mwifiex: channel switch handling for station
[cascardo/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION                                 \
70         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
71         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
72         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
73         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT              (5*HZ)
80
81 static char version[] =
82         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87                    "BCM57710/57711/57711E/"
88                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89                    "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95
96
97 int num_queues;
98 module_param(num_queues, int, 0);
99 MODULE_PARM_DESC(num_queues,
100                  " Set number of queues (default is as a number of CPUs)");
101
102 static int disable_tpa;
103 module_param(disable_tpa, int, 0);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105
106 #define INT_MODE_INTx                   1
107 #define INT_MODE_MSI                    2
108 int int_mode;
109 module_param(int_mode, int, 0);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111                                 "(1 INT#x; 2 MSI)");
112
113 static int dropless_fc;
114 module_param(dropless_fc, int, 0);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116
117 static int mrrs = -1;
118 module_param(mrrs, int, 0);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120
121 static int debug;
122 module_param(debug, int, 0);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124
125
126
127 struct workqueue_struct *bnx2x_wq;
128
129 struct bnx2x_mac_vals {
130         u32 xmac_addr;
131         u32 xmac_val;
132         u32 emac_addr;
133         u32 emac_val;
134         u32 umac_addr;
135         u32 umac_val;
136         u32 bmac_addr;
137         u32 bmac_val[2];
138 };
139
140 enum bnx2x_board_type {
141         BCM57710 = 0,
142         BCM57711,
143         BCM57711E,
144         BCM57712,
145         BCM57712_MF,
146         BCM57712_VF,
147         BCM57800,
148         BCM57800_MF,
149         BCM57800_VF,
150         BCM57810,
151         BCM57810_MF,
152         BCM57810_VF,
153         BCM57840_4_10,
154         BCM57840_2_20,
155         BCM57840_MF,
156         BCM57840_VF,
157         BCM57811,
158         BCM57811_MF,
159         BCM57840_O,
160         BCM57840_MFO,
161         BCM57811_VF
162 };
163
164 /* indexed by board_type, above */
165 static struct {
166         char *name;
167 } board_info[] = {
168         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
169         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
170         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
171         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
172         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
173         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
174         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
175         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
176         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
177         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
178         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
179         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
180         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
181         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
182         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
184         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
185         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
186         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
187         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
188         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
189 };
190
191 #ifndef PCI_DEVICE_ID_NX2_57710
192 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711
195 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57711E
198 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712
201 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_MF
204 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57712_VF
207 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800
210 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_MF
213 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57800_VF
216 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810
219 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57810_MF
222 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57840_O
225 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57810_VF
228 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
231 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
234 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
237 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_MF
240 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57840_VF
243 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811
246 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_MF
249 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
250 #endif
251 #ifndef PCI_DEVICE_ID_NX2_57811_VF
252 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
253 #endif
254
255 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
274         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
275         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
276         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
277         { 0 }
278 };
279
280 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
281
282 /* Global resources for unloading a previously loaded device */
283 #define BNX2X_PREV_WAIT_NEEDED 1
284 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
285 static LIST_HEAD(bnx2x_prev_list);
286 /****************************************************************************
287 * General service functions
288 ****************************************************************************/
289
290 static void __storm_memset_dma_mapping(struct bnx2x *bp,
291                                        u32 addr, dma_addr_t mapping)
292 {
293         REG_WR(bp,  addr, U64_LO(mapping));
294         REG_WR(bp,  addr + 4, U64_HI(mapping));
295 }
296
297 static void storm_memset_spq_addr(struct bnx2x *bp,
298                                   dma_addr_t mapping, u16 abs_fid)
299 {
300         u32 addr = XSEM_REG_FAST_MEMORY +
301                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
302
303         __storm_memset_dma_mapping(bp, addr, mapping);
304 }
305
306 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
307                                   u16 pf_id)
308 {
309         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
310                 pf_id);
311         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
312                 pf_id);
313         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
314                 pf_id);
315         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
316                 pf_id);
317 }
318
319 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
320                                  u8 enable)
321 {
322         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
323                 enable);
324         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
325                 enable);
326         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
327                 enable);
328         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
329                 enable);
330 }
331
332 static void storm_memset_eq_data(struct bnx2x *bp,
333                                  struct event_ring_data *eq_data,
334                                 u16 pfid)
335 {
336         size_t size = sizeof(struct event_ring_data);
337
338         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
339
340         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
341 }
342
343 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
344                                  u16 pfid)
345 {
346         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
347         REG_WR16(bp, addr, eq_prod);
348 }
349
350 /* used only at init
351  * locking is done by mcp
352  */
353 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
354 {
355         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
356         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
357         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
358                                PCICFG_VENDOR_ID_OFFSET);
359 }
360
361 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
362 {
363         u32 val;
364
365         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
367         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368                                PCICFG_VENDOR_ID_OFFSET);
369
370         return val;
371 }
372
373 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
374 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
375 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
376 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
377 #define DMAE_DP_DST_NONE        "dst_addr [none]"
378
379 void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae, int msglvl)
380 {
381         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
382
383         switch (dmae->opcode & DMAE_COMMAND_DST) {
384         case DMAE_CMD_DST_PCI:
385                 if (src_type == DMAE_CMD_SRC_PCI)
386                         DP(msglvl, "DMAE: opcode 0x%08x\n"
387                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
388                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
389                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
390                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
391                            dmae->comp_addr_hi, dmae->comp_addr_lo,
392                            dmae->comp_val);
393                 else
394                         DP(msglvl, "DMAE: opcode 0x%08x\n"
395                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
396                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
397                            dmae->opcode, dmae->src_addr_lo >> 2,
398                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
399                            dmae->comp_addr_hi, dmae->comp_addr_lo,
400                            dmae->comp_val);
401                 break;
402         case DMAE_CMD_DST_GRC:
403                 if (src_type == DMAE_CMD_SRC_PCI)
404                         DP(msglvl, "DMAE: opcode 0x%08x\n"
405                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
406                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
407                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
408                            dmae->len, dmae->dst_addr_lo >> 2,
409                            dmae->comp_addr_hi, dmae->comp_addr_lo,
410                            dmae->comp_val);
411                 else
412                         DP(msglvl, "DMAE: opcode 0x%08x\n"
413                            "src [%08x], len [%d*4], dst [%08x]\n"
414                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
415                            dmae->opcode, dmae->src_addr_lo >> 2,
416                            dmae->len, dmae->dst_addr_lo >> 2,
417                            dmae->comp_addr_hi, dmae->comp_addr_lo,
418                            dmae->comp_val);
419                 break;
420         default:
421                 if (src_type == DMAE_CMD_SRC_PCI)
422                         DP(msglvl, "DMAE: opcode 0x%08x\n"
423                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
424                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
425                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
426                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
427                            dmae->comp_val);
428                 else
429                         DP(msglvl, "DMAE: opcode 0x%08x\n"
430                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
431                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
432                            dmae->opcode, dmae->src_addr_lo >> 2,
433                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
434                            dmae->comp_val);
435                 break;
436         }
437 }
438
439 /* copy command into DMAE command memory and set DMAE command go */
440 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
441 {
442         u32 cmd_offset;
443         int i;
444
445         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
446         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
447                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
448         }
449         REG_WR(bp, dmae_reg_go_c[idx], 1);
450 }
451
452 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
453 {
454         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
455                            DMAE_CMD_C_ENABLE);
456 }
457
458 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
459 {
460         return opcode & ~DMAE_CMD_SRC_RESET;
461 }
462
463 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
464                              bool with_comp, u8 comp_type)
465 {
466         u32 opcode = 0;
467
468         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
469                    (dst_type << DMAE_COMMAND_DST_SHIFT));
470
471         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
472
473         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
474         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
475                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
476         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
477
478 #ifdef __BIG_ENDIAN
479         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
480 #else
481         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
482 #endif
483         if (with_comp)
484                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
485         return opcode;
486 }
487
488 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
489                                       struct dmae_command *dmae,
490                                       u8 src_type, u8 dst_type)
491 {
492         memset(dmae, 0, sizeof(struct dmae_command));
493
494         /* set the opcode */
495         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
496                                          true, DMAE_COMP_PCI);
497
498         /* fill in the completion parameters */
499         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
500         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
501         dmae->comp_val = DMAE_COMP_VAL;
502 }
503
504 /* issue a dmae command over the init-channel and wait for completion */
505 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
506 {
507         u32 *wb_comp = bnx2x_sp(bp, wb_comp);
508         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
509         int rc = 0;
510
511         /*
512          * Lock the dmae channel. Disable BHs to prevent a dead-lock
513          * as long as this code is called both from syscall context and
514          * from ndo_set_rx_mode() flow that may be called from BH.
515          */
516         spin_lock_bh(&bp->dmae_lock);
517
518         /* reset completion */
519         *wb_comp = 0;
520
521         /* post the command on the channel used for initializations */
522         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
523
524         /* wait for completion */
525         udelay(5);
526         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
527
528                 if (!cnt ||
529                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
530                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
531                         BNX2X_ERR("DMAE timeout!\n");
532                         rc = DMAE_TIMEOUT;
533                         goto unlock;
534                 }
535                 cnt--;
536                 udelay(50);
537         }
538         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
539                 BNX2X_ERR("DMAE PCI error!\n");
540                 rc = DMAE_PCI_ERROR;
541         }
542
543 unlock:
544         spin_unlock_bh(&bp->dmae_lock);
545         return rc;
546 }
547
548 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
549                       u32 len32)
550 {
551         struct dmae_command dmae;
552
553         if (!bp->dmae_ready) {
554                 u32 *data = bnx2x_sp(bp, wb_data[0]);
555
556                 if (CHIP_IS_E1(bp))
557                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
558                 else
559                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
560                 return;
561         }
562
563         /* set opcode and fixed command fields */
564         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
565
566         /* fill in addresses and len */
567         dmae.src_addr_lo = U64_LO(dma_addr);
568         dmae.src_addr_hi = U64_HI(dma_addr);
569         dmae.dst_addr_lo = dst_addr >> 2;
570         dmae.dst_addr_hi = 0;
571         dmae.len = len32;
572
573         /* issue the command and wait for completion */
574         bnx2x_issue_dmae_with_comp(bp, &dmae);
575 }
576
577 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
578 {
579         struct dmae_command dmae;
580
581         if (!bp->dmae_ready) {
582                 u32 *data = bnx2x_sp(bp, wb_data[0]);
583                 int i;
584
585                 if (CHIP_IS_E1(bp))
586                         for (i = 0; i < len32; i++)
587                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
588                 else
589                         for (i = 0; i < len32; i++)
590                                 data[i] = REG_RD(bp, src_addr + i*4);
591
592                 return;
593         }
594
595         /* set opcode and fixed command fields */
596         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
597
598         /* fill in addresses and len */
599         dmae.src_addr_lo = src_addr >> 2;
600         dmae.src_addr_hi = 0;
601         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
602         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
603         dmae.len = len32;
604
605         /* issue the command and wait for completion */
606         bnx2x_issue_dmae_with_comp(bp, &dmae);
607 }
608
609 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
610                                       u32 addr, u32 len)
611 {
612         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
613         int offset = 0;
614
615         while (len > dmae_wr_max) {
616                 bnx2x_write_dmae(bp, phys_addr + offset,
617                                  addr + offset, dmae_wr_max);
618                 offset += dmae_wr_max * 4;
619                 len -= dmae_wr_max;
620         }
621
622         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
623 }
624
625 static int bnx2x_mc_assert(struct bnx2x *bp)
626 {
627         char last_idx;
628         int i, rc = 0;
629         u32 row0, row1, row2, row3;
630
631         /* XSTORM */
632         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
633                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
634         if (last_idx)
635                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
636
637         /* print the asserts */
638         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
639
640                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
641                               XSTORM_ASSERT_LIST_OFFSET(i));
642                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
643                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
644                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
645                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
646                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
647                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
648
649                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
650                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
651                                   i, row3, row2, row1, row0);
652                         rc++;
653                 } else {
654                         break;
655                 }
656         }
657
658         /* TSTORM */
659         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
660                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
661         if (last_idx)
662                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
663
664         /* print the asserts */
665         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
666
667                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
668                               TSTORM_ASSERT_LIST_OFFSET(i));
669                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
670                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
671                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
672                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
673                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
674                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
675
676                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
677                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
678                                   i, row3, row2, row1, row0);
679                         rc++;
680                 } else {
681                         break;
682                 }
683         }
684
685         /* CSTORM */
686         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
687                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
688         if (last_idx)
689                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
690
691         /* print the asserts */
692         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
693
694                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
695                               CSTORM_ASSERT_LIST_OFFSET(i));
696                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
697                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
698                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
699                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
700                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
701                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
702
703                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
704                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
705                                   i, row3, row2, row1, row0);
706                         rc++;
707                 } else {
708                         break;
709                 }
710         }
711
712         /* USTORM */
713         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
714                            USTORM_ASSERT_LIST_INDEX_OFFSET);
715         if (last_idx)
716                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
717
718         /* print the asserts */
719         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
720
721                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
722                               USTORM_ASSERT_LIST_OFFSET(i));
723                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
724                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
725                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
726                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
727                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
728                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
729
730                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
731                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
732                                   i, row3, row2, row1, row0);
733                         rc++;
734                 } else {
735                         break;
736                 }
737         }
738
739         return rc;
740 }
741
742 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
743 {
744         u32 addr, val;
745         u32 mark, offset;
746         __be32 data[9];
747         int word;
748         u32 trace_shmem_base;
749         if (BP_NOMCP(bp)) {
750                 BNX2X_ERR("NO MCP - can not dump\n");
751                 return;
752         }
753         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
754                 (bp->common.bc_ver & 0xff0000) >> 16,
755                 (bp->common.bc_ver & 0xff00) >> 8,
756                 (bp->common.bc_ver & 0xff));
757
758         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
759         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
760                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
761
762         if (BP_PATH(bp) == 0)
763                 trace_shmem_base = bp->common.shmem_base;
764         else
765                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
766         addr = trace_shmem_base - 0x800;
767
768         /* validate TRCB signature */
769         mark = REG_RD(bp, addr);
770         if (mark != MFW_TRACE_SIGNATURE) {
771                 BNX2X_ERR("Trace buffer signature is missing.");
772                 return ;
773         }
774
775         /* read cyclic buffer pointer */
776         addr += 4;
777         mark = REG_RD(bp, addr);
778         mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
779                         + ((mark + 0x3) & ~0x3) - 0x08000000;
780         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
781
782         printk("%s", lvl);
783
784         /* dump buffer after the mark */
785         for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
786                 for (word = 0; word < 8; word++)
787                         data[word] = htonl(REG_RD(bp, offset + 4*word));
788                 data[8] = 0x0;
789                 pr_cont("%s", (char *)data);
790         }
791
792         /* dump buffer before the mark */
793         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
794                 for (word = 0; word < 8; word++)
795                         data[word] = htonl(REG_RD(bp, offset + 4*word));
796                 data[8] = 0x0;
797                 pr_cont("%s", (char *)data);
798         }
799         printk("%s" "end of fw dump\n", lvl);
800 }
801
802 static void bnx2x_fw_dump(struct bnx2x *bp)
803 {
804         bnx2x_fw_dump_lvl(bp, KERN_ERR);
805 }
806
807 static void bnx2x_hc_int_disable(struct bnx2x *bp)
808 {
809         int port = BP_PORT(bp);
810         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
811         u32 val = REG_RD(bp, addr);
812
813         /* in E1 we must use only PCI configuration space to disable
814          * MSI/MSIX capablility
815          * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
816          */
817         if (CHIP_IS_E1(bp)) {
818                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
819                  * Use mask register to prevent from HC sending interrupts
820                  * after we exit the function
821                  */
822                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
823
824                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
825                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
826                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
827         } else
828                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
829                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
830                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
831                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
832
833         DP(NETIF_MSG_IFDOWN,
834            "write %x to HC %d (addr 0x%x)\n",
835            val, port, addr);
836
837         /* flush all outstanding writes */
838         mmiowb();
839
840         REG_WR(bp, addr, val);
841         if (REG_RD(bp, addr) != val)
842                 BNX2X_ERR("BUG! proper val not read from IGU!\n");
843 }
844
845 static void bnx2x_igu_int_disable(struct bnx2x *bp)
846 {
847         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
848
849         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
850                  IGU_PF_CONF_INT_LINE_EN |
851                  IGU_PF_CONF_ATTN_BIT_EN);
852
853         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
854
855         /* flush all outstanding writes */
856         mmiowb();
857
858         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
859         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
860                 BNX2X_ERR("BUG! proper val not read from IGU!\n");
861 }
862
863 static void bnx2x_int_disable(struct bnx2x *bp)
864 {
865         if (bp->common.int_block == INT_BLOCK_HC)
866                 bnx2x_hc_int_disable(bp);
867         else
868                 bnx2x_igu_int_disable(bp);
869 }
870
871 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
872 {
873         int i;
874         u16 j;
875         struct hc_sp_status_block_data sp_sb_data;
876         int func = BP_FUNC(bp);
877 #ifdef BNX2X_STOP_ON_ERROR
878         u16 start = 0, end = 0;
879         u8 cos;
880 #endif
881         if (disable_int)
882                 bnx2x_int_disable(bp);
883
884         bp->stats_state = STATS_STATE_DISABLED;
885         bp->eth_stats.unrecoverable_error++;
886         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
887
888         BNX2X_ERR("begin crash dump -----------------\n");
889
890         /* Indices */
891         /* Common */
892         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
893                   bp->def_idx, bp->def_att_idx, bp->attn_state,
894                   bp->spq_prod_idx, bp->stats_counter);
895         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
896                   bp->def_status_blk->atten_status_block.attn_bits,
897                   bp->def_status_blk->atten_status_block.attn_bits_ack,
898                   bp->def_status_blk->atten_status_block.status_block_id,
899                   bp->def_status_blk->atten_status_block.attn_bits_index);
900         BNX2X_ERR("     def (");
901         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
902                 pr_cont("0x%x%s",
903                         bp->def_status_blk->sp_sb.index_values[i],
904                         (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
905
906         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
907                 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
908                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
909                         i*sizeof(u32));
910
911         pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
912                sp_sb_data.igu_sb_id,
913                sp_sb_data.igu_seg_id,
914                sp_sb_data.p_func.pf_id,
915                sp_sb_data.p_func.vnic_id,
916                sp_sb_data.p_func.vf_id,
917                sp_sb_data.p_func.vf_valid,
918                sp_sb_data.state);
919
920
921         for_each_eth_queue(bp, i) {
922                 struct bnx2x_fastpath *fp = &bp->fp[i];
923                 int loop;
924                 struct hc_status_block_data_e2 sb_data_e2;
925                 struct hc_status_block_data_e1x sb_data_e1x;
926                 struct hc_status_block_sm  *hc_sm_p =
927                         CHIP_IS_E1x(bp) ?
928                         sb_data_e1x.common.state_machine :
929                         sb_data_e2.common.state_machine;
930                 struct hc_index_data *hc_index_p =
931                         CHIP_IS_E1x(bp) ?
932                         sb_data_e1x.index_data :
933                         sb_data_e2.index_data;
934                 u8 data_size, cos;
935                 u32 *sb_data_p;
936                 struct bnx2x_fp_txdata txdata;
937
938                 /* Rx */
939                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
940                           i, fp->rx_bd_prod, fp->rx_bd_cons,
941                           fp->rx_comp_prod,
942                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
943                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
944                           fp->rx_sge_prod, fp->last_max_sge,
945                           le16_to_cpu(fp->fp_hc_idx));
946
947                 /* Tx */
948                 for_each_cos_in_tx_queue(fp, cos)
949                 {
950                         txdata = *fp->txdata_ptr[cos];
951                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
952                                   i, txdata.tx_pkt_prod,
953                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
954                                   txdata.tx_bd_cons,
955                                   le16_to_cpu(*txdata.tx_cons_sb));
956                 }
957
958                 loop = CHIP_IS_E1x(bp) ?
959                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
960
961                 /* host sb data */
962
963                 if (IS_FCOE_FP(fp))
964                         continue;
965
966                 BNX2X_ERR("     run indexes (");
967                 for (j = 0; j < HC_SB_MAX_SM; j++)
968                         pr_cont("0x%x%s",
969                                fp->sb_running_index[j],
970                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
971
972                 BNX2X_ERR("     indexes (");
973                 for (j = 0; j < loop; j++)
974                         pr_cont("0x%x%s",
975                                fp->sb_index_values[j],
976                                (j == loop - 1) ? ")" : " ");
977                 /* fw sb data */
978                 data_size = CHIP_IS_E1x(bp) ?
979                         sizeof(struct hc_status_block_data_e1x) :
980                         sizeof(struct hc_status_block_data_e2);
981                 data_size /= sizeof(u32);
982                 sb_data_p = CHIP_IS_E1x(bp) ?
983                         (u32 *)&sb_data_e1x :
984                         (u32 *)&sb_data_e2;
985                 /* copy sb data in here */
986                 for (j = 0; j < data_size; j++)
987                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
988                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
989                                 j * sizeof(u32));
990
991                 if (!CHIP_IS_E1x(bp)) {
992                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
993                                 sb_data_e2.common.p_func.pf_id,
994                                 sb_data_e2.common.p_func.vf_id,
995                                 sb_data_e2.common.p_func.vf_valid,
996                                 sb_data_e2.common.p_func.vnic_id,
997                                 sb_data_e2.common.same_igu_sb_1b,
998                                 sb_data_e2.common.state);
999                 } else {
1000                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1001                                 sb_data_e1x.common.p_func.pf_id,
1002                                 sb_data_e1x.common.p_func.vf_id,
1003                                 sb_data_e1x.common.p_func.vf_valid,
1004                                 sb_data_e1x.common.p_func.vnic_id,
1005                                 sb_data_e1x.common.same_igu_sb_1b,
1006                                 sb_data_e1x.common.state);
1007                 }
1008
1009                 /* SB_SMs data */
1010                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1011                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1012                                 j, hc_sm_p[j].__flags,
1013                                 hc_sm_p[j].igu_sb_id,
1014                                 hc_sm_p[j].igu_seg_id,
1015                                 hc_sm_p[j].time_to_expire,
1016                                 hc_sm_p[j].timer_value);
1017                 }
1018
1019                 /* Indecies data */
1020                 for (j = 0; j < loop; j++) {
1021                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1022                                hc_index_p[j].flags,
1023                                hc_index_p[j].timeout);
1024                 }
1025         }
1026
1027 #ifdef BNX2X_STOP_ON_ERROR
1028
1029         /* event queue */
1030         for (i = 0; i < NUM_EQ_DESC; i++) {
1031                 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1032
1033                 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1034                           i, bp->eq_ring[i].message.opcode,
1035                           bp->eq_ring[i].message.error);
1036                 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1037         }
1038
1039         /* Rings */
1040         /* Rx */
1041         for_each_valid_rx_queue(bp, i) {
1042                 struct bnx2x_fastpath *fp = &bp->fp[i];
1043
1044                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1045                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1046                 for (j = start; j != end; j = RX_BD(j + 1)) {
1047                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1048                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1049
1050                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1051                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1052                 }
1053
1054                 start = RX_SGE(fp->rx_sge_prod);
1055                 end = RX_SGE(fp->last_max_sge);
1056                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1057                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1058                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1059
1060                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1061                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1062                 }
1063
1064                 start = RCQ_BD(fp->rx_comp_cons - 10);
1065                 end = RCQ_BD(fp->rx_comp_cons + 503);
1066                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1067                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1068
1069                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1070                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1071                 }
1072         }
1073
1074         /* Tx */
1075         for_each_valid_tx_queue(bp, i) {
1076                 struct bnx2x_fastpath *fp = &bp->fp[i];
1077                 for_each_cos_in_tx_queue(fp, cos) {
1078                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1079
1080                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1081                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1082                         for (j = start; j != end; j = TX_BD(j + 1)) {
1083                                 struct sw_tx_bd *sw_bd =
1084                                         &txdata->tx_buf_ring[j];
1085
1086                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1087                                           i, cos, j, sw_bd->skb,
1088                                           sw_bd->first_bd);
1089                         }
1090
1091                         start = TX_BD(txdata->tx_bd_cons - 10);
1092                         end = TX_BD(txdata->tx_bd_cons + 254);
1093                         for (j = start; j != end; j = TX_BD(j + 1)) {
1094                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1095
1096                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1097                                           i, cos, j, tx_bd[0], tx_bd[1],
1098                                           tx_bd[2], tx_bd[3]);
1099                         }
1100                 }
1101         }
1102 #endif
1103         bnx2x_fw_dump(bp);
1104         bnx2x_mc_assert(bp);
1105         BNX2X_ERR("end crash dump -----------------\n");
1106 }
1107
1108 /*
1109  * FLR Support for E2
1110  *
1111  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1112  * initialization.
1113  */
1114 #define FLR_WAIT_USEC           10000   /* 10 miliseconds */
1115 #define FLR_WAIT_INTERVAL       50      /* usec */
1116 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1117
1118 struct pbf_pN_buf_regs {
1119         int pN;
1120         u32 init_crd;
1121         u32 crd;
1122         u32 crd_freed;
1123 };
1124
1125 struct pbf_pN_cmd_regs {
1126         int pN;
1127         u32 lines_occup;
1128         u32 lines_freed;
1129 };
1130
1131 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1132                                      struct pbf_pN_buf_regs *regs,
1133                                      u32 poll_count)
1134 {
1135         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1136         u32 cur_cnt = poll_count;
1137
1138         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1139         crd = crd_start = REG_RD(bp, regs->crd);
1140         init_crd = REG_RD(bp, regs->init_crd);
1141
1142         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1143         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1144         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1145
1146         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1147                (init_crd - crd_start))) {
1148                 if (cur_cnt--) {
1149                         udelay(FLR_WAIT_INTERVAL);
1150                         crd = REG_RD(bp, regs->crd);
1151                         crd_freed = REG_RD(bp, regs->crd_freed);
1152                 } else {
1153                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1154                            regs->pN);
1155                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1156                            regs->pN, crd);
1157                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1158                            regs->pN, crd_freed);
1159                         break;
1160                 }
1161         }
1162         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1163            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1164 }
1165
1166 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1167                                      struct pbf_pN_cmd_regs *regs,
1168                                      u32 poll_count)
1169 {
1170         u32 occup, to_free, freed, freed_start;
1171         u32 cur_cnt = poll_count;
1172
1173         occup = to_free = REG_RD(bp, regs->lines_occup);
1174         freed = freed_start = REG_RD(bp, regs->lines_freed);
1175
1176         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1177         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1178
1179         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1180                 if (cur_cnt--) {
1181                         udelay(FLR_WAIT_INTERVAL);
1182                         occup = REG_RD(bp, regs->lines_occup);
1183                         freed = REG_RD(bp, regs->lines_freed);
1184                 } else {
1185                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1186                            regs->pN);
1187                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1188                            regs->pN, occup);
1189                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1190                            regs->pN, freed);
1191                         break;
1192                 }
1193         }
1194         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1195            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1196 }
1197
1198 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1199                                     u32 expected, u32 poll_count)
1200 {
1201         u32 cur_cnt = poll_count;
1202         u32 val;
1203
1204         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1205                 udelay(FLR_WAIT_INTERVAL);
1206
1207         return val;
1208 }
1209
1210 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1211                                     char *msg, u32 poll_cnt)
1212 {
1213         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1214         if (val != 0) {
1215                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1216                 return 1;
1217         }
1218         return 0;
1219 }
1220
1221 /* Common routines with VF FLR cleanup */
1222 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1223 {
1224         /* adjust polling timeout */
1225         if (CHIP_REV_IS_EMUL(bp))
1226                 return FLR_POLL_CNT * 2000;
1227
1228         if (CHIP_REV_IS_FPGA(bp))
1229                 return FLR_POLL_CNT * 120;
1230
1231         return FLR_POLL_CNT;
1232 }
1233
1234 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1235 {
1236         struct pbf_pN_cmd_regs cmd_regs[] = {
1237                 {0, (CHIP_IS_E3B0(bp)) ?
1238                         PBF_REG_TQ_OCCUPANCY_Q0 :
1239                         PBF_REG_P0_TQ_OCCUPANCY,
1240                     (CHIP_IS_E3B0(bp)) ?
1241                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1242                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1243                 {1, (CHIP_IS_E3B0(bp)) ?
1244                         PBF_REG_TQ_OCCUPANCY_Q1 :
1245                         PBF_REG_P1_TQ_OCCUPANCY,
1246                     (CHIP_IS_E3B0(bp)) ?
1247                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1248                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1249                 {4, (CHIP_IS_E3B0(bp)) ?
1250                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1251                         PBF_REG_P4_TQ_OCCUPANCY,
1252                     (CHIP_IS_E3B0(bp)) ?
1253                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1254                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1255         };
1256
1257         struct pbf_pN_buf_regs buf_regs[] = {
1258                 {0, (CHIP_IS_E3B0(bp)) ?
1259                         PBF_REG_INIT_CRD_Q0 :
1260                         PBF_REG_P0_INIT_CRD ,
1261                     (CHIP_IS_E3B0(bp)) ?
1262                         PBF_REG_CREDIT_Q0 :
1263                         PBF_REG_P0_CREDIT,
1264                     (CHIP_IS_E3B0(bp)) ?
1265                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1266                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1267                 {1, (CHIP_IS_E3B0(bp)) ?
1268                         PBF_REG_INIT_CRD_Q1 :
1269                         PBF_REG_P1_INIT_CRD,
1270                     (CHIP_IS_E3B0(bp)) ?
1271                         PBF_REG_CREDIT_Q1 :
1272                         PBF_REG_P1_CREDIT,
1273                     (CHIP_IS_E3B0(bp)) ?
1274                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1275                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1276                 {4, (CHIP_IS_E3B0(bp)) ?
1277                         PBF_REG_INIT_CRD_LB_Q :
1278                         PBF_REG_P4_INIT_CRD,
1279                     (CHIP_IS_E3B0(bp)) ?
1280                         PBF_REG_CREDIT_LB_Q :
1281                         PBF_REG_P4_CREDIT,
1282                     (CHIP_IS_E3B0(bp)) ?
1283                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1284                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1285         };
1286
1287         int i;
1288
1289         /* Verify the command queues are flushed P0, P1, P4 */
1290         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1291                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1292
1293
1294         /* Verify the transmission buffers are flushed P0, P1, P4 */
1295         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1296                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1297 }
1298
1299 #define OP_GEN_PARAM(param) \
1300         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1301
1302 #define OP_GEN_TYPE(type) \
1303         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1304
1305 #define OP_GEN_AGG_VECT(index) \
1306         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1307
1308
1309 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1310 {
1311         u32 op_gen_command = 0;
1312
1313         u32 comp_addr = BAR_CSTRORM_INTMEM +
1314                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1315         int ret = 0;
1316
1317         if (REG_RD(bp, comp_addr)) {
1318                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1319                 return 1;
1320         }
1321
1322         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1323         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1324         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1325         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1326
1327         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1328         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1329
1330         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1331                 BNX2X_ERR("FW final cleanup did not succeed\n");
1332                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1333                    (REG_RD(bp, comp_addr)));
1334                 bnx2x_panic();
1335                 return 1;
1336         }
1337         /* Zero completion for nxt FLR */
1338         REG_WR(bp, comp_addr, 0);
1339
1340         return ret;
1341 }
1342
1343 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1344 {
1345         u16 status;
1346
1347         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1348         return status & PCI_EXP_DEVSTA_TRPND;
1349 }
1350
1351 /* PF FLR specific routines
1352 */
1353 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1354 {
1355
1356         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1357         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1358                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1359                         "CFC PF usage counter timed out",
1360                         poll_cnt))
1361                 return 1;
1362
1363
1364         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1365         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366                         DORQ_REG_PF_USAGE_CNT,
1367                         "DQ PF usage counter timed out",
1368                         poll_cnt))
1369                 return 1;
1370
1371         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1372         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1374                         "QM PF usage counter timed out",
1375                         poll_cnt))
1376                 return 1;
1377
1378         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1379         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1381                         "Timers VNIC usage counter timed out",
1382                         poll_cnt))
1383                 return 1;
1384         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1385                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1386                         "Timers NUM_SCANS usage counter timed out",
1387                         poll_cnt))
1388                 return 1;
1389
1390         /* Wait DMAE PF usage counter to zero */
1391         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1393                         "DMAE dommand register timed out",
1394                         poll_cnt))
1395                 return 1;
1396
1397         return 0;
1398 }
1399
1400 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1401 {
1402         u32 val;
1403
1404         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1405         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1406
1407         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1408         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1409
1410         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1411         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1412
1413         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1414         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1415
1416         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1417         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1418
1419         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1420         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1421
1422         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1423         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1424
1425         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1426         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1427            val);
1428 }
1429
1430 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1431 {
1432         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1433
1434         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1435
1436         /* Re-enable PF target read access */
1437         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1438
1439         /* Poll HW usage counters */
1440         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1441         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1442                 return -EBUSY;
1443
1444         /* Zero the igu 'trailing edge' and 'leading edge' */
1445
1446         /* Send the FW cleanup command */
1447         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1448                 return -EBUSY;
1449
1450         /* ATC cleanup */
1451
1452         /* Verify TX hw is flushed */
1453         bnx2x_tx_hw_flushed(bp, poll_cnt);
1454
1455         /* Wait 100ms (not adjusted according to platform) */
1456         msleep(100);
1457
1458         /* Verify no pending pci transactions */
1459         if (bnx2x_is_pcie_pending(bp->pdev))
1460                 BNX2X_ERR("PCIE Transactions still pending\n");
1461
1462         /* Debug */
1463         bnx2x_hw_enable_status(bp);
1464
1465         /*
1466          * Master enable - Due to WB DMAE writes performed before this
1467          * register is re-initialized as part of the regular function init
1468          */
1469         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1470
1471         return 0;
1472 }
1473
1474 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1475 {
1476         int port = BP_PORT(bp);
1477         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1478         u32 val = REG_RD(bp, addr);
1479         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1480         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1481         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1482
1483         if (msix) {
1484                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1485                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1486                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1487                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1488                 if (single_msix)
1489                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1490         } else if (msi) {
1491                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1492                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1493                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495         } else {
1496                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1497                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1498                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1499                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1500
1501                 if (!CHIP_IS_E1(bp)) {
1502                         DP(NETIF_MSG_IFUP,
1503                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1504
1505                         REG_WR(bp, addr, val);
1506
1507                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1508                 }
1509         }
1510
1511         if (CHIP_IS_E1(bp))
1512                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1513
1514         DP(NETIF_MSG_IFUP,
1515            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1516            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1517
1518         REG_WR(bp, addr, val);
1519         /*
1520          * Ensure that HC_CONFIG is written before leading/trailing edge config
1521          */
1522         mmiowb();
1523         barrier();
1524
1525         if (!CHIP_IS_E1(bp)) {
1526                 /* init leading/trailing edge */
1527                 if (IS_MF(bp)) {
1528                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1529                         if (bp->port.pmf)
1530                                 /* enable nig and gpio3 attention */
1531                                 val |= 0x1100;
1532                 } else
1533                         val = 0xffff;
1534
1535                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1536                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1537         }
1538
1539         /* Make sure that interrupts are indeed enabled from here on */
1540         mmiowb();
1541 }
1542
1543 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1544 {
1545         u32 val;
1546         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1547         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1548         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1549
1550         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1551
1552         if (msix) {
1553                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1554                          IGU_PF_CONF_SINGLE_ISR_EN);
1555                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1556                         IGU_PF_CONF_ATTN_BIT_EN);
1557
1558                 if (single_msix)
1559                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1560         } else if (msi) {
1561                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1562                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563                         IGU_PF_CONF_ATTN_BIT_EN |
1564                         IGU_PF_CONF_SINGLE_ISR_EN);
1565         } else {
1566                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1567                 val |= (IGU_PF_CONF_INT_LINE_EN |
1568                         IGU_PF_CONF_ATTN_BIT_EN |
1569                         IGU_PF_CONF_SINGLE_ISR_EN);
1570         }
1571
1572         /* Clean previous status - need to configure igu prior to ack*/
1573         if ((!msix) || single_msix) {
1574                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1575                 bnx2x_ack_int(bp);
1576         }
1577
1578         val |= IGU_PF_CONF_FUNC_EN;
1579
1580         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1581            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1582
1583         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1584
1585         if (val & IGU_PF_CONF_INT_LINE_EN)
1586                 pci_intx(bp->pdev, true);
1587
1588         barrier();
1589
1590         /* init leading/trailing edge */
1591         if (IS_MF(bp)) {
1592                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1593                 if (bp->port.pmf)
1594                         /* enable nig and gpio3 attention */
1595                         val |= 0x1100;
1596         } else
1597                 val = 0xffff;
1598
1599         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1600         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1601
1602         /* Make sure that interrupts are indeed enabled from here on */
1603         mmiowb();
1604 }
1605
1606 void bnx2x_int_enable(struct bnx2x *bp)
1607 {
1608         if (bp->common.int_block == INT_BLOCK_HC)
1609                 bnx2x_hc_int_enable(bp);
1610         else
1611                 bnx2x_igu_int_enable(bp);
1612 }
1613
1614 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1615 {
1616         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1617         int i, offset;
1618
1619         if (disable_hw)
1620                 /* prevent the HW from sending interrupts */
1621                 bnx2x_int_disable(bp);
1622
1623         /* make sure all ISRs are done */
1624         if (msix) {
1625                 synchronize_irq(bp->msix_table[0].vector);
1626                 offset = 1;
1627                 if (CNIC_SUPPORT(bp))
1628                         offset++;
1629                 for_each_eth_queue(bp, i)
1630                         synchronize_irq(bp->msix_table[offset++].vector);
1631         } else
1632                 synchronize_irq(bp->pdev->irq);
1633
1634         /* make sure sp_task is not running */
1635         cancel_delayed_work(&bp->sp_task);
1636         cancel_delayed_work(&bp->period_task);
1637         flush_workqueue(bnx2x_wq);
1638 }
1639
1640 /* fast path */
1641
1642 /*
1643  * General service functions
1644  */
1645
1646 /* Return true if succeeded to acquire the lock */
1647 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1648 {
1649         u32 lock_status;
1650         u32 resource_bit = (1 << resource);
1651         int func = BP_FUNC(bp);
1652         u32 hw_lock_control_reg;
1653
1654         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1655            "Trying to take a lock on resource %d\n", resource);
1656
1657         /* Validating that the resource is within range */
1658         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1659                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1660                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1661                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1662                 return false;
1663         }
1664
1665         if (func <= 5)
1666                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1667         else
1668                 hw_lock_control_reg =
1669                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1670
1671         /* Try to acquire the lock */
1672         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1673         lock_status = REG_RD(bp, hw_lock_control_reg);
1674         if (lock_status & resource_bit)
1675                 return true;
1676
1677         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1678            "Failed to get a lock on resource %d\n", resource);
1679         return false;
1680 }
1681
1682 /**
1683  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1684  *
1685  * @bp: driver handle
1686  *
1687  * Returns the recovery leader resource id according to the engine this function
1688  * belongs to. Currently only only 2 engines is supported.
1689  */
1690 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1691 {
1692         if (BP_PATH(bp))
1693                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1694         else
1695                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1696 }
1697
1698 /**
1699  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1700  *
1701  * @bp: driver handle
1702  *
1703  * Tries to acquire a leader lock for current engine.
1704  */
1705 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1706 {
1707         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1708 }
1709
1710 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1711
1712 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1713 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1714 {
1715         /* Set the interrupt occurred bit for the sp-task to recognize it
1716          * must ack the interrupt and transition according to the IGU
1717          * state machine.
1718          */
1719         atomic_set(&bp->interrupt_occurred, 1);
1720
1721         /* The sp_task must execute only after this bit
1722          * is set, otherwise we will get out of sync and miss all
1723          * further interrupts. Hence, the barrier.
