drv_info_to_mcp, 0,
3581                sizeof(union drv_info_to_mcp));
3582
3583         switch (op_code) {
3584         case ETH_STATS_OPCODE:
3585                 bnx2x_drv_info_ether_stat(bp);
3586                 break;
3587         case FCOE_STATS_OPCODE:
3588                 bnx2x_drv_info_fcoe_stat(bp);
3589                 break;
3590         case ISCSI_STATS_OPCODE:
3591                 bnx2x_drv_info_iscsi_stat(bp);
3592                 break;
3593         default:
3594                 /* if op code isn't supported - send NACK */
3595                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3596                 goto out;
3597         }
3598
3599         /* if we got drv_info attn from MFW then these fields are defined in
3600          * shmem2 for sure
3601          */
3602         SHMEM2_WR(bp, drv_info_host_addr_lo,
3603                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3604         SHMEM2_WR(bp, drv_info_host_addr_hi,
3605                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3606
3607         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3608
3609         /* Since possible management wants both this and get_driver_version
3610          * need to wait until management notifies us it finished utilizing
3611          * the buffer.
3612          */
3613         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3614                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3615         } else if (!bp->drv_info_mng_owner) {
3616                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3617
3618                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3619                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3620
3621                         /* Management is done; need to clear indication */
3622                         if (indication & bit) {
3623                                 SHMEM2_WR(bp, mfw_drv_indication,
3624                                           indication & ~bit);
3625                                 release = true;
3626                                 break;
3627                         }
3628
3629                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3630                 }
3631         }
3632         if (!release) {
3633                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3634                 bp->drv_info_mng_owner = true;
3635         }
3636
3637 out:
3638         mutex_unlock(&bp->drv_info_mutex);
3639 }
3640
3641 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3642 {
3643         u8 vals[4];
3644         int i = 0;
3645
3646         if (bnx2x_format) {
3647                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3648                            &vals[0], &vals[1], &vals[2], &vals[3]);
3649                 if (i > 0)
3650                         vals[0] -= '0';
3651         } else {
3652                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3653                            &vals[0], &vals[1], &vals[2], &vals[3]);
3654         }
3655
3656         while (i < 4)
3657                 vals[i++] = 0;
3658
3659         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3660 }
3661
3662 void bnx2x_update_mng_version(struct bnx2x *bp)
3663 {
3664         u32 iscsiver = DRV_VER_NOT_LOADED;
3665         u32 fcoever = DRV_VER_NOT_LOADED;
3666         u32 ethver = DRV_VER_NOT_LOADED;
3667         int idx = BP_FW_MB_IDX(bp);
3668         u8 *version;
3669
3670         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3671                 return;
3672
3673         mutex_lock(&bp->drv_info_mutex);
3674         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3675         if (bp->drv_info_mng_owner)
3676                 goto out;
3677
3678         if (bp->state != BNX2X_STATE_OPEN)
3679                 goto out;
3680
3681         /* Parse ethernet driver version */
3682         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3683         if (!CNIC_LOADED(bp))
3684                 goto out;
3685
3686         /* Try getting storage driver version via cnic */
3687         memset(&bp->slowpath->drv_info_to_mcp, 0,
3688                sizeof(union drv_info_to_mcp));
3689         bnx2x_drv_info_iscsi_stat(bp);
3690         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3691         iscsiver = bnx2x_update_mng_version_utility(version, false);
3692
3693         memset(&bp->slowpath->drv_info_to_mcp, 0,
3694                sizeof(union drv_info_to_mcp));
3695         bnx2x_drv_info_fcoe_stat(bp);
3696         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3697         fcoever = bnx2x_update_mng_version_utility(version, false);
3698
3699 out:
3700         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3701         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3702         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3703
3704         mutex_unlock(&bp->drv_info_mutex);
3705
3706         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3707            ethver, iscsiver, fcoever);
3708 }
3709
3710 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3711 {
3712         u32 cmd_ok, cmd_fail;
3713
3714         /* sanity */
3715         if (event & DRV_STATUS_DCC_EVENT_MASK &&
3716             event & DRV_STATUS_OEM_EVENT_MASK) {
3717                 BNX2X_ERR("Received simultaneous events %08x\n", event);
3718                 return;
3719         }
3720
3721         if (event & DRV_STATUS_DCC_EVENT_MASK) {
3722                 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3723                 cmd_ok = DRV_MSG_CODE_DCC_OK;
3724         } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3725                 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3726                 cmd_ok = DRV_MSG_CODE_OEM_OK;
3727         }
3728
3729         DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3730
3731         if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3732                      DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3733                 /* This is the only place besides the function initialization
3734                  * where the bp->flags can change so it is done without any
3735                  * locks
3736                  */
3737                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3738                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3739                         bp->flags |= MF_FUNC_DIS;
3740
3741                         bnx2x_e1h_disable(bp);
3742                 } else {
3743                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3744                         bp->flags &= ~MF_FUNC_DIS;
3745
3746                         bnx2x_e1h_enable(bp);
3747                 }
3748                 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3749                            DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3750         }
3751
3752         if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3753                      DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3754                 bnx2x_config_mf_bw(bp);
3755                 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3756                            DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3757         }
3758
3759         /* Report results to MCP */
3760         if (event)
3761                 bnx2x_fw_command(bp, cmd_fail, 0);
3762         else
3763                 bnx2x_fw_command(bp, cmd_ok, 0);
3764 }
3765
3766 /* must be called under the spq lock */
3767 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3768 {
3769         struct eth_spe *next_spe = bp->spq_prod_bd;
3770
3771         if (bp->spq_prod_bd == bp->spq_last_bd) {
3772                 bp->spq_prod_bd = bp->spq;
3773                 bp->spq_prod_idx = 0;
3774                 DP(BNX2X_MSG_SP, "end of spq\n");
3775         } else {
3776                 bp->spq_prod_bd++;
3777                 bp->spq_prod_idx++;
3778         }
3779         return next_spe;
3780 }
3781
3782 /* must be called under the spq lock */
3783 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3784 {
3785         int func = BP_FUNC(bp);
3786
3787         /*
3788          * Make sure that BD data is updated before writing the producer:
3789          * BD data is written to the memory, the producer is read from the
3790          * memory, thus we need a full memory barrier to ensure the ordering.
3791          */
3792         mb();
3793
3794         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3795                  bp->spq_prod_idx);
3796         mmiowb();
3797 }
3798
3799 /**
3800  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3801  *
3802  * @cmd:        command to check
3803  * @cmd_type:   command type
3804  */
3805 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3806 {
3807         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3808             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3809             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3810             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3811             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3812             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3813             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3814                 return true;
3815         else
3816                 return false;
3817 }
3818
3819 /**
3820  * bnx2x_sp_post - place a single command on an SP ring
3821  *
3822  * @bp:         driver handle
3823  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3824  * @cid:        SW CID the command is related to
3825  * @data_hi:    command private data address (high 32 bits)
3826  * @data_lo:    command private data address (low 32 bits)
3827  * @cmd_type:   command type (e.g. NONE, ETH)
3828  *
3829  * SP data is handled as if it's always an address pair, thus data fields are
3830  * not swapped to little endian in upper functions. Instead this function swaps
3831  * data as if it's two u32 fields.
3832  */
3833 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3834                   u32 data_hi, u32 data_lo, int cmd_type)
3835 {
3836         struct eth_spe *spe;
3837         u16 type;
3838         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3839
3840 #ifdef BNX2X_STOP_ON_ERROR
3841         if (unlikely(bp->panic)) {
3842                 BNX2X_ERR("Can't post SP when there is panic\n");
3843                 return -EIO;
3844         }
3845 #endif
3846
3847         spin_lock_bh(&bp->spq_lock);
3848
3849         if (common) {
3850                 if (!atomic_read(&bp->eq_spq_left)) {
3851                         BNX2X_ERR("BUG! EQ ring full!\n");
3852                         spin_unlock_bh(&bp->spq_lock);
3853                         bnx2x_panic();
3854                         return -EBUSY;
3855                 }
3856         } else if (!atomic_read(&bp->cq_spq_left)) {
3857                         BNX2X_ERR("BUG! SPQ ring full!\n");
3858                         spin_unlock_bh(&bp->spq_lock);
3859                         bnx2x_panic();
3860                         return -EBUSY;
3861         }
3862
3863         spe = bnx2x_sp_get_next(bp);
3864
3865         /* CID needs port number to be encoded int it */
3866         spe->hdr.conn_and_cmd_data =
3867                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3868                                     HW_CID(bp, cid));
3869
3870         /* In some cases, type may already contain the func-id
3871          * mainly in SRIOV related use cases, so we add it here only
3872          * if it's not already set.
3873          */
3874         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3875                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3876                         SPE_HDR_CONN_TYPE;
3877                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3878                          SPE_HDR_FUNCTION_ID);
3879         } else {
3880                 type = cmd_type;
3881         }
3882
3883         spe->hdr.type = cpu_to_le16(type);
3884
3885         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3886         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3887
3888         /*
3889          * It's ok if the actual decrement is issued towards the memory
3890          * somewhere between the spin_lock and spin_unlock. Thus no
3891          * more explicit memory barrier is needed.
3892          */
3893         if (common)
3894                 atomic_dec(&bp->eq_spq_left);
3895         else
3896                 atomic_dec(&bp->cq_spq_left);
3897
3898         DP(BNX2X_MSG_SP,
3899            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3900            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3901            (u32)(U64_LO(bp->spq_mapping) +
3902            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3903            HW_CID(bp, cid), data_hi, data_lo, type,
3904            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3905
3906         bnx2x_sp_prod_update(bp);
3907         spin_unlock_bh(&bp->spq_lock);
3908         return 0;
3909 }
3910
3911 /* acquire split MCP access lock register */
3912 static int bnx2x_acquire_alr(struct bnx2x *bp)
3913 {
3914         u32 j, val;
3915         int rc = 0;
3916
3917         might_sleep();
3918         for (j = 0; j < 1000; j++) {
3919                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3920                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3921                 if (val & MCPR_ACCESS_LOCK_LOCK)
3922                         break;
3923
3924                 usleep_range(5000, 10000);
3925         }
3926         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3927                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3928                 rc = -EBUSY;
3929         }
3930
3931         return rc;
3932 }
3933
3934 /* release split MCP access lock register */
3935 static void bnx2x_release_alr(struct bnx2x *bp)
3936 {
3937         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3938 }
3939
3940 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3941 #define BNX2X_DEF_SB_IDX        0x0002
3942
3943 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3944 {
3945         struct host_sp_status_block *def_sb = bp->def_status_blk;
3946         u16 rc = 0;
3947
3948         barrier(); /* status block is written to by the chip */
3949         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3950                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3951                 rc |= BNX2X_DEF_SB_ATT_IDX;
3952         }
3953
3954         if (bp->def_idx != def_sb->sp_sb.running_index) {
3955                 bp->def_idx = def_sb->sp_sb.running_index;
3956                 rc |= BNX2X_DEF_SB_IDX;
3957         }
3958
3959         /* Do not reorder: indices reading should complete before handling */
3960         barrier();
3961         return rc;
3962 }
3963
3964 /*
3965  * slow path service functions
3966  */
3967
3968 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3969 {
3970         int port = BP_PORT(bp);
3971         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3972                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3973         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3974                                        NIG_REG_MASK_INTERRUPT_PORT0;
3975         u32 aeu_mask;
3976         u32 nig_mask = 0;
3977         u32 reg_addr;
3978
3979         if (bp->attn_state & asserted)
3980                 BNX2X_ERR("IGU ERROR\n");
3981
3982         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3983         aeu_mask = REG_RD(bp, aeu_addr);
3984
3985         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3986            aeu_mask, asserted);
3987         aeu_mask &= ~(asserted & 0x3ff);
3988         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3989
3990         REG_WR(bp, aeu_addr, aeu_mask);
3991         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3992
3993         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3994         bp->attn_state |= asserted;
3995         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3996
3997         if (asserted & ATTN_HARD_WIRED_MASK) {
3998                 if (asserted & ATTN_NIG_FOR_FUNC) {
3999
4000                         bnx2x_acquire_phy_lock(bp);
4001
4002                         /* save nig interrupt mask */
4003                         nig_mask = REG_RD(bp, nig_int_mask_addr);
4004
4005                         /* If nig_mask is not set, no need to call the update
4006                          * function.
4007                          */
4008                         if (nig_mask) {
4009                                 REG_WR(bp, nig_int_mask_addr, 0);
4010
4011                                 bnx2x_link_attn(bp);
4012                         }
4013
4014                         /* handle unicore attn? */
4015                 }
4016                 if (asserted & ATTN_SW_TIMER_4_FUNC)
4017                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4018
4019                 if (asserted & GPIO_2_FUNC)
4020                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4021
4022                 if (asserted & GPIO_3_FUNC)
4023                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4024
4025                 if (asserted & GPIO_4_FUNC)
4026                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4027
4028                 if (port == 0) {
4029                         if (asserted & ATTN_GENERAL_ATTN_1) {
4030                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4031                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4032                         }
4033                         if (asserted & ATTN_GENERAL_ATTN_2) {
4034                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4035                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4036                         }
4037                         if (asserted & ATTN_GENERAL_ATTN_3) {
4038                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4039                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4040                         }
4041                 } else {
4042                         if (asserted & ATTN_GENERAL_ATTN_4) {
4043                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4044                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4045                         }
4046                         if (asserted & ATTN_GENERAL_ATTN_5) {
4047                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4048                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4049                         }
4050                         if (asserted & ATTN_GENERAL_ATTN_6) {
4051                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4052                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4053                         }
4054                 }
4055
4056         } /* if hardwired */
4057
4058         if (bp->common.int_block == INT_BLOCK_HC)
4059                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4060                             COMMAND_REG_ATTN_BITS_SET);
4061         else
4062                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4063
4064         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4065            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4066         REG_WR(bp, reg_addr, asserted);
4067
4068         /* now set back the mask */
4069         if (asserted & ATTN_NIG_FOR_FUNC) {
4070                 /* Verify that IGU ack through BAR was written before restoring
4071                  * NIG mask. This loop should exit after 2-3 iterations max.
4072                  */
4073                 if (bp->common.int_block != INT_BLOCK_HC) {
4074                         u32 cnt = 0, igu_acked;
4075                         do {
4076                                 igu_acked = REG_RD(bp,
4077                                                    IGU_REG_ATTENTION_ACK_BITS);
4078                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4079                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
4080                         if (!igu_acked)
4081                                 DP(NETIF_MSG_HW,
4082                                    "Failed to verify IGU ack on time\n");
4083                         barrier();
4084                 }
4085                 REG_WR(bp, nig_int_mask_addr, nig_mask);
4086                 bnx2x_release_phy_lock(bp);
4087         }
4088 }
4089
4090 static void bnx2x_fan_failure(struct bnx2x *bp)
4091 {
4092         int port = BP_PORT(bp);
4093         u32 ext_phy_config;
4094         /* mark the failure */
4095         ext_phy_config =
4096                 SHMEM_RD(bp,
4097                          dev_info.port_hw_config[port].external_phy_config);
4098
4099         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4100         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4101         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4102                  ext_phy_config);
4103
4104         /* log the failure */
4105         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4106                             "Please contact OEM Support for assistance\n");
4107
4108         /* Schedule device reset (unload)
4109          * This is due to some boards consuming sufficient power when driver is
4110          * up to overheat if fan fails.
4111          */
4112         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4113 }
4114
4115 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4116 {
4117         int port = BP_PORT(bp);
4118         int reg_offset;
4119         u32 val;
4120
4121         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4122                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4123
4124         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4125
4126                 val = REG_RD(bp, reg_offset);
4127                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4128                 REG_WR(bp, reg_offset, val);
4129
4130                 BNX2X_ERR("SPIO5 hw attention\n");
4131
4132                 /* Fan failure attention */
4133                 bnx2x_hw_reset_phy(&bp->link_params);
4134                 bnx2x_fan_failure(bp);
4135         }
4136
4137         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4138                 bnx2x_acquire_phy_lock(bp);
4139                 bnx2x_handle_module_detect_int(&bp->link_params);
4140                 bnx2x_release_phy_lock(bp);
4141         }
4142
4143         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4144
4145                 val = REG_RD(bp, reg_offset);
4146                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4147                 REG_WR(bp, reg_offset, val);
4148
4149                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4150                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4151                 bnx2x_panic();
4152         }
4153 }
4154
4155 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4156 {
4157         u32 val;
4158
4159         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4160
4161                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4162                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4163                 /* DORQ discard attention */
4164                 if (val & 0x2)
4165                         BNX2X_ERR("FATAL error from DORQ\n");
4166         }
4167
4168         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4169
4170                 int port = BP_PORT(bp);
4171                 int reg_offset;
4172
4173                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4174                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4175
4176                 val = REG_RD(bp, reg_offset);
4177                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4178                 REG_WR(bp, reg_offset, val);
4179
4180                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4181                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4182                 bnx2x_panic();
4183         }
4184 }
4185
4186 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4187 {
4188         u32 val;
4189
4190         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4191
4192                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4193                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4194                 /* CFC error attention */
4195                 if (val & 0x2)
4196                         BNX2X_ERR("FATAL error from CFC\n");
4197         }
4198
4199         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4200                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4201                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4202                 /* RQ_USDMDP_FIFO_OVERFLOW */
4203                 if (val & 0x18000)
4204                         BNX2X_ERR("FATAL error from PXP\n");
4205
4206                 if (!CHIP_IS_E1x(bp)) {
4207                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4208                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4209                 }
4210         }
4211
4212         if (attn & HW_INTERRUT_ASSERT_SET_2) {
4213
4214                 int port = BP_PORT(bp);
4215                 int reg_offset;
4216
4217                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4218                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4219
4220                 val = REG_RD(bp, reg_offset);
4221                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4222                 REG_WR(bp, reg_offset, val);
4223
4224                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4225                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4226                 bnx2x_panic();
4227         }
4228 }
4229
4230 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4231 {
4232         u32 val;
4233
4234         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4235
4236                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4237                         int func = BP_FUNC(bp);
4238
4239                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4240                         bnx2x_read_mf_cfg(bp);
4241                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4242                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4243                         val = SHMEM_RD(bp,
4244                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4245
4246                         if (val & (DRV_STATUS_DCC_EVENT_MASK |
4247                                    DRV_STATUS_OEM_EVENT_MASK))
4248                                 bnx2x_oem_event(bp,
4249                                         (val & (DRV_STATUS_DCC_EVENT_MASK |
4250                                                 DRV_STATUS_OEM_EVENT_MASK)));
4251
4252                         if (val & DRV_STATUS_SET_MF_BW)
4253                                 bnx2x_set_mf_bw(bp);
4254
4255                         if (val & DRV_STATUS_DRV_INFO_REQ)
4256                                 bnx2x_handle_drv_info_req(bp);
4257
4258                         if (val & DRV_STATUS_VF_DISABLED)
4259                                 bnx2x_schedule_iov_task(bp,
4260                                                         BNX2X_IOV_HANDLE_FLR);
4261
4262                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4263                                 bnx2x_pmf_update(bp);
4264
4265                         if (bp->port.pmf &&
4266                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4267                                 bp->dcbx_enabled > 0)
4268                                 /* start dcbx state machine */
4269                                 bnx2x_dcbx_set_params(bp,
4270                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4271                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4272                                 bnx2x_handle_afex_cmd(bp,
4273                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4274                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4275                                 bnx2x_handle_eee_event(bp);
4276
4277                         if (val & DRV_STATUS_OEM_UPDATE_SVID)
4278                                 bnx2x_handle_update_svid_cmd(bp);
4279
4280                         if (bp->link_vars.periodic_flags &
4281                             PERIODIC_FLAGS_LINK_EVENT) {
4282                                 /*  sync with link */
4283                                 bnx2x_acquire_phy_lock(bp);
4284                                 bp->link_vars.periodic_flags &=
4285                                         ~PERIODIC_FLAGS_LINK_EVENT;
4286                                 bnx2x_release_phy_lock(bp);
4287                                 if (IS_MF(bp))
4288                                         bnx2x_link_sync_notify(bp);
4289                                 bnx2x_link_report(bp);
4290                         }
4291                         /* Always call it here: bnx2x_link_report() will
4292                          * prevent the link indication duplication.
4293                          */
4294                         bnx2x__link_status_update(bp);
4295                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4296
4297                         BNX2X_ERR("MC assert!\n");
4298                         bnx2x_mc_assert(bp);
4299                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4300                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4301                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4302                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4303                         bnx2x_panic();
4304
4305                 } else if (attn & BNX2X_MCP_ASSERT) {
4306
4307                         BNX2X_ERR("MCP assert!\n");
4308                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4309                         bnx2x_fw_dump(bp);
4310
4311                 } else
4312                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4313         }
4314
4315         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4316                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4317                 if (attn & BNX2X_GRC_TIMEOUT) {
4318                         val = CHIP_IS_E1(bp) ? 0 :
4319                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4320                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4321                 }
4322                 if (attn & BNX2X_GRC_RSV) {
4323                         val = CHIP_IS_E1(bp) ? 0 :
4324                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4325                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4326                 }
4327                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4328         }
4329 }
4330
4331 /*
4332  * Bits map:
4333  * 0-7   - Engine0 load counter.
4334  * 8-15  - Engine1 load counter.
4335  * 16    - Engine0 RESET_IN_PROGRESS bit.
4336  * 17    - Engine1 RESET_IN_PROGRESS bit.
4337  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4338  *         on the engine
4339  * 19    - Engine1 ONE_IS_LOADED.
4340  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4341  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4342  *         just the one belonging to its engine).
4343  *
4344  */
4345 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4346
4347 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4348 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4349 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4350 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4351 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4352 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4353 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4354
4355 /*
4356  * Set the GLOBAL_RESET bit.
4357  *
4358  * Should be run under rtnl lock
4359  */
4360 void bnx2x_set_reset_global(struct bnx2x *bp)
4361 {
4362         u32 val;
4363         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4364         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4365         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4366         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4367 }
4368
4369 /*
4370  * Clear the GLOBAL_RESET bit.
4371  *
4372  * Should be run under rtnl lock
4373  */
4374 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4375 {
4376         u32 val;
4377         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4378         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4379         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4380         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4381 }
4382
4383 /*
4384  * Checks the GLOBAL_RESET bit.
4385  *
4386  * should be run under rtnl lock
4387  */
4388 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4389 {
4390         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4391
4392         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4393         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4394 }
4395
4396 /*
4397  * Clear RESET_IN_PROGRESS bit for the current engine.
4398  *
4399  * Should be run under rtnl lock
4400  */
4401 static void bnx2x_set_reset_done(struct bnx2x *bp)
4402 {
4403         u32 val;
4404         u32 bit = BP_PATH(bp) ?
4405                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4406         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4407         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4408
4409         /* Clear the bit */
4410         val &= ~bit;
4411         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4412
4413         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4414 }
4415
4416 /*
4417  * Set RESET_IN_PROGRESS for the current engine.
4418  *
4419  * should be run under rtnl lock
4420  */
4421 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4422 {
4423         u32 val;
4424         u32 bit = BP_PATH(bp) ?
4425                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4426         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4427         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4428
4429         /* Set the bit */
4430         val |= bit;
4431         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4432         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4433 }
4434
4435 /*
4436  * Checks the RESET_IN_PROGRESS bit for the given engine.
4437  * should be run under rtnl lock
4438  */
4439 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4440 {
4441         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4442         u32 bit = engine ?
4443                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4444
4445         /* return false if bit is set */
4446         return (val & bit) ? false : true;
4447 }
4448
4449 /*
4450  * set pf load for the current pf.
4451  *
4452  * should be run under rtnl lock
4453  */
4454 void bnx2x_set_pf_load(struct bnx2x *bp)
4455 {
4456         u32 val1, val;
4457         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4458                              BNX2X_PATH0_LOAD_CNT_MASK;
4459         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4460                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4461
4462         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4463         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4464
4465         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4466
4467         /* get the current counter value */
4468         val1 = (val & mask) >> shift;
4469
4470         /* set bit of that PF */
4471         val1 |= (1 << bp->pf_num);
4472
4473         /* clear the old value */
4474         val &= ~mask;
4475
4476         /* set the new one */
4477         val |= ((val1 << shift) & mask);
4478
4479         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4480         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4481 }
4482
4483 /**
4484  * bnx2x_clear_pf_load - clear pf load mark
4485  *
4486  * @bp:         driver handle
4487  *
4488  * Should be run under rtnl lock.
4489  * Decrements the load counter for the current engine. Returns
4490  * whether other functions are still loaded
4491  */
4492 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4493 {
4494         u32 val1, val;
4495         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4496                              BNX2X_PATH0_LOAD_CNT_MASK;
4497         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4498                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4499
4500         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4501         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4502         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4503
4504         /* get the current counter value */
4505         val1 = (val & mask) >> shift;
4506
4507         /* clear bit of that PF */
4508         val1 &= ~(1 << bp->pf_num);
4509
4510         /* clear the old value */
4511         val &= ~mask;
4512
4513         /* set the new one */
4514         val |= ((val1 << shift) & mask);
4515
4516         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4517         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4518         return val1 != 0;
4519 }
4520
4521 /*
4522  * Read the load status for the current engine.
4523  *
4524  * should be run under rtnl lock
4525  */
4526 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4527 {
4528         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4529                              BNX2X_PATH0_LOAD_CNT_MASK);
4530         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4531                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4532         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4533
4534         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4535
4536         val = (val & mask) >> shift;
4537
4538         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4539            engine, val);
4540
4541         return val != 0;
4542 }
4543
4544 static void _print_parity(struct bnx2x *bp, u32 reg)
4545 {
4546         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4547 }
4548
4549 static void _print_next_block(int idx, const char *blk)
4550 {
4551         pr_cont("%s%s", idx ? ", " : "", blk);
4552 }
4553
4554 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4555                                             int *par_num, bool print)
4556 {
4557         u32 cur_bit;
4558         bool res;
4559         int i;
4560
4561         res = false;
4562
4563         for (i = 0; sig; i++) {
4564                 cur_bit = (0x1UL << i);
4565                 if (sig & cur_bit) {
4566                         res |= true; /* Each bit is real error! */
4567
4568                         if (print) {
4569                                 switch (cur_bit) {
4570                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4571                                         _print_next_block((*par_num)++, "BRB");
4572                                         _print_parity(bp,
4573                                                       BRB1_REG_BRB1_PRTY_STS);
4574                                         break;
4575                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4576                                         _print_next_block((*par_num)++,
4577                                                           "PARSER");
4578                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4579                                         break;
4580                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4581                                         _print_next_block((*par_num)++, "TSDM");
4582                                         _print_parity(bp,
4583                                                       TSDM_REG_TSDM_PRTY_STS);
4584                                         break;
4585                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4586                                         _print_next_block((*par_num)++,
4587                                                           "SEARCHER");
4588                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4589                                         break;
4590                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4591                                         _print_next_block((*par_num)++, "TCM");
4592                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4593                                         break;
4594                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4595                                         _print_next_block((*par_num)++,
4596                                                           "TSEMI");
4597                                         _print_parity(bp,
4598                                                       TSEM_REG_TSEM_PRTY_STS_0);
4599                                         _print_parity(bp,
4600                                                       TSEM_REG_TSEM_PRTY_STS_1);
4601                                         break;
4602                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4603                                         _print_next_block((*par_num)++, "XPB");
4604                                         _print_parity(bp, GRCBASE_XPB +
4605                                                           PB_REG_PB_PRTY_STS);
4606                                         break;
4607                                 }
4608                         }
4609
4610                         /* Clear the bit */
4611                         sig &= ~cur_bit;
4612                 }
4613         }
4614
4615         return res;
4616 }
4617
4618 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4619                                             int *par_num, bool *global,
4620                                             bool print)
4621 {
4622         u32 cur_bit;
4623         bool res;
4624         int i;
4625
4626         res = false;
4627
4628         for (i = 0; sig; i++) {
4629                 cur_bit = (0x1UL << i);
4630                 if (sig & cur_bit) {
4631                         res |= true; /* Each bit is real error! */
4632                         switch (cur_bit) {
4633                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4634                                 if (print) {
4635                                         _print_next_block((*par_num)++, "PBF");
4636                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4637                                 }
4638                                 break;
4639                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4640                                 if (print) {
4641                                         _print_next_block((*par_num)++, "QM");
4642                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4643                                 }
4644                                 break;
4645                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4646                                 if (print) {
4647                                         _print_next_block((*par_num)++, "TM");
4648                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4649                                 }
4650                                 break;
4651                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4652                                 if (print) {
4653                                         _print_next_block((*par_num)++, "XSDM");
4654                                         _print_parity(bp,
4655                                                       XSDM_REG_XSDM_PRTY_STS);
4656                                 }
4657                                 break;
4658                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4659                                 if (print) {
4660                                         _print_next_block((*par_num)++, "XCM");
4661                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4662                                 }
4663                                 break;
4664                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4665                                 if (print) {
4666                                         _print_next_block((*par_num)++,
4667                                                           "XSEMI");
4668                                         _print_parity(bp,
4669                                                       XSEM_REG_XSEM_PRTY_STS_0);
4670                                         _print_parity(bp,
4671                                                       XSEM_REG_XSEM_PRTY_STS_1);
4672                                 }
4673                                 break;
4674                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4675                                 if (print) {
4676                                         _print_next_block((*par_num)++,
4677                                                           "DOORBELLQ");
4678                                         _print_parity(bp,
4679                                                       DORQ_REG_DORQ_PRTY_STS);
4680                                 }
4681                                 break;
4682                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4683                                 if (print) {
4684                                         _print_next_block((*par_num)++, "NIG");
4685                                         if (CHIP_IS_E1x(bp)) {
4686                                                 _print_parity(bp,
4687                                                         NIG_REG_NIG_PRTY_STS);
4688                                         } else {
4689                                                 _print_parity(bp,
4690                                                         NIG_REG_NIG_PRTY_STS_0);
4691                                                 _print_parity(bp,
4692                                                         NIG_REG_NIG_PRTY_STS_1);
4693                                         }
4694                                 }
4695                                 break;
4696                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4697                                 if (print)
4698                                         _print_next_block((*par_num)++,
4699                                                           "VAUX PCI CORE");
4700                                 *global = true;
4701                                 break;
4702                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4703                                 if (print) {
4704                                         _print_next_block((*par_num)++,
4705                                                           "DEBUG");
4706                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4707                                 }
4708                                 break;
4709                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4710                                 if (print) {
4711                                         _print_next_block((*par_num)++, "USDM");
4712                                         _print_parity(bp,
4713                                                       USDM_REG_USDM_PRTY_STS);
4714                                 }
4715                                 break;
4716                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4717                                 if (print) {
4718                                         _print_next_block((*par_num)++, "UCM");
4719                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4720                                 }
4721                                 break;
4722                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4723                                 if (print) {
4724                                         _print_next_block((*par_num)++,
4725                                                           "USEMI");
4726                                         _print_parity(bp,
4727                                                       USEM_REG_USEM_PRTY_STS_0);
4728                                         _print_parity(bp,
4729                                                       USEM_REG_USEM_PRTY_STS_1);
4730                                 }
4731                                 break;
4732                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4733                                 if (print) {
4734                                         _print_next_block((*par_num)++, "UPB");
4735                                         _print_parity(bp, GRCBASE_UPB +
4736                                                           PB_REG_PB_PRTY_STS);
4737                                 }
4738                                 break;
4739                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4740                                 if (print) {
4741                                         _print_next_block((*par_num)++, "CSDM");
4742                                         _print_parity(bp,
4743                                                       CSDM_REG_CSDM_PRTY_STS);
4744                                 }
4745                                 break;
4746                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4747                                 if (print) {
4748                                         _print_next_block((*par_num)++, "CCM");
4749                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4750                                 }
4751                                 break;
4752                         }
4753
4754                         /* Clear the bit */
4755                         sig &= ~cur_bit;
4756                 }
4757         }
4758
4759         return res;
4760 }
4761
4762 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4763                                             int *par_num, bool print)
4764 {
4765         u32 cur_bit;
4766         bool res;
4767         int i;
4768
4769         res = false;
4770
4771         for (i = 0; sig; i++) {
4772                 cur_bit = (0x1UL << i);
4773                 if (sig & cur_bit) {
4774                         res = true; /* Each bit is real error! */
4775                         if (print) {
4776                                 switch (cur_bit) {
4777                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4778                                         _print_next_block((*par_num)++,
4779                                                           "CSEMI");
4780                                         _print_parity(bp,
4781                                                       CSEM_REG_CSEM_PRTY_STS_0);
4782                                         _print_parity(bp,
4783                                                       CSEM_REG_CSEM_PRTY_STS_1);
4784                                         break;
4785                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4786                                         _print_next_block((*par_num)++, "PXP");
4787                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4788                                         _print_parity(bp,
4789                                                       PXP2_REG_PXP2_PRTY_STS_0);
4790                                         _print_parity(bp,
4791                                                       PXP2_REG_PXP2_PRTY_STS_1);
4792                                         break;
4793                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4794                                         _print_next_block((*par_num)++,
4795                                                           "PXPPCICLOCKCLIENT");
4796                                         break;
4797                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4798                                         _print_next_block((*par_num)++, "CFC");
4799                                         _print_parity(bp,
4800                                                       CFC_REG_CFC_PRTY_STS);
4801                                         break;
4802                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4803                                         _print_next_block((*par_num)++, "CDU");
4804                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4805                                         break;
4806                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4807                                         _print_next_block((*par_num)++, "DMAE");
4808                                         _print_parity(bp,
4809                                                       DMAE_REG_DMAE_PRTY_STS);
4810                                         break;
4811                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4812                                         _print_next_block((*par_num)++, "IGU");
4813                                         if (CHIP_IS_E1x(bp))
4814                                                 _print_parity(bp,
4815                                                         HC_REG_HC_PRTY_STS);
4816                                         else
4817                                                 _print_parity(bp,
4818                                                         IGU_REG_IGU_PRTY_STS);
4819                                         break;
4820                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4821                                         _print_next_block((*par_num)++, "MISC");
4822                                         _print_parity(bp,
4823                                                       MISC_REG_MISC_PRTY_STS);
4824                                         break;
4825                                 }
4826                         }
4827
4828                         /* Clear the bit */
4829                         sig &= ~cur_bit;
4830                 }
4831         }
4832
4833         return res;
4834 }
4835
4836 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4837                                             int *par_num, bool *global,
4838                                             bool print)
4839 {
4840         bool res = false;
4841         u32 cur_bit;
4842         int i;
4843
4844         for (i = 0; sig; i++) {
4845                 cur_bit = (0x1UL << i);
4846                 if (sig & cur_bit) {
4847                         switch (cur_bit) {
4848                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4849                                 if (print)
4850                                         _print_next_block((*par_num)++,
4851                                                           "MCP ROM");
4852                                 *global = true;
4853                                 res = true;
4854                                 break;
4855                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4856                                 if (print)
4857                                         _print_next_block((*par_num)++,
4858                                                           "MCP UMP RX");
4859                                 *global = true;
4860                                 res = true;
4861                                 break;
4862                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4863                                 if (print)
4864                                         _print_next_block((*par_num)++,
4865                                                           "MCP UMP TX");
4866                                 *global = true;
4867                                 res = true;
4868                                 break;
4869                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4870                                 if (print)
4871                                         _print_next_block((*par_num)++,
4872                                                           "MCP SCPAD");
4873                                 /* clear latched SCPAD PATIRY from MCP */
4874                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4875                                        1UL << 10);
4876                                 break;
4877                         }
4878
4879                         /* Clear the bit */
4880                         sig &= ~cur_bit;
4881                 }
4882         }
4883
4884         return res;
4885 }
4886
4887 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4888                                             int *par_num, bool print)
4889 {
4890         u32 cur_bit;
4891         bool res;
4892         int i;
4893
4894         res = false;
4895
4896         for (i = 0; sig; i++) {
4897                 cur_bit = (0x1UL << i);
4898                 if (sig & cur_bit) {
4899                         res = true; /* Each bit is real error! */
4900                         if (print) {
4901                                 switch (cur_bit) {
4902                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4903                                         _print_next_block((*par_num)++,
4904                                                           "PGLUE_B");
4905                                         _print_parity(bp,
4906                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4907                                         break;
4908                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4909                                         _print_next_block((*par_num)++, "ATC");
4910                                         _print_parity(bp,
4911                                                       ATC_REG_ATC_PRTY_STS);
4912                                         break;
4913                                 }
4914                         }
4915                         /* Clear the bit */
4916                         sig &= ~cur_bit;
4917                 }
4918         }
4919
4920         return res;
4921 }
4922
4923 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4924                               u32 *sig)
4925 {
4926         bool res = false;
4927
4928         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4929             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4930             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4931             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4932             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4933                 int par_num = 0;
4934                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4935                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4936                           sig[0] & HW_PRTY_ASSERT_SET_0,
4937                           sig[1] & HW_PRTY_ASSERT_SET_1,
4938                           sig[2] & HW_PRTY_ASSERT_SET_2,
4939                           sig[3] & HW_PRTY_ASSERT_SET_3,
4940                           sig[4] & HW_PRTY_ASSERT_SET_4);
4941                 if (print)
4942                         netdev_err(bp->dev,
4943                                    "Parity errors detected in blocks: ");
4944                 res |= bnx2x_check_blocks_with_parity0(bp,
4945                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4946                 res |= bnx2x_check_blocks_with_parity1(bp,
4947                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4948                 res |= bnx2x_check_blocks_with_parity2(bp,
4949                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4950                 res |= bnx2x_check_blocks_with_parity3(bp,
4951                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4952                 res |= bnx2x_check_blocks_with_parity4(bp,
4953                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4954
4955                 if (print)
4956                         pr_cont("\n");
4957         }
4958
4959         return res;
4960 }
4961
4962 /**
4963  * bnx2x_chk_parity_attn - checks for parity attentions.