1724          */
1725         smp_wmb();
1726
1727         /* schedule sp_task to workqueue */
1728         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1729 }
1730
1731 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1732 {
1733         struct bnx2x *bp = fp->bp;
1734         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1735         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1736         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1737         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1738
1739         DP(BNX2X_MSG_SP,
1740            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1741            fp->index, cid, command, bp->state,
1742            rr_cqe->ramrod_cqe.ramrod_type);
1743
1744         /* If cid is within VF range, replace the slowpath object with the
1745          * one corresponding to this VF
1746          */
1747         if (cid >= BNX2X_FIRST_VF_CID  &&
1748             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1749                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1750
1751         switch (command) {
1752         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1753                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1754                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1755                 break;
1756
1757         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1758                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1759                 drv_cmd = BNX2X_Q_CMD_SETUP;
1760                 break;
1761
1762         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1763                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1764                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1765                 break;
1766
1767         case (RAMROD_CMD_ID_ETH_HALT):
1768                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1769                 drv_cmd = BNX2X_Q_CMD_HALT;
1770                 break;
1771
1772         case (RAMROD_CMD_ID_ETH_TERMINATE):
1773                 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1774                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1775                 break;
1776
1777         case (RAMROD_CMD_ID_ETH_EMPTY):
1778                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1779                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1780                 break;
1781
1782         default:
1783                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1784                           command, fp->index);
1785                 return;
1786         }
1787
1788         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1789             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1790                 /* q_obj->complete_cmd() failure means that this was
1791                  * an unexpected completion.
1792                  *
1793                  * In this case we don't want to increase the bp->spq_left
1794                  * because apparently we haven't sent this command the first
1795                  * place.
1796                  */
1797 #ifdef BNX2X_STOP_ON_ERROR
1798                 bnx2x_panic();
1799 #else
1800                 return;
1801 #endif
1802         /* SRIOV: reschedule any 'in_progress' operations */
1803         bnx2x_iov_sp_event(bp, cid, true);
1804
1805         smp_mb__before_atomic_inc();
1806         atomic_inc(&bp->cq_spq_left);
1807         /* push the change in bp->spq_left and towards the memory */
1808         smp_mb__after_atomic_inc();
1809
1810         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1811
1812         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1813             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1814                 /* if Q update ramrod is completed for last Q in AFEX vif set
1815                  * flow, then ACK MCP at the end
1816                  *
1817                  * mark pending ACK to MCP bit.
1818                  * prevent case that both bits are cleared.
1819                  * At the end of load/unload driver checks that
1820                  * sp_state is cleared, and this order prevents
1821                  * races
1822                  */
1823                 smp_mb__before_clear_bit();
1824                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1825                 wmb();
1826                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1827                 smp_mb__after_clear_bit();
1828
1829                 /* schedule the sp task as mcp ack is required */
1830                 bnx2x_schedule_sp_task(bp);
1831         }
1832
1833         return;
1834 }
1835
1836 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1837 {
1838         struct bnx2x *bp = netdev_priv(dev_instance);
1839         u16 status = bnx2x_ack_int(bp);
1840         u16 mask;
1841         int i;
1842         u8 cos;
1843
1844         /* Return here if interrupt is shared and it's not for us */
1845         if (unlikely(status == 0)) {
1846                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1847                 return IRQ_NONE;
1848         }
1849         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1850
1851 #ifdef BNX2X_STOP_ON_ERROR
1852         if (unlikely(bp->panic))
1853                 return IRQ_HANDLED;
1854 #endif
1855
1856         for_each_eth_queue(bp, i) {
1857                 struct bnx2x_fastpath *fp = &bp->fp[i];
1858
1859                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1860                 if (status & mask) {
1861                         /* Handle Rx or Tx according to SB id */
1862                         prefetch(fp->rx_cons_sb);
1863                         for_each_cos_in_tx_queue(fp, cos)
1864                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1865                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1866                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1867                         status &= ~mask;
1868                 }
1869         }
1870
1871         if (CNIC_SUPPORT(bp)) {
1872                 mask = 0x2;
1873                 if (status & (mask | 0x1)) {
1874                         struct cnic_ops *c_ops = NULL;
1875
1876                         rcu_read_lock();
1877                         c_ops = rcu_dereference(bp->cnic_ops);
1878                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1879                                       CNIC_DRV_STATE_HANDLES_IRQ))
1880                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1881                         rcu_read_unlock();
1882
1883                         status &= ~mask;
1884                 }
1885         }
1886
1887         if (unlikely(status & 0x1)) {
1888
1889                 /* schedule sp task to perform default status block work, ack
1890                  * attentions and enable interrupts.
1891                  */
1892                 bnx2x_schedule_sp_task(bp);
1893
1894                 status &= ~0x1;
1895                 if (!status)
1896                         return IRQ_HANDLED;
1897         }
1898
1899         if (unlikely(status))
1900                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1901                    status);
1902
1903         return IRQ_HANDLED;
1904 }
1905
1906 /* Link */
1907
1908 /*
1909  * General service functions
1910  */
1911
1912 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1913 {
1914         u32 lock_status;
1915         u32 resource_bit = (1 << resource);
1916         int func = BP_FUNC(bp);
1917         u32 hw_lock_control_reg;
1918         int cnt;
1919
1920         /* Validating that the resource is within range */
1921         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1922                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1923                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1924                 return -EINVAL;
1925         }
1926
1927         if (func <= 5) {
1928                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1929         } else {
1930                 hw_lock_control_reg =
1931                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1932         }
1933
1934         /* Validating that the resource is not already taken */
1935         lock_status = REG_RD(bp, hw_lock_control_reg);
1936         if (lock_status & resource_bit) {
1937                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1938                    lock_status, resource_bit);
1939                 return -EEXIST;
1940         }
1941
1942         /* Try for 5 second every 5ms */
1943         for (cnt = 0; cnt < 1000; cnt++) {
1944                 /* Try to acquire the lock */
1945                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1946                 lock_status = REG_RD(bp, hw_lock_control_reg);
1947                 if (lock_status & resource_bit)
1948                         return 0;
1949
1950                 msleep(5);
1951         }
1952         BNX2X_ERR("Timeout\n");
1953         return -EAGAIN;
1954 }
1955
1956 int bnx2x_release_leader_lock(struct bnx2x *bp)
1957 {
1958         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1959 }
1960
1961 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1962 {
1963         u32 lock_status;
1964         u32 resource_bit = (1 << resource);
1965         int func = BP_FUNC(bp);
1966         u32 hw_lock_control_reg;
1967
1968         /* Validating that the resource is within range */
1969         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1970                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1971                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1972                 return -EINVAL;
1973         }
1974
1975         if (func <= 5) {
1976                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1977         } else {
1978                 hw_lock_control_reg =
1979                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1980         }
1981
1982         /* Validating that the resource is currently taken */
1983         lock_status = REG_RD(bp, hw_lock_control_reg);
1984         if (!(lock_status & resource_bit)) {
1985                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1986                    lock_status, resource_bit);
1987                 return -EFAULT;
1988         }
1989
1990         REG_WR(bp, hw_lock_control_reg, resource_bit);
1991         return 0;
1992 }
1993
1994
1995 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1996 {
1997         /* The GPIO should be swapped if swap register is set and active */
1998         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1999                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2000         int gpio_shift = gpio_num +
2001                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2002         u32 gpio_mask = (1 << gpio_shift);
2003         u32 gpio_reg;
2004         int value;
2005
2006         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2007                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2008                 return -EINVAL;
2009         }
2010
2011         /* read GPIO value */
2012         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2013
2014         /* get the requested pin value */
2015         if ((gpio_reg & gpio_mask) == gpio_mask)
2016                 value = 1;
2017         else
2018                 value = 0;
2019
2020         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2021
2022         return value;
2023 }
2024
2025 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2026 {
2027         /* The GPIO should be swapped if swap register is set and active */
2028         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2029                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2030         int gpio_shift = gpio_num +
2031                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2032         u32 gpio_mask = (1 << gpio_shift);
2033         u32 gpio_reg;
2034
2035         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2036                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2037                 return -EINVAL;
2038         }
2039
2040         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2041         /* read GPIO and mask except the float bits */
2042         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2043
2044         switch (mode) {
2045         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2046                 DP(NETIF_MSG_LINK,
2047                    "Set GPIO %d (shift %d) -> output low\n",
2048                    gpio_num, gpio_shift);
2049                 /* clear FLOAT and set CLR */
2050                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2051                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2052                 break;
2053
2054         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2055                 DP(NETIF_MSG_LINK,
2056                    "Set GPIO %d (shift %d) -> output high\n",
2057                    gpio_num, gpio_shift);
2058                 /* clear FLOAT and set SET */
2059                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2060                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2061                 break;
2062
2063         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2064                 DP(NETIF_MSG_LINK,
2065                    "Set GPIO %d (shift %d) -> input\n",
2066                    gpio_num, gpio_shift);
2067                 /* set FLOAT */
2068                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2069                 break;
2070
2071         default:
2072                 break;
2073         }
2074
2075         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2076         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2077
2078         return 0;
2079 }
2080
2081 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2082 {
2083         u32 gpio_reg = 0;
2084         int rc = 0;
2085
2086         /* Any port swapping should be handled by caller. */
2087
2088         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2089         /* read GPIO and mask except the float bits */
2090         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2091         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2092         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2093         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2094
2095         switch (mode) {
2096         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2097                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2098                 /* set CLR */
2099                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2100                 break;
2101
2102         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2103                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2104                 /* set SET */
2105                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2106                 break;
2107
2108         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2109                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2110                 /* set FLOAT */
2111                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2112                 break;
2113
2114         default:
2115                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2116                 rc = -EINVAL;
2117                 break;
2118         }
2119
2120         if (rc == 0)
2121                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2122
2123         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2124
2125         return rc;
2126 }
2127
2128 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2129 {
2130         /* The GPIO should be swapped if swap register is set and active */
2131         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2132                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2133         int gpio_shift = gpio_num +
2134                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2135         u32 gpio_mask = (1 << gpio_shift);
2136         u32 gpio_reg;
2137
2138         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2139                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2140                 return -EINVAL;
2141         }
2142
2143         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2144         /* read GPIO int */
2145         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2146
2147         switch (mode) {
2148         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2149                 DP(NETIF_MSG_LINK,
2150                    "Clear GPIO INT %d (shift %d) -> output low\n",
2151                    gpio_num, gpio_shift);
2152                 /* clear SET and set CLR */
2153                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2154                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2155                 break;
2156
2157         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2158                 DP(NETIF_MSG_LINK,
2159                    "Set GPIO INT %d (shift %d) -> output high\n",
2160                    gpio_num, gpio_shift);
2161                 /* clear CLR and set SET */
2162                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2163                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2164                 break;
2165
2166         default:
2167                 break;
2168         }
2169
2170         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2171         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2172
2173         return 0;
2174 }
2175
2176 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2177 {
2178         u32 spio_reg;
2179
2180         /* Only 2 SPIOs are configurable */
2181         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2182                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2183                 return -EINVAL;
2184         }
2185
2186         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2187         /* read SPIO and mask except the float bits */
2188         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2189
2190         switch (mode) {
2191         case MISC_SPIO_OUTPUT_LOW:
2192                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2193                 /* clear FLOAT and set CLR */
2194                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2195                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2196                 break;
2197
2198         case MISC_SPIO_OUTPUT_HIGH:
2199                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2200                 /* clear FLOAT and set SET */
2201                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2202                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2203                 break;
2204
2205         case MISC_SPIO_INPUT_HI_Z:
2206                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2207                 /* set FLOAT */
2208                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2209                 break;
2210
2211         default:
2212                 break;
2213         }
2214
2215         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2216         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2217
2218         return 0;
2219 }
2220
2221 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2222 {
2223         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2224         switch (bp->link_vars.ieee_fc &
2225                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2226         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2227                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2228                                                    ADVERTISED_Pause);
2229                 break;
2230
2231         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2232                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2233                                                   ADVERTISED_Pause);
2234                 break;
2235
2236         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2237                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2238                 break;
2239
2240         default:
2241                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2242                                                    ADVERTISED_Pause);
2243                 break;
2244         }
2245 }
2246
2247 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2248 {
2249         /* Initialize link parameters structure variables
2250          * It is recommended to turn off RX FC for jumbo frames
2251          *  for better performance
2252          */
2253         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2254                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2255         else
2256                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2257 }
2258
2259 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2260 {
2261         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2262         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2263
2264         if (!BP_NOMCP(bp)) {
2265                 bnx2x_set_requested_fc(bp);
2266                 bnx2x_acquire_phy_lock(bp);
2267
2268                 if (load_mode == LOAD_DIAG) {
2269                         struct link_params *lp = &bp->link_params;
2270                         lp->loopback_mode = LOOPBACK_XGXS;
2271                         /* do PHY loopback at 10G speed, if possible */
2272                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2273                                 if (lp->speed_cap_mask[cfx_idx] &
2274                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2275                                         lp->req_line_speed[cfx_idx] =
2276                                         SPEED_10000;
2277                                 else
2278                                         lp->req_line_speed[cfx_idx] =
2279                                         SPEED_1000;
2280                         }
2281                 }
2282
2283                 if (load_mode == LOAD_LOOPBACK_EXT) {
2284                         struct link_params *lp = &bp->link_params;
2285                         lp->loopback_mode = LOOPBACK_EXT;
2286                 }
2287
2288                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2289
2290                 bnx2x_release_phy_lock(bp);
2291
2292                 bnx2x_calc_fc_adv(bp);
2293
2294                 if (bp->link_vars.link_up) {
2295                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2296                         bnx2x_link_report(bp);
2297                 }
2298                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2299                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2300                 return rc;
2301         }
2302         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2303         return -EINVAL;
2304 }
2305
2306 void bnx2x_link_set(struct bnx2x *bp)
2307 {
2308         if (!BP_NOMCP(bp)) {
2309                 bnx2x_acquire_phy_lock(bp);
2310                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2311                 bnx2x_release_phy_lock(bp);
2312
2313                 bnx2x_calc_fc_adv(bp);
2314         } else
2315                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2316 }
2317
2318 static void bnx2x__link_reset(struct bnx2x *bp)
2319 {
2320         if (!BP_NOMCP(bp)) {
2321                 bnx2x_acquire_phy_lock(bp);
2322                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2323                 bnx2x_release_phy_lock(bp);
2324         } else
2325                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2326 }
2327
2328 void bnx2x_force_link_reset(struct bnx2x *bp)
2329 {
2330         bnx2x_acquire_phy_lock(bp);
2331         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2332         bnx2x_release_phy_lock(bp);
2333 }
2334
2335 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2336 {
2337         u8 rc = 0;
2338
2339         if (!BP_NOMCP(bp)) {
2340                 bnx2x_acquire_phy_lock(bp);
2341                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2342                                      is_serdes);
2343                 bnx2x_release_phy_lock(bp);
2344         } else
2345                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2346
2347         return rc;
2348 }
2349
2350
2351 /* Calculates the sum of vn_min_rates.
2352    It's needed for further normalizing of the min_rates.
2353    Returns:
2354      sum of vn_min_rates.
2355        or
2356      0 - if all the min_rates are 0.
2357      In the later case fainess algorithm should be deactivated.
2358      If not all min_rates are zero then those that are zeroes will be set to 1.
2359  */
2360 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2361                                       struct cmng_init_input *input)
2362 {
2363         int all_zero = 1;
2364         int vn;
2365
2366         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2367                 u32 vn_cfg = bp->mf_config[vn];
2368                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2369                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2370
2371                 /* Skip hidden vns */
2372                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2373                         vn_min_rate = 0;
2374                 /* If min rate is zero - set it to 1 */
2375                 else if (!vn_min_rate)
2376                         vn_min_rate = DEF_MIN_RATE;
2377                 else
2378                         all_zero = 0;
2379
2380                 input->vnic_min_rate[vn] = vn_min_rate;
2381         }
2382
2383         /* if ETS or all min rates are zeros - disable fairness */
2384         if (BNX2X_IS_ETS_ENABLED(bp)) {
2385                 input->flags.cmng_enables &=
2386                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2387                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2388         } else if (all_zero) {
2389                 input->flags.cmng_enables &=
2390                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2391                 DP(NETIF_MSG_IFUP,
2392                    "All MIN values are zeroes fairness will be disabled\n");
2393         } else
2394                 input->flags.cmng_enables |=
2395                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2396 }
2397
2398 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2399                                     struct cmng_init_input *input)
2400 {
2401         u16 vn_max_rate;
2402         u32 vn_cfg = bp->mf_config[vn];
2403
2404         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2405                 vn_max_rate = 0;
2406         else {
2407                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2408
2409                 if (IS_MF_SI(bp)) {
2410                         /* maxCfg in percents of linkspeed */
2411                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2412                 } else /* SD modes */
2413                         /* maxCfg is absolute in 100Mb units */
2414                         vn_max_rate = maxCfg * 100;
2415         }
2416
2417         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2418
2419         input->vnic_max_rate[vn] = vn_max_rate;
2420 }
2421
2422
2423 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2424 {
2425         if (CHIP_REV_IS_SLOW(bp))
2426                 return CMNG_FNS_NONE;
2427         if (IS_MF(bp))
2428                 return CMNG_FNS_MINMAX;
2429
2430         return CMNG_FNS_NONE;
2431 }
2432
2433 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2434 {
2435         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2436
2437         if (BP_NOMCP(bp))
2438                 return; /* what should be the default bvalue in this case */
2439
2440         /* For 2 port configuration the absolute function number formula
2441          * is:
2442          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2443          *
2444          *      and there are 4 functions per port
2445          *
2446          * For 4 port configuration it is
2447          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2448          *
2449          *      and there are 2 functions per port
2450          */
2451         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2452                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2453
2454                 if (func >= E1H_FUNC_MAX)
2455                         break;
2456
2457                 bp->mf_config[vn] =
2458                         MF_CFG_RD(bp, func_mf_config[func].config);
2459         }
2460         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2461                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2462                 bp->flags |= MF_FUNC_DIS;
2463         } else {
2464                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2465                 bp->flags &= ~MF_FUNC_DIS;
2466         }
2467 }
2468
2469 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2470 {
2471         struct cmng_init_input input;
2472         memset(&input, 0, sizeof(struct cmng_init_input));
2473
2474         input.port_rate = bp->link_vars.line_speed;
2475
2476         if (cmng_type == CMNG_FNS_MINMAX) {
2477                 int vn;
2478
2479                 /* read mf conf from shmem */
2480                 if (read_cfg)
2481                         bnx2x_read_mf_cfg(bp);
2482
2483                 /* vn_weight_sum and enable fairness if not 0 */
2484                 bnx2x_calc_vn_min(bp, &input);
2485
2486                 /* calculate and set min-max rate for each vn */
2487                 if (bp->port.pmf)
2488                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2489                                 bnx2x_calc_vn_max(bp, vn, &input);
2490
2491                 /* always enable rate shaping and fairness */
2492                 input.flags.cmng_enables |=
2493                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2494
2495                 bnx2x_init_cmng(&input, &bp->cmng);
2496                 return;
2497         }
2498
2499         /* rate shaping and fairness are disabled */
2500         DP(NETIF_MSG_IFUP,
2501            "rate shaping and fairness are disabled\n");
2502 }
2503
2504 static void storm_memset_cmng(struct bnx2x *bp,
2505                               struct cmng_init *cmng,
2506                               u8 port)
2507 {
2508         int vn;
2509         size_t size = sizeof(struct cmng_struct_per_port);
2510
2511         u32 addr = BAR_XSTRORM_INTMEM +
2512                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2513
2514         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2515
2516         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2517                 int func = func_by_vn(bp, vn);
2518
2519                 addr = BAR_XSTRORM_INTMEM +
2520                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2521                 size = sizeof(struct rate_shaping_vars_per_vn);
2522                 __storm_memset_struct(bp, addr, size,
2523                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2524
2525                 addr = BAR_XSTRORM_INTMEM +
2526                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2527                 size = sizeof(struct fairness_vars_per_vn);
2528                 __storm_memset_struct(bp, addr, size,
2529                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2530         }
2531 }
2532
2533 /* This function is called upon link interrupt */
2534 static void bnx2x_link_attn(struct bnx2x *bp)
2535 {
2536         /* Make sure that we are synced with the current statistics */
2537         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2538
2539         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2540
2541         if (bp->link_vars.link_up) {
2542
2543                 /* dropless flow control */
2544                 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2545                         int port = BP_PORT(bp);
2546                         u32 pause_enabled = 0;
2547
2548                         if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2549                                 pause_enabled = 1;
2550
2551                         REG_WR(bp, BAR_USTRORM_INTMEM +
2552                                USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2553                                pause_enabled);
2554                 }
2555
2556                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2557                         struct host_port_stats *pstats;
2558
2559                         pstats = bnx2x_sp(bp, port_stats);
2560                         /* reset old mac stats */
2561                         memset(&(pstats->mac_stx[0]), 0,
2562                                sizeof(struct mac_stx));
2563                 }
2564                 if (bp->state == BNX2X_STATE_OPEN)
2565                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2566         }
2567
2568         if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2569                 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2570
2571                 if (cmng_fns != CMNG_FNS_NONE) {
2572                         bnx2x_cmng_fns_init(bp, false, cmng_fns);
2573                         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2574                 } else
2575                         /* rate shaping and fairness are disabled */
2576                         DP(NETIF_MSG_IFUP,
2577                            "single function mode without fairness\n");
2578         }
2579
2580         __bnx2x_link_report(bp);
2581
2582         if (IS_MF(bp))
2583                 bnx2x_link_sync_notify(bp);
2584 }
2585
2586 void bnx2x__link_status_update(struct bnx2x *bp)
2587 {
2588         if (bp->state != BNX2X_STATE_OPEN)
2589                 return;
2590
2591         /* read updated dcb configuration */
2592         if (IS_PF(bp)) {
2593                 bnx2x_dcbx_pmf_update(bp);
2594                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2595                 if (bp->link_vars.link_up)
2596                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2597                 else
2598                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2599                         /* indicate link status */
2600                 bnx2x_link_report(bp);
2601
2602         } else { /* VF */
2603                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2604                                           SUPPORTED_10baseT_Full |
2605                                           SUPPORTED_100baseT_Half |
2606                                           SUPPORTED_100baseT_Full |
2607                                           SUPPORTED_1000baseT_Full |
2608                                           SUPPORTED_2500baseX_Full |
2609                                           SUPPORTED_10000baseT_Full |
2610                                           SUPPORTED_TP |
2611                                           SUPPORTED_FIBRE |
2612                                           SUPPORTED_Autoneg |
2613                                           SUPPORTED_Pause |
2614                                           SUPPORTED_Asym_Pause);
2615                 bp->port.advertising[0] = bp->port.supported[0];
2616
2617                 bp->link_params.bp = bp;
2618                 bp->link_params.port = BP_PORT(bp);
2619                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2620                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2621                 bp->link_params.req_line_speed[0] = SPEED_10000;
2622                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2623                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2624                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2625                 bp->link_vars.line_speed = SPEED_10000;
2626                 bp->link_vars.link_status =
2627                         (LINK_STATUS_LINK_UP |
2628                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2629                 bp->link_vars.link_up = 1;
2630                 bp->link_vars.duplex = DUPLEX_FULL;
2631                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2632                 __bnx2x_link_report(bp);
2633                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2634         }
2635 }
2636
2637 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2638                                   u16 vlan_val, u8 allowed_prio)
2639 {
2640         struct bnx2x_func_state_params func_params = {NULL};
2641         struct bnx2x_func_afex_update_params *f_update_params =
2642                 &func_params.params.afex_update;
2643
2644         func_params.f_obj = &bp->func_obj;
2645         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2646
2647         /* no need to wait for RAMROD completion, so don't
2648          * set RAMROD_COMP_WAIT flag
2649          */
2650
2651         f_update_params->vif_id = vifid;
2652         f_update_params->afex_default_vlan = vlan_val;
2653         f_update_params->allowed_priorities = allowed_prio;
2654
2655         /* if ramrod can not be sent, response to MCP immediately */
2656         if (bnx2x_func_state_change(bp, &func_params) < 0)
2657                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2658
2659         return 0;
2660 }
2661
2662 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2663                                           u16 vif_index, u8 func_bit_map)
2664 {
2665         struct bnx2x_func_state_params func_params = {NULL};
2666         struct bnx2x_func_afex_viflists_params *update_params =
2667                 &func_params.params.afex_viflists;
2668         int rc;
2669         u32 drv_msg_code;
2670
2671         /* validate only LIST_SET and LIST_GET are received from switch */
2672         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2673                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2674                           cmd_type);
2675
2676         func_params.f_obj = &bp->func_obj;
2677         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2678
2679         /* set parameters according to cmd_type */
2680         update_params->afex_vif_list_command = cmd_type;
2681         update_params->vif_list_index = vif_index;
2682         update_params->func_bit_map =
2683                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2684         update_params->func_to_clear = 0;
2685         drv_msg_code =
2686                 (cmd_type == VIF_LIST_RULE_GET) ?
2687                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2688                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2689
2690         /* if ramrod can not be sent, respond to MCP immediately for
2691          * SET and GET requests (other are not triggered from MCP)
2692          */
2693         rc = bnx2x_func_state_change(bp, &func_params);
2694         if (rc < 0)
2695                 bnx2x_fw_command(bp, drv_msg_code, 0);
2696
2697         return 0;
2698 }
2699
2700 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2701 {
2702         struct afex_stats afex_stats;
2703         u32 func = BP_ABS_FUNC(bp);
2704         u32 mf_config;
2705         u16 vlan_val;
2706         u32 vlan_prio;
2707         u16 vif_id;
2708         u8 allowed_prio;
2709         u8 vlan_mode;
2710         u32 addr_to_write, vifid, addrs, stats_type, i;
2711
2712         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2713                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2714                 DP(BNX2X_MSG_MCP,
2715                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2716                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2717         }
2718
2719         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2720                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2721                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2722                 DP(BNX2X_MSG_MCP,
2723                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2724                    vifid, addrs);
2725                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2726                                                addrs);
2727         }
2728
2729         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2730                 addr_to_write = SHMEM2_RD(bp,
2731                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2732                 stats_type = SHMEM2_RD(bp,
2733                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2734
2735                 DP(BNX2X_MSG_MCP,
2736                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2737                    addr_to_write);
2738
2739                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2740
2741                 /* write response to scratchpad, for MCP */
2742                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2743                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2744                                *(((u32 *)(&afex_stats))+i));
2745
2746                 /* send ack message to MCP */
2747                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2748         }
2749
2750         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2751                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2752                 bp->mf_config[BP_VN(bp)] = mf_config;
2753                 DP(BNX2X_MSG_MCP,
2754                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2755                    mf_config);
2756
2757                 /* if VIF_SET is "enabled" */
2758                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2759                         /* set rate limit directly to internal RAM */
2760                         struct cmng_init_input cmng_input;
2761                         struct rate_shaping_vars_per_vn m_rs_vn;
2762                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2763                         u32 addr = BAR_XSTRORM_INTMEM +
2764                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2765
2766                         bp->mf_config[BP_VN(bp)] = mf_config;
2767
2768                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2769                         m_rs_vn.vn_counter.rate =
2770                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2771                         m_rs_vn.vn_counter.quota =
2772                                 (m_rs_vn.vn_counter.rate *
2773                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2774
2775                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2776
2777                         /* read relevant values from mf_cfg struct in shmem */
2778                         vif_id =
2779                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2780                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2781                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2782                         vlan_val =
2783                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2784                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2785                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2786                         vlan_prio = (mf_config &
2787                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2788                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2789                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2790                         vlan_mode =
2791                                 (MF_CFG_RD(bp,
2792                                            func_mf_config[func].afex_config) &
2793                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2794                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2795                         allowed_prio =
2796                                 (MF_CFG_RD(bp,
2797                                            func_mf_config[func].afex_config) &
2798                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2799                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2800
2801                         /* send ramrod to FW, return in case of failure */
2802                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2803                                                    allowed_prio))
2804                                 return;
2805
2806                         bp->afex_def_vlan_tag = vlan_val;
2807                         bp->afex_vlan_mode = vlan_mode;
2808                 } else {
2809                         /* notify link down because BP->flags is disabled */
2810                         bnx2x_link_report(bp);
2811
2812                         /* send INVALID VIF ramrod to FW */
2813                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2814
2815                         /* Reset the default afex VLAN */
2816                         bp->afex_def_vlan_tag = -1;
2817                 }
2818         }
2819 }
2820
2821 static void bnx2x_pmf_update(struct bnx2x *bp)
2822 {
2823         int port = BP_PORT(bp);
2824         u32 val;
2825
2826         bp->port.pmf = 1;
2827         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2828
2829         /*
2830          * We need the mb() to ensure the ordering between the writing to
2831          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2832          */
2833         smp_mb();
2834
2835         /* queue a periodic task */
2836         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2837
2838         bnx2x_dcbx_pmf_update(bp);
2839
2840         /* enable nig attention */
2841         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2842         if (bp->common.int_block == INT_BLOCK_HC) {
2843                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2844                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2845         } else if (!CHIP_IS_E1x(bp)) {
2846                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2847                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2848         }
2849
2850         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2851 }
2852
2853 /* end of Link */
2854
2855 /* slow path */
2856
2857 /*
2858  * General service functions
2859  */
2860
2861 /* send the MCP a request, block until there is a reply */
2862 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2863 {
2864         int mb_idx = BP_FW_MB_IDX(bp);
2865         u32 seq;
2866         u32 rc = 0;
2867         u32 cnt = 1;
2868         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2869
2870         mutex_lock(&bp->fw_mb_mutex);
2871         seq = ++bp->fw_seq;
2872         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2873         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2874
2875         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2876                         (command | seq), param);
2877
2878         do {
2879                 /* let the FW do it's magic ... */
2880                 msleep(delay);
2881
2882                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2883
2884                 /* Give the FW up to 5 second (500*10ms) */
2885         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2886
2887         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2888            cnt*delay, rc, seq);
2889
2890         /* is this a reply to our command? */
2891         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2892                 rc &= FW_MSG_CODE_MASK;
2893         else {
2894                 /* FW BUG! */
2895                 BNX2X_ERR("FW failed to respond!\n");
2896                 bnx2x_fw_dump(bp);
2897                 rc = 0;
2898         }
2899         mutex_unlock(&bp->fw_mb_mutex);
2900
2901         return rc;
2902 }
2903
2904
2905 static void storm_memset_func_cfg(struct bnx2x *bp,
2906                                  struct tstorm_eth_function_common_config *tcfg,
2907                                  u16 abs_fid)
2908 {
2909         size_t size = sizeof(struct tstorm_eth_function_common_config);
2910
2911         u32 addr = BAR_TSTRORM_INTMEM +
2912                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2913
2914         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2915 }
2916
2917 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2918 {
2919         if (CHIP_IS_E1x(bp)) {
2920                 struct tstorm_eth_function_common_config tcfg = {0};
2921
2922                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2923         }
2924
2925         /* Enable the function in the FW */
2926         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2927         storm_memset_func_en(bp, p->func_id, 1);
2928
2929         /* spq */
2930         if (p->func_flgs & FUNC_FLG_SPQ) {
2931                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2932                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2933                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2934         }
2935 }
2936
2937 /**
2938  * bnx2x_get_tx_only_flags - Return common flags
2939  *
2940  * @bp          device handle
2941  * @fp          queue handle
2942  * @zero_stats  TRUE if statistics zeroing is needed
2943  *
2944  * Return the flags that are common for the Tx-only and not normal connections.
2945  */
2946 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2947                                             struct bnx2x_fastpath *fp,
2948                                             bool zero_stats)
2949 {
2950         unsigned long flags = 0;
2951
2952         /* PF driver will always initialize the Queue to an ACTIVE state */
2953         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2954
2955         /* tx only connections collect statistics (on the same index as the
2956          * parent connection). The statistics are zeroed when the parent
2957          * connection is initialized.
2958          */
2959
2960         __set_bit(BNX2X_Q_FLG_STATS, &flags);
2961         if (zero_stats)
2962                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2963
2964         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2965         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2966
2967 #ifdef BNX2X_STOP_ON_ERROR
2968         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2969 #endif
2970
2971         return flags;
2972 }
2973
2974 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2975                                        struct bnx2x_fastpath *fp,
2976                                        bool leading)
2977 {
2978         unsigned long flags = 0;
2979
2980         /* calculate other queue flags */
2981         if (IS_MF_SD(bp))
2982                 __set_bit(BNX2X_Q_FLG_OV, &flags);
2983
2984         if (IS_FCOE_FP(fp)) {
2985                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2986                 /* For FCoE - force usage of default priority (for afex) */
2987                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2988         }
2989
2990         if (!fp->disable_tpa) {
2991                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2992                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2993                 if (fp->mode == TPA_MODE_GRO)
2994                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2995         }
2996
2997         if (leading) {
2998                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2999                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3000         }
3001
3002         /* Always set HW VLAN stripping */
3003         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3004
3005         /* configure silent vlan removal */
3006         if (IS_MF_AFEX(bp))
3007                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3008
3009
3010         return flags | bnx2x_get_common_flags(bp, fp, true);
3011 }
3012
3013 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3014         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3015         u8 cos)
3016 {
3017         gen_init->stat_id = bnx2x_stats_id(fp);
3018         gen_init->spcl_id = fp->cl_id;
3019
3020         /* Always use mini-jumbo MTU for FCoE L2 ring */
3021         if (IS_FCOE_FP(fp))
3022                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3023         else
3024                 gen_init->mtu = bp->dev->mtu;
3025
3026         gen_init->cos = cos;
3027 }
3028
3029 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3030         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3031         struct bnx2x_rxq_setup_params *rxq_init)
3032 {
3033         u8 max_sge = 0;
3034         u16 sge_sz = 0;
3035         u16 tpa_agg_size = 0;
3036
3037         if (!fp->disable_tpa) {
3038                 pause->sge_th_lo = SGE_TH_LO(bp);
3039                 pause->sge_th_hi = SGE_TH_HI(bp);
3040
3041                 /* validate SGE ring has enough to cross high threshold */
3042                 WARN_ON(bp->dropless_fc &&
3043                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3044                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3045
3046                 tpa_agg_size = TPA_AGG_SIZE;
3047                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3048                         SGE_PAGE_SHIFT;
3049                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3050                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3051                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3052         }
3053
3054         /* pause - not for e1 */
3055         if (!CHIP_IS_E1(bp)) {
3056                 pause->bd_th_lo = BD_TH_LO(bp);
3057                 pause->bd_th_hi = BD_TH_HI(bp);
3058
3059                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3060                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3061                 /*
3062                  * validate that rings have enough entries to cross
3063                  * high thresholds
3064                  */
3065                 WARN_ON(bp->dropless_fc &&
3066                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3067                                 bp->rx_ring_size);
3068                 WARN_ON(bp->dropless_fc &&
3069                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3070                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3071
3072                 pause->pri_map = 1;
3073         }
3074
3075         /* rxq setup */
3076         rxq_init->dscr_map = fp->rx_desc_mapping;
3077         rxq_init->sge_map = fp->rx_sge_mapping;
3078         rxq_init->rcq_map = fp->rx_comp_mapping;
3079         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3080
3081         /* This should be a maximum number of data bytes that may be
3082          * placed on the BD (not including paddings).
3083          */
3084         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3085                 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3086
3087         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3088         rxq_init->tpa_agg_sz = tpa_agg_size;
3089         rxq_init->sge_buf_sz = sge_sz;
3090         rxq_init->max_sges_pkt = max_sge;
3091         rxq_init->rss_engine_id = BP_FUNC(bp);
3092         rxq_init->mcast_engine_id = BP_FUNC(bp);
3093
3094         /* Maximum number or simultaneous TPA aggregation for this Queue.
3095          *
3096          * For PF Clients it should be the maximum available number.
3097          * VF driver(s) may want to define it to a smaller value.
3098          */
3099         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3100
3101         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3102         rxq_init->fw_sb_id = fp->fw_sb_id;
3103
3104         if (IS_FCOE_FP(fp))
3105                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3106         else
3107                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3108         /* configure silent vlan removal
3109          * if multi function mode is afex, then mask default vlan
3110          */
3111         if (IS_MF_AFEX(bp)) {
3112                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3113                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3114         }
3115 }
3116
3117 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3118         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3119         u8 cos)
3120 {
3121         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3122         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3123         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3124         txq_init->fw_sb_id = fp->fw_sb_id;
3125
3126         /*
3127          * set the tss leading client id for TX classfication ==
3128          * leading RSS client id
3129          */
3130         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3131
3132         if (IS_FCOE_FP(fp)) {
3133                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3134                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3135         }
3136 }
3137
3138 static void bnx2x_pf_init(struct bnx2x *bp)
3139 {
3140         struct bnx2x_func_init_params func_init = {0};
3141         struct event_ring_data eq_data = { {0} };
3142         u16 flags;
3143
3144         if (!CHIP_IS_E1x(bp)) {
3145                 /* reset IGU PF statistics: MSIX + ATTN */
3146                 /* PF */
3147                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3148                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3149                            (CHIP_MODE_IS_4_PORT(bp) ?
3150                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3151                 /* ATTN */
3152                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3153                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3154                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3155                            (CHIP_MODE_IS_4_PORT(bp) ?
3156                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3157         }
3158
3159         /* function setup flags */
3160         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3161
3162         /* This flag is relevant for E1x only.
3163          * E2 doesn't have a TPA configuration in a function level.
3164          */
3165         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3166
3167         func_init.func_flgs = flags;
3168         func_init.pf_id = BP_FUNC(bp);
3169         func_init.func_id = BP_FUNC(bp);
3170         func_init.spq_map = bp->spq_mapping;
3171         func_init.spq_prod = bp->spq_prod_idx;
3172
3173         bnx2x_func_init(bp, &func_init);
3174
3175         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3176
3177         /*
3178          * Congestion management values depend on the link rate
3179          * There is no active link so initial link rate is set to 10 Gbps.
3180          * When the link comes up The congestion management values are
3181          * re-calculated according to the actual link rate.
3182          */
3183         bp->link_vars.line_speed = SPEED_10000;
3184         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3185
3186         /* Only the PMF sets the HW */
3187         if (bp->port.pmf)
3188                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3189
3190         /* init Event Queue - PCI bus guarantees correct endianity*/
3191         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3192         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3193         eq_data.producer = bp->eq_prod;
3194         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3195         eq_data.sb_id = DEF_SB_ID;
3196         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3197 }
3198
3199
3200 static void bnx2x_e1h_disable(struct bnx2x *bp)
3201 {
3202         int port = BP_PORT(bp);
3203
3204         bnx2x_tx_disable(bp);
3205
3206         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3207 }
3208
3209 static void bnx2x_e1h_enable(struct bnx2x *bp)
3210 {
3211         int port = BP_PORT(bp);
3212
3213         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3214
3215         /* Tx queue should be only reenabled */
3216         netif_tx_wake_all_queues(bp->dev);
3217
3218         /*
3219          * Should not call netif_carrier_on since it will be called if the link
3220          * is up when checking for link state
3221          */
3222 }
3223
3224 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3225
3226 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3227 {
3228         struct eth_stats_info *ether_stat =
3229                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3230         struct bnx2x_vlan_mac_obj *mac_obj =
3231                 &bp->sp_objs->mac_obj;
3232         int i;
3233
3234         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3235                 ETH_STAT_INFO_VERSION_LEN);
3236
3237         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3238          * mac_local field in ether_stat struct. The base address is offset by 2
3239          * bytes to account for the field being 8 bytes but a mac address is
3240          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3241          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3242          * allocated by the ether_stat struct, so the macs will land in their
3243          * proper positions.
3244          */
3245         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3246                 memset(ether_stat->mac_local + i, 0,
3247                        sizeof(ether_stat->mac_local[0]));
3248         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3249                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3250                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3251                                 ETH_ALEN);
3252         ether_stat->mtu_size = bp->dev->mtu;
3253         if (bp->dev->features & NETIF_F_RXCSUM)
3254                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3255         if (bp->dev->features & NETIF_F_TSO)
3256                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3257         ether_stat->feature_flags |= bp->common.boot_mode;
3258
3259         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3260
3261         ether_stat->txq_size = bp->tx_ring_size;
3262         ether_stat->rxq_size = bp->rx_ring_size;
3263 }
3264
3265 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3266 {
3267         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3268         struct fcoe_stats_info *fcoe_stat =
3269                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3270
3271         if (!CNIC_LOADED(bp))
3272                 return;
3273
3274         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3275
3276         fcoe_stat->qos_priority =
3277                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3278
3279         /* insert FCoE stats from ramrod response */
3280         if (!NO_FCOE(bp)) {
3281                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3282                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3283                         tstorm_queue_statistics;
3284
3285                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3286                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3287                         xstorm_queue_statistics;
3288
3289                 struct fcoe_statistics_params *fw_fcoe_stat =
3290                         &bp->fw_stats_data->fcoe;
3291
3292                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3293                           fcoe_stat->rx_bytes_lo,
3294                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3295
3296                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3297                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3298                           fcoe_stat->rx_bytes_lo,
3299                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3300
3301                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3302                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3303                           fcoe_stat->rx_bytes_lo,
3304                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3305
3306                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3307                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3308                           fcoe_stat->rx_bytes_lo,
3309                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3310
3311                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3312                           fcoe_stat->rx_frames_lo,
3313                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3314
3315                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3316                           fcoe_stat->rx_frames_lo,
3317                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3318
3319                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3320                           fcoe_stat->rx_frames_lo,
3321                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3322
3323                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3324                           fcoe_stat->rx_frames_lo,
3325                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3326
3327                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3328                           fcoe_stat->tx_bytes_lo,
3329                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3330
3331                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3332                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3333                           fcoe_stat->tx_bytes_lo,
3334                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3335
3336                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3337                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3338                           fcoe_stat->tx_bytes_lo,
3339                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3340
3341                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3342                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3343                           fcoe_stat->tx_bytes_lo,
3344                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3345
3346                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3347                           fcoe_stat->tx_frames_lo,
3348                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3349
3350                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3351                           fcoe_stat->tx_frames_lo,
3352                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3353
3354                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3355                           fcoe_stat->tx_frames_lo,
3356                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3357
3358                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3359                           fcoe_stat->tx_frames_lo,
3360                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3361         }
3362
3363         /* ask L5 driver to add data to the struct */
3364         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3365 }
3366
3367 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3368 {
3369         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3370         struct iscsi_stats_info *iscsi_stat =
3371                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3372
3373         if (!CNIC_LOADED(bp))
3374                 return;
3375
3376         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3377                ETH_ALEN);
3378
3379         iscsi_stat->qos_priority =
3380                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3381
3382         /* ask L5 driver to add data to the struct */
3383         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3384 }
3385
3386 /* called due to MCP event (on pmf):
3387  *      reread new bandwidth configuration
3388  *      configure FW
3389  *      notify others function about the change
3390  */
3391 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3392 {
3393         if (bp->link_vars.link_up) {
3394                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3395                 bnx2x_link_sync_notify(bp);
3396         }
3397         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3398 }
3399
3400 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3401 {
3402         bnx2x_config_mf_bw(bp);
3403         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3404 }
3405
3406 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3407 {
3408         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3409         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3410 }
3411
3412 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3413 {
3414         enum drv_info_opcode op_code;
3415         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3416
3417         /* if drv_info version supported by MFW doesn't match - send NACK */
3418         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3419                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3420                 return;
3421         }
3422
3423         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3424                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3425
3426         memset(&bp->slowpath->drv_info_to_mcp, 0,
3427                sizeof(union drv_info_to_mcp));
3428
3429         switch (op_code) {
3430         case ETH_STATS_OPCODE:
3431                 bnx2x_drv_info_ether_stat(bp);
3432                 break;
3433         case FCOE_STATS_OPCODE:
3434                 bnx2x_drv_info_fcoe_stat(bp);
3435                 break;
3436         case ISCSI_STATS_OPCODE:
3437                 bnx2x_drv_info_iscsi_stat(bp);
3438                 break;
3439         default:
3440                 /* if op code isn't supported - send NACK */
3441                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3442                 return;
3443         }
3444
3445         /* if we got drv_info attn from MFW then these fields are defined in
3446          * shmem2 for sure
3447          */
3448         SHMEM2_WR(bp, drv_info_host_addr_lo,
3449                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3450         SHMEM2_WR(bp, drv_info_host_addr_hi,
3451                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3452
3453         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3454 }
3455
3456 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3457 {
3458         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3459
3460         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3461
3462                 /*
3463                  * This is the only place besides the function initialization
3464                  * where the bp->flags can change so it is done without any
3465                  * locks
3466                  */
3467                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3468                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3469                         bp->flags |= MF_FUNC_DIS;
3470
3471                         bnx2x_e1h_disable(bp);
3472                 } else {
3473                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3474                         bp->flags &= ~MF_FUNC_DIS;
3475
3476                         bnx2x_e1h_enable(bp);
3477                 }
3478                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3479         }
3480         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3481                 bnx2x_config_mf_bw(bp);
3482                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3483         }
3484
3485         /* Report results to MCP */
3486         if (dcc_event)
3487                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3488         else
3489                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3490 }
3491
3492 /* must be called under the spq lock */
3493 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3494 {
3495         struct eth_spe *next_spe = bp->spq_prod_bd;
3496
3497         if (bp->spq_prod_bd == bp->spq_last_bd) {
3498                 bp->spq_prod_bd = bp->spq;
3499                 bp->spq_prod_idx = 0;
3500                 DP(BNX2X_MSG_SP, "end of spq\n");
3501         } else {
3502                 bp->spq_prod_bd++;
3503                 bp->spq_prod_idx++;
3504         }
3505         return next_spe;
3506 }
3507
3508 /* must be called under the spq lock */
3509 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3510 {
3511         int func = BP_FUNC(bp);
3512
3513         /*
3514          * Make sure that BD data is updated before writing the producer:
3515          * BD data is written to the memory, the producer is read from the
3516          * memory, thus we need a full memory barrier to ensure the ordering.
3517          */
3518         mb();
3519
3520         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3521                  bp->spq_prod_idx);
3522         mmiowb();
3523 }
3524
3525 /**
3526  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3527  *
3528  * @cmd:        command to check
3529  * @cmd_type:   command type
3530  */
3531 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3532 {
3533         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3534             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3535             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3536             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3537             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3538             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3539             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3540                 return true;
3541         else
3542                 return false;
3543
3544 }
3545
3546
3547 /**
3548  * bnx2x_sp_post - place a single command on an SP ring
3549  *
3550  * @bp:         driver handle
3551  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3552  * @cid:        SW CID the command is related to
3553  * @data_hi:    command private data address (high 32 bits)
3554  * @data_lo:    command private data address (low 32 bits)
3555  * @cmd_type:   command type (e.g. NONE, ETH)
3556  *
3557  * SP data is handled as if it's always an address pair, thus data fields are
3558  * not swapped to little endian in upper functions. Instead this function swaps
3559  * data as if it's two u32 fields.
3560  */
3561 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3562                   u32 data_hi, u32 data_lo, int cmd_type)
3563 {
3564         struct eth_spe *spe;
3565         u16 type;
3566         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3567
3568 #ifdef BNX2X_STOP_ON_ERROR
3569         if (unlikely(bp->panic)) {
3570                 BNX2X_ERR("Can't post SP when there is panic\n");
3571                 return -EIO;
3572         }
3573 #endif
3574
3575         spin_lock_bh(&bp->spq_lock);
3576
3577         if (common) {
3578                 if (!atomic_read(&bp->eq_spq_left)) {
3579                         BNX2X_ERR("BUG! EQ ring full!\n");
3580                         spin_unlock_bh(&bp->spq_lock);
3581                         bnx2x_panic();
3582                         return -EBUSY;
3583                 }
3584         } else if (!atomic_read(&bp->cq_spq_left)) {
3585                         BNX2X_ERR("BUG! SPQ ring full!\n");
3586                         spin_unlock_bh(&bp->spq_lock);
3587                         bnx2x_panic();
3588                         return -EBUSY;
3589         }
3590
3591         spe = bnx2x_sp_get_next(bp);
3592
3593         /* CID needs port number to be encoded int it */
3594         spe->hdr.conn_and_cmd_data =
3595                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3596                                     HW_CID(bp, cid));
3597
3598         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3599
3600         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3601                  SPE_HDR_FUNCTION_ID);
3602
3603         spe->hdr.type = cpu_to_le16(type);
3604
3605         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3606         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3607
3608         /*
3609          * It's ok if the actual decrement is issued towards the memory
3610          * somewhere between the spin_lock and spin_unlock. Thus no
3611          * more explict memory barrier is needed.
3612          */
3613         if (common)
3614                 atomic_dec(&bp->eq_spq_left);
3615         else
3616                 atomic_dec(&bp->cq_spq_left);
3617
3618
3619         DP(BNX2X_MSG_SP,
3620            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3621            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3622            (u32)(U64_LO(bp->spq_mapping) +
3623            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3624            HW_CID(bp, cid), data_hi, data_lo, type,
3625            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3626
3627         bnx2x_sp_prod_update(bp);
3628         spin_unlock_bh(&bp->spq_lock);
3629         return 0;
3630 }
3631
3632 /* acquire split MCP access lock register */
3633 static int bnx2x_acquire_alr(struct bnx2x *bp)
3634 {
3635         u32 j, val;
3636         int rc = 0;
3637
3638         might_sleep();
3639         for (j = 0; j < 1000; j++) {
3640                 val = (1UL << 31);
3641                 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3642                 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3643                 if (val & (1L << 31))
3644                         break;
3645
3646                 msleep(5);
3647         }
3648         if (!(val & (1L << 31))) {
3649                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3650                 rc = -EBUSY;
3651         }
3652
3653         return rc;
3654 }
3655
3656 /* release split MCP access lock register */
3657 static void bnx2x_release_alr(struct bnx2x *bp)
3658 {
3659         REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3660 }
3661
3662 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3663 #define BNX2X_DEF_SB_IDX        0x0002
3664
3665 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3666 {
3667         struct host_sp_status_block *def_sb = bp->def_status_blk;
3668         u16 rc = 0;
3669
3670         barrier(); /* status block is written to by the chip */
3671         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3672                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3673                 rc |= BNX2X_DEF_SB_ATT_IDX;
3674         }
3675
3676         if (bp->def_idx != def_sb->sp_sb.running_index) {
3677                 bp->def_idx = def_sb->sp_sb.running_index;
3678                 rc |= BNX2X_DEF_SB_IDX;
3679         }
3680
3681         /* Do not reorder: indecies reading should complete before handling */
3682         barrier();
3683         return rc;
3684 }
3685
3686 /*
3687  * slow path service functions
3688  */
3689
3690 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3691 {
3692         int port = BP_PORT(bp);
3693         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3694                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3695         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3696                                        NIG_REG_MASK_INTERRUPT_PORT0;
3697         u32 aeu_mask;
3698         u32 nig_mask = 0;
3699         u32 reg_addr;
3700
3701         if (bp->attn_state & asserted)
3702                 BNX2X_ERR("IGU ERROR\n");
3703
3704         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3705         aeu_mask = REG_RD(bp, aeu_addr);
3706
3707         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3708            aeu_mask, asserted);
3709         aeu_mask &= ~(asserted & 0x3ff);
3710         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3711
3712         REG_WR(bp, aeu_addr, aeu_mask);
3713         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3714
3715         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3716         bp->attn_state |= asserted;
3717         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3718
3719         if (asserted & ATTN_HARD_WIRED_MASK) {
3720                 if (asserted & ATTN_NIG_FOR_FUNC) {
3721
3722                         bnx2x_acquire_phy_lock(bp);
3723
3724                         /* save nig interrupt mask */
3725                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3726
3727                         /* If nig_mask is not set, no need to call the update
3728                          * function.
3729                          */
3730                         if (nig_mask) {
3731                                 REG_WR(bp, nig_int_mask_addr, 0);
3732
3733                                 bnx2x_link_attn(bp);
3734                         }
3735
3736                         /* handle unicore attn? */
3737                 }
3738                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3739                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3740
3741                 if (asserted & GPIO_2_FUNC)
3742                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3743
3744                 if (asserted & GPIO_3_FUNC)
3745                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3746
3747                 if (asserted & GPIO_4_FUNC)
3748                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3749
3750                 if (port == 0) {
3751                         if (asserted & ATTN_GENERAL_ATTN_1) {
3752                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3753                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3754                         }
3755                         if (asserted & ATTN_GENERAL_ATTN_2) {
3756                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3757                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3758                         }
3759                         if (asserted & ATTN_GENERAL_ATTN_3) {
3760                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3761                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3762                         }
3763                 } else {
3764                         if (asserted & ATTN_GENERAL_ATTN_4) {
3765                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3766                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3767                         }
3768                         if (asserted & ATTN_GENERAL_ATTN_5) {
3769                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3770                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3771                         }
3772                         if (asserted & ATTN_GENERAL_ATTN_6) {
3773                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3774                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3775                         }
3776                 }
3777
3778         } /* if hardwired */
3779
3780         if (bp->common.int_block == INT_BLOCK_HC)
3781                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3782                             COMMAND_REG_ATTN_BITS_SET);
3783         else
3784                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3785
3786         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3787            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3788         REG_WR(bp, reg_addr, asserted);
3789
3790         /* now set back the mask */
3791         if (asserted & ATTN_NIG_FOR_FUNC) {
3792                 /* Verify that IGU ack through BAR was written before restoring
3793                  * NIG mask. This loop should exit after 2-3 iterations max.
3794                  */
3795                 if (bp->common.int_block != INT_BLOCK_HC) {
3796                         u32 cnt = 0, igu_acked;
3797                         do {
3798                                 igu_acked = REG_RD(bp,
3799                                                    IGU_REG_ATTENTION_ACK_BITS);
3800                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3801                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
3802                         if (!igu_acked)
3803                                 DP(NETIF_MSG_HW,
3804                                    "Failed to verify IGU ack on time\n");
3805                         barrier();
3806                 }
3807                 REG_WR(bp, nig_int_mask_addr, nig_mask);
3808                 bnx2x_release_phy_lock(bp);
3809         }
3810 }
3811
3812 static void bnx2x_fan_failure(struct bnx2x *bp)
3813 {
3814         int port = BP_PORT(bp);
3815         u32 ext_phy_config;
3816         /* mark the failure */
3817         ext_phy_config =
3818                 SHMEM_RD(bp,
3819                          dev_info.port_hw_config[port].external_phy_config);
3820
3821         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3822         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3823         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3824                  ext_phy_config);
3825
3826         /* log the failure */
3827         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3828                             "Please contact OEM Support for assistance\n");
3829
3830         /*
3831          * Schedule device reset (unload)
3832          * This is due to some boards consuming sufficient power when driver is
3833          * up to overheat if fan fails.
3834          */
3835         smp_mb__before_clear_bit();
3836         set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3837         smp_mb__after_clear_bit();
3838         schedule_delayed_work(&bp->sp_rtnl_task, 0);
3839
3840 }
3841
3842 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3843 {
3844         int port = BP_PORT(bp);
3845         int reg_offset;
3846         u32 val;
3847
3848         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3849                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3850
3851         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3852
3853                 val = REG_RD(bp, reg_offset);
3854                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3855                 REG_WR(bp, reg_offset, val);
3856
3857                 BNX2X_ERR("SPIO5 hw attention\n");
3858
3859                 /* Fan failure attention */
3860                 bnx2x_hw_reset_phy(&bp->link_params);
3861                 bnx2x_fan_failure(bp);
3862         }
3863
3864         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3865                 bnx2x_acquire_phy_lock(bp);
3866                 bnx2x_handle_module_detect_int(&bp->link_params);
3867                 bnx2x_release_phy_lock(bp);
3868         }
3869
3870         if (attn & HW_INTERRUT_ASSERT_SET_0) {
3871
3872                 val = REG_RD(bp, reg_offset);
3873                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3874                 REG_WR(bp, reg_offset, val);
3875
3876                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3877                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3878                 bnx2x_panic();
3879         }
3880 }
3881
3882 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3883 {
3884         u32 val;
3885
3886         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3887
3888                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3889                 BNX2X_ERR("DB hw attention 0x%x\n", val);
3890                 /* DORQ discard attention */
3891                 if (val & 0x2)
3892                         BNX2X_ERR("FATAL error from DORQ\n");
3893         }
3894
3895         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3896
3897                 int port = BP_PORT(bp);
3898                 int reg_offset;
3899
3900                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3901                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3902
3903                 val = REG_RD(bp, reg_offset);
3904                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3905                 REG_WR(bp, reg_offset, val);
3906
3907                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3908                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3909                 bnx2x_panic();
3910         }
3911 }
3912
3913 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3914 {
3915         u32 val;
3916
3917         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3918
3919                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3920                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3921                 /* CFC error attention */
3922                 if (val & 0x2)
3923                         BNX2X_ERR("FATAL error from CFC\n");
3924         }
3925
3926         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3927                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3928                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3929                 /* RQ_USDMDP_FIFO_OVERFLOW */
3930                 if (val & 0x18000)
3931                         BNX2X_ERR("FATAL error from PXP\n");
3932
3933                 if (!CHIP_IS_E1x(bp)) {
3934                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3935                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3936                 }
3937         }
3938
3939         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3940
3941                 int port = BP_PORT(bp);
3942                 int reg_offset;
3943
3944                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3945                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3946
3947                 val = REG_RD(bp, reg_offset);
3948                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3949                 REG_WR(bp, reg_offset, val);
3950
3951                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3952                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3953                 bnx2x_panic();
3954         }
3955 }
3956
3957 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3958 {
3959         u32 val;
3960
3961         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3962
3963                 if (attn & BNX2X_PMF_LINK_ASSERT) {
3964                         int func = BP_FUNC(bp);
3965
3966                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3967                         bnx2x_read_mf_cfg(bp);
3968                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3969                                         func_mf_config[BP_ABS_FUNC(bp)].config);
3970                         val = SHMEM_RD(bp,
3971                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
3972                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3973                                 bnx2x_dcc_event(bp,
3974                                             (val & DRV_STATUS_DCC_EVENT_MASK));
3975
3976                         if (val & DRV_STATUS_SET_MF_BW)
3977                                 bnx2x_set_mf_bw(bp);
3978
3979                         if (val & DRV_STATUS_DRV_INFO_REQ)
3980                                 bnx2x_handle_drv_info_req(bp);
3981
3982                         if (val & DRV_STATUS_VF_DISABLED)
3983                                 bnx2x_vf_handle_flr_event(bp);
3984
3985                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3986                                 bnx2x_pmf_update(bp);
3987
3988                         if (bp->port.pmf &&
3989                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3990                                 bp->dcbx_enabled > 0)
3991                                 /* start dcbx state machine */
3992                                 bnx2x_dcbx_set_params(bp,
3993                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
3994                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
3995                                 bnx2x_handle_afex_cmd(bp,
3996                                         val & DRV_STATUS_AFEX_EVENT_MASK);
3997                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3998                                 bnx2x_handle_eee_event(bp);
3999                         if (bp->link_vars.periodic_flags &
4000                             PERIODIC_FLAGS_LINK_EVENT) {
4001                                 /*  sync with link */
4002                                 bnx2x_acquire_phy_lock(bp);
4003                                 bp->link_vars.periodic_flags &=
4004                                         ~PERIODIC_FLAGS_LINK_EVENT;
4005                                 bnx2x_release_phy_lock(bp);
4006                                 if (IS_MF(bp))
4007                                         bnx2x_link_sync_notify(bp);
4008                                 bnx2x_link_report(bp);
4009                         }
4010                         /* Always call it here: bnx2x_link_report() will
4011                          * prevent the link indication duplication.
4012                          */
4013                         bnx2x__link_status_update(bp);
4014                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4015
4016                         BNX2X_ERR("MC assert!\n");
4017                         bnx2x_mc_assert(bp);
4018                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4019                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4020                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4021                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4022                         bnx2x_panic();
4023
4024                 } else if (attn & BNX2X_MCP_ASSERT) {
4025
4026                         BNX2X_ERR("MCP assert!\n");
4027                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4028                         bnx2x_fw_dump(bp);
4029
4030                 } else
4031                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4032         }
4033
4034         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4035                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4036                 if (attn & BNX2X_GRC_TIMEOUT) {
4037                         val = CHIP_IS_E1(bp) ? 0 :
4038                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4039                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4040                 }
4041                 if (attn & BNX2X_GRC_RSV) {
4042                         val = CHIP_IS_E1(bp) ? 0 :
4043                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4044                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4045                 }
4046                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4047         }
4048 }
4049
4050 /*
4051  * Bits map:
4052  * 0-7   - Engine0 load counter.
4053  * 8-15  - Engine1 load counter.
4054  * 16    - Engine0 RESET_IN_PROGRESS bit.
4055  * 17    - Engine1 RESET_IN_PROGRESS bit.
4056  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4057  *         on the engine
4058  * 19    - Engine1 ONE_IS_LOADED.
4059  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4060  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4061  *         just the one belonging to its engine).
4062  *
4063  */
4064 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4065
4066 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4067 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4068 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4069 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4070 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4071 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4072 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4073
4074 /*
4075  * Set the GLOBAL_RESET bit.
4076  *
4077  * Should be run under rtnl lock
4078  */
4079 void bnx2x_set_reset_global(struct bnx2x *bp)
4080 {
4081         u32 val;
4082         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4083         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4084         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4085         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4086 }
4087
4088 /*
4089  * Clear the GLOBAL_RESET bit.
4090  *
4091  * Should be run under rtnl lock
4092  */
4093 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4094 {
4095         u32 val;
4096         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4097         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4098         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4099         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4100 }
4101
4102 /*
4103  * Checks the GLOBAL_RESET bit.
4104  *
4105  * should be run under rtnl lock
4106  */
4107 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4108 {
4109         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4110
4111         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4112         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4113 }
4114
4115 /*
4116  * Clear RESET_IN_PROGRESS bit for the current engine.
4117  *
4118  * Should be run under rtnl lock
4119  */
4120 static void bnx2x_set_reset_done(struct bnx2x *bp)
4121 {
4122         u32 val;
4123         u32 bit = BP_PATH(bp) ?
4124                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4125         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4126         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4127
4128         /* Clear the bit */
4129         val &= ~bit;
4130         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4131
4132         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4133 }
4134
4135 /*
4136  * Set RESET_IN_PROGRESS for the current engine.
4137  *
4138  * should be run under rtnl lock
4139  */
4140 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4141 {
4142         u32 val;
4143         u32 bit = BP_PATH(bp) ?
4144                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4145         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4146         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4147
4148         /* Set the bit */
4149         val |= bit;
4150         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4151         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4152 }
4153
4154 /*
4155  * Checks the RESET_IN_PROGRESS bit for the given engine.
4156  * should be run under rtnl lock
4157  */
4158 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4159 {
4160         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4161         u32 bit = engine ?
4162                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4163
4164         /* return false if bit is set */
4165         return (val & bit) ? false : true;
4166 }
4167
4168 /*
4169  * set pf load for the current pf.
4170  *
4171  * should be run under rtnl lock
4172  */
4173 void bnx2x_set_pf_load(struct bnx2x *bp)
4174 {
4175         u32 val1, val;
4176         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4177                              BNX2X_PATH0_LOAD_CNT_MASK;
4178         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4179                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4180
4181         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4182         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4183
4184         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4185
4186         /* get the current counter value */
4187         val1 = (val & mask) >> shift;
4188
4189         /* set bit of that PF */
4190         val1 |= (1 << bp->pf_num);
4191
4192         /* clear the old value */
4193         val &= ~mask;
4194
4195         /* set the new one */
4196         val |= ((val1 << shift) & mask);
4197
4198         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4199         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4200 }
4201
4202 /**
4203  * bnx2x_clear_pf_load - clear pf load mark
4204  *
4205  * @bp:         driver handle
4206  *
4207  * Should be run under rtnl lock.
4208  * Decrements the load counter for the current engine. Returns
4209  * whether other functions are still loaded
4210  */
4211 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4212 {
4213         u32 val1, val;
4214         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4215                              BNX2X_PATH0_LOAD_CNT_MASK;
4216         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4217                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4218
4219         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4220         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4221         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4222
4223         /* get the current counter value */
4224         val1 = (val & mask) >> shift;
4225
4226         /* clear bit of that PF */
4227         val1 &= ~(1 << bp->pf_num);
4228
4229         /* clear the old value */
4230         val &= ~mask;
4231
4232         /* set the new one */
4233         val |= ((val1 << shift) & mask);
4234
4235         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4236         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4237         return val1 != 0;
4238 }
4239
4240 /*
4241  * Read the load status for the current engine.
4242  *
4243  * should be run under rtnl lock
4244  */
4245 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4246 {
4247         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4248                              BNX2X_PATH0_LOAD_CNT_MASK);
4249         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4250                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4251         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4252
4253         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4254
4255         val = (val & mask) >> shift;
4256
4257         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4258            engine, val);
4259
4260         return val != 0;
4261 }
4262
4263 static void _print_next_block(int idx, const char *blk)
4264 {
4265         pr_cont("%s%s", idx ? ", " : "", blk);
4266 }
4267
4268 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
4269                                            bool print)
4270 {
4271         int i = 0;
4272         u32 cur_bit = 0;
4273         for (i = 0; sig; i++) {
4274                 cur_bit = ((u32)0x1 << i);
4275                 if (sig & cur_bit) {
4276                         switch (cur_bit) {
4277                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4278                                 if (print)
4279                                         _print_next_block(par_num++, "BRB");
4280                                 break;
4281                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4282                                 if (print)
4283                                         _print_next_block(par_num++, "PARSER");
4284                                 break;
4285                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4286                                 if (print)
4287                                         _print_next_block(par_num++, "TSDM");
4288                                 break;
4289                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4290                                 if (print)
4291                                         _print_next_block(par_num++,
4292                                                           "SEARCHER");
4293                                 break;
4294                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4295                                 if (print)
4296                                         _print_next_block(par_num++, "TCM");
4297                                 break;
4298                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4299                                 if (print)
4300                                         _print_next_block(par_num++, "TSEMI");
4301                                 break;
4302                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4303                                 if (print)
4304                                         _print_next_block(par_num++, "XPB");
4305                                 break;
4306                         }
4307
4308                         /* Clear the bit */
4309                         sig &= ~cur_bit;
4310                 }
4311         }
4312
4313         return par_num;
4314 }
4315
4316 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
4317                                            bool *global, bool print)
4318 {
4319         int i = 0;
4320         u32 cur_bit = 0;
4321         for (i = 0; sig; i++) {
4322                 cur_bit = ((u32)0x1 << i);
4323                 if (sig & cur_bit) {
4324                         switch (cur_bit) {
4325                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4326                                 if (print)
4327                                         _print_next_block(par_num++, "PBF");
4328                                 break;
4329                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4330                                 if (print)
4331                                         _print_next_block(par_num++, "QM");
4332                                 break;
4333                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4334                                 if (print)
4335                                         _print_next_block(par_num++, "TM");
4336                                 break;
4337                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4338                                 if (print)
4339                                         _print_next_block(par_num++, "XSDM");
4340                                 break;
4341                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4342                                 if (print)
4343                                         _print_next_block(par_num++, "XCM");
4344                                 break;
4345                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4346                                 if (print)
4347                                         _print_next_block(par_num++, "XSEMI");
4348                                 break;
4349                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4350                                 if (print)
4351                                         _print_next_block(par_num++,
4352                                                           "DOORBELLQ");
4353                                 break;
4354                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4355                                 if (print)
4356                                         _print_next_block(par_num++, "NIG");
4357                                 break;
4358                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4359                                 if (print)
4360                                         _print_next_block(par_num++,
4361                                                           "VAUX PCI CORE");
4362                                 *global = true;
4363                                 break;
4364                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4365                                 if (print)
4366                                         _print_next_block(par_num++, "DEBUG");
4367                                 break;
4368                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4369                                 if (print)
4370                                         _print_next_block(par_num++, "USDM");
4371                                 break;
4372                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4373                                 if (print)
4374                                         _print_next_block(par_num++, "UCM");
4375                                 break;
4376                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4377                                 if (print)
4378                                         _print_next_block(par_num++, "USEMI");
4379                                 break;
4380                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4381                                 if (print)
4382                                         _print_next_block(par_num++, "UPB");
4383                                 break;
4384                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4385                                 if (print)
4386                                         _print_next_block(par_num++, "CSDM");
4387                                 break;
4388                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4389                                 if (print)
4390                                         _print_next_block(par_num++, "CCM");
4391                                 break;
4392                         }
4393
4394                         /* Clear the bit */
4395                         sig &= ~cur_bit;
4396                 }
4397         }
4398
4399         return par_num;
4400 }
4401
4402 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4403                                            bool print)
4404 {
4405         int i = 0;
4406         u32 cur_bit = 0;
4407         for (i = 0; sig; i++) {
4408                 cur_bit = ((u32)0x1 << i);
4409                 if (sig & cur_bit) {
4410                         switch (cur_bit) {
4411                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4412                                 if (print)
4413                                         _print_next_block(par_num++, "CSEMI");
4414                                 break;
4415                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4416                                 if (print)
4417                                         _print_next_block(par_num++, "PXP");
4418                                 break;
4419                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4420                                 if (print)
4421                                         _print_next_block(par_num++,
4422                                         "PXPPCICLOCKCLIENT");
4423                                 break;
4424                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4425                                 if (print)
4426                                         _print_next_block(par_num++, "CFC");
4427                                 break;
4428                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4429                                 if (print)
4430                                         _print_next_block(par_num++, "CDU");
4431                                 break;
4432                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4433                                 if (print)
4434                                         _print_next_block(par_num++, "DMAE");
4435                                 break;
4436                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4437                                 if (print)
4438                                         _print_next_block(par_num++, "IGU");
4439                                 break;
4440                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4441                                 if (print)
4442                                         _print_next_block(par_num++, "MISC");
4443                                 break;
4444                         }
4445
4446                         /* Clear the bit */
4447                         sig &= ~cur_bit;
4448                 }
4449         }
4450
4451         return par_num;
4452 }
4453
4454 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4455                                            bool *global, bool print)
4456 {
4457         int i = 0;
4458         u32 cur_bit = 0;
4459         for (i = 0; sig; i++) {
4460                 cur_bit = ((u32)0x1 << i);
4461                 if (sig & cur_bit) {
4462                         switch (cur_bit) {
4463                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4464                                 if (print)
4465                                         _print_next_block(par_num++, "MCP ROM");
4466                                 *global = true;
4467                                 break;
4468                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4469                                 if (print)
4470                                         _print_next_block(par_num++,
4471                                                           "MCP UMP RX");
4472                                 *global = true;
4473                                 break;
4474                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4475                                 if (print)
4476                                         _print_next_block(par_num++,
4477                                                           "MCP UMP TX");
4478                                 *global = true;
4479                                 break;
4480                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4481                                 if (print)
4482                                         _print_next_block(par_num++,
4483                                                           "MCP SCPAD");
4484                                 *global = true;
4485                                 break;
4486                         }
4487
4488                         /* Clear the bit */
4489                         sig &= ~cur_bit;
4490                 }
4491         }
4492
4493         return par_num;
4494 }
4495
4496 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4497                                            bool print)
4498 {
4499         int i = 0;
4500         u32 cur_bit = 0;
4501         for (i = 0; sig; i++) {
4502                 cur_bit = ((u32)0x1 << i);
4503                 if (sig & cur_bit) {
4504                         switch (cur_bit) {
4505                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4506                                 if (print)
4507                                         _print_next_block(par_num++, "PGLUE_B");
4508                                 break;
4509                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4510                                 if (print)
4511                                         _print_next_block(par_num++, "ATC");
4512                                 break;
4513                         }
4514
4515                         /* Clear the bit */
4516                         sig &= ~cur_bit;
4517                 }
4518         }
4519
4520         return par_num;
4521 }
4522
4523 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4524                               u32 *sig)
4525 {
4526         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4527             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4528             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4529             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4530             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4531                 int par_num = 0;
4532                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4533                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4534                           sig[0] & HW_PRTY_ASSERT_SET_0,
4535                           sig[1] & HW_PRTY_ASSERT_SET_1,
4536                           sig[2] & HW_PRTY_ASSERT_SET_2,
4537                           sig[3] & HW_PRTY_ASSERT_SET_3,
4538                           sig[4] & HW_PRTY_ASSERT_SET_4);
4539                 if (print)
4540                         netdev_err(bp->dev,
4541                                    "Parity errors detected in blocks: ");
4542                 par_num = bnx2x_check_blocks_with_parity0(
4543                         sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4544                 par_num = bnx2x_check_blocks_with_parity1(
4545                         sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4546                 par_num = bnx2x_check_blocks_with_parity2(
4547                         sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4548                 par_num = bnx2x_check_blocks_with_parity3(
4549                         sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4550                 par_num = bnx2x_check_blocks_with_parity4(
4551                         sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4552
4553                 if (print)
4554                         pr_cont("\n");
4555
4556                 return true;
4557         } else
4558                 return false;
4559 }
4560
4561 /**
4562  * bnx2x_chk_parity_attn - checks for parity attentions.
4563  *
4564  * @bp:         driver handle
4565  * @global:     true if there was a global attention
4566  * @print:      show parity attention in syslog
4567  */
4568 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4569 {
4570         struct attn_route attn = { {0} };
4571         int port = BP_PORT(bp);
4572
4573         attn.sig[0] = REG_RD(bp,
4574                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4575                              port*4);
4576         attn.sig[1] = REG_RD(bp,
4577                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4578                              port*4);
4579         attn.sig[2] = REG_RD(bp,
4580                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4581                              port*4);
4582         attn.sig[3] = REG_RD(bp,
4583                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4584                              port*4);
4585
4586         if (!CHIP_IS_E1x(bp))
4587                 attn.sig[4] = REG_RD(bp,
4588                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4589                                      port*4);
4590
4591         return bnx2x_parity_attn(bp, global, print, attn.sig);
4592 }
4593
4594
4595 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4596 {
4597         u32 val;
4598         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4599
4600                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4601                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4602                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4603                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4604                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4605                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4606                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4607                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4608                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4609                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4610                 if (val &
4611                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4612                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4613                 if (val &
4614                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4615                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4616                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4617                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4618                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4619                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4620                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4621                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4622         }
4623         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4624                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4625                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4626                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4627                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4628                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4629                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4630                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4631                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4632                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4633                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4634                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4635                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4636                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4637                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4638         }
4639
4640         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4641                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4642                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4643                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4644                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4645         }
4646
4647 }
4648
4649 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4650 {
4651         struct attn_route attn, *group_mask;
4652         int port = BP_PORT(bp);
4653         int index;
4654         u32 reg_addr;
4655         u32 val;
4656         u32 aeu_mask;
4657         bool global = false;
4658
4659         /* need to take HW lock because MCP or other port might also
4660            try to handle this event */
4661         bnx2x_acquire_alr(bp);
4662
4663         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4664 #ifndef BNX2X_STOP_ON_ERROR
4665                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4666                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4667                 /* Disable HW interrupts */
4668                 bnx2x_int_disable(bp);
4669                 /* In case of parity errors don't handle attentions so that
4670                  * other function would "see" parity errors.
4671                  */
4672 #else
4673                 bnx2x_panic();
4674 #endif
4675                 bnx2x_release_alr(bp);
4676                 return;
4677         }
4678
4679         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4680         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4681         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4682         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4683         if (!CHIP_IS_E1x(bp))
4684                 attn.sig[4] =
4685                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4686         else
4687                 attn.sig[4] = 0;
4688
4689         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4690            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4691
4692         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4693                 if (deasserted & (1 << index)) {
4694                         group_mask = &bp->attn_group[index];
4695
4696                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4697                            index,
4698                            group_mask->sig[0], group_mask->sig[1],
4699                            group_mask->sig[2], group_mask->sig[3],
4700                            group_mask->sig[4]);
4701
4702                         bnx2x_attn_int_deasserted4(bp,
4703                                         attn.sig[4] & group_mask->sig[4]);
4704                         bnx2x_attn_int_deasserted3(bp,
4705                                         attn.sig[3] & group_mask->sig[3]);
4706                         bnx2x_attn_int_deasserted1(bp,
4707                                         attn.sig[1] & group_mask->sig[1]);
4708                         bnx2x_attn_int_deasserted2(bp,
4709                                         attn.sig[2] & group_mask->sig[2]);
4710                         bnx2x_attn_int_deasserted0(bp,
4711                                         attn.sig[0] & group_mask->sig[0]);
4712                 }
4713         }
4714
4715         bnx2x_release_alr(bp);
4716
4717         if (bp->common.int_block == INT_BLOCK_HC)
4718                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4719                             COMMAND_REG_ATTN_BITS_CLR);
4720         else
4721                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4722
4723         val = ~deasserted;
4724         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4725            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4726         REG_WR(bp, reg_addr, val);
4727
4728         if (~bp->attn_state & deasserted)
4729                 BNX2X_ERR("IGU ERROR\n");
4730
4731         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4732                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
4733
4734         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4735         aeu_mask = REG_RD(bp, reg_addr);
4736
4737         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4738            aeu_mask, deasserted);
4739         aeu_mask |= (deasserted & 0x3ff);
4740         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4741
4742         REG_WR(bp, reg_addr, aeu_mask);
4743         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4744
4745         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4746         bp->attn_state &= ~deasserted;
4747         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4748 }
4749
4750 static void bnx2x_attn_int(struct bnx2x *bp)
4751 {
4752         /* read local copy of bits */
4753         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4754                                                                 attn_bits);
4755         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4756                                                                 attn_bits_ack);
4757         u32 attn_state = bp->attn_state;
4758
4759         /* look for changed bits */
4760         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4761         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4762
4763         DP(NETIF_MSG_HW,
4764            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4765            attn_bits, attn_ack, asserted, deasserted);
4766
4767         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4768                 BNX2X_ERR("BAD attention state\n");
4769
4770         /* handle bits that were raised */
4771         if (asserted)
4772                 bnx2x_attn_int_asserted(bp, asserted);
4773
4774         if (deasserted)
4775                 bnx2x_attn_int_deasserted(bp, deasserted);
4776 }
4777
4778 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4779                       u16 index, u8 op, u8 update)
4780 {
4781         u32 igu_addr = bp->igu_base_addr;
4782         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4783         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4784                              igu_addr);
4785 }
4786
4787 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4788 {
4789         /* No memory barriers */
4790         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4791         mmiowb(); /* keep prod updates ordered */
4792 }
4793
4794 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4795                                       union event_ring_elem *elem)
4796 {
4797         u8 err = elem->message.error;
4798
4799         if (!bp->cnic_eth_dev.starting_cid  ||
4800             (cid < bp->cnic_eth_dev.starting_cid &&
4801             cid != bp->cnic_eth_dev.iscsi_l2_cid))
4802                 return 1;
4803
4804         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4805
4806         if (unlikely(err)) {
4807
4808                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4809                           cid);
4810                 bnx2x_panic_dump(bp, false);
4811         }
4812         bnx2x_cnic_cfc_comp(bp, cid, err);
4813         return 0;
4814 }
4815
4816 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4817 {
4818         struct bnx2x_mcast_ramrod_params rparam;
4819         int rc;
4820
4821         memset(&rparam, 0, sizeof(rparam));
4822
4823         rparam.mcast_obj = &bp->mcast_obj;
4824
4825         netif_addr_lock_bh(bp->dev);
4826
4827         /* Clear pending state for the last command */
4828         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4829
4830         /* If there are pending mcast commands - send them */
4831         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4832                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4833                 if (rc < 0)
4834                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4835                                   rc);
4836         }
4837
4838         netif_addr_unlock_bh(bp->dev);
4839 }
4840
4841 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4842                                             union event_ring_elem *elem)
4843 {
4844         unsigned long ramrod_flags = 0;
4845         int rc = 0;
4846         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4847         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4848
4849         /* Always push next commands out, don't wait here */
4850         __set_bit(RAMROD_CONT, &ramrod_flags);
4851
4852         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4853                             >> BNX2X_SWCID_SHIFT) {
4854         case BNX2X_FILTER_MAC_PENDING:
4855                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4856                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4857                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4858                 else
4859                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4860
4861                 break;
4862         case BNX2X_FILTER_MCAST_PENDING:
4863                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4864                 /* This is only relevant for 57710 where multicast MACs are
4865                  * configured as unicast MACs using the same ramrod.