4964  *
4965  * @bp:         driver handle
4966  * @global:     true if there was a global attention
4967  * @print:      show parity attention in syslog
4968  */
4969 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4970 {
4971         struct attn_route attn = { {0} };
4972         int port = BP_PORT(bp);
4973
4974         attn.sig[0] = REG_RD(bp,
4975                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4976                              port*4);
4977         attn.sig[1] = REG_RD(bp,
4978                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4979                              port*4);
4980         attn.sig[2] = REG_RD(bp,
4981                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4982                              port*4);
4983         attn.sig[3] = REG_RD(bp,
4984                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4985                              port*4);
4986         /* Since MCP attentions can't be disabled inside the block, we need to
4987          * read AEU registers to see whether they're currently disabled
4988          */
4989         attn.sig[3] &= ((REG_RD(bp,
4990                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4991                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4992                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4993                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4994
4995         if (!CHIP_IS_E1x(bp))
4996                 attn.sig[4] = REG_RD(bp,
4997                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4998                                      port*4);
4999
5000         return bnx2x_parity_attn(bp, global, print, attn.sig);
5001 }
5002
5003 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5004 {
5005         u32 val;
5006         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5007
5008                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5009                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5010                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5011                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5012                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5013                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5014                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5015                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5016                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5017                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5018                 if (val &
5019                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5020                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5021                 if (val &
5022                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5023                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5024                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5025                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5026                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5027                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5028                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5029                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5030         }
5031         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5032                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5033                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5034                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5035                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5036                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5037                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5038                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5039                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5040                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5041                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5042                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5043                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5044                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5045                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5046         }
5047
5048         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5049                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5050                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5051                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5052                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5053         }
5054 }
5055
5056 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5057 {
5058         struct attn_route attn, *group_mask;
5059         int port = BP_PORT(bp);
5060         int index;
5061         u32 reg_addr;
5062         u32 val;
5063         u32 aeu_mask;
5064         bool global = false;
5065
5066         /* need to take HW lock because MCP or other port might also
5067            try to handle this event */
5068         bnx2x_acquire_alr(bp);
5069
5070         if (bnx2x_chk_parity_attn(bp, &global, true)) {
5071 #ifndef BNX2X_STOP_ON_ERROR
5072                 bp->recovery_state = BNX2X_RECOVERY_INIT;
5073                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5074                 /* Disable HW interrupts */
5075                 bnx2x_int_disable(bp);
5076                 /* In case of parity errors don't handle attentions so that
5077                  * other function would "see" parity errors.
5078                  */
5079 #else
5080                 bnx2x_panic();
5081 #endif
5082                 bnx2x_release_alr(bp);
5083                 return;
5084         }
5085
5086         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5087         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5088         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5089         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5090         if (!CHIP_IS_E1x(bp))
5091                 attn.sig[4] =
5092                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5093         else
5094                 attn.sig[4] = 0;
5095
5096         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5097            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5098
5099         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5100                 if (deasserted & (1 << index)) {
5101                         group_mask = &bp->attn_group[index];
5102
5103                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5104                            index,
5105                            group_mask->sig[0], group_mask->sig[1],
5106                            group_mask->sig[2], group_mask->sig[3],
5107                            group_mask->sig[4]);
5108
5109                         bnx2x_attn_int_deasserted4(bp,
5110                                         attn.sig[4] & group_mask->sig[4]);
5111                         bnx2x_attn_int_deasserted3(bp,
5112                                         attn.sig[3] & group_mask->sig[3]);
5113                         bnx2x_attn_int_deasserted1(bp,
5114                                         attn.sig[1] & group_mask->sig[1]);
5115                         bnx2x_attn_int_deasserted2(bp,
5116                                         attn.sig[2] & group_mask->sig[2]);
5117                         bnx2x_attn_int_deasserted0(bp,
5118                                         attn.sig[0] & group_mask->sig[0]);
5119                 }
5120         }
5121
5122         bnx2x_release_alr(bp);
5123
5124         if (bp->common.int_block == INT_BLOCK_HC)
5125                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5126                             COMMAND_REG_ATTN_BITS_CLR);
5127         else
5128                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5129
5130         val = ~deasserted;
5131         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5132            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5133         REG_WR(bp, reg_addr, val);
5134
5135         if (~bp->attn_state & deasserted)
5136                 BNX2X_ERR("IGU ERROR\n");
5137
5138         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5139                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5140
5141         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5142         aeu_mask = REG_RD(bp, reg_addr);
5143
5144         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5145            aeu_mask, deasserted);
5146         aeu_mask |= (deasserted & 0x3ff);
5147         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5148
5149         REG_WR(bp, reg_addr, aeu_mask);
5150         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5151
5152         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5153         bp->attn_state &= ~deasserted;
5154         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5155 }
5156
5157 static void bnx2x_attn_int(struct bnx2x *bp)
5158 {
5159         /* read local copy of bits */
5160         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5161                                                                 attn_bits);
5162         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5163                                                                 attn_bits_ack);
5164         u32 attn_state = bp->attn_state;
5165
5166         /* look for changed bits */
5167         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5168         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5169
5170         DP(NETIF_MSG_HW,
5171            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5172            attn_bits, attn_ack, asserted, deasserted);
5173
5174         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5175                 BNX2X_ERR("BAD attention state\n");
5176
5177         /* handle bits that were raised */
5178         if (asserted)
5179                 bnx2x_attn_int_asserted(bp, asserted);
5180
5181         if (deasserted)
5182                 bnx2x_attn_int_deasserted(bp, deasserted);
5183 }
5184
5185 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5186                       u16 index, u8 op, u8 update)
5187 {
5188         u32 igu_addr = bp->igu_base_addr;
5189         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5190         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5191                              igu_addr);
5192 }
5193
5194 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5195 {
5196         /* No memory barriers */
5197         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5198         mmiowb(); /* keep prod updates ordered */
5199 }
5200
5201 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5202                                       union event_ring_elem *elem)
5203 {
5204         u8 err = elem->message.error;
5205
5206         if (!bp->cnic_eth_dev.starting_cid  ||
5207             (cid < bp->cnic_eth_dev.starting_cid &&
5208             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5209                 return 1;
5210
5211         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5212
5213         if (unlikely(err)) {
5214
5215                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5216                           cid);
5217                 bnx2x_panic_dump(bp, false);
5218         }
5219         bnx2x_cnic_cfc_comp(bp, cid, err);
5220         return 0;
5221 }
5222
5223 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5224 {
5225         struct bnx2x_mcast_ramrod_params rparam;
5226         int rc;
5227
5228         memset(&rparam, 0, sizeof(rparam));
5229
5230         rparam.mcast_obj = &bp->mcast_obj;
5231
5232         netif_addr_lock_bh(bp->dev);
5233
5234         /* Clear pending state for the last command */
5235         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5236
5237         /* If there are pending mcast commands - send them */
5238         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5239                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5240                 if (rc < 0)
5241                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5242                                   rc);
5243         }
5244
5245         netif_addr_unlock_bh(bp->dev);
5246 }
5247
5248 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5249                                             union event_ring_elem *elem)
5250 {
5251         unsigned long ramrod_flags = 0;
5252         int rc = 0;
5253         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5254         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5255
5256         /* Always push next commands out, don't wait here */
5257         __set_bit(RAMROD_CONT, &ramrod_flags);
5258
5259         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5260                             >> BNX2X_SWCID_SHIFT) {
5261         case BNX2X_FILTER_MAC_PENDING:
5262                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5263                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5264                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5265                 else
5266                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5267
5268                 break;
5269         case BNX2X_FILTER_MCAST_PENDING:
5270                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5271                 /* This is only relevant for 57710 where multicast MACs are
5272                  * configured as unicast MACs using the same ramrod.
5273                  */
5274                 bnx2x_handle_mcast_eqe(bp);
5275                 return;
5276         default:
5277                 BNX2X_ERR("Unsupported classification command: %d\n",
5278                           elem->message.data.eth_event.echo);
5279                 return;
5280         }
5281
5282         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5283
5284         if (rc < 0)
5285                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5286         else if (rc > 0)
5287                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5288 }
5289
5290 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5291
5292 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5293 {
5294         netif_addr_lock_bh(bp->dev);
5295
5296         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5297
5298         /* Send rx_mode command again if was requested */
5299         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5300                 bnx2x_set_storm_rx_mode(bp);
5301         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5302                                     &bp->sp_state))
5303                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5304         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5305                                     &bp->sp_state))
5306                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5307
5308         netif_addr_unlock_bh(bp->dev);
5309 }
5310
5311 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5312                                               union event_ring_elem *elem)
5313 {
5314         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5315                 DP(BNX2X_MSG_SP,
5316                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5317                    elem->message.data.vif_list_event.func_bit_map);
5318                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5319                         elem->message.data.vif_list_event.func_bit_map);
5320         } else if (elem->message.data.vif_list_event.echo ==
5321                    VIF_LIST_RULE_SET) {
5322                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5323                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5324         }
5325 }
5326
5327 /* called with rtnl_lock */
5328 static void bnx2x_after_function_update(struct bnx2x *bp)
5329 {
5330         int q, rc;
5331         struct bnx2x_fastpath *fp;
5332         struct bnx2x_queue_state_params queue_params = {NULL};
5333         struct bnx2x_queue_update_params *q_update_params =
5334                 &queue_params.params.update;
5335
5336         /* Send Q update command with afex vlan removal values for all Qs */
5337         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5338
5339         /* set silent vlan removal values according to vlan mode */
5340         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5341                   &q_update_params->update_flags);
5342         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5343                   &q_update_params->update_flags);
5344         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5345
5346         /* in access mode mark mask and value are 0 to strip all vlans */
5347         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5348                 q_update_params->silent_removal_value = 0;
5349                 q_update_params->silent_removal_mask = 0;
5350         } else {
5351                 q_update_params->silent_removal_value =
5352                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5353                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5354         }
5355
5356         for_each_eth_queue(bp, q) {
5357                 /* Set the appropriate Queue object */
5358                 fp = &bp->fp[q];
5359                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5360
5361                 /* send the ramrod */
5362                 rc = bnx2x_queue_state_change(bp, &queue_params);
5363                 if (rc < 0)
5364                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5365                                   q);
5366         }
5367
5368         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5369                 fp = &bp->fp[FCOE_IDX(bp)];
5370                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5371
5372                 /* clear pending completion bit */
5373                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5374
5375                 /* mark latest Q bit */
5376                 smp_mb__before_atomic();
5377                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5378                 smp_mb__after_atomic();
5379
5380                 /* send Q update ramrod for FCoE Q */
5381                 rc = bnx2x_queue_state_change(bp, &queue_params);
5382                 if (rc < 0)
5383                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5384                                   q);
5385         } else {
5386                 /* If no FCoE ring - ACK MCP now */
5387                 bnx2x_link_report(bp);
5388                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5389         }
5390 }
5391
5392 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5393         struct bnx2x *bp, u32 cid)
5394 {
5395         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5396
5397         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5398                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5399         else
5400                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5401 }
5402
5403 static void bnx2x_eq_int(struct bnx2x *bp)
5404 {
5405         u16 hw_cons, sw_cons, sw_prod;
5406         union event_ring_elem *elem;
5407         u8 echo;
5408         u32 cid;
5409         u8 opcode;
5410         int rc, spqe_cnt = 0;
5411         struct bnx2x_queue_sp_obj *q_obj;
5412         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5413         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5414
5415         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5416
5417         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5418          * when we get the next-page we need to adjust so the loop
5419          * condition below will be met. The next element is the size of a
5420          * regular element and hence incrementing by 1
5421          */
5422         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5423                 hw_cons++;
5424
5425         /* This function may never run in parallel with itself for a
5426          * specific bp, thus there is no need in "paired" read memory
5427          * barrier here.
5428          */
5429         sw_cons = bp->eq_cons;
5430         sw_prod = bp->eq_prod;
5431
5432         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5433                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5434
5435         for (; sw_cons != hw_cons;
5436               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5437
5438                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5439
5440                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5441                 if (!rc) {
5442                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5443                            rc);
5444                         goto next_spqe;
5445                 }
5446
5447                 /* elem CID originates from FW; actually LE */
5448                 cid = SW_CID((__force __le32)
5449                              elem->message.data.cfc_del_event.cid);
5450                 opcode = elem->message.opcode;
5451
5452                 /* handle eq element */
5453                 switch (opcode) {
5454                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5455                         bnx2x_vf_mbx_schedule(bp,
5456                                               &elem->message.data.vf_pf_event);
5457                         continue;
5458
5459                 case EVENT_RING_OPCODE_STAT_QUERY:
5460                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5461                                "got statistics comp event %d\n",
5462                                bp->stats_comp++);
5463                         /* nothing to do with stats comp */
5464                         goto next_spqe;
5465
5466                 case EVENT_RING_OPCODE_CFC_DEL:
5467                         /* handle according to cid range */
5468                         /*
5469                          * we may want to verify here that the bp state is
5470                          * HALTING
5471                          */
5472                         DP(BNX2X_MSG_SP,
5473                            "got delete ramrod for MULTI[%d]\n", cid);
5474
5475                         if (CNIC_LOADED(bp) &&
5476                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5477                                 goto next_spqe;
5478
5479                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5480
5481                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5482                                 break;
5483
5484                         goto next_spqe;
5485
5486                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5487                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5488                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5489                         if (f_obj->complete_cmd(bp, f_obj,
5490                                                 BNX2X_F_CMD_TX_STOP))
5491                                 break;
5492                         goto next_spqe;
5493
5494                 case EVENT_RING_OPCODE_START_TRAFFIC:
5495                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5496                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5497                         if (f_obj->complete_cmd(bp, f_obj,
5498                                                 BNX2X_F_CMD_TX_START))
5499                                 break;
5500                         goto next_spqe;
5501
5502                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5503                         echo = elem->message.data.function_update_event.echo;
5504                         if (echo == SWITCH_UPDATE) {
5505                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5506                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5507                                 if (f_obj->complete_cmd(
5508                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5509                                         break;
5510
5511                         } else {
5512                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5513
5514                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5515                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5516                                 f_obj->complete_cmd(bp, f_obj,
5517                                                     BNX2X_F_CMD_AFEX_UPDATE);
5518
5519                                 /* We will perform the Queues update from
5520                                  * sp_rtnl task as all Queue SP operations
5521                                  * should run under rtnl_lock.
5522                                  */
5523                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5524                         }
5525
5526                         goto next_spqe;
5527
5528                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5529                         f_obj->complete_cmd(bp, f_obj,
5530                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5531                         bnx2x_after_afex_vif_lists(bp, elem);
5532                         goto next_spqe;
5533                 case EVENT_RING_OPCODE_FUNCTION_START:
5534                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5535                            "got FUNC_START ramrod\n");
5536                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5537                                 break;
5538
5539                         goto next_spqe;
5540
5541                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5542                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5543                            "got FUNC_STOP ramrod\n");
5544                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5545                                 break;
5546
5547                         goto next_spqe;
5548
5549                 case EVENT_RING_OPCODE_SET_TIMESYNC:
5550                         DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5551                            "got set_timesync ramrod completion\n");
5552                         if (f_obj->complete_cmd(bp, f_obj,
5553                                                 BNX2X_F_CMD_SET_TIMESYNC))
5554                                 break;
5555                         goto next_spqe;
5556                 }
5557
5558                 switch (opcode | bp->state) {
5559                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5560                       BNX2X_STATE_OPEN):
5561                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5562                       BNX2X_STATE_OPENING_WAIT4_PORT):
5563                         cid = elem->message.data.eth_event.echo &
5564                                 BNX2X_SWCID_MASK;
5565                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5566                            cid);
5567                         rss_raw->clear_pending(rss_raw);
5568                         break;
5569
5570                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5571                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5572                 case (EVENT_RING_OPCODE_SET_MAC |
5573                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5574                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5575                       BNX2X_STATE_OPEN):
5576                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5577                       BNX2X_STATE_DIAG):
5578                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5579                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5580                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5581                         bnx2x_handle_classification_eqe(bp, elem);
5582                         break;
5583
5584                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5585                       BNX2X_STATE_OPEN):
5586                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5587                       BNX2X_STATE_DIAG):
5588                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5589                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5590                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5591                         bnx2x_handle_mcast_eqe(bp);
5592                         break;
5593
5594                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5595                       BNX2X_STATE_OPEN):
5596                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5597                       BNX2X_STATE_DIAG):
5598                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5599                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5600                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5601                         bnx2x_handle_rx_mode_eqe(bp);
5602                         break;
5603                 default:
5604                         /* unknown event log error and continue */
5605                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5606                                   elem->message.opcode, bp->state);
5607                 }
5608 next_spqe:
5609                 spqe_cnt++;
5610         } /* for */
5611
5612         smp_mb__before_atomic();
5613         atomic_add(spqe_cnt, &bp->eq_spq_left);
5614
5615         bp->eq_cons = sw_cons;
5616         bp->eq_prod = sw_prod;
5617         /* Make sure that above mem writes were issued towards the memory */
5618         smp_wmb();
5619
5620         /* update producer */
5621         bnx2x_update_eq_prod(bp, bp->eq_prod);
5622 }
5623
5624 static void bnx2x_sp_task(struct work_struct *work)
5625 {
5626         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5627
5628         DP(BNX2X_MSG_SP, "sp task invoked\n");
5629
5630         /* make sure the atomic interrupt_occurred has been written */
5631         smp_rmb();
5632         if (atomic_read(&bp->interrupt_occurred)) {
5633
5634                 /* what work needs to be performed? */
5635                 u16 status = bnx2x_update_dsb_idx(bp);
5636
5637                 DP(BNX2X_MSG_SP, "status %x\n", status);
5638                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5639                 atomic_set(&bp->interrupt_occurred, 0);
5640
5641                 /* HW attentions */
5642                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5643                         bnx2x_attn_int(bp);
5644                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5645                 }
5646
5647                 /* SP events: STAT_QUERY and others */
5648                 if (status & BNX2X_DEF_SB_IDX) {
5649                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5650
5651                 if (FCOE_INIT(bp) &&
5652                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5653                                 /* Prevent local bottom-halves from running as
5654                                  * we are going to change the local NAPI list.
5655                                  */
5656                                 local_bh_disable();
5657                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5658                                 local_bh_enable();
5659                         }
5660
5661                         /* Handle EQ completions */
5662                         bnx2x_eq_int(bp);
5663                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5664                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5665
5666                         status &= ~BNX2X_DEF_SB_IDX;
5667                 }
5668
5669                 /* if status is non zero then perhaps something went wrong */
5670                 if (unlikely(status))
5671                         DP(BNX2X_MSG_SP,
5672                            "got an unknown interrupt! (status 0x%x)\n", status);
5673
5674                 /* ack status block only if something was actually handled */
5675                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5676                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5677         }
5678
5679         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5680         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5681                                &bp->sp_state)) {
5682                 bnx2x_link_report(bp);
5683                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5684         }
5685 }
5686
5687 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5688 {
5689         struct net_device *dev = dev_instance;
5690         struct bnx2x *bp = netdev_priv(dev);
5691
5692         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5693                      IGU_INT_DISABLE, 0);
5694
5695 #ifdef BNX2X_STOP_ON_ERROR
5696         if (unlikely(bp->panic))
5697                 return IRQ_HANDLED;
5698 #endif
5699
5700         if (CNIC_LOADED(bp)) {
5701                 struct cnic_ops *c_ops;
5702
5703                 rcu_read_lock();
5704                 c_ops = rcu_dereference(bp->cnic_ops);
5705                 if (c_ops)
5706                         c_ops->cnic_handler(bp->cnic_data, NULL);
5707                 rcu_read_unlock();
5708         }
5709
5710         /* schedule sp task to perform default status block work, ack
5711          * attentions and enable interrupts.
5712          */
5713         bnx2x_schedule_sp_task(bp);
5714
5715         return IRQ_HANDLED;
5716 }
5717
5718 /* end of slow path */
5719
5720 void bnx2x_drv_pulse(struct bnx2x *bp)
5721 {
5722         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5723                  bp->fw_drv_pulse_wr_seq);
5724 }
5725
5726 static void bnx2x_timer(unsigned long data)
5727 {
5728         struct bnx2x *bp = (struct bnx2x *) data;
5729
5730         if (!netif_running(bp->dev))
5731                 return;
5732
5733         if (IS_PF(bp) &&
5734             !BP_NOMCP(bp)) {
5735                 int mb_idx = BP_FW_MB_IDX(bp);
5736                 u16 drv_pulse;
5737                 u16 mcp_pulse;
5738
5739                 ++bp->fw_drv_pulse_wr_seq;
5740                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5741                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5742                 bnx2x_drv_pulse(bp);
5743
5744                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5745                              MCP_PULSE_SEQ_MASK);
5746                 /* The delta between driver pulse and mcp response
5747                  * should not get too big. If the MFW is more than 5 pulses
5748                  * behind, we should worry about it enough to generate an error
5749                  * log.
5750                  */
5751                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5752                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5753                                   drv_pulse, mcp_pulse);
5754         }
5755
5756         if (bp->state == BNX2X_STATE_OPEN)
5757                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5758
5759         /* sample pf vf bulletin board for new posts from pf */
5760         if (IS_VF(bp))
5761                 bnx2x_timer_sriov(bp);
5762
5763         mod_timer(&bp->timer, jiffies + bp->current_interval);
5764 }
5765
5766 /* end of Statistics */
5767
5768 /* nic init */
5769
5770 /*
5771  * nic init service functions
5772  */
5773
5774 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5775 {
5776         u32 i;
5777         if (!(len%4) && !(addr%4))
5778                 for (i = 0; i < len; i += 4)
5779                         REG_WR(bp, addr + i, fill);
5780         else
5781                 for (i = 0; i < len; i++)
5782                         REG_WR8(bp, addr + i, fill);
5783 }
5784
5785 /* helper: writes FP SP data to FW - data_size in dwords */
5786 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5787                                 int fw_sb_id,
5788                                 u32 *sb_data_p,
5789                                 u32 data_size)
5790 {
5791         int index;
5792         for (index = 0; index < data_size; index++)
5793                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5794                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5795                         sizeof(u32)*index,
5796                         *(sb_data_p + index));
5797 }
5798
5799 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5800 {
5801         u32 *sb_data_p;
5802         u32 data_size = 0;
5803         struct hc_status_block_data_e2 sb_data_e2;
5804         struct hc_status_block_data_e1x sb_data_e1x;
5805
5806         /* disable the function first */
5807         if (!CHIP_IS_E1x(bp)) {
5808                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5809                 sb_data_e2.common.state = SB_DISABLED;
5810                 sb_data_e2.common.p_func.vf_valid = false;
5811                 sb_data_p = (u32 *)&sb_data_e2;
5812                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5813         } else {
5814                 memset(&sb_data_e1x, 0,
5815                        sizeof(struct hc_status_block_data_e1x));
5816                 sb_data_e1x.common.state = SB_DISABLED;
5817                 sb_data_e1x.common.p_func.vf_valid = false;
5818                 sb_data_p = (u32 *)&sb_data_e1x;
5819                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5820         }
5821         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5822
5823         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5824                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5825                         CSTORM_STATUS_BLOCK_SIZE);
5826         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5827                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5828                         CSTORM_SYNC_BLOCK_SIZE);
5829 }
5830
5831 /* helper:  writes SP SB data to FW */
5832 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5833                 struct hc_sp_status_block_data *sp_sb_data)
5834 {
5835         int func = BP_FUNC(bp);
5836         int i;
5837         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5838                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5839                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5840                         i*sizeof(u32),
5841                         *((u32 *)sp_sb_data + i));
5842 }
5843
5844 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5845 {
5846         int func = BP_FUNC(bp);
5847         struct hc_sp_status_block_data sp_sb_data;
5848         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5849
5850         sp_sb_data.state = SB_DISABLED;
5851         sp_sb_data.p_func.vf_valid = false;
5852
5853         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5854
5855         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5856                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5857                         CSTORM_SP_STATUS_BLOCK_SIZE);
5858         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5859                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5860                         CSTORM_SP_SYNC_BLOCK_SIZE);
5861 }
5862
5863 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5864                                            int igu_sb_id, int igu_seg_id)
5865 {
5866         hc_sm->igu_sb_id = igu_sb_id;
5867         hc_sm->igu_seg_id = igu_seg_id;
5868         hc_sm->timer_value = 0xFF;
5869         hc_sm->time_to_expire = 0xFFFFFFFF;
5870 }
5871
5872 /* allocates state machine ids. */
5873 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5874 {
5875         /* zero out state machine indices */
5876         /* rx indices */
5877         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5878
5879         /* tx indices */
5880         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5881         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5882         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5883         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5884
5885         /* map indices */
5886         /* rx indices */
5887         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5888                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5889
5890         /* tx indices */
5891         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5892                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5893         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5894                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5895         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5896                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5897         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5898                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5899 }
5900
5901 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5902                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5903 {
5904         int igu_seg_id;
5905
5906         struct hc_status_block_data_e2 sb_data_e2;
5907         struct hc_status_block_data_e1x sb_data_e1x;
5908         struct hc_status_block_sm  *hc_sm_p;
5909         int data_size;
5910         u32 *sb_data_p;
5911
5912         if (CHIP_INT_MODE_IS_BC(bp))
5913                 igu_seg_id = HC_SEG_ACCESS_NORM;
5914         else
5915                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5916
5917         bnx2x_zero_fp_sb(bp, fw_sb_id);
5918
5919         if (!CHIP_IS_E1x(bp)) {
5920                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5921                 sb_data_e2.common.state = SB_ENABLED;
5922                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5923                 sb_data_e2.common.p_func.vf_id = vfid;
5924                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5925                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5926                 sb_data_e2.common.same_igu_sb_1b = true;
5927                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5928                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5929                 hc_sm_p = sb_data_e2.common.state_machine;
5930                 sb_data_p = (u32 *)&sb_data_e2;
5931                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5932                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5933         } else {
5934                 memset(&sb_data_e1x, 0,
5935                        sizeof(struct hc_status_block_data_e1x));
5936                 sb_data_e1x.common.state = SB_ENABLED;
5937                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5938                 sb_data_e1x.common.p_func.vf_id = 0xff;
5939                 sb_data_e1x.common.p_func.vf_valid = false;
5940                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5941                 sb_data_e1x.common.same_igu_sb_1b = true;
5942                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5943                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5944                 hc_sm_p = sb_data_e1x.common.state_machine;
5945                 sb_data_p = (u32 *)&sb_data_e1x;
5946                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5947                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5948         }
5949
5950         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5951                                        igu_sb_id, igu_seg_id);
5952         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5953                                        igu_sb_id, igu_seg_id);
5954
5955         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5956
5957         /* write indices to HW - PCI guarantees endianity of regpairs */
5958         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5959 }
5960
5961 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5962                                      u16 tx_usec, u16 rx_usec)
5963 {
5964         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5965                                     false, rx_usec);
5966         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5967                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5968                                        tx_usec);
5969         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5970                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5971                                        tx_usec);
5972         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5973                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5974                                        tx_usec);
5975 }
5976
5977 static void bnx2x_init_def_sb(struct bnx2x *bp)
5978 {
5979         struct host_sp_status_block *def_sb = bp->def_status_blk;
5980         dma_addr_t mapping = bp->def_status_blk_mapping;
5981         int igu_sp_sb_index;
5982         int igu_seg_id;
5983         int port = BP_PORT(bp);
5984         int func = BP_FUNC(bp);
5985         int reg_offset, reg_offset_en5;
5986         u64 section;
5987         int index;
5988         struct hc_sp_status_block_data sp_sb_data;
5989         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5990
5991         if (CHIP_INT_MODE_IS_BC(bp)) {
5992                 igu_sp_sb_index = DEF_SB_IGU_ID;
5993                 igu_seg_id = HC_SEG_ACCESS_DEF;
5994         } else {
5995                 igu_sp_sb_index = bp->igu_dsb_id;
5996                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5997         }
5998
5999         /* ATTN */
6000         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6001                                             atten_status_block);
6002         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6003
6004         bp->attn_state = 0;
6005
6006         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6007                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6008         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6009                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6010         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6011                 int sindex;
6012                 /* take care of sig[0]..sig[4] */
6013                 for (sindex = 0; sindex < 4; sindex++)
6014                         bp->attn_group[index].sig[sindex] =
6015                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6016
6017                 if (!CHIP_IS_E1x(bp))
6018                         /*
6019                          * enable5 is separate from the rest of the registers,
6020                          * and therefore the address skip is 4
6021                          * and not 16 between the different groups
6022                          */
6023                         bp->attn_group[index].sig[4] = REG_RD(bp,
6024                                         reg_offset_en5 + 0x4*index);
6025                 else
6026                         bp->attn_group[index].sig[4] = 0;
6027         }
6028
6029         if (bp->common.int_block == INT_BLOCK_HC) {
6030                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6031                                      HC_REG_ATTN_MSG0_ADDR_L);
6032
6033                 REG_WR(bp, reg_offset, U64_LO(section));
6034                 REG_WR(bp, reg_offset + 4, U64_HI(section));
6035         } else if (!CHIP_IS_E1x(bp)) {
6036                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6037                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6038         }
6039
6040         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6041                                             sp_sb);
6042
6043         bnx2x_zero_sp_sb(bp);
6044
6045         /* PCI guarantees endianity of regpairs */
6046         sp_sb_data.state                = SB_ENABLED;
6047         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6048         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6049         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6050         sp_sb_data.igu_seg_id           = igu_seg_id;
6051         sp_sb_data.p_func.pf_id         = func;
6052         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6053         sp_sb_data.p_func.vf_id         = 0xff;
6054
6055         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6056
6057         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6058 }
6059
6060 void bnx2x_update_coalesce(struct bnx2x *bp)
6061 {
6062         int i;
6063
6064         for_each_eth_queue(bp, i)
6065                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6066                                          bp->tx_ticks, bp->rx_ticks);
6067 }
6068
6069 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6070 {
6071         spin_lock_init(&bp->spq_lock);
6072         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6073
6074         bp->spq_prod_idx = 0;
6075         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6076         bp->spq_prod_bd = bp->spq;
6077         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6078 }
6079
6080 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6081 {
6082         int i;
6083         for (i = 1; i <= NUM_EQ_PAGES; i++) {
6084                 union event_ring_elem *elem =
6085                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6086
6087                 elem->next_page.addr.hi =
6088                         cpu_to_le32(U64_HI(bp->eq_mapping +
6089                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6090                 elem->next_page.addr.lo =
6091                         cpu_to_le32(U64_LO(bp->eq_mapping +
6092                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6093         }
6094         bp->eq_cons = 0;
6095         bp->eq_prod = NUM_EQ_DESC;
6096         bp->eq_cons_sb = BNX2X_EQ_INDEX;
6097         /* we want a warning message before it gets wrought... */
6098         atomic_set(&bp->eq_spq_left,
6099                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6100 }
6101
6102 /* called with netif_addr_lock_bh() */
6103 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6104                                unsigned long rx_mode_flags,
6105                                unsigned long rx_accept_flags,
6106                                unsigned long tx_accept_flags,
6107                                unsigned long ramrod_flags)
6108 {
6109         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6110         int rc;
6111
6112         memset(&ramrod_param, 0, sizeof(ramrod_param));
6113
6114         /* Prepare ramrod parameters */
6115         ramrod_param.cid = 0;
6116         ramrod_param.cl_id = cl_id;
6117         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6118         ramrod_param.func_id = BP_FUNC(bp);
6119
6120         ramrod_param.pstate = &bp->sp_state;
6121         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6122
6123         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6124         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6125
6126         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6127
6128         ramrod_param.ramrod_flags = ramrod_flags;
6129         ramrod_param.rx_mode_flags = rx_mode_flags;
6130
6131         ramrod_param.rx_accept_flags = rx_accept_flags;
6132         ramrod_param.tx_accept_flags = tx_accept_flags;
6133
6134         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6135         if (rc < 0) {
6136                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6137                 return rc;
6138         }
6139
6140         return 0;
6141 }
6142
6143 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6144                                    unsigned long *rx_accept_flags,
6145                                    unsigned long *tx_accept_flags)
6146 {
6147         /* Clear the flags first */
6148         *rx_accept_flags = 0;
6149         *tx_accept_flags = 0;
6150
6151         switch (rx_mode) {
6152         case BNX2X_RX_MODE_NONE:
6153                 /*
6154                  * 'drop all' supersedes any accept flags that may have been
6155                  * passed to the function.
6156                  */
6157                 break;
6158         case BNX2X_RX_MODE_NORMAL:
6159                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6160                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6161                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6162
6163                 /* internal switching mode */
6164                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6165                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6166                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6167
6168                 break;
6169         case BNX2X_RX_MODE_ALLMULTI:
6170                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6171                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6172                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6173
6174                 /* internal switching mode */
6175                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6176                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6177                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6178
6179                 break;
6180         case BNX2X_RX_MODE_PROMISC:
6181                 /* According to definition of SI mode, iface in promisc mode
6182                  * should receive matched and unmatched (in resolution of port)
6183                  * unicast packets.
6184                  */
6185                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6186                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6187                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6188                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6189
6190                 /* internal switching mode */
6191                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6192                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6193
6194                 if (IS_MF_SI(bp))
6195                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6196                 else
6197                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6198
6199                 break;
6200         default:
6201                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6202                 return -EINVAL;
6203         }
6204
6205         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6206         if (rx_mode != BNX2X_RX_MODE_NONE) {
6207                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6208                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6209         }
6210
6211         return 0;
6212 }
6213
6214 /* called with netif_addr_lock_bh() */
6215 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6216 {
6217         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6218         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6219         int rc;
6220
6221         if (!NO_FCOE(bp))
6222                 /* Configure rx_mode of FCoE Queue */
6223                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6224
6225         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6226                                      &tx_accept_flags);
6227         if (rc)
6228                 return rc;
6229
6230         __set_bit(RAMROD_RX, &ramrod_flags);
6231         __set_bit(RAMROD_TX, &ramrod_flags);
6232
6233         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6234                                    rx_accept_flags, tx_accept_flags,
6235                                    ramrod_flags);
6236 }
6237
6238 static void bnx2x_init_internal_common(struct bnx2x *bp)
6239 {
6240         int i;
6241
6242         /* Zero this manually as its initialization is
6243            currently missing in the initTool */
6244         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6245                 REG_WR(bp, BAR_USTRORM_INTMEM +
6246                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6247         if (!CHIP_IS_E1x(bp)) {
6248                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6249                         CHIP_INT_MODE_IS_BC(bp) ?