4866                  */
4867                 bnx2x_handle_mcast_eqe(bp);
4868                 return;
4869         default:
4870                 BNX2X_ERR("Unsupported classification command: %d\n",
4871                           elem->message.data.eth_event.echo);
4872                 return;
4873         }
4874
4875         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4876
4877         if (rc < 0)
4878                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4879         else if (rc > 0)
4880                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4881
4882 }
4883
4884 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4885
4886 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4887 {
4888         netif_addr_lock_bh(bp->dev);
4889
4890         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4891
4892         /* Send rx_mode command again if was requested */
4893         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4894                 bnx2x_set_storm_rx_mode(bp);
4895         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4896                                     &bp->sp_state))
4897                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4898         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4899                                     &bp->sp_state))
4900                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4901
4902         netif_addr_unlock_bh(bp->dev);
4903 }
4904
4905 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
4906                                               union event_ring_elem *elem)
4907 {
4908         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
4909                 DP(BNX2X_MSG_SP,
4910                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
4911                    elem->message.data.vif_list_event.func_bit_map);
4912                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
4913                         elem->message.data.vif_list_event.func_bit_map);
4914         } else if (elem->message.data.vif_list_event.echo ==
4915                    VIF_LIST_RULE_SET) {
4916                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
4917                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
4918         }
4919 }
4920
4921 /* called with rtnl_lock */
4922 static void bnx2x_after_function_update(struct bnx2x *bp)
4923 {
4924         int q, rc;
4925         struct bnx2x_fastpath *fp;
4926         struct bnx2x_queue_state_params queue_params = {NULL};
4927         struct bnx2x_queue_update_params *q_update_params =
4928                 &queue_params.params.update;
4929
4930         /* Send Q update command with afex vlan removal values for all Qs */
4931         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
4932
4933         /* set silent vlan removal values according to vlan mode */
4934         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4935                   &q_update_params->update_flags);
4936         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
4937                   &q_update_params->update_flags);
4938         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4939
4940         /* in access mode mark mask and value are 0 to strip all vlans */
4941         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
4942                 q_update_params->silent_removal_value = 0;
4943                 q_update_params->silent_removal_mask = 0;
4944         } else {
4945                 q_update_params->silent_removal_value =
4946                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
4947                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
4948         }
4949
4950         for_each_eth_queue(bp, q) {
4951                 /* Set the appropriate Queue object */
4952                 fp = &bp->fp[q];
4953                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4954
4955                 /* send the ramrod */
4956                 rc = bnx2x_queue_state_change(bp, &queue_params);
4957                 if (rc < 0)
4958                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4959                                   q);
4960         }
4961
4962         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
4963                 fp = &bp->fp[FCOE_IDX(bp)];
4964                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4965
4966                 /* clear pending completion bit */
4967                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4968
4969                 /* mark latest Q bit */
4970                 smp_mb__before_clear_bit();
4971                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
4972                 smp_mb__after_clear_bit();
4973
4974                 /* send Q update ramrod for FCoE Q */
4975                 rc = bnx2x_queue_state_change(bp, &queue_params);
4976                 if (rc < 0)
4977                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4978                                   q);
4979         } else {
4980                 /* If no FCoE ring - ACK MCP now */
4981                 bnx2x_link_report(bp);
4982                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4983         }
4984 }
4985
4986 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4987         struct bnx2x *bp, u32 cid)
4988 {
4989         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4990
4991         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
4992                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
4993         else
4994                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
4995 }
4996
4997 static void bnx2x_eq_int(struct bnx2x *bp)
4998 {
4999         u16 hw_cons, sw_cons, sw_prod;
5000         union event_ring_elem *elem;
5001         u8 echo;
5002         u32 cid;
5003         u8 opcode;
5004         int rc, spqe_cnt = 0;
5005         struct bnx2x_queue_sp_obj *q_obj;
5006         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5007         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5008
5009         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5010
5011         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5012          * when we get the the next-page we nned to adjust so the loop
5013          * condition below will be met. The next element is the size of a
5014          * regular element and hence incrementing by 1
5015          */
5016         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5017                 hw_cons++;
5018
5019         /* This function may never run in parallel with itself for a
5020          * specific bp, thus there is no need in "paired" read memory
5021          * barrier here.
5022          */
5023         sw_cons = bp->eq_cons;
5024         sw_prod = bp->eq_prod;
5025
5026         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5027                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5028
5029         for (; sw_cons != hw_cons;
5030               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5031
5032                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5033
5034                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5035                 if (!rc) {
5036                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5037                            rc);
5038                         goto next_spqe;
5039                 }
5040
5041                 /* elem CID originates from FW; actually LE */
5042                 cid = SW_CID((__force __le32)
5043                              elem->message.data.cfc_del_event.cid);
5044                 opcode = elem->message.opcode;
5045
5046                 /* handle eq element */
5047                 switch (opcode) {
5048                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5049                         DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5050                         bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5051                         continue;
5052
5053                 case EVENT_RING_OPCODE_STAT_QUERY:
5054                         DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5055                            "got statistics comp event %d\n",
5056                            bp->stats_comp++);
5057                         /* nothing to do with stats comp */
5058                         goto next_spqe;
5059
5060                 case EVENT_RING_OPCODE_CFC_DEL:
5061                         /* handle according to cid range */
5062                         /*
5063                          * we may want to verify here that the bp state is
5064                          * HALTING
5065                          */
5066                         DP(BNX2X_MSG_SP,
5067                            "got delete ramrod for MULTI[%d]\n", cid);
5068
5069                         if (CNIC_LOADED(bp) &&
5070                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5071                                 goto next_spqe;
5072
5073                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5074
5075                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5076                                 break;
5077
5078
5079
5080                         goto next_spqe;
5081
5082                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5083                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5084                         if (f_obj->complete_cmd(bp, f_obj,
5085                                                 BNX2X_F_CMD_TX_STOP))
5086                                 break;
5087                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5088                         goto next_spqe;
5089
5090                 case EVENT_RING_OPCODE_START_TRAFFIC:
5091                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5092                         if (f_obj->complete_cmd(bp, f_obj,
5093                                                 BNX2X_F_CMD_TX_START))
5094                                 break;
5095                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5096                         goto next_spqe;
5097
5098                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5099                         echo = elem->message.data.function_update_event.echo;
5100                         if (echo == SWITCH_UPDATE) {
5101                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5102                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5103                                 if (f_obj->complete_cmd(
5104                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5105                                         break;
5106
5107                         } else {
5108                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5109                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5110                                 f_obj->complete_cmd(bp, f_obj,
5111                                                     BNX2X_F_CMD_AFEX_UPDATE);
5112
5113                                 /* We will perform the Queues update from
5114                                  * sp_rtnl task as all Queue SP operations
5115                                  * should run under rtnl_lock.
5116                                  */
5117                                 smp_mb__before_clear_bit();
5118                                 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5119                                         &bp->sp_rtnl_state);
5120                                 smp_mb__after_clear_bit();
5121
5122                                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5123                         }
5124
5125                         goto next_spqe;
5126
5127                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5128                         f_obj->complete_cmd(bp, f_obj,
5129                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5130                         bnx2x_after_afex_vif_lists(bp, elem);
5131                         goto next_spqe;
5132                 case EVENT_RING_OPCODE_FUNCTION_START:
5133                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5134                            "got FUNC_START ramrod\n");
5135                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5136                                 break;
5137
5138                         goto next_spqe;
5139
5140                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5141                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5142                            "got FUNC_STOP ramrod\n");
5143                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5144                                 break;
5145
5146                         goto next_spqe;
5147                 }
5148
5149                 switch (opcode | bp->state) {
5150                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5151                       BNX2X_STATE_OPEN):
5152                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5153                       BNX2X_STATE_OPENING_WAIT4_PORT):
5154                         cid = elem->message.data.eth_event.echo &
5155                                 BNX2X_SWCID_MASK;
5156                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5157                            cid);
5158                         rss_raw->clear_pending(rss_raw);
5159                         break;
5160
5161                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5162                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5163                 case (EVENT_RING_OPCODE_SET_MAC |
5164                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5165                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5166                       BNX2X_STATE_OPEN):
5167                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5168                       BNX2X_STATE_DIAG):
5169                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5170                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5171                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5172                         bnx2x_handle_classification_eqe(bp, elem);
5173                         break;
5174
5175                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5176                       BNX2X_STATE_OPEN):
5177                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5178                       BNX2X_STATE_DIAG):
5179                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5180                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5181                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5182                         bnx2x_handle_mcast_eqe(bp);
5183                         break;
5184
5185                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5186                       BNX2X_STATE_OPEN):
5187                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5188                       BNX2X_STATE_DIAG):
5189                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5190                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5191                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5192                         bnx2x_handle_rx_mode_eqe(bp);
5193                         break;
5194                 default:
5195                         /* unknown event log error and continue */
5196                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5197                                   elem->message.opcode, bp->state);
5198                 }
5199 next_spqe:
5200                 spqe_cnt++;
5201         } /* for */
5202
5203         smp_mb__before_atomic_inc();
5204         atomic_add(spqe_cnt, &bp->eq_spq_left);
5205
5206         bp->eq_cons = sw_cons;
5207         bp->eq_prod = sw_prod;
5208         /* Make sure that above mem writes were issued towards the memory */
5209         smp_wmb();
5210
5211         /* update producer */
5212         bnx2x_update_eq_prod(bp, bp->eq_prod);
5213 }
5214
5215 static void bnx2x_sp_task(struct work_struct *work)
5216 {
5217         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5218
5219         DP(BNX2X_MSG_SP, "sp task invoked\n");
5220
5221         /* make sure the atomic interupt_occurred has been written */
5222         smp_rmb();
5223         if (atomic_read(&bp->interrupt_occurred)) {
5224
5225                 /* what work needs to be performed? */
5226                 u16 status = bnx2x_update_dsb_idx(bp);
5227
5228                 DP(BNX2X_MSG_SP, "status %x\n", status);
5229                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5230                 atomic_set(&bp->interrupt_occurred, 0);
5231
5232                 /* HW attentions */
5233                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5234                         bnx2x_attn_int(bp);
5235                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5236                 }
5237
5238                 /* SP events: STAT_QUERY and others */
5239                 if (status & BNX2X_DEF_SB_IDX) {
5240                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5241
5242                 if (FCOE_INIT(bp) &&
5243                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5244                                 /* Prevent local bottom-halves from running as
5245                                  * we are going to change the local NAPI list.
5246                                  */
5247                                 local_bh_disable();
5248                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5249                                 local_bh_enable();
5250                         }
5251
5252                         /* Handle EQ completions */
5253                         bnx2x_eq_int(bp);
5254                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5255                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5256
5257                         status &= ~BNX2X_DEF_SB_IDX;
5258                 }
5259
5260                 /* if status is non zero then perhaps something went wrong */
5261                 if (unlikely(status))
5262                         DP(BNX2X_MSG_SP,
5263                            "got an unknown interrupt! (status 0x%x)\n", status);
5264
5265                 /* ack status block only if something was actually handled */
5266                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5267                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5268
5269         }
5270
5271         /* must be called after the EQ processing (since eq leads to sriov
5272          * ramrod completion flows).
5273          * This flow may have been scheduled by the arrival of a ramrod
5274          * completion, or by the sriov code rescheduling itself.
5275          */
5276         bnx2x_iov_sp_task(bp);
5277
5278         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5279         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5280                                &bp->sp_state)) {
5281                 bnx2x_link_report(bp);
5282                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5283         }
5284 }
5285
5286 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5287 {
5288         struct net_device *dev = dev_instance;
5289         struct bnx2x *bp = netdev_priv(dev);
5290
5291         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5292                      IGU_INT_DISABLE, 0);
5293
5294 #ifdef BNX2X_STOP_ON_ERROR
5295         if (unlikely(bp->panic))
5296                 return IRQ_HANDLED;
5297 #endif
5298
5299         if (CNIC_LOADED(bp)) {
5300                 struct cnic_ops *c_ops;
5301
5302                 rcu_read_lock();
5303                 c_ops = rcu_dereference(bp->cnic_ops);
5304                 if (c_ops)
5305                         c_ops->cnic_handler(bp->cnic_data, NULL);
5306                 rcu_read_unlock();
5307         }
5308
5309         /* schedule sp task to perform default status block work, ack
5310          * attentions and enable interrupts.
5311          */
5312         bnx2x_schedule_sp_task(bp);
5313
5314         return IRQ_HANDLED;
5315 }
5316
5317 /* end of slow path */
5318
5319
5320 void bnx2x_drv_pulse(struct bnx2x *bp)
5321 {
5322         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5323                  bp->fw_drv_pulse_wr_seq);
5324 }
5325
5326 static void bnx2x_timer(unsigned long data)
5327 {
5328         struct bnx2x *bp = (struct bnx2x *) data;
5329
5330         if (!netif_running(bp->dev))
5331                 return;
5332
5333         if (IS_PF(bp) &&
5334             !BP_NOMCP(bp)) {
5335                 int mb_idx = BP_FW_MB_IDX(bp);
5336                 u32 drv_pulse;
5337                 u32 mcp_pulse;
5338
5339                 ++bp->fw_drv_pulse_wr_seq;
5340                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5341                 /* TBD - add SYSTEM_TIME */
5342                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5343                 bnx2x_drv_pulse(bp);
5344
5345                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5346                              MCP_PULSE_SEQ_MASK);
5347                 /* The delta between driver pulse and mcp response
5348                  * should be 1 (before mcp response) or 0 (after mcp response)
5349                  */
5350                 if ((drv_pulse != mcp_pulse) &&
5351                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5352                         /* someone lost a heartbeat... */
5353                         BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5354                                   drv_pulse, mcp_pulse);
5355                 }
5356         }
5357
5358         if (bp->state == BNX2X_STATE_OPEN)
5359                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5360
5361         /* sample pf vf bulletin board for new posts from pf */
5362         if (IS_VF(bp))
5363                 bnx2x_sample_bulletin(bp);
5364
5365         mod_timer(&bp->timer, jiffies + bp->current_interval);
5366 }
5367
5368 /* end of Statistics */
5369
5370 /* nic init */
5371
5372 /*
5373  * nic init service functions
5374  */
5375
5376 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5377 {
5378         u32 i;
5379         if (!(len%4) && !(addr%4))
5380                 for (i = 0; i < len; i += 4)
5381                         REG_WR(bp, addr + i, fill);
5382         else
5383                 for (i = 0; i < len; i++)
5384                         REG_WR8(bp, addr + i, fill);
5385
5386 }
5387
5388 /* helper: writes FP SP data to FW - data_size in dwords */
5389 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5390                                 int fw_sb_id,
5391                                 u32 *sb_data_p,
5392                                 u32 data_size)
5393 {
5394         int index;
5395         for (index = 0; index < data_size; index++)
5396                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5397                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5398                         sizeof(u32)*index,
5399                         *(sb_data_p + index));
5400 }
5401
5402 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5403 {
5404         u32 *sb_data_p;
5405         u32 data_size = 0;
5406         struct hc_status_block_data_e2 sb_data_e2;
5407         struct hc_status_block_data_e1x sb_data_e1x;
5408
5409         /* disable the function first */
5410         if (!CHIP_IS_E1x(bp)) {
5411                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5412                 sb_data_e2.common.state = SB_DISABLED;
5413                 sb_data_e2.common.p_func.vf_valid = false;
5414                 sb_data_p = (u32 *)&sb_data_e2;
5415                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5416         } else {
5417                 memset(&sb_data_e1x, 0,
5418                        sizeof(struct hc_status_block_data_e1x));
5419                 sb_data_e1x.common.state = SB_DISABLED;
5420                 sb_data_e1x.common.p_func.vf_valid = false;
5421                 sb_data_p = (u32 *)&sb_data_e1x;
5422                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5423         }
5424         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5425
5426         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5427                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5428                         CSTORM_STATUS_BLOCK_SIZE);
5429         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5430                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5431                         CSTORM_SYNC_BLOCK_SIZE);
5432 }
5433
5434 /* helper:  writes SP SB data to FW */
5435 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5436                 struct hc_sp_status_block_data *sp_sb_data)
5437 {
5438         int func = BP_FUNC(bp);
5439         int i;
5440         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5441                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5442                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5443                         i*sizeof(u32),
5444                         *((u32 *)sp_sb_data + i));
5445 }
5446
5447 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5448 {
5449         int func = BP_FUNC(bp);
5450         struct hc_sp_status_block_data sp_sb_data;
5451         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5452
5453         sp_sb_data.state = SB_DISABLED;
5454         sp_sb_data.p_func.vf_valid = false;
5455
5456         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5457
5458         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5459                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5460                         CSTORM_SP_STATUS_BLOCK_SIZE);
5461         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5462                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5463                         CSTORM_SP_SYNC_BLOCK_SIZE);
5464
5465 }
5466
5467
5468 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5469                                            int igu_sb_id, int igu_seg_id)
5470 {
5471         hc_sm->igu_sb_id = igu_sb_id;
5472         hc_sm->igu_seg_id = igu_seg_id;
5473         hc_sm->timer_value = 0xFF;
5474         hc_sm->time_to_expire = 0xFFFFFFFF;
5475 }
5476
5477
5478 /* allocates state machine ids. */
5479 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5480 {
5481         /* zero out state machine indices */
5482         /* rx indices */
5483         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5484
5485         /* tx indices */
5486         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5487         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5488         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5489         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5490
5491         /* map indices */
5492         /* rx indices */
5493         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5494                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5495
5496         /* tx indices */
5497         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5498                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5499         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5500                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5501         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5502                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5503         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5504                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5505 }
5506
5507 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5508                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5509 {
5510         int igu_seg_id;
5511
5512         struct hc_status_block_data_e2 sb_data_e2;
5513         struct hc_status_block_data_e1x sb_data_e1x;
5514         struct hc_status_block_sm  *hc_sm_p;
5515         int data_size;
5516         u32 *sb_data_p;
5517
5518         if (CHIP_INT_MODE_IS_BC(bp))
5519                 igu_seg_id = HC_SEG_ACCESS_NORM;
5520         else
5521                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5522
5523         bnx2x_zero_fp_sb(bp, fw_sb_id);
5524
5525         if (!CHIP_IS_E1x(bp)) {
5526                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5527                 sb_data_e2.common.state = SB_ENABLED;
5528                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5529                 sb_data_e2.common.p_func.vf_id = vfid;
5530                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5531                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5532                 sb_data_e2.common.same_igu_sb_1b = true;
5533                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5534                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5535                 hc_sm_p = sb_data_e2.common.state_machine;
5536                 sb_data_p = (u32 *)&sb_data_e2;
5537                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5538                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5539         } else {
5540                 memset(&sb_data_e1x, 0,
5541                        sizeof(struct hc_status_block_data_e1x));
5542                 sb_data_e1x.common.state = SB_ENABLED;
5543                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5544                 sb_data_e1x.common.p_func.vf_id = 0xff;
5545                 sb_data_e1x.common.p_func.vf_valid = false;
5546                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5547                 sb_data_e1x.common.same_igu_sb_1b = true;
5548                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5549                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5550                 hc_sm_p = sb_data_e1x.common.state_machine;
5551                 sb_data_p = (u32 *)&sb_data_e1x;
5552                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5553                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5554         }
5555
5556         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5557                                        igu_sb_id, igu_seg_id);
5558         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5559                                        igu_sb_id, igu_seg_id);
5560
5561         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5562
5563         /* write indices to HW - PCI guarantees endianity of regpairs */
5564         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5565 }
5566
5567 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5568                                      u16 tx_usec, u16 rx_usec)
5569 {
5570         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5571                                     false, rx_usec);
5572         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5573                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5574                                        tx_usec);
5575         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5576                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5577                                        tx_usec);
5578         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5579                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5580                                        tx_usec);
5581 }
5582
5583 static void bnx2x_init_def_sb(struct bnx2x *bp)
5584 {
5585         struct host_sp_status_block *def_sb = bp->def_status_blk;
5586         dma_addr_t mapping = bp->def_status_blk_mapping;
5587         int igu_sp_sb_index;
5588         int igu_seg_id;
5589         int port = BP_PORT(bp);
5590         int func = BP_FUNC(bp);
5591         int reg_offset, reg_offset_en5;
5592         u64 section;
5593         int index;
5594         struct hc_sp_status_block_data sp_sb_data;
5595         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5596
5597         if (CHIP_INT_MODE_IS_BC(bp)) {
5598                 igu_sp_sb_index = DEF_SB_IGU_ID;
5599                 igu_seg_id = HC_SEG_ACCESS_DEF;
5600         } else {
5601                 igu_sp_sb_index = bp->igu_dsb_id;
5602                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5603         }
5604
5605         /* ATTN */
5606         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5607                                             atten_status_block);
5608         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5609
5610         bp->attn_state = 0;
5611
5612         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5613                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5614         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5615                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5616         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5617                 int sindex;
5618                 /* take care of sig[0]..sig[4] */
5619                 for (sindex = 0; sindex < 4; sindex++)
5620                         bp->attn_group[index].sig[sindex] =
5621                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5622
5623                 if (!CHIP_IS_E1x(bp))
5624                         /*
5625                          * enable5 is separate from the rest of the registers,
5626                          * and therefore the address skip is 4
5627                          * and not 16 between the different groups
5628                          */
5629                         bp->attn_group[index].sig[4] = REG_RD(bp,
5630                                         reg_offset_en5 + 0x4*index);
5631                 else
5632                         bp->attn_group[index].sig[4] = 0;
5633         }
5634
5635         if (bp->common.int_block == INT_BLOCK_HC) {
5636                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5637                                      HC_REG_ATTN_MSG0_ADDR_L);
5638
5639                 REG_WR(bp, reg_offset, U64_LO(section));
5640                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5641         } else if (!CHIP_IS_E1x(bp)) {
5642                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5643                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5644         }
5645
5646         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5647                                             sp_sb);
5648
5649         bnx2x_zero_sp_sb(bp);
5650
5651         /* PCI guarantees endianity of regpairs */
5652         sp_sb_data.state                = SB_ENABLED;
5653         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5654         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5655         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5656         sp_sb_data.igu_seg_id           = igu_seg_id;
5657         sp_sb_data.p_func.pf_id         = func;
5658         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5659         sp_sb_data.p_func.vf_id         = 0xff;
5660
5661         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5662
5663         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5664 }
5665
5666 void bnx2x_update_coalesce(struct bnx2x *bp)
5667 {
5668         int i;
5669
5670         for_each_eth_queue(bp, i)
5671                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5672                                          bp->tx_ticks, bp->rx_ticks);
5673 }
5674
5675 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5676 {
5677         spin_lock_init(&bp->spq_lock);
5678         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5679
5680         bp->spq_prod_idx = 0;
5681         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5682         bp->spq_prod_bd = bp->spq;
5683         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5684 }
5685
5686 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5687 {
5688         int i;
5689         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5690                 union event_ring_elem *elem =
5691                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5692
5693                 elem->next_page.addr.hi =
5694                         cpu_to_le32(U64_HI(bp->eq_mapping +
5695                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5696                 elem->next_page.addr.lo =
5697                         cpu_to_le32(U64_LO(bp->eq_mapping +
5698                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5699         }
5700         bp->eq_cons = 0;
5701         bp->eq_prod = NUM_EQ_DESC;
5702         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5703         /* we want a warning message before it gets rought... */
5704         atomic_set(&bp->eq_spq_left,
5705                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5706 }
5707
5708 /* called with netif_addr_lock_bh() */
5709 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5710                         unsigned long rx_mode_flags,
5711                         unsigned long rx_accept_flags,
5712                         unsigned long tx_accept_flags,
5713                         unsigned long ramrod_flags)
5714 {
5715         struct bnx2x_rx_mode_ramrod_params ramrod_param;
5716         int rc;
5717
5718         memset(&ramrod_param, 0, sizeof(ramrod_param));
5719
5720         /* Prepare ramrod parameters */
5721         ramrod_param.cid = 0;
5722         ramrod_param.cl_id = cl_id;
5723         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5724         ramrod_param.func_id = BP_FUNC(bp);
5725
5726         ramrod_param.pstate = &bp->sp_state;
5727         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5728
5729         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5730         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5731
5732         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5733
5734         ramrod_param.ramrod_flags = ramrod_flags;
5735         ramrod_param.rx_mode_flags = rx_mode_flags;
5736
5737         ramrod_param.rx_accept_flags = rx_accept_flags;
5738         ramrod_param.tx_accept_flags = tx_accept_flags;
5739
5740         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5741         if (rc < 0) {
5742                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5743                 return rc;
5744         }
5745
5746         return 0;
5747 }
5748
5749 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5750                                    unsigned long *rx_accept_flags,
5751                                    unsigned long *tx_accept_flags)
5752 {
5753         /* Clear the flags first */
5754         *rx_accept_flags = 0;
5755         *tx_accept_flags = 0;
5756
5757         switch (rx_mode) {
5758         case BNX2X_RX_MODE_NONE:
5759                 /*
5760                  * 'drop all' supersedes any accept flags that may have been
5761                  * passed to the function.
5762                  */
5763                 break;
5764         case BNX2X_RX_MODE_NORMAL:
5765                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5766                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5767                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5768
5769                 /* internal switching mode */
5770                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5771                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5772                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5773
5774                 break;
5775         case BNX2X_RX_MODE_ALLMULTI:
5776                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5777                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5778                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5779
5780                 /* internal switching mode */
5781                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5782                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5783                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5784
5785                 break;
5786         case BNX2X_RX_MODE_PROMISC:
5787                 /* According to deffinition of SI mode, iface in promisc mode
5788                  * should receive matched and unmatched (in resolution of port)
5789                  * unicast packets.
5790                  */
5791                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5792                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5793                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5794                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5795
5796                 /* internal switching mode */
5797                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5798                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5799
5800                 if (IS_MF_SI(bp))
5801                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5802                 else
5803                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5804
5805                 break;
5806         default:
5807                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5808                 return -EINVAL;
5809         }
5810
5811         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5812         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5813                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5814                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5815         }
5816
5817         return 0;
5818 }
5819
5820 /* called with netif_addr_lock_bh() */
5821 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5822 {
5823         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5824         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5825         int rc;
5826
5827         if (!NO_FCOE(bp))
5828                 /* Configure rx_mode of FCoE Queue */
5829                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5830
5831         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5832                                      &tx_accept_flags);
5833         if (rc)
5834                 return rc;
5835
5836         __set_bit(RAMROD_RX, &ramrod_flags);
5837         __set_bit(RAMROD_TX, &ramrod_flags);
5838
5839         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5840                                    rx_accept_flags, tx_accept_flags,
5841                                    ramrod_flags);
5842 }
5843
5844 static void bnx2x_init_internal_common(struct bnx2x *bp)
5845 {
5846         int i;
5847
5848         if (IS_MF_SI(bp))
5849                 /*
5850                  * In switch independent mode, the TSTORM needs to accept
5851                  * packets that failed classification, since approximate match
5852                  * mac addresses aren't written to NIG LLH
5853                  */
5854                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5855                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5856         else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5857                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5858                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5859
5860         /* Zero this manually as its initialization is
5861            currently missing in the initTool */
5862         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5863                 REG_WR(bp, BAR_USTRORM_INTMEM +
5864                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
5865         if (!CHIP_IS_E1x(bp)) {
5866                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5867                         CHIP_INT_MODE_IS_BC(bp) ?
5868                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5869         }
5870 }
5871
5872 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5873 {
5874         switch (load_code) {
5875         case FW_MSG_CODE_DRV_LOAD_COMMON:
5876         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5877                 bnx2x_init_internal_common(bp);
5878                 /* no break */
5879
5880         case FW_MSG_CODE_DRV_LOAD_PORT:
5881                 /* nothing to do */
5882                 /* no break */
5883
5884         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5885                 /* internal memory per function is
5886                    initialized inside bnx2x_pf_init */
5887                 break;
5888
5889         default:
5890                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5891                 break;
5892         }
5893 }
5894
5895 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5896 {
5897         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5898 }
5899
5900 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5901 {
5902         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
5903 }
5904
5905 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5906 {
5907         if (CHIP_IS_E1x(fp->bp))
5908                 return BP_L_ID(fp->bp) + fp->index;
5909         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
5910                 return bnx2x_fp_igu_sb_id(fp);
5911 }
5912
5913 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5914 {
5915         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5916         u8 cos;
5917         unsigned long q_type = 0;
5918         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5919         fp->rx_queue = fp_idx;
5920         fp->cid = fp_idx;
5921         fp->cl_id = bnx2x_fp_cl_id(fp);
5922         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5923         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5924         /* qZone id equals to FW (per path) client id */
5925         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5926
5927         /* init shortcut */
5928         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5929
5930         /* Setup SB indicies */
5931         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5932
5933         /* Configure Queue State object */
5934         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5935         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5936
5937         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5938
5939         /* init tx data */
5940         for_each_cos_in_tx_queue(fp, cos) {
5941                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
5942                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
5943                                   FP_COS_TO_TXQ(fp, cos, bp),
5944                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
5945                 cids[cos] = fp->txdata_ptr[cos]->cid;
5946         }
5947
5948         /* nothing more for vf to do here */
5949         if (IS_VF(bp))
5950                 return;
5951
5952         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5953                       fp->fw_sb_id, fp->igu_sb_id);
5954         bnx2x_update_fpsb_idx(fp);
5955         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
5956                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5957                              bnx2x_sp_mapping(bp, q_rdata), q_type);
5958
5959         /**
5960          * Configure classification DBs: Always enable Tx switching
5961          */
5962         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5963
5964         DP(NETIF_MSG_IFUP,
5965            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5966            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5967            fp->igu_sb_id);
5968 }
5969
5970 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
5971 {
5972         int i;
5973
5974         for (i = 1; i <= NUM_TX_RINGS; i++) {
5975                 struct eth_tx_next_bd *tx_next_bd =
5976                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
5977
5978                 tx_next_bd->addr_hi =
5979                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
5980                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5981                 tx_next_bd->addr_lo =
5982                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
5983                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5984         }
5985
5986         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
5987         txdata->tx_db.data.zero_fill1 = 0;
5988         txdata->tx_db.data.prod = 0;
5989
5990         txdata->tx_pkt_prod = 0;
5991         txdata->tx_pkt_cons = 0;
5992         txdata->tx_bd_prod = 0;
5993         txdata->tx_bd_cons = 0;
5994         txdata->tx_pkt = 0;
5995 }
5996
5997 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
5998 {
5999         int i;
6000
6001         for_each_tx_queue_cnic(bp, i)
6002                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6003 }
6004 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6005 {
6006         int i;
6007         u8 cos;
6008
6009         for_each_eth_queue(bp, i)
6010                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6011                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6012 }
6013
6014 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6015 {
6016         if (!NO_FCOE(bp))
6017                 bnx2x_init_fcoe_fp(bp);
6018
6019         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6020                       BNX2X_VF_ID_INVALID, false,
6021                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6022
6023         /* ensure status block indices were read */
6024         rmb();
6025         bnx2x_init_rx_rings_cnic(bp);
6026         bnx2x_init_tx_rings_cnic(bp);
6027
6028         /* flush all */
6029         mb();
6030         mmiowb();
6031 }
6032
6033 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6034 {
6035         int i;
6036
6037         /* Setup NIC internals and enable interrupts */
6038         for_each_eth_queue(bp, i)
6039                 bnx2x_init_eth_fp(bp, i);
6040
6041         /* ensure status block indices were read */
6042         rmb();
6043         bnx2x_init_rx_rings(bp);
6044         bnx2x_init_tx_rings(bp);
6045
6046         if (IS_VF(bp)) {
6047                 bnx2x_memset_stats(bp);
6048                 return;
6049         }
6050
6051         if (IS_PF(bp)) {
6052                 /* Initialize MOD_ABS interrupts */
6053                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6054                                        bp->common.shmem_base,
6055                                        bp->common.shmem2_base, BP_PORT(bp));
6056
6057                 /* initialize the default status block and sp ring */
6058                 bnx2x_init_def_sb(bp);
6059                 bnx2x_update_dsb_idx(bp);
6060                 bnx2x_init_sp_ring(bp);
6061         }
6062 }
6063
6064 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6065 {
6066         bnx2x_init_eq_ring(bp);
6067         bnx2x_init_internal(bp, load_code);
6068         bnx2x_pf_init(bp);
6069         bnx2x_stats_init(bp);
6070
6071         /* flush all before enabling interrupts */
6072         mb();
6073         mmiowb();
6074
6075         bnx2x_int_enable(bp);
6076
6077         /* Check for SPIO5 */
6078         bnx2x_attn_int_deasserted0(bp,
6079                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6080                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6081 }
6082
6083 /* gzip service functions */
6084 static int bnx2x_gunzip_init(struct bnx2x *bp)
6085 {
6086         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6087                                             &bp->gunzip_mapping, GFP_KERNEL);
6088         if (bp->gunzip_buf  == NULL)
6089                 goto gunzip_nomem1;
6090
6091         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6092         if (bp->strm  == NULL)
6093                 goto gunzip_nomem2;
6094
6095         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6096         if (bp->strm->workspace == NULL)
6097                 goto gunzip_nomem3;
6098
6099         return 0;
6100
6101 gunzip_nomem3:
6102         kfree(bp->strm);
6103         bp->strm = NULL;
6104
6105 gunzip_nomem2:
6106         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6107                           bp->gunzip_mapping);
6108         bp->gunzip_buf = NULL;
6109
6110 gunzip_nomem1:
6111         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6112         return -ENOMEM;
6113 }
6114
6115 static void bnx2x_gunzip_end(struct bnx2x *bp)
6116 {
6117         if (bp->strm) {
6118                 vfree(bp->strm->workspace);
6119                 kfree(bp->strm);
6120                 bp->strm = NULL;
6121         }
6122
6123         if (bp->gunzip_buf) {
6124                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6125                                   bp->gunzip_mapping);
6126                 bp->gunzip_buf = NULL;
6127         }
6128 }
6129
6130 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6131 {
6132         int n, rc;
6133
6134         /* check gzip header */
6135         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6136                 BNX2X_ERR("Bad gzip header\n");
6137                 return -EINVAL;
6138         }
6139
6140         n = 10;
6141
6142 #define FNAME                           0x8
6143
6144         if (zbuf[3] & FNAME)
6145                 while ((zbuf[n++] != 0) && (n < len));
6146
6147         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6148         bp->strm->avail_in = len - n;
6149         bp->strm->next_out = bp->gunzip_buf;
6150         bp->strm->avail_out = FW_BUF_SIZE;
6151
6152         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6153         if (rc != Z_OK)
6154                 return rc;
6155
6156         rc = zlib_inflate(bp->strm, Z_FINISH);
6157         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6158                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6159                            bp->strm->msg);
6160
6161         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6162         if (bp->gunzip_outlen & 0x3)
6163                 netdev_err(bp->dev,
6164                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6165                                 bp->gunzip_outlen);
6166         bp->gunzip_outlen >>= 2;
6167
6168         zlib_inflateEnd(bp->strm);
6169
6170         if (rc == Z_STREAM_END)
6171                 return 0;
6172
6173         return rc;
6174 }
6175
6176 /* nic load/unload */
6177
6178 /*
6179  * General service functions
6180  */
6181
6182 /* send a NIG loopback debug packet */
6183 static void bnx2x_lb_pckt(struct bnx2x *bp)
6184 {
6185         u32 wb_write[3];
6186
6187         /* Ethernet source and destination addresses */
6188         wb_write[0] = 0x55555555;
6189         wb_write[1] = 0x55555555;
6190         wb_write[2] = 0x20;             /* SOP */
6191         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6192
6193         /* NON-IP protocol */
6194         wb_write[0] = 0x09000000;
6195         wb_write[1] = 0x55555555;
6196         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6197         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6198 }
6199
6200 /* some of the internal memories
6201  * are not directly readable from the driver
6202  * to test them we send debug packets
6203  */
6204 static int bnx2x_int_mem_test(struct bnx2x *bp)
6205 {
6206         int factor;
6207         int count, i;
6208         u32 val = 0;
6209
6210         if (CHIP_REV_IS_FPGA(bp))
6211                 factor = 120;
6212         else if (CHIP_REV_IS_EMUL(bp))
6213                 factor = 200;
6214         else
6215                 factor = 1;
6216
6217         /* Disable inputs of parser neighbor blocks */
6218         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6219         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6220         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6221         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6222
6223         /*  Write 0 to parser credits for CFC search request */
6224         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6225
6226         /* send Ethernet packet */
6227         bnx2x_lb_pckt(bp);
6228
6229         /* TODO do i reset NIG statistic? */
6230         /* Wait until NIG register shows 1 packet of size 0x10 */
6231         count = 1000 * factor;
6232         while (count) {
6233
6234                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6235                 val = *bnx2x_sp(bp, wb_data[0]);
6236                 if (val == 0x10)
6237                         break;
6238
6239                 msleep(10);
6240                 count--;
6241         }
6242         if (val != 0x10) {
6243                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6244                 return -1;
6245         }
6246
6247         /* Wait until PRS register shows 1 packet */
6248         count = 1000 * factor;
6249         while (count) {
6250                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6251                 if (val == 1)
6252                         break;
6253
6254                 msleep(10);
6255                 count--;
6256         }
6257         if (val != 0x1) {
6258                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6259                 return -2;
6260         }
6261
6262         /* Reset and init BRB, PRS */
6263         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6264         msleep(50);
6265         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6266         msleep(50);
6267         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6268         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6269
6270         DP(NETIF_MSG_HW, "part2\n");
6271
6272         /* Disable inputs of parser neighbor blocks */
6273         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6274         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6275         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6276         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6277
6278         /* Write 0 to parser credits for CFC search request */
6279         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6280
6281         /* send 10 Ethernet packets */
6282         for (i = 0; i < 10; i++)
6283                 bnx2x_lb_pckt(bp);
6284
6285         /* Wait until NIG register shows 10 + 1
6286            packets of size 11*0x10 = 0xb0 */
6287         count = 1000 * factor;
6288         while (count) {
6289
6290                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6291                 val = *bnx2x_sp(bp, wb_data[0]);
6292                 if (val == 0xb0)
6293                         break;
6294
6295                 msleep(10);
6296                 count--;
6297         }
6298         if (val != 0xb0) {
6299                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6300                 return -3;
6301         }
6302
6303         /* Wait until PRS register shows 2 packets */
6304         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6305         if (val != 2)
6306                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6307
6308         /* Write 1 to parser credits for CFC search request */
6309         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6310
6311         /* Wait until PRS register shows 3 packets */
6312         msleep(10 * factor);
6313         /* Wait until NIG register shows 1 packet of size 0x10 */
6314         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6315         if (val != 3)
6316                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6317
6318         /* clear NIG EOP FIFO */
6319         for (i = 0; i < 11; i++)
6320                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6321         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6322         if (val != 1) {
6323                 BNX2X_ERR("clear of NIG failed\n");
6324                 return -4;
6325         }
6326
6327         /* Reset and init BRB, PRS, NIG */
6328         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6329         msleep(50);
6330         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6331         msleep(50);
6332         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6333         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6334         if (!CNIC_SUPPORT(bp))
6335                 /* set NIC mode */
6336                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6337
6338         /* Enable inputs of parser neighbor blocks */
6339         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6340         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6341         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6342         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6343
6344         DP(NETIF_MSG_HW, "done\n");
6345
6346         return 0; /* OK */
6347 }
6348
6349 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6350 {
6351         u32 val;
6352
6353         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6354         if (!CHIP_IS_E1x(bp))
6355                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6356         else
6357                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6358         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6359         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6360         /*
6361          * mask read length error interrupts in brb for parser
6362          * (parsing unit and 'checksum and crc' unit)
6363          * these errors are legal (PU reads fixed length and CAC can cause
6364          * read length error on truncated packets)
6365          */
6366         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6367         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6368         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6369         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6370         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6371         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6372 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6373 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6374         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6375         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6376         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6377 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6378 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6379         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6380         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6381         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6382         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6383 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6384 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6385
6386         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6387                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6388                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6389         if (!CHIP_IS_E1x(bp))
6390                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6391                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6392         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6393
6394         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6395         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6396         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6397 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6398
6399         if (!CHIP_IS_E1x(bp))
6400                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6401                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6402
6403         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6404         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6405 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6406         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6407 }
6408
6409 static void bnx2x_reset_common(struct bnx2x *bp)
6410 {
6411         u32 val = 0x1400;
6412
6413         /* reset_common */
6414         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6415                0xd3ffff7f);
6416
6417         if (CHIP_IS_E3(bp)) {
6418                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6419                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6420         }
6421
6422         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6423 }
6424
6425 static void bnx2x_setup_dmae(struct bnx2x *bp)
6426 {
6427         bp->dmae_ready = 0;
6428         spin_lock_init(&bp->dmae_lock);
6429 }
6430
6431 static void bnx2x_init_pxp(struct bnx2x *bp)
6432 {
6433         u16 devctl;
6434         int r_order, w_order;
6435
6436         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6437         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6438         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6439         if (bp->mrrs == -1)
6440                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6441         else {
6442                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6443                 r_order = bp->mrrs;
6444         }
6445
6446         bnx2x_init_pxp_arb(bp, r_order, w_order);
6447 }
6448
6449 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6450 {
6451         int is_required;
6452         u32 val;
6453         int port;
6454
6455         if (BP_NOMCP(bp))
6456                 return;
6457
6458         is_required = 0;
6459         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6460               SHARED_HW_CFG_FAN_FAILURE_MASK;
6461
6462         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6463                 is_required = 1;
6464
6465         /*
6466          * The fan failure mechanism is usually related to the PHY type since
6467          * the power consumption of the board is affected by the PHY. Currently,
6468          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6469          */
6470         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6471                 for (port = PORT_0; port < PORT_MAX; port++) {
6472                         is_required |=
6473                                 bnx2x_fan_failure_det_req(
6474                                         bp,
6475                                         bp->common.shmem_base,
6476                                         bp->common.shmem2_base,
6477                                         port);
6478                 }
6479
6480         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6481
6482         if (is_required == 0)
6483                 return;
6484
6485         /* Fan failure is indicated by SPIO 5 */
6486         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6487
6488         /* set to active low mode */
6489         val = REG_RD(bp, MISC_REG_SPIO_INT);
6490         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6491         REG_WR(bp, MISC_REG_SPIO_INT, val);
6492
6493         /* enable interrupt to signal the IGU */
6494         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6495         val |= MISC_SPIO_SPIO5;
6496         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6497 }
6498
6499 void bnx2x_pf_disable(struct bnx2x *bp)
6500 {
6501         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6502         val &= ~IGU_PF_CONF_FUNC_EN;
6503
6504         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6505         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6506         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6507 }
6508
6509 static void bnx2x__common_init_phy(struct bnx2x *bp)
6510 {
6511         u32 shmem_base[2], shmem2_base[2];
6512         /* Avoid common init in case MFW supports LFA */
6513         if (SHMEM2_RD(bp, size) >
6514             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6515                 return;
6516         shmem_base[0] =  bp->common.shmem_base;
6517         shmem2_base[0] = bp->common.shmem2_base;
6518         if (!CHIP_IS_E1x(bp)) {
6519                 shmem_base[1] =
6520                         SHMEM2_RD(bp, other_shmem_base_addr);
6521                 shmem2_base[1] =
6522                         SHMEM2_RD(bp, other_shmem2_base_addr);
6523         }
6524         bnx2x_acquire_phy_lock(bp);
6525         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6526                               bp->common.chip_id);
6527         bnx2x_release_phy_lock(bp);
6528 }
6529
6530 /**
6531  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6532  *
6533  * @bp:         driver handle
6534  */
6535 static int bnx2x_init_hw_common(struct bnx2x *bp)
6536 {
6537         u32 val;
6538
6539         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6540
6541         /*
6542          * take the RESET lock to protect undi_unload flow from accessing
6543          * registers while we're resetting the chip
6544          */
6545         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6546
6547         bnx2x_reset_common(bp);
6548         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6549
6550         val = 0xfffc;
6551         if (CHIP_IS_E3(bp)) {
6552                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6553                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6554         }
6555         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6556
6557         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6558
6559         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6560
6561         if (!CHIP_IS_E1x(bp)) {
6562                 u8 abs_func_id;
6563
6564                 /**
6565                  * 4-port mode or 2-port mode we need to turn of master-enable
6566                  * for everyone, after that, turn it back on for self.