6250                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6251         }
6252 }
6253
6254 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6255 {
6256         switch (load_code) {
6257         case FW_MSG_CODE_DRV_LOAD_COMMON:
6258         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6259                 bnx2x_init_internal_common(bp);
6260                 /* no break */
6261
6262         case FW_MSG_CODE_DRV_LOAD_PORT:
6263                 /* nothing to do */
6264                 /* no break */
6265
6266         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6267                 /* internal memory per function is
6268                    initialized inside bnx2x_pf_init */
6269                 break;
6270
6271         default:
6272                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6273                 break;
6274         }
6275 }
6276
6277 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6278 {
6279         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6280 }
6281
6282 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6283 {
6284         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6285 }
6286
6287 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6288 {
6289         if (CHIP_IS_E1x(fp->bp))
6290                 return BP_L_ID(fp->bp) + fp->index;
6291         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6292                 return bnx2x_fp_igu_sb_id(fp);
6293 }
6294
6295 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6296 {
6297         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6298         u8 cos;
6299         unsigned long q_type = 0;
6300         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6301         fp->rx_queue = fp_idx;
6302         fp->cid = fp_idx;
6303         fp->cl_id = bnx2x_fp_cl_id(fp);
6304         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6305         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6306         /* qZone id equals to FW (per path) client id */
6307         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6308
6309         /* init shortcut */
6310         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6311
6312         /* Setup SB indices */
6313         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6314
6315         /* Configure Queue State object */
6316         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6317         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6318
6319         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6320
6321         /* init tx data */
6322         for_each_cos_in_tx_queue(fp, cos) {
6323                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6324                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6325                                   FP_COS_TO_TXQ(fp, cos, bp),
6326                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6327                 cids[cos] = fp->txdata_ptr[cos]->cid;
6328         }
6329
6330         /* nothing more for vf to do here */
6331         if (IS_VF(bp))
6332                 return;
6333
6334         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6335                       fp->fw_sb_id, fp->igu_sb_id);
6336         bnx2x_update_fpsb_idx(fp);
6337         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6338                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6339                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6340
6341         /**
6342          * Configure classification DBs: Always enable Tx switching
6343          */
6344         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6345
6346         DP(NETIF_MSG_IFUP,
6347            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6348            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6349            fp->igu_sb_id);
6350 }
6351
6352 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6353 {
6354         int i;
6355
6356         for (i = 1; i <= NUM_TX_RINGS; i++) {
6357                 struct eth_tx_next_bd *tx_next_bd =
6358                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6359
6360                 tx_next_bd->addr_hi =
6361                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6362                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6363                 tx_next_bd->addr_lo =
6364                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6365                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6366         }
6367
6368         *txdata->tx_cons_sb = cpu_to_le16(0);
6369
6370         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6371         txdata->tx_db.data.zero_fill1 = 0;
6372         txdata->tx_db.data.prod = 0;
6373
6374         txdata->tx_pkt_prod = 0;
6375         txdata->tx_pkt_cons = 0;
6376         txdata->tx_bd_prod = 0;
6377         txdata->tx_bd_cons = 0;
6378         txdata->tx_pkt = 0;
6379 }
6380
6381 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6382 {
6383         int i;
6384
6385         for_each_tx_queue_cnic(bp, i)
6386                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6387 }
6388
6389 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6390 {
6391         int i;
6392         u8 cos;
6393
6394         for_each_eth_queue(bp, i)
6395                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6396                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6397 }
6398
6399 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6400 {
6401         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6402         unsigned long q_type = 0;
6403
6404         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6405         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6406                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6407         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6408         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6409         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6410         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6411         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6412                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6413                           fp);
6414
6415         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6416
6417         /* qZone id equals to FW (per path) client id */
6418         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6419         /* init shortcut */
6420         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6421                 bnx2x_rx_ustorm_prods_offset(fp);
6422
6423         /* Configure Queue State object */
6424         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6425         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6426
6427         /* No multi-CoS for FCoE L2 client */
6428         BUG_ON(fp->max_cos != 1);
6429
6430         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6431                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6432                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6433
6434         DP(NETIF_MSG_IFUP,
6435            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6436            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6437            fp->igu_sb_id);
6438 }
6439
6440 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6441 {
6442         if (!NO_FCOE(bp))
6443                 bnx2x_init_fcoe_fp(bp);
6444
6445         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6446                       BNX2X_VF_ID_INVALID, false,
6447                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6448
6449         /* ensure status block indices were read */
6450         rmb();
6451         bnx2x_init_rx_rings_cnic(bp);
6452         bnx2x_init_tx_rings_cnic(bp);
6453
6454         /* flush all */
6455         mb();
6456         mmiowb();
6457 }
6458
6459 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6460 {
6461         int i;
6462
6463         /* Setup NIC internals and enable interrupts */
6464         for_each_eth_queue(bp, i)
6465                 bnx2x_init_eth_fp(bp, i);
6466
6467         /* ensure status block indices were read */
6468         rmb();
6469         bnx2x_init_rx_rings(bp);
6470         bnx2x_init_tx_rings(bp);
6471
6472         if (IS_PF(bp)) {
6473                 /* Initialize MOD_ABS interrupts */
6474                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6475                                        bp->common.shmem_base,
6476                                        bp->common.shmem2_base, BP_PORT(bp));
6477
6478                 /* initialize the default status block and sp ring */
6479                 bnx2x_init_def_sb(bp);
6480                 bnx2x_update_dsb_idx(bp);
6481                 bnx2x_init_sp_ring(bp);
6482         } else {
6483                 bnx2x_memset_stats(bp);
6484         }
6485 }
6486
6487 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6488 {
6489         bnx2x_init_eq_ring(bp);
6490         bnx2x_init_internal(bp, load_code);
6491         bnx2x_pf_init(bp);
6492         bnx2x_stats_init(bp);
6493
6494         /* flush all before enabling interrupts */
6495         mb();
6496         mmiowb();
6497
6498         bnx2x_int_enable(bp);
6499
6500         /* Check for SPIO5 */
6501         bnx2x_attn_int_deasserted0(bp,
6502                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6503                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6504 }
6505
6506 /* gzip service functions */
6507 static int bnx2x_gunzip_init(struct bnx2x *bp)
6508 {
6509         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6510                                             &bp->gunzip_mapping, GFP_KERNEL);
6511         if (bp->gunzip_buf  == NULL)
6512                 goto gunzip_nomem1;
6513
6514         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6515         if (bp->strm  == NULL)
6516                 goto gunzip_nomem2;
6517
6518         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6519         if (bp->strm->workspace == NULL)
6520                 goto gunzip_nomem3;
6521
6522         return 0;
6523
6524 gunzip_nomem3:
6525         kfree(bp->strm);
6526         bp->strm = NULL;
6527
6528 gunzip_nomem2:
6529         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6530                           bp->gunzip_mapping);
6531         bp->gunzip_buf = NULL;
6532
6533 gunzip_nomem1:
6534         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6535         return -ENOMEM;
6536 }
6537
6538 static void bnx2x_gunzip_end(struct bnx2x *bp)
6539 {
6540         if (bp->strm) {
6541                 vfree(bp->strm->workspace);
6542                 kfree(bp->strm);
6543                 bp->strm = NULL;
6544         }
6545
6546         if (bp->gunzip_buf) {
6547                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6548                                   bp->gunzip_mapping);
6549                 bp->gunzip_buf = NULL;
6550         }
6551 }
6552
6553 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6554 {
6555         int n, rc;
6556
6557         /* check gzip header */
6558         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6559                 BNX2X_ERR("Bad gzip header\n");
6560                 return -EINVAL;
6561         }
6562
6563         n = 10;
6564
6565 #define FNAME                           0x8
6566
6567         if (zbuf[3] & FNAME)
6568                 while ((zbuf[n++] != 0) && (n < len));
6569
6570         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6571         bp->strm->avail_in = len - n;
6572         bp->strm->next_out = bp->gunzip_buf;
6573         bp->strm->avail_out = FW_BUF_SIZE;
6574
6575         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6576         if (rc != Z_OK)
6577                 return rc;
6578
6579         rc = zlib_inflate(bp->strm, Z_FINISH);
6580         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6581                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6582                            bp->strm->msg);
6583
6584         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6585         if (bp->gunzip_outlen & 0x3)
6586                 netdev_err(bp->dev,
6587                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6588                                 bp->gunzip_outlen);
6589         bp->gunzip_outlen >>= 2;
6590
6591         zlib_inflateEnd(bp->strm);
6592
6593         if (rc == Z_STREAM_END)
6594                 return 0;
6595
6596         return rc;
6597 }
6598
6599 /* nic load/unload */
6600
6601 /*
6602  * General service functions
6603  */
6604
6605 /* send a NIG loopback debug packet */
6606 static void bnx2x_lb_pckt(struct bnx2x *bp)
6607 {
6608         u32 wb_write[3];
6609
6610         /* Ethernet source and destination addresses */
6611         wb_write[0] = 0x55555555;
6612         wb_write[1] = 0x55555555;
6613         wb_write[2] = 0x20;             /* SOP */
6614         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6615
6616         /* NON-IP protocol */
6617         wb_write[0] = 0x09000000;
6618         wb_write[1] = 0x55555555;
6619         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6620         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6621 }
6622
6623 /* some of the internal memories
6624  * are not directly readable from the driver
6625  * to test them we send debug packets
6626  */
6627 static int bnx2x_int_mem_test(struct bnx2x *bp)
6628 {
6629         int factor;
6630         int count, i;
6631         u32 val = 0;
6632
6633         if (CHIP_REV_IS_FPGA(bp))
6634                 factor = 120;
6635         else if (CHIP_REV_IS_EMUL(bp))
6636                 factor = 200;
6637         else
6638                 factor = 1;
6639
6640         /* Disable inputs of parser neighbor blocks */
6641         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6642         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6643         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6644         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6645
6646         /*  Write 0 to parser credits for CFC search request */
6647         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6648
6649         /* send Ethernet packet */
6650         bnx2x_lb_pckt(bp);
6651
6652         /* TODO do i reset NIG statistic? */
6653         /* Wait until NIG register shows 1 packet of size 0x10 */
6654         count = 1000 * factor;
6655         while (count) {
6656
6657                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6658                 val = *bnx2x_sp(bp, wb_data[0]);
6659                 if (val == 0x10)
6660                         break;
6661
6662                 usleep_range(10000, 20000);
6663                 count--;
6664         }
6665         if (val != 0x10) {
6666                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6667                 return -1;
6668         }
6669
6670         /* Wait until PRS register shows 1 packet */
6671         count = 1000 * factor;
6672         while (count) {
6673                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6674                 if (val == 1)
6675                         break;
6676
6677                 usleep_range(10000, 20000);
6678                 count--;
6679         }
6680         if (val != 0x1) {
6681                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6682                 return -2;
6683         }
6684
6685         /* Reset and init BRB, PRS */
6686         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6687         msleep(50);
6688         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6689         msleep(50);
6690         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6691         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6692
6693         DP(NETIF_MSG_HW, "part2\n");
6694
6695         /* Disable inputs of parser neighbor blocks */
6696         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6697         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6698         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6699         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6700
6701         /* Write 0 to parser credits for CFC search request */
6702         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6703
6704         /* send 10 Ethernet packets */
6705         for (i = 0; i < 10; i++)
6706                 bnx2x_lb_pckt(bp);
6707
6708         /* Wait until NIG register shows 10 + 1
6709            packets of size 11*0x10 = 0xb0 */
6710         count = 1000 * factor;
6711         while (count) {
6712
6713                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6714                 val = *bnx2x_sp(bp, wb_data[0]);
6715                 if (val == 0xb0)
6716                         break;
6717
6718                 usleep_range(10000, 20000);
6719                 count--;
6720         }
6721         if (val != 0xb0) {
6722                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6723                 return -3;
6724         }
6725
6726         /* Wait until PRS register shows 2 packets */
6727         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6728         if (val != 2)
6729                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6730
6731         /* Write 1 to parser credits for CFC search request */
6732         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6733
6734         /* Wait until PRS register shows 3 packets */
6735         msleep(10 * factor);
6736         /* Wait until NIG register shows 1 packet of size 0x10 */
6737         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6738         if (val != 3)
6739                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6740
6741         /* clear NIG EOP FIFO */
6742         for (i = 0; i < 11; i++)
6743                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6744         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6745         if (val != 1) {
6746                 BNX2X_ERR("clear of NIG failed\n");
6747                 return -4;
6748         }
6749
6750         /* Reset and init BRB, PRS, NIG */
6751         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6752         msleep(50);
6753         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6754         msleep(50);
6755         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6756         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6757         if (!CNIC_SUPPORT(bp))
6758                 /* set NIC mode */
6759                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6760
6761         /* Enable inputs of parser neighbor blocks */
6762         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6763         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6764         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6765         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6766
6767         DP(NETIF_MSG_HW, "done\n");
6768
6769         return 0; /* OK */
6770 }
6771
6772 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6773 {
6774         u32 val;
6775
6776         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6777         if (!CHIP_IS_E1x(bp))
6778                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6779         else
6780                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6781         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6782         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6783         /*
6784          * mask read length error interrupts in brb for parser
6785          * (parsing unit and 'checksum and crc' unit)
6786          * these errors are legal (PU reads fixed length and CAC can cause
6787          * read length error on truncated packets)
6788          */
6789         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6790         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6791         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6792         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6793         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6794         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6795 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6796 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6797         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6798         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6799         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6800 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6801 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6802         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6803         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6804         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6805         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6806 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6807 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6808
6809         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6810                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6811                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6812         if (!CHIP_IS_E1x(bp))
6813                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6814                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6815         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6816
6817         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6818         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6819         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6820 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6821
6822         if (!CHIP_IS_E1x(bp))
6823                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6824                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6825
6826         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6827         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6828 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6829         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6830 }
6831
6832 static void bnx2x_reset_common(struct bnx2x *bp)
6833 {
6834         u32 val = 0x1400;
6835
6836         /* reset_common */
6837         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6838                0xd3ffff7f);
6839
6840         if (CHIP_IS_E3(bp)) {
6841                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6842                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6843         }
6844
6845         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6846 }
6847
6848 static void bnx2x_setup_dmae(struct bnx2x *bp)
6849 {
6850         bp->dmae_ready = 0;
6851         spin_lock_init(&bp->dmae_lock);
6852 }
6853
6854 static void bnx2x_init_pxp(struct bnx2x *bp)
6855 {
6856         u16 devctl;
6857         int r_order, w_order;
6858
6859         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6860         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6861         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6862         if (bp->mrrs == -1)
6863                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6864         else {
6865                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6866                 r_order = bp->mrrs;
6867         }
6868
6869         bnx2x_init_pxp_arb(bp, r_order, w_order);
6870 }
6871
6872 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6873 {
6874         int is_required;
6875         u32 val;
6876         int port;
6877
6878         if (BP_NOMCP(bp))
6879                 return;
6880
6881         is_required = 0;
6882         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6883               SHARED_HW_CFG_FAN_FAILURE_MASK;
6884
6885         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6886                 is_required = 1;
6887
6888         /*
6889          * The fan failure mechanism is usually related to the PHY type since
6890          * the power consumption of the board is affected by the PHY. Currently,
6891          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6892          */
6893         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6894                 for (port = PORT_0; port < PORT_MAX; port++) {
6895                         is_required |=
6896                                 bnx2x_fan_failure_det_req(
6897                                         bp,
6898                                         bp->common.shmem_base,
6899                                         bp->common.shmem2_base,
6900                                         port);
6901                 }
6902
6903         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6904
6905         if (is_required == 0)
6906                 return;
6907
6908         /* Fan failure is indicated by SPIO 5 */
6909         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6910
6911         /* set to active low mode */
6912         val = REG_RD(bp, MISC_REG_SPIO_INT);
6913         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6914         REG_WR(bp, MISC_REG_SPIO_INT, val);
6915
6916         /* enable interrupt to signal the IGU */
6917         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6918         val |= MISC_SPIO_SPIO5;
6919         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6920 }
6921
6922 void bnx2x_pf_disable(struct bnx2x *bp)
6923 {
6924         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6925         val &= ~IGU_PF_CONF_FUNC_EN;
6926
6927         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6928         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6929         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6930 }
6931
6932 static void bnx2x__common_init_phy(struct bnx2x *bp)
6933 {
6934         u32 shmem_base[2], shmem2_base[2];
6935         /* Avoid common init in case MFW supports LFA */
6936         if (SHMEM2_RD(bp, size) >
6937             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6938                 return;
6939         shmem_base[0] =  bp->common.shmem_base;
6940         shmem2_base[0] = bp->common.shmem2_base;
6941         if (!CHIP_IS_E1x(bp)) {
6942                 shmem_base[1] =
6943                         SHMEM2_RD(bp, other_shmem_base_addr);
6944                 shmem2_base[1] =
6945                         SHMEM2_RD(bp, other_shmem2_base_addr);
6946         }
6947         bnx2x_acquire_phy_lock(bp);
6948         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6949                               bp->common.chip_id);
6950         bnx2x_release_phy_lock(bp);
6951 }
6952
6953 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6954 {
6955         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6956         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
6957         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
6958         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
6959         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
6960
6961         /* make sure this value is 0 */
6962         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6963
6964         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
6965         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
6966         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
6967         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
6968 }
6969
6970 static void bnx2x_set_endianity(struct bnx2x *bp)
6971 {
6972 #ifdef __BIG_ENDIAN
6973         bnx2x_config_endianity(bp, 1);
6974 #else
6975         bnx2x_config_endianity(bp, 0);
6976 #endif
6977 }
6978
6979 static void bnx2x_reset_endianity(struct bnx2x *bp)
6980 {
6981         bnx2x_config_endianity(bp, 0);
6982 }
6983
6984 /**
6985  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6986  *
6987  * @bp:         driver handle
6988  */
6989 static int bnx2x_init_hw_common(struct bnx2x *bp)
6990 {
6991         u32 val;
6992
6993         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6994
6995         /*
6996          * take the RESET lock to protect undi_unload flow from accessing
6997          * registers while we're resetting the chip
6998          */
6999         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7000
7001         bnx2x_reset_common(bp);
7002         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7003
7004         val = 0xfffc;
7005         if (CHIP_IS_E3(bp)) {
7006                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7007                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7008         }
7009         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7010
7011         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7012
7013         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7014
7015         if (!CHIP_IS_E1x(bp)) {
7016                 u8 abs_func_id;
7017
7018                 /**
7019                  * 4-port mode or 2-port mode we need to turn of master-enable
7020                  * for everyone, after that, turn it back on for self.
7021                  * so, we disregard multi-function or not, and always disable
7022                  * for all functions on the given path, this means 0,2,4,6 for
7023                  * path 0 and 1,3,5,7 for path 1
7024                  */
7025                 for (abs_func_id = BP_PATH(bp);
7026                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7027                         if (abs_func_id == BP_ABS_FUNC(bp)) {
7028                                 REG_WR(bp,
7029                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7030                                     1);
7031                                 continue;
7032                         }
7033
7034                         bnx2x_pretend_func(bp, abs_func_id);
7035                         /* clear pf enable */
7036                         bnx2x_pf_disable(bp);
7037                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7038                 }
7039         }
7040
7041         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7042         if (CHIP_IS_E1(bp)) {
7043                 /* enable HW interrupt from PXP on USDM overflow
7044                    bit 16 on INT_MASK_0 */
7045                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7046         }
7047
7048         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7049         bnx2x_init_pxp(bp);
7050         bnx2x_set_endianity(bp);
7051         bnx2x_ilt_init_page_size(bp, INITOP_SET);
7052
7053         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7054                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7055
7056         /* let the HW do it's magic ... */
7057         msleep(100);
7058         /* finish PXP init */
7059         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7060         if (val != 1) {
7061                 BNX2X_ERR("PXP2 CFG failed\n");
7062                 return -EBUSY;
7063         }
7064         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7065         if (val != 1) {
7066                 BNX2X_ERR("PXP2 RD_INIT failed\n");
7067                 return -EBUSY;
7068         }
7069
7070         /* Timers bug workaround E2 only. We need to set the entire ILT to
7071          * have entries with value "0" and valid bit on.
7072          * This needs to be done by the first PF that is loaded in a path
7073          * (i.e. common phase)
7074          */
7075         if (!CHIP_IS_E1x(bp)) {
7076 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7077  * (i.e. vnic3) to start even if it is marked as "scan-off".
7078  * This occurs when a different function (func2,3) is being marked
7079  * as "scan-off". Real-life scenario for example: if a driver is being
7080  * load-unloaded while func6,7 are down. This will cause the timer to access
7081  * the ilt, translate to a logical address and send a request to read/write.
7082  * Since the ilt for the function that is down is not valid, this will cause
7083  * a translation error which is unrecoverable.
7084  * The Workaround is intended to make sure that when this happens nothing fatal
7085  * will occur. The workaround:
7086  *      1.  First PF driver which loads on a path will:
7087  *              a.  After taking the chip out of reset, by using pretend,
7088  *                  it will write "0" to the following registers of
7089  *                  the other vnics.
7090  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7091  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7092  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7093  *                  And for itself it will write '1' to
7094  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7095  *                  dmae-operations (writing to pram for example.)
7096  *                  note: can be done for only function 6,7 but cleaner this
7097  *                        way.
7098  *              b.  Write zero+valid to the entire ILT.
7099  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7100  *                  VNIC3 (of that port). The range allocated will be the
7101  *                  entire ILT. This is needed to prevent  ILT range error.
7102  *      2.  Any PF driver load flow:
7103  *              a.  ILT update with the physical addresses of the allocated
7104  *                  logical pages.
7105  *              b.  Wait 20msec. - note that this timeout is needed to make
7106  *                  sure there are no requests in one of the PXP internal
7107  *                  queues with "old" ILT addresses.
7108  *              c.  PF enable in the PGLC.
7109  *              d.  Clear the was_error of the PF in the PGLC. (could have
7110  *                  occurred while driver was down)
7111  *              e.  PF enable in the CFC (WEAK + STRONG)
7112  *              f.  Timers scan enable
7113  *      3.  PF driver unload flow:
7114  *              a.  Clear the Timers scan_en.
7115  *              b.  Polling for scan_on=0 for that PF.
7116  *              c.  Clear the PF enable bit in the PXP.
7117  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7118  *              e.  Write zero+valid to all ILT entries (The valid bit must
7119  *                  stay set)
7120  *              f.  If this is VNIC 3 of a port then also init
7121  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7122  *                  to the last entry in the ILT.
7123  *
7124  *      Notes:
7125  *      Currently the PF error in the PGLC is non recoverable.
7126  *      In the future the there will be a recovery routine for this error.
7127  *      Currently attention is masked.
7128  *      Having an MCP lock on the load/unload process does not guarantee that
7129  *      there is no Timer disable during Func6/7 enable. This is because the
7130  *      Timers scan is currently being cleared by the MCP on FLR.
7131  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7132  *      there is error before clearing it. But the flow above is simpler and
7133  *      more general.
7134  *      All ILT entries are written by zero+valid and not just PF6/7
7135  *      ILT entries since in the future the ILT entries allocation for
7136  *      PF-s might be dynamic.
7137  */
7138                 struct ilt_client_info ilt_cli;
7139                 struct bnx2x_ilt ilt;
7140                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7141                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7142
7143                 /* initialize dummy TM client */
7144                 ilt_cli.start = 0;
7145                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7146                 ilt_cli.client_num = ILT_CLIENT_TM;
7147
7148                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7149                  * Step 2: set the timers first/last ilt entry to point
7150                  * to the entire range to prevent ILT range error for 3rd/4th
7151                  * vnic (this code assumes existence of the vnic)
7152                  *
7153                  * both steps performed by call to bnx2x_ilt_client_init_op()
7154                  * with dummy TM client
7155                  *
7156                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7157                  * and his brother are split registers
7158                  */
7159                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7160                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7161                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7162
7163                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7164                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7165                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7166         }
7167
7168         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7169         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7170
7171         if (!CHIP_IS_E1x(bp)) {
7172                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7173                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7174                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7175
7176                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7177
7178                 /* let the HW do it's magic ... */
7179                 do {
7180                         msleep(200);
7181                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7182                 } while (factor-- && (val != 1));
7183
7184                 if (val != 1) {
7185                         BNX2X_ERR("ATC_INIT failed\n");
7186                         return -EBUSY;
7187                 }
7188         }
7189
7190         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7191
7192         bnx2x_iov_init_dmae(bp);
7193
7194         /* clean the DMAE memory */
7195         bp->dmae_ready = 1;
7196         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7197
7198         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7199
7200         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7201
7202         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7203
7204         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7205
7206         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7207         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7208         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7209         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7210
7211         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7212
7213         /* QM queues pointers table */
7214         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7215
7216         /* soft reset pulse */
7217         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7218         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7219
7220         if (CNIC_SUPPORT(bp))
7221                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7222
7223         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7224
7225         if (!CHIP_REV_IS_SLOW(bp))
7226                 /* enable hw interrupt from doorbell Q */
7227                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7228
7229         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7230
7231         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7232         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7233
7234         if (!CHIP_IS_E1(bp))
7235                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7236
7237         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7238                 if (IS_MF_AFEX(bp)) {
7239                         /* configure that VNTag and VLAN headers must be
7240                          * received in afex mode
7241                          */
7242                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7243                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7244                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7245                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7246                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7247                 } else {
7248                         /* Bit-map indicating which L2 hdrs may appear
7249                          * after the basic Ethernet header
7250                          */
7251                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7252                                bp->path_has_ovlan ? 7 : 6);
7253                 }
7254         }
7255
7256         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7257         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7258         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7259         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7260
7261         if (!CHIP_IS_E1x(bp)) {
7262                 /* reset VFC memories */
7263                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7264                            VFC_MEMORIES_RST_REG_CAM_RST |
7265                            VFC_MEMORIES_RST_REG_RAM_RST);
7266                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7267                            VFC_MEMORIES_RST_REG_CAM_RST |
7268                            VFC_MEMORIES_RST_REG_RAM_RST);
7269
7270                 msleep(20);
7271         }
7272
7273         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7274         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7275         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7276         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7277
7278         /* sync semi rtc */
7279         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7280                0x80000000);
7281         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7282                0x80000000);
7283
7284         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7285         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7286         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7287
7288         if (!CHIP_IS_E1x(bp)) {
7289                 if (IS_MF_AFEX(bp)) {
7290                         /* configure that VNTag and VLAN headers must be
7291                          * sent in afex mode
7292                          */
7293                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7294                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7295                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7296                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7297                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7298                 } else {
7299                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7300                                bp->path_has_ovlan ? 7 : 6);
7301                 }
7302         }
7303
7304         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7305
7306         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7307
7308         if (CNIC_SUPPORT(bp)) {
7309                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7310                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7311                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7312                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7313                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7314                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7315                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7316                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7317                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7318                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7319         }
7320         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7321
7322         if (sizeof(union cdu_context) != 1024)
7323                 /* we currently assume that a context is 1024 bytes */
7324                 dev_alert(&bp->pdev->dev,
7325                           "please adjust the size of cdu_context(%ld)\n",
7326                           (long)sizeof(union cdu_context));
7327
7328         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7329         val = (4 << 24) + (0 << 12) + 1024;
7330         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7331
7332         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7333         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7334         /* enable context validation interrupt from CFC */
7335         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7336
7337         /* set the thresholds to prevent CFC/CDU race */
7338         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7339
7340         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7341
7342         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7343                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7344
7345         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7346         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7347
7348         /* Reset PCIE errors for debug */
7349         REG_WR(bp, 0x2814, 0xffffffff);
7350         REG_WR(bp, 0x3820, 0xffffffff);
7351
7352         if (!CHIP_IS_E1x(bp)) {
7353                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7354                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7355                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7356                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7357                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7358                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7359                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7360                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7361                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7362                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7363                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7364         }
7365
7366         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7367         if (!CHIP_IS_E1(bp)) {
7368                 /* in E3 this done in per-port section */
7369                 if (!CHIP_IS_E3(bp))
7370                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7371         }
7372         if (CHIP_IS_E1H(bp))
7373                 /* not applicable for E2 (and above ...) */
7374                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7375
7376         if (CHIP_REV_IS_SLOW(bp))
7377                 msleep(200);
7378
7379         /* finish CFC init */
7380         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7381         if (val != 1) {
7382                 BNX2X_ERR("CFC LL_INIT failed\n");
7383                 return -EBUSY;
7384         }
7385         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7386         if (val != 1) {
7387                 BNX2X_ERR("CFC AC_INIT failed\n");
7388                 return -EBUSY;
7389         }
7390         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7391         if (val != 1) {
7392                 BNX2X_ERR("CFC CAM_INIT failed\n");
7393                 return -EBUSY;
7394         }
7395         REG_WR(bp, CFC_REG_DEBUG0, 0);
7396
7397         if (CHIP_IS_E1(bp)) {
7398                 /* read NIG statistic
7399                    to see if this is our first up since powerup */
7400                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7401                 val = *bnx2x_sp(bp, wb_data[0]);
7402
7403                 /* do internal memory self test */
7404                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7405                         BNX2X_ERR("internal mem self test failed\n");
7406                         return -EBUSY;
7407                 }
7408         }
7409
7410         bnx2x_setup_fan_failure_detection(bp);
7411
7412         /* clear PXP2 attentions */
7413         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7414
7415         bnx2x_enable_blocks_attention(bp);
7416         bnx2x_enable_blocks_parity(bp);
7417
7418         if (!BP_NOMCP(bp)) {
7419                 if (CHIP_IS_E1x(bp))
7420                         bnx2x__common_init_phy(bp);
7421         } else
7422                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7423
7424         return 0;
7425 }
7426
7427 /**
7428  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7429  *
7430  * @bp:         driver handle
7431  */
7432 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7433 {
7434         int rc = bnx2x_init_hw_common(bp);
7435
7436         if (rc)
7437                 return rc;
7438
7439         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7440         if (!BP_NOMCP(bp))
7441                 bnx2x__common_init_phy(bp);
7442
7443         return 0;
7444 }
7445
7446 static int bnx2x_init_hw_port(struct bnx2x *bp)
7447 {
7448         int port = BP_PORT(bp);
7449         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7450         u32 low, high;
7451         u32 val, reg;
7452
7453         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7454
7455         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7456
7457         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7458         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7459         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7460
7461         /* Timers bug workaround: disables the pf_master bit in pglue at
7462          * common phase, we need to enable it here before any dmae access are
7463          * attempted. Therefore we manually added the enable-master to the
7464          * port phase (it also happens in the function phase)
7465          */
7466         if (!CHIP_IS_E1x(bp))
7467                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7468
7469         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7470         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7471         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7472         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7473
7474         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7475         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7476         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7477         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7478
7479         /* QM cid (connection) count */
7480         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7481
7482         if (CNIC_SUPPORT(bp)) {
7483                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7484                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7485                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7486         }
7487
7488         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7489
7490         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7491
7492         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7493
7494                 if (IS_MF(bp))
7495                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7496                 else if (bp->dev->mtu > 4096) {
7497                         if (bp->flags & ONE_PORT_FLAG)
7498                                 low = 160;
7499                         else {
7500                                 val = bp->dev->mtu;
7501                                 /* (24*1024 + val*4)/256 */
7502                                 low = 96 + (val/64) +
7503                                                 ((val % 64) ? 1 : 0);
7504                         }
7505                 } else
7506                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7507                 high = low + 56;        /* 14*1024/256 */
7508                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7509                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7510         }
7511
7512         if (CHIP_MODE_IS_4_PORT(bp))
7513                 REG_WR(bp, (BP_PORT(bp) ?
7514                             BRB1_REG_MAC_GUARANTIED_1 :
7515                             BRB1_REG_MAC_GUARANTIED_0), 40);
7516
7517         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7518         if (CHIP_IS_E3B0(bp)) {
7519                 if (IS_MF_AFEX(bp)) {
7520                         /* configure headers for AFEX mode */
7521                         REG_WR(bp, BP_PORT(bp) ?
7522                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7523                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7524                         REG_WR(bp, BP_PORT(bp) ?
7525                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7526                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7527                         REG_WR(bp, BP_PORT(bp) ?
7528                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7529                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7530                 } else {
7531                         /* Ovlan exists only if we are in multi-function +
7532                          * switch-dependent mode, in switch-independent there
7533                          * is no ovlan headers
7534                          */
7535                         REG_WR(bp, BP_PORT(bp) ?
7536                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7537                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7538                                (bp->path_has_ovlan ? 7 : 6));
7539                 }
7540         }
7541
7542         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7543         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7544         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7545         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7546
7547         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7548         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7549         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7550         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7551
7552         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7553         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7554
7555         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7556
7557         if (CHIP_IS_E1x(bp)) {
7558                 /* configure PBF to work without PAUSE mtu 9000 */
7559                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7560
7561                 /* update threshold */
7562                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7563                 /* update init credit */
7564                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7565
7566                 /* probe changes */
7567                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7568                 udelay(50);
7569                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7570         }
7571
7572         if (CNIC_SUPPORT(bp))
7573                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7574
7575         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7576         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7577
7578         if (CHIP_IS_E1(bp)) {
7579                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7580                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7581         }
7582         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7583
7584         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7585
7586         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7587         /* init aeu_mask_attn_func_0/1:
7588          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7589          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7590          *             bits 4-7 are used for "per vn group attention" */
7591         val = IS_MF(bp) ? 0xF7 : 0x7;
7592         /* Enable DCBX attention for all but E1 */
7593         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7594         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7595
7596         /* SCPAD_PARITY should NOT trigger close the gates */
7597         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7598         REG_WR(bp, reg,
7599                REG_RD(bp, reg) &
7600                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7601
7602         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7603         REG_WR(bp, reg,
7604                REG_RD(bp, reg) &
7605                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7606
7607         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7608
7609         if (!CHIP_IS_E1x(bp)) {
7610                 /* Bit-map indicating which L2 hdrs may appear after the
7611                  * basic Ethernet header
7612                  */
7613                 if (IS_MF_AFEX(bp))
7614                         REG_WR(bp, BP_PORT(bp) ?
7615                                NIG_REG_P1_HDRS_AFTER_BASIC :
7616                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7617                 else
7618                         REG_WR(bp, BP_PORT(bp) ?
7619                                NIG_REG_P1_HDRS_AFTER_BASIC :
7620                                NIG_REG_P0_HDRS_AFTER_BASIC,
7621                                IS_MF_SD(bp) ? 7 : 6);
7622
7623                 if (CHIP_IS_E3(bp))
7624                         REG_WR(bp, BP_PORT(bp) ?
7625                                    NIG_REG_LLH1_MF_MODE :
7626                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7627         }
7628         if (!CHIP_IS_E3(bp))
7629                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7630
7631         if (!CHIP_IS_E1(bp)) {
7632                 /* 0x2 disable mf_ov, 0x1 enable */
7633                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7634                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7635
7636                 if (!CHIP_IS_E1x(bp)) {
7637                         val = 0;
7638                         switch (bp->mf_mode) {
7639                         case MULTI_FUNCTION_SD:
7640                                 val = 1;
7641                                 break;
7642                         case MULTI_FUNCTION_SI:
7643                         case MULTI_FUNCTION_AFEX:
7644                                 val = 2;
7645                                 break;
7646                         }
7647
7648                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7649                                                   NIG_REG_LLH0_CLS_TYPE), val);
7650                 }
7651                 {
7652                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7653                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7654                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7655                 }
7656         }
7657
7658         /* If SPIO5 is set to generate interrupts, enable it for this port */
7659         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7660         if (val & MISC_SPIO_SPIO5) {
7661                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7662                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7663                 val = REG_RD(bp, reg_addr);
7664                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7665                 REG_WR(bp, reg_addr, val);
7666         }
7667
7668         return 0;
7669 }
7670
7671 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7672 {
7673         int reg;
7674         u32 wb_write[2];
7675
7676         if (CHIP_IS_E1(bp))
7677                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7678         else
7679                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7680
7681         wb_write[0] = ONCHIP_ADDR1(addr);
7682         wb_write[1] = ONCHIP_ADDR2(addr);
7683         REG_WR_DMAE(bp, reg, wb_write, 2);
7684 }
7685
7686 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7687 {
7688         u32 data, ctl, cnt = 100;
7689         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7690         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7691         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7692         u32 sb_bit =  1 << (idu_sb_id%32);
7693         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7694         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7695
7696         /* Not supported in BC mode */
7697         if (CHIP_INT_MODE_IS_BC(bp))
7698                 return;
7699
7700         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7701                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7702                 IGU_REGULAR_CLEANUP_SET                         |
7703                 IGU_REGULAR_BCLEANUP;
7704
7705         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7706               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7707               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7708
7709         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7710                          data, igu_addr_data);
7711         REG_WR(bp, igu_addr_data, data);
7712         mmiowb();
7713         barrier();
7714         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7715                           ctl, igu_addr_ctl);
7716         REG_WR(bp, igu_addr_ctl, ctl);
7717         mmiowb();
7718         barrier();
7719
7720         /* wait for clean up to finish */
7721         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7722                 msleep(20);
7723
7724         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7725                 DP(NETIF_MSG_HW,
7726                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7727                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7728         }
7729 }
7730
7731 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7732 {
7733         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7734 }
7735
7736 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7737 {
7738         u32 i, base = FUNC_ILT_BASE(func);
7739         for (i = base; i < base + ILT_PER_FUNC; i++)
7740                 bnx2x_ilt_wr(bp, i, 0);
7741 }
7742
7743 static void bnx2x_init_searcher(struct bnx2x *bp)
7744 {
7745         int port = BP_PORT(bp);
7746         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7747         /* T1 hash bits value determines the T1 number of entries */
7748         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7749 }
7750
7751 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7752 {
7753         int rc;
7754         struct bnx2x_func_state_params func_params = {NULL};
7755         struct bnx2x_func_switch_update_params *switch_update_params =
7756                 &func_params.params.switch_update;
7757
7758         /* Prepare parameters for function state transitions */
7759         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7760         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7761
7762         func_params.f_obj = &bp->func_obj;
7763         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7764
7765         /* Function parameters */
7766         __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7767                   &switch_update_params->changes);
7768         if (suspend)
7769                 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7770                           &switch_update_params->changes);
7771
7772         rc = bnx2x_func_state_change(bp, &func_params);
7773
7774         return rc;
7775 }
7776
7777 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7778 {
7779         int rc, i, port = BP_PORT(bp);
7780         int vlan_en = 0, mac_en[NUM_MACS];
7781
7782         /* Close input from network */
7783         if (bp->mf_mode == SINGLE_FUNCTION) {
7784                 bnx2x_set_rx_filter(&bp->link_params, 0);
7785         } else {
7786                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7787                                    NIG_REG_LLH0_FUNC_EN);
7788                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7789                           NIG_REG_LLH0_FUNC_EN, 0);
7790                 for (i = 0; i < NUM_MACS; i++) {
7791                         mac_en[i] = REG_RD(bp, port ?
7792                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7793                                               4 * i) :
7794                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7795                                               4 * i));
7796                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7797                                               4 * i) :
7798                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7799                 }
7800         }
7801
7802         /* Close BMC to host */
7803         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7804                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7805
7806         /* Suspend Tx switching to the PF. Completion of this ramrod
7807          * further guarantees that all the packets of that PF / child
7808          * VFs in BRB were processed by the Parser, so it is safe to
7809          * change the NIC_MODE register.
7810          */
7811         rc = bnx2x_func_switch_update(bp, 1);
7812         if (rc) {
7813                 BNX2X_ERR("Can't suspend tx-switching!\n");
7814                 return rc;
7815         }
7816
7817         /* Change NIC_MODE register */
7818         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7819
7820         /* Open input from network */
7821         if (bp->mf_mode == SINGLE_FUNCTION) {
7822                 bnx2x_set_rx_filter(&bp->link_params, 1);
7823         } else {
7824                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7825                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7826                 for (i = 0; i < NUM_MACS; i++) {
7827                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7828                                               4 * i) :
7829                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7830                                   mac_en[i]);
7831                 }
7832         }
7833
7834         /* Enable BMC to host */
7835         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7836                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7837
7838         /* Resume Tx switching to the PF */
7839         rc = bnx2x_func_switch_update(bp, 0);
7840         if (rc) {
7841                 BNX2X_ERR("Can't resume tx-switching!\n");
7842                 return rc;
7843         }
7844
7845         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7846         return 0;
7847 }
7848
7849 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7850 {
7851         int rc;
7852
7853         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7854
7855         if (CONFIGURE_NIC_MODE(bp)) {
7856                 /* Configure searcher as part of function hw init */
7857                 bnx2x_init_searcher(bp);
7858
7859                 /* Reset NIC mode */
7860                 rc = bnx2x_reset_nic_mode(bp);
7861                 if (rc)
7862                         BNX2X_ERR("Can't change NIC mode!\n");
7863                 return rc;
7864         }
7865
7866         return 0;
7867 }
7868
7869 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7870  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7871  * the addresses of the transaction, resulting in was-error bit set in the pci
7872  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7873  * to clear the interrupt which detected this from the pglueb and the was done
7874  * bit
7875  */
7876 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7877 {
7878         if (!CHIP_IS_E1x(bp))
7879                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7880                        1 << BP_ABS_FUNC(bp));
7881 }
7882
7883 static int bnx2x_init_hw_func(struct bnx2x *bp)
7884 {
7885         int port = BP_PORT(bp);
7886         int func = BP_FUNC(bp);
7887         int init_phase = PHASE_PF0 + func;
7888         struct bnx2x_ilt *ilt = BP_ILT(bp);
7889         u16 cdu_ilt_start;
7890         u32 addr, val;
7891         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7892         int i, main_mem_width, rc;
7893
7894         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7895
7896         /* FLR cleanup - hmmm */
7897         if (!CHIP_IS_E1x(bp)) {
7898                 rc = bnx2x_pf_flr_clnup(bp);
7899                 if (rc) {
7900                         bnx2x_fw_dump(bp);
7901                         return rc;
7902                 }
7903         }
7904
7905         /* set MSI reconfigure capability */
7906         if (bp->common.int_block == INT_BLOCK_HC) {
7907                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7908                 val = REG_RD(bp, addr);
7909                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7910                 REG_WR(bp, addr, val);
7911         }
7912
7913         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7914         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7915
7916         ilt = BP_ILT(bp);
7917         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7918
7919         if (IS_SRIOV(bp))
7920                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7921         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7922
7923         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7924          * those of the VFs, so start line should be reset
7925          */
7926         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7927         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7928                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7929                 ilt->lines[cdu_ilt_start + i].page_mapping =
7930                         bp->context[i].cxt_mapping;
7931                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7932         }
7933
7934         bnx2x_ilt_init_op(bp, INITOP_SET);
7935
7936         if (!CONFIGURE_NIC_MODE(bp)) {
7937                 bnx2x_init_searcher(bp);
7938                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7939                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7940         } else {
7941                 /* Set NIC mode */
7942                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7943                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7944         }
7945
7946         if (!CHIP_IS_E1x(bp)) {
7947                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7948
7949                 /* Turn on a single ISR mode in IGU if driver is going to use
7950                  * INT#x or MSI
7951                  */
7952                 if (!(bp->flags & USING_MSIX_FLAG))
7953                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7954                 /*
7955                  * Timers workaround bug: function init part.
7956                  * Need to wait 20msec after initializing ILT,
7957                  * needed to make sure there are no requests in
7958                  * one of the PXP internal queues with "old" ILT addresses
7959                  */
7960                 msleep(20);
7961                 /*
7962                  * Master enable - Due to WB DMAE writes performed before this
7963                  * register is re-initialized as part of the regular function
7964                  * init
7965                  */
7966                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7967                 /* Enable the function in IGU */
7968                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7969         }
7970
7971         bp->dmae_ready = 1;
7972
7973         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7974
7975         bnx2x_clean_pglue_errors(bp);
7976
7977         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7978         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7979         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7980         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7981         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7982         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7983         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7984         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7985         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7986         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7987         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7988         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7989         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7990
7991         if (!CHIP_IS_E1x(bp))
7992                 REG_WR(bp, QM_REG_PF_EN, 1);
7993
7994         if (!CHIP_IS_E1x(bp)) {
7995                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7996                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7997                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7998                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7999         }
8000         bnx2x_init_block(bp, BLOCK_QM, init_phase);
8001
8002         bnx2x_init_block(bp, BLOCK_TM, init_phase);
8003         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8004         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8005
8006         bnx2x_iov_init_dq(bp);
8007
8008         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8009         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8010         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8011         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8012         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8013         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8014         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8015         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8016         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8017         if (!CHIP_IS_E1x(bp))
8018                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8019
8020         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8021
8022         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8023
8024         if (!CHIP_IS_E1x(bp))
8025                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8026
8027         if (IS_MF(bp)) {
8028                 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8029                         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8030                         REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8031                                bp->mf_ov);
8032                 }
8033         }
8034
8035         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8036
8037         /* HC init per function */
8038         if (bp->common.int_block == INT_BLOCK_HC) {
8039                 if (CHIP_IS_E1H(bp)) {
8040                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8041
8042                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8043                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8044                 }
8045                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8046
8047         } else {
8048                 int num_segs, sb_idx, prod_offset;
8049
8050                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8051
8052                 if (!CHIP_IS_E1x(bp)) {
8053                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8054                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8055                 }
8056
8057                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8058
8059                 if (!CHIP_IS_E1x(bp)) {
8060                         int dsb_idx = 0;
8061                         /**
8062                          * Producer memory:
8063                          * E2 mode: address 0-135 match to the mapping memory;
8064                          * 136 - PF0 default prod; 137 - PF1 default prod;
8065                          * 138 - PF2 default prod; 139 - PF3 default prod;
8066                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
8067                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
8068                          * 144-147 reserved.