6567                  * so, we disregard multi-function or not, and always disable
6568                  * for all functions on the given path, this means 0,2,4,6 for
6569                  * path 0 and 1,3,5,7 for path 1
6570                  */
6571                 for (abs_func_id = BP_PATH(bp);
6572                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6573                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6574                                 REG_WR(bp,
6575                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6576                                     1);
6577                                 continue;
6578                         }
6579
6580                         bnx2x_pretend_func(bp, abs_func_id);
6581                         /* clear pf enable */
6582                         bnx2x_pf_disable(bp);
6583                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6584                 }
6585         }
6586
6587         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6588         if (CHIP_IS_E1(bp)) {
6589                 /* enable HW interrupt from PXP on USDM overflow
6590                    bit 16 on INT_MASK_0 */
6591                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6592         }
6593
6594         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6595         bnx2x_init_pxp(bp);
6596
6597 #ifdef __BIG_ENDIAN
6598         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6599         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6600         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6601         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6602         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6603         /* make sure this value is 0 */
6604         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6605
6606 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6607         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6608         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6609         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6610         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6611 #endif
6612
6613         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6614
6615         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6616                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6617
6618         /* let the HW do it's magic ... */
6619         msleep(100);
6620         /* finish PXP init */
6621         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6622         if (val != 1) {
6623                 BNX2X_ERR("PXP2 CFG failed\n");
6624                 return -EBUSY;
6625         }
6626         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6627         if (val != 1) {
6628                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6629                 return -EBUSY;
6630         }
6631
6632         /* Timers bug workaround E2 only. We need to set the entire ILT to
6633          * have entries with value "0" and valid bit on.
6634          * This needs to be done by the first PF that is loaded in a path
6635          * (i.e. common phase)
6636          */
6637         if (!CHIP_IS_E1x(bp)) {
6638 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6639  * (i.e. vnic3) to start even if it is marked as "scan-off".
6640  * This occurs when a different function (func2,3) is being marked
6641  * as "scan-off". Real-life scenario for example: if a driver is being
6642  * load-unloaded while func6,7 are down. This will cause the timer to access
6643  * the ilt, translate to a logical address and send a request to read/write.
6644  * Since the ilt for the function that is down is not valid, this will cause
6645  * a translation error which is unrecoverable.
6646  * The Workaround is intended to make sure that when this happens nothing fatal
6647  * will occur. The workaround:
6648  *      1.  First PF driver which loads on a path will:
6649  *              a.  After taking the chip out of reset, by using pretend,
6650  *                  it will write "0" to the following registers of
6651  *                  the other vnics.
6652  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6653  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6654  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6655  *                  And for itself it will write '1' to
6656  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6657  *                  dmae-operations (writing to pram for example.)
6658  *                  note: can be done for only function 6,7 but cleaner this
6659  *                        way.
6660  *              b.  Write zero+valid to the entire ILT.
6661  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6662  *                  VNIC3 (of that port). The range allocated will be the
6663  *                  entire ILT. This is needed to prevent  ILT range error.
6664  *      2.  Any PF driver load flow:
6665  *              a.  ILT update with the physical addresses of the allocated
6666  *                  logical pages.
6667  *              b.  Wait 20msec. - note that this timeout is needed to make
6668  *                  sure there are no requests in one of the PXP internal
6669  *                  queues with "old" ILT addresses.
6670  *              c.  PF enable in the PGLC.
6671  *              d.  Clear the was_error of the PF in the PGLC. (could have
6672  *                  occurred while driver was down)
6673  *              e.  PF enable in the CFC (WEAK + STRONG)
6674  *              f.  Timers scan enable
6675  *      3.  PF driver unload flow:
6676  *              a.  Clear the Timers scan_en.
6677  *              b.  Polling for scan_on=0 for that PF.
6678  *              c.  Clear the PF enable bit in the PXP.
6679  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
6680  *              e.  Write zero+valid to all ILT entries (The valid bit must
6681  *                  stay set)
6682  *              f.  If this is VNIC 3 of a port then also init
6683  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
6684  *                  to the last enrty in the ILT.
6685  *
6686  *      Notes:
6687  *      Currently the PF error in the PGLC is non recoverable.
6688  *      In the future the there will be a recovery routine for this error.
6689  *      Currently attention is masked.
6690  *      Having an MCP lock on the load/unload process does not guarantee that
6691  *      there is no Timer disable during Func6/7 enable. This is because the
6692  *      Timers scan is currently being cleared by the MCP on FLR.
6693  *      Step 2.d can be done only for PF6/7 and the driver can also check if
6694  *      there is error before clearing it. But the flow above is simpler and
6695  *      more general.
6696  *      All ILT entries are written by zero+valid and not just PF6/7
6697  *      ILT entries since in the future the ILT entries allocation for
6698  *      PF-s might be dynamic.
6699  */
6700                 struct ilt_client_info ilt_cli;
6701                 struct bnx2x_ilt ilt;
6702                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6703                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6704
6705                 /* initialize dummy TM client */
6706                 ilt_cli.start = 0;
6707                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6708                 ilt_cli.client_num = ILT_CLIENT_TM;
6709
6710                 /* Step 1: set zeroes to all ilt page entries with valid bit on
6711                  * Step 2: set the timers first/last ilt entry to point
6712                  * to the entire range to prevent ILT range error for 3rd/4th
6713                  * vnic (this code assumes existence of the vnic)
6714                  *
6715                  * both steps performed by call to bnx2x_ilt_client_init_op()
6716                  * with dummy TM client
6717                  *
6718                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6719                  * and his brother are split registers
6720                  */
6721                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6722                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6723                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6724
6725                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6726                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6727                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6728         }
6729
6730         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6731         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6732
6733         if (!CHIP_IS_E1x(bp)) {
6734                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6735                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6736                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6737
6738                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6739
6740                 /* let the HW do it's magic ... */
6741                 do {
6742                         msleep(200);
6743                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6744                 } while (factor-- && (val != 1));
6745
6746                 if (val != 1) {
6747                         BNX2X_ERR("ATC_INIT failed\n");
6748                         return -EBUSY;
6749                 }
6750         }
6751
6752         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6753
6754         bnx2x_iov_init_dmae(bp);
6755
6756         /* clean the DMAE memory */
6757         bp->dmae_ready = 1;
6758         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6759
6760         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6761
6762         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6763
6764         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6765
6766         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6767
6768         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6769         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6770         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6771         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6772
6773         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6774
6775
6776         /* QM queues pointers table */
6777         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6778
6779         /* soft reset pulse */
6780         REG_WR(bp, QM_REG_SOFT_RESET, 1);
6781         REG_WR(bp, QM_REG_SOFT_RESET, 0);
6782
6783         if (CNIC_SUPPORT(bp))
6784                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6785
6786         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6787         REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6788         if (!CHIP_REV_IS_SLOW(bp))
6789                 /* enable hw interrupt from doorbell Q */
6790                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6791
6792         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6793
6794         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6795         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6796
6797         if (!CHIP_IS_E1(bp))
6798                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6799
6800         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6801                 if (IS_MF_AFEX(bp)) {
6802                         /* configure that VNTag and VLAN headers must be
6803                          * received in afex mode
6804                          */
6805                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6806                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6807                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6808                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6809                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6810                 } else {
6811                         /* Bit-map indicating which L2 hdrs may appear
6812                          * after the basic Ethernet header
6813                          */
6814                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6815                                bp->path_has_ovlan ? 7 : 6);
6816                 }
6817         }
6818
6819         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6820         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6821         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6822         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6823
6824         if (!CHIP_IS_E1x(bp)) {
6825                 /* reset VFC memories */
6826                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6827                            VFC_MEMORIES_RST_REG_CAM_RST |
6828                            VFC_MEMORIES_RST_REG_RAM_RST);
6829                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6830                            VFC_MEMORIES_RST_REG_CAM_RST |
6831                            VFC_MEMORIES_RST_REG_RAM_RST);
6832
6833                 msleep(20);
6834         }
6835
6836         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6837         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6838         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6839         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6840
6841         /* sync semi rtc */
6842         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6843                0x80000000);
6844         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6845                0x80000000);
6846
6847         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6848         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6849         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6850
6851         if (!CHIP_IS_E1x(bp)) {
6852                 if (IS_MF_AFEX(bp)) {
6853                         /* configure that VNTag and VLAN headers must be
6854                          * sent in afex mode
6855                          */
6856                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6857                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6858                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6859                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6860                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6861                 } else {
6862                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6863                                bp->path_has_ovlan ? 7 : 6);
6864                 }
6865         }
6866
6867         REG_WR(bp, SRC_REG_SOFT_RST, 1);
6868
6869         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6870
6871         if (CNIC_SUPPORT(bp)) {
6872                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6873                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6874                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6875                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6876                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6877                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6878                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6879                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6880                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6881                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6882         }
6883         REG_WR(bp, SRC_REG_SOFT_RST, 0);
6884
6885         if (sizeof(union cdu_context) != 1024)
6886                 /* we currently assume that a context is 1024 bytes */
6887                 dev_alert(&bp->pdev->dev,
6888                           "please adjust the size of cdu_context(%ld)\n",
6889                           (long)sizeof(union cdu_context));
6890
6891         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6892         val = (4 << 24) + (0 << 12) + 1024;
6893         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6894
6895         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6896         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6897         /* enable context validation interrupt from CFC */
6898         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6899
6900         /* set the thresholds to prevent CFC/CDU race */
6901         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6902
6903         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6904
6905         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6906                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6907
6908         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6909         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6910
6911         /* Reset PCIE errors for debug */
6912         REG_WR(bp, 0x2814, 0xffffffff);
6913         REG_WR(bp, 0x3820, 0xffffffff);
6914
6915         if (!CHIP_IS_E1x(bp)) {
6916                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6917                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6918                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6919                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6920                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6921                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6922                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6923                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6924                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6925                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6926                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6927         }
6928
6929         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6930         if (!CHIP_IS_E1(bp)) {
6931                 /* in E3 this done in per-port section */
6932                 if (!CHIP_IS_E3(bp))
6933                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6934         }
6935         if (CHIP_IS_E1H(bp))
6936                 /* not applicable for E2 (and above ...) */
6937                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6938
6939         if (CHIP_REV_IS_SLOW(bp))
6940                 msleep(200);
6941
6942         /* finish CFC init */
6943         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6944         if (val != 1) {
6945                 BNX2X_ERR("CFC LL_INIT failed\n");
6946                 return -EBUSY;
6947         }
6948         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6949         if (val != 1) {
6950                 BNX2X_ERR("CFC AC_INIT failed\n");
6951                 return -EBUSY;
6952         }
6953         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6954         if (val != 1) {
6955                 BNX2X_ERR("CFC CAM_INIT failed\n");
6956                 return -EBUSY;
6957         }
6958         REG_WR(bp, CFC_REG_DEBUG0, 0);
6959
6960         if (CHIP_IS_E1(bp)) {
6961                 /* read NIG statistic
6962                    to see if this is our first up since powerup */
6963                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6964                 val = *bnx2x_sp(bp, wb_data[0]);
6965
6966                 /* do internal memory self test */
6967                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6968                         BNX2X_ERR("internal mem self test failed\n");
6969                         return -EBUSY;
6970                 }
6971         }
6972
6973         bnx2x_setup_fan_failure_detection(bp);
6974
6975         /* clear PXP2 attentions */
6976         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6977
6978         bnx2x_enable_blocks_attention(bp);
6979         bnx2x_enable_blocks_parity(bp);
6980
6981         if (!BP_NOMCP(bp)) {
6982                 if (CHIP_IS_E1x(bp))
6983                         bnx2x__common_init_phy(bp);
6984         } else
6985                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6986
6987         return 0;
6988 }
6989
6990 /**
6991  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6992  *
6993  * @bp:         driver handle
6994  */
6995 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6996 {
6997         int rc = bnx2x_init_hw_common(bp);
6998
6999         if (rc)
7000                 return rc;
7001
7002         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7003         if (!BP_NOMCP(bp))
7004                 bnx2x__common_init_phy(bp);
7005
7006         return 0;
7007 }
7008
7009 static int bnx2x_init_hw_port(struct bnx2x *bp)
7010 {
7011         int port = BP_PORT(bp);
7012         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7013         u32 low, high;
7014         u32 val;
7015
7016
7017         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7018
7019         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7020
7021         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7022         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7023         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7024
7025         /* Timers bug workaround: disables the pf_master bit in pglue at
7026          * common phase, we need to enable it here before any dmae access are
7027          * attempted. Therefore we manually added the enable-master to the
7028          * port phase (it also happens in the function phase)
7029          */
7030         if (!CHIP_IS_E1x(bp))
7031                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7032
7033         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7034         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7035         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7036         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7037
7038         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7039         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7040         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7041         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7042
7043         /* QM cid (connection) count */
7044         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7045
7046         if (CNIC_SUPPORT(bp)) {
7047                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7048                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7049                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7050         }
7051
7052         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7053
7054         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7055
7056         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7057
7058                 if (IS_MF(bp))
7059                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7060                 else if (bp->dev->mtu > 4096) {
7061                         if (bp->flags & ONE_PORT_FLAG)
7062                                 low = 160;
7063                         else {
7064                                 val = bp->dev->mtu;
7065                                 /* (24*1024 + val*4)/256 */
7066                                 low = 96 + (val/64) +
7067                                                 ((val % 64) ? 1 : 0);
7068                         }
7069                 } else
7070                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7071                 high = low + 56;        /* 14*1024/256 */
7072                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7073                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7074         }
7075
7076         if (CHIP_MODE_IS_4_PORT(bp))
7077                 REG_WR(bp, (BP_PORT(bp) ?
7078                             BRB1_REG_MAC_GUARANTIED_1 :
7079                             BRB1_REG_MAC_GUARANTIED_0), 40);
7080
7081
7082         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7083         if (CHIP_IS_E3B0(bp)) {
7084                 if (IS_MF_AFEX(bp)) {
7085                         /* configure headers for AFEX mode */
7086                         REG_WR(bp, BP_PORT(bp) ?
7087                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7088                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7089                         REG_WR(bp, BP_PORT(bp) ?
7090                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7091                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7092                         REG_WR(bp, BP_PORT(bp) ?
7093                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7094                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7095                 } else {
7096                         /* Ovlan exists only if we are in multi-function +
7097                          * switch-dependent mode, in switch-independent there
7098                          * is no ovlan headers
7099                          */
7100                         REG_WR(bp, BP_PORT(bp) ?
7101                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7102                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7103                                (bp->path_has_ovlan ? 7 : 6));
7104                 }
7105         }
7106
7107         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7108         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7109         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7110         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7111
7112         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7113         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7114         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7115         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7116
7117         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7118         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7119
7120         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7121
7122         if (CHIP_IS_E1x(bp)) {
7123                 /* configure PBF to work without PAUSE mtu 9000 */
7124                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7125
7126                 /* update threshold */
7127                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7128                 /* update init credit */
7129                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7130
7131                 /* probe changes */
7132                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7133                 udelay(50);
7134                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7135         }
7136
7137         if (CNIC_SUPPORT(bp))
7138                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7139
7140         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7141         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7142
7143         if (CHIP_IS_E1(bp)) {
7144                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7145                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7146         }
7147         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7148
7149         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7150
7151         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7152         /* init aeu_mask_attn_func_0/1:
7153          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
7154          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
7155          *             bits 4-7 are used for "per vn group attention" */
7156         val = IS_MF(bp) ? 0xF7 : 0x7;
7157         /* Enable DCBX attention for all but E1 */
7158         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7159         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7160
7161         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7162
7163         if (!CHIP_IS_E1x(bp)) {
7164                 /* Bit-map indicating which L2 hdrs may appear after the
7165                  * basic Ethernet header
7166                  */
7167                 if (IS_MF_AFEX(bp))
7168                         REG_WR(bp, BP_PORT(bp) ?
7169                                NIG_REG_P1_HDRS_AFTER_BASIC :
7170                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7171                 else
7172                         REG_WR(bp, BP_PORT(bp) ?
7173                                NIG_REG_P1_HDRS_AFTER_BASIC :
7174                                NIG_REG_P0_HDRS_AFTER_BASIC,
7175                                IS_MF_SD(bp) ? 7 : 6);
7176
7177                 if (CHIP_IS_E3(bp))
7178                         REG_WR(bp, BP_PORT(bp) ?
7179                                    NIG_REG_LLH1_MF_MODE :
7180                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7181         }
7182         if (!CHIP_IS_E3(bp))
7183                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7184
7185         if (!CHIP_IS_E1(bp)) {
7186                 /* 0x2 disable mf_ov, 0x1 enable */
7187                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7188                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7189
7190                 if (!CHIP_IS_E1x(bp)) {
7191                         val = 0;
7192                         switch (bp->mf_mode) {
7193                         case MULTI_FUNCTION_SD:
7194                                 val = 1;
7195                                 break;
7196                         case MULTI_FUNCTION_SI:
7197                         case MULTI_FUNCTION_AFEX:
7198                                 val = 2;
7199                                 break;
7200                         }
7201
7202                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7203                                                   NIG_REG_LLH0_CLS_TYPE), val);
7204                 }
7205                 {
7206                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7207                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7208                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7209                 }
7210         }
7211
7212         /* If SPIO5 is set to generate interrupts, enable it for this port */
7213         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7214         if (val & MISC_SPIO_SPIO5) {
7215                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7216                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7217                 val = REG_RD(bp, reg_addr);
7218                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7219                 REG_WR(bp, reg_addr, val);
7220         }
7221
7222         return 0;
7223 }
7224
7225 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7226 {
7227         int reg;
7228         u32 wb_write[2];
7229
7230         if (CHIP_IS_E1(bp))
7231                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7232         else
7233                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7234
7235         wb_write[0] = ONCHIP_ADDR1(addr);
7236         wb_write[1] = ONCHIP_ADDR2(addr);
7237         REG_WR_DMAE(bp, reg, wb_write, 2);
7238 }
7239
7240 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7241 {
7242         u32 data, ctl, cnt = 100;
7243         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7244         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7245         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7246         u32 sb_bit =  1 << (idu_sb_id%32);
7247         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7248         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7249
7250         /* Not supported in BC mode */
7251         if (CHIP_INT_MODE_IS_BC(bp))
7252                 return;
7253
7254         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7255                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7256                 IGU_REGULAR_CLEANUP_SET                         |
7257                 IGU_REGULAR_BCLEANUP;
7258
7259         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7260               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7261               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7262
7263         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7264                          data, igu_addr_data);
7265         REG_WR(bp, igu_addr_data, data);
7266         mmiowb();
7267         barrier();
7268         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7269                           ctl, igu_addr_ctl);
7270         REG_WR(bp, igu_addr_ctl, ctl);
7271         mmiowb();
7272         barrier();
7273
7274         /* wait for clean up to finish */
7275         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7276                 msleep(20);
7277
7278
7279         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7280                 DP(NETIF_MSG_HW,
7281                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7282                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7283         }
7284 }
7285
7286 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7287 {
7288         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7289 }
7290
7291 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7292 {
7293         u32 i, base = FUNC_ILT_BASE(func);
7294         for (i = base; i < base + ILT_PER_FUNC; i++)
7295                 bnx2x_ilt_wr(bp, i, 0);
7296 }
7297
7298
7299 static void bnx2x_init_searcher(struct bnx2x *bp)
7300 {
7301         int port = BP_PORT(bp);
7302         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7303         /* T1 hash bits value determines the T1 number of entries */
7304         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7305 }
7306
7307 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7308 {
7309         int rc;
7310         struct bnx2x_func_state_params func_params = {NULL};
7311         struct bnx2x_func_switch_update_params *switch_update_params =
7312                 &func_params.params.switch_update;
7313
7314         /* Prepare parameters for function state transitions */
7315         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7316         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7317
7318         func_params.f_obj = &bp->func_obj;
7319         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7320
7321         /* Function parameters */
7322         switch_update_params->suspend = suspend;
7323
7324         rc = bnx2x_func_state_change(bp, &func_params);
7325
7326         return rc;
7327 }
7328
7329 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7330 {
7331         int rc, i, port = BP_PORT(bp);
7332         int vlan_en = 0, mac_en[NUM_MACS];
7333
7334
7335         /* Close input from network */
7336         if (bp->mf_mode == SINGLE_FUNCTION) {
7337                 bnx2x_set_rx_filter(&bp->link_params, 0);
7338         } else {
7339                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7340                                    NIG_REG_LLH0_FUNC_EN);
7341                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7342                           NIG_REG_LLH0_FUNC_EN, 0);
7343                 for (i = 0; i < NUM_MACS; i++) {
7344                         mac_en[i] = REG_RD(bp, port ?
7345                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7346                                               4 * i) :
7347                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7348                                               4 * i));
7349                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7350                                               4 * i) :
7351                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7352                 }
7353         }
7354
7355         /* Close BMC to host */
7356         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7357                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7358
7359         /* Suspend Tx switching to the PF. Completion of this ramrod
7360          * further guarantees that all the packets of that PF / child
7361          * VFs in BRB were processed by the Parser, so it is safe to
7362          * change the NIC_MODE register.
7363          */
7364         rc = bnx2x_func_switch_update(bp, 1);
7365         if (rc) {
7366                 BNX2X_ERR("Can't suspend tx-switching!\n");
7367                 return rc;
7368         }
7369
7370         /* Change NIC_MODE register */
7371         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7372
7373         /* Open input from network */
7374         if (bp->mf_mode == SINGLE_FUNCTION) {
7375                 bnx2x_set_rx_filter(&bp->link_params, 1);
7376         } else {
7377                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7378                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7379                 for (i = 0; i < NUM_MACS; i++) {
7380                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7381                                               4 * i) :
7382                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7383                                   mac_en[i]);
7384                 }
7385         }
7386
7387         /* Enable BMC to host */
7388         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7389                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7390
7391         /* Resume Tx switching to the PF */
7392         rc = bnx2x_func_switch_update(bp, 0);
7393         if (rc) {
7394                 BNX2X_ERR("Can't resume tx-switching!\n");
7395                 return rc;
7396         }
7397
7398         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7399         return 0;
7400 }
7401
7402 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7403 {
7404         int rc;
7405
7406         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7407
7408         if (CONFIGURE_NIC_MODE(bp)) {
7409                 /* Configrue searcher as part of function hw init */
7410                 bnx2x_init_searcher(bp);
7411
7412                 /* Reset NIC mode */
7413                 rc = bnx2x_reset_nic_mode(bp);
7414                 if (rc)
7415                         BNX2X_ERR("Can't change NIC mode!\n");
7416                 return rc;
7417         }
7418
7419         return 0;
7420 }
7421
7422 static int bnx2x_init_hw_func(struct bnx2x *bp)
7423 {
7424         int port = BP_PORT(bp);
7425         int func = BP_FUNC(bp);
7426         int init_phase = PHASE_PF0 + func;
7427         struct bnx2x_ilt *ilt = BP_ILT(bp);
7428         u16 cdu_ilt_start;
7429         u32 addr, val;
7430         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7431         int i, main_mem_width, rc;
7432
7433         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7434
7435         /* FLR cleanup - hmmm */
7436         if (!CHIP_IS_E1x(bp)) {
7437                 rc = bnx2x_pf_flr_clnup(bp);
7438                 if (rc) {
7439                         bnx2x_fw_dump(bp);
7440                         return rc;
7441                 }
7442         }
7443
7444         /* set MSI reconfigure capability */
7445         if (bp->common.int_block == INT_BLOCK_HC) {
7446                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7447                 val = REG_RD(bp, addr);
7448                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7449                 REG_WR(bp, addr, val);
7450         }
7451
7452         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7453         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7454
7455         ilt = BP_ILT(bp);
7456         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7457
7458         if (IS_SRIOV(bp))
7459                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7460         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7461
7462         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7463          * those of the VFs, so start line should be reset
7464          */
7465         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7466         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7467                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7468                 ilt->lines[cdu_ilt_start + i].page_mapping =
7469                         bp->context[i].cxt_mapping;
7470                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7471         }
7472
7473         bnx2x_ilt_init_op(bp, INITOP_SET);
7474
7475         if (!CONFIGURE_NIC_MODE(bp)) {
7476                 bnx2x_init_searcher(bp);
7477                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7478                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7479         } else {
7480                 /* Set NIC mode */
7481                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7482                 DP(NETIF_MSG_IFUP, "NIC MODE configrued\n");
7483
7484         }
7485
7486         if (!CHIP_IS_E1x(bp)) {
7487                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7488
7489                 /* Turn on a single ISR mode in IGU if driver is going to use
7490                  * INT#x or MSI
7491                  */
7492                 if (!(bp->flags & USING_MSIX_FLAG))
7493                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7494                 /*
7495                  * Timers workaround bug: function init part.
7496                  * Need to wait 20msec after initializing ILT,
7497                  * needed to make sure there are no requests in
7498                  * one of the PXP internal queues with "old" ILT addresses
7499                  */
7500                 msleep(20);
7501                 /*
7502                  * Master enable - Due to WB DMAE writes performed before this
7503                  * register is re-initialized as part of the regular function
7504                  * init
7505                  */
7506                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7507                 /* Enable the function in IGU */
7508                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7509         }
7510
7511         bp->dmae_ready = 1;
7512
7513         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7514
7515         if (!CHIP_IS_E1x(bp))
7516                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7517
7518         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7519         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7520         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7521         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7522         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7523         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7524         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7525         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7526         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7527         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7528         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7529         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7530         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7531
7532         if (!CHIP_IS_E1x(bp))
7533                 REG_WR(bp, QM_REG_PF_EN, 1);
7534
7535         if (!CHIP_IS_E1x(bp)) {
7536                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7537                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7538                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7539                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7540         }
7541         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7542
7543         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7544         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7545
7546         bnx2x_iov_init_dq(bp);
7547
7548         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7549         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7550         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7551         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7552         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7553         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7554         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7555         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7556         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7557         if (!CHIP_IS_E1x(bp))
7558                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7559
7560         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7561
7562         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7563
7564         if (!CHIP_IS_E1x(bp))
7565                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7566
7567         if (IS_MF(bp)) {
7568                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7569                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7570         }
7571
7572         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7573
7574         /* HC init per function */
7575         if (bp->common.int_block == INT_BLOCK_HC) {
7576                 if (CHIP_IS_E1H(bp)) {
7577                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7578
7579                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7580                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7581                 }
7582                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7583
7584         } else {
7585                 int num_segs, sb_idx, prod_offset;
7586
7587                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7588
7589                 if (!CHIP_IS_E1x(bp)) {
7590                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7591                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7592                 }
7593
7594                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7595
7596                 if (!CHIP_IS_E1x(bp)) {
7597                         int dsb_idx = 0;
7598                         /**
7599                          * Producer memory:
7600                          * E2 mode: address 0-135 match to the mapping memory;
7601                          * 136 - PF0 default prod; 137 - PF1 default prod;
7602                          * 138 - PF2 default prod; 139 - PF3 default prod;
7603                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7604                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7605                          * 144-147 reserved.
7606                          *
7607                          * E1.5 mode - In backward compatible mode;
7608                          * for non default SB; each even line in the memory
7609                          * holds the U producer and each odd line hold
7610                          * the C producer. The first 128 producers are for
7611                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7612                          * producers are for the DSB for each PF.
7613                          * Each PF has five segments: (the order inside each
7614                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7615                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7616                          * 144-147 attn prods;
7617                          */
7618                         /* non-default-status-blocks */
7619                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7620                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7621                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7622                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7623                                         num_segs;
7624
7625                                 for (i = 0; i < num_segs; i++) {
7626                                         addr = IGU_REG_PROD_CONS_MEMORY +
7627                                                         (prod_offset + i) * 4;
7628                                         REG_WR(bp, addr, 0);
7629                                 }
7630                                 /* send consumer update with value 0 */
7631                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7632                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7633                                 bnx2x_igu_clear_sb(bp,
7634                                                    bp->igu_base_sb + sb_idx);
7635                         }
7636
7637                         /* default-status-blocks */
7638                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7639                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7640
7641                         if (CHIP_MODE_IS_4_PORT(bp))
7642                                 dsb_idx = BP_FUNC(bp);
7643                         else
7644                                 dsb_idx = BP_VN(bp);
7645
7646                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7647                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7648                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7649
7650                         /*
7651                          * igu prods come in chunks of E1HVN_MAX (4) -
7652                          * does not matters what is the current chip mode
7653                          */
7654                         for (i = 0; i < (num_segs * E1HVN_MAX);
7655                              i += E1HVN_MAX) {
7656                                 addr = IGU_REG_PROD_CONS_MEMORY +
7657                                                         (prod_offset + i)*4;
7658                                 REG_WR(bp, addr, 0);
7659                         }
7660                         /* send consumer update with 0 */
7661                         if (CHIP_INT_MODE_IS_BC(bp)) {
7662                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7663                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7664                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7665                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7666                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7667                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7668                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7669                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
7670                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7671                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7672                         } else {
7673                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7674                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7675                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7676                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7677                         }
7678                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7679
7680                         /* !!! these should become driver const once
7681                            rf-tool supports split-68 const */
7682                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7683                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7684                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7685                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7686                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7687                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7688                 }
7689         }
7690
7691         /* Reset PCIE errors for debug */
7692         REG_WR(bp, 0x2114, 0xffffffff);
7693         REG_WR(bp, 0x2120, 0xffffffff);
7694
7695         if (CHIP_IS_E1x(bp)) {
7696                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7697                 main_mem_base = HC_REG_MAIN_MEMORY +
7698                                 BP_PORT(bp) * (main_mem_size * 4);
7699                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7700                 main_mem_width = 8;
7701
7702                 val = REG_RD(bp, main_mem_prty_clr);
7703                 if (val)
7704                         DP(NETIF_MSG_HW,
7705                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7706                            val);
7707
7708                 /* Clear "false" parity errors in MSI-X table */
7709                 for (i = main_mem_base;
7710                      i < main_mem_base + main_mem_size * 4;
7711                      i += main_mem_width) {
7712                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
7713                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7714                                          i, main_mem_width / 4);
7715                 }
7716                 /* Clear HC parity attention */
7717                 REG_RD(bp, main_mem_prty_clr);
7718         }
7719
7720 #ifdef BNX2X_STOP_ON_ERROR
7721         /* Enable STORMs SP logging */
7722         REG_WR8(bp, BAR_USTRORM_INTMEM +
7723                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7724         REG_WR8(bp, BAR_TSTRORM_INTMEM +
7725                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7726         REG_WR8(bp, BAR_CSTRORM_INTMEM +
7727                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7728         REG_WR8(bp, BAR_XSTRORM_INTMEM +
7729                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7730 #endif
7731
7732         bnx2x_phy_probe(&bp->link_params);
7733
7734         return 0;
7735 }
7736
7737
7738 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7739 {
7740         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7741
7742         if (!CHIP_IS_E1x(bp))
7743                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7744                                sizeof(struct host_hc_status_block_e2));
7745         else
7746                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7747                                sizeof(struct host_hc_status_block_e1x));
7748
7749         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7750 }
7751
7752 void bnx2x_free_mem(struct bnx2x *bp)
7753 {
7754         int i;
7755
7756         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7757                        sizeof(struct host_sp_status_block));
7758
7759         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7760                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7761
7762         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7763                        sizeof(struct bnx2x_slowpath));
7764
7765         for (i = 0; i < L2_ILT_LINES(bp); i++)
7766                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7767                                bp->context[i].size);
7768         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7769
7770         BNX2X_FREE(bp->ilt->lines);
7771
7772         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7773
7774         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7775                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
7776
7777         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7778
7779         bnx2x_iov_free_mem(bp);
7780 }
7781
7782
7783 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7784 {
7785         if (!CHIP_IS_E1x(bp))
7786                 /* size = the status block + ramrod buffers */
7787                 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7788                                 sizeof(struct host_hc_status_block_e2));
7789         else
7790                 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7791                                 &bp->cnic_sb_mapping,
7792                                 sizeof(struct
7793                                        host_hc_status_block_e1x));
7794
7795         if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7796                 /* allocate searcher T2 table, as it wan't allocated before */
7797                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7798
7799         /* write address to which L5 should insert its values */
7800         bp->cnic_eth_dev.addr_drv_info_to_mcp =
7801                 &bp->slowpath->drv_info_to_mcp;
7802
7803         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7804                 goto alloc_mem_err;
7805
7806         return 0;
7807
7808 alloc_mem_err:
7809         bnx2x_free_mem_cnic(bp);
7810         BNX2X_ERR("Can't allocate memory\n");
7811         return -ENOMEM;
7812 }
7813
7814 int bnx2x_alloc_mem(struct bnx2x *bp)
7815 {
7816         int i, allocated, context_size;
7817
7818         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7819                 /* allocate searcher T2 table */
7820                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7821
7822         BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7823                         sizeof(struct host_sp_status_block));
7824
7825         BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7826                         sizeof(struct bnx2x_slowpath));
7827
7828         /* Allocate memory for CDU context:
7829          * This memory is allocated separately and not in the generic ILT
7830          * functions because CDU differs in few aspects:
7831          * 1. There are multiple entities allocating memory for context -
7832          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7833          * its own ILT lines.
7834          * 2. Since CDU page-size is not a single 4KB page (which is the case
7835          * for the other ILT clients), to be efficient we want to support
7836          * allocation of sub-page-size in the last entry.
7837          * 3. Context pointers are used by the driver to pass to FW / update
7838          * the context (for the other ILT clients the pointers are used just to
7839          * free the memory during unload).
7840          */
7841         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7842
7843         for (i = 0, allocated = 0; allocated < context_size; i++) {
7844                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7845                                           (context_size - allocated));
7846                 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7847                                 &bp->context[i].cxt_mapping,
7848                                 bp->context[i].size);
7849                 allocated += bp->context[i].size;
7850         }
7851         BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7852
7853         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7854                 goto alloc_mem_err;
7855
7856         if (bnx2x_iov_alloc_mem(bp))
7857                 goto alloc_mem_err;
7858
7859         /* Slow path ring */
7860         BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7861
7862         /* EQ */
7863         BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7864                         BCM_PAGE_SIZE * NUM_EQ_PAGES);
7865
7866         return 0;
7867
7868 alloc_mem_err:
7869         bnx2x_free_mem(bp);
7870         BNX2X_ERR("Can't allocate memory\n");
7871         return -ENOMEM;
7872 }
7873
7874 /*
7875  * Init service functions
7876  */
7877
7878 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7879                       struct bnx2x_vlan_mac_obj *obj, bool set,
7880                       int mac_type, unsigned long *ramrod_flags)
7881 {
7882         int rc;
7883         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7884
7885         memset(&ramrod_param, 0, sizeof(ramrod_param));
7886
7887         /* Fill general parameters */
7888         ramrod_param.vlan_mac_obj = obj;
7889         ramrod_param.ramrod_flags = *ramrod_flags;
7890
7891         /* Fill a user request section if needed */
7892         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7893                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7894
7895                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7896
7897                 /* Set the command: ADD or DEL */
7898                 if (set)
7899                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7900                 else
7901                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7902         }
7903
7904         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7905
7906         if (rc == -EEXIST) {
7907                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7908                 /* do not treat adding same MAC as error */
7909                 rc = 0;
7910         } else if (rc < 0)
7911                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7912
7913         return rc;
7914 }
7915
7916 int bnx2x_del_all_macs(struct bnx2x *bp,
7917                        struct bnx2x_vlan_mac_obj *mac_obj,
7918                        int mac_type, bool wait_for_comp)
7919 {
7920         int rc;
7921         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7922
7923         /* Wait for completion of requested */
7924         if (wait_for_comp)
7925                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7926
7927         /* Set the mac type of addresses we want to clear */
7928         __set_bit(mac_type, &vlan_mac_flags);
7929
7930         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7931         if (rc < 0)
7932                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7933
7934         return rc;
7935 }
7936
7937 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7938 {
7939         if (is_zero_ether_addr(bp->dev->dev_addr) &&
7940             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
7941                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7942                    "Ignoring Zero MAC for STORAGE SD mode\n");
7943                 return 0;
7944         }
7945
7946         if (IS_PF(bp)) {
7947                 unsigned long ramrod_flags = 0;
7948
7949                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7950                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7951                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
7952                                          &bp->sp_objs->mac_obj, set,
7953                                          BNX2X_ETH_MAC, &ramrod_flags);
7954         } else { /* vf */
7955                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
7956                                              bp->fp->index, true);
7957         }
7958 }
7959
7960 int bnx2x_setup_leading(struct bnx2x *bp)
7961 {
7962         return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7963 }
7964
7965 /**
7966  * bnx2x_set_int_mode - configure interrupt mode
7967  *
7968  * @bp:         driver handle
7969  *
7970  * In case of MSI-X it will also try to enable MSI-X.
7971  */
7972 int bnx2x_set_int_mode(struct bnx2x *bp)
7973 {
7974         int rc = 0;
7975
7976         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
7977                 return -EINVAL;
7978
7979         switch (int_mode) {
7980         case BNX2X_INT_MODE_MSIX:
7981                 /* attempt to enable msix */
7982                 rc = bnx2x_enable_msix(bp);
7983
7984                 /* msix attained */
7985                 if (!rc)
7986                         return 0;
7987
7988                 /* vfs use only msix */
7989                 if (rc && IS_VF(bp))
7990                         return rc;
7991
7992                 /* failed to enable multiple MSI-X */
7993                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
7994                                bp->num_queues,
7995                                1 + bp->num_cnic_queues);
7996
7997                 /* falling through... */
7998         case BNX2X_INT_MODE_MSI:
7999                 bnx2x_enable_msi(bp);
8000
8001                 /* falling through... */
8002         case BNX2X_INT_MODE_INTX:
8003                 bp->num_ethernet_queues = 1;
8004                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8005                 BNX2X_DEV_INFO("set number of queues to 1\n");
8006                 break;
8007         default:
8008                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8009                 return -EINVAL;
8010         }
8011         return 0;
8012 }
8013
8014 /* must be called prior to any HW initializations */
8015 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8016 {
8017         if (IS_SRIOV(bp))
8018                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8019         return L2_ILT_LINES(bp);
8020 }
8021
8022 void bnx2x_ilt_set_info(struct bnx2x *bp)
8023 {
8024         struct ilt_client_info *ilt_client;
8025         struct bnx2x_ilt *ilt = BP_ILT(bp);
8026         u16 line = 0;
8027
8028         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8029         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8030
8031         /* CDU */
8032         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8033         ilt_client->client_num = ILT_CLIENT_CDU;
8034         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8035         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8036         ilt_client->start = line;
8037         line += bnx2x_cid_ilt_lines(bp);
8038
8039         if (CNIC_SUPPORT(bp))
8040                 line += CNIC_ILT_LINES;
8041         ilt_client->end = line - 1;
8042
8043         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8044            ilt_client->start,
8045            ilt_client->end,
8046            ilt_client->page_size,
8047            ilt_client->flags,
8048            ilog2(ilt_client->page_size >> 12));
8049
8050         /* QM */
8051         if (QM_INIT(bp->qm_cid_count)) {
8052                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8053                 ilt_client->client_num = ILT_CLIENT_QM;
8054                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8055                 ilt_client->flags = 0;
8056                 ilt_client->start = line;
8057
8058                 /* 4 bytes for each cid */
8059                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8060                                                          QM_ILT_PAGE_SZ);
8061
8062                 ilt_client->end = line - 1;
8063
8064                 DP(NETIF_MSG_IFUP,
8065                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8066                    ilt_client->start,
8067                    ilt_client->end,
8068                    ilt_client->page_size,
8069                    ilt_client->flags,
8070                    ilog2(ilt_client->page_size >> 12));
8071
8072         }
8073
8074         if (CNIC_SUPPORT(bp)) {
8075                 /* SRC */
8076                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8077                 ilt_client->client_num = ILT_CLIENT_SRC;
8078                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8079                 ilt_client->flags = 0;
8080                 ilt_client->start = line;
8081                 line += SRC_ILT_LINES;
8082                 ilt_client->end = line - 1;
8083
8084                 DP(NETIF_MSG_IFUP,
8085                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8086                    ilt_client->start,
8087                    ilt_client->end,
8088                    ilt_client->page_size,
8089                    ilt_client->flags,
8090                    ilog2(ilt_client->page_size >> 12));
8091
8092                 /* TM */
8093                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8094                 ilt_client->client_num = ILT_CLIENT_TM;
8095                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8096                 ilt_client->flags = 0;
8097                 ilt_client->start = line;
8098                 line += TM_ILT_LINES;
8099                 ilt_client->end = line - 1;
8100
8101                 DP(NETIF_MSG_IFUP,
8102                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8103                    ilt_client->start,
8104                    ilt_client->end,
8105                    ilt_client->page_size,
8106                    ilt_client->flags,
8107                    ilog2(ilt_client->page_size >> 12));
8108         }
8109
8110         BUG_ON(line > ILT_MAX_LINES);
8111 }
8112
8113 /**
8114  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8115  *
8116  * @bp:                 driver handle
8117  * @fp:                 pointer to fastpath
8118  * @init_params:        pointer to parameters structure
8119  *
8120  * parameters configured:
8121  *      - HC configuration
8122  *      - Queue's CDU context
8123  */
8124 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8125         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8126 {
8127
8128         u8 cos;
8129         int cxt_index, cxt_offset;
8130
8131         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8132         if (!IS_FCOE_FP(fp)) {
8133                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8134                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8135
8136                 /* If HC is supporterd, enable host coalescing in the transition
8137                  * to INIT state.
8138                  */
8139                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8140                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8141
8142                 /* HC rate */
8143                 init_params->rx.hc_rate = bp->rx_ticks ?
8144                         (1000000 / bp->rx_ticks) : 0;
8145                 init_params->tx.hc_rate = bp->tx_ticks ?
8146                         (1000000 / bp->tx_ticks) : 0;
8147
8148                 /* FW SB ID */
8149                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8150                         fp->fw_sb_id;
8151
8152                 /*
8153                  * CQ index among the SB indices: FCoE clients uses the default
8154                  * SB, therefore it's different.
8155                  */
8156                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8157                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8158         }
8159
8160         /* set maximum number of COSs supported by this queue */
8161         init_params->max_cos = fp->max_cos;
8162
8163         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8164             fp->index, init_params->max_cos);
8165
8166         /* set the context pointers queue object */
8167         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8168                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8169                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8170                                 ILT_PAGE_CIDS);
8171                 init_params->cxts[cos] =
8172                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8173         }
8174 }
8175
8176 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8177                         struct bnx2x_queue_state_params *q_params,
8178                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8179                         int tx_index, bool leading)
8180 {
8181         memset(tx_only_params, 0, sizeof(*tx_only_params));
8182
8183         /* Set the command */
8184         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8185
8186         /* Set tx-only QUEUE flags: don't zero statistics */
8187         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8188
8189         /* choose the index of the cid to send the slow path on */
8190         tx_only_params->cid_index = tx_index;
8191
8192         /* Set general TX_ONLY_SETUP parameters */
8193         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8194
8195         /* Set Tx TX_ONLY_SETUP parameters */
8196         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8197
8198         DP(NETIF_MSG_IFUP,
8199            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8200            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8201            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8202            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8203
8204         /* send the ramrod */
8205         return bnx2x_queue_state_change(bp, q_params);
8206 }
8207
8208
8209 /**
8210  * bnx2x_setup_queue - setup queue
8211  *
8212  * @bp:         driver handle
8213  * @fp:         pointer to fastpath
8214  * @leading:    is leading
8215  *
8216  * This function performs 2 steps in a Queue state machine
8217  *      actually: 1) RESET->INIT 2) INIT->SETUP
8218  */
8219
8220 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8221                        bool leading)
8222 {
8223         struct bnx2x_queue_state_params q_params = {NULL};
8224         struct bnx2x_queue_setup_params *setup_params =
8225                                                 &q_params.params.setup;
8226         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8227                                                 &q_params.params.tx_only;
8228         int rc;
8229         u8 tx_index;
8230
8231         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8232
8233         /* reset IGU state skip FCoE L2 queue */
8234         if (!IS_FCOE_FP(fp))
8235                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8236                              IGU_INT_ENABLE, 0);
8237
8238         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8239         /* We want to wait for completion in this context */
8240         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8241
8242         /* Prepare the INIT parameters */
8243         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8244
8245         /* Set the command */
8246         q_params.cmd = BNX2X_Q_CMD_INIT;
8247
8248         /* Change the state to INIT */
8249         rc = bnx2x_queue_state_change(bp, &q_params);
8250         if (rc) {
8251                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8252                 return rc;
8253         }
8254
8255         DP(NETIF_MSG_IFUP, "init complete\n");
8256
8257
8258         /* Now move the Queue to the SETUP state... */
8259         memset(setup_params, 0, sizeof(*setup_params));
8260
8261         /* Set QUEUE flags */
8262         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8263
8264         /* Set general SETUP parameters */
8265         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8266                                 FIRST_TX_COS_INDEX);
8267
8268         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8269                             &setup_params->rxq_params);
8270
8271         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8272                            FIRST_TX_COS_INDEX);
8273
8274         /* Set the command */
8275         q_params.cmd = BNX2X_Q_CMD_SETUP;
8276
8277         if (IS_FCOE_FP(fp))
8278                 bp->fcoe_init = true;
8279
8280         /* Change the state to SETUP */
8281         rc = bnx2x_queue_state_change(bp, &q_params);
8282         if (rc) {
8283                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8284                 return rc;
8285         }
8286
8287         /* loop through the relevant tx-only indices */
8288         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8289               tx_index < fp->max_cos;
8290               tx_index++) {
8291
8292                 /* prepare and send tx-only ramrod*/
8293                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8294                                           tx_only_params, tx_index, leading);
8295                 if (rc) {
8296                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8297                                   fp->index, tx_index);
8298                         return rc;
8299                 }
8300         }
8301
8302         return rc;
8303 }
8304
8305 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8306 {
8307         struct bnx2x_fastpath *fp = &bp->fp[index];
8308         struct bnx2x_fp_txdata *txdata;
8309         struct bnx2x_queue_state_params q_params = {NULL};
8310         int rc, tx_index;
8311
8312         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8313
8314         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8315         /* We want to wait for completion in this context */
8316         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8317
8318
8319         /* close tx-only connections */
8320         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8321              tx_index < fp->max_cos;
8322              tx_index++){
8323
8324                 /* ascertain this is a normal queue*/
8325                 txdata = fp->txdata_ptr[tx_index];
8326
8327                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8328                                                         txdata->txq_index);
8329
8330                 /* send halt terminate on tx-only connection */
8331                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8332                 memset(&q_params.params.terminate, 0,
8333                        sizeof(q_params.params.terminate));
8334                 q_params.params.terminate.cid_index = tx_index;
8335
8336                 rc = bnx2x_queue_state_change(bp, &q_params);
8337                 if (rc)
8338                         return rc;
8339
8340                 /* send halt terminate on tx-only connection */
8341                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8342                 memset(&q_params.params.cfc_del, 0,
8343                        sizeof(q_params.params.cfc_del));
8344                 q_params.params.cfc_del.cid_index = tx_index;
8345                 rc = bnx2x_queue_state_change(bp, &q_params);
8346                 if (rc)
8347                         return rc;
8348         }
8349         /* Stop the primary connection: */
8350         /* ...halt the connection */
8351         q_params.cmd = BNX2X_Q_CMD_HALT;
8352         rc = bnx2x_queue_state_change(bp, &q_params);
8353         if (rc)
8354                 return rc;
8355
8356         /* ...terminate the connection */
8357         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8358         memset(&q_params.params.terminate, 0,
8359                sizeof(q_params.params.terminate));
8360         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8361         rc = bnx2x_queue_state_change(bp, &q_params);
8362         if (rc)
8363                 return rc;
8364         /* ...delete cfc entry */
8365         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8366         memset(&q_params.params.cfc_del, 0,
8367                sizeof(q_params.params.cfc_del));
8368         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8369         return bnx2x_queue_state_change(bp, &q_params);
8370 }
8371
8372
8373 static void bnx2x_reset_func(struct bnx2x *bp)
8374 {
8375         int port = BP_PORT(bp);
8376         int func = BP_FUNC(bp);
8377         int i;
8378
8379         /* Disable the function in the FW */
8380         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8381         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8382         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8383         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8384
8385         /* FP SBs */
8386         for_each_eth_queue(bp, i) {
8387                 struct bnx2x_fastpath *fp = &bp->fp[i];
8388                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8389                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8390                            SB_DISABLED);
8391         }
8392
8393         if (CNIC_LOADED(bp))
8394                 /* CNIC SB */
8395                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8396                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8397                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8398
8399         /* SP SB */
8400         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8401                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8402                 SB_DISABLED);
8403
8404         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8405                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8406                        0);
8407
8408         /* Configure IGU */
8409         if (bp->common.int_block == INT_BLOCK_HC) {
8410                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8411                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8412         } else {
8413                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8414                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8415         }
8416
8417         if (CNIC_LOADED(bp)) {
8418                 /* Disable Timer scan */
8419                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8420                 /*
8421                  * Wait for at least 10ms and up to 2 second for the timers
8422                  * scan to complete
8423                  */
8424                 for (i = 0; i < 200; i++) {
8425                         msleep(10);
8426                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8427                                 break;
8428                 }
8429         }
8430         /* Clear ILT */
8431         bnx2x_clear_func_ilt(bp, func);
8432
8433         /* Timers workaround bug for E2: if this is vnic-3,
8434          * we need to set the entire ilt range for this timers.
8435          */
8436         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8437                 struct ilt_client_info ilt_cli;
8438                 /* use dummy TM client */
8439                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8440                 ilt_cli.start = 0;
8441                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8442                 ilt_cli.client_num = ILT_CLIENT_TM;
8443
8444                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8445         }
8446
8447         /* this assumes that reset_port() called before reset_func()*/
8448         if (!CHIP_IS_E1x(bp))
8449                 bnx2x_pf_disable(bp);
8450
8451         bp->dmae_ready = 0;
8452 }
8453
8454 static void bnx2x_reset_port(struct bnx2x *bp)
8455 {
8456         int port = BP_PORT(bp);
8457         u32 val;
8458
8459         /* Reset physical Link */
8460         bnx2x__link_reset(bp);
8461
8462         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8463
8464         /* Do not rcv packets to BRB */
8465         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8466         /* Do not direct rcv packets that are not for MCP to the BRB */
8467         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8468                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8469
8470         /* Configure AEU */
8471         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8472
8473         msleep(100);
8474         /* Check for BRB port occupancy */
8475         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8476         if (val)
8477                 DP(NETIF_MSG_IFDOWN,
8478                    "BRB1 is not empty  %d blocks are occupied\n", val);
8479
8480         /* TODO: Close Doorbell port? */
8481 }
8482
8483 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8484 {
8485         struct bnx2x_func_state_params func_params = {NULL};
8486
8487         /* Prepare parameters for function state transitions */
8488         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8489
8490         func_params.f_obj = &bp->func_obj;
8491         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8492
8493         func_params.params.hw_init.load_phase = load_code;
8494
8495         return bnx2x_func_state_change(bp, &func_params);
8496 }
8497
8498 static int bnx2x_func_stop(struct bnx2x *bp)
8499 {
8500         struct bnx2x_func_state_params func_params = {NULL};
8501         int rc;
8502
8503         /* Prepare parameters for function state transitions */
8504         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8505         func_params.f_obj = &bp->func_obj;
8506         func_params.cmd = BNX2X_F_CMD_STOP;
8507
8508         /*
8509          * Try to stop the function the 'good way'. If fails (in case
8510          * of a parity error during bnx2x_chip_cleanup()) and we are
8511          * not in a debug mode, perform a state transaction in order to
8512          * enable further HW_RESET transaction.
8513          */
8514         rc = bnx2x_func_state_change(bp, &func_params);
8515         if (rc) {
8516 #ifdef BNX2X_STOP_ON_ERROR
8517                 return rc;
8518 #else
8519                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8520                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8521                 return bnx2x_func_state_change(bp, &func_params);
8522 #endif
8523         }
8524
8525         return 0;
8526 }
8527
8528 /**
8529  * bnx2x_send_unload_req - request unload mode from the MCP.
8530  *
8531  * @bp:                 driver handle
8532  * @unload_mode:        requested function's unload mode
8533  *
8534  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8535  */
8536 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8537 {
8538         u32 reset_code = 0;
8539         int port = BP_PORT(bp);
8540
8541         /* Select the UNLOAD request mode */
8542         if (unload_mode == UNLOAD_NORMAL)
8543                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8544
8545         else if (bp->flags & NO_WOL_FLAG)
8546                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8547
8548         else if (bp->wol) {
8549                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8550                 u8 *mac_addr = bp->dev->dev_addr;
8551                 u32 val;
8552                 u16 pmc;
8553
8554                 /* The mac address is written to entries 1-4 to
8555                  * preserve entry 0 which is used by the PMF
8556                  */
8557                 u8 entry = (BP_VN(bp) + 1)*8;
8558
8559                 val = (mac_addr[0] << 8) | mac_addr[1];
8560                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8561
8562                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8563                       (mac_addr[4] << 8) | mac_addr[5];
8564                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8565
8566                 /* Enable the PME and clear the status */
8567                 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8568                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8569                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8570
8571                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8572
8573         } else
8574                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8575
8576         /* Send the request to the MCP */
8577         if (!BP_NOMCP(bp))
8578                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8579         else {
8580                 int path = BP_PATH(bp);
8581
8582                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8583                    path, load_count[path][0], load_count[path][1],
8584                    load_count[path][2]);
8585                 load_count[path][0]--;
8586                 load_count[path][1 + port]--;
8587                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8588                    path, load_count[path][0], load_count[path][1],
8589                    load_count[path][2]);
8590                 if (load_count[path][0] == 0)
8591                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8592                 else if (load_count[path][1 + port] == 0)
8593                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8594                 else
8595                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8596         }
8597
8598         return reset_code;
8599 }
8600
8601 /**
8602  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8603  *
8604  * @bp:         driver handle
8605  * @keep_link:          true iff link should be kept up
8606  */
8607 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8608 {
8609         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8610
8611         /* Report UNLOAD_DONE to MCP */
8612         if (!BP_NOMCP(bp))
8613                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8614 }
8615
8616 static int bnx2x_func_wait_started(struct bnx2x *bp)
8617 {
8618         int tout = 50;
8619         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8620
8621         if (!bp->port.pmf)
8622                 return 0;
8623
8624         /*
8625          * (assumption: No Attention from MCP at this stage)
8626          * PMF probably in the middle of TXdisable/enable transaction
8627          * 1. Sync IRS for default SB
8628          * 2. Sync SP queue - this guarantes us that attention handling started
8629          * 3. Wait, that TXdisable/enable transaction completes
8630          *
8631          * 1+2 guranty that if DCBx attention was scheduled it already changed
8632          * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
8633          * received complettion for the transaction the state is TX_STOPPED.
8634          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8635          * transaction.
8636          */
8637
8638         /* make sure default SB ISR is done */
8639         if (msix)
8640                 synchronize_irq(bp->msix_table[0].vector);
8641         else
8642                 synchronize_irq(bp->pdev->irq);
8643
8644         flush_workqueue(bnx2x_wq);
8645
8646         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8647                                 BNX2X_F_STATE_STARTED && tout--)
8648                 msleep(20);
8649
8650         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8651                                                 BNX2X_F_STATE_STARTED) {
8652 #ifdef BNX2X_STOP_ON_ERROR
8653                 BNX2X_ERR("Wrong function state\n");
8654                 return -EBUSY;
8655 #else
8656                 /*
8657                  * Failed to complete the transaction in a "good way"
8658                  * Force both transactions with CLR bit
8659                  */
8660                 struct bnx2x_func_state_params func_params = {NULL};
8661
8662                 DP(NETIF_MSG_IFDOWN,
8663                    "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8664
8665                 func_params.f_obj = &bp->func_obj;
8666                 __set_bit(RAMROD_DRV_CLR_ONLY,
8667                                         &func_params.ramrod_flags);
8668
8669                 /* STARTED-->TX_ST0PPED */
8670                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8671                 bnx2x_func_state_change(bp, &func_params);
8672
8673                 /* TX_ST0PPED-->STARTED */
8674                 func_params.cmd = BNX2X_F_CMD_TX_START;
8675                 return bnx2x_func_state_change(bp, &func_params);
8676 #endif
8677         }
8678
8679         return 0;
8680 }
8681
8682 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8683 {
8684         int port = BP_PORT(bp);
8685         int i, rc = 0;
8686         u8 cos;
8687         struct bnx2x_mcast_ramrod_params rparam = {NULL};
8688         u32 reset_code;
8689
8690         /* Wait until tx fastpath tasks complete */
8691         for_each_tx_queue(bp, i) {
8692                 struct bnx2x_fastpath *fp = &bp->fp[i];
8693
8694                 for_each_cos_in_tx_queue(fp, cos)
8695                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8696 #ifdef BNX2X_STOP_ON_ERROR
8697                 if (rc)
8698                         return;
8699 #endif
8700         }
8701
8702         /* Give HW time to discard old tx messages */
8703         usleep_range(1000, 2000);
8704
8705         /* Clean all ETH MACs */
8706         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8707                                 false);
8708         if (rc < 0)
8709                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8710
8711         /* Clean up UC list  */
8712         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8713                                 true);
8714         if (rc < 0)
8715                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8716                           rc);
8717
8718         /* Disable LLH */
8719         if (!CHIP_IS_E1(bp))
8720                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8721
8722         /* Set "drop all" (stop Rx).
8723          * We need to take a netif_addr_lock() here in order to prevent
8724          * a race between the completion code and this code.
8725          */
8726         netif_addr_lock_bh(bp->dev);
8727         /* Schedule the rx_mode command */
8728         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8729                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8730         else
8731                 bnx2x_set_storm_rx_mode(bp);
8732
8733         /* Cleanup multicast configuration */
8734         rparam.mcast_obj = &bp->mcast_obj;
8735         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8736         if (rc < 0)
8737                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8738
8739         netif_addr_unlock_bh(bp->dev);
8740
8741         bnx2x_iov_chip_cleanup(bp);
8742
8743
8744         /*
8745          * Send the UNLOAD_REQUEST to the MCP. This will return if
8746          * this function should perform FUNC, PORT or COMMON HW
8747          * reset.
8748          */
8749         reset_code = bnx2x_send_unload_req(bp, unload_mode);
8750
8751         /*
8752          * (assumption: No Attention from MCP at this stage)
8753          * PMF probably in the middle of TXdisable/enable transaction
8754          */
8755         rc = bnx2x_func_wait_started(bp);
8756         if (rc) {
8757                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8758 #ifdef BNX2X_STOP_ON_ERROR
8759                 return;
8760 #endif
8761         }
8762
8763         /* Close multi and leading connections
8764          * Completions for ramrods are collected in a synchronous way
8765          */
8766         for_each_eth_queue(bp, i)
8767                 if (bnx2x_stop_queue(bp, i))
8768 #ifdef BNX2X_STOP_ON_ERROR
8769                         return;
8770 #else
8771                         goto unload_error;
8772 #endif
8773
8774         if (CNIC_LOADED(bp)) {
8775                 for_each_cnic_queue(bp, i)
8776                         if (bnx2x_stop_queue(bp, i))
8777 #ifdef BNX2X_STOP_ON_ERROR
8778                                 return;
8779 #else
8780                                 goto unload_error;
8781 #endif
8782         }
8783
8784         /* If SP settings didn't get completed so far - something
8785          * very wrong has happen.
8786          */
8787         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8788                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8789
8790 #ifndef BNX2X_STOP_ON_ERROR
8791 unload_error:
8792 #endif
8793         rc = bnx2x_func_stop(bp);
8794         if (rc) {
8795                 BNX2X_ERR("Function stop failed!\n");
8796 #ifdef BNX2X_STOP_ON_ERROR
8797                 return;
8798 #endif
8799         }
8800
8801         /* Disable HW interrupts, NAPI */
8802         bnx2x_netif_stop(bp, 1);
8803         /* Delete all NAPI objects */
8804         bnx2x_del_all_napi(bp);
8805         if (CNIC_LOADED(bp))
8806                 bnx2x_del_all_napi_cnic(bp);
8807
8808         /* Release IRQs */
8809         bnx2x_free_irq(bp);
8810
8811         /* Reset the chip */
8812         rc = bnx2x_reset_hw(bp, reset_code);
8813         if (rc)
8814                 BNX2X_ERR("HW_RESET failed\n");
8815
8816
8817         /* Report UNLOAD_DONE to MCP */
8818         bnx2x_send_unload_done(bp, keep_link);
8819 }
8820
8821 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8822 {
8823         u32 val;
8824
8825         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8826
8827         if (CHIP_IS_E1(bp)) {
8828                 int port = BP_PORT(bp);
8829                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8830                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
8831
8832                 val = REG_RD(bp, addr);
8833                 val &= ~(0x300);
8834                 REG_WR(bp, addr, val);
8835         } else {
8836                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8837                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8838                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8839                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8840         }
8841 }
8842
8843 /* Close gates #2, #3 and #4: */
8844 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8845 {
8846         u32 val;
8847
8848         /* Gates #2 and #4a are closed/opened for "not E1" only */
8849         if (!CHIP_IS_E1(bp)) {
8850                 /* #4 */
8851                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8852                 /* #2 */
8853                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8854         }
8855
8856         /* #3 */
8857         if (CHIP_IS_E1x(bp)) {
8858                 /* Prevent interrupts from HC on both ports */
8859                 val = REG_RD(bp, HC_REG_CONFIG_1);
8860                 REG_WR(bp, HC_REG_CONFIG_1,
8861                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8862                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8863
8864                 val = REG_RD(bp, HC_REG_CONFIG_0);
8865                 REG_WR(bp, HC_REG_CONFIG_0,
8866                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8867                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8868         } else {
8869                 /* Prevent incoming interrupts in IGU */
8870                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8871
8872                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8873                        (!close) ?
8874                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8875                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8876         }
8877
8878         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8879                 close ? "closing" : "opening");
8880         mmiowb();
8881 }
8882
8883 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8884
8885 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8886 {
8887         /* Do some magic... */
8888         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8889         *magic_val = val & SHARED_MF_CLP_MAGIC;
8890         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8891 }
8892
8893 /**
8894  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8895  *
8896  * @bp:         driver handle
8897  * @magic_val:  old value of the `magic' bit.
8898  */
8899 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8900 {
8901         /* Restore the `magic' bit value... */
8902         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8903         MF_CFG_WR(bp, shared_mf_config.clp_mb,
8904                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8905 }
8906
8907 /**
8908  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8909  *
8910  * @bp:         driver handle
8911  * @magic_val:  old value of 'magic' bit.
8912  *
8913  * Takes care of CLP configurations.
8914  */
8915 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8916 {
8917         u32 shmem;
8918         u32 validity_offset;
8919
8920         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8921
8922         /* Set `magic' bit in order to save MF config */
8923         if (!CHIP_IS_E1(bp))
8924                 bnx2x_clp_reset_prep(bp, magic_val);
8925
8926         /* Get shmem offset */
8927         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8928         validity_offset =
8929                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
8930
8931         /* Clear validity map flags */
8932         if (shmem > 0)
8933                 REG_WR(bp, shmem + validity_offset, 0);
8934 }
8935
8936 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8937 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8938
8939 /**
8940  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8941  *
8942  * @bp: driver handle
8943  */
8944 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
8945 {
8946         /* special handling for emulation and FPGA,
8947            wait 10 times longer */
8948         if (CHIP_REV_IS_SLOW(bp))
8949                 msleep(MCP_ONE_TIMEOUT*10);
8950         else
8951                 msleep(MCP_ONE_TIMEOUT);
8952 }
8953
8954 /*
8955  * initializes bp->common.shmem_base and waits for validity signature to appear
8956  */
8957 static int bnx2x_init_shmem(struct bnx2x *bp)
8958 {
8959         int cnt = 0;
8960         u32 val = 0;
8961
8962         do {
8963                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8964                 if (bp->common.shmem_base) {
8965                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8966                         if (val & SHR_MEM_VALIDITY_MB)
8967                                 return 0;
8968                 }
8969
8970                 bnx2x_mcp_wait_one(bp);
8971
8972         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8973
8974         BNX2X_ERR("BAD MCP validity signature\n");
8975
8976         return -ENODEV;
8977 }
8978
8979 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8980 {
8981         int rc = bnx2x_init_shmem(bp);
8982
8983         /* Restore the `magic' bit value */
8984         if (!CHIP_IS_E1(bp))
8985                 bnx2x_clp_reset_done(bp, magic_val);
8986
8987         return rc;
8988 }
8989
8990 static void bnx2x_pxp_prep(struct bnx2x *bp)
8991 {
8992         if (!CHIP_IS_E1(bp)) {
8993                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8994                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8995                 mmiowb();
8996         }
8997 }
8998
8999 /*
9000  * Reset the whole chip except for:
9001  *      - PCIE core
9002  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9003  *              one reset bit)
9004  *      - IGU
9005  *      - MISC (including AEU)
9006  *      - GRC
9007  *      - RBCN, RBCP
9008  */
9009 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9010 {
9011         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9012         u32 global_bits2, stay_reset2;
9013
9014         /*
9015          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9016          * (per chip) blocks.
9017          */
9018         global_bits2 =
9019                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9020                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9021
9022         /* Don't reset the following blocks.
9023          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9024          *            reset, as in 4 port device they might still be owned
9025          *            by the MCP (there is only one leader per path).
9026          */
9027         not_reset_mask1 =
9028                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9029                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9030                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9031
9032         not_reset_mask2 =
9033                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9034                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9035                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9036                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9037                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9038                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9039                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9040                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9041                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9042                 MISC_REGISTERS_RESET_REG_2_PGLC |
9043                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9044                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9045                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9046                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9047                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9048                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9049
9050         /*
9051          * Keep the following blocks in reset:
9052          *  - all xxMACs are handled by the bnx2x_link code.
9053          */
9054         stay_reset2 =
9055                 MISC_REGISTERS_RESET_REG_2_XMAC |
9056                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9057
9058         /* Full reset masks according to the chip */
9059         reset_mask1 = 0xffffffff;
9060
9061         if (CHIP_IS_E1(bp))
9062                 reset_mask2 = 0xffff;
9063         else if (CHIP_IS_E1H(bp))
9064                 reset_mask2 = 0x1ffff;
9065         else if (CHIP_IS_E2(bp))
9066                 reset_mask2 = 0xfffff;
9067         else /* CHIP_IS_E3 */
9068                 reset_mask2 = 0x3ffffff;
9069
9070         /* Don't reset global blocks unless we need to */
9071         if (!global)
9072                 reset_mask2 &= ~global_bits2;
9073
9074         /*
9075          * In case of attention in the QM, we need to reset PXP
9076          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9077          * because otherwise QM reset would release 'close the gates' shortly
9078          * before resetting the PXP, then the PSWRQ would send a write
9079          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9080          * read the payload data from PSWWR, but PSWWR would not
9081          * respond. The write queue in PGLUE would stuck, dmae commands
9082          * would not return. Therefore it's important to reset the second
9083          * reset register (containing the
9084          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9085          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9086          * bit).
9087          */
9088         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9089                reset_mask2 & (~not_reset_mask2));
9090
9091         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9092                reset_mask1 & (~not_reset_mask1));
9093
9094         barrier();
9095         mmiowb();
9096
9097         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9098                reset_mask2 & (~stay_reset2));
9099
9100         barrier();
9101         mmiowb();
9102
9103         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9104         mmiowb();
9105 }
9106
9107 /**
9108  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9109  * It should get cleared in no more than 1s.
9110  *
9111  * @bp: driver handle
9112  *
9113  * It should get cleared in no more than 1s. Returns 0 if
9114  * pending writes bit gets cleared.
9115  */
9116 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9117 {
9118         u32 cnt = 1000;
9119         u32 pend_bits = 0;
9120
9121         do {
9122                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9123
9124                 if (pend_bits == 0)
9125                         break;
9126
9127                 usleep_range(1000, 2000);
9128         } while (cnt-- > 0);
9129
9130         if (cnt <= 0) {
9131                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9132                           pend_bits);
9133                 return -EBUSY;
9134         }
9135
9136         return 0;
9137 }
9138
9139 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9140 {
9141         int cnt = 1000;
9142         u32 val = 0;
9143         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9144         u32 tags_63_32 = 0;
9145
9146         /* Empty the Tetris buffer, wait for 1s */
9147         do {
9148                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9149                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9150                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9151                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9152                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9153                 if (CHIP_IS_E3(bp))
9154                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9155
9156                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9157                     ((port_is_idle_0 & 0x1) == 0x1) &&
9158                     ((port_is_idle_1 & 0x1) == 0x1) &&
9159                     (pgl_exp_rom2 == 0xffffffff) &&
9160                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9161                         break;
9162                 usleep_range(1000, 2000);
9163         } while (cnt-- > 0);
9164
9165         if (cnt <= 0) {
9166                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9167                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9168                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9169                           pgl_exp_rom2);
9170                 return -EAGAIN;
9171         }
9172
9173         barrier();
9174
9175         /* Close gates #2, #3 and #4 */
9176         bnx2x_set_234_gates(bp, true);
9177
9178         /* Poll for IGU VQs for 57712 and newer chips */
9179         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9180                 return -EAGAIN;
9181
9182
9183         /* TBD: Indicate that "process kill" is in progress to MCP */
9184
9185         /* Clear "unprepared" bit */
9186         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9187         barrier();
9188
9189         /* Make sure all is written to the chip before the reset */
9190         mmiowb();
9191
9192         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9193          * PSWHST, GRC and PSWRD Tetris buffer.
9194          */
9195         usleep_range(1000, 2000);
9196
9197         /* Prepare to chip reset: */
9198         /* MCP */
9199         if (global)
9200                 bnx2x_reset_mcp_prep(bp, &val);
9201
9202         /* PXP */
9203         bnx2x_pxp_prep(bp);
9204         barrier();
9205
9206         /* reset the chip */
9207         bnx2x_process_kill_chip_reset(bp, global);
9208         barrier();
9209
9210         /* Recover after reset: */
9211         /* MCP */
9212         if (global && bnx2x_reset_mcp_comp(bp, val))
9213                 return -EAGAIN;
9214
9215         /* TBD: Add resetting the NO_MCP mode DB here */
9216
9217         /* Open the gates #2, #3 and #4 */
9218         bnx2x_set_234_gates(bp, false);
9219
9220         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9221          * reset state, re-enable attentions. */
9222
9223         return 0;
9224 }
9225
9226 static int bnx2x_leader_reset(struct bnx2x *bp)
9227 {
9228         int rc = 0;
9229         bool global = bnx2x_reset_is_global(bp);
9230         u32 load_code;
9231
9232         /* if not going to reset MCP - load "fake" driver to reset HW while
9233          * driver is owner of the HW
9234          */
9235         if (!global && !BP_NOMCP(bp)) {
9236                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9237                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9238                 if (!load_code) {
9239                         BNX2X_ERR("MCP response failure, aborting\n");
9240                         rc = -EAGAIN;
9241                         goto exit_leader_reset;
9242                 }
9243                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9244                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9245                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9246                         rc = -EAGAIN;
9247                         goto exit_leader_reset2;
9248                 }
9249                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9250                 if (!load_code) {
9251                         BNX2X_ERR("MCP response failure, aborting\n");
9252                         rc = -EAGAIN;
9253                         goto exit_leader_reset2;
9254                 }
9255         }
9256
9257         /* Try to recover after the failure */
9258         if (bnx2x_process_kill(bp, global)) {
9259                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9260                           BP_PATH(bp));
9261                 rc = -EAGAIN;
9262                 goto exit_leader_reset2;
9263         }
9264
9265         /*
9266          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9267          * state.
9268          */
9269         bnx2x_set_reset_done(bp);
9270         if (global)
9271                 bnx2x_clear_reset_global(bp);
9272
9273 exit_leader_reset2:
9274         /* unload "fake driver" if it was loaded */
9275         if (!global && !BP_NOMCP(bp)) {
9276                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9277                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9278         }
9279 exit_leader_reset:
9280         bp->is_leader = 0;
9281         bnx2x_release_leader_lock(bp);
9282         smp_mb();
9283         return rc;
9284 }
9285
9286 static void bnx2x_recovery_failed(struct bnx2x *bp)
9287 {
9288         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9289
9290         /* Disconnect this device */
9291         netif_device_detach(bp->dev);
9292
9293         /*
9294          * Block ifup for all function on this engine until "process kill"
9295          * or power cycle.
9296          */
9297         bnx2x_set_reset_in_progress(bp);
9298
9299         /* Shut down the power */
9300         bnx2x_set_power_state(bp, PCI_D3hot);
9301
9302         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9303
9304         smp_mb();
9305 }
9306
9307 /*
9308  * Assumption: runs under rtnl lock. This together with the fact
9309  * that it's called only from bnx2x_sp_rtnl() ensure that it
9310  * will never be called when netif_running(bp->dev) is false.
9311  */
9312 static void bnx2x_parity_recover(struct bnx2x *bp)
9313 {
9314         bool global = false;
9315         u32 error_recovered, error_unrecovered;
9316         bool is_parity;
9317
9318         DP(NETIF_MSG_HW, "Handling parity\n");
9319         while (1) {
9320                 switch (bp->recovery_state) {
9321                 case BNX2X_RECOVERY_INIT:
9322                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9323                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9324                         WARN_ON(!is_parity);
9325
9326                         /* Try to get a LEADER_LOCK HW lock */
9327                         if (bnx2x_trylock_leader_lock(bp)) {
9328                                 bnx2x_set_reset_in_progress(bp);
9329                                 /*
9330                                  * Check if there is a global attention and if
9331                                  * there was a global attention, set the global
9332                                  * reset bit.
9333                                  */
9334
9335                                 if (global)
9336                                         bnx2x_set_reset_global(bp);
9337
9338                                 bp->is_leader = 1;
9339                         }
9340
9341                         /* Stop the driver */
9342                         /* If interface has been removed - break */
9343                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9344                                 return;
9345
9346                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9347
9348                         /* Ensure "is_leader", MCP command sequence and
9349                          * "recovery_state" update values are seen on other
9350                          * CPUs.
9351                          */
9352                         smp_mb();
9353                         break;
9354
9355                 case BNX2X_RECOVERY_WAIT:
9356                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9357                         if (bp->is_leader) {
9358                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9359                                 bool other_load_status =
9360                                         bnx2x_get_load_status(bp, other_engine);
9361                                 bool load_status =
9362                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9363                                 global = bnx2x_reset_is_global(bp);
9364
9365                                 /*
9366                                  * In case of a parity in a global block, let
9367                                  * the first leader that performs a
9368                                  * leader_reset() reset the global blocks in
9369                                  * order to clear global attentions. Otherwise
9370                                  * the the gates will remain closed for that
9371                                  * engine.
9372                                  */
9373                                 if (load_status ||
9374                                     (global && other_load_status)) {
9375                                         /* Wait until all other functions get
9376                                          * down.
9377                                          */
9378                                         schedule_delayed_work(&bp->sp_rtnl_task,
9379                                                                 HZ/10);
9380                                         return;
9381                                 } else {
9382                                         /* If all other functions got down -
9383                                          * try to bring the chip back to
9384                                          * normal. In any case it's an exit
9385                                          * point for a leader.
9386                                          */
9387                                         if (bnx2x_leader_reset(bp)) {
9388                                                 bnx2x_recovery_failed(bp);
9389                                                 return;
9390                                         }
9391
9392                                         /* If we are here, means that the
9393                                          * leader has succeeded and doesn't
9394                                          * want to be a leader any more. Try
9395                                          * to continue as a none-leader.
9396                                          */
9397                                         break;
9398                                 }
9399                         } else { /* non-leader */
9400                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9401                                         /* Try to get a LEADER_LOCK HW lock as
9402                                          * long as a former leader may have
9403                                          * been unloaded by the user or
9404                                          * released a leadership by another
9405                                          * reason.
9406                                          */
9407                                         if (bnx2x_trylock_leader_lock(bp)) {
9408                                                 /* I'm a leader now! Restart a
9409                                                  * switch case.
9410                                                  */
9411                                                 bp->is_leader = 1;
9412                                                 break;
9413                                         }
9414
9415                                         schedule_delayed_work(&bp->sp_rtnl_task,
9416                                                                 HZ/10);
9417                                         return;
9418
9419                                 } else {
9420                                         /*
9421                                          * If there was a global attention, wait
9422                                          * for it to be cleared.
9423                                          */
9424                                         if (bnx2x_reset_is_global(bp)) {
9425                                                 schedule_delayed_work(
9426                                                         &bp->sp_rtnl_task,
9427                                                         HZ/10);
9428                                                 return;
9429                                         }
9430
9431                                         error_recovered =
9432                                           bp->eth_stats.recoverable_error;
9433                                         error_unrecovered =
9434                                           bp->eth_stats.unrecoverable_error;
9435                                         bp->recovery_state =
9436                                                 BNX2X_RECOVERY_NIC_LOADING;
9437                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9438                                                 error_unrecovered++;
9439                                                 netdev_err(bp->dev,
9440                                                            "Recovery failed. Power cycle needed\n");
9441                                                 /* Disconnect this device */
9442                                                 netif_device_detach(bp->dev);
9443                                                 /* Shut down the power */
9444                                                 bnx2x_set_power_state(
9445                                                         bp, PCI_D3hot);
9446                                                 smp_mb();
9447                                         } else {
9448                                                 bp->recovery_state =
9449                                                         BNX2X_RECOVERY_DONE;
9450                                                 error_recovered++;
9451                                                 smp_mb();
9452                                         }
9453                                         bp->eth_stats.recoverable_error =
9454                                                 error_recovered;
9455                                         bp->eth_stats.unrecoverable_error =
9456                                                 error_unrecovered;
9457
9458                                         return;
9459                                 }
9460                         }
9461                 default:
9462                         return;
9463                 }
9464         }
9465 }
9466
9467 static int bnx2x_close(struct net_device *dev);
9468
9469 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9470  * scheduled on a general queue in order to prevent a dead lock.
9471  */
9472 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9473 {
9474         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9475
9476         rtnl_lock();
9477
9478         if (!netif_running(bp->dev)) {
9479                 rtnl_unlock();
9480                 return;
9481         }
9482
9483         /* if stop on error is defined no recovery flows should be executed */
9484 #ifdef BNX2X_STOP_ON_ERROR
9485         BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9486                   "you will need to reboot when done\n");
9487         goto sp_rtnl_not_reset;
9488 #endif
9489
9490         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9491                 /*
9492                  * Clear all pending SP commands as we are going to reset the
9493                  * function anyway.