8069                          *
8070                          * E1.5 mode - In backward compatible mode;
8071                          * for non default SB; each even line in the memory
8072                          * holds the U producer and each odd line hold
8073                          * the C producer. The first 128 producers are for
8074                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8075                          * producers are for the DSB for each PF.
8076                          * Each PF has five segments: (the order inside each
8077                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8078                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8079                          * 144-147 attn prods;
8080                          */
8081                         /* non-default-status-blocks */
8082                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8083                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8084                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8085                                 prod_offset = (bp->igu_base_sb + sb_idx) *
8086                                         num_segs;
8087
8088                                 for (i = 0; i < num_segs; i++) {
8089                                         addr = IGU_REG_PROD_CONS_MEMORY +
8090                                                         (prod_offset + i) * 4;
8091                                         REG_WR(bp, addr, 0);
8092                                 }
8093                                 /* send consumer update with value 0 */
8094                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8095                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8096                                 bnx2x_igu_clear_sb(bp,
8097                                                    bp->igu_base_sb + sb_idx);
8098                         }
8099
8100                         /* default-status-blocks */
8101                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8102                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8103
8104                         if (CHIP_MODE_IS_4_PORT(bp))
8105                                 dsb_idx = BP_FUNC(bp);
8106                         else
8107                                 dsb_idx = BP_VN(bp);
8108
8109                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8110                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
8111                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
8112
8113                         /*
8114                          * igu prods come in chunks of E1HVN_MAX (4) -
8115                          * does not matters what is the current chip mode
8116                          */
8117                         for (i = 0; i < (num_segs * E1HVN_MAX);
8118                              i += E1HVN_MAX) {
8119                                 addr = IGU_REG_PROD_CONS_MEMORY +
8120                                                         (prod_offset + i)*4;
8121                                 REG_WR(bp, addr, 0);
8122                         }
8123                         /* send consumer update with 0 */
8124                         if (CHIP_INT_MODE_IS_BC(bp)) {
8125                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8126                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8127                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8128                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
8129                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8130                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
8131                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8132                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
8133                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8134                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8135                         } else {
8136                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8137                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8138                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8139                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8140                         }
8141                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8142
8143                         /* !!! These should become driver const once
8144                            rf-tool supports split-68 const */
8145                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8146                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8147                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8148                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8149                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8150                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8151                 }
8152         }
8153
8154         /* Reset PCIE errors for debug */
8155         REG_WR(bp, 0x2114, 0xffffffff);
8156         REG_WR(bp, 0x2120, 0xffffffff);
8157
8158         if (CHIP_IS_E1x(bp)) {
8159                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8160                 main_mem_base = HC_REG_MAIN_MEMORY +
8161                                 BP_PORT(bp) * (main_mem_size * 4);
8162                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8163                 main_mem_width = 8;
8164
8165                 val = REG_RD(bp, main_mem_prty_clr);
8166                 if (val)
8167                         DP(NETIF_MSG_HW,
8168                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8169                            val);
8170
8171                 /* Clear "false" parity errors in MSI-X table */
8172                 for (i = main_mem_base;
8173                      i < main_mem_base + main_mem_size * 4;
8174                      i += main_mem_width) {
8175                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8176                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8177                                          i, main_mem_width / 4);
8178                 }
8179                 /* Clear HC parity attention */
8180                 REG_RD(bp, main_mem_prty_clr);
8181         }
8182
8183 #ifdef BNX2X_STOP_ON_ERROR
8184         /* Enable STORMs SP logging */
8185         REG_WR8(bp, BAR_USTRORM_INTMEM +
8186                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8187         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8188                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8189         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8190                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8191         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8192                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8193 #endif
8194
8195         bnx2x_phy_probe(&bp->link_params);
8196
8197         return 0;
8198 }
8199
8200 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8201 {
8202         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8203
8204         if (!CHIP_IS_E1x(bp))
8205                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8206                                sizeof(struct host_hc_status_block_e2));
8207         else
8208                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8209                                sizeof(struct host_hc_status_block_e1x));
8210
8211         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8212 }
8213
8214 void bnx2x_free_mem(struct bnx2x *bp)
8215 {
8216         int i;
8217
8218         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8219                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8220
8221         if (IS_VF(bp))
8222                 return;
8223
8224         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8225                        sizeof(struct host_sp_status_block));
8226
8227         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8228                        sizeof(struct bnx2x_slowpath));
8229
8230         for (i = 0; i < L2_ILT_LINES(bp); i++)
8231                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8232                                bp->context[i].size);
8233         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8234
8235         BNX2X_FREE(bp->ilt->lines);
8236
8237         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8238
8239         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8240                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8241
8242         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8243
8244         bnx2x_iov_free_mem(bp);
8245 }
8246
8247 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8248 {
8249         if (!CHIP_IS_E1x(bp)) {
8250                 /* size = the status block + ramrod buffers */
8251                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8252                                                     sizeof(struct host_hc_status_block_e2));
8253                 if (!bp->cnic_sb.e2_sb)
8254                         goto alloc_mem_err;
8255         } else {
8256                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8257                                                      sizeof(struct host_hc_status_block_e1x));
8258                 if (!bp->cnic_sb.e1x_sb)
8259                         goto alloc_mem_err;
8260         }
8261
8262         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8263                 /* allocate searcher T2 table, as it wasn't allocated before */
8264                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8265                 if (!bp->t2)
8266                         goto alloc_mem_err;
8267         }
8268
8269         /* write address to which L5 should insert its values */
8270         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8271                 &bp->slowpath->drv_info_to_mcp;
8272
8273         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8274                 goto alloc_mem_err;
8275
8276         return 0;
8277
8278 alloc_mem_err:
8279         bnx2x_free_mem_cnic(bp);
8280         BNX2X_ERR("Can't allocate memory\n");
8281         return -ENOMEM;
8282 }
8283
8284 int bnx2x_alloc_mem(struct bnx2x *bp)
8285 {
8286         int i, allocated, context_size;
8287
8288         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8289                 /* allocate searcher T2 table */
8290                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8291                 if (!bp->t2)
8292                         goto alloc_mem_err;
8293         }
8294
8295         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8296                                              sizeof(struct host_sp_status_block));
8297         if (!bp->def_status_blk)
8298                 goto alloc_mem_err;
8299
8300         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8301                                        sizeof(struct bnx2x_slowpath));
8302         if (!bp->slowpath)
8303                 goto alloc_mem_err;
8304
8305         /* Allocate memory for CDU context:
8306          * This memory is allocated separately and not in the generic ILT
8307          * functions because CDU differs in few aspects:
8308          * 1. There are multiple entities allocating memory for context -
8309          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8310          * its own ILT lines.
8311          * 2. Since CDU page-size is not a single 4KB page (which is the case
8312          * for the other ILT clients), to be efficient we want to support
8313          * allocation of sub-page-size in the last entry.
8314          * 3. Context pointers are used by the driver to pass to FW / update
8315          * the context (for the other ILT clients the pointers are used just to
8316          * free the memory during unload).
8317          */
8318         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8319
8320         for (i = 0, allocated = 0; allocated < context_size; i++) {
8321                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8322                                           (context_size - allocated));
8323                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8324                                                       bp->context[i].size);
8325                 if (!bp->context[i].vcxt)
8326                         goto alloc_mem_err;
8327                 allocated += bp->context[i].size;
8328         }
8329         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8330                                  GFP_KERNEL);
8331         if (!bp->ilt->lines)
8332                 goto alloc_mem_err;
8333
8334         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8335                 goto alloc_mem_err;
8336
8337         if (bnx2x_iov_alloc_mem(bp))
8338                 goto alloc_mem_err;
8339
8340         /* Slow path ring */
8341         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8342         if (!bp->spq)
8343                 goto alloc_mem_err;
8344
8345         /* EQ */
8346         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8347                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8348         if (!bp->eq_ring)
8349                 goto alloc_mem_err;
8350
8351         return 0;
8352
8353 alloc_mem_err:
8354         bnx2x_free_mem(bp);
8355         BNX2X_ERR("Can't allocate memory\n");
8356         return -ENOMEM;
8357 }
8358
8359 /*
8360  * Init service functions
8361  */
8362
8363 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8364                       struct bnx2x_vlan_mac_obj *obj, bool set,
8365                       int mac_type, unsigned long *ramrod_flags)
8366 {
8367         int rc;
8368         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8369
8370         memset(&ramrod_param, 0, sizeof(ramrod_param));
8371
8372         /* Fill general parameters */
8373         ramrod_param.vlan_mac_obj = obj;
8374         ramrod_param.ramrod_flags = *ramrod_flags;
8375
8376         /* Fill a user request section if needed */
8377         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8378                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8379
8380                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8381
8382                 /* Set the command: ADD or DEL */
8383                 if (set)
8384                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8385                 else
8386                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8387         }
8388
8389         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8390
8391         if (rc == -EEXIST) {
8392                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8393                 /* do not treat adding same MAC as error */
8394                 rc = 0;
8395         } else if (rc < 0)
8396                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8397
8398         return rc;
8399 }
8400
8401 int bnx2x_del_all_macs(struct bnx2x *bp,
8402                        struct bnx2x_vlan_mac_obj *mac_obj,
8403                        int mac_type, bool wait_for_comp)
8404 {
8405         int rc;
8406         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8407
8408         /* Wait for completion of requested */
8409         if (wait_for_comp)
8410                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8411
8412         /* Set the mac type of addresses we want to clear */
8413         __set_bit(mac_type, &vlan_mac_flags);
8414
8415         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8416         if (rc < 0)
8417                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8418
8419         return rc;
8420 }
8421
8422 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8423 {
8424         if (IS_PF(bp)) {
8425                 unsigned long ramrod_flags = 0;
8426
8427                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8428                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8429                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8430                                          &bp->sp_objs->mac_obj, set,
8431                                          BNX2X_ETH_MAC, &ramrod_flags);
8432         } else { /* vf */
8433                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8434                                              bp->fp->index, true);
8435         }
8436 }
8437
8438 int bnx2x_setup_leading(struct bnx2x *bp)
8439 {
8440         if (IS_PF(bp))
8441                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8442         else /* VF */
8443                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8444 }
8445
8446 /**
8447  * bnx2x_set_int_mode - configure interrupt mode
8448  *
8449  * @bp:         driver handle
8450  *
8451  * In case of MSI-X it will also try to enable MSI-X.
8452  */
8453 int bnx2x_set_int_mode(struct bnx2x *bp)
8454 {
8455         int rc = 0;
8456
8457         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8458                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8459                 return -EINVAL;
8460         }
8461
8462         switch (int_mode) {
8463         case BNX2X_INT_MODE_MSIX:
8464                 /* attempt to enable msix */
8465                 rc = bnx2x_enable_msix(bp);
8466
8467                 /* msix attained */
8468                 if (!rc)
8469                         return 0;
8470
8471                 /* vfs use only msix */
8472                 if (rc && IS_VF(bp))
8473                         return rc;
8474
8475                 /* failed to enable multiple MSI-X */
8476                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8477                                bp->num_queues,
8478                                1 + bp->num_cnic_queues);
8479
8480                 /* falling through... */
8481         case BNX2X_INT_MODE_MSI:
8482                 bnx2x_enable_msi(bp);
8483
8484                 /* falling through... */
8485         case BNX2X_INT_MODE_INTX:
8486                 bp->num_ethernet_queues = 1;
8487                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8488                 BNX2X_DEV_INFO("set number of queues to 1\n");
8489                 break;
8490         default:
8491                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8492                 return -EINVAL;
8493         }
8494         return 0;
8495 }
8496
8497 /* must be called prior to any HW initializations */
8498 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8499 {
8500         if (IS_SRIOV(bp))
8501                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8502         return L2_ILT_LINES(bp);
8503 }
8504
8505 void bnx2x_ilt_set_info(struct bnx2x *bp)
8506 {
8507         struct ilt_client_info *ilt_client;
8508         struct bnx2x_ilt *ilt = BP_ILT(bp);
8509         u16 line = 0;
8510
8511         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8512         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8513
8514         /* CDU */
8515         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8516         ilt_client->client_num = ILT_CLIENT_CDU;
8517         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8518         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8519         ilt_client->start = line;
8520         line += bnx2x_cid_ilt_lines(bp);
8521
8522         if (CNIC_SUPPORT(bp))
8523                 line += CNIC_ILT_LINES;
8524         ilt_client->end = line - 1;
8525
8526         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8527            ilt_client->start,
8528            ilt_client->end,
8529            ilt_client->page_size,
8530            ilt_client->flags,
8531            ilog2(ilt_client->page_size >> 12));
8532
8533         /* QM */
8534         if (QM_INIT(bp->qm_cid_count)) {
8535                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8536                 ilt_client->client_num = ILT_CLIENT_QM;
8537                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8538                 ilt_client->flags = 0;
8539                 ilt_client->start = line;
8540
8541                 /* 4 bytes for each cid */
8542                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8543                                                          QM_ILT_PAGE_SZ);
8544
8545                 ilt_client->end = line - 1;
8546
8547                 DP(NETIF_MSG_IFUP,
8548                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8549                    ilt_client->start,
8550                    ilt_client->end,
8551                    ilt_client->page_size,
8552                    ilt_client->flags,
8553                    ilog2(ilt_client->page_size >> 12));
8554         }
8555
8556         if (CNIC_SUPPORT(bp)) {
8557                 /* SRC */
8558                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8559                 ilt_client->client_num = ILT_CLIENT_SRC;
8560                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8561                 ilt_client->flags = 0;
8562                 ilt_client->start = line;
8563                 line += SRC_ILT_LINES;
8564                 ilt_client->end = line - 1;
8565
8566                 DP(NETIF_MSG_IFUP,
8567                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8568                    ilt_client->start,
8569                    ilt_client->end,
8570                    ilt_client->page_size,
8571                    ilt_client->flags,
8572                    ilog2(ilt_client->page_size >> 12));
8573
8574                 /* TM */
8575                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8576                 ilt_client->client_num = ILT_CLIENT_TM;
8577                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8578                 ilt_client->flags = 0;
8579                 ilt_client->start = line;
8580                 line += TM_ILT_LINES;
8581                 ilt_client->end = line - 1;
8582
8583                 DP(NETIF_MSG_IFUP,
8584                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8585                    ilt_client->start,
8586                    ilt_client->end,
8587                    ilt_client->page_size,
8588                    ilt_client->flags,
8589                    ilog2(ilt_client->page_size >> 12));
8590         }
8591
8592         BUG_ON(line > ILT_MAX_LINES);
8593 }
8594
8595 /**
8596  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8597  *
8598  * @bp:                 driver handle
8599  * @fp:                 pointer to fastpath
8600  * @init_params:        pointer to parameters structure
8601  *
8602  * parameters configured:
8603  *      - HC configuration
8604  *      - Queue's CDU context
8605  */
8606 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8607         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8608 {
8609         u8 cos;
8610         int cxt_index, cxt_offset;
8611
8612         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8613         if (!IS_FCOE_FP(fp)) {
8614                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8615                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8616
8617                 /* If HC is supported, enable host coalescing in the transition
8618                  * to INIT state.
8619                  */
8620                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8621                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8622
8623                 /* HC rate */
8624                 init_params->rx.hc_rate = bp->rx_ticks ?
8625                         (1000000 / bp->rx_ticks) : 0;
8626                 init_params->tx.hc_rate = bp->tx_ticks ?
8627                         (1000000 / bp->tx_ticks) : 0;
8628
8629                 /* FW SB ID */
8630                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8631                         fp->fw_sb_id;
8632
8633                 /*
8634                  * CQ index among the SB indices: FCoE clients uses the default
8635                  * SB, therefore it's different.
8636                  */
8637                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8638                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8639         }
8640
8641         /* set maximum number of COSs supported by this queue */
8642         init_params->max_cos = fp->max_cos;
8643
8644         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8645             fp->index, init_params->max_cos);
8646
8647         /* set the context pointers queue object */
8648         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8649                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8650                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8651                                 ILT_PAGE_CIDS);
8652                 init_params->cxts[cos] =
8653                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8654         }
8655 }
8656
8657 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8658                         struct bnx2x_queue_state_params *q_params,
8659                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8660                         int tx_index, bool leading)
8661 {
8662         memset(tx_only_params, 0, sizeof(*tx_only_params));
8663
8664         /* Set the command */
8665         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8666
8667         /* Set tx-only QUEUE flags: don't zero statistics */
8668         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8669
8670         /* choose the index of the cid to send the slow path on */
8671         tx_only_params->cid_index = tx_index;
8672
8673         /* Set general TX_ONLY_SETUP parameters */
8674         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8675
8676         /* Set Tx TX_ONLY_SETUP parameters */
8677         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8678
8679         DP(NETIF_MSG_IFUP,
8680            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8681            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8682            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8683            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8684
8685         /* send the ramrod */
8686         return bnx2x_queue_state_change(bp, q_params);
8687 }
8688
8689 /**
8690  * bnx2x_setup_queue - setup queue
8691  *
8692  * @bp:         driver handle
8693  * @fp:         pointer to fastpath
8694  * @leading:    is leading
8695  *
8696  * This function performs 2 steps in a Queue state machine
8697  *      actually: 1) RESET->INIT 2) INIT->SETUP
8698  */
8699
8700 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8701                        bool leading)
8702 {
8703         struct bnx2x_queue_state_params q_params = {NULL};
8704         struct bnx2x_queue_setup_params *setup_params =
8705                                                 &q_params.params.setup;
8706         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8707                                                 &q_params.params.tx_only;
8708         int rc;
8709         u8 tx_index;
8710
8711         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8712
8713         /* reset IGU state skip FCoE L2 queue */
8714         if (!IS_FCOE_FP(fp))
8715                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8716                              IGU_INT_ENABLE, 0);
8717
8718         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8719         /* We want to wait for completion in this context */
8720         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8721
8722         /* Prepare the INIT parameters */
8723         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8724
8725         /* Set the command */
8726         q_params.cmd = BNX2X_Q_CMD_INIT;
8727
8728         /* Change the state to INIT */
8729         rc = bnx2x_queue_state_change(bp, &q_params);
8730         if (rc) {
8731                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8732                 return rc;
8733         }
8734
8735         DP(NETIF_MSG_IFUP, "init complete\n");
8736
8737         /* Now move the Queue to the SETUP state... */
8738         memset(setup_params, 0, sizeof(*setup_params));
8739
8740         /* Set QUEUE flags */
8741         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8742
8743         /* Set general SETUP parameters */
8744         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8745                                 FIRST_TX_COS_INDEX);
8746
8747         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8748                             &setup_params->rxq_params);
8749
8750         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8751                            FIRST_TX_COS_INDEX);
8752
8753         /* Set the command */
8754         q_params.cmd = BNX2X_Q_CMD_SETUP;
8755
8756         if (IS_FCOE_FP(fp))
8757                 bp->fcoe_init = true;
8758
8759         /* Change the state to SETUP */
8760         rc = bnx2x_queue_state_change(bp, &q_params);
8761         if (rc) {
8762                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8763                 return rc;
8764         }
8765
8766         /* loop through the relevant tx-only indices */
8767         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8768               tx_index < fp->max_cos;
8769               tx_index++) {
8770
8771                 /* prepare and send tx-only ramrod*/
8772                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8773                                           tx_only_params, tx_index, leading);
8774                 if (rc) {
8775                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8776                                   fp->index, tx_index);
8777                         return rc;
8778                 }
8779         }
8780
8781         return rc;
8782 }
8783
8784 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8785 {
8786         struct bnx2x_fastpath *fp = &bp->fp[index];
8787         struct bnx2x_fp_txdata *txdata;
8788         struct bnx2x_queue_state_params q_params = {NULL};
8789         int rc, tx_index;
8790
8791         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8792
8793         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8794         /* We want to wait for completion in this context */
8795         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8796
8797         /* close tx-only connections */
8798         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8799              tx_index < fp->max_cos;
8800              tx_index++){
8801
8802                 /* ascertain this is a normal queue*/
8803                 txdata = fp->txdata_ptr[tx_index];
8804
8805                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8806                                                         txdata->txq_index);
8807
8808                 /* send halt terminate on tx-only connection */
8809                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8810                 memset(&q_params.params.terminate, 0,
8811                        sizeof(q_params.params.terminate));
8812                 q_params.params.terminate.cid_index = tx_index;
8813
8814                 rc = bnx2x_queue_state_change(bp, &q_params);
8815                 if (rc)
8816                         return rc;
8817
8818                 /* send halt terminate on tx-only connection */
8819                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8820                 memset(&q_params.params.cfc_del, 0,
8821                        sizeof(q_params.params.cfc_del));
8822                 q_params.params.cfc_del.cid_index = tx_index;
8823                 rc = bnx2x_queue_state_change(bp, &q_params);
8824                 if (rc)
8825                         return rc;
8826         }
8827         /* Stop the primary connection: */
8828         /* ...halt the connection */
8829         q_params.cmd = BNX2X_Q_CMD_HALT;
8830         rc = bnx2x_queue_state_change(bp, &q_params);
8831         if (rc)
8832                 return rc;
8833
8834         /* ...terminate the connection */
8835         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8836         memset(&q_params.params.terminate, 0,
8837                sizeof(q_params.params.terminate));
8838         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8839         rc = bnx2x_queue_state_change(bp, &q_params);
8840         if (rc)
8841                 return rc;
8842         /* ...delete cfc entry */
8843         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8844         memset(&q_params.params.cfc_del, 0,
8845                sizeof(q_params.params.cfc_del));
8846         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8847         return bnx2x_queue_state_change(bp, &q_params);
8848 }
8849
8850 static void bnx2x_reset_func(struct bnx2x *bp)
8851 {
8852         int port = BP_PORT(bp);
8853         int func = BP_FUNC(bp);
8854         int i;
8855
8856         /* Disable the function in the FW */
8857         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8858         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8859         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8860         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8861
8862         /* FP SBs */
8863         for_each_eth_queue(bp, i) {
8864                 struct bnx2x_fastpath *fp = &bp->fp[i];
8865                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8866                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8867                            SB_DISABLED);
8868         }
8869
8870         if (CNIC_LOADED(bp))
8871                 /* CNIC SB */
8872                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8873                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8874                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8875
8876         /* SP SB */
8877         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8878                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8879                 SB_DISABLED);
8880
8881         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8882                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8883                        0);
8884
8885         /* Configure IGU */
8886         if (bp->common.int_block == INT_BLOCK_HC) {
8887                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8888                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8889         } else {
8890                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8891                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8892         }
8893
8894         if (CNIC_LOADED(bp)) {
8895                 /* Disable Timer scan */
8896                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8897                 /*
8898                  * Wait for at least 10ms and up to 2 second for the timers
8899                  * scan to complete
8900                  */
8901                 for (i = 0; i < 200; i++) {
8902                         usleep_range(10000, 20000);
8903                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8904                                 break;
8905                 }
8906         }
8907         /* Clear ILT */
8908         bnx2x_clear_func_ilt(bp, func);
8909
8910         /* Timers workaround bug for E2: if this is vnic-3,
8911          * we need to set the entire ilt range for this timers.
8912          */
8913         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8914                 struct ilt_client_info ilt_cli;
8915                 /* use dummy TM client */
8916                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8917                 ilt_cli.start = 0;
8918                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8919                 ilt_cli.client_num = ILT_CLIENT_TM;
8920
8921                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8922         }
8923
8924         /* this assumes that reset_port() called before reset_func()*/
8925         if (!CHIP_IS_E1x(bp))
8926                 bnx2x_pf_disable(bp);
8927
8928         bp->dmae_ready = 0;
8929 }
8930
8931 static void bnx2x_reset_port(struct bnx2x *bp)
8932 {
8933         int port = BP_PORT(bp);
8934         u32 val;
8935
8936         /* Reset physical Link */
8937         bnx2x__link_reset(bp);
8938
8939         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8940
8941         /* Do not rcv packets to BRB */
8942         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8943         /* Do not direct rcv packets that are not for MCP to the BRB */
8944         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8945                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8946
8947         /* Configure AEU */
8948         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8949
8950         msleep(100);
8951         /* Check for BRB port occupancy */
8952         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8953         if (val)
8954                 DP(NETIF_MSG_IFDOWN,
8955                    "BRB1 is not empty  %d blocks are occupied\n", val);
8956
8957         /* TODO: Close Doorbell port? */
8958 }
8959
8960 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8961 {
8962         struct bnx2x_func_state_params func_params = {NULL};
8963
8964         /* Prepare parameters for function state transitions */
8965         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8966
8967         func_params.f_obj = &bp->func_obj;
8968         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8969
8970         func_params.params.hw_init.load_phase = load_code;
8971
8972         return bnx2x_func_state_change(bp, &func_params);
8973 }
8974
8975 static int bnx2x_func_stop(struct bnx2x *bp)
8976 {
8977         struct bnx2x_func_state_params func_params = {NULL};
8978         int rc;
8979
8980         /* Prepare parameters for function state transitions */
8981         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8982         func_params.f_obj = &bp->func_obj;
8983         func_params.cmd = BNX2X_F_CMD_STOP;
8984
8985         /*
8986          * Try to stop the function the 'good way'. If fails (in case
8987          * of a parity error during bnx2x_chip_cleanup()) and we are
8988          * not in a debug mode, perform a state transaction in order to
8989          * enable further HW_RESET transaction.
8990          */
8991         rc = bnx2x_func_state_change(bp, &func_params);
8992         if (rc) {
8993 #ifdef BNX2X_STOP_ON_ERROR
8994                 return rc;
8995 #else
8996                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8997                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8998                 return bnx2x_func_state_change(bp, &func_params);
8999 #endif
9000         }
9001
9002         return 0;
9003 }
9004
9005 /**
9006  * bnx2x_send_unload_req - request unload mode from the MCP.
9007  *
9008  * @bp:                 driver handle
9009  * @unload_mode:        requested function's unload mode
9010  *
9011  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9012  */
9013 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9014 {
9015         u32 reset_code = 0;
9016         int port = BP_PORT(bp);
9017
9018         /* Select the UNLOAD request mode */
9019         if (unload_mode == UNLOAD_NORMAL)
9020                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9021
9022         else if (bp->flags & NO_WOL_FLAG)
9023                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9024
9025         else if (bp->wol) {
9026                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9027                 u8 *mac_addr = bp->dev->dev_addr;
9028                 struct pci_dev *pdev = bp->pdev;
9029                 u32 val;
9030                 u16 pmc;
9031
9032                 /* The mac address is written to entries 1-4 to
9033                  * preserve entry 0 which is used by the PMF
9034                  */
9035                 u8 entry = (BP_VN(bp) + 1)*8;
9036
9037                 val = (mac_addr[0] << 8) | mac_addr[1];
9038                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9039
9040                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9041                       (mac_addr[4] << 8) | mac_addr[5];
9042                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9043
9044                 /* Enable the PME and clear the status */
9045                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9046                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9047                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9048
9049                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9050
9051         } else
9052                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9053
9054         /* Send the request to the MCP */
9055         if (!BP_NOMCP(bp))
9056                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9057         else {
9058                 int path = BP_PATH(bp);
9059
9060                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9061                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9062                    bnx2x_load_count[path][2]);
9063                 bnx2x_load_count[path][0]--;
9064                 bnx2x_load_count[path][1 + port]--;
9065                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9066                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9067                    bnx2x_load_count[path][2]);
9068                 if (bnx2x_load_count[path][0] == 0)
9069                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9070                 else if (bnx2x_load_count[path][1 + port] == 0)
9071                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9072                 else
9073                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9074         }
9075
9076         return reset_code;
9077 }
9078
9079 /**
9080  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9081  *
9082  * @bp:         driver handle
9083  * @keep_link:          true iff link should be kept up
9084  */
9085 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9086 {
9087         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9088
9089         /* Report UNLOAD_DONE to MCP */
9090         if (!BP_NOMCP(bp))
9091                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9092 }
9093
9094 static int bnx2x_func_wait_started(struct bnx2x *bp)
9095 {
9096         int tout = 50;
9097         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9098
9099         if (!bp->port.pmf)
9100                 return 0;
9101
9102         /*
9103          * (assumption: No Attention from MCP at this stage)
9104          * PMF probably in the middle of TX disable/enable transaction
9105          * 1. Sync IRS for default SB
9106          * 2. Sync SP queue - this guarantees us that attention handling started
9107          * 3. Wait, that TX disable/enable transaction completes
9108          *
9109          * 1+2 guarantee that if DCBx attention was scheduled it already changed
9110          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9111          * received completion for the transaction the state is TX_STOPPED.
9112          * State will return to STARTED after completion of TX_STOPPED-->STARTED
9113          * transaction.
9114          */
9115
9116         /* make sure default SB ISR is done */
9117         if (msix)
9118                 synchronize_irq(bp->msix_table[0].vector);
9119         else
9120                 synchronize_irq(bp->pdev->irq);
9121
9122         flush_workqueue(bnx2x_wq);
9123         flush_workqueue(bnx2x_iov_wq);
9124
9125         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9126                                 BNX2X_F_STATE_STARTED && tout--)
9127                 msleep(20);
9128
9129         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9130                                                 BNX2X_F_STATE_STARTED) {
9131 #ifdef BNX2X_STOP_ON_ERROR
9132                 BNX2X_ERR("Wrong function state\n");
9133                 return -EBUSY;
9134 #else
9135                 /*
9136                  * Failed to complete the transaction in a "good way"
9137                  * Force both transactions with CLR bit
9138                  */
9139                 struct bnx2x_func_state_params func_params = {NULL};
9140
9141                 DP(NETIF_MSG_IFDOWN,
9142                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9143
9144                 func_params.f_obj = &bp->func_obj;
9145                 __set_bit(RAMROD_DRV_CLR_ONLY,
9146                                         &func_params.ramrod_flags);
9147
9148                 /* STARTED-->TX_ST0PPED */
9149                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9150                 bnx2x_func_state_change(bp, &func_params);
9151
9152                 /* TX_ST0PPED-->STARTED */
9153                 func_params.cmd = BNX2X_F_CMD_TX_START;
9154                 return bnx2x_func_state_change(bp, &func_params);
9155 #endif
9156         }
9157
9158         return 0;
9159 }
9160
9161 static void bnx2x_disable_ptp(struct bnx2x *bp)
9162 {
9163         int port = BP_PORT(bp);
9164
9165         /* Disable sending PTP packets to host */
9166         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9167                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9168
9169         /* Reset PTP event detection rules */
9170         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9171                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9172         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9173                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9174         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9175                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9176         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9177                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9178
9179         /* Disable the PTP feature */
9180         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9181                NIG_REG_P0_PTP_EN, 0x0);
9182 }
9183
9184 /* Called during unload, to stop PTP-related stuff */
9185 static void bnx2x_stop_ptp(struct bnx2x *bp)
9186 {
9187         /* Cancel PTP work queue. Should be done after the Tx queues are
9188          * drained to prevent additional scheduling.
9189          */
9190         cancel_work_sync(&bp->ptp_task);
9191
9192         if (bp->ptp_tx_skb) {
9193                 dev_kfree_skb_any(bp->ptp_tx_skb);
9194                 bp->ptp_tx_skb = NULL;
9195         }
9196
9197         /* Disable PTP in HW */
9198         bnx2x_disable_ptp(bp);
9199
9200         DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9201 }
9202
9203 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9204 {
9205         int port = BP_PORT(bp);
9206         int i, rc = 0;
9207         u8 cos;
9208         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9209         u32 reset_code;
9210
9211         /* Wait until tx fastpath tasks complete */
9212         for_each_tx_queue(bp, i) {
9213                 struct bnx2x_fastpath *fp = &bp->fp[i];
9214
9215                 for_each_cos_in_tx_queue(fp, cos)
9216                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9217 #ifdef BNX2X_STOP_ON_ERROR
9218                 if (rc)
9219                         return;
9220 #endif
9221         }
9222
9223         /* Give HW time to discard old tx messages */
9224         usleep_range(1000, 2000);
9225
9226         /* Clean all ETH MACs */
9227         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9228                                 false);
9229         if (rc < 0)
9230                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9231
9232         /* Clean up UC list  */
9233         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9234                                 true);
9235         if (rc < 0)
9236                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9237                           rc);
9238
9239         /* Disable LLH */
9240         if (!CHIP_IS_E1(bp))
9241                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9242
9243         /* Set "drop all" (stop Rx).
9244          * We need to take a netif_addr_lock() here in order to prevent
9245          * a race between the completion code and this code.
9246          */
9247         netif_addr_lock_bh(bp->dev);
9248         /* Schedule the rx_mode command */
9249         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9250                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9251         else
9252                 bnx2x_set_storm_rx_mode(bp);
9253
9254         /* Cleanup multicast configuration */
9255         rparam.mcast_obj = &bp->mcast_obj;
9256         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9257         if (rc < 0)
9258                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9259
9260         netif_addr_unlock_bh(bp->dev);
9261
9262         bnx2x_iov_chip_cleanup(bp);
9263
9264         /*
9265          * Send the UNLOAD_REQUEST to the MCP. This will return if
9266          * this function should perform FUNC, PORT or COMMON HW
9267          * reset.
9268          */
9269         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9270
9271         /*
9272          * (assumption: No Attention from MCP at this stage)
9273          * PMF probably in the middle of TX disable/enable transaction
9274          */
9275         rc = bnx2x_func_wait_started(bp);
9276         if (rc) {
9277                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9278 #ifdef BNX2X_STOP_ON_ERROR
9279                 return;
9280 #endif
9281         }
9282
9283         /* Close multi and leading connections
9284          * Completions for ramrods are collected in a synchronous way
9285          */
9286         for_each_eth_queue(bp, i)
9287                 if (bnx2x_stop_queue(bp, i))
9288 #ifdef BNX2X_STOP_ON_ERROR
9289                         return;
9290 #else
9291                         goto unload_error;
9292 #endif
9293
9294         if (CNIC_LOADED(bp)) {
9295                 for_each_cnic_queue(bp, i)
9296                         if (bnx2x_stop_queue(bp, i))
9297 #ifdef BNX2X_STOP_ON_ERROR
9298                                 return;
9299 #else
9300                                 goto unload_error;
9301 #endif
9302         }
9303
9304         /* If SP settings didn't get completed so far - something
9305          * very wrong has happen.
9306          */
9307         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9308                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9309
9310 #ifndef BNX2X_STOP_ON_ERROR
9311 unload_error:
9312 #endif
9313         rc = bnx2x_func_stop(bp);
9314         if (rc) {
9315                 BNX2X_ERR("Function stop failed!\n");
9316 #ifdef BNX2X_STOP_ON_ERROR
9317                 return;
9318 #endif
9319         }
9320
9321         /* stop_ptp should be after the Tx queues are drained to prevent
9322          * scheduling to the cancelled PTP work queue. It should also be after
9323          * function stop ramrod is sent, since as part of this ramrod FW access
9324          * PTP registers.
9325          */
9326         bnx2x_stop_ptp(bp);
9327
9328         /* Disable HW interrupts, NAPI */
9329         bnx2x_netif_stop(bp, 1);
9330         /* Delete all NAPI objects */
9331         bnx2x_del_all_napi(bp);
9332         if (CNIC_LOADED(bp))
9333                 bnx2x_del_all_napi_cnic(bp);
9334
9335         /* Release IRQs */
9336         bnx2x_free_irq(bp);
9337
9338         /* Reset the chip */
9339         rc = bnx2x_reset_hw(bp, reset_code);
9340         if (rc)
9341                 BNX2X_ERR("HW_RESET failed\n");
9342
9343         /* Report UNLOAD_DONE to MCP */
9344         bnx2x_send_unload_done(bp, keep_link);
9345 }
9346
9347 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9348 {
9349         u32 val;
9350
9351         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9352
9353         if (CHIP_IS_E1(bp)) {
9354                 int port = BP_PORT(bp);
9355                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9356                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9357
9358                 val = REG_RD(bp, addr);
9359                 val &= ~(0x300);
9360                 REG_WR(bp, addr, val);
9361         } else {
9362                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9363                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9364                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9365                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9366         }
9367 }
9368
9369 /* Close gates #2, #3 and #4: */
9370 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9371 {
9372         u32 val;
9373
9374         /* Gates #2 and #4a are closed/opened for "not E1" only */
9375         if (!CHIP_IS_E1(bp)) {
9376                 /* #4 */
9377                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9378                 /* #2 */
9379                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9380         }
9381
9382         /* #3 */
9383         if (CHIP_IS_E1x(bp)) {
9384                 /* Prevent interrupts from HC on both ports */
9385                 val = REG_RD(bp, HC_REG_CONFIG_1);
9386                 REG_WR(bp, HC_REG_CONFIG_1,
9387                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9388                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9389
9390                 val = REG_RD(bp, HC_REG_CONFIG_0);
9391                 REG_WR(bp, HC_REG_CONFIG_0,
9392                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9393                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9394         } else {
9395                 /* Prevent incoming interrupts in IGU */
9396                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9397
9398                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9399                        (!close) ?
9400                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9401                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9402         }
9403
9404         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9405                 close ? "closing" : "opening");
9406         mmiowb();
9407 }
9408
9409 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9410
9411 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9412 {
9413         /* Do some magic... */
9414         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9415         *magic_val = val & SHARED_MF_CLP_MAGIC;
9416         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9417 }
9418
9419 /**
9420  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9421  *
9422  * @bp:         driver handle
9423  * @magic_val:  old value of the `magic' bit.
9424  */
9425 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9426 {
9427         /* Restore the `magic' bit value... */
9428         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9429         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9430                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9431 }
9432
9433 /**
9434  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9435  *
9436  * @bp:         driver handle
9437  * @magic_val:  old value of 'magic' bit.
9438  *
9439  * Takes care of CLP configurations.
9440  */
9441 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9442 {
9443         u32 shmem;
9444         u32 validity_offset;
9445
9446         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9447
9448         /* Set `magic' bit in order to save MF config */
9449         if (!CHIP_IS_E1(bp))
9450                 bnx2x_clp_reset_prep(bp, magic_val);
9451
9452         /* Get shmem offset */
9453         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9454         validity_offset =
9455                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9456
9457         /* Clear validity map flags */
9458         if (shmem > 0)
9459                 REG_WR(bp, shmem + validity_offset, 0);
9460 }
9461
9462 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9463 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9464
9465 /**
9466  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9467  *
9468  * @bp: driver handle
9469  */
9470 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9471 {
9472         /* special handling for emulation and FPGA,
9473            wait 10 times longer */
9474         if (CHIP_REV_IS_SLOW(bp))
9475                 msleep(MCP_ONE_TIMEOUT*10);
9476         else
9477                 msleep(MCP_ONE_TIMEOUT);
9478 }
9479
9480 /*
9481  * initializes bp->common.shmem_base and waits for validity signature to appear
9482  */
9483 static int bnx2x_init_shmem(struct bnx2x *bp)
9484 {
9485         int cnt = 0;
9486         u32 val = 0;
9487
9488         do {
9489                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9490                 if (bp->common.shmem_base) {
9491                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9492                         if (val & SHR_MEM_VALIDITY_MB)
9493                                 return 0;
9494                 }
9495
9496                 bnx2x_mcp_wait_one(bp);
9497
9498         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9499
9500         BNX2X_ERR("BAD MCP validity signature\n");
9501
9502         return -ENODEV;
9503 }
9504
9505 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9506 {
9507         int rc = bnx2x_init_shmem(bp);
9508
9509         /* Restore the `magic' bit value */
9510         if (!CHIP_IS_E1(bp))
9511                 bnx2x_clp_reset_done(bp, magic_val);
9512
9513         return rc;
9514 }
9515
9516 static void bnx2x_pxp_prep(struct bnx2x *bp)
9517 {
9518         if (!CHIP_IS_E1(bp)) {
9519                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9520                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9521                 mmiowb();
9522         }
9523 }
9524
9525 /*
9526  * Reset the whole chip except for:
9527  *      - PCIE core
9528  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9529  *              one reset bit)
9530  *      - IGU
9531  *      - MISC (including AEU)
9532  *      - GRC
9533  *      - RBCN, RBCP
9534  */
9535 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9536 {
9537         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9538         u32 global_bits2, stay_reset2;
9539
9540         /*
9541          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9542          * (per chip) blocks.
9543          */
9544         global_bits2 =
9545                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9546                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9547
9548         /* Don't reset the following blocks.
9549          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9550          *            reset, as in 4 port device they might still be owned
9551          *            by the MCP (there is only one leader per path).
9552          */
9553         not_reset_mask1 =
9554                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9555                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9556                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9557
9558         not_reset_mask2 =
9559                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9560                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9561                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9562                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9563                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9564                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9565                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9566                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9567                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9568                 MISC_REGISTERS_RESET_REG_2_PGLC |
9569                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9570                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9571                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9572                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9573                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9574                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9575
9576         /*
9577          * Keep the following blocks in reset:
9578          *  - all xxMACs are handled by the bnx2x_link code.
9579          */
9580         stay_reset2 =
9581                 MISC_REGISTERS_RESET_REG_2_XMAC |
9582                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9583
9584         /* Full reset masks according to the chip */
9585         reset_mask1 = 0xffffffff;
9586
9587         if (CHIP_IS_E1(bp))
9588                 reset_mask2 = 0xffff;
9589         else if (CHIP_IS_E1H(bp))
9590                 reset_mask2 = 0x1ffff;
9591         else if (CHIP_IS_E2(bp))
9592                 reset_mask2 = 0xfffff;
9593         else /* CHIP_IS_E3 */
9594                 reset_mask2 = 0x3ffffff;
9595
9596         /* Don't reset global blocks unless we need to */
9597         if (!global)
9598                 reset_mask2 &= ~global_bits2;
9599
9600         /*
9601          * In case of attention in the QM, we need to reset PXP
9602          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9603          * because otherwise QM reset would release 'close the gates' shortly
9604          * before resetting the PXP, then the PSWRQ would send a write
9605          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9606          * read the payload data from PSWWR, but PSWWR would not
9607          * respond. The write queue in PGLUE would stuck, dmae commands
9608          * would not return. Therefore it's important to reset the second
9609          * reset register (containing the
9610          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9611          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9612          * bit).
9613          */
9614         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9615                reset_mask2 & (~not_reset_mask2));
9616
9617         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9618                reset_mask1 & (~not_reset_mask1));
9619
9620         barrier();
9621         mmiowb();
9622
9623         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9624                reset_mask2 & (~stay_reset2));
9625
9626         barrier();
9627         mmiowb();
9628
9629         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9630         mmiowb();
9631 }
9632
9633 /**
9634  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9635  * It should get cleared in no more than 1s.
9636  *
9637  * @bp: driver handle
9638  *
9639  * It should get cleared in no more than 1s. Returns 0 if
9640  * pending writes bit gets cleared.
9641  */
9642 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9643 {
9644         u32 cnt = 1000;
9645         u32 pend_bits = 0;
9646
9647         do {
9648                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9649
9650                 if (pend_bits == 0)
9651                         break;
9652
9653                 usleep_range(1000, 2000);
9654         } while (cnt-- > 0);
9655
9656         if (cnt <= 0) {
9657                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9658                           pend_bits);
9659                 return -EBUSY;
9660         }
9661
9662         return 0;
9663 }
9664
9665 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9666 {
9667         int cnt = 1000;
9668         u32 val = 0;
9669         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9670         u32 tags_63_32 = 0;
9671
9672         /* Empty the Tetris buffer, wait for 1s */
9673         do {
9674                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9675                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9676                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9677                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9678                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9679                 if (CHIP_IS_E3(bp))
9680                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9681
9682                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9683                     ((port_is_idle_0 & 0x1) == 0x1) &&
9684                     ((port_is_idle_1 & 0x1) == 0x1) &&
9685                     (pgl_exp_rom2 == 0xffffffff) &&
9686                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9687                         break;
9688                 usleep_range(1000, 2000);
9689         } while (cnt-- > 0);
9690
9691         if (cnt <= 0) {
9692                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9693                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9694                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9695                           pgl_exp_rom2);
9696                 return -EAGAIN;
9697         }
9698
9699         barrier();
9700
9701         /* Close gates #2, #3 and #4 */
9702         bnx2x_set_234_gates(bp, true);
9703
9704         /* Poll for IGU VQs for 57712 and newer chips */
9705         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9706                 return -EAGAIN;
9707
9708         /* TBD: Indicate that "process kill" is in progress to MCP */
9709
9710         /* Clear "unprepared" bit */
9711         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9712         barrier();
9713
9714         /* Make sure all is written to the chip before the reset */
9715         mmiowb();
9716
9717         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9718          * PSWHST, GRC and PSWRD Tetris buffer.
9719          */
9720         usleep_range(1000, 2000);
9721
9722         /* Prepare to chip reset: */
9723         /* MCP */
9724         if (global)
9725                 bnx2x_reset_mcp_prep(bp, &val);
9726
9727         /* PXP */
9728         bnx2x_pxp_prep(bp);
9729         barrier();
9730
9731         /* reset the chip */
9732         bnx2x_process_kill_chip_reset(bp, global);
9733         barrier();
9734
9735         /* clear errors in PGB */
9736         if (!CHIP_IS_E1x(bp))
9737                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9738
9739         /* Recover after reset: */
9740         /* MCP */
9741         if (global && bnx2x_reset_mcp_comp(bp, val))
9742                 return -EAGAIN;
9743
9744         /* TBD: Add resetting the NO_MCP mode DB here */
9745
9746         /* Open the gates #2, #3 and #4 */
9747         bnx2x_set_234_gates(bp, false);
9748
9749         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9750          * reset state, re-enable attentions. */
9751
9752         return 0;
9753 }
9754
9755 static int bnx2x_leader_reset(struct bnx2x *bp)
9756 {
9757         int rc = 0;
9758         bool global = bnx2x_reset_is_global(bp);
9759         u32 load_code;
9760
9761         /* if not going to reset MCP - load "fake" driver to reset HW while
9762          * driver is owner of the HW
9763          */
9764         if (!global && !BP_NOMCP(bp)) {
9765                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9766                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9767                 if (!load_code) {
9768                         BNX2X_ERR("MCP response failure, aborting\n");
9769                         rc = -EAGAIN;
9770                         goto exit_leader_reset;
9771                 }
9772                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9773                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9774                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9775                         rc = -EAGAIN;
9776                         goto exit_leader_reset2;
9777                 }
9778                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9779                 if (!load_code) {
9780                         BNX2X_ERR("MCP response failure, aborting\n");
9781                         rc = -EAGAIN;
9782                         goto exit_leader_reset2;
9783                 }
9784         }
9785
9786         /* Try to recover after the failure */
9787         if (bnx2x_process_kill(bp, global)) {
9788                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9789                           BP_PATH(bp));
9790                 rc = -EAGAIN;
9791                 goto exit_leader_reset2;
9792         }
9793
9794         /*
9795          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9796          * state.
9797          */
9798         bnx2x_set_reset_done(bp);
9799         if (global)
9800                 bnx2x_clear_reset_global(bp);
9801
9802 exit_leader_reset2:
9803         /* unload "fake driver" if it was loaded */
9804         if (!global && !BP_NOMCP(bp)) {
9805                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9806                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9807         }
9808 exit_leader_reset:
9809         bp->is_leader = 0;
9810         bnx2x_release_leader_lock(bp);
9811         smp_mb();
9812         return rc;
9813 }
9814
9815 static void bnx2x_recovery_failed(struct bnx2x *bp)
9816 {
9817         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9818
9819         /* Disconnect this device */
9820         netif_device_detach(bp->dev);
9821
9822         /*
9823          * Block ifup for all function on this engine until "process kill"
9824          * or power cycle.
9825          */
9826         bnx2x_set_reset_in_progress(bp);
9827
9828         /* Shut down the power */
9829         bnx2x_set_power_state(bp, PCI_D3hot);
9830
9831         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9832
9833         smp_mb();
9834 }
9835
9836 /*
9837  * Assumption: runs under rtnl lock. This together with the fact
9838  * that it's called only from bnx2x_sp_rtnl() ensure that it
9839  * will never be called when netif_running(bp->dev) is false.
9840  */
9841 static void bnx2x_parity_recover(struct bnx2x *bp)
9842 {
9843         bool global = false;
9844         u32 error_recovered, error_unrecovered;
9845         bool is_parity;
9846
9847         DP(NETIF_MSG_HW, "Handling parity\n");
9848         while (1) {
9849                 switch (bp->recovery_state) {
9850                 case BNX2X_RECOVERY_INIT:
9851                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9852                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9853                         WARN_ON(!is_parity);
9854
9855                         /* Try to get a LEADER_LOCK HW lock */
9856                         if (bnx2x_trylock_leader_lock(bp)) {
9857                                 bnx2x_set_reset_in_progress(bp);
9858                                 /*
9859                                  * Check if there is a global attention and if
9860                                  * there was a global attention, set the global
9861                                  * reset bit.
9862                                  */
9863
9864                                 if (global)
9865                                         bnx2x_set_reset_global(bp);
9866
9867                                 bp->is_leader = 1;
9868                         }
9869
9870                         /* Stop the driver */
9871                         /* If interface has been removed - break */
9872                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9873                                 return;
9874
9875                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9876
9877                         /* Ensure "is_leader", MCP command sequence and
9878                          * "recovery_state" update values are seen on other
9879                          * CPUs.
9880                          */
9881                         smp_mb();
9882                         break;
9883
9884                 case BNX2X_RECOVERY_WAIT:
9885                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9886                         if (bp->is_leader) {
9887                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9888                                 bool other_load_status =
9889                                         bnx2x_get_load_status(bp, other_engine);
9890                                 bool load_status =
9891                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9892                                 global = bnx2x_reset_is_global(bp);
9893
9894                                 /*
9895                                  * In case of a parity in a global block, let
9896                                  * the first leader that performs a
9897                                  * leader_reset() reset the global blocks in
9898                                  * order to clear global attentions. Otherwise
9899                                  * the gates will remain closed for that
9900                                  * engine.
9901                                  */
9902                                 if (load_status ||
9903                                     (global && other_load_status)) {
9904                                         /* Wait until all other functions get
9905                                          * down.
9906                                          */
9907                                         schedule_delayed_work(&bp->sp_rtnl_task,
9908                                                                 HZ/10);
9909                                         return;
9910                                 } else {
9911                                         /* If all other functions got down -
9912                                          * try to bring the chip back to
9913                                          * normal. In any case it's an exit
9914                                          * point for a leader.
9915                                          */
9916                                         if (bnx2x_leader_reset(bp)) {
9917                                                 bnx2x_recovery_failed(bp);
9918                                                 return;
9919                                         }
9920
9921                                         /* If we are here, means that the
9922                                          * leader has succeeded and doesn't
9923                                          * want to be a leader any more. Try
9924                                          * to continue as a none-leader.
9925                                          */
9926                                         break;
9927                                 }
9928                         } else { /* non-leader */
9929                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9930                                         /* Try to get a LEADER_LOCK HW lock as
9931                                          * long as a former leader may have
9932                                          * been unloaded by the user or
9933                                          * released a leadership by another
9934                                          * reason.
9935                                          */
9936                                         if (bnx2x_trylock_leader_lock(bp)) {
9937                                                 /* I'm a leader now! Restart a
9938                                                  * switch case.
9939                                                  */
9940                                                 bp->is_leader = 1;
9941                                                 break;
9942                                         }
9943
9944                                         schedule_delayed_work(&bp->sp_rtnl_task,
9945                                                                 HZ/10);
9946                                         return;
9947
9948                                 } else {
9949                                         /*
9950                                          * If there was a global attention, wait
9951                                          * for it to be cleared.
9952                                          */
9953                                         if (bnx2x_reset_is_global(bp)) {
9954                                                 schedule_delayed_work(
9955                                                         &bp->sp_rtnl_task,
9956                                                         HZ/10);
9957                                                 return;
9958                                         }
9959
9960                                         error_recovered =
9961                                           bp->eth_stats.recoverable_error;
9962                                         error_unrecovered =
9963                                           bp->eth_stats.unrecoverable_error;
9964                                         bp->recovery_state =
9965                                                 BNX2X_RECOVERY_NIC_LOADING;
9966                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9967                                                 error_unrecovered++;
9968                                                 netdev_err(bp->dev,
9969                                                            "Recovery failed. Power cycle needed\n");
9970                                                 /* Disconnect this device */
9971                                                 netif_device_detach(bp->dev);
9972                                                 /* Shut down the power */
9973                                                 bnx2x_set_power_state(
9974                                                         bp, PCI_D3hot);
9975                                                 smp_mb();
9976                                         } else {
9977                                                 bp->recovery_state =
9978                                                         BNX2X_RECOVERY_DONE;
9979                                                 error_recovered++;
9980                                                 smp_mb();
9981                                         }
9982                                         bp->eth_stats.recoverable_error =
9983                                                 error_recovered;
9984                                         bp->eth_stats.unrecoverable_error =
9985                                                 error_unrecovered;
9986
9987                                         return;
9988                                 }
9989                         }
9990                 default:
9991                         return;
9992                 }
9993         }
9994 }
9995
9996 static int bnx2x_close(struct net_device *dev);
9997
9998 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9999  * scheduled on a general queue in order to prevent a dead lock.
10000  */
10001 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10002 {
10003         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10004
10005         rtnl_lock();
10006
10007         if (!netif_running(bp->dev)) {
10008                 rtnl_unlock();
10009                 return;
10010         }
10011
10012         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10013 #ifdef BNX2X_STOP_ON_ERROR
10014                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10015                           "you will need to reboot when done\n");
10016                 goto sp_rtnl_not_reset;
10017 #endif
10018                 /*
10019                  * Clear all pending SP commands as we are going to reset the
10020                  * function anyway.
10021                  */
10022                 bp->sp_rtnl_state = 0;
10023                 smp_mb();
10024
10025                 bnx2x_parity_recover(bp);
10026
10027                 rtnl_unlock();
10028                 return;
10029         }
10030
10031         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10032 #ifdef BNX2X_STOP_ON_ERROR
10033                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10034                           "you will need to reboot when done\n");
10035                 goto sp_rtnl_not_reset;
10036 #endif
10037
10038                 /*
10039                  * Clear all pending SP commands as we are going to reset the
10040                  * function anyway.
10041                  */
10042                 bp->sp_rtnl_state = 0;
10043                 smp_mb();
10044
10045                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10046                 bnx2x_nic_load(bp, LOAD_NORMAL);
10047
10048                 rtnl_unlock();
10049                 return;
10050         }
10051 #ifdef BNX2X_STOP_ON_ERROR
10052 sp_rtnl_not_reset:
10053 #endif
10054         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10055                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10056         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10057                 bnx2x_after_function_update(bp);
10058         /*
10059          * in case of fan failure we need to reset id if the "stop on error"
10060          * debug flag is set, since we trying to prevent permanent overheating
10061          * damage
10062          */
10063         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10064                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10065                 netif_device_detach(bp->dev);
10066                 bnx2x_close(bp->dev);
10067                 rtnl_unlock();
10068                 return;
10069         }
10070
10071         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10072                 DP(BNX2X_MSG_SP,
10073                    "sending set mcast vf pf channel message from rtnl sp-task\n");
10074                 bnx2x_vfpf_set_mcast(bp->dev);
10075         }
10076         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10077                                &bp->sp_rtnl_state)){
10078                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10079                         bnx2x_tx_disable(bp);
10080                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10081                 }
10082         }
10083
10084         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10085                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10086                 bnx2x_set_rx_mode_inner(bp);
10087         }
10088
10089         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10090                                &bp->sp_rtnl_state))
10091                 bnx2x_pf_set_vfs_vlan(bp);
10092
10093         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10094                 bnx2x_dcbx_stop_hw_tx(bp);
10095                 bnx2x_dcbx_resume_hw_tx(bp);
10096         }
10097
10098         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10099                                &bp->sp_rtnl_state))
10100                 bnx2x_update_mng_version(bp);
10101
10102         /* work which needs rtnl lock not-taken (as it takes the lock itself and
10103          * can be called from other contexts as well)
10104          */
10105         rtnl_unlock();
10106
10107         /* enable SR-IOV if applicable */
10108         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10109                                                &bp->sp_rtnl_state)) {
10110                 bnx2x_disable_sriov(bp);
10111                 bnx2x_enable_sriov(bp);
10112         }
10113 }
10114
10115 static void bnx2x_period_task(struct work_struct *work)
10116 {
10117         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10118
10119         if (!netif_running(bp->dev))
10120                 goto period_task_exit;
10121
10122         if (CHIP_REV_IS_SLOW(bp)) {
10123                 BNX2X_ERR("period task called on emulation, ignoring\n");
10124                 goto period_task_exit;
10125         }
10126
10127         bnx2x_acquire_phy_lock(bp);
10128         /*
10129          * The barrier is needed to ensure the ordering between the writing to
10130          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10131          * the reading here.
10132          */
10133         smp_mb();
10134         if (bp->port.pmf) {
10135                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10136
10137                 /* Re-queue task in 1 sec */
10138                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10139         }
10140
10141         bnx2x_release_phy_lock(bp);
10142 period_task_exit:
10143         return;
10144 }
10145
10146 /*
10147  * Init service functions
10148  */
10149
10150 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10151 {
10152         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10153         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10154         return base + (BP_ABS_FUNC(bp)) * stride;
10155 }
10156
10157 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10158                                          u8 port, u32 reset_reg,
10159                                          struct bnx2x_mac_vals *vals)
10160 {
10161         u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10162         u32 base_addr;
10163
10164         if (!(mask & reset_reg))
10165                 return false;
10166
10167         BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10168         base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10169         vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10170         vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10171         REG_WR(bp, vals->umac_addr[port], 0);
10172
10173         return true;
10174 }
10175
10176 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10177                                         struct bnx2x_mac_vals *vals)
10178 {
10179         u32 val, base_addr, offset, mask, reset_reg;
10180         bool mac_stopped = false;
10181         u8 port = BP_PORT(bp);
10182
10183         /* reset addresses as they also mark which values were changed */
10184         memset(vals, 0, sizeof(*vals));
10185
10186         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10187
10188         if (!CHIP_IS_E3(bp)) {
10189                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10190                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10191                 if ((mask & reset_reg) && val) {
10192                         u32 wb_data[2];
10193                         BNX2X_DEV_INFO("Disable bmac Rx\n");
10194                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10195                                                 : NIG_REG_INGRESS_BMAC0_MEM;
10196                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10197                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
10198
10199                         /*
10200                          * use rd/wr since we cannot use dmae. This is safe
10201                          * since MCP won't access the bus due to the request
10202                          * to unload, and no function on the path can be
10203                          * loaded at this time.
10204                          */
10205                         wb_data[0] = REG_RD(bp, base_addr + offset);
10206                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10207                         vals->bmac_addr = base_addr + offset;
10208                         vals->bmac_val[0] = wb_data[0];
10209                         vals->bmac_val[1] = wb_data[1];
10210                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10211                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10212                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10213                 }
10214                 BNX2X_DEV_INFO("Disable emac Rx\n");
10215                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10216                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10217                 REG_WR(bp, vals->emac_addr, 0);
10218                 mac_stopped = true;
10219         } else {
10220                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10221                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10222                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10223                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10224                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10225                                val & ~(1 << 1));
10226                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10227                                val | (1 << 1));
10228                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10229                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10230                         REG_WR(bp, vals->xmac_addr, 0);
10231                         mac_stopped = true;
10232                 }
10233
10234                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10235                                                             reset_reg, vals);
10236                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10237                                                             reset_reg, vals);
10238         }
10239
10240         if (mac_stopped)
10241                 msleep(20);
10242 }
10243
10244 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10245 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10246                                         0x1848 + ((f) << 4))
10247 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10248 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10249 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10250
10251 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10252 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10253 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10254
10255 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10256 {
10257         /* UNDI marks its presence in DORQ -
10258          * it initializes CID offset for normal bell to 0x7
10259          */
10260         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10261             MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10262                 return false;
10263
10264         if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10265                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10266                 return true;
10267         }
10268
10269         return false;
10270 }
10271
10272 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10273 {
10274         u16 rcq, bd;
10275         u32 addr, tmp_reg;
10276
10277         if (BP_FUNC(bp) < 2)
10278                 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10279         else
10280                 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10281
10282         tmp_reg = REG_RD(bp, addr);
10283         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10284         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10285
10286         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10287         REG_WR(bp, addr, tmp_reg);
10288
10289         BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10290                        BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10291 }
10292
10293 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10294 {
10295         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10296                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10297         if (!rc) {
10298                 BNX2X_ERR("MCP response failure, aborting\n");
10299                 return -EBUSY;
10300         }
10301
10302         return 0;
10303 }
10304
10305 static struct bnx2x_prev_path_list *
10306                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10307 {
10308         struct bnx2x_prev_path_list *tmp_list;
10309
10310         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10311                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10312                     bp->pdev->bus->number == tmp_list->bus &&
10313                     BP_PATH(bp) == tmp_list->path)
10314                         return tmp_list;
10315
10316         return NULL;
10317 }
10318
10319 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10320 {
10321         struct bnx2x_prev_path_list *tmp_list;
10322         int rc;
10323
10324         rc = down_interruptible(&bnx2x_prev_sem);
10325         if (rc) {
10326                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10327                 return rc;
10328         }
10329
10330         tmp_list = bnx2x_prev_path_get_entry(bp);
10331         if (tmp_list) {
10332                 tmp_list->aer = 1;
10333                 rc = 0;
10334         } else {
10335                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10336                           BP_PATH(bp));
10337         }
10338
10339         up(&bnx2x_prev_sem);
10340
10341         return rc;
10342 }
10343
10344 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10345 {
10346         struct bnx2x_prev_path_list *tmp_list;
10347         bool rc = false;
10348
10349         if (down_trylock(&bnx2x_prev_sem))
10350                 return false;
10351
10352         tmp_list = bnx2x_prev_path_get_entry(bp);
10353         if (tmp_list) {
10354                 if (tmp_list->aer) {
10355                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10356                            BP_PATH(bp));
10357                 } else {
10358                         rc = true;
10359                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10360                                        BP_PATH(bp));
10361                 }
10362         }
10363
10364         up(&bnx2x_prev_sem);
10365
10366         return rc;
10367 }
10368
10369 bool bnx2x_port_after_undi(struct bnx2x *bp)
10370 {
10371         struct bnx2x_prev_path_list *entry;
10372         bool val;
10373
10374         down(&bnx2x_prev_sem);
10375
10376         entry = bnx2x_prev_path_get_entry(bp);
10377         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10378
10379         up(&bnx2x_prev_sem);
10380
10381         return val;
10382 }
10383
10384 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10385 {
10386         struct bnx2x_prev_path_list *tmp_list;
10387         int rc;
10388
10389         rc = down_interruptible(&bnx2x_prev_sem);
10390         if (rc) {
10391                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10392                 return rc;
10393         }
10394
10395         /* Check whether the entry for this path already exists */
10396         tmp_list = bnx2x_prev_path_get_entry(bp);
10397         if (tmp_list) {
10398                 if (!tmp_list->aer) {
10399                         BNX2X_ERR("Re-Marking the path.\n");
10400                 } else {
10401                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10402                            BP_PATH(bp));
10403                         tmp_list->aer = 0;
10404                 }
10405                 up(&bnx2x_prev_sem);
10406                 return 0;
10407         }
10408         up(&bnx2x_prev_sem);
10409
10410         /* Create an entry for this path and add it */
10411         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10412         if (!tmp_list) {
10413                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10414                 return -ENOMEM;
10415         }
10416
10417         tmp_list->bus = bp->pdev->bus->number;
10418         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10419         tmp_list->path = BP_PATH(bp);
10420         tmp_list->aer = 0;
10421         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10422
10423         rc = down_interruptible(&bnx2x_prev_sem);
10424         if (rc) {
10425                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10426                 kfree(tmp_list);
10427         } else {
10428                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10429                    BP_PATH(bp));
10430                 list_add(&tmp_list->list, &bnx2x_prev_list);
10431                 up(&bnx2x_prev_sem);
10432         }
10433
10434         return rc;
10435 }
10436
10437 static int bnx2x_do_flr(struct bnx2x *bp)
10438 {
10439         struct pci_dev *dev = bp->pdev;
10440
10441         if (CHIP_IS_E1x(bp)) {
10442                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10443                 return -EINVAL;
10444         }
10445
10446         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10447         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10448                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10449                           bp->common.bc_ver);
10450                 return -EINVAL;
10451         }
10452
10453         if (!pci_wait_for_pending_transaction(dev))
10454                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10455
10456         BNX2X_DEV_INFO("Initiating FLR\n");
10457         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10458
10459         return 0;
10460 }
10461
10462 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10463 {
10464         int rc;
10465
10466         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10467
10468         /* Test if previous unload process was already finished for this path */
10469         if (bnx2x_prev_is_path_marked(bp))
10470                 return bnx2x_prev_mcp_done(bp);
10471
10472         BNX2X_DEV_INFO("Path is unmarked\n");
10473
10474         /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10475         if (bnx2x_prev_is_after_undi(bp))
10476                 goto out;
10477
10478         /* If function has FLR capabilities, and existing FW version matches
10479          * the one required, then FLR will be sufficient to clean any residue
10480          * left by previous driver
10481          */
10482         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10483
10484         if (!rc) {
10485                 /* fw version is good */
10486                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10487                 rc = bnx2x_do_flr(bp);
10488         }
10489
10490         if (!rc) {
10491                 /* FLR was performed */
10492                 BNX2X_DEV_INFO("FLR successful\n");
10493                 return 0;
10494         }
10495
10496         BNX2X_DEV_INFO("Could not FLR\n");
10497
10498 out:
10499         /* Close the MCP request, return failure*/
10500         rc = bnx2x_prev_mcp_done(bp);
10501         if (!rc)
10502                 rc = BNX2X_PREV_WAIT_NEEDED;
10503
10504         return rc;
10505 }
10506
10507 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10508 {
10509         u32 reset_reg, tmp_reg = 0, rc;
10510         bool prev_undi = false;
10511         struct bnx2x_mac_vals mac_vals;
10512
10513         /* It is possible a previous function received 'common' answer,
10514          * but hasn't loaded yet, therefore creating a scenario of
10515          * multiple functions receiving 'common' on the same path.
10516          */
10517         BNX2X_DEV_INFO("Common unload Flow\n");
10518
10519         memset(&mac_vals, 0, sizeof(mac_vals));
10520
10521         if (bnx2x_prev_is_path_marked(bp))
10522                 return bnx2x_prev_mcp_done(bp);
10523
10524         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10525
10526         /* Reset should be performed after BRB is emptied */
10527         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10528                 u32 timer_count = 1000;
10529
10530                 /* Close the MAC Rx to prevent BRB from filling up */
10531                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10532
10533                 /* close LLH filters for both ports towards the BRB */
10534                 bnx2x_set_rx_filter(&bp->link_params, 0);
10535                 bp->link_params.port ^= 1;
10536                 bnx2x_set_rx_filter(&bp->link_params, 0);
10537                 bp->link_params.port ^= 1;
10538
10539                 /* Check if the UNDI driver was previously loaded */
10540                 if (bnx2x_prev_is_after_undi(bp)) {
10541                         prev_undi = true;
10542                         /* clear the UNDI indication */
10543                         REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10544                         /* clear possible idle check errors */
10545                         REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10546                 }
10547                 if (!CHIP_IS_E1x(bp))
10548                         /* block FW from writing to host */
10549                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10550
10551                 /* wait until BRB is empty */
10552                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10553                 while (timer_count) {
10554                         u32 prev_brb = tmp_reg;
10555
10556                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10557                         if (!tmp_reg)
10558                                 break;
10559
10560                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10561
10562                         /* reset timer as long as BRB actually gets emptied */
10563                         if (prev_brb > tmp_reg)
10564                                 timer_count = 1000;
10565                         else
10566                                 timer_count--;
10567
10568                         /* If UNDI resides in memory, manually increment it */
10569                         if (prev_undi)
10570                                 bnx2x_prev_unload_undi_inc(bp, 1);
10571
10572                         udelay(10);
10573                 }
10574
10575                 if (!timer_count)
10576                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10577         }
10578
10579         /* No packets are in the pipeline, path is ready for reset */
10580         bnx2x_reset_common(bp);
10581
10582         if (mac_vals.xmac_addr)
10583                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10584         if (mac_vals.umac_addr[0])
10585                 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10586         if (mac_vals.umac_addr[1])
10587                 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10588         if (mac_vals.emac_addr)
10589                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10590         if (mac_vals.bmac_addr) {
10591                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10592                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10593         }
10594
10595         rc = bnx2x_prev_mark_path(bp, prev_undi);
10596         if (rc) {
10597                 bnx2x_prev_mcp_done(bp);
10598                 return rc;
10599         }
10600
10601         return bnx2x_prev_mcp_done(bp);
10602 }
10603
10604 static int bnx2x_prev_unload(struct bnx2x *bp)
10605 {
10606         int time_counter = 10;
10607         u32 rc, fw, hw_lock_reg, hw_lock_val;
10608         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10609
10610         /* clear hw from errors which may have resulted from an interrupted
10611          * dmae transaction.
10612          */
10613         bnx2x_clean_pglue_errors(bp);
10614
10615         /* Release previously held locks */
10616         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10617                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10618                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10619
10620         hw_lock_val = REG_RD(bp, hw_lock_reg);
10621         if (hw_lock_val) {
10622                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10623                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10624                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10625                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10626                 }
10627
10628                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10629                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10630         } else
10631                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10632
10633         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10634                 BNX2X_DEV_INFO("Release previously held alr\n");
10635                 bnx2x_release_alr(bp);
10636         }
10637
10638         do {
10639                 int aer = 0;
10640                 /* Lock MCP using an unload request */
10641                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10642                 if (!fw) {
10643                         BNX2X_ERR("MCP response failure, aborting\n");
10644                         rc = -EBUSY;
10645                         break;
10646                 }
10647
10648                 rc = down_interruptible(&bnx2x_prev_sem);
10649                 if (rc) {
10650                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10651                                   rc);
10652                 } else {
10653                         /* If Path is marked by EEH, ignore unload status */
10654                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10655                                  bnx2x_prev_path_get_entry(bp)->aer);
10656                         up(&bnx2x_prev_sem);
10657                 }
10658
10659                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10660                         rc = bnx2x_prev_unload_common(bp);
10661                         break;
10662                 }
10663
10664                 /* non-common reply from MCP might require looping */
10665                 rc = bnx2x_prev_unload_uncommon(bp);
10666                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10667                         break;
10668
10669                 msleep(20);
10670         } while (--time_counter);
10671
10672         if (!time_counter || rc) {
10673                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10674                 rc = -EPROBE_DEFER;
10675         }
10676
10677         /* Mark function if its port was used to boot from SAN */
10678         if (bnx2x_port_after_undi(bp))
10679                 bp->link_params.feature_config_flags |=
10680                         FEATURE_CONFIG_BOOT_FROM_SAN;
10681
10682         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10683
10684         return rc;
10685 }
10686
10687 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10688 {
10689         u32 val, val2, val3, val4, id, boot_mode;
10690         u16 pmc;
10691
10692         /* Get the chip revision id and number. */
10693         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10694         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10695         id = ((val & 0xffff) << 16);
10696         val = REG_RD(bp, MISC_REG_CHIP_REV);
10697         id |= ((val & 0xf) << 12);
10698
10699         /* Metal is read from PCI regs, but we can't access >=0x400 from
10700          * the configuration space (so we need to reg_rd)
10701          */
10702         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10703         id |= (((val >> 24) & 0xf) << 4);
10704         val = REG_RD(bp, MISC_REG_BOND_ID);
10705         id |= (val & 0xf);
10706         bp->common.chip_id = id;
10707
10708         /* force 57811 according to MISC register */
10709         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10710                 if (CHIP_IS_57810(bp))
10711                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10712                                 (bp->common.chip_id & 0x0000FFFF);
10713                 else if (CHIP_IS_57810_MF(bp))
10714                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10715                                 (bp->common.chip_id & 0x0000FFFF);
10716                 bp->common.chip_id |= 0x1;
10717         }
10718
10719         /* Set doorbell size */
10720         bp->db_size = (1 << BNX2X_DB_SHIFT);
10721
10722         if (!CHIP_IS_E1x(bp)) {
10723                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10724                 if ((val & 1) == 0)
10725                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10726                 else
10727                         val = (val >> 1) & 1;
10728                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10729                                                        "2_PORT_MODE");
10730                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10731                                                  CHIP_2_PORT_MODE;
10732
10733                 if (CHIP_MODE_IS_4_PORT(bp))
10734                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10735                 else
10736                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10737         } else {
10738                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10739                 bp->pfid = bp->pf_num;                  /* 0..7 */
10740         }
10741
10742         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10743
10744         bp->link_params.chip_id = bp->common.chip_id;
10745         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10746
10747         val = (REG_RD(bp, 0x2874) & 0x55);
10748         if ((bp->common.chip_id & 0x1) ||
10749             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10750                 bp->flags |= ONE_PORT_FLAG;
10751                 BNX2X_DEV_INFO("single port device\n");
10752         }
10753
10754         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10755         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10756                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10757         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10758                        bp->common.flash_size, bp->common.flash_size);
10759
10760         bnx2x_init_shmem(bp);
10761
10762         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10763                                         MISC_REG_GENERIC_CR_1 :
10764                                         MISC_REG_GENERIC_CR_0));
10765
10766         bp->link_params.shmem_base = bp->common.shmem_base;
10767         bp->link_params.shmem2_base = bp->common.shmem2_base;
10768         if (SHMEM2_RD(bp, size) >
10769             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10770                 bp->link_params.lfa_base =
10771                 REG_RD(bp, bp->common.shmem2_base +
10772                        (u32)offsetof(struct shmem2_region,
10773                                      lfa_host_addr[BP_PORT(bp)]));
10774         else
10775                 bp->link_params.lfa_base = 0;
10776         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10777                        bp->common.shmem_base, bp->common.shmem2_base);
10778
10779         if (!bp->common.shmem_base) {
10780                 BNX2X_DEV_INFO("MCP not active\n");
10781                 bp->flags |= NO_MCP_FLAG;
10782                 return;
10783         }
10784
10785         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10786         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10787
10788         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10789                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10790                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10791
10792         bp->link_params.feature_config_flags = 0;
10793         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10794         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10795                 bp->link_params.feature_config_flags |=
10796                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10797         else
10798                 bp->link_params.feature_config_flags &=
10799                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10800
10801         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10802         bp->common.bc_ver = val;
10803         BNX2X_DEV_INFO("bc_ver %X\n", val);
10804         if (val < BNX2X_BC_VER) {
10805                 /* for now only warn
10806                  * later we might need to enforce this */
10807                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10808                           BNX2X_BC_VER, val);
10809         }
10810         bp->link_params.feature_config_flags |=
10811                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10812                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10813
10814         bp->link_params.feature_config_flags |=
10815                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10816                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10817         bp->link_params.feature_config_flags |=
10818                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10819                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10820         bp->link_params.feature_config_flags |=
10821                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10822                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10823
10824         bp->link_params.feature_config_flags |=
10825                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10826                 FEATURE_CONFIG_MT_SUPPORT : 0;
10827
10828         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10829                         BC_SUPPORTS_PFC_STATS : 0;
10830
10831         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10832                         BC_SUPPORTS_FCOE_FEATURES : 0;
10833
10834         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10835                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10836
10837         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10838                         BC_SUPPORTS_RMMOD_CMD : 0;
10839
10840         boot_mode = SHMEM_RD(bp,
10841                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10842                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10843         switch (boot_mode) {
10844         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10845                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10846                 break;
10847         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10848                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10849                 break;
10850         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10851                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10852                 break;
10853         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10854                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10855                 break;
10856         }
10857
10858         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10859         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10860
10861         BNX2X_DEV_INFO("%sWoL capable\n",
10862                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10863
10864         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10865         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10866         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10867         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10868
10869         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10870                  val, val2, val3, val4);
10871 }
10872
10873 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10874 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10875
10876 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10877 {
10878         int pfid = BP_FUNC(bp);
10879         int igu_sb_id;
10880         u32 val;
10881         u8 fid, igu_sb_cnt = 0;
10882
10883         bp->igu_base_sb = 0xff;
10884         if (CHIP_INT_MODE_IS_BC(bp)) {
10885                 int vn = BP_VN(bp);
10886                 igu_sb_cnt = bp->igu_sb_cnt;
10887                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10888                         FP_SB_MAX_E1x;
10889
10890                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10891                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10892
10893                 return 0;
10894         }
10895
10896         /* IGU in normal mode - read CAM */
10897         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10898              igu_sb_id++) {
10899                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10900                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10901                         continue;
10902                 fid = IGU_FID(val);
10903                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10904                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10905                                 continue;
10906                         if (IGU_VEC(val) == 0)
10907                                 /* default status block */
10908                                 bp->igu_dsb_id = igu_sb_id;
10909                         else {
10910                                 if (bp->igu_base_sb == 0xff)
10911                                         bp->igu_base_sb = igu_sb_id;
10912                                 igu_sb_cnt++;
10913                         }
10914                 }
10915         }
10916
10917 #ifdef CONFIG_PCI_MSI
10918         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10919          * optional that number of CAM entries will not be equal to the value
10920          * advertised in PCI.