9494                  */
9495                 bp->sp_rtnl_state = 0;
9496                 smp_mb();
9497
9498                 bnx2x_parity_recover(bp);
9499
9500                 rtnl_unlock();
9501                 return;
9502         }
9503
9504         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9505                 /*
9506                  * Clear all pending SP commands as we are going to reset the
9507                  * function anyway.
9508                  */
9509                 bp->sp_rtnl_state = 0;
9510                 smp_mb();
9511
9512                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9513                 bnx2x_nic_load(bp, LOAD_NORMAL);
9514
9515                 rtnl_unlock();
9516                 return;
9517         }
9518 #ifdef BNX2X_STOP_ON_ERROR
9519 sp_rtnl_not_reset:
9520 #endif
9521         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9522                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9523         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9524                 bnx2x_after_function_update(bp);
9525         /*
9526          * in case of fan failure we need to reset id if the "stop on error"
9527          * debug flag is set, since we trying to prevent permanent overheating
9528          * damage
9529          */
9530         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9531                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9532                 netif_device_detach(bp->dev);
9533                 bnx2x_close(bp->dev);
9534                 rtnl_unlock();
9535                 return;
9536         }
9537
9538         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9539                 DP(BNX2X_MSG_SP,
9540                    "sending set mcast vf pf channel message from rtnl sp-task\n");
9541                 bnx2x_vfpf_set_mcast(bp->dev);
9542         }
9543
9544         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
9545                                &bp->sp_rtnl_state)) {
9546                 DP(BNX2X_MSG_SP,
9547                    "sending set storm rx mode vf pf channel message from rtnl sp-task\n");
9548                 bnx2x_vfpf_storm_rx_mode(bp);
9549         }
9550
9551         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9552                                &bp->sp_rtnl_state))
9553                 bnx2x_pf_set_vfs_vlan(bp);
9554
9555         /* work which needs rtnl lock not-taken (as it takes the lock itself and
9556          * can be called from other contexts as well)
9557          */
9558         rtnl_unlock();
9559
9560         /* enable SR-IOV if applicable */
9561         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9562                                                &bp->sp_rtnl_state)) {
9563                 bnx2x_disable_sriov(bp);
9564                 bnx2x_enable_sriov(bp);
9565         }
9566 }
9567
9568 static void bnx2x_period_task(struct work_struct *work)
9569 {
9570         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9571
9572         if (!netif_running(bp->dev))
9573                 goto period_task_exit;
9574
9575         if (CHIP_REV_IS_SLOW(bp)) {
9576                 BNX2X_ERR("period task called on emulation, ignoring\n");
9577                 goto period_task_exit;
9578         }
9579
9580         bnx2x_acquire_phy_lock(bp);
9581         /*
9582          * The barrier is needed to ensure the ordering between the writing to
9583          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9584          * the reading here.
9585          */
9586         smp_mb();
9587         if (bp->port.pmf) {
9588                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9589
9590                 /* Re-queue task in 1 sec */
9591                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9592         }
9593
9594         bnx2x_release_phy_lock(bp);
9595 period_task_exit:
9596         return;
9597 }
9598
9599 /*
9600  * Init service functions
9601  */
9602
9603 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9604 {
9605         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9606         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9607         return base + (BP_ABS_FUNC(bp)) * stride;
9608 }
9609
9610 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9611                                         struct bnx2x_mac_vals *vals)
9612 {
9613         u32 val, base_addr, offset, mask, reset_reg;
9614         bool mac_stopped = false;
9615         u8 port = BP_PORT(bp);
9616
9617         /* reset addresses as they also mark which values were changed */
9618         vals->bmac_addr = 0;
9619         vals->umac_addr = 0;
9620         vals->xmac_addr = 0;
9621         vals->emac_addr = 0;
9622
9623         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9624
9625         if (!CHIP_IS_E3(bp)) {
9626                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9627                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9628                 if ((mask & reset_reg) && val) {
9629                         u32 wb_data[2];
9630                         BNX2X_DEV_INFO("Disable bmac Rx\n");
9631                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9632                                                 : NIG_REG_INGRESS_BMAC0_MEM;
9633                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9634                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
9635
9636                         /*
9637                          * use rd/wr since we cannot use dmae. This is safe
9638                          * since MCP won't access the bus due to the request
9639                          * to unload, and no function on the path can be
9640                          * loaded at this time.
9641                          */
9642                         wb_data[0] = REG_RD(bp, base_addr + offset);
9643                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9644                         vals->bmac_addr = base_addr + offset;
9645                         vals->bmac_val[0] = wb_data[0];
9646                         vals->bmac_val[1] = wb_data[1];
9647                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9648                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
9649                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9650
9651                 }
9652                 BNX2X_DEV_INFO("Disable emac Rx\n");
9653                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9654                 vals->emac_val = REG_RD(bp, vals->emac_addr);
9655                 REG_WR(bp, vals->emac_addr, 0);
9656                 mac_stopped = true;
9657         } else {
9658                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9659                         BNX2X_DEV_INFO("Disable xmac Rx\n");
9660                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9661                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9662                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9663                                val & ~(1 << 1));
9664                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9665                                val | (1 << 1));
9666                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9667                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9668                         REG_WR(bp, vals->xmac_addr, 0);
9669                         mac_stopped = true;
9670                 }
9671                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9672                 if (mask & reset_reg) {
9673                         BNX2X_DEV_INFO("Disable umac Rx\n");
9674                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9675                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9676                         vals->umac_val = REG_RD(bp, vals->umac_addr);
9677                         REG_WR(bp, vals->umac_addr, 0);
9678                         mac_stopped = true;
9679                 }
9680         }
9681
9682         if (mac_stopped)
9683                 msleep(20);
9684
9685 }
9686
9687 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9688 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
9689 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
9690 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
9691
9692 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9693 {
9694         u16 rcq, bd;
9695         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9696
9697         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9698         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9699
9700         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9701         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9702
9703         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9704                        port, bd, rcq);
9705 }
9706
9707 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9708 {
9709         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9710                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9711         if (!rc) {
9712                 BNX2X_ERR("MCP response failure, aborting\n");
9713                 return -EBUSY;
9714         }
9715
9716         return 0;
9717 }
9718
9719 static struct bnx2x_prev_path_list *
9720                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9721 {
9722         struct bnx2x_prev_path_list *tmp_list;
9723
9724         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9725                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9726                     bp->pdev->bus->number == tmp_list->bus &&
9727                     BP_PATH(bp) == tmp_list->path)
9728                         return tmp_list;
9729
9730         return NULL;
9731 }
9732
9733 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9734 {
9735         struct bnx2x_prev_path_list *tmp_list;
9736         int rc;
9737
9738         rc = down_interruptible(&bnx2x_prev_sem);
9739         if (rc) {
9740                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9741                 return rc;
9742         }
9743
9744         tmp_list = bnx2x_prev_path_get_entry(bp);
9745         if (tmp_list) {
9746                 tmp_list->aer = 1;
9747                 rc = 0;
9748         } else {
9749                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9750                           BP_PATH(bp));
9751         }
9752
9753         up(&bnx2x_prev_sem);
9754
9755         return rc;
9756 }
9757
9758 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9759 {
9760         struct bnx2x_prev_path_list *tmp_list;
9761         int rc = false;
9762
9763         if (down_trylock(&bnx2x_prev_sem))
9764                 return false;
9765
9766         tmp_list = bnx2x_prev_path_get_entry(bp);
9767         if (tmp_list) {
9768                 if (tmp_list->aer) {
9769                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9770                            BP_PATH(bp));
9771                 } else {
9772                         rc = true;
9773                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9774                                        BP_PATH(bp));
9775                 }
9776         }
9777
9778         up(&bnx2x_prev_sem);
9779
9780         return rc;
9781 }
9782
9783 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9784 {
9785         struct bnx2x_prev_path_list *tmp_list;
9786         int rc;
9787
9788         rc = down_interruptible(&bnx2x_prev_sem);
9789         if (rc) {
9790                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9791                 return rc;
9792         }
9793
9794         /* Check whether the entry for this path already exists */
9795         tmp_list = bnx2x_prev_path_get_entry(bp);
9796         if (tmp_list) {
9797                 if (!tmp_list->aer) {
9798                         BNX2X_ERR("Re-Marking the path.\n");
9799                 } else {
9800                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9801                            BP_PATH(bp));
9802                         tmp_list->aer = 0;
9803                 }
9804                 up(&bnx2x_prev_sem);
9805                 return 0;
9806         }
9807         up(&bnx2x_prev_sem);
9808
9809         /* Create an entry for this path and add it */
9810         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9811         if (!tmp_list) {
9812                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9813                 return -ENOMEM;
9814         }
9815
9816         tmp_list->bus = bp->pdev->bus->number;
9817         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9818         tmp_list->path = BP_PATH(bp);
9819         tmp_list->aer = 0;
9820         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9821
9822         rc = down_interruptible(&bnx2x_prev_sem);
9823         if (rc) {
9824                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9825                 kfree(tmp_list);
9826         } else {
9827                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9828                    BP_PATH(bp));
9829                 list_add(&tmp_list->list, &bnx2x_prev_list);
9830                 up(&bnx2x_prev_sem);
9831         }
9832
9833         return rc;
9834 }
9835
9836 static int bnx2x_do_flr(struct bnx2x *bp)
9837 {
9838         int i;
9839         u16 status;
9840         struct pci_dev *dev = bp->pdev;
9841
9842
9843         if (CHIP_IS_E1x(bp)) {
9844                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9845                 return -EINVAL;
9846         }
9847
9848         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9849         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9850                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9851                           bp->common.bc_ver);
9852                 return -EINVAL;
9853         }
9854
9855         /* Wait for Transaction Pending bit clean */
9856         for (i = 0; i < 4; i++) {
9857                 if (i)
9858                         msleep((1 << (i - 1)) * 100);
9859
9860                 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9861                 if (!(status & PCI_EXP_DEVSTA_TRPND))
9862                         goto clear;
9863         }
9864
9865         dev_err(&dev->dev,
9866                 "transaction is not cleared; proceeding with reset anyway\n");
9867
9868 clear:
9869
9870         BNX2X_DEV_INFO("Initiating FLR\n");
9871         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9872
9873         return 0;
9874 }
9875
9876 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9877 {
9878         int rc;
9879
9880         BNX2X_DEV_INFO("Uncommon unload Flow\n");
9881
9882         /* Test if previous unload process was already finished for this path */
9883         if (bnx2x_prev_is_path_marked(bp))
9884                 return bnx2x_prev_mcp_done(bp);
9885
9886         BNX2X_DEV_INFO("Path is unmarked\n");
9887
9888         /* If function has FLR capabilities, and existing FW version matches
9889          * the one required, then FLR will be sufficient to clean any residue
9890          * left by previous driver
9891          */
9892         rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9893
9894         if (!rc) {
9895                 /* fw version is good */
9896                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9897                 rc = bnx2x_do_flr(bp);
9898         }
9899
9900         if (!rc) {
9901                 /* FLR was performed */
9902                 BNX2X_DEV_INFO("FLR successful\n");
9903                 return 0;
9904         }
9905
9906         BNX2X_DEV_INFO("Could not FLR\n");
9907
9908         /* Close the MCP request, return failure*/
9909         rc = bnx2x_prev_mcp_done(bp);
9910         if (!rc)
9911                 rc = BNX2X_PREV_WAIT_NEEDED;
9912
9913         return rc;
9914 }
9915
9916 static int bnx2x_prev_unload_common(struct bnx2x *bp)
9917 {
9918         u32 reset_reg, tmp_reg = 0, rc;
9919         bool prev_undi = false;
9920         struct bnx2x_mac_vals mac_vals;
9921
9922         /* It is possible a previous function received 'common' answer,
9923          * but hasn't loaded yet, therefore creating a scenario of
9924          * multiple functions receiving 'common' on the same path.
9925          */
9926         BNX2X_DEV_INFO("Common unload Flow\n");
9927
9928         memset(&mac_vals, 0, sizeof(mac_vals));
9929
9930         if (bnx2x_prev_is_path_marked(bp))
9931                 return bnx2x_prev_mcp_done(bp);
9932
9933         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9934
9935         /* Reset should be performed after BRB is emptied */
9936         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9937                 u32 timer_count = 1000;
9938
9939                 /* Close the MAC Rx to prevent BRB from filling up */
9940                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
9941
9942                 /* close LLH filters towards the BRB */
9943                 bnx2x_set_rx_filter(&bp->link_params, 0);
9944
9945                 /* Check if the UNDI driver was previously loaded
9946                  * UNDI driver initializes CID offset for normal bell to 0x7
9947                  */
9948                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9949                         tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9950                         if (tmp_reg == 0x7) {
9951                                 BNX2X_DEV_INFO("UNDI previously loaded\n");
9952                                 prev_undi = true;
9953                                 /* clear the UNDI indication */
9954                                 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9955                                 /* clear possible idle check errors */
9956                                 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
9957                         }
9958                 }
9959                 if (!CHIP_IS_E1x(bp))
9960                         /* block FW from writing to host */
9961                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9962
9963                 /* wait until BRB is empty */
9964                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9965                 while (timer_count) {
9966                         u32 prev_brb = tmp_reg;
9967
9968                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9969                         if (!tmp_reg)
9970                                 break;
9971
9972                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9973
9974                         /* reset timer as long as BRB actually gets emptied */
9975                         if (prev_brb > tmp_reg)
9976                                 timer_count = 1000;
9977                         else
9978                                 timer_count--;
9979
9980                         /* If UNDI resides in memory, manually increment it */
9981                         if (prev_undi)
9982                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9983
9984                         udelay(10);
9985                 }
9986
9987                 if (!timer_count)
9988                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9989
9990         }
9991
9992         /* No packets are in the pipeline, path is ready for reset */
9993         bnx2x_reset_common(bp);
9994
9995         if (mac_vals.xmac_addr)
9996                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
9997         if (mac_vals.umac_addr)
9998                 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
9999         if (mac_vals.emac_addr)
10000                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10001         if (mac_vals.bmac_addr) {
10002                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10003                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10004         }
10005
10006         rc = bnx2x_prev_mark_path(bp, prev_undi);
10007         if (rc) {
10008                 bnx2x_prev_mcp_done(bp);
10009                 return rc;
10010         }
10011
10012         return bnx2x_prev_mcp_done(bp);
10013 }
10014
10015 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10016  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10017  * the addresses of the transaction, resulting in was-error bit set in the pci
10018  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10019  * to clear the interrupt which detected this from the pglueb and the was done
10020  * bit
10021  */
10022 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10023 {
10024         if (!CHIP_IS_E1x(bp)) {
10025                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10026                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10027                         DP(BNX2X_MSG_SP,
10028                            "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10029                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10030                                1 << BP_FUNC(bp));
10031                 }
10032         }
10033 }
10034
10035 static int bnx2x_prev_unload(struct bnx2x *bp)
10036 {
10037         int time_counter = 10;
10038         u32 rc, fw, hw_lock_reg, hw_lock_val;
10039         struct bnx2x_prev_path_list *prev_list;
10040         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10041
10042         /* clear hw from errors which may have resulted from an interrupted
10043          * dmae transaction.
10044          */
10045         bnx2x_prev_interrupted_dmae(bp);
10046
10047         /* Release previously held locks */
10048         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10049                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10050                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10051
10052         hw_lock_val = (REG_RD(bp, hw_lock_reg));
10053         if (hw_lock_val) {
10054                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10055                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10056                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10057                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10058                 }
10059
10060                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10061                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10062         } else
10063                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10064
10065         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10066                 BNX2X_DEV_INFO("Release previously held alr\n");
10067                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
10068         }
10069
10070         do {
10071                 int aer = 0;
10072                 /* Lock MCP using an unload request */
10073                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10074                 if (!fw) {
10075                         BNX2X_ERR("MCP response failure, aborting\n");
10076                         rc = -EBUSY;
10077                         break;
10078                 }
10079
10080                 rc = down_interruptible(&bnx2x_prev_sem);
10081                 if (rc) {
10082                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10083                                   rc);
10084                 } else {
10085                         /* If Path is marked by EEH, ignore unload status */
10086                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10087                                  bnx2x_prev_path_get_entry(bp)->aer);
10088                         up(&bnx2x_prev_sem);
10089                 }
10090
10091                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10092                         rc = bnx2x_prev_unload_common(bp);
10093                         break;
10094                 }
10095
10096                 /* non-common reply from MCP night require looping */
10097                 rc = bnx2x_prev_unload_uncommon(bp);
10098                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10099                         break;
10100
10101                 msleep(20);
10102         } while (--time_counter);
10103
10104         if (!time_counter || rc) {
10105                 BNX2X_ERR("Failed unloading previous driver, aborting\n");
10106                 rc = -EBUSY;
10107         }
10108
10109         /* Mark function if its port was used to boot from SAN */
10110         prev_list = bnx2x_prev_path_get_entry(bp);
10111         if (prev_list && (prev_list->undi & (1 << BP_PORT(bp))))
10112                 bp->link_params.feature_config_flags |=
10113                         FEATURE_CONFIG_BOOT_FROM_SAN;
10114
10115         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10116
10117         return rc;
10118 }
10119
10120 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10121 {
10122         u32 val, val2, val3, val4, id, boot_mode;
10123         u16 pmc;
10124
10125         /* Get the chip revision id and number. */
10126         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10127         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10128         id = ((val & 0xffff) << 16);
10129         val = REG_RD(bp, MISC_REG_CHIP_REV);
10130         id |= ((val & 0xf) << 12);
10131
10132         /* Metal is read from PCI regs, but we can't access >=0x400 from
10133          * the configuration space (so we need to reg_rd)
10134          */
10135         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10136         id |= (((val >> 24) & 0xf) << 4);
10137         val = REG_RD(bp, MISC_REG_BOND_ID);
10138         id |= (val & 0xf);
10139         bp->common.chip_id = id;
10140
10141         /* force 57811 according to MISC register */
10142         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10143                 if (CHIP_IS_57810(bp))
10144                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10145                                 (bp->common.chip_id & 0x0000FFFF);
10146                 else if (CHIP_IS_57810_MF(bp))
10147                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10148                                 (bp->common.chip_id & 0x0000FFFF);
10149                 bp->common.chip_id |= 0x1;
10150         }
10151
10152         /* Set doorbell size */
10153         bp->db_size = (1 << BNX2X_DB_SHIFT);
10154
10155         if (!CHIP_IS_E1x(bp)) {
10156                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10157                 if ((val & 1) == 0)
10158                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10159                 else
10160                         val = (val >> 1) & 1;
10161                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10162                                                        "2_PORT_MODE");
10163                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10164                                                  CHIP_2_PORT_MODE;
10165
10166                 if (CHIP_MODE_IS_4_PORT(bp))
10167                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10168                 else
10169                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10170         } else {
10171                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10172                 bp->pfid = bp->pf_num;                  /* 0..7 */
10173         }
10174
10175         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10176
10177         bp->link_params.chip_id = bp->common.chip_id;
10178         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10179
10180         val = (REG_RD(bp, 0x2874) & 0x55);
10181         if ((bp->common.chip_id & 0x1) ||
10182             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10183                 bp->flags |= ONE_PORT_FLAG;
10184                 BNX2X_DEV_INFO("single port device\n");
10185         }
10186
10187         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10188         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10189                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10190         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10191                        bp->common.flash_size, bp->common.flash_size);
10192
10193         bnx2x_init_shmem(bp);
10194
10195
10196
10197         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10198                                         MISC_REG_GENERIC_CR_1 :
10199                                         MISC_REG_GENERIC_CR_0));
10200
10201         bp->link_params.shmem_base = bp->common.shmem_base;
10202         bp->link_params.shmem2_base = bp->common.shmem2_base;
10203         if (SHMEM2_RD(bp, size) >
10204             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10205                 bp->link_params.lfa_base =
10206                 REG_RD(bp, bp->common.shmem2_base +
10207                        (u32)offsetof(struct shmem2_region,
10208                                      lfa_host_addr[BP_PORT(bp)]));
10209         else
10210                 bp->link_params.lfa_base = 0;
10211         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10212                        bp->common.shmem_base, bp->common.shmem2_base);
10213
10214         if (!bp->common.shmem_base) {
10215                 BNX2X_DEV_INFO("MCP not active\n");
10216                 bp->flags |= NO_MCP_FLAG;
10217                 return;
10218         }
10219
10220         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10221         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10222
10223         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10224                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10225                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10226
10227         bp->link_params.feature_config_flags = 0;
10228         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10229         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10230                 bp->link_params.feature_config_flags |=
10231                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10232         else
10233                 bp->link_params.feature_config_flags &=
10234                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10235
10236         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10237         bp->common.bc_ver = val;
10238         BNX2X_DEV_INFO("bc_ver %X\n", val);
10239         if (val < BNX2X_BC_VER) {
10240                 /* for now only warn
10241                  * later we might need to enforce this */
10242                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10243                           BNX2X_BC_VER, val);
10244         }
10245         bp->link_params.feature_config_flags |=
10246                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10247                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10248
10249         bp->link_params.feature_config_flags |=
10250                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10251                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10252         bp->link_params.feature_config_flags |=
10253                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10254                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10255         bp->link_params.feature_config_flags |=
10256                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10257                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10258
10259         bp->link_params.feature_config_flags |=
10260                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10261                 FEATURE_CONFIG_MT_SUPPORT : 0;
10262
10263         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10264                         BC_SUPPORTS_PFC_STATS : 0;
10265
10266         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10267                         BC_SUPPORTS_FCOE_FEATURES : 0;
10268
10269         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10270                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10271         boot_mode = SHMEM_RD(bp,
10272                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10273                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10274         switch (boot_mode) {
10275         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10276                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10277                 break;
10278         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10279                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10280                 break;
10281         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10282                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10283                 break;
10284         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10285                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10286                 break;
10287         }
10288
10289         pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10290         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10291
10292         BNX2X_DEV_INFO("%sWoL capable\n",
10293                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10294
10295         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10296         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10297         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10298         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10299
10300         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10301                  val, val2, val3, val4);
10302 }
10303
10304 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10305 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10306
10307 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10308 {
10309         int pfid = BP_FUNC(bp);
10310         int igu_sb_id;
10311         u32 val;
10312         u8 fid, igu_sb_cnt = 0;
10313
10314         bp->igu_base_sb = 0xff;
10315         if (CHIP_INT_MODE_IS_BC(bp)) {
10316                 int vn = BP_VN(bp);
10317                 igu_sb_cnt = bp->igu_sb_cnt;
10318                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10319                         FP_SB_MAX_E1x;
10320
10321                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10322                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10323
10324                 return 0;
10325         }
10326
10327         /* IGU in normal mode - read CAM */
10328         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10329              igu_sb_id++) {
10330                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10331                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10332                         continue;
10333                 fid = IGU_FID(val);
10334                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10335                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10336                                 continue;
10337                         if (IGU_VEC(val) == 0)
10338                                 /* default status block */
10339                                 bp->igu_dsb_id = igu_sb_id;
10340                         else {
10341                                 if (bp->igu_base_sb == 0xff)
10342                                         bp->igu_base_sb = igu_sb_id;
10343                                 igu_sb_cnt++;
10344                         }
10345                 }
10346         }
10347
10348 #ifdef CONFIG_PCI_MSI
10349         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10350          * optional that number of CAM entries will not be equal to the value
10351          * advertised in PCI.
10352          * Driver should use the minimal value of both as the actual status
10353          * block count
10354          */
10355         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10356 #endif
10357
10358         if (igu_sb_cnt == 0) {
10359                 BNX2X_ERR("CAM configuration error\n");
10360                 return -EINVAL;
10361         }
10362
10363         return 0;
10364 }
10365
10366 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10367 {
10368         int cfg_size = 0, idx, port = BP_PORT(bp);
10369
10370         /* Aggregation of supported attributes of all external phys */
10371         bp->port.supported[0] = 0;
10372         bp->port.supported[1] = 0;
10373         switch (bp->link_params.num_phys) {
10374         case 1:
10375                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10376                 cfg_size = 1;
10377                 break;
10378         case 2:
10379                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10380                 cfg_size = 1;
10381                 break;
10382         case 3:
10383                 if (bp->link_params.multi_phy_config &
10384                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10385                         bp->port.supported[1] =
10386                                 bp->link_params.phy[EXT_PHY1].supported;
10387                         bp->port.supported[0] =
10388                                 bp->link_params.phy[EXT_PHY2].supported;
10389                 } else {
10390                         bp->port.supported[0] =
10391                                 bp->link_params.phy[EXT_PHY1].supported;
10392                         bp->port.supported[1] =
10393                                 bp->link_params.phy[EXT_PHY2].supported;
10394                 }
10395                 cfg_size = 2;
10396                 break;
10397         }
10398
10399         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10400                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10401                            SHMEM_RD(bp,
10402                            dev_info.port_hw_config[port].external_phy_config),
10403                            SHMEM_RD(bp,
10404                            dev_info.port_hw_config[port].external_phy_config2));
10405                         return;
10406         }
10407
10408         if (CHIP_IS_E3(bp))
10409                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10410         else {
10411                 switch (switch_cfg) {
10412                 case SWITCH_CFG_1G:
10413                         bp->port.phy_addr = REG_RD(
10414                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10415                         break;
10416                 case SWITCH_CFG_10G:
10417                         bp->port.phy_addr = REG_RD(
10418                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10419                         break;
10420                 default:
10421                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10422                                   bp->port.link_config[0]);
10423                         return;
10424                 }
10425         }
10426         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10427         /* mask what we support according to speed_cap_mask per configuration */
10428         for (idx = 0; idx < cfg_size; idx++) {
10429                 if (!(bp->link_params.speed_cap_mask[idx] &
10430                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10431                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10432
10433                 if (!(bp->link_params.speed_cap_mask[idx] &
10434                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10435                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10436
10437                 if (!(bp->link_params.speed_cap_mask[idx] &
10438                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10439                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10440
10441                 if (!(bp->link_params.speed_cap_mask[idx] &
10442                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10443                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10444
10445                 if (!(bp->link_params.speed_cap_mask[idx] &
10446                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10447                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10448                                                      SUPPORTED_1000baseT_Full);
10449
10450                 if (!(bp->link_params.speed_cap_mask[idx] &
10451                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10452                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10453
10454                 if (!(bp->link_params.speed_cap_mask[idx] &
10455                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10456                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10457
10458         }
10459
10460         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10461                        bp->port.supported[1]);
10462 }
10463
10464 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10465 {
10466         u32 link_config, idx, cfg_size = 0;
10467         bp->port.advertising[0] = 0;
10468         bp->port.advertising[1] = 0;
10469         switch (bp->link_params.num_phys) {
10470         case 1:
10471         case 2:
10472                 cfg_size = 1;
10473                 break;
10474         case 3:
10475                 cfg_size = 2;
10476                 break;
10477         }
10478         for (idx = 0; idx < cfg_size; idx++) {
10479                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10480                 link_config = bp->port.link_config[idx];
10481                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10482                 case PORT_FEATURE_LINK_SPEED_AUTO:
10483                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10484                                 bp->link_params.req_line_speed[idx] =
10485                                         SPEED_AUTO_NEG;
10486                                 bp->port.advertising[idx] |=
10487                                         bp->port.supported[idx];
10488                                 if (bp->link_params.phy[EXT_PHY1].type ==
10489                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10490                                         bp->port.advertising[idx] |=
10491                                         (SUPPORTED_100baseT_Half |
10492                                          SUPPORTED_100baseT_Full);
10493                         } else {
10494                                 /* force 10G, no AN */
10495                                 bp->link_params.req_line_speed[idx] =
10496                                         SPEED_10000;
10497                                 bp->port.advertising[idx] |=
10498                                         (ADVERTISED_10000baseT_Full |
10499                                          ADVERTISED_FIBRE);
10500                                 continue;
10501                         }
10502                         break;
10503
10504                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10505                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10506                                 bp->link_params.req_line_speed[idx] =
10507                                         SPEED_10;
10508                                 bp->port.advertising[idx] |=
10509                                         (ADVERTISED_10baseT_Full |
10510                                          ADVERTISED_TP);
10511                         } else {
10512                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10513                                             link_config,
10514                                     bp->link_params.speed_cap_mask[idx]);
10515                                 return;
10516                         }
10517                         break;
10518
10519                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10520                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10521                                 bp->link_params.req_line_speed[idx] =
10522                                         SPEED_10;
10523                                 bp->link_params.req_duplex[idx] =
10524                                         DUPLEX_HALF;
10525                                 bp->port.advertising[idx] |=
10526                                         (ADVERTISED_10baseT_Half |
10527                                          ADVERTISED_TP);
10528                         } else {
10529                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10530                                             link_config,
10531                                           bp->link_params.speed_cap_mask[idx]);
10532                                 return;
10533                         }
10534                         break;
10535
10536                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10537                         if (bp->port.supported[idx] &
10538                             SUPPORTED_100baseT_Full) {
10539                                 bp->link_params.req_line_speed[idx] =
10540                                         SPEED_100;
10541                                 bp->port.advertising[idx] |=
10542                                         (ADVERTISED_100baseT_Full |
10543                                          ADVERTISED_TP);
10544                         } else {
10545                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10546                                             link_config,
10547                                           bp->link_params.speed_cap_mask[idx]);
10548                                 return;
10549                         }
10550                         break;
10551
10552                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10553                         if (bp->port.supported[idx] &
10554                             SUPPORTED_100baseT_Half) {
10555                                 bp->link_params.req_line_speed[idx] =
10556                                                                 SPEED_100;
10557                                 bp->link_params.req_duplex[idx] =
10558                                                                 DUPLEX_HALF;
10559                                 bp->port.advertising[idx] |=
10560                                         (ADVERTISED_100baseT_Half |
10561                                          ADVERTISED_TP);
10562                         } else {
10563                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10564                                     link_config,
10565                                     bp->link_params.speed_cap_mask[idx]);
10566                                 return;
10567                         }
10568                         break;
10569
10570                 case PORT_FEATURE_LINK_SPEED_1G:
10571                         if (bp->port.supported[idx] &
10572                             SUPPORTED_1000baseT_Full) {
10573                                 bp->link_params.req_line_speed[idx] =
10574                                         SPEED_1000;
10575                                 bp->port.advertising[idx] |=
10576                                         (ADVERTISED_1000baseT_Full |
10577                                          ADVERTISED_TP);
10578                         } else {
10579                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10580                                     link_config,
10581                                     bp->link_params.speed_cap_mask[idx]);
10582                                 return;
10583                         }
10584                         break;
10585
10586                 case PORT_FEATURE_LINK_SPEED_2_5G:
10587                         if (bp->port.supported[idx] &
10588                             SUPPORTED_2500baseX_Full) {
10589                                 bp->link_params.req_line_speed[idx] =
10590                                         SPEED_2500;
10591                                 bp->port.advertising[idx] |=
10592                                         (ADVERTISED_2500baseX_Full |
10593                                                 ADVERTISED_TP);
10594                         } else {
10595                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10596                                     link_config,
10597                                     bp->link_params.speed_cap_mask[idx]);
10598                                 return;
10599                         }
10600                         break;
10601
10602                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10603                         if (bp->port.supported[idx] &
10604                             SUPPORTED_10000baseT_Full) {
10605                                 bp->link_params.req_line_speed[idx] =
10606                                         SPEED_10000;
10607                                 bp->port.advertising[idx] |=
10608                                         (ADVERTISED_10000baseT_Full |
10609                                                 ADVERTISED_FIBRE);
10610                         } else {
10611                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10612                                     link_config,
10613                                     bp->link_params.speed_cap_mask[idx]);
10614                                 return;
10615                         }
10616                         break;
10617                 case PORT_FEATURE_LINK_SPEED_20G:
10618                         bp->link_params.req_line_speed[idx] = SPEED_20000;
10619
10620                         break;
10621                 default:
10622                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10623                                   link_config);
10624                                 bp->link_params.req_line_speed[idx] =
10625                                                         SPEED_AUTO_NEG;
10626                                 bp->port.advertising[idx] =
10627                                                 bp->port.supported[idx];
10628                         break;
10629                 }
10630
10631                 bp->link_params.req_flow_ctrl[idx] = (link_config &
10632                                          PORT_FEATURE_FLOW_CONTROL_MASK);
10633                 if (bp->link_params.req_flow_ctrl[idx] ==
10634                     BNX2X_FLOW_CTRL_AUTO) {
10635                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10636                                 bp->link_params.req_flow_ctrl[idx] =
10637                                                         BNX2X_FLOW_CTRL_NONE;
10638                         else
10639                                 bnx2x_set_requested_fc(bp);
10640                 }
10641
10642                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10643                                bp->link_params.req_line_speed[idx],
10644                                bp->link_params.req_duplex[idx],
10645                                bp->link_params.req_flow_ctrl[idx],
10646                                bp->port.advertising[idx]);
10647         }
10648 }
10649
10650 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10651 {
10652         __be16 mac_hi_be = cpu_to_be16(mac_hi);
10653         __be32 mac_lo_be = cpu_to_be32(mac_lo);
10654         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10655         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10656 }
10657
10658 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10659 {
10660         int port = BP_PORT(bp);
10661         u32 config;
10662         u32 ext_phy_type, ext_phy_config, eee_mode;
10663
10664         bp->link_params.bp = bp;
10665         bp->link_params.port = port;
10666
10667         bp->link_params.lane_config =
10668                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10669
10670         bp->link_params.speed_cap_mask[0] =
10671                 SHMEM_RD(bp,
10672                          dev_info.port_hw_config[port].speed_capability_mask) &
10673                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10674         bp->link_params.speed_cap_mask[1] =
10675                 SHMEM_RD(bp,
10676                          dev_info.port_hw_config[port].speed_capability_mask2) &
10677                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10678         bp->port.link_config[0] =
10679                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10680
10681         bp->port.link_config[1] =
10682                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10683
10684         bp->link_params.multi_phy_config =
10685                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10686         /* If the device is capable of WoL, set the default state according
10687          * to the HW
10688          */
10689         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10690         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10691                    (config & PORT_FEATURE_WOL_ENABLED));
10692
10693         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10694             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10695                 bp->flags |= NO_ISCSI_FLAG;
10696         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10697             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10698                 bp->flags |= NO_FCOE_FLAG;
10699
10700         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10701                        bp->link_params.lane_config,
10702                        bp->link_params.speed_cap_mask[0],
10703                        bp->port.link_config[0]);
10704
10705         bp->link_params.switch_cfg = (bp->port.link_config[0] &
10706                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
10707         bnx2x_phy_probe(&bp->link_params);
10708         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10709
10710         bnx2x_link_settings_requested(bp);
10711
10712         /*
10713          * If connected directly, work with the internal PHY, otherwise, work
10714          * with the external PHY
10715          */
10716         ext_phy_config =
10717                 SHMEM_RD(bp,
10718                          dev_info.port_hw_config[port].external_phy_config);
10719         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10720         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10721                 bp->mdio.prtad = bp->port.phy_addr;
10722
10723         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10724                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10725                 bp->mdio.prtad =
10726                         XGXS_EXT_PHY_ADDR(ext_phy_config);
10727
10728         /* Configure link feature according to nvram value */
10729         eee_mode = (((SHMEM_RD(bp, dev_info.
10730                       port_feature_config[port].eee_power_mode)) &
10731                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10732                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10733         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10734                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10735                                            EEE_MODE_ENABLE_LPI |
10736                                            EEE_MODE_OUTPUT_TIME;
10737         } else {
10738                 bp->link_params.eee_mode = 0;
10739         }
10740 }
10741
10742 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10743 {
10744         u32 no_flags = NO_ISCSI_FLAG;
10745         int port = BP_PORT(bp);
10746         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10747                                 drv_lic_key[port].max_iscsi_conn);
10748
10749         if (!CNIC_SUPPORT(bp)) {
10750                 bp->flags |= no_flags;
10751                 return;
10752         }
10753
10754         /* Get the number of maximum allowed iSCSI connections */
10755         bp->cnic_eth_dev.max_iscsi_conn =
10756                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10757                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10758
10759         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10760                        bp->cnic_eth_dev.max_iscsi_conn);
10761
10762         /*
10763          * If maximum allowed number of connections is zero -
10764          * disable the feature.
10765          */
10766         if (!bp->cnic_eth_dev.max_iscsi_conn)
10767                 bp->flags |= no_flags;
10768
10769 }
10770
10771 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10772 {
10773         /* Port info */
10774         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10775                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10776         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10777                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10778
10779         /* Node info */
10780         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10781                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10782         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10783                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10784 }
10785 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10786 {
10787         int port = BP_PORT(bp);
10788         int func = BP_ABS_FUNC(bp);
10789         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10790                                 drv_lic_key[port].max_fcoe_conn);
10791
10792         if (!CNIC_SUPPORT(bp)) {
10793                 bp->flags |= NO_FCOE_FLAG;
10794                 return;
10795         }
10796
10797         /* Get the number of maximum allowed FCoE connections */
10798         bp->cnic_eth_dev.max_fcoe_conn =
10799                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10800                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10801
10802         /* Calculate the number of maximum allowed FCoE tasks */
10803         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10804         if (IS_MF(bp) || CHIP_MODE_IS_4_PORT(bp))
10805                 bp->cnic_eth_dev.max_fcoe_exchanges /=
10806                                                 MAX_FCOE_FUNCS_PER_ENGINE;
10807
10808         /* Read the WWN: */
10809         if (!IS_MF(bp)) {
10810                 /* Port info */
10811                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10812                         SHMEM_RD(bp,
10813                                  dev_info.port_hw_config[port].
10814                                  fcoe_wwn_port_name_upper);
10815                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10816                         SHMEM_RD(bp,
10817                                  dev_info.port_hw_config[port].
10818                                  fcoe_wwn_port_name_lower);
10819
10820                 /* Node info */
10821                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10822                         SHMEM_RD(bp,
10823                                  dev_info.port_hw_config[port].
10824                                  fcoe_wwn_node_name_upper);
10825                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10826                         SHMEM_RD(bp,
10827                                  dev_info.port_hw_config[port].
10828                                  fcoe_wwn_node_name_lower);
10829         } else if (!IS_MF_SD(bp)) {
10830                 /*
10831                  * Read the WWN info only if the FCoE feature is enabled for
10832                  * this function.
10833                  */
10834                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10835                         bnx2x_get_ext_wwn_info(bp, func);
10836
10837         } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10838                 bnx2x_get_ext_wwn_info(bp, func);
10839         }
10840
10841         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10842
10843         /*
10844          * If maximum allowed number of connections is zero -
10845          * disable the feature.
10846          */
10847         if (!bp->cnic_eth_dev.max_fcoe_conn)
10848                 bp->flags |= NO_FCOE_FLAG;
10849 }
10850
10851 static void bnx2x_get_cnic_info(struct bnx2x *bp)
10852 {
10853         /*
10854          * iSCSI may be dynamically disabled but reading
10855          * info here we will decrease memory usage by driver
10856          * if the feature is disabled for good
10857          */
10858         bnx2x_get_iscsi_info(bp);
10859         bnx2x_get_fcoe_info(bp);
10860 }
10861
10862 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
10863 {
10864         u32 val, val2;
10865         int func = BP_ABS_FUNC(bp);
10866         int port = BP_PORT(bp);
10867         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10868         u8 *fip_mac = bp->fip_mac;
10869
10870         if (IS_MF(bp)) {
10871                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
10872                  * FCoE MAC then the appropriate feature should be disabled.
10873                  * In non SD mode features configuration comes from struct
10874                  * func_ext_config.
10875                  */
10876                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
10877                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10878                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
10879                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
10880                                                  iscsi_mac_addr_upper);
10881                                 val = MF_CFG_RD(bp, func_ext_config[func].
10882                                                 iscsi_mac_addr_lower);
10883                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
10884                                 BNX2X_DEV_INFO
10885                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
10886                         } else {
10887                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10888                         }
10889
10890                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
10891                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
10892                                                  fcoe_mac_addr_upper);
10893                                 val = MF_CFG_RD(bp, func_ext_config[func].
10894                                                 fcoe_mac_addr_lower);
10895                                 bnx2x_set_mac_buf(fip_mac, val, val2);
10896                                 BNX2X_DEV_INFO
10897                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
10898                         } else {
10899                                 bp->flags |= NO_FCOE_FLAG;
10900                         }
10901
10902                         bp->mf_ext_config = cfg;
10903
10904                 } else { /* SD MODE */
10905                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
10906                                 /* use primary mac as iscsi mac */
10907                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
10908
10909                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
10910                                 BNX2X_DEV_INFO
10911                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
10912                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
10913                                 /* use primary mac as fip mac */
10914                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
10915                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
10916                                 BNX2X_DEV_INFO
10917                                         ("Read FIP MAC: %pM\n", fip_mac);
10918                         }
10919                 }
10920
10921                 /* If this is a storage-only interface, use SAN mac as
10922                  * primary MAC. Notice that for SD this is already the case,
10923                  * as the SAN mac was copied from the primary MAC.