10921          * Driver should use the minimal value of both as the actual status
10922          * block count
10923          */
10924         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10925 #endif
10926
10927         if (igu_sb_cnt == 0) {
10928                 BNX2X_ERR("CAM configuration error\n");
10929                 return -EINVAL;
10930         }
10931
10932         return 0;
10933 }
10934
10935 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10936 {
10937         int cfg_size = 0, idx, port = BP_PORT(bp);
10938
10939         /* Aggregation of supported attributes of all external phys */
10940         bp->port.supported[0] = 0;
10941         bp->port.supported[1] = 0;
10942         switch (bp->link_params.num_phys) {
10943         case 1:
10944                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10945                 cfg_size = 1;
10946                 break;
10947         case 2:
10948                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10949                 cfg_size = 1;
10950                 break;
10951         case 3:
10952                 if (bp->link_params.multi_phy_config &
10953                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10954                         bp->port.supported[1] =
10955                                 bp->link_params.phy[EXT_PHY1].supported;
10956                         bp->port.supported[0] =
10957                                 bp->link_params.phy[EXT_PHY2].supported;
10958                 } else {
10959                         bp->port.supported[0] =
10960                                 bp->link_params.phy[EXT_PHY1].supported;
10961                         bp->port.supported[1] =
10962                                 bp->link_params.phy[EXT_PHY2].supported;
10963                 }
10964                 cfg_size = 2;
10965                 break;
10966         }
10967
10968         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10969                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10970                            SHMEM_RD(bp,
10971                            dev_info.port_hw_config[port].external_phy_config),
10972                            SHMEM_RD(bp,
10973                            dev_info.port_hw_config[port].external_phy_config2));
10974                         return;
10975         }
10976
10977         if (CHIP_IS_E3(bp))
10978                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10979         else {
10980                 switch (switch_cfg) {
10981                 case SWITCH_CFG_1G:
10982                         bp->port.phy_addr = REG_RD(
10983                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10984                         break;
10985                 case SWITCH_CFG_10G:
10986                         bp->port.phy_addr = REG_RD(
10987                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10988                         break;
10989                 default:
10990                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10991                                   bp->port.link_config[0]);
10992                         return;
10993                 }
10994         }
10995         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10996         /* mask what we support according to speed_cap_mask per configuration */
10997         for (idx = 0; idx < cfg_size; idx++) {
10998                 if (!(bp->link_params.speed_cap_mask[idx] &
10999                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11000                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11001
11002                 if (!(bp->link_params.speed_cap_mask[idx] &
11003                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11004                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11005
11006                 if (!(bp->link_params.speed_cap_mask[idx] &
11007                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11008                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11009
11010                 if (!(bp->link_params.speed_cap_mask[idx] &
11011                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11012                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11013
11014                 if (!(bp->link_params.speed_cap_mask[idx] &
11015                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11016                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11017                                                      SUPPORTED_1000baseT_Full);
11018
11019                 if (!(bp->link_params.speed_cap_mask[idx] &
11020                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11021                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11022
11023                 if (!(bp->link_params.speed_cap_mask[idx] &
11024                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11025                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11026
11027                 if (!(bp->link_params.speed_cap_mask[idx] &
11028                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11029                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11030         }
11031
11032         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11033                        bp->port.supported[1]);
11034 }
11035
11036 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11037 {
11038         u32 link_config, idx, cfg_size = 0;
11039         bp->port.advertising[0] = 0;
11040         bp->port.advertising[1] = 0;
11041         switch (bp->link_params.num_phys) {
11042         case 1:
11043         case 2:
11044                 cfg_size = 1;
11045                 break;
11046         case 3:
11047                 cfg_size = 2;
11048                 break;
11049         }
11050         for (idx = 0; idx < cfg_size; idx++) {
11051                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11052                 link_config = bp->port.link_config[idx];
11053                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11054                 case PORT_FEATURE_LINK_SPEED_AUTO:
11055                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11056                                 bp->link_params.req_line_speed[idx] =
11057                                         SPEED_AUTO_NEG;
11058                                 bp->port.advertising[idx] |=
11059                                         bp->port.supported[idx];
11060                                 if (bp->link_params.phy[EXT_PHY1].type ==
11061                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11062                                         bp->port.advertising[idx] |=
11063                                         (SUPPORTED_100baseT_Half |
11064                                          SUPPORTED_100baseT_Full);
11065                         } else {
11066                                 /* force 10G, no AN */
11067                                 bp->link_params.req_line_speed[idx] =
11068                                         SPEED_10000;
11069                                 bp->port.advertising[idx] |=
11070                                         (ADVERTISED_10000baseT_Full |
11071                                          ADVERTISED_FIBRE);
11072                                 continue;
11073                         }
11074                         break;
11075
11076                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11077                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11078                                 bp->link_params.req_line_speed[idx] =
11079                                         SPEED_10;
11080                                 bp->port.advertising[idx] |=
11081                                         (ADVERTISED_10baseT_Full |
11082                                          ADVERTISED_TP);
11083                         } else {
11084                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11085                                             link_config,
11086                                     bp->link_params.speed_cap_mask[idx]);
11087                                 return;
11088                         }
11089                         break;
11090
11091                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11092                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11093                                 bp->link_params.req_line_speed[idx] =
11094                                         SPEED_10;
11095                                 bp->link_params.req_duplex[idx] =
11096                                         DUPLEX_HALF;
11097                                 bp->port.advertising[idx] |=
11098                                         (ADVERTISED_10baseT_Half |
11099                                          ADVERTISED_TP);
11100                         } else {
11101                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11102                                             link_config,
11103                                           bp->link_params.speed_cap_mask[idx]);
11104                                 return;
11105                         }
11106                         break;
11107
11108                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11109                         if (bp->port.supported[idx] &
11110                             SUPPORTED_100baseT_Full) {
11111                                 bp->link_params.req_line_speed[idx] =
11112                                         SPEED_100;
11113                                 bp->port.advertising[idx] |=
11114                                         (ADVERTISED_100baseT_Full |
11115                                          ADVERTISED_TP);
11116                         } else {
11117                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11118                                             link_config,
11119                                           bp->link_params.speed_cap_mask[idx]);
11120                                 return;
11121                         }
11122                         break;
11123
11124                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11125                         if (bp->port.supported[idx] &
11126                             SUPPORTED_100baseT_Half) {
11127                                 bp->link_params.req_line_speed[idx] =
11128                                                                 SPEED_100;
11129                                 bp->link_params.req_duplex[idx] =
11130                                                                 DUPLEX_HALF;
11131                                 bp->port.advertising[idx] |=
11132                                         (ADVERTISED_100baseT_Half |
11133                                          ADVERTISED_TP);
11134                         } else {
11135                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11136                                     link_config,
11137                                     bp->link_params.speed_cap_mask[idx]);
11138                                 return;
11139                         }
11140                         break;
11141
11142                 case PORT_FEATURE_LINK_SPEED_1G:
11143                         if (bp->port.supported[idx] &
11144                             SUPPORTED_1000baseT_Full) {
11145                                 bp->link_params.req_line_speed[idx] =
11146                                         SPEED_1000;
11147                                 bp->port.advertising[idx] |=
11148                                         (ADVERTISED_1000baseT_Full |
11149                                          ADVERTISED_TP);
11150                         } else {
11151                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11152                                     link_config,
11153                                     bp->link_params.speed_cap_mask[idx]);
11154                                 return;
11155                         }
11156                         break;
11157
11158                 case PORT_FEATURE_LINK_SPEED_2_5G:
11159                         if (bp->port.supported[idx] &
11160                             SUPPORTED_2500baseX_Full) {
11161                                 bp->link_params.req_line_speed[idx] =
11162                                         SPEED_2500;
11163                                 bp->port.advertising[idx] |=
11164                                         (ADVERTISED_2500baseX_Full |
11165                                                 ADVERTISED_TP);
11166                         } else {
11167                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11168                                     link_config,
11169                                     bp->link_params.speed_cap_mask[idx]);
11170                                 return;
11171                         }
11172                         break;
11173
11174                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11175                         if (bp->port.supported[idx] &
11176                             SUPPORTED_10000baseT_Full) {
11177                                 bp->link_params.req_line_speed[idx] =
11178                                         SPEED_10000;
11179                                 bp->port.advertising[idx] |=
11180                                         (ADVERTISED_10000baseT_Full |
11181                                                 ADVERTISED_FIBRE);
11182                         } else {
11183                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11184                                     link_config,
11185                                     bp->link_params.speed_cap_mask[idx]);
11186                                 return;
11187                         }
11188                         break;
11189                 case PORT_FEATURE_LINK_SPEED_20G:
11190                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11191
11192                         break;
11193                 default:
11194                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11195                                   link_config);
11196                                 bp->link_params.req_line_speed[idx] =
11197                                                         SPEED_AUTO_NEG;
11198                                 bp->port.advertising[idx] =
11199                                                 bp->port.supported[idx];
11200                         break;
11201                 }
11202
11203                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11204                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11205                 if (bp->link_params.req_flow_ctrl[idx] ==
11206                     BNX2X_FLOW_CTRL_AUTO) {
11207                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11208                                 bp->link_params.req_flow_ctrl[idx] =
11209                                                         BNX2X_FLOW_CTRL_NONE;
11210                         else
11211                                 bnx2x_set_requested_fc(bp);
11212                 }
11213
11214                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11215                                bp->link_params.req_line_speed[idx],
11216                                bp->link_params.req_duplex[idx],
11217                                bp->link_params.req_flow_ctrl[idx],
11218                                bp->port.advertising[idx]);
11219         }
11220 }
11221
11222 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11223 {
11224         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11225         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11226         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11227         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11228 }
11229
11230 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11231 {
11232         int port = BP_PORT(bp);
11233         u32 config;
11234         u32 ext_phy_type, ext_phy_config, eee_mode;
11235
11236         bp->link_params.bp = bp;
11237         bp->link_params.port = port;
11238
11239         bp->link_params.lane_config =
11240                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11241
11242         bp->link_params.speed_cap_mask[0] =
11243                 SHMEM_RD(bp,
11244                          dev_info.port_hw_config[port].speed_capability_mask) &
11245                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11246         bp->link_params.speed_cap_mask[1] =
11247                 SHMEM_RD(bp,
11248                          dev_info.port_hw_config[port].speed_capability_mask2) &
11249                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11250         bp->port.link_config[0] =
11251                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11252
11253         bp->port.link_config[1] =
11254                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11255
11256         bp->link_params.multi_phy_config =
11257                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11258         /* If the device is capable of WoL, set the default state according
11259          * to the HW
11260          */
11261         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11262         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11263                    (config & PORT_FEATURE_WOL_ENABLED));
11264
11265         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11266             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11267                 bp->flags |= NO_ISCSI_FLAG;
11268         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11269             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11270                 bp->flags |= NO_FCOE_FLAG;
11271
11272         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11273                        bp->link_params.lane_config,
11274                        bp->link_params.speed_cap_mask[0],
11275                        bp->port.link_config[0]);
11276
11277         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11278                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11279         bnx2x_phy_probe(&bp->link_params);
11280         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11281
11282         bnx2x_link_settings_requested(bp);
11283
11284         /*
11285          * If connected directly, work with the internal PHY, otherwise, work
11286          * with the external PHY
11287          */
11288         ext_phy_config =
11289                 SHMEM_RD(bp,
11290                          dev_info.port_hw_config[port].external_phy_config);
11291         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11292         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11293                 bp->mdio.prtad = bp->port.phy_addr;
11294
11295         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11296                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11297                 bp->mdio.prtad =
11298                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11299
11300         /* Configure link feature according to nvram value */
11301         eee_mode = (((SHMEM_RD(bp, dev_info.
11302                       port_feature_config[port].eee_power_mode)) &
11303                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11304                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11305         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11306                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11307                                            EEE_MODE_ENABLE_LPI |
11308                                            EEE_MODE_OUTPUT_TIME;
11309         } else {
11310                 bp->link_params.eee_mode = 0;
11311         }
11312 }
11313
11314 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11315 {
11316         u32 no_flags = NO_ISCSI_FLAG;
11317         int port = BP_PORT(bp);
11318         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11319                                 drv_lic_key[port].max_iscsi_conn);
11320
11321         if (!CNIC_SUPPORT(bp)) {
11322                 bp->flags |= no_flags;
11323                 return;
11324         }
11325
11326         /* Get the number of maximum allowed iSCSI connections */
11327         bp->cnic_eth_dev.max_iscsi_conn =
11328                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11329                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11330
11331         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11332                        bp->cnic_eth_dev.max_iscsi_conn);
11333
11334         /*
11335          * If maximum allowed number of connections is zero -
11336          * disable the feature.
11337          */
11338         if (!bp->cnic_eth_dev.max_iscsi_conn)
11339                 bp->flags |= no_flags;
11340 }
11341
11342 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11343 {
11344         /* Port info */
11345         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11346                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11347         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11348                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11349
11350         /* Node info */
11351         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11352                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11353         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11354                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11355 }
11356
11357 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11358 {
11359         u8 count = 0;
11360
11361         if (IS_MF(bp)) {
11362                 u8 fid;
11363
11364                 /* iterate over absolute function ids for this path: */
11365                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11366                         if (IS_MF_SD(bp)) {
11367                                 u32 cfg = MF_CFG_RD(bp,
11368                                                     func_mf_config[fid].config);
11369
11370                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11371                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11372                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11373                                         count++;
11374                         } else {
11375                                 u32 cfg = MF_CFG_RD(bp,
11376                                                     func_ext_config[fid].
11377                                                                       func_cfg);
11378
11379                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11380                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11381                                         count++;
11382                         }
11383                 }
11384         } else { /* SF */
11385                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11386
11387                 for (port = 0; port < port_cnt; port++) {
11388                         u32 lic = SHMEM_RD(bp,
11389                                            drv_lic_key[port].max_fcoe_conn) ^
11390                                   FW_ENCODE_32BIT_PATTERN;
11391                         if (lic)
11392                                 count++;
11393                 }
11394         }
11395
11396         return count;
11397 }
11398
11399 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11400 {
11401         int port = BP_PORT(bp);
11402         int func = BP_ABS_FUNC(bp);
11403         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11404                                 drv_lic_key[port].max_fcoe_conn);
11405         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11406
11407         if (!CNIC_SUPPORT(bp)) {
11408                 bp->flags |= NO_FCOE_FLAG;
11409                 return;
11410         }
11411
11412         /* Get the number of maximum allowed FCoE connections */
11413         bp->cnic_eth_dev.max_fcoe_conn =
11414                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11415                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11416
11417         /* Calculate the number of maximum allowed FCoE tasks */
11418         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11419
11420         /* check if FCoE resources must be shared between different functions */
11421         if (num_fcoe_func)
11422                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11423
11424         /* Read the WWN: */
11425         if (!IS_MF(bp)) {
11426                 /* Port info */
11427                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11428                         SHMEM_RD(bp,
11429                                  dev_info.port_hw_config[port].
11430                                  fcoe_wwn_port_name_upper);
11431                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11432                         SHMEM_RD(bp,
11433                                  dev_info.port_hw_config[port].
11434                                  fcoe_wwn_port_name_lower);
11435
11436                 /* Node info */
11437                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11438                         SHMEM_RD(bp,
11439                                  dev_info.port_hw_config[port].
11440                                  fcoe_wwn_node_name_upper);
11441                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11442                         SHMEM_RD(bp,
11443                                  dev_info.port_hw_config[port].
11444                                  fcoe_wwn_node_name_lower);
11445         } else if (!IS_MF_SD(bp)) {
11446                 /* Read the WWN info only if the FCoE feature is enabled for
11447                  * this function.
11448                  */
11449                 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11450                         bnx2x_get_ext_wwn_info(bp, func);
11451         } else {
11452                 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11453                         bnx2x_get_ext_wwn_info(bp, func);
11454         }
11455
11456         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11457
11458         /*
11459          * If maximum allowed number of connections is zero -
11460          * disable the feature.
11461          */
11462         if (!bp->cnic_eth_dev.max_fcoe_conn)
11463                 bp->flags |= NO_FCOE_FLAG;
11464 }
11465
11466 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11467 {
11468         /*
11469          * iSCSI may be dynamically disabled but reading
11470          * info here we will decrease memory usage by driver
11471          * if the feature is disabled for good
11472          */
11473         bnx2x_get_iscsi_info(bp);
11474         bnx2x_get_fcoe_info(bp);
11475 }
11476
11477 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11478 {
11479         u32 val, val2;
11480         int func = BP_ABS_FUNC(bp);
11481         int port = BP_PORT(bp);
11482         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11483         u8 *fip_mac = bp->fip_mac;
11484
11485         if (IS_MF(bp)) {
11486                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11487                  * FCoE MAC then the appropriate feature should be disabled.
11488                  * In non SD mode features configuration comes from struct
11489                  * func_ext_config.
11490                  */
11491                 if (!IS_MF_SD(bp)) {
11492                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11493                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11494                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11495                                                  iscsi_mac_addr_upper);
11496                                 val = MF_CFG_RD(bp, func_ext_config[func].
11497                                                 iscsi_mac_addr_lower);
11498                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11499                                 BNX2X_DEV_INFO
11500                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11501                         } else {
11502                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11503                         }
11504
11505                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11506                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11507                                                  fcoe_mac_addr_upper);
11508                                 val = MF_CFG_RD(bp, func_ext_config[func].
11509                                                 fcoe_mac_addr_lower);
11510                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11511                                 BNX2X_DEV_INFO
11512                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11513                         } else {
11514                                 bp->flags |= NO_FCOE_FLAG;
11515                         }
11516
11517                         bp->mf_ext_config = cfg;
11518
11519                 } else { /* SD MODE */
11520                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11521                                 /* use primary mac as iscsi mac */
11522                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11523
11524                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11525                                 BNX2X_DEV_INFO
11526                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11527                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11528                                 /* use primary mac as fip mac */
11529                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11530                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11531                                 BNX2X_DEV_INFO
11532                                         ("Read FIP MAC: %pM\n", fip_mac);
11533                         }
11534                 }
11535
11536                 /* If this is a storage-only interface, use SAN mac as
11537                  * primary MAC. Notice that for SD this is already the case,
11538                  * as the SAN mac was copied from the primary MAC.
11539                  */
11540                 if (IS_MF_FCOE_AFEX(bp))
11541                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11542         } else {
11543                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11544                                 iscsi_mac_upper);
11545                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11546                                iscsi_mac_lower);
11547                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11548
11549                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11550                                 fcoe_fip_mac_upper);
11551                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11552                                fcoe_fip_mac_lower);
11553                 bnx2x_set_mac_buf(fip_mac, val, val2);
11554         }
11555
11556         /* Disable iSCSI OOO if MAC configuration is invalid. */
11557         if (!is_valid_ether_addr(iscsi_mac)) {
11558                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11559                 eth_zero_addr(iscsi_mac);
11560         }
11561
11562         /* Disable FCoE if MAC configuration is invalid. */
11563         if (!is_valid_ether_addr(fip_mac)) {
11564                 bp->flags |= NO_FCOE_FLAG;
11565                 eth_zero_addr(bp->fip_mac);
11566         }
11567 }
11568
11569 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11570 {
11571         u32 val, val2;
11572         int func = BP_ABS_FUNC(bp);
11573         int port = BP_PORT(bp);
11574
11575         /* Zero primary MAC configuration */
11576         eth_zero_addr(bp->dev->dev_addr);
11577
11578         if (BP_NOMCP(bp)) {
11579                 BNX2X_ERROR("warning: random MAC workaround active\n");
11580                 eth_hw_addr_random(bp->dev);
11581         } else if (IS_MF(bp)) {
11582                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11583                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11584                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11585                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11586                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11587
11588                 if (CNIC_SUPPORT(bp))
11589                         bnx2x_get_cnic_mac_hwinfo(bp);
11590         } else {
11591                 /* in SF read MACs from port configuration */
11592                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11593                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11594                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11595
11596                 if (CNIC_SUPPORT(bp))
11597                         bnx2x_get_cnic_mac_hwinfo(bp);
11598         }
11599
11600         if (!BP_NOMCP(bp)) {
11601                 /* Read physical port identifier from shmem */
11602                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11603                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11604                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11605                 bp->flags |= HAS_PHYS_PORT_ID;
11606         }
11607
11608         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11609
11610         if (!is_valid_ether_addr(bp->dev->dev_addr))
11611                 dev_err(&bp->pdev->dev,
11612                         "bad Ethernet MAC address configuration: %pM\n"
11613                         "change it manually before bringing up the appropriate network interface\n",
11614                         bp->dev->dev_addr);
11615 }
11616
11617 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11618 {
11619         int tmp;
11620         u32 cfg;
11621
11622         if (IS_VF(bp))
11623                 return false;
11624
11625         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11626                 /* Take function: tmp = func */
11627                 tmp = BP_ABS_FUNC(bp);
11628                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11629                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11630         } else {
11631                 /* Take port: tmp = port */
11632                 tmp = BP_PORT(bp);
11633                 cfg = SHMEM_RD(bp,
11634                                dev_info.port_hw_config[tmp].generic_features);
11635                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11636         }
11637         return cfg;
11638 }
11639
11640 static void validate_set_si_mode(struct bnx2x *bp)
11641 {
11642         u8 func = BP_ABS_FUNC(bp);
11643         u32 val;
11644
11645         val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11646
11647         /* check for legal mac (upper bytes) */
11648         if (val != 0xffff) {
11649                 bp->mf_mode = MULTI_FUNCTION_SI;
11650                 bp->mf_config[BP_VN(bp)] =
11651                         MF_CFG_RD(bp, func_mf_config[func].config);
11652         } else
11653                 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11654 }
11655
11656 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11657 {
11658         int /*abs*/func = BP_ABS_FUNC(bp);
11659         int vn;
11660         u32 val = 0, val2 = 0;
11661         int rc = 0;
11662
11663         /* Validate that chip access is feasible */
11664         if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11665                 dev_err(&bp->pdev->dev,
11666                         "Chip read returns all Fs. Preventing probe from continuing\n");
11667                 return -EINVAL;
11668         }
11669
11670         bnx2x_get_common_hwinfo(bp);
11671
11672         /*
11673          * initialize IGU parameters
11674          */
11675         if (CHIP_IS_E1x(bp)) {
11676                 bp->common.int_block = INT_BLOCK_HC;
11677
11678                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11679                 bp->igu_base_sb = 0;
11680         } else {
11681                 bp->common.int_block = INT_BLOCK_IGU;
11682
11683                 /* do not allow device reset during IGU info processing */
11684                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11685
11686                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11687
11688                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11689                         int tout = 5000;
11690
11691                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11692
11693                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11694                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11695                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11696
11697                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11698                                 tout--;
11699                                 usleep_range(1000, 2000);
11700                         }
11701
11702                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11703                                 dev_err(&bp->pdev->dev,
11704                                         "FORCING Normal Mode failed!!!\n");
11705                                 bnx2x_release_hw_lock(bp,
11706                                                       HW_LOCK_RESOURCE_RESET);
11707                                 return -EPERM;
11708                         }
11709                 }
11710
11711                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11712                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11713                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11714                 } else
11715                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11716
11717                 rc = bnx2x_get_igu_cam_info(bp);
11718                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11719                 if (rc)
11720                         return rc;
11721         }
11722
11723         /*
11724          * set base FW non-default (fast path) status block id, this value is
11725          * used to initialize the fw_sb_id saved on the fp/queue structure to
11726          * determine the id used by the FW.
11727          */
11728         if (CHIP_IS_E1x(bp))
11729                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11730         else /*
11731               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11732               * the same queue are indicated on the same IGU SB). So we prefer
11733               * FW and IGU SBs to be the same value.
11734               */
11735                 bp->base_fw_ndsb = bp->igu_base_sb;
11736
11737         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11738                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11739                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11740
11741         /*
11742          * Initialize MF configuration
11743          */
11744
11745         bp->mf_ov = 0;
11746         bp->mf_mode = 0;
11747         bp->mf_sub_mode = 0;
11748         vn = BP_VN(bp);
11749
11750         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11751                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11752                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11753                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11754
11755                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11756                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11757                 else
11758                         bp->common.mf_cfg_base = bp->common.shmem_base +
11759                                 offsetof(struct shmem_region, func_mb) +
11760                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11761                 /*
11762                  * get mf configuration:
11763                  * 1. Existence of MF configuration
11764                  * 2. MAC address must be legal (check only upper bytes)
11765                  *    for  Switch-Independent mode;
11766                  *    OVLAN must be legal for Switch-Dependent mode
11767                  * 3. SF_MODE configures specific MF mode
11768                  */
11769                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11770                         /* get mf configuration */
11771                         val = SHMEM_RD(bp,
11772                                        dev_info.shared_feature_config.config);
11773                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11774
11775                         switch (val) {
11776                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11777                                 validate_set_si_mode(bp);
11778                                 break;
11779                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11780                                 if ((!CHIP_IS_E1x(bp)) &&
11781                                     (MF_CFG_RD(bp, func_mf_config[func].
11782                                                mac_upper) != 0xffff) &&
11783                                     (SHMEM2_HAS(bp,
11784                                                 afex_driver_support))) {
11785                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11786                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11787                                                 func_mf_config[func].config);
11788                                 } else {
11789                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11790                                 }
11791                                 break;
11792                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11793                                 /* get OV configuration */
11794                                 val = MF_CFG_RD(bp,
11795                                         func_mf_config[FUNC_0].e1hov_tag);
11796                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11797
11798                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11799                                         bp->mf_mode = MULTI_FUNCTION_SD;
11800                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11801                                                 func_mf_config[func].config);
11802                                 } else
11803                                         BNX2X_DEV_INFO("illegal OV for SD\n");
11804                                 break;
11805                         case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
11806                                 bp->mf_mode = MULTI_FUNCTION_SD;
11807                                 bp->mf_sub_mode = SUB_MF_MODE_UFP;
11808                                 bp->mf_config[vn] =
11809                                         MF_CFG_RD(bp,
11810                                                   func_mf_config[func].config);
11811                                 break;
11812                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11813                                 bp->mf_config[vn] = 0;
11814                                 break;
11815                         case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
11816                                 val2 = SHMEM_RD(bp,
11817                                         dev_info.shared_hw_config.config_3);
11818                                 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
11819                                 switch (val2) {
11820                                 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
11821                                         validate_set_si_mode(bp);
11822                                         bp->mf_sub_mode =
11823                                                         SUB_MF_MODE_NPAR1_DOT_5;
11824                                         break;
11825                                 default:
11826                                         /* Unknown configuration */
11827                                         bp->mf_config[vn] = 0;
11828                                         BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
11829                                                        val);
11830                                 }
11831                                 break;
11832                         default:
11833                                 /* Unknown configuration: reset mf_config */
11834                                 bp->mf_config[vn] = 0;
11835                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11836                         }
11837                 }
11838
11839                 BNX2X_DEV_INFO("%s function mode\n",
11840                                IS_MF(bp) ? "multi" : "single");
11841
11842                 switch (bp->mf_mode) {
11843                 case MULTI_FUNCTION_SD:
11844                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11845                               FUNC_MF_CFG_E1HOV_TAG_MASK;
11846                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11847                                 bp->mf_ov = val;
11848                                 bp->path_has_ovlan = true;
11849
11850                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11851                                                func, bp->mf_ov, bp->mf_ov);
11852                         } else if (bp->mf_sub_mode == SUB_MF_MODE_UFP) {
11853                                 dev_err(&bp->pdev->dev,
11854                                         "Unexpected - no valid MF OV for func %d in UFP mode\n",
11855                                         func);
11856                                 bp->path_has_ovlan = true;
11857                         } else {
11858                                 dev_err(&bp->pdev->dev,
11859                                         "No valid MF OV for func %d, aborting\n",
11860                                         func);
11861                                 return -EPERM;
11862                         }
11863                         break;
11864                 case MULTI_FUNCTION_AFEX:
11865                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11866                         break;
11867                 case MULTI_FUNCTION_SI:
11868                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11869                                        func);
11870                         break;
11871                 default:
11872                         if (vn) {
11873                                 dev_err(&bp->pdev->dev,
11874                                         "VN %d is in a single function mode, aborting\n",
11875                                         vn);
11876                                 return -EPERM;
11877                         }
11878                         break;
11879                 }
11880
11881                 /* check if other port on the path needs ovlan:
11882                  * Since MF configuration is shared between ports
11883                  * Possible mixed modes are only
11884                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11885                  */
11886                 if (CHIP_MODE_IS_4_PORT(bp) &&
11887                     !bp->path_has_ovlan &&
11888                     !IS_MF(bp) &&
11889                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11890                         u8 other_port = !BP_PORT(bp);
11891                         u8 other_func = BP_PATH(bp) + 2*other_port;
11892                         val = MF_CFG_RD(bp,
11893                                         func_mf_config[other_func].e1hov_tag);
11894                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11895                                 bp->path_has_ovlan = true;
11896                 }
11897         }
11898
11899         /* adjust igu_sb_cnt to MF for E1H */
11900         if (CHIP_IS_E1H(bp) && IS_MF(bp))
11901                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11902
11903         /* port info */
11904         bnx2x_get_port_hwinfo(bp);
11905
11906         /* Get MAC addresses */
11907         bnx2x_get_mac_hwinfo(bp);
11908
11909         bnx2x_get_cnic_info(bp);
11910
11911         return rc;
11912 }
11913
11914 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11915 {
11916         int cnt, i, block_end, rodi;
11917         char vpd_start[BNX2X_VPD_LEN+1];
11918         char str_id_reg[VENDOR_ID_LEN+1];
11919         char str_id_cap[VENDOR_ID_LEN+1];
11920         char *vpd_data;
11921         char *vpd_extended_data = NULL;
11922         u8 len;
11923
11924         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11925         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11926
11927         if (cnt < BNX2X_VPD_LEN)
11928                 goto out_not_found;
11929
11930         /* VPD RO tag should be first tag after identifier string, hence
11931          * we should be able to find it in first BNX2X_VPD_LEN chars
11932          */
11933         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11934                              PCI_VPD_LRDT_RO_DATA);
11935         if (i < 0)
11936                 goto out_not_found;
11937
11938         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11939                     pci_vpd_lrdt_size(&vpd_start[i]);
11940
11941         i += PCI_VPD_LRDT_TAG_SIZE;
11942
11943         if (block_end > BNX2X_VPD_LEN) {
11944                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11945                 if (vpd_extended_data  == NULL)
11946                         goto out_not_found;
11947
11948                 /* read rest of vpd image into vpd_extended_data */
11949                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11950                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11951                                    block_end - BNX2X_VPD_LEN,
11952                                    vpd_extended_data + BNX2X_VPD_LEN);
11953                 if (cnt < (block_end - BNX2X_VPD_LEN))
11954                         goto out_not_found;
11955                 vpd_data = vpd_extended_data;
11956         } else
11957                 vpd_data = vpd_start;
11958
11959         /* now vpd_data holds full vpd content in both cases */
11960
11961         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11962                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11963         if (rodi < 0)
11964                 goto out_not_found;
11965
11966         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11967
11968         if (len != VENDOR_ID_LEN)
11969                 goto out_not_found;
11970
11971         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11972
11973         /* vendor specific info */
11974         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11975         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11976         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11977             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11978
11979                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11980                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11981                 if (rodi >= 0) {
11982                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11983
11984                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11985
11986                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11987                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11988                                 bp->fw_ver[len] = ' ';
11989                         }
11990                 }
11991                 kfree(vpd_extended_data);
11992                 return;
11993         }
11994 out_not_found:
11995         kfree(vpd_extended_data);
11996         return;
11997 }
11998
11999 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12000 {
12001         u32 flags = 0;
12002
12003         if (CHIP_REV_IS_FPGA(bp))
12004                 SET_FLAGS(flags, MODE_FPGA);
12005         else if (CHIP_REV_IS_EMUL(bp))
12006                 SET_FLAGS(flags, MODE_EMUL);
12007         else
12008                 SET_FLAGS(flags, MODE_ASIC);
12009
12010         if (CHIP_MODE_IS_4_PORT(bp))
12011                 SET_FLAGS(flags, MODE_PORT4);
12012         else
12013                 SET_FLAGS(flags, MODE_PORT2);
12014
12015         if (CHIP_IS_E2(bp))
12016                 SET_FLAGS(flags, MODE_E2);
12017         else if (CHIP_IS_E3(bp)) {
12018                 SET_FLAGS(flags, MODE_E3);
12019                 if (CHIP_REV(bp) == CHIP_REV_Ax)
12020                         SET_FLAGS(flags, MODE_E3_A0);
12021                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12022                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12023         }
12024
12025         if (IS_MF(bp)) {
12026                 SET_FLAGS(flags, MODE_MF);
12027                 switch (bp->mf_mode) {
12028                 case MULTI_FUNCTION_SD:
12029                         SET_FLAGS(flags, MODE_MF_SD);
12030                         break;
12031                 case MULTI_FUNCTION_SI:
12032                         SET_FLAGS(flags, MODE_MF_SI);
12033                         break;
12034                 case MULTI_FUNCTION_AFEX:
12035                         SET_FLAGS(flags, MODE_MF_AFEX);
12036                         break;
12037                 }
12038         } else
12039                 SET_FLAGS(flags, MODE_SF);
12040
12041 #if defined(__LITTLE_ENDIAN)
12042         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12043 #else /*(__BIG_ENDIAN)*/
12044         SET_FLAGS(flags, MODE_BIG_ENDIAN);
12045 #endif
12046         INIT_MODE_FLAGS(bp) = flags;
12047 }
12048
12049 static int bnx2x_init_bp(struct bnx2x *bp)
12050 {
12051         int func;
12052         int rc;
12053
12054         mutex_init(&bp->port.phy_mutex);
12055         mutex_init(&bp->fw_mb_mutex);
12056         mutex_init(&bp->drv_info_mutex);
12057         sema_init(&bp->stats_lock, 1);
12058         bp->drv_info_mng_owner = false;
12059
12060         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12061         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12062         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12063         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12064         if (IS_PF(bp)) {
12065                 rc = bnx2x_get_hwinfo(bp);
12066                 if (rc)
12067                         return rc;
12068         } else {
12069                 eth_zero_addr(bp->dev->dev_addr);
12070         }
12071
12072         bnx2x_set_modes_bitmap(bp);
12073
12074         rc = bnx2x_alloc_mem_bp(bp);
12075         if (rc)
12076                 return rc;
12077
12078         bnx2x_read_fwinfo(bp);
12079
12080         func = BP_FUNC(bp);
12081
12082         /* need to reset chip if undi was active */
12083         if (IS_PF(bp) && !BP_NOMCP(bp)) {
12084                 /* init fw_seq */
12085                 bp->fw_seq =
12086                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12087                                                         DRV_MSG_SEQ_NUMBER_MASK;
12088                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12089
12090                 rc = bnx2x_prev_unload(bp);
12091                 if (rc) {
12092                         bnx2x_free_mem_bp(bp);
12093                         return rc;
12094                 }
12095         }
12096
12097         if (CHIP_REV_IS_FPGA(bp))
12098                 dev_err(&bp->pdev->dev, "FPGA detected\n");
12099
12100         if (BP_NOMCP(bp) && (func == 0))
12101                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12102
12103         bp->disable_tpa = disable_tpa;
12104         bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12105         /* Reduce memory usage in kdump environment by disabling TPA */
12106         bp->disable_tpa |= is_kdump_kernel();
12107
12108         /* Set TPA flags */
12109         if (bp->disable_tpa) {
12110                 bp->dev->hw_features &= ~NETIF_F_LRO;
12111                 bp->dev->features &= ~NETIF_F_LRO;
12112         }
12113
12114         if (CHIP_IS_E1(bp))
12115                 bp->dropless_fc = 0;
12116         else
12117                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12118
12119         bp->mrrs = mrrs;
12120
12121         bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12122         if (IS_VF(bp))
12123                 bp->rx_ring_size = MAX_RX_AVAIL;
12124
12125         /* make sure that the numbers are in the right granularity */
12126         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12127         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12128
12129         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12130
12131         init_timer(&bp->timer);
12132         bp->timer.expires = jiffies + bp->current_interval;
12133         bp->timer.data = (unsigned long) bp;
12134         bp->timer.function = bnx2x_timer;
12135
12136         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12137             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12138             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12139             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
12140                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12141                 bnx2x_dcbx_init_params(bp);
12142         } else {
12143                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12144         }
12145
12146         if (CHIP_IS_E1x(bp))
12147                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12148         else
12149                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12150
12151         /* multiple tx priority */
12152         if (IS_VF(bp))
12153                 bp->max_cos = 1;
12154         else if (CHIP_IS_E1x(bp))
12155                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12156         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12157                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12158         else if (CHIP_IS_E3B0(bp))
12159                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12160         else
12161                 BNX2X_ERR("unknown chip %x revision %x\n",
12162                           CHIP_NUM(bp), CHIP_REV(bp));
12163         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12164
12165         /* We need at least one default status block for slow-path events,
12166          * second status block for the L2 queue, and a third status block for
12167          * CNIC if supported.
12168          */
12169         if (IS_VF(bp))
12170                 bp->min_msix_vec_cnt = 1;
12171         else if (CNIC_SUPPORT(bp))
12172                 bp->min_msix_vec_cnt = 3;
12173         else /* PF w/o cnic */
12174                 bp->min_msix_vec_cnt = 2;
12175         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12176
12177         bp->dump_preset_idx = 1;
12178
12179         if (CHIP_IS_E3B0(bp))
12180                 bp->flags |= PTP_SUPPORTED;
12181
12182         return rc;
12183 }
12184
12185 /****************************************************************************
12186 * General service functions
12187 ****************************************************************************/
12188
12189 /*
12190  * net_device service functions
12191  */
12192
12193 /* called with rtnl_lock */
12194 static int bnx2x_open(struct net_device *dev)
12195 {
12196         struct bnx2x *bp = netdev_priv(dev);
12197         int rc;
12198
12199         bp->stats_init = true;
12200
12201         netif_carrier_off(dev);
12202
12203         bnx2x_set_power_state(bp, PCI_D0);
12204
12205         /* If parity had happen during the unload, then attentions
12206          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12207          * want the first function loaded on the current engine to
12208          * complete the recovery.
12209          * Parity recovery is only relevant for PF driver.
12210          */
12211         if (IS_PF(bp)) {
12212                 int other_engine = BP_PATH(bp) ? 0 : 1;
12213                 bool other_load_status, load_status;
12214                 bool global = false;
12215
12216                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12217                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12218                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12219                     bnx2x_chk_parity_attn(bp, &global, true)) {
12220                         do {
12221                                 /* If there are attentions and they are in a
12222                                  * global blocks, set the GLOBAL_RESET bit
12223                                  * regardless whether it will be this function
12224                                  * that will complete the recovery or not.
12225                                  */
12226                                 if (global)
12227                                         bnx2x_set_reset_global(bp);
12228
12229                                 /* Only the first function on the current
12230                                  * engine should try to recover in open. In case
12231                                  * of attentions in global blocks only the first
12232                                  * in the chip should try to recover.
12233                                  */
12234                                 if ((!load_status &&
12235                                      (!global || !other_load_status)) &&
12236                                       bnx2x_trylock_leader_lock(bp) &&
12237                                       !bnx2x_leader_reset(bp)) {
12238                                         netdev_info(bp->dev,
12239                                                     "Recovered in open\n");
12240                                         break;
12241                                 }
12242
12243                                 /* recovery has failed... */
12244                                 bnx2x_set_power_state(bp, PCI_D3hot);
12245                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12246
12247                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12248                                           "If you still see this message after a few retries then power cycle is required.\n");
12249
12250                                 return -EAGAIN;
12251                         } while (0);
12252                 }
12253         }
12254
12255         bp->recovery_state = BNX2X_RECOVERY_DONE;
12256         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12257         if (rc)
12258                 return rc;
12259         return 0;
12260 }
12261
12262 /* called with rtnl_lock */
12263 static int bnx2x_close(struct net_device *dev)
12264 {
12265         struct bnx2x *bp = netdev_priv(dev);
12266
12267         /* Unload the driver, release IRQs */
12268         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12269
12270         return 0;
12271 }
12272
12273 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12274                                       struct bnx2x_mcast_ramrod_params *p)
12275 {
12276         int mc_count = netdev_mc_count(bp->dev);
12277         struct bnx2x_mcast_list_elem *mc_mac =
12278                 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12279         struct netdev_hw_addr *ha;
12280
12281         if (!mc_mac)
12282                 return -ENOMEM;
12283
12284         INIT_LIST_HEAD(&p->mcast_list);
12285
12286         netdev_for_each_mc_addr(ha, bp->dev) {
12287                 mc_mac->mac = bnx2x_mc_addr(ha);
12288                 list_add_tail(&mc_mac->link, &p->mcast_list);
12289                 mc_mac++;
12290         }
12291
12292         p->mcast_list_len = mc_count;
12293
12294         return 0;
12295 }
12296
12297 static void bnx2x_free_mcast_macs_list(
12298         struct bnx2x_mcast_ramrod_params *p)
12299 {
12300         struct bnx2x_mcast_list_elem *mc_mac =
12301                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12302                                  link);
12303
12304         WARN_ON(!mc_mac);
12305         kfree(mc_mac);
12306 }
12307
12308 /**
12309  * bnx2x_set_uc_list - configure a new unicast MACs list.
12310  *
12311  * @bp: driver handle
12312  *
12313  * We will use zero (0) as a MAC type for these MACs.
12314  */
12315 static int bnx2x_set_uc_list(struct bnx2x *bp)
12316 {
12317         int rc;
12318         struct net_device *dev = bp->dev;
12319         struct netdev_hw_addr *ha;
12320         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12321         unsigned long ramrod_flags = 0;
12322
12323         /* First schedule a cleanup up of old configuration */
12324         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12325         if (rc < 0) {
12326                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12327                 return rc;
12328         }
12329
12330         netdev_for_each_uc_addr(ha, dev) {
12331                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12332                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12333                 if (rc == -EEXIST) {
12334                         DP(BNX2X_MSG_SP,
12335                            "Failed to schedule ADD operations: %d\n", rc);
12336                         /* do not treat adding same MAC as error */
12337                         rc = 0;
12338
12339                 } else if (rc < 0) {
12340
12341                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12342                                   rc);
12343                         return rc;
12344                 }
12345         }
12346
12347         /* Execute the pending commands */
12348         __set_bit(RAMROD_CONT, &ramrod_flags);
12349         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12350                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12351 }
12352
12353 static int bnx2x_set_mc_list(struct bnx2x *bp)
12354 {
12355         struct net_device *dev = bp->dev;
12356         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12357         int rc = 0;
12358
12359         rparam.mcast_obj = &bp->mcast_obj;
12360
12361         /* first, clear all configured multicast MACs */
12362         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12363         if (rc < 0) {
12364                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12365                 return rc;
12366         }
12367
12368         /* then, configure a new MACs list */
12369         if (netdev_mc_count(dev)) {
12370                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12371                 if (rc) {
12372                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12373                                   rc);
12374                         return rc;
12375                 }
12376
12377                 /* Now add the new MACs */
12378                 rc = bnx2x_config_mcast(bp, &rparam,
12379                                         BNX2X_MCAST_CMD_ADD);
12380                 if (rc < 0)
12381                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12382                                   rc);
12383
12384                 bnx2x_free_mcast_macs_list(&rparam);
12385         }
12386
12387         return rc;
12388 }
12389
12390 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12391 static void bnx2x_set_rx_mode(struct net_device *dev)
12392 {
12393         struct bnx2x *bp = netdev_priv(dev);
12394
12395         if (bp->state != BNX2X_STATE_OPEN) {
12396                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12397                 return;
12398         } else {
12399                 /* Schedule an SP task to handle rest of change */
12400                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12401                                        NETIF_MSG_IFUP);
12402         }
12403 }
12404
12405 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12406 {
12407         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12408
12409         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12410
12411         netif_addr_lock_bh(bp->dev);
12412
12413         if (bp->dev->flags & IFF_PROMISC) {
12414                 rx_mode = BNX2X_RX_MODE_PROMISC;
12415         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12416                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12417                     CHIP_IS_E1(bp))) {
12418                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12419         } else {
12420                 if (IS_PF(bp)) {
12421                         /* some multicasts */
12422                         if (bnx2x_set_mc_list(bp) < 0)
12423                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12424
12425                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12426                         netif_addr_unlock_bh(bp->dev);
12427                         if (bnx2x_set_uc_list(bp) < 0)
12428                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12429                         netif_addr_lock_bh(bp->dev);
12430                 } else {
12431                         /* configuring mcast to a vf involves sleeping (when we
12432                          * wait for the pf's response).
12433                          */
12434                         bnx2x_schedule_sp_rtnl(bp,
12435                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12436                 }
12437         }
12438
12439         bp->rx_mode = rx_mode;
12440         /* handle ISCSI SD mode */
12441         if (IS_MF_ISCSI_ONLY(bp))
12442                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12443
12444         /* Schedule the rx_mode command */
12445         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12446                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12447                 netif_addr_unlock_bh(bp->dev);
12448                 return;
12449         }
12450
12451         if (IS_PF(bp)) {
12452                 bnx2x_set_storm_rx_mode(bp);
12453                 netif_addr_unlock_bh(bp->dev);
12454         } else {
12455                 /* VF will need to request the PF to make this change, and so
12456                  * the VF needs to release the bottom-half lock prior to the
12457                  * request (as it will likely require sleep on the VF side)
12458                  */
12459                 netif_addr_unlock_bh(bp->dev);
12460                 bnx2x_vfpf_storm_rx_mode(bp);
12461         }
12462 }
12463
12464 /* called with rtnl_lock */
12465 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12466                            int devad, u16 addr)
12467 {
12468         struct bnx2x *bp = netdev_priv(netdev);
12469         u16 value;
12470         int rc;
12471
12472         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12473            prtad, devad, addr);
12474
12475         /* The HW expects different devad if CL22 is used */
12476         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12477
12478         bnx2x_acquire_phy_lock(bp);
12479         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12480         bnx2x_release_phy_lock(bp);
12481         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12482
12483         if (!rc)
12484                 rc = value;
12485         return rc;
12486 }
12487
12488 /* called with rtnl_lock */
12489 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12490                             u16 addr, u16 value)
12491 {
12492         struct bnx2x *bp = netdev_priv(netdev);
12493         int rc;
12494
12495         DP(NETIF_MSG_LINK,
12496            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12497            prtad, devad, addr, value);
12498
12499         /* The HW expects different devad if CL22 is used */
12500         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12501
12502         bnx2x_acquire_phy_lock(bp);
12503         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12504         bnx2x_release_phy_lock(bp);
12505         return rc;
12506 }
12507
12508 /* called with rtnl_lock */
12509 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12510 {
12511         struct bnx2x *bp = netdev_priv(dev);
12512         struct mii_ioctl_data *mdio = if_mii(ifr);
12513
12514         if (!netif_running(dev))
12515                 return -EAGAIN;
12516
12517         switch (cmd) {
12518         case SIOCSHWTSTAMP:
12519                 return bnx2x_hwtstamp_ioctl(bp, ifr);
12520         default:
12521                 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12522                    mdio->phy_id, mdio->reg_num, mdio->val_in);
12523                 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12524         }
12525 }
12526
12527 #ifdef CONFIG_NET_POLL_CONTROLLER
12528 static void poll_bnx2x(struct net_device *dev)
12529 {
12530         struct bnx2x *bp = netdev_priv(dev);
12531         int i;
12532
12533         for_each_eth_queue(bp, i) {
12534                 struct bnx2x_fastpath *fp = &bp->fp[i];
12535                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12536         }
12537 }
12538 #endif
12539
12540 static int bnx2x_validate_addr(struct net_device *dev)
12541 {
12542         struct bnx2x *bp = netdev_priv(dev);
12543
12544         /* query the bulletin board for mac address configured by the PF */
12545         if (IS_VF(bp))
12546                 bnx2x_sample_bulletin(bp);
12547
12548         if (!is_valid_ether_addr(dev->dev_addr)) {
12549                 BNX2X_ERR("Non-valid Ethernet address\n");
12550                 return -EADDRNOTAVAIL;
12551         }
12552         return 0;
12553 }
12554
12555 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12556                                   struct netdev_phys_item_id *ppid)
12557 {
12558         struct bnx2x *bp = netdev_priv(netdev);
12559
12560         if (!(bp->flags & HAS_PHYS_PORT_ID))
12561                 return -EOPNOTSUPP;
12562
12563         ppid->id_len = sizeof(bp->phys_port_id);
12564         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12565
12566         return 0;
12567 }
12568
12569 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12570                                               struct net_device *dev,
12571                                               netdev_features_t features)
12572 {
12573         features = vlan_features_check(skb, features);
12574         return vxlan_features_check(skb, features);
12575 }
12576
12577 static const struct net_device_ops bnx2x_netdev_ops = {
12578         .ndo_open               = bnx2x_open,
12579         .ndo_stop               = bnx2x_close,
12580         .ndo_start_xmit         = bnx2x_start_xmit,
12581         .ndo_select_queue       = bnx2x_select_queue,
12582         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12583         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12584         .ndo_validate_addr      = bnx2x_validate_addr,
12585         .ndo_do_ioctl           = bnx2x_ioctl,
12586         .ndo_change_mtu         = bnx2x_change_mtu,
12587         .ndo_fix_features       = bnx2x_fix_features,
12588         .ndo_set_features       = bnx2x_set_features,
12589         .ndo_tx_timeout         = bnx2x_tx_timeout,
12590 #ifdef CONFIG_NET_POLL_CONTROLLER
12591         .ndo_poll_controller    = poll_bnx2x,
12592 #endif
12593         .ndo_setup_tc           = bnx2x_setup_tc,
12594 #ifdef CONFIG_BNX2X_SRIOV
12595         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12596         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12597         .ndo_get_vf_config      = bnx2x_get_vf_config,
12598 #endif
12599 #ifdef NETDEV_FCOE_WWNN
12600         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12601 #endif
12602
12603 #ifdef CONFIG_NET_RX_BUSY_POLL
12604         .ndo_busy_poll          = bnx2x_low_latency_recv,
12605 #endif
12606         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
12607         .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
12608         .ndo_features_check     = bnx2x_features_check,
12609 };
12610
12611 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12612 {
12613         struct device *dev = &bp->pdev->dev;
12614
12615         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12616             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12617                 dev_err(dev, "System does not support DMA, aborting\n");
12618                 return -EIO;
12619         }
12620
12621         return 0;
12622 }
12623
12624 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12625 {
12626         if (bp->flags & AER_ENABLED) {
12627                 pci_disable_pcie_error_reporting(bp->pdev);
12628                 bp->flags &= ~AER_ENABLED;
12629         }
12630 }
12631
12632 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12633                           struct net_device *dev, unsigned long board_type)
12634 {
12635         int rc;
12636         u32 pci_cfg_dword;
12637         bool chip_is_e1x = (board_type == BCM57710 ||
12638                             board_type == BCM57711 ||
12639                             board_type == BCM57711E);
12640
12641         SET_NETDEV_DEV(dev, &pdev->dev);
12642
12643         bp->dev = dev;
12644         bp->pdev = pdev;
12645
12646         rc = pci_enable_device(pdev);
12647         if (rc) {
12648                 dev_err(&bp->pdev->dev,
12649                         "Cannot enable PCI device, aborting\n");
12650                 goto err_out;
12651         }
12652
12653         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12654                 dev_err(&bp->pdev->dev,
12655                         "Cannot find PCI device base address, aborting\n");
12656                 rc = -ENODEV;
12657                 goto err_out_disable;
12658         }
12659
12660         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12661                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12662                 rc = -ENODEV;
12663                 goto err_out_disable;
12664         }
12665
12666         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12667         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12668             PCICFG_REVESION_ID_ERROR_VAL) {
12669                 pr_err("PCI device error, probably due to fan failure, aborting\n");
12670                 rc = -ENODEV;
12671                 goto err_out_disable;
12672         }
12673
12674         if (atomic_read(&pdev->enable_cnt) == 1) {
12675                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12676                 if (rc) {
12677                         dev_err(&bp->pdev->dev,
12678                                 "Cannot obtain PCI resources, aborting\n");
12679                         goto err_out_disable;
12680                 }
12681
12682                 pci_set_master(pdev);
12683                 pci_save_state(pdev);
12684         }
12685
12686         if (IS_PF(bp)) {
12687                 if (!pdev->pm_cap) {
12688                         dev_err(&bp->pdev->dev,
12689                                 "Cannot find power management capability, aborting\n");
12690                         rc = -EIO;
12691                         goto err_out_release;
12692                 }
12693         }
12694
12695         if (!pci_is_pcie(pdev)) {
12696                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12697                 rc = -EIO;
12698                 goto err_out_release;
12699         }
12700
12701         rc = bnx2x_set_coherency_mask(bp);
12702         if (rc)
12703                 goto err_out_release;
12704
12705         dev->mem_start = pci_resource_start(pdev, 0);
12706         dev->base_addr = dev->mem_start;
12707         dev->mem_end = pci_resource_end(pdev, 0);
12708
12709         dev->irq = pdev->irq;
12710
12711         bp->regview = pci_ioremap_bar(pdev, 0);
12712         if (!bp->regview) {
12713                 dev_err(&bp->pdev->dev,
12714                         "Cannot map register space, aborting\n");
12715                 rc = -ENOMEM;
12716                 goto err_out_release;
12717         }
12718
12719         /* In E1/E1H use pci device function given by kernel.
12720          * In E2/E3 read physical function from ME register since these chips
12721          * support Physical Device Assignment where kernel BDF maybe arbitrary
12722          * (depending on hypervisor).
12723          */
12724         if (chip_is_e1x) {
12725                 bp->pf_num = PCI_FUNC(pdev->devfn);
12726         } else {
12727                 /* chip is E2/3*/
12728                 pci_read_config_dword(bp->pdev,
12729                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
12730                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12731                                   ME_REG_ABS_PF_NUM_SHIFT);
12732         }
12733         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12734
12735         /* clean indirect addresses */
12736         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12737                                PCICFG_VENDOR_ID_OFFSET);
12738
12739         /* Set PCIe reset type to fundamental for EEH recovery */
12740         pdev->needs_freset = 1;
12741
12742         /* AER (Advanced Error reporting) configuration */
12743         rc = pci_enable_pcie_error_reporting(pdev);
12744         if (!rc)
12745                 bp->flags |= AER_ENABLED;
12746         else
12747                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12748
12749         /*
12750          * Clean the following indirect addresses for all functions since it
12751          * is not used by the driver.
12752          */
12753         if (IS_PF(bp)) {
12754                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12755                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12756                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12757                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12758
12759                 if (chip_is_e1x) {
12760                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12761                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12762                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12763                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12764                 }
12765
12766                 /* Enable internal target-read (in case we are probed after PF
12767                  * FLR). Must be done prior to any BAR read access. Only for
12768                  * 57712 and up
12769                  */
12770                 if (!chip_is_e1x)
12771                         REG_WR(bp,
12772                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12773         }
12774
12775         dev->watchdog_timeo = TX_TIMEOUT;
12776
12777         dev->netdev_ops = &bnx2x_netdev_ops;
12778         bnx2x_set_ethtool_ops(bp, dev);
12779
12780         dev->priv_flags |= IFF_UNICAST_FLT;
12781
12782         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12783                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12784                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12785                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12786         if (!chip_is_e1x) {
12787                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12788                                     NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12789                 dev->hw_enc_features =
12790                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12791                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12792                         NETIF_F_GSO_IPIP |
12793                         NETIF_F_GSO_SIT |
12794                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12795         }
12796
12797         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12798                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12799
12800         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12801         dev->features |= NETIF_F_HIGHDMA;
12802
12803         /* Add Loopback capability to the device */
12804         dev->hw_features |= NETIF_F_LOOPBACK;
12805
12806 #ifdef BCM_DCBNL
12807         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12808 #endif
12809
12810         /* get_port_hwinfo() will set prtad and mmds properly */
12811         bp->mdio.prtad = MDIO_PRTAD_NONE;
12812         bp->mdio.mmds = 0;
12813         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12814         bp->mdio.dev = dev;
12815         bp->mdio.mdio_read = bnx2x_mdio_read;
12816         bp->mdio.mdio_write = bnx2x_mdio_write;
12817
12818         return 0;
12819
12820 err_out_release:
12821         if (atomic_read(&pdev->enable_cnt) == 1)
12822                 pci_release_regions(pdev);
12823
12824 err_out_disable:
12825         pci_disable_device(pdev);
12826
12827 err_out:
12828         return rc;
12829 }
12830
12831 static int bnx2x_check_firmware(struct bnx2x *bp)
12832 {
12833         const struct firmware *firmware = bp->firmware;
12834         struct bnx2x_fw_file_hdr *fw_hdr;
12835         struct bnx2x_fw_file_section *sections;
12836         u32 offset, len, num_ops;
12837         __be16 *ops_offsets;
12838         int i;
12839         const u8 *fw_ver;
12840
12841         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12842                 BNX2X_ERR("Wrong FW size\n");
12843                 return -EINVAL;
12844         }
12845
12846         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12847         sections = (struct bnx2x_fw_file_section *)fw_hdr;
12848
12849         /* Make sure none of the offsets and sizes make us read beyond
12850          * the end of the firmware data */
12851         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12852                 offset = be32_to_cpu(sections[i].offset);
12853                 len = be32_to_cpu(sections[i].len);
12854                 if (offset + len > firmware->size) {
12855                         BNX2X_ERR("Section %d length is out of bounds\n", i);
12856                         return -EINVAL;
12857                 }
12858         }
12859
12860         /* Likewise for the init_ops offsets */
12861         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12862         ops_offsets = (__force __be16 *)(firmware->data + offset);
12863         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12864
12865         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12866                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12867                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
12868                         return -EINVAL;
12869                 }
12870         }
12871
12872         /* Check FW version */
12873         offset = be32_to_cpu(fw_hdr->fw_version.offset);
12874         fw_ver = firmware->data + offset;
12875         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12876             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12877             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12878             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12879                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12880                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12881                        BCM_5710_FW_MAJOR_VERSION,
12882                        BCM_5710_FW_MINOR_VERSION,
12883                        BCM_5710_FW_REVISION_VERSION,
12884                        BCM_5710_FW_ENGINEERING_VERSION);
12885                 return -EINVAL;
12886         }
12887
12888         return 0;
12889 }
12890
12891 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12892 {
12893         const __be32 *source = (const __be32 *)_source;
12894         u32 *target = (u32 *)_target;
12895         u32 i;
12896
12897         for (i = 0; i < n/4; i++)
12898                 target[i] = be32_to_cpu(source[i]);
12899 }
12900
12901 /*
12902    Ops array is stored in the following format:
12903    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12904  */
12905 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12906 {
12907         const __be32 *source = (const __be32 *)_source;
12908         struct raw_op *target = (struct raw_op *)_target;
12909         u32 i, j, tmp;
12910
12911         for (i = 0, j = 0; i < n/8; i++, j += 2) {
12912                 tmp = be32_to_cpu(source[j]);
12913                 target[i].op = (tmp >> 24) & 0xff;
12914                 target[i].offset = tmp & 0xffffff;
12915                 target[i].raw_data = be32_to_cpu(source[j + 1]);
12916         }
12917 }
12918
12919 /* IRO array is stored in the following format:
12920  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12921  */
12922 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12923 {
12924         const __be32 *source = (const __be32 *)_source;
12925         struct iro *target = (struct iro *)_target;
12926         u32 i, j, tmp;
12927
12928         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12929                 target[i].base = be32_to_cpu(source[j]);
12930                 j++;
12931                 tmp = be32_to_cpu(source[j]);
12932                 target[i].m1 = (tmp >> 16) & 0xffff;
12933                 target[i].m2 = tmp & 0xffff;
12934                 j++;
12935                 tmp = be32_to_cpu(source[j]);
12936                 target[i].m3 = (tmp >> 16) & 0xffff;
12937                 target[i].size = tmp & 0xffff;
12938                 j++;
12939         }
12940 }
12941
12942 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12943 {
12944         const __be16 *source = (const __be16 *)_source;
12945         u16 *target = (u16 *)_target;
12946         u32 i;
12947
12948         for (i = 0; i < n/2; i++)
12949                 target[i] = be16_to_cpu(source[i]);
12950 }
12951
12952 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12953 do {                                                                    \
12954         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12955         bp->arr = kmalloc(len, GFP_KERNEL);                             \
12956         if (!bp->arr)                                                   \
12957                 goto lbl;                                               \
12958         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12959              (u8 *)bp->arr, len);                                       \
12960 } while (0)
12961
12962 static int bnx2x_init_firmware(struct bnx2x *bp)
12963 {
12964         const char *fw_file_name;
12965         struct bnx2x_fw_file_hdr *fw_hdr;
12966         int rc;
12967
12968         if (bp->firmware)
12969                 return 0;
12970
12971         if (CHIP_IS_E1(bp))
12972                 fw_file_name = FW_FILE_NAME_E1;
12973         else if (CHIP_IS_E1H(bp))
12974                 fw_file_name = FW_FILE_NAME_E1H;
12975         else if (!CHIP_IS_E1x(bp))
12976                 fw_file_name = FW_FILE_NAME_E2;
12977         else {
12978                 BNX2X_ERR("Unsupported chip revision\n");
12979                 return -EINVAL;
12980         }
12981         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12982
12983         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12984         if (rc) {
12985                 BNX2X_ERR("Can't load firmware file %s\n",
12986                           fw_file_name);
12987                 goto request_firmware_exit;
12988         }
12989
12990         rc = bnx2x_check_firmware(bp);
12991         if (rc) {
12992                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12993                 goto request_firmware_exit;
12994         }
12995
12996         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12997
12998         /* Initialize the pointers to the init arrays */
12999         /* Blob */
13000         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13001
13002         /* Opcodes */
13003         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13004
13005         /* Offsets */
13006         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13007                             be16_to_cpu_n);
13008
13009         /* STORMs firmware */
13010         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13011                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13012         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13013                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13014         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13015                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13016         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13017                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
13018         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13019                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13020         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13021                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13022         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13023                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13024         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13025                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
13026         /* IRO */
13027         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13028
13029         return 0;
13030
13031 iro_alloc_err:
13032         kfree(bp->init_ops_offsets);
13033 init_offsets_alloc_err:
13034         kfree(bp->init_ops);
13035 init_ops_alloc_err:
13036         kfree(bp->init_data);
13037 request_firmware_exit:
13038         release_firmware(bp->firmware);
13039         bp->firmware = NULL;
13040
13041         return rc;
13042 }
13043
13044 static void bnx2x_release_firmware(struct bnx2x *bp)
13045 {
13046         kfree(bp->init_ops_offsets);
13047         kfree(bp->init_ops);
13048         kfree(bp->init_data);
13049         release_firmware(bp->firmware);
13050         bp->firmware = NULL;
13051 }
13052
13053 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13054         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13055         .init_hw_cmn      = bnx2x_init_hw_common,
13056         .init_hw_port     = bnx2x_init_hw_port,
13057         .init_hw_func     = bnx2x_init_hw_func,
13058
13059         .reset_hw_cmn     = bnx2x_reset_common,
13060         .reset_hw_port    = bnx2x_reset_port,
13061         .reset_hw_func    = bnx2x_reset_func,
13062
13063         .gunzip_init      = bnx2x_gunzip_init,
13064         .gunzip_end       = bnx2x_gunzip_end,
13065
13066         .init_fw          = bnx2x_init_firmware,
13067         .release_fw       = bnx2x_release_firmware,
13068 };
13069
13070 void bnx2x__init_func_obj(struct bnx2x *bp)
13071 {
13072         /* Prepare DMAE related driver resources */
13073         bnx2x_setup_dmae(bp);
13074
13075         bnx2x_init_func_obj(bp, &bp->func_obj,
13076                             bnx2x_sp(bp, func_rdata),
13077                             bnx2x_sp_mapping(bp, func_rdata),
13078                             bnx2x_sp(bp, func_afex_rdata),
13079                             bnx2x_sp_mapping(bp, func_afex_rdata),
13080                             &bnx2x_func_sp_drv);
13081 }
13082
13083 /* must be called after sriov-enable */
13084 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13085 {
13086         int cid_count = BNX2X_L2_MAX_CID(bp);
13087
13088         if (IS_SRIOV(bp))
13089                 cid_count += BNX2X_VF_CIDS;
13090
13091         if (CNIC_SUPPORT(bp))
13092                 cid_count += CNIC_CID_MAX;
13093
13094         return roundup(cid_count, QM_CID_ROUND);
13095 }
13096
13097 /**
13098  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13099  *
13100  * @dev:        pci device
13101  *
13102  */
13103 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13104 {
13105         int index;
13106         u16 control = 0;
13107
13108         /*
13109          * If MSI-X is not supported - return number of SBs needed to support
13110          * one fast path queue: one FP queue + SB for CNIC
13111          */
13112         if (!pdev->msix_cap) {
13113                 dev_info(&pdev->dev, "no msix capability found\n");
13114                 return 1 + cnic_cnt;
13115         }
13116         dev_info(&pdev->dev, "msix capability found\n");
13117
13118         /*
13119          * The value in the PCI configuration space is the index of the last
13120          * entry, namely one less than the actual size of the table, which is
13121          * exactly what we want to return from this function: number of all SBs
13122          * without the default SB.
13123          * For VFs there is no default SB, then we return (index+1).
13124          */
13125         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13126
13127         index = control & PCI_MSIX_FLAGS_QSIZE;
13128
13129         return index;
13130 }
13131
13132 static int set_max_cos_est(int chip_id)
13133 {
13134         switch (chip_id) {
13135         case BCM57710:
13136         case BCM57711:
13137         case BCM57711E:
13138                 return BNX2X_MULTI_TX_COS_E1X;
13139         case BCM57712:
13140         case BCM57712_MF:
13141                 return BNX2X_MULTI_TX_COS_E2_E3A0;
13142         case BCM57800:
13143         case BCM57800_MF:
13144         case BCM57810:
13145         case BCM57810_MF:
13146         case BCM57840_4_10:
13147         case BCM57840_2_20:
13148         case BCM57840_O:
13149         case BCM57840_MFO:
13150         case BCM57840_MF:
13151         case BCM57811:
13152         case BCM57811_MF:
13153                 return BNX2X_MULTI_TX_COS_E3B0;
13154         case BCM57712_VF:
13155         case BCM57800_VF:
13156         case BCM57810_VF:
13157         case BCM57840_VF:
13158         case BCM57811_VF:
13159                 return 1;
13160         default:
13161                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13162                 return -ENODEV;
13163         }
13164 }
13165
13166 static int set_is_vf(int chip_id)
13167 {
13168         switch (chip_id) {
13169         case BCM57712_VF:
13170         case BCM57800_VF:
13171         case BCM57810_VF:
13172         case BCM57840_VF:
13173         case BCM57811_VF:
13174                 return true;
13175         default:
13176                 return false;
13177         }
13178 }
13179
13180 /* nig_tsgen registers relative address */
13181 #define tsgen_ctrl 0x0
13182 #define tsgen_freecount 0x10
13183 #define tsgen_synctime_t0 0x20
13184 #define tsgen_offset_t0 0x28
13185 #define tsgen_drift_t0 0x30
13186 #define tsgen_synctime_t1 0x58
13187 #define tsgen_offset_t1 0x60
13188 #define tsgen_drift_t1 0x68
13189
13190 /* FW workaround for setting drift */
13191 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13192                                           int best_val, int best_period)
13193 {
13194         struct bnx2x_func_state_params func_params = {NULL};
13195         struct bnx2x_func_set_timesync_params *set_timesync_params =
13196                 &func_params.params.set_timesync;
13197
13198         /* Prepare parameters for function state transitions */
13199         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13200         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13201
13202         func_params.f_obj = &bp->func_obj;
13203         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13204
13205         /* Function parameters */
13206         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13207         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13208         set_timesync_params->add_sub_drift_adjust_value =
13209                 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13210         set_timesync_params->drift_adjust_value = best_val;
13211         set_timesync_params->drift_adjust_period = best_period;
13212
13213         return bnx2x_func_state_change(bp, &func_params);
13214 }
13215
13216 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13217 {
13218         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13219         int rc;
13220         int drift_dir = 1;
13221         int val, period, period1, period2, dif, dif1, dif2;
13222         int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13223
13224         DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13225
13226         if (!netif_running(bp->dev)) {
13227                 DP(BNX2X_MSG_PTP,
13228                    "PTP adjfreq called while the interface is down\n");
13229                 return -EFAULT;
13230         }
13231
13232         if (ppb < 0) {
13233                 ppb = -ppb;
13234                 drift_dir = 0;
13235         }
13236
13237         if (ppb == 0) {
13238                 best_val = 1;
13239                 best_period = 0x1FFFFFF;
13240         } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13241                 best_val = 31;
13242                 best_period = 1;
13243         } else {
13244                 /* Changed not to allow val = 8, 16, 24 as these values
13245                  * are not supported in workaround.
13246                  */
13247                 for (val = 0; val <= 31; val++) {
13248                         if ((val & 0x7) == 0)
13249                                 continue;
13250                         period1 = val * 1000000 / ppb;
13251                         period2 = period1 + 1;
13252                         if (period1 != 0)
13253                                 dif1 = ppb - (val * 1000000 / period1);
13254                         else
13255                                 dif1 = BNX2X_MAX_PHC_DRIFT;
13256                         if (dif1 < 0)
13257                                 dif1 = -dif1;
13258                         dif2 = ppb - (val * 1000000 / period2);
13259                         if (dif2 < 0)
13260                                 dif2 = -dif2;
13261                         dif = (dif1 < dif2) ? dif1 : dif2;
13262                         period = (dif1 < dif2) ? period1 : period2;
13263                         if (dif < best_dif) {
13264                                 best_dif = dif;
13265                                 best_val = val;
13266                                 best_period = period;
13267                         }
13268                 }
13269         }
13270
13271         rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13272                                             best_period);
13273         if (rc) {
13274                 BNX2X_ERR("Failed to set drift\n");
13275                 return -EFAULT;
13276         }
13277
13278         DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13279            best_period);
13280
13281         return 0;
13282 }
13283
13284 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13285 {
13286         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13287
13288         DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13289
13290         timecounter_adjtime(&bp->timecounter, delta);
13291
13292         return 0;
13293 }
13294
13295 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13296 {
13297         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13298         u64 ns;
13299
13300         ns = timecounter_read(&bp->timecounter);
13301
13302         DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13303
13304         *ts = ns_to_timespec64(ns);
13305
13306         return 0;
13307 }
13308
13309 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13310                              const struct timespec64 *ts)
13311 {
13312         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13313         u64 ns;
13314
13315         ns = timespec64_to_ns(ts);
13316
13317         DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13318
13319         /* Re-init the timecounter */
13320         timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13321
13322         return 0;
13323 }
13324
13325 /* Enable (or disable) ancillary features of the phc subsystem */
13326 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13327                             struct ptp_clock_request *rq, int on)
13328 {
13329         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13330
13331         BNX2X_ERR("PHC ancillary features are not supported\n");
13332         return -ENOTSUPP;
13333 }
13334
13335 static void bnx2x_register_phc(struct bnx2x *bp)
13336 {
13337         /* Fill the ptp_clock_info struct and register PTP clock*/
13338         bp->ptp_clock_info.owner = THIS_MODULE;
13339         snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13340         bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13341         bp->ptp_clock_info.n_alarm = 0;
13342         bp->ptp_clock_info.n_ext_ts = 0;
13343         bp->ptp_clock_info.n_per_out = 0;
13344         bp->ptp_clock_info.pps = 0;
13345         bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13346         bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13347         bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13348         bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13349         bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13350
13351         bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13352         if (IS_ERR(bp->ptp_clock)) {
13353                 bp->ptp_clock = NULL;
13354                 BNX2X_ERR("PTP clock registeration failed\n");
13355         }
13356 }
13357
13358 static int bnx2x_init_one(struct pci_dev *pdev,
13359                                     const struct pci_device_id *ent)
13360 {
13361         struct net_device *dev = NULL;
13362         struct bnx2x *bp;
13363         enum pcie_link_width pcie_width;
13364         enum pci_bus_speed pcie_speed;
13365         int rc, max_non_def_sbs;
13366         int rx_count, tx_count, rss_count, doorbell_size;
13367         int max_cos_est;
13368         bool is_vf;
13369         int cnic_cnt;
13370
13371         /* Management FW 'remembers' living interfaces. Allow it some time
13372          * to forget previously living interfaces, allowing a proper re-load.
13373          */
13374         if (is_kdump_kernel()) {
13375                 ktime_t now = ktime_get_boottime();
13376                 ktime_t fw_ready_time = ktime_set(5, 0);
13377
13378                 if (ktime_before(now, fw_ready_time))
13379                         msleep(ktime_ms_delta(fw_ready_time, now));
13380         }
13381
13382         /* An estimated maximum supported CoS number according to the chip
13383          * version.
13384          * We will try to roughly estimate the maximum number of CoSes this chip
13385          * may support in order to minimize the memory allocated for Tx
13386          * netdev_queue's. This number will be accurately calculated during the
13387          * initialization of bp->max_cos based on the chip versions AND chip
13388          * revision in the bnx2x_init_bp().
13389          */
13390         max_cos_est = set_max_cos_est(ent->driver_data);
13391         if (max_cos_est < 0)
13392                 return max_cos_est;
13393         is_vf = set_is_vf(ent->driver_data);
13394         cnic_cnt = is_vf ? 0 : 1;
13395
13396         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13397
13398         /* add another SB for VF as it has no default SB */
13399         max_non_def_sbs += is_vf ? 1 : 0;
13400
13401         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13402         rss_count = max_non_def_sbs - cnic_cnt;
13403
13404         if (rss_count < 1)
13405                 return -EINVAL;
13406
13407         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13408         rx_count = rss_count + cnic_cnt;
13409
13410         /* Maximum number of netdev Tx queues:
13411          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13412          */
13413         tx_count = rss_count * max_cos_est + cnic_cnt;
13414
13415         /* dev zeroed in init_etherdev */
13416         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13417         if (!dev)
13418                 return -ENOMEM;
13419
13420         bp = netdev_priv(dev);
13421
13422         bp->flags = 0;
13423         if (is_vf)
13424                 bp->flags |= IS_VF_FLAG;
13425
13426         bp->igu_sb_cnt = max_non_def_sbs;
13427         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13428         bp->msg_enable = debug;
13429         bp->cnic_support = cnic_cnt;
13430         bp->cnic_probe = bnx2x_cnic_probe;
13431
13432         pci_set_drvdata(pdev, dev);
13433
13434         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13435         if (rc < 0) {
13436                 free_netdev(dev);
13437                 return rc;
13438         }
13439
13440         BNX2X_DEV_INFO("This is a %s function\n",
13441                        IS_PF(bp) ? "physical" : "virtual");
13442         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13443         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13444         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13445                        tx_count, rx_count);
13446
13447         rc = bnx2x_init_bp(bp);
13448         if (rc)
13449                 goto init_one_exit;
13450
13451         /* Map doorbells here as we need the real value of bp->max_cos which
13452          * is initialized in bnx2x_init_bp() to determine the number of
13453          * l2 connections.
13454          */
13455         if (IS_VF(bp)) {
13456                 bp->doorbells = bnx2x_vf_doorbells(bp);
13457                 rc = bnx2x_vf_pci_alloc(bp);
13458                 if (rc)
13459                         goto init_one_exit;
13460         } else {
13461                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13462                 if (doorbell_size > pci_resource_len(pdev, 2)) {
13463                         dev_err(&bp->pdev->dev,
13464                                 "Cannot map doorbells, bar size too small, aborting\n");
13465                         rc = -ENOMEM;
13466                         goto init_one_exit;
13467                 }
13468                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13469                                                 doorbell_size);
13470         }
13471         if (!bp->doorbells) {
13472                 dev_err(&bp->pdev->dev,
13473                         "Cannot map doorbell space, aborting\n");
13474                 rc = -ENOMEM;
13475                 goto init_one_exit;
13476         }
13477
13478         if (IS_VF(bp)) {
13479                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13480                 if (rc)
13481                         goto init_one_exit;
13482         }
13483
13484         /* Enable SRIOV if capability found in configuration space */
13485         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13486         if (rc)
13487                 goto init_one_exit;
13488
13489         /* calc qm_cid_count */
13490         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13491         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13492
13493         /* disable FCOE L2 queue for E1x*/
13494         if (CHIP_IS_E1x(bp))
13495                 bp->flags |= NO_FCOE_FLAG;
13496
13497         /* Set bp->num_queues for MSI-X mode*/
13498         bnx2x_set_num_queues(bp);
13499
13500         /* Configure interrupt mode: try to enable MSI-X/MSI if
13501          * needed.
13502          */
13503         rc = bnx2x_set_int_mode(bp);
13504         if (rc) {
13505                 dev_err(&pdev->dev, "Cannot set interrupts\n");
13506                 goto init_one_exit;
13507         }
13508         BNX2X_DEV_INFO("set interrupts successfully\n");
13509
13510         /* register the net device */
13511         rc = register_netdev(dev);
13512         if (rc) {
13513                 dev_err(&pdev->dev, "Cannot register net device\n");
13514                 goto init_one_exit;
13515         }
13516         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13517
13518         if (!NO_FCOE(bp)) {
13519                 /* Add storage MAC address */
13520                 rtnl_lock();
13521                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13522                 rtnl_unlock();
13523         }
13524         if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13525             pcie_speed == PCI_SPEED_UNKNOWN ||
13526             pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13527                 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13528         else
13529                 BNX2X_DEV_INFO(
13530                        "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13531                        board_info[ent->driver_data].name,
13532                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13533                        pcie_width,
13534                        pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13535                        pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13536                        pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13537                        "Unknown",
13538                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
13539
13540         bnx2x_register_phc(bp);
13541
13542         return 0;
13543
13544 init_one_exit:
13545         bnx2x_disable_pcie_error_reporting(bp);
13546
13547         if (bp->regview)
13548                 iounmap(bp->regview);
13549
13550         if (IS_PF(bp) && bp->doorbells)
13551                 iounmap(bp->doorbells);
13552
13553         free_netdev(dev);
13554
13555         if (atomic_read(&pdev->enable_cnt) == 1)
13556                 pci_release_regions(pdev);
13557
13558         pci_disable_device(pdev);
13559
13560         return rc;
13561 }
13562
13563 static void __bnx2x_remove(struct pci_dev *pdev,
13564                            struct net_device *dev,
13565                            struct bnx2x *bp,
13566                            bool remove_netdev)
13567 {
13568         if (bp->ptp_clock) {
13569                 ptp_clock_unregister(bp->ptp_clock);
13570                 bp->ptp_clock = NULL;
13571         }
13572
13573         /* Delete storage MAC address */
13574         if (!NO_FCOE(bp)) {
13575                 rtnl_lock();
13576                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13577                 rtnl_unlock();
13578         }
13579
13580 #ifdef BCM_DCBNL
13581         /* Delete app tlvs from dcbnl */
13582         bnx2x_dcbnl_update_applist(bp, true);
13583 #endif
13584
13585         if (IS_PF(bp) &&
13586             !BP_NOMCP(bp) &&
13587             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13588                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13589
13590         /* Close the interface - either directly or implicitly */
13591         if (remove_netdev) {
13592                 unregister_netdev(dev);
13593         } else {
13594                 rtnl_lock();
13595                 dev_close(dev);
13596                 rtnl_unlock();
13597         }
13598
13599         bnx2x_iov_remove_one(bp);
13600
13601         /* Power on: we can't let PCI layer write to us while we are in D3 */
13602         if (IS_PF(bp)) {
13603                 bnx2x_set_power_state(bp, PCI_D0);
13604
13605                 /* Set endianity registers to reset values in case next driver
13606                  * boots in different endianty environment.
13607                  */
13608                 bnx2x_reset_endianity(bp);
13609         }
13610
13611         /* Disable MSI/MSI-X */
13612         bnx2x_disable_msi(bp);
13613
13614         /* Power off */
13615         if (IS_PF(bp))
13616                 bnx2x_set_power_state(bp, PCI_D3hot);
13617
13618         /* Make sure RESET task is not scheduled before continuing */
13619         cancel_delayed_work_sync(&bp->sp_rtnl_task);
13620
13621         /* send message via vfpf channel to release the resources of this vf */
13622         if (IS_VF(bp))
13623                 bnx2x_vfpf_release(bp);
13624
13625         /* Assumes no further PCIe PM changes will occur */
13626         if (system_state == SYSTEM_POWER_OFF) {
13627                 pci_wake_from_d3(pdev, bp->wol);
13628                 pci_set_power_state(pdev, PCI_D3hot);
13629         }
13630
13631         bnx2x_disable_pcie_error_reporting(bp);
13632         if (remove_netdev) {
13633                 if (bp->regview)
13634                         iounmap(bp->regview);
13635
13636                 /* For vfs, doorbells are part of the regview and were unmapped
13637                  * along with it. FW is only loaded by PF.
13638                  */
13639                 if (IS_PF(bp)) {
13640                         if (bp->doorbells)
13641                                 iounmap(bp->doorbells);
13642
13643                         bnx2x_release_firmware(bp);
13644                 } else {
13645                         bnx2x_vf_pci_dealloc(bp);
13646                 }
13647                 bnx2x_free_mem_bp(bp);
13648
13649                 free_netdev(dev);
13650
13651                 if (atomic_read(&pdev->enable_cnt) == 1)
13652                         pci_release_regions(pdev);
13653
13654                 pci_disable_device(pdev);
13655         }
13656 }
13657
13658 static void bnx2x_remove_one(struct pci_dev *pdev)
13659 {
13660         struct net_device *dev = pci_get_drvdata(pdev);
13661         struct bnx2x *bp;
13662
13663         if (!dev) {
13664                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13665                 return;
13666         }
13667         bp = netdev_priv(dev);
13668
13669         __bnx2x_remove(pdev, dev, bp, true);
13670 }
13671
13672 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13673 {
13674         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13675
13676         bp->rx_mode = BNX2X_RX_MODE_NONE;
13677
13678         if (CNIC_LOADED(bp))
13679                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13680
13681         /* Stop Tx */
13682         bnx2x_tx_disable(bp);
13683         /* Delete all NAPI objects */
13684         bnx2x_del_all_napi(bp);
13685         if (CNIC_LOADED(bp))
13686                 bnx2x_del_all_napi_cnic(bp);
13687         netdev_reset_tc(bp->dev);
13688
13689         del_timer_sync(&bp->timer);
13690         cancel_delayed_work_sync(&bp->sp_task);
13691         cancel_delayed_work_sync(&bp->period_task);
13692
13693         if (!down_timeout(&bp->stats_lock, HZ / 10)) {
13694                 bp->stats_state = STATS_STATE_DISABLED;
13695                 up(&bp->stats_lock);
13696         }
13697
13698         bnx2x_save_statistics(bp);
13699
13700         netif_carrier_off(bp->dev);
13701
13702         return 0;
13703 }
13704
13705 /**
13706  * bnx2x_io_error_detected - called when PCI error is detected
13707  * @pdev: Pointer to PCI device
13708  * @state: The current pci connection state
13709  *
13710  * This function is called after a PCI bus error affecting
13711  * this device has been detected.
13712  */
13713 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13714                                                 pci_channel_state_t state)
13715 {
13716         struct net_device *dev = pci_get_drvdata(pdev);
13717         struct bnx2x *bp = netdev_priv(dev);
13718
13719         rtnl_lock();
13720
13721         BNX2X_ERR("IO error detected\n");
13722
13723         netif_device_detach(dev);
13724
13725         if (state == pci_channel_io_perm_failure) {
13726                 rtnl_unlock();
13727                 return PCI_ERS_RESULT_DISCONNECT;
13728         }
13729
13730         if (netif_running(dev))
13731                 bnx2x_eeh_nic_unload(bp);
13732
13733         bnx2x_prev_path_mark_eeh(bp);
13734
13735         pci_disable_device(pdev);
13736
13737         rtnl_unlock();
13738
13739         /* Request a slot reset */
13740         return PCI_ERS_RESULT_NEED_RESET;
13741 }
13742
13743 /**
13744  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13745  * @pdev: Pointer to PCI device
13746  *
13747  * Restart the card from scratch, as if from a cold-boot.
13748  */
13749 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13750 {
13751         struct net_device *dev = pci_get_drvdata(pdev);
13752         struct bnx2x *bp = netdev_priv(dev);
13753         int i;
13754
13755         rtnl_lock();
13756         BNX2X_ERR("IO slot reset initializing...\n");
13757         if (pci_enable_device(pdev)) {
13758                 dev_err(&pdev->dev,
13759                         "Cannot re-enable PCI device after reset\n");
13760                 rtnl_unlock();
13761                 return PCI_ERS_RESULT_DISCONNECT;
13762         }
13763
13764         pci_set_master(pdev);
13765         pci_restore_state(pdev);
13766         pci_save_state(pdev);
13767
13768         if (netif_running(dev))
13769                 bnx2x_set_power_state(bp, PCI_D0);
13770
13771         if (netif_running(dev)) {
13772                 BNX2X_ERR("IO slot reset --> driver unload\n");
13773
13774                 /* MCP should have been reset; Need to wait for validity */
13775                 bnx2x_init_shmem(bp);
13776
13777                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13778                         u32 v;
13779
13780                         v = SHMEM2_RD(bp,
13781                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13782                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13783                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13784                 }
13785                 bnx2x_drain_tx_queues(bp);
13786                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13787                 bnx2x_netif_stop(bp, 1);
13788                 bnx2x_free_irq(bp);
13789
13790                 /* Report UNLOAD_DONE to MCP */
13791                 bnx2x_send_unload_done(bp, true);
13792
13793                 bp->sp_state = 0;
13794                 bp->port.pmf = 0;
13795
13796                 bnx2x_prev_unload(bp);
13797
13798                 /* We should have reseted the engine, so It's fair to
13799                  * assume the FW will no longer write to the bnx2x driver.
13800                  */
13801                 bnx2x_squeeze_objects(bp);
13802                 bnx2x_free_skbs(bp);
13803                 for_each_rx_queue(bp, i)
13804                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13805                 bnx2x_free_fp_mem(bp);
13806                 bnx2x_free_mem(bp);
13807
13808                 bp->state = BNX2X_STATE_CLOSED;
13809         }
13810
13811         rtnl_unlock();
13812
13813         /* If AER, perform cleanup of the PCIe registers */
13814         if (bp->flags & AER_ENABLED) {
13815                 if (pci_cleanup_aer_uncorrect_error_status(pdev))
13816                         BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13817                 else
13818                         DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13819         }
13820
13821         return PCI_ERS_RESULT_RECOVERED;
13822 }
13823
13824 /**
13825  * bnx2x_io_resume - called when traffic can start flowing again
13826  * @pdev: Pointer to PCI device
13827  *
13828  * This callback is called when the error recovery driver tells us that
13829  * its OK to resume normal operation.
13830  */
13831 static void bnx2x_io_resume(struct pci_dev *pdev)
13832 {
13833         struct net_device *dev = pci_get_drvdata(pdev);
13834         struct bnx2x *bp = netdev_priv(dev);
13835
13836         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13837                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13838                 return;
13839         }
13840
13841         rtnl_lock();
13842
13843         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13844                                                         DRV_MSG_SEQ_NUMBER_MASK;
13845
13846         if (netif_running(dev))
13847                 bnx2x_nic_load(bp, LOAD_NORMAL);
13848
13849         netif_device_attach(dev);
13850
13851         rtnl_unlock();
13852 }
13853
13854 static const struct pci_error_handlers bnx2x_err_handler = {
13855         .error_detected = bnx2x_io_error_detected,
13856         .slot_reset     = bnx2x_io_slot_reset,
13857         .resume         = bnx2x_io_resume,
13858 };
13859
13860 static void bnx2x_shutdown(struct pci_dev *pdev)
13861 {
13862         struct net_device *dev = pci_get_drvdata(pdev);
13863         struct bnx2x *bp;
13864
13865         if (!dev)
13866                 return;
13867
13868         bp = netdev_priv(dev);
13869         if (!bp)
13870                 return;
13871
13872         rtnl_lock();
13873         netif_device_detach(dev);
13874         rtnl_unlock();
13875
13876         /* Don't remove the netdevice, as there are scenarios which will cause
13877          * the kernel to hang, e.g., when trying to remove bnx2i while the
13878          * rootfs is mounted from SAN.
13879          */
13880         __bnx2x_remove(pdev, dev, bp, false);
13881 }
13882
13883 static struct pci_driver bnx2x_pci_driver = {
13884         .name        = DRV_MODULE_NAME,
13885         .id_table    = bnx2x_pci_tbl,
13886         .probe       = bnx2x_init_one,
13887         .remove      = bnx2x_remove_one,
13888         .suspend     = bnx2x_suspend,
13889         .resume      = bnx2x_resume,
13890         .err_handler = &bnx2x_err_handler,
13891 #ifdef CONFIG_BNX2X_SRIOV
13892         .sriov_configure = bnx2x_sriov_configure,
13893 #endif
13894         .shutdown    = bnx2x_shutdown,
13895 };
13896
13897 static int __init bnx2x_init(void)
13898 {
13899         int ret;
13900
13901         pr_info("%s", version);
13902
13903         bnx2x_wq = create_singlethread_workqueue("bnx2x");
13904         if (bnx2x_wq == NULL) {
13905                 pr_err("Cannot create workqueue\n");
13906                 return -ENOMEM;
13907         }
13908         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13909         if (!bnx2x_iov_wq) {
13910                 pr_err("Cannot create iov workqueue\n");
13911                 destroy_workqueue(bnx2x_wq);
13912                 return -ENOMEM;
13913         }
13914
13915         ret = pci_register_driver(&bnx2x_pci_driver);
13916         if (ret) {
13917                 pr_err("Cannot register driver\n");
13918                 destroy_workqueue(bnx2x_wq);
13919                 destroy_workqueue(bnx2x_iov_wq);
13920         }
13921         return ret;
13922 }
13923
13924 static void __exit bnx2x_cleanup(void)
13925 {
13926         struct list_head *pos, *q;
13927
13928         pci_unregister_driver(&bnx2x_pci_driver);
13929
13930         destroy_workqueue(bnx2x_wq);
13931         destroy_workqueue(bnx2x_iov_wq);
13932
13933         /* Free globally allocated resources */
13934         list_for_each_safe(pos, q, &bnx2x_prev_list) {
13935                 struct bnx2x_prev_path_list *tmp =
13936                         list_entry(pos, struct bnx2x_prev_path_list, list);
13937                 list_del(pos);
13938                 kfree(tmp);
13939         }
13940 }
13941
13942 void bnx2x_notify_link_changed(struct bnx2x *bp)
13943 {
13944         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13945 }
13946
13947 module_init(bnx2x_init);
13948 module_exit(bnx2x_cleanup);
13949
13950 /**
13951  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13952  *
13953  * @bp:         driver handle
13954  * @set:        set or clear the CAM entry
13955  *
13956  * This function will wait until the ramrod completion returns.
13957  * Return 0 if success, -ENODEV if ramrod doesn't return.
13958  */
13959 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13960 {
13961         unsigned long ramrod_flags = 0;
13962
13963         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13964         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13965                                  &bp->iscsi_l2_mac_obj, true,
13966                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13967 }
13968
13969 /* count denotes the number of new completions we have seen */
13970 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13971 {
13972         struct eth_spe *spe;
13973         int cxt_index, cxt_offset;
13974
13975 #ifdef BNX2X_STOP_ON_ERROR
13976         if (unlikely(bp->panic))
13977                 return;
13978 #endif
13979
13980         spin_lock_bh(&bp->spq_lock);
13981         BUG_ON(bp->cnic_spq_pending < count);
13982         bp->cnic_spq_pending -= count;
13983
13984         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13985                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13986                                 & SPE_HDR_CONN_TYPE) >>
13987                                 SPE_HDR_CONN_TYPE_SHIFT;
13988                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13989                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13990
13991                 /* Set validation for iSCSI L2 client before sending SETUP
13992                  *  ramrod
13993                  */
13994                 if (type == ETH_CONNECTION_TYPE) {
13995                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13996                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13997                                         ILT_PAGE_CIDS;
13998                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13999                                         (cxt_index * ILT_PAGE_CIDS);
14000                                 bnx2x_set_ctx_validation(bp,
14001                                         &bp->context[cxt_index].
14002                                                          vcxt[cxt_offset].eth,
14003                                         BNX2X_ISCSI_ETH_CID(bp));
14004                         }
14005                 }
14006
14007                 /*
14008                  * There may be not more than 8 L2, not more than 8 L5 SPEs
14009                  * and in the air. We also check that number of outstanding
14010                  * COMMON ramrods is not more than the EQ and SPQ can
14011                  * accommodate.
14012                  */
14013                 if (type == ETH_CONNECTION_TYPE) {
14014                         if (!atomic_read(&bp->cq_spq_left))
14015                                 break;
14016                         else
14017                                 atomic_dec(&bp->cq_spq_left);
14018                 } else if (type == NONE_CONNECTION_TYPE) {
14019                         if (!atomic_read(&bp->eq_spq_left))
14020                                 break;
14021                         else
14022                                 atomic_dec(&bp->eq_spq_left);
14023                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14024                            (type == FCOE_CONNECTION_TYPE)) {
14025                         if (bp->cnic_spq_pending >=
14026                             bp->cnic_eth_dev.max_kwqe_pending)
14027                                 break;
14028                         else
14029                                 bp->cnic_spq_pending++;
14030                 } else {
14031                         BNX2X_ERR("Unknown SPE type: %d\n", type);
14032                         bnx2x_panic();
14033                         break;
14034                 }
14035
14036                 spe = bnx2x_sp_get_next(bp);
14037                 *spe = *bp->cnic_kwq_cons;
14038
14039                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14040                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14041
14042                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14043                         bp->cnic_kwq_cons = bp->cnic_kwq;
14044                 else
14045                         bp->cnic_kwq_cons++;
14046         }
14047         bnx2x_sp_prod_update(bp);
14048         spin_unlock_bh(&bp->spq_lock);
14049 }
14050
14051 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14052                                struct kwqe_16 *kwqes[], u32 count)
14053 {
14054         struct bnx2x *bp = netdev_priv(dev);
14055         int i;
14056
14057 #ifdef BNX2X_STOP_ON_ERROR
14058         if (unlikely(bp->panic)) {
14059                 BNX2X_ERR("Can't post to SP queue while panic\n");
14060                 return -EIO;
14061         }
14062 #endif
14063
14064         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14065             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14066                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14067                 return -EAGAIN;
14068         }
14069
14070         spin_lock_bh(&bp->spq_lock);
14071
14072         for (i = 0; i < count; i++) {
14073                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14074
14075                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14076                         break;
14077
14078                 *bp->cnic_kwq_prod = *spe;
14079
14080                 bp->cnic_kwq_pending++;
14081
14082                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14083                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
14084                    spe->data.update_data_addr.hi,
14085                    spe->data.update_data_addr.lo,
14086                    bp->cnic_kwq_pending);
14087
14088                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14089                         bp->cnic_kwq_prod = bp->cnic_kwq;
14090                 else
14091                         bp->cnic_kwq_prod++;
14092         }
14093
14094         spin_unlock_bh(&bp->spq_lock);
14095
14096         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14097                 bnx2x_cnic_sp_post(bp, 0);
14098
14099         return i;
14100 }
14101
14102 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14103 {
14104         struct cnic_ops *c_ops;
14105         int rc = 0;
14106
14107         mutex_lock(&bp->cnic_mutex);
14108         c_ops = rcu_dereference_protected(bp->cnic_ops,
14109                                           lockdep_is_held(&bp->cnic_mutex));
14110         if (c_ops)
14111                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14112         mutex_unlock(&bp->cnic_mutex);
14113
14114         return rc;
14115 }
14116
14117 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14118 {
14119         struct cnic_ops *c_ops;
14120         int rc = 0;
14121
14122         rcu_read_lock();
14123         c_ops = rcu_dereference(bp->cnic_ops);
14124         if (c_ops)
14125                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14126         rcu_read_unlock();
14127
14128         return rc;
14129 }
14130
14131 /*
14132  * for commands that have no data
14133  */
14134 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14135 {
14136         struct cnic_ctl_info ctl = {0};
14137
14138         ctl.cmd = cmd;
14139
14140         return bnx2x_cnic_ctl_send(bp, &ctl);
14141 }
14142
14143 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14144 {
14145         struct cnic_ctl_info ctl = {0};
14146
14147         /* first we tell CNIC and only then we count this as a completion */
14148         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14149         ctl.data.comp.cid = cid;
14150         ctl.data.comp.error = err;
14151
14152         bnx2x_cnic_ctl_send_bh(bp, &ctl);
14153         bnx2x_cnic_sp_post(bp, 0);
14154 }
14155
14156 /* Called with netif_addr_lock_bh() taken.
14157  * Sets an rx_mode config for an iSCSI ETH client.
14158  * Doesn't block.
14159  * Completion should be checked outside.
14160  */
14161 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14162 {
14163         unsigned long accept_flags = 0, ramrod_flags = 0;
14164         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14165         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14166
14167         if (start) {
14168                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14169                  * because it's the only way for UIO Queue to accept
14170                  * multicasts (in non-promiscuous mode only one Queue per
14171                  * function will receive multicast packets (leading in our
14172                  * case).
14173                  */
14174                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14175                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14176                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14177                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14178
14179                 /* Clear STOP_PENDING bit if START is requested */
14180                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14181
14182                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14183         } else
14184                 /* Clear START_PENDING bit if STOP is requested */
14185                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14186
14187         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14188                 set_bit(sched_state, &bp->sp_state);
14189         else {
14190                 __set_bit(RAMROD_RX, &ramrod_flags);
14191                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14192                                     ramrod_flags);
14193         }
14194 }
14195
14196 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14197 {
14198         struct bnx2x *bp = netdev_priv(dev);
14199         int rc = 0;
14200
14201         switch (ctl->cmd) {
14202         case DRV_CTL_CTXTBL_WR_CMD: {
14203                 u32 index = ctl->data.io.offset;
14204                 dma_addr_t addr = ctl->data.io.dma_addr;
14205
14206                 bnx2x_ilt_wr(bp, index, addr);
14207                 break;
14208         }
14209
14210         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14211                 int count = ctl->data.credit.credit_count;
14212
14213                 bnx2x_cnic_sp_post(bp, count);
14214                 break;
14215         }
14216
14217         /* rtnl_lock is held.  */
14218         case DRV_CTL_START_L2_CMD: {
14219                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14220                 unsigned long sp_bits = 0;
14221
14222                 /* Configure the iSCSI classification object */
14223                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14224                                    cp->iscsi_l2_client_id,
14225                                    cp->iscsi_l2_cid, BP_FUNC(bp),
14226                                    bnx2x_sp(bp, mac_rdata),
14227                                    bnx2x_sp_mapping(bp, mac_rdata),
14228                                    BNX2X_FILTER_MAC_PENDING,
14229                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14230                                    &bp->macs_pool);
14231
14232                 /* Set iSCSI MAC address */
14233                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14234                 if (rc)
14235                         break;
14236
14237                 mmiowb();
14238                 barrier();
14239
14240                 /* Start accepting on iSCSI L2 ring */
14241
14242                 netif_addr_lock_bh(dev);
14243                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14244                 netif_addr_unlock_bh(dev);
14245
14246                 /* bits to wait on */
14247                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14248                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14249
14250                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14251                         BNX2X_ERR("rx_mode completion timed out!\n");
14252
14253                 break;
14254         }
14255
14256         /* rtnl_lock is held.  */
14257         case DRV_CTL_STOP_L2_CMD: {
14258                 unsigned long sp_bits = 0;
14259
14260                 /* Stop accepting on iSCSI L2 ring */
14261                 netif_addr_lock_bh(dev);
14262                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14263                 netif_addr_unlock_bh(dev);
14264
14265                 /* bits to wait on */
14266                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14267                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14268
14269                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14270                         BNX2X_ERR("rx_mode completion timed out!\n");
14271
14272                 mmiowb();
14273                 barrier();
14274
14275                 /* Unset iSCSI L2 MAC */
14276                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14277                                         BNX2X_ISCSI_ETH_MAC, true);
14278                 break;
14279         }
14280         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14281                 int count = ctl->data.credit.credit_count;
14282
14283                 smp_mb__before_atomic();
14284                 atomic_add(count, &bp->cq_spq_left);
14285                 smp_mb__after_atomic();
14286                 break;
14287         }
14288         case DRV_CTL_ULP_REGISTER_CMD: {
14289                 int ulp_type = ctl->data.register_data.ulp_type;
14290
14291                 if (CHIP_IS_E3(bp)) {
14292                         int idx = BP_FW_MB_IDX(bp);
14293                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14294                         int path = BP_PATH(bp);
14295                         int port = BP_PORT(bp);
14296                         int i;
14297                         u32 scratch_offset;
14298                         u32 *host_addr;
14299
14300                         /* first write capability to shmem2 */
14301                         if (ulp_type == CNIC_ULP_ISCSI)
14302                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14303                         else if (ulp_type == CNIC_ULP_FCOE)
14304                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14305                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14306
14307                         if ((ulp_type != CNIC_ULP_FCOE) ||
14308                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14309                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14310                                 break;
14311
14312                         /* if reached here - should write fcoe capabilities */
14313                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14314                         if (!scratch_offset)
14315                                 break;
14316                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
14317                                                    fcoe_features[path][port]);
14318                         host_addr = (u32 *) &(ctl->data.register_data.
14319                                               fcoe_features);
14320                         for (i = 0; i < sizeof(struct fcoe_capabilities);
14321                              i += 4)
14322                                 REG_WR(bp, scratch_offset + i,
14323                                        *(host_addr + i/4));
14324                 }
14325                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14326                 break;
14327         }
14328
14329         case DRV_CTL_ULP_UNREGISTER_CMD: {
14330                 int ulp_type = ctl->data.ulp_type;
14331
14332                 if (CHIP_IS_E3(bp)) {
14333                         int idx = BP_FW_MB_IDX(bp);
14334                         u32 cap;
14335
14336                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14337                         if (ulp_type == CNIC_ULP_ISCSI)
14338                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14339                         else if (ulp_type == CNIC_ULP_FCOE)
14340                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14341                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14342                 }
14343                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14344                 break;
14345         }
14346
14347         default:
14348                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14349                 rc = -EINVAL;
14350         }
14351
14352         return rc;
14353 }
14354
14355 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14356 {
14357         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14358
14359         if (bp->flags & USING_MSIX_FLAG) {
14360                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14361                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14362                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14363         } else {
14364                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14365                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14366         }
14367         if (!CHIP_IS_E1x(bp))
14368                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14369         else
14370                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14371
14372         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14373         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14374         cp->irq_arr[1].status_blk = bp->def_status_blk;
14375         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14376         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14377
14378         cp->num_irq = 2;
14379 }
14380
14381 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14382 {
14383         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14384
14385         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14386                              bnx2x_cid_ilt_lines(bp);
14387         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14388         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14389         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14390
14391         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14392            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14393            cp->iscsi_l2_cid);
14394
14395         if (NO_ISCSI_OOO(bp))
14396                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14397 }
14398
14399 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14400                                void *data)
14401 {
14402         struct bnx2x *bp = netdev_priv(dev);
14403         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14404         int rc;
14405
14406         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14407
14408         if (ops == NULL) {
14409                 BNX2X_ERR("NULL ops received\n");
14410                 return -EINVAL;
14411         }
14412
14413         if (!CNIC_SUPPORT(bp)) {
14414                 BNX2X_ERR("Can't register CNIC when not supported\n");
14415                 return -EOPNOTSUPP;
14416         }
14417
14418         if (!CNIC_LOADED(bp)) {
14419                 rc = bnx2x_load_cnic(bp);
14420                 if (rc) {
14421                         BNX2X_ERR("CNIC-related load failed\n");
14422                         return rc;
14423                 }
14424         }
14425
14426         bp->cnic_enabled = true;
14427
14428         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14429         if (!bp->cnic_kwq)
14430                 return -ENOMEM;
14431
14432         bp->cnic_kwq_cons = bp->cnic_kwq;
14433         bp->cnic_kwq_prod = bp->cnic_kwq;
14434         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14435
14436         bp->cnic_spq_pending = 0;
14437         bp->cnic_kwq_pending = 0;
14438
14439         bp->cnic_data = data;
14440
14441         cp->num_irq = 0;
14442         cp->drv_state |= CNIC_DRV_STATE_REGD;
14443         cp->iro_arr = bp->iro_arr;
14444
14445         bnx2x_setup_cnic_irq_info(bp);
14446
14447         rcu_assign_pointer(bp->cnic_ops, ops);
14448
14449         /* Schedule driver to read CNIC driver versions */
14450         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14451
14452         return 0;
14453 }
14454
14455 static int bnx2x_unregister_cnic(struct net_device *dev)
14456 {
14457         struct bnx2x *bp = netdev_priv(dev);
14458         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14459
14460         mutex_lock(&bp->cnic_mutex);
14461         cp->drv_state = 0;
14462         RCU_INIT_POINTER(bp->cnic_ops, NULL);
14463         mutex_unlock(&bp->cnic_mutex);
14464         synchronize_rcu();
14465         bp->cnic_enabled = false;
14466         kfree(bp->cnic_kwq);
14467         bp->cnic_kwq = NULL;
14468
14469         return 0;
14470 }
14471
14472 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14473 {
14474         struct bnx2x *bp = netdev_priv(dev);
14475         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14476
14477         /* If both iSCSI and FCoE are disabled - return NULL in
14478          * order to indicate CNIC that it should not try to work
14479          * with this device.
14480          */
14481         if (NO_ISCSI(bp) && NO_FCOE(bp))
14482                 return NULL;
14483
14484         cp->drv_owner = THIS_MODULE;
14485         cp->chip_id = CHIP_ID(bp);
14486         cp->pdev = bp->pdev;
14487         cp->io_base = bp->regview;
14488         cp->io_base2 = bp->doorbells;
14489         cp->max_kwqe_pending = 8;
14490         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14491         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14492                              bnx2x_cid_ilt_lines(bp);
14493         cp->ctx_tbl_len = CNIC_ILT_LINES;
14494         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14495         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14496         cp->drv_ctl = bnx2x_drv_ctl;
14497         cp->drv_register_cnic = bnx2x_register_cnic;
14498         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14499         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14500         cp->iscsi_l2_client_id =
14501                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14502         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14503
14504         if (NO_ISCSI_OOO(bp))
14505                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14506
14507         if (NO_ISCSI(bp))
14508                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14509
14510         if (NO_FCOE(bp))
14511                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14512
14513         BNX2X_DEV_INFO(
14514                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14515            cp->ctx_blk_size,
14516            cp->ctx_tbl_offset,
14517            cp->ctx_tbl_len,
14518            cp->starting_cid);
14519         return cp;
14520 }
14521
14522 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14523 {
14524         struct bnx2x *bp = fp->bp;
14525         u32 offset = BAR_USTRORM_INTMEM;
14526
14527         if (IS_VF(bp))
14528                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
14529         else if (!CHIP_IS_E1x(bp))
14530                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14531         else
14532                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14533
14534         return offset;
14535 }
14536
14537 /* called only on E1H or E2.
14538  * When pretending to be PF, the pretend value is the function number 0...7
14539  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14540  * combination
14541  */
14542 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14543 {
14544         u32 pretend_reg;
14545
14546         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14547                 return -1;
14548
14549         /* get my own pretend register */
14550         pretend_reg = bnx2x_get_pretend_reg(bp);
14551         REG_WR(bp, pretend_reg, pretend_func_val);
14552         REG_RD(bp, pretend_reg);
14553         return 0;
14554 }
14555
14556 static void bnx2x_ptp_task(struct work_struct *work)
14557 {
14558         struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
14559         int port = BP_PORT(bp);
14560         u32 val_seq;
14561         u64 timestamp, ns;
14562         struct skb_shared_hwtstamps shhwtstamps;
14563
14564         /* Read Tx timestamp registers */
14565         val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14566                          NIG_REG_P0_TLLH_PTP_BUF_SEQID);
14567         if (val_seq & 0x10000) {
14568                 /* There is a valid timestamp value */
14569                 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
14570                                    NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
14571                 timestamp <<= 32;
14572                 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
14573                                     NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
14574                 /* Reset timestamp register to allow new timestamp */
14575                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14576                        NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14577                 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14578
14579                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
14580                 shhwtstamps.hwtstamp = ns_to_ktime(ns);
14581                 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
14582                 dev_kfree_skb_any(bp->ptp_tx_skb);
14583                 bp->ptp_tx_skb = NULL;
14584
14585                 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
14586                    timestamp, ns);
14587         } else {
14588                 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
14589                 /* Reschedule to keep checking for a valid timestamp value */
14590                 schedule_work(&bp->ptp_task);
14591         }
14592 }
14593
14594 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
14595 {
14596         int port = BP_PORT(bp);
14597         u64 timestamp, ns;
14598
14599         timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
14600                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
14601         timestamp <<= 32;
14602         timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
14603                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
14604
14605         /* Reset timestamp register to allow new timestamp */
14606         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14607                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14608
14609         ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14610
14611         skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
14612
14613         DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
14614            timestamp, ns);
14615 }
14616
14617 /* Read the PHC */
14618 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
14619 {
14620         struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
14621         int port = BP_PORT(bp);
14622         u32 wb_data[2];
14623         u64 phc_cycles;
14624
14625         REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
14626                     NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
14627         phc_cycles = wb_data[1];
14628         phc_cycles = (phc_cycles << 32) + wb_data[0];
14629
14630         DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
14631
14632         return phc_cycles;
14633 }
14634
14635 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
14636 {
14637         memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
14638         bp->cyclecounter.read = bnx2x_cyclecounter_read;
14639         bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
14640         bp->cyclecounter.shift = 1;
14641         bp->cyclecounter.mult = 1;
14642 }
14643
14644 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
14645 {
14646         struct bnx2x_func_state_params func_params = {NULL};
14647         struct bnx2x_func_set_timesync_params *set_timesync_params =
14648                 &func_params.params.set_timesync;
14649
14650         /* Prepare parameters for function state transitions */
14651         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
14652         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
14653
14654         func_params.f_obj = &bp->func_obj;
14655         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
14656
14657         /* Function parameters */
14658         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
14659         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
14660
14661         return bnx2x_func_state_change(bp, &func_params);
14662 }
14663
14664 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
14665 {
14666         struct bnx2x_queue_state_params q_params;
14667         int rc, i;
14668
14669         /* send queue update ramrod to enable PTP packets */
14670         memset(&q_params, 0, sizeof(q_params));
14671         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
14672         q_params.cmd = BNX2X_Q_CMD_UPDATE;
14673         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
14674                   &q_params.params.update.update_flags);
14675         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
14676                   &q_params.params.update.update_flags);
14677
14678         /* send the ramrod on all the queues of the PF */
14679         for_each_eth_queue(bp, i) {
14680                 struct bnx2x_fastpath *fp = &bp->fp[i];
14681
14682                 /* Set the appropriate Queue object */
14683                 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
14684
14685                 /* Update the Queue state */
14686                 rc = bnx2x_queue_state_change(bp, &q_params);
14687                 if (rc) {
14688                         BNX2X_ERR("Failed to enable PTP packets\n");
14689                         return rc;
14690                 }
14691         }
14692
14693         return 0;
14694 }
14695
14696 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
14697 {
14698         int port = BP_PORT(bp);
14699         int rc;
14700
14701         if (!bp->hwtstamp_ioctl_called)
14702                 return 0;
14703
14704         switch (bp->tx_type) {
14705         case HWTSTAMP_TX_ON:
14706                 bp->flags |= TX_TIMESTAMPING_EN;
14707                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14708                        NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
14709                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14710                        NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
14711                 break;
14712         case HWTSTAMP_TX_ONESTEP_SYNC:
14713                 BNX2X_ERR("One-step timestamping is not supported\n");
14714                 return -ERANGE;
14715         }
14716
14717         switch (bp->rx_filter) {
14718         case HWTSTAMP_FILTER_NONE:
14719                 break;
14720         case HWTSTAMP_FILTER_ALL:
14721         case HWTSTAMP_FILTER_SOME:
14722                 bp->rx_filter = HWTSTAMP_FILTER_NONE;
14723                 break;
14724         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
14725         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
14726         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
14727                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
14728                 /* Initialize PTP detection for UDP/IPv4 events */
14729                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14730                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
14731                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14732                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
14733                 break;
14734         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
14735         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
14736         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
14737                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
14738                 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
14739                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14740                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
14741                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14742                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
14743                 break;
14744         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
14745         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
14746         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
14747                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
14748                 /* Initialize PTP detection L2 events */
14749                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14750                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
14751                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14752                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
14753
14754                 break;
14755         case HWTSTAMP_FILTER_PTP_V2_EVENT:
14756         case HWTSTAMP_FILTER_PTP_V2_SYNC:
14757         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
14758                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
14759                 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
14760                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14761                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
14762                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14763                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
14764                 break;
14765         }
14766
14767         /* Indicate to FW that this PF expects recorded PTP packets */
14768         rc = bnx2x_enable_ptp_packets(bp);
14769         if (rc)
14770                 return rc;
14771
14772         /* Enable sending PTP packets to host */
14773         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14774                NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
14775
14776         return 0;
14777 }
14778
14779 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
14780 {
14781         struct hwtstamp_config config;
14782         int rc;
14783
14784         DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
14785
14786         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
14787                 return -EFAULT;
14788
14789         DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
14790            config.tx_type, config.rx_filter);
14791
14792         if (config.flags) {
14793                 BNX2X_ERR("config.flags is reserved for future use\n");
14794                 return -EINVAL;
14795         }
14796
14797         bp->hwtstamp_ioctl_called = 1;
14798         bp->tx_type = config.tx_type;
14799         bp->rx_filter = config.rx_filter;
14800
14801         rc = bnx2x_configure_ptp_filters(bp);
14802         if (rc)
14803                 return rc;
14804
14805         config.rx_filter = bp->rx_filter;
14806
14807         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
14808                 -EFAULT : 0;
14809 }
14810
14811 /* Configures HW for PTP */
14812 static int bnx2x_configure_ptp(struct bnx2x *bp)
14813 {
14814         int rc, port = BP_PORT(bp);
14815         u32 wb_data[2];
14816
14817         /* Reset PTP event detection rules - will be configured in the IOCTL */
14818         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14819                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
14820         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14821                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
14822         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14823                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
14824         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14825                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
14826
14827         /* Disable PTP packets to host - will be configured in the IOCTL*/
14828         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14829                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
14830
14831         /* Enable the PTP feature */
14832         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
14833                NIG_REG_P0_PTP_EN, 0x3F);
14834
14835         /* Enable the free-running counter */
14836         wb_data[0] = 0;
14837         wb_data[1] = 0;
14838         REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
14839
14840         /* Reset drift register (offset register is not reset) */
14841         rc = bnx2x_send_reset_timesync_ramrod(bp);
14842         if (rc) {
14843                 BNX2X_ERR("Failed to reset PHC drift register\n");
14844                 return -EFAULT;
14845         }
14846
14847         /* Reset possibly old timestamps */
14848         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14849                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14850         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14851                NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14852
14853         return 0;
14854 }
14855
14856 /* Called during load, to initialize PTP-related stuff */
14857 void bnx2x_init_ptp(struct bnx2x *bp)
14858 {
14859         int rc;
14860
14861         /* Configure PTP in HW */
14862         rc = bnx2x_configure_ptp(bp);
14863         if (rc) {
14864                 BNX2X_ERR("Stopping PTP initialization\n");
14865                 return;
14866         }
14867
14868         /* Init work queue for Tx timestamping */
14869         INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
14870
14871         /* Init cyclecounter and timecounter. This is done only in the first
14872          * load. If done in every load, PTP application will fail when doing
14873          * unload / load (e.g. MTU change) while it is running.
14874          */
14875         if (!bp->timecounter_init_done) {
14876                 bnx2x_init_cyclecounter(bp);
14877                 timecounter_init(&bp->timecounter, &bp->cyclecounter,
14878                                  ktime_to_ns(ktime_get_real()));
14879                 bp->timecounter_init_done = 1;
14880         }
14881
14882         DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
14883 }