10924                  */
10925                 if (IS_MF_FCOE_AFEX(bp))
10926                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
10927         } else {
10928                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10929                                 iscsi_mac_upper);
10930                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10931                                iscsi_mac_lower);
10932                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
10933
10934                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10935                                 fcoe_fip_mac_upper);
10936                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10937                                fcoe_fip_mac_lower);
10938                 bnx2x_set_mac_buf(fip_mac, val, val2);
10939         }
10940
10941         /* Disable iSCSI OOO if MAC configuration is invalid. */
10942         if (!is_valid_ether_addr(iscsi_mac)) {
10943                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10944                 memset(iscsi_mac, 0, ETH_ALEN);
10945         }
10946
10947         /* Disable FCoE if MAC configuration is invalid. */
10948         if (!is_valid_ether_addr(fip_mac)) {
10949                 bp->flags |= NO_FCOE_FLAG;
10950                 memset(bp->fip_mac, 0, ETH_ALEN);
10951         }
10952 }
10953
10954 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
10955 {
10956         u32 val, val2;
10957         int func = BP_ABS_FUNC(bp);
10958         int port = BP_PORT(bp);
10959
10960         /* Zero primary MAC configuration */
10961         memset(bp->dev->dev_addr, 0, ETH_ALEN);
10962
10963         if (BP_NOMCP(bp)) {
10964                 BNX2X_ERROR("warning: random MAC workaround active\n");
10965                 eth_hw_addr_random(bp->dev);
10966         } else if (IS_MF(bp)) {
10967                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
10968                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
10969                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
10970                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
10971                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10972
10973                 if (CNIC_SUPPORT(bp))
10974                         bnx2x_get_cnic_mac_hwinfo(bp);
10975         } else {
10976                 /* in SF read MACs from port configuration */
10977                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
10978                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
10979                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10980
10981                 if (CNIC_SUPPORT(bp))
10982                         bnx2x_get_cnic_mac_hwinfo(bp);
10983         }
10984
10985         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
10986
10987         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10988                 dev_err(&bp->pdev->dev,
10989                         "bad Ethernet MAC address configuration: %pM\n"
10990                         "change it manually before bringing up the appropriate network interface\n",
10991                         bp->dev->dev_addr);
10992 }
10993
10994 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
10995 {
10996         int tmp;
10997         u32 cfg;
10998
10999         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11000                 /* Take function: tmp = func */
11001                 tmp = BP_ABS_FUNC(bp);
11002                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11003                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11004         } else {
11005                 /* Take port: tmp = port */
11006                 tmp = BP_PORT(bp);
11007                 cfg = SHMEM_RD(bp,
11008                                dev_info.port_hw_config[tmp].generic_features);
11009                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11010         }
11011         return cfg;
11012 }
11013
11014 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11015 {
11016         int /*abs*/func = BP_ABS_FUNC(bp);
11017         int vn;
11018         u32 val = 0;
11019         int rc = 0;
11020
11021         bnx2x_get_common_hwinfo(bp);
11022
11023         /*
11024          * initialize IGU parameters
11025          */
11026         if (CHIP_IS_E1x(bp)) {
11027                 bp->common.int_block = INT_BLOCK_HC;
11028
11029                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11030                 bp->igu_base_sb = 0;
11031         } else {
11032                 bp->common.int_block = INT_BLOCK_IGU;
11033
11034                 /* do not allow device reset during IGU info preocessing */
11035                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11036
11037                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11038
11039                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11040                         int tout = 5000;
11041
11042                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11043
11044                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11045                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11046                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11047
11048                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11049                                 tout--;
11050                                 usleep_range(1000, 2000);
11051                         }
11052
11053                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11054                                 dev_err(&bp->pdev->dev,
11055                                         "FORCING Normal Mode failed!!!\n");
11056                                 bnx2x_release_hw_lock(bp,
11057                                                       HW_LOCK_RESOURCE_RESET);
11058                                 return -EPERM;
11059                         }
11060                 }
11061
11062                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11063                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11064                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11065                 } else
11066                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11067
11068                 rc = bnx2x_get_igu_cam_info(bp);
11069                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11070                 if (rc)
11071                         return rc;
11072         }
11073
11074         /*
11075          * set base FW non-default (fast path) status block id, this value is
11076          * used to initialize the fw_sb_id saved on the fp/queue structure to
11077          * determine the id used by the FW.
11078          */
11079         if (CHIP_IS_E1x(bp))
11080                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11081         else /*
11082               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11083               * the same queue are indicated on the same IGU SB). So we prefer
11084               * FW and IGU SBs to be the same value.
11085               */
11086                 bp->base_fw_ndsb = bp->igu_base_sb;
11087
11088         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11089                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11090                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11091
11092         /*
11093          * Initialize MF configuration
11094          */
11095
11096         bp->mf_ov = 0;
11097         bp->mf_mode = 0;
11098         vn = BP_VN(bp);
11099
11100         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11101                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11102                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11103                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11104
11105                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11106                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11107                 else
11108                         bp->common.mf_cfg_base = bp->common.shmem_base +
11109                                 offsetof(struct shmem_region, func_mb) +
11110                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11111                 /*
11112                  * get mf configuration:
11113                  * 1. existence of MF configuration
11114                  * 2. MAC address must be legal (check only upper bytes)
11115                  *    for  Switch-Independent mode;
11116                  *    OVLAN must be legal for Switch-Dependent mode
11117                  * 3. SF_MODE configures specific MF mode
11118                  */
11119                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11120                         /* get mf configuration */
11121                         val = SHMEM_RD(bp,
11122                                        dev_info.shared_feature_config.config);
11123                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11124
11125                         switch (val) {
11126                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11127                                 val = MF_CFG_RD(bp, func_mf_config[func].
11128                                                 mac_upper);
11129                                 /* check for legal mac (upper bytes)*/
11130                                 if (val != 0xffff) {
11131                                         bp->mf_mode = MULTI_FUNCTION_SI;
11132                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11133                                                    func_mf_config[func].config);
11134                                 } else
11135                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
11136                                 break;
11137                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11138                                 if ((!CHIP_IS_E1x(bp)) &&
11139                                     (MF_CFG_RD(bp, func_mf_config[func].
11140                                                mac_upper) != 0xffff) &&
11141                                     (SHMEM2_HAS(bp,
11142                                                 afex_driver_support))) {
11143                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11144                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11145                                                 func_mf_config[func].config);
11146                                 } else {
11147                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11148                                 }
11149                                 break;
11150                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11151                                 /* get OV configuration */
11152                                 val = MF_CFG_RD(bp,
11153                                         func_mf_config[FUNC_0].e1hov_tag);
11154                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11155
11156                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11157                                         bp->mf_mode = MULTI_FUNCTION_SD;
11158                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11159                                                 func_mf_config[func].config);
11160                                 } else
11161                                         BNX2X_DEV_INFO("illegal OV for SD\n");
11162                                 break;
11163                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11164                                 bp->mf_config[vn] = 0;
11165                                 break;
11166                         default:
11167                                 /* Unknown configuration: reset mf_config */
11168                                 bp->mf_config[vn] = 0;
11169                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11170                         }
11171                 }
11172
11173                 BNX2X_DEV_INFO("%s function mode\n",
11174                                IS_MF(bp) ? "multi" : "single");
11175
11176                 switch (bp->mf_mode) {
11177                 case MULTI_FUNCTION_SD:
11178                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11179                               FUNC_MF_CFG_E1HOV_TAG_MASK;
11180                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11181                                 bp->mf_ov = val;
11182                                 bp->path_has_ovlan = true;
11183
11184                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11185                                                func, bp->mf_ov, bp->mf_ov);
11186                         } else {
11187                                 dev_err(&bp->pdev->dev,
11188                                         "No valid MF OV for func %d, aborting\n",
11189                                         func);
11190                                 return -EPERM;
11191                         }
11192                         break;
11193                 case MULTI_FUNCTION_AFEX:
11194                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11195                         break;
11196                 case MULTI_FUNCTION_SI:
11197                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11198                                        func);
11199                         break;
11200                 default:
11201                         if (vn) {
11202                                 dev_err(&bp->pdev->dev,
11203                                         "VN %d is in a single function mode, aborting\n",
11204                                         vn);
11205                                 return -EPERM;
11206                         }
11207                         break;
11208                 }
11209
11210                 /* check if other port on the path needs ovlan:
11211                  * Since MF configuration is shared between ports
11212                  * Possible mixed modes are only
11213                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11214                  */
11215                 if (CHIP_MODE_IS_4_PORT(bp) &&
11216                     !bp->path_has_ovlan &&
11217                     !IS_MF(bp) &&
11218                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11219                         u8 other_port = !BP_PORT(bp);
11220                         u8 other_func = BP_PATH(bp) + 2*other_port;
11221                         val = MF_CFG_RD(bp,
11222                                         func_mf_config[other_func].e1hov_tag);
11223                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11224                                 bp->path_has_ovlan = true;
11225                 }
11226         }
11227
11228         /* adjust igu_sb_cnt to MF for E1x */
11229         if (CHIP_IS_E1x(bp) && IS_MF(bp))
11230                 bp->igu_sb_cnt /= E1HVN_MAX;
11231
11232         /* port info */
11233         bnx2x_get_port_hwinfo(bp);
11234
11235         /* Get MAC addresses */
11236         bnx2x_get_mac_hwinfo(bp);
11237
11238         bnx2x_get_cnic_info(bp);
11239
11240         return rc;
11241 }
11242
11243 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11244 {
11245         int cnt, i, block_end, rodi;
11246         char vpd_start[BNX2X_VPD_LEN+1];
11247         char str_id_reg[VENDOR_ID_LEN+1];
11248         char str_id_cap[VENDOR_ID_LEN+1];
11249         char *vpd_data;
11250         char *vpd_extended_data = NULL;
11251         u8 len;
11252
11253         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11254         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11255
11256         if (cnt < BNX2X_VPD_LEN)
11257                 goto out_not_found;
11258
11259         /* VPD RO tag should be first tag after identifier string, hence
11260          * we should be able to find it in first BNX2X_VPD_LEN chars
11261          */
11262         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11263                              PCI_VPD_LRDT_RO_DATA);
11264         if (i < 0)
11265                 goto out_not_found;
11266
11267         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11268                     pci_vpd_lrdt_size(&vpd_start[i]);
11269
11270         i += PCI_VPD_LRDT_TAG_SIZE;
11271
11272         if (block_end > BNX2X_VPD_LEN) {
11273                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11274                 if (vpd_extended_data  == NULL)
11275                         goto out_not_found;
11276
11277                 /* read rest of vpd image into vpd_extended_data */
11278                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11279                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11280                                    block_end - BNX2X_VPD_LEN,
11281                                    vpd_extended_data + BNX2X_VPD_LEN);
11282                 if (cnt < (block_end - BNX2X_VPD_LEN))
11283                         goto out_not_found;
11284                 vpd_data = vpd_extended_data;
11285         } else
11286                 vpd_data = vpd_start;
11287
11288         /* now vpd_data holds full vpd content in both cases */
11289
11290         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11291                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11292         if (rodi < 0)
11293                 goto out_not_found;
11294
11295         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11296
11297         if (len != VENDOR_ID_LEN)
11298                 goto out_not_found;
11299
11300         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11301
11302         /* vendor specific info */
11303         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11304         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11305         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11306             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11307
11308                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11309                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11310                 if (rodi >= 0) {
11311                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11312
11313                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11314
11315                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11316                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11317                                 bp->fw_ver[len] = ' ';
11318                         }
11319                 }
11320                 kfree(vpd_extended_data);
11321                 return;
11322         }
11323 out_not_found:
11324         kfree(vpd_extended_data);
11325         return;
11326 }
11327
11328 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11329 {
11330         u32 flags = 0;
11331
11332         if (CHIP_REV_IS_FPGA(bp))
11333                 SET_FLAGS(flags, MODE_FPGA);
11334         else if (CHIP_REV_IS_EMUL(bp))
11335                 SET_FLAGS(flags, MODE_EMUL);
11336         else
11337                 SET_FLAGS(flags, MODE_ASIC);
11338
11339         if (CHIP_MODE_IS_4_PORT(bp))
11340                 SET_FLAGS(flags, MODE_PORT4);
11341         else
11342                 SET_FLAGS(flags, MODE_PORT2);
11343
11344         if (CHIP_IS_E2(bp))
11345                 SET_FLAGS(flags, MODE_E2);
11346         else if (CHIP_IS_E3(bp)) {
11347                 SET_FLAGS(flags, MODE_E3);
11348                 if (CHIP_REV(bp) == CHIP_REV_Ax)
11349                         SET_FLAGS(flags, MODE_E3_A0);
11350                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11351                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11352         }
11353
11354         if (IS_MF(bp)) {
11355                 SET_FLAGS(flags, MODE_MF);
11356                 switch (bp->mf_mode) {
11357                 case MULTI_FUNCTION_SD:
11358                         SET_FLAGS(flags, MODE_MF_SD);
11359                         break;
11360                 case MULTI_FUNCTION_SI:
11361                         SET_FLAGS(flags, MODE_MF_SI);
11362                         break;
11363                 case MULTI_FUNCTION_AFEX:
11364                         SET_FLAGS(flags, MODE_MF_AFEX);
11365                         break;
11366                 }
11367         } else
11368                 SET_FLAGS(flags, MODE_SF);
11369
11370 #if defined(__LITTLE_ENDIAN)
11371         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11372 #else /*(__BIG_ENDIAN)*/
11373         SET_FLAGS(flags, MODE_BIG_ENDIAN);
11374 #endif
11375         INIT_MODE_FLAGS(bp) = flags;
11376 }
11377
11378 static int bnx2x_init_bp(struct bnx2x *bp)
11379 {
11380         int func;
11381         int rc;
11382
11383         mutex_init(&bp->port.phy_mutex);
11384         mutex_init(&bp->fw_mb_mutex);
11385         spin_lock_init(&bp->stats_lock);
11386
11387
11388         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11389         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11390         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11391         if (IS_PF(bp)) {
11392                 rc = bnx2x_get_hwinfo(bp);
11393                 if (rc)
11394                         return rc;
11395         } else {
11396                 random_ether_addr(bp->dev->dev_addr);
11397         }
11398
11399         bnx2x_set_modes_bitmap(bp);
11400
11401         rc = bnx2x_alloc_mem_bp(bp);
11402         if (rc)
11403                 return rc;
11404
11405         bnx2x_read_fwinfo(bp);
11406
11407         func = BP_FUNC(bp);
11408
11409         /* need to reset chip if undi was active */
11410         if (IS_PF(bp) && !BP_NOMCP(bp)) {
11411                 /* init fw_seq */
11412                 bp->fw_seq =
11413                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11414                                                         DRV_MSG_SEQ_NUMBER_MASK;
11415                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11416
11417                 bnx2x_prev_unload(bp);
11418         }
11419
11420
11421         if (CHIP_REV_IS_FPGA(bp))
11422                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11423
11424         if (BP_NOMCP(bp) && (func == 0))
11425                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11426
11427         bp->disable_tpa = disable_tpa;
11428         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11429
11430         /* Set TPA flags */
11431         if (bp->disable_tpa) {
11432                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11433                 bp->dev->features &= ~NETIF_F_LRO;
11434         } else {
11435                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11436                 bp->dev->features |= NETIF_F_LRO;
11437         }
11438
11439         if (CHIP_IS_E1(bp))
11440                 bp->dropless_fc = 0;
11441         else
11442                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11443
11444         bp->mrrs = mrrs;
11445
11446         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11447         if (IS_VF(bp))
11448                 bp->rx_ring_size = MAX_RX_AVAIL;
11449
11450         /* make sure that the numbers are in the right granularity */
11451         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11452         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11453
11454         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11455
11456         init_timer(&bp->timer);
11457         bp->timer.expires = jiffies + bp->current_interval;
11458         bp->timer.data = (unsigned long) bp;
11459         bp->timer.function = bnx2x_timer;
11460
11461         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11462             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11463             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11464             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11465                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11466                 bnx2x_dcbx_init_params(bp);
11467         } else {
11468                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11469         }
11470
11471         if (CHIP_IS_E1x(bp))
11472                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11473         else
11474                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11475
11476         /* multiple tx priority */
11477         if (IS_VF(bp))
11478                 bp->max_cos = 1;
11479         else if (CHIP_IS_E1x(bp))
11480                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11481         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11482                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11483         else if (CHIP_IS_E3B0(bp))
11484                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11485         else
11486                 BNX2X_ERR("unknown chip %x revision %x\n",
11487                           CHIP_NUM(bp), CHIP_REV(bp));
11488         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11489
11490         /* We need at least one default status block for slow-path events,
11491          * second status block for the L2 queue, and a third status block for
11492          * CNIC if supproted.
11493          */
11494         if (CNIC_SUPPORT(bp))
11495                 bp->min_msix_vec_cnt = 3;
11496         else
11497                 bp->min_msix_vec_cnt = 2;
11498         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11499
11500         return rc;
11501 }
11502
11503
11504 /****************************************************************************
11505 * General service functions
11506 ****************************************************************************/
11507
11508 /*
11509  * net_device service functions
11510  */
11511
11512 /* called with rtnl_lock */
11513 static int bnx2x_open(struct net_device *dev)
11514 {
11515         struct bnx2x *bp = netdev_priv(dev);
11516         bool global = false;
11517         int other_engine = BP_PATH(bp) ? 0 : 1;
11518         bool other_load_status, load_status;
11519         int rc;
11520
11521         bp->stats_init = true;
11522
11523         netif_carrier_off(dev);
11524
11525         bnx2x_set_power_state(bp, PCI_D0);
11526
11527         /* If parity had happen during the unload, then attentions
11528          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11529          * want the first function loaded on the current engine to
11530          * complete the recovery.
11531          * Parity recovery is only relevant for PF driver.
11532          */
11533         if (IS_PF(bp)) {
11534                 other_load_status = bnx2x_get_load_status(bp, other_engine);
11535                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11536                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11537                     bnx2x_chk_parity_attn(bp, &global, true)) {
11538                         do {
11539                                 /* If there are attentions and they are in a
11540                                  * global blocks, set the GLOBAL_RESET bit
11541                                  * regardless whether it will be this function
11542                                  * that will complete the recovery or not.
11543                                  */
11544                                 if (global)
11545                                         bnx2x_set_reset_global(bp);
11546
11547                                 /* Only the first function on the current
11548                                  * engine should try to recover in open. In case
11549                                  * of attentions in global blocks only the first
11550                                  * in the chip should try to recover.
11551                                  */
11552                                 if ((!load_status &&
11553                                      (!global || !other_load_status)) &&
11554                                       bnx2x_trylock_leader_lock(bp) &&
11555                                       !bnx2x_leader_reset(bp)) {
11556                                         netdev_info(bp->dev,
11557                                                     "Recovered in open\n");
11558                                         break;
11559                                 }
11560
11561                                 /* recovery has failed... */
11562                                 bnx2x_set_power_state(bp, PCI_D3hot);
11563                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
11564
11565                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11566                                           "If you still see this message after a few retries then power cycle is required.\n");
11567
11568                                 return -EAGAIN;
11569                         } while (0);
11570                 }
11571         }
11572
11573         bp->recovery_state = BNX2X_RECOVERY_DONE;
11574         rc = bnx2x_nic_load(bp, LOAD_OPEN);
11575         if (rc)
11576                 return rc;
11577         return bnx2x_open_epilog(bp);
11578 }
11579
11580 /* called with rtnl_lock */
11581 static int bnx2x_close(struct net_device *dev)
11582 {
11583         struct bnx2x *bp = netdev_priv(dev);
11584
11585         /* Unload the driver, release IRQs */
11586         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11587
11588         /* Power off */
11589         bnx2x_set_power_state(bp, PCI_D3hot);
11590
11591         return 0;
11592 }
11593
11594 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11595                                       struct bnx2x_mcast_ramrod_params *p)
11596 {
11597         int mc_count = netdev_mc_count(bp->dev);
11598         struct bnx2x_mcast_list_elem *mc_mac =
11599                 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11600         struct netdev_hw_addr *ha;
11601
11602         if (!mc_mac)
11603                 return -ENOMEM;
11604
11605         INIT_LIST_HEAD(&p->mcast_list);
11606
11607         netdev_for_each_mc_addr(ha, bp->dev) {
11608                 mc_mac->mac = bnx2x_mc_addr(ha);
11609                 list_add_tail(&mc_mac->link, &p->mcast_list);
11610                 mc_mac++;
11611         }
11612
11613         p->mcast_list_len = mc_count;
11614
11615         return 0;
11616 }
11617
11618 static void bnx2x_free_mcast_macs_list(
11619         struct bnx2x_mcast_ramrod_params *p)
11620 {
11621         struct bnx2x_mcast_list_elem *mc_mac =
11622                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11623                                  link);
11624
11625         WARN_ON(!mc_mac);
11626         kfree(mc_mac);
11627 }
11628
11629 /**
11630  * bnx2x_set_uc_list - configure a new unicast MACs list.
11631  *
11632  * @bp: driver handle
11633  *
11634  * We will use zero (0) as a MAC type for these MACs.
11635  */
11636 static int bnx2x_set_uc_list(struct bnx2x *bp)
11637 {
11638         int rc;
11639         struct net_device *dev = bp->dev;
11640         struct netdev_hw_addr *ha;
11641         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11642         unsigned long ramrod_flags = 0;
11643
11644         /* First schedule a cleanup up of old configuration */
11645         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11646         if (rc < 0) {
11647                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11648                 return rc;
11649         }
11650
11651         netdev_for_each_uc_addr(ha, dev) {
11652                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11653                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
11654                 if (rc == -EEXIST) {
11655                         DP(BNX2X_MSG_SP,
11656                            "Failed to schedule ADD operations: %d\n", rc);
11657                         /* do not treat adding same MAC as error */
11658                         rc = 0;
11659
11660                 } else if (rc < 0) {
11661
11662                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11663                                   rc);
11664                         return rc;
11665                 }
11666         }
11667
11668         /* Execute the pending commands */
11669         __set_bit(RAMROD_CONT, &ramrod_flags);
11670         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11671                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
11672 }
11673
11674 static int bnx2x_set_mc_list(struct bnx2x *bp)
11675 {
11676         struct net_device *dev = bp->dev;
11677         struct bnx2x_mcast_ramrod_params rparam = {NULL};
11678         int rc = 0;
11679
11680         rparam.mcast_obj = &bp->mcast_obj;
11681
11682         /* first, clear all configured multicast MACs */
11683         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11684         if (rc < 0) {
11685                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11686                 return rc;
11687         }
11688
11689         /* then, configure a new MACs list */
11690         if (netdev_mc_count(dev)) {
11691                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11692                 if (rc) {
11693                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11694                                   rc);
11695                         return rc;
11696                 }
11697
11698                 /* Now add the new MACs */
11699                 rc = bnx2x_config_mcast(bp, &rparam,
11700                                         BNX2X_MCAST_CMD_ADD);
11701                 if (rc < 0)
11702                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11703                                   rc);
11704
11705                 bnx2x_free_mcast_macs_list(&rparam);
11706         }
11707
11708         return rc;
11709 }
11710
11711 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11712 void bnx2x_set_rx_mode(struct net_device *dev)
11713 {
11714         struct bnx2x *bp = netdev_priv(dev);
11715         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11716
11717         if (bp->state != BNX2X_STATE_OPEN) {
11718                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11719                 return;
11720         }
11721
11722         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11723
11724         if (dev->flags & IFF_PROMISC)
11725                 rx_mode = BNX2X_RX_MODE_PROMISC;
11726         else if ((dev->flags & IFF_ALLMULTI) ||
11727                  ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11728                   CHIP_IS_E1(bp)))
11729                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11730         else {
11731                 if (IS_PF(bp)) {
11732                         /* some multicasts */
11733                         if (bnx2x_set_mc_list(bp) < 0)
11734                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11735
11736                         if (bnx2x_set_uc_list(bp) < 0)
11737                                 rx_mode = BNX2X_RX_MODE_PROMISC;
11738                 } else {
11739                         /* configuring mcast to a vf involves sleeping (when we
11740                          * wait for the pf's response). Since this function is
11741                          * called from non sleepable context we must schedule
11742                          * a work item for this purpose
11743                          */
11744                         smp_mb__before_clear_bit();
11745                         set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11746                                 &bp->sp_rtnl_state);
11747                         smp_mb__after_clear_bit();
11748                         schedule_delayed_work(&bp->sp_rtnl_task, 0);
11749                 }
11750         }
11751
11752         bp->rx_mode = rx_mode;
11753         /* handle ISCSI SD mode */
11754         if (IS_MF_ISCSI_SD(bp))
11755                 bp->rx_mode = BNX2X_RX_MODE_NONE;
11756
11757         /* Schedule the rx_mode command */
11758         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11759                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11760                 return;
11761         }
11762
11763         if (IS_PF(bp)) {
11764                 bnx2x_set_storm_rx_mode(bp);
11765         } else {
11766                 /* configuring rx mode to storms in a vf involves sleeping (when
11767                  * we wait for the pf's response). Since this function is
11768                  * called from non sleepable context we must schedule
11769                  * a work item for this purpose
11770                  */
11771                 smp_mb__before_clear_bit();
11772                 set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
11773                         &bp->sp_rtnl_state);
11774                 smp_mb__after_clear_bit();
11775                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11776         }
11777 }
11778
11779 /* called with rtnl_lock */
11780 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11781                            int devad, u16 addr)
11782 {
11783         struct bnx2x *bp = netdev_priv(netdev);
11784         u16 value;
11785         int rc;
11786
11787         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11788            prtad, devad, addr);
11789
11790         /* The HW expects different devad if CL22 is used */
11791         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11792
11793         bnx2x_acquire_phy_lock(bp);
11794         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11795         bnx2x_release_phy_lock(bp);
11796         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11797
11798         if (!rc)
11799                 rc = value;
11800         return rc;
11801 }
11802
11803 /* called with rtnl_lock */
11804 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11805                             u16 addr, u16 value)
11806 {
11807         struct bnx2x *bp = netdev_priv(netdev);
11808         int rc;
11809
11810         DP(NETIF_MSG_LINK,
11811            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11812            prtad, devad, addr, value);
11813
11814         /* The HW expects different devad if CL22 is used */
11815         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11816
11817         bnx2x_acquire_phy_lock(bp);
11818         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11819         bnx2x_release_phy_lock(bp);
11820         return rc;
11821 }
11822
11823 /* called with rtnl_lock */
11824 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11825 {
11826         struct bnx2x *bp = netdev_priv(dev);
11827         struct mii_ioctl_data *mdio = if_mii(ifr);
11828
11829         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11830            mdio->phy_id, mdio->reg_num, mdio->val_in);
11831
11832         if (!netif_running(dev))
11833                 return -EAGAIN;
11834
11835         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11836 }
11837
11838 #ifdef CONFIG_NET_POLL_CONTROLLER
11839 static void poll_bnx2x(struct net_device *dev)
11840 {
11841         struct bnx2x *bp = netdev_priv(dev);
11842         int i;
11843
11844         for_each_eth_queue(bp, i) {
11845                 struct bnx2x_fastpath *fp = &bp->fp[i];
11846                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11847         }
11848 }
11849 #endif
11850
11851 static int bnx2x_validate_addr(struct net_device *dev)
11852 {
11853         struct bnx2x *bp = netdev_priv(dev);
11854
11855         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11856                 BNX2X_ERR("Non-valid Ethernet address\n");
11857                 return -EADDRNOTAVAIL;
11858         }
11859         return 0;
11860 }
11861
11862 static const struct net_device_ops bnx2x_netdev_ops = {
11863         .ndo_open               = bnx2x_open,
11864         .ndo_stop               = bnx2x_close,
11865         .ndo_start_xmit         = bnx2x_start_xmit,
11866         .ndo_select_queue       = bnx2x_select_queue,
11867         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
11868         .ndo_set_mac_address    = bnx2x_change_mac_addr,
11869         .ndo_validate_addr      = bnx2x_validate_addr,
11870         .ndo_do_ioctl           = bnx2x_ioctl,
11871         .ndo_change_mtu         = bnx2x_change_mtu,
11872         .ndo_fix_features       = bnx2x_fix_features,
11873         .ndo_set_features       = bnx2x_set_features,
11874         .ndo_tx_timeout         = bnx2x_tx_timeout,
11875 #ifdef CONFIG_NET_POLL_CONTROLLER
11876         .ndo_poll_controller    = poll_bnx2x,
11877 #endif
11878         .ndo_setup_tc           = bnx2x_setup_tc,
11879 #ifdef CONFIG_BNX2X_SRIOV
11880         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
11881         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
11882         .ndo_get_vf_config      = bnx2x_get_vf_config,
11883 #endif
11884 #ifdef NETDEV_FCOE_WWNN
11885         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
11886 #endif
11887 };
11888
11889 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
11890 {
11891         struct device *dev = &bp->pdev->dev;
11892
11893         if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
11894                 bp->flags |= USING_DAC_FLAG;
11895                 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
11896                         dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
11897                         return -EIO;
11898                 }
11899         } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
11900                 dev_err(dev, "System does not support DMA, aborting\n");
11901                 return -EIO;
11902         }
11903
11904         return 0;
11905 }
11906
11907 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
11908                           struct net_device *dev, unsigned long board_type)
11909 {
11910         int rc;
11911         u32 pci_cfg_dword;
11912         bool chip_is_e1x = (board_type == BCM57710 ||
11913                             board_type == BCM57711 ||
11914                             board_type == BCM57711E);
11915
11916         SET_NETDEV_DEV(dev, &pdev->dev);
11917
11918         bp->dev = dev;
11919         bp->pdev = pdev;
11920
11921         rc = pci_enable_device(pdev);
11922         if (rc) {
11923                 dev_err(&bp->pdev->dev,
11924                         "Cannot enable PCI device, aborting\n");
11925                 goto err_out;
11926         }
11927
11928         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11929                 dev_err(&bp->pdev->dev,
11930                         "Cannot find PCI device base address, aborting\n");
11931                 rc = -ENODEV;
11932                 goto err_out_disable;
11933         }
11934
11935         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
11936                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
11937                 rc = -ENODEV;
11938                 goto err_out_disable;
11939         }
11940
11941         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
11942         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
11943             PCICFG_REVESION_ID_ERROR_VAL) {
11944                 pr_err("PCI device error, probably due to fan failure, aborting\n");
11945                 rc = -ENODEV;
11946                 goto err_out_disable;
11947         }
11948
11949         if (atomic_read(&pdev->enable_cnt) == 1) {
11950                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11951                 if (rc) {
11952                         dev_err(&bp->pdev->dev,
11953                                 "Cannot obtain PCI resources, aborting\n");
11954                         goto err_out_disable;
11955                 }
11956
11957                 pci_set_master(pdev);
11958                 pci_save_state(pdev);
11959         }
11960
11961         if (IS_PF(bp)) {
11962                 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
11963                 if (bp->pm_cap == 0) {
11964                         dev_err(&bp->pdev->dev,
11965                                 "Cannot find power management capability, aborting\n");
11966                         rc = -EIO;
11967                         goto err_out_release;
11968                 }
11969         }
11970
11971         if (!pci_is_pcie(pdev)) {
11972                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
11973                 rc = -EIO;
11974                 goto err_out_release;
11975         }
11976
11977         rc = bnx2x_set_coherency_mask(bp);
11978         if (rc)
11979                 goto err_out_release;
11980
11981         dev->mem_start = pci_resource_start(pdev, 0);
11982         dev->base_addr = dev->mem_start;
11983         dev->mem_end = pci_resource_end(pdev, 0);
11984
11985         dev->irq = pdev->irq;
11986
11987         bp->regview = pci_ioremap_bar(pdev, 0);
11988         if (!bp->regview) {
11989                 dev_err(&bp->pdev->dev,
11990                         "Cannot map register space, aborting\n");
11991                 rc = -ENOMEM;
11992                 goto err_out_release;
11993         }
11994
11995         /* In E1/E1H use pci device function given by kernel.
11996          * In E2/E3 read physical function from ME register since these chips
11997          * support Physical Device Assignment where kernel BDF maybe arbitrary
11998          * (depending on hypervisor).
11999          */
12000         if (chip_is_e1x) {
12001                 bp->pf_num = PCI_FUNC(pdev->devfn);
12002         } else {
12003                 /* chip is E2/3*/
12004                 pci_read_config_dword(bp->pdev,
12005                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
12006                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12007                                   ME_REG_ABS_PF_NUM_SHIFT);
12008         }
12009         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12010
12011         bnx2x_set_power_state(bp, PCI_D0);
12012
12013         /* clean indirect addresses */
12014         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12015                                PCICFG_VENDOR_ID_OFFSET);
12016         /*
12017          * Clean the following indirect addresses for all functions since it
12018          * is not used by the driver.
12019          */
12020         if (IS_PF(bp)) {
12021                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12022                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12023                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12024                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12025
12026                 if (chip_is_e1x) {
12027                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12028                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12029                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12030                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12031                 }
12032
12033                 /* Enable internal target-read (in case we are probed after PF
12034                  * FLR). Must be done prior to any BAR read access. Only for
12035                  * 57712 and up
12036                  */
12037                 if (!chip_is_e1x)
12038                         REG_WR(bp,
12039                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12040         }
12041
12042         dev->watchdog_timeo = TX_TIMEOUT;
12043
12044         dev->netdev_ops = &bnx2x_netdev_ops;
12045         bnx2x_set_ethtool_ops(bp, dev);
12046
12047         dev->priv_flags |= IFF_UNICAST_FLT;
12048
12049         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12050                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12051                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12052                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12053         if (!CHIP_IS_E1x(bp)) {
12054                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12055                 dev->hw_enc_features =
12056                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12057                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12058                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12059         }
12060
12061         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12062                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12063
12064         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12065         if (bp->flags & USING_DAC_FLAG)
12066                 dev->features |= NETIF_F_HIGHDMA;
12067
12068         /* Add Loopback capability to the device */
12069         dev->hw_features |= NETIF_F_LOOPBACK;
12070
12071 #ifdef BCM_DCBNL
12072         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12073 #endif
12074
12075         /* get_port_hwinfo() will set prtad and mmds properly */
12076         bp->mdio.prtad = MDIO_PRTAD_NONE;
12077         bp->mdio.mmds = 0;
12078         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12079         bp->mdio.dev = dev;
12080         bp->mdio.mdio_read = bnx2x_mdio_read;
12081         bp->mdio.mdio_write = bnx2x_mdio_write;
12082
12083         return 0;
12084
12085 err_out_release:
12086         if (atomic_read(&pdev->enable_cnt) == 1)
12087                 pci_release_regions(pdev);
12088
12089 err_out_disable:
12090         pci_disable_device(pdev);
12091         pci_set_drvdata(pdev, NULL);
12092
12093 err_out:
12094         return rc;
12095 }
12096
12097 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, int *speed)
12098 {
12099         u32 val = 0;
12100
12101         pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12102         *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12103
12104         /* return value of 1=2.5GHz 2=5GHz */
12105         *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12106 }
12107
12108 static int bnx2x_check_firmware(struct bnx2x *bp)
12109 {
12110         const struct firmware *firmware = bp->firmware;
12111         struct bnx2x_fw_file_hdr *fw_hdr;
12112         struct bnx2x_fw_file_section *sections;
12113         u32 offset, len, num_ops;
12114         __be16 *ops_offsets;
12115         int i;
12116         const u8 *fw_ver;
12117
12118         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12119                 BNX2X_ERR("Wrong FW size\n");
12120                 return -EINVAL;
12121         }
12122
12123         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12124         sections = (struct bnx2x_fw_file_section *)fw_hdr;
12125
12126         /* Make sure none of the offsets and sizes make us read beyond
12127          * the end of the firmware data */
12128         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12129                 offset = be32_to_cpu(sections[i].offset);
12130                 len = be32_to_cpu(sections[i].len);
12131                 if (offset + len > firmware->size) {
12132                         BNX2X_ERR("Section %d length is out of bounds\n", i);
12133                         return -EINVAL;
12134                 }
12135         }
12136
12137         /* Likewise for the init_ops offsets */
12138         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12139         ops_offsets = (__force __be16 *)(firmware->data + offset);
12140         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12141
12142         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12143                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12144                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
12145                         return -EINVAL;
12146                 }
12147         }
12148
12149         /* Check FW version */
12150         offset = be32_to_cpu(fw_hdr->fw_version.offset);
12151         fw_ver = firmware->data + offset;
12152         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12153             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12154             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12155             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12156                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12157                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12158                        BCM_5710_FW_MAJOR_VERSION,
12159                        BCM_5710_FW_MINOR_VERSION,
12160                        BCM_5710_FW_REVISION_VERSION,
12161                        BCM_5710_FW_ENGINEERING_VERSION);
12162                 return -EINVAL;
12163         }
12164
12165         return 0;
12166 }
12167
12168 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12169 {
12170         const __be32 *source = (const __be32 *)_source;
12171         u32 *target = (u32 *)_target;
12172         u32 i;
12173
12174         for (i = 0; i < n/4; i++)
12175                 target[i] = be32_to_cpu(source[i]);
12176 }
12177
12178 /*
12179    Ops array is stored in the following format:
12180    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12181  */
12182 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12183 {
12184         const __be32 *source = (const __be32 *)_source;
12185         struct raw_op *target = (struct raw_op *)_target;
12186         u32 i, j, tmp;
12187
12188         for (i = 0, j = 0; i < n/8; i++, j += 2) {
12189                 tmp = be32_to_cpu(source[j]);
12190                 target[i].op = (tmp >> 24) & 0xff;
12191                 target[i].offset = tmp & 0xffffff;
12192                 target[i].raw_data = be32_to_cpu(source[j + 1]);
12193         }
12194 }
12195
12196 /* IRO array is stored in the following format:
12197  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12198  */
12199 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12200 {
12201         const __be32 *source = (const __be32 *)_source;
12202         struct iro *target = (struct iro *)_target;
12203         u32 i, j, tmp;
12204
12205         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12206                 target[i].base = be32_to_cpu(source[j]);
12207                 j++;
12208                 tmp = be32_to_cpu(source[j]);
12209                 target[i].m1 = (tmp >> 16) & 0xffff;
12210                 target[i].m2 = tmp & 0xffff;
12211                 j++;
12212                 tmp = be32_to_cpu(source[j]);
12213                 target[i].m3 = (tmp >> 16) & 0xffff;
12214                 target[i].size = tmp & 0xffff;
12215                 j++;
12216         }
12217 }
12218
12219 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12220 {
12221         const __be16 *source = (const __be16 *)_source;
12222         u16 *target = (u16 *)_target;
12223         u32 i;
12224
12225         for (i = 0; i < n/2; i++)
12226                 target[i] = be16_to_cpu(source[i]);
12227 }
12228
12229 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12230 do {                                                                    \
12231         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12232         bp->arr = kmalloc(len, GFP_KERNEL);                             \
12233         if (!bp->arr)                                                   \
12234                 goto lbl;                                               \
12235         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12236              (u8 *)bp->arr, len);                                       \
12237 } while (0)
12238
12239 static int bnx2x_init_firmware(struct bnx2x *bp)
12240 {
12241         const char *fw_file_name;
12242         struct bnx2x_fw_file_hdr *fw_hdr;
12243         int rc;
12244
12245         if (bp->firmware)
12246                 return 0;
12247
12248         if (CHIP_IS_E1(bp))
12249                 fw_file_name = FW_FILE_NAME_E1;
12250         else if (CHIP_IS_E1H(bp))
12251                 fw_file_name = FW_FILE_NAME_E1H;
12252         else if (!CHIP_IS_E1x(bp))
12253                 fw_file_name = FW_FILE_NAME_E2;
12254         else {
12255                 BNX2X_ERR("Unsupported chip revision\n");
12256                 return -EINVAL;
12257         }
12258         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12259
12260         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12261         if (rc) {
12262                 BNX2X_ERR("Can't load firmware file %s\n",
12263                           fw_file_name);
12264                 goto request_firmware_exit;
12265         }
12266
12267         rc = bnx2x_check_firmware(bp);
12268         if (rc) {
12269                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12270                 goto request_firmware_exit;
12271         }
12272
12273         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12274
12275         /* Initialize the pointers to the init arrays */
12276         /* Blob */
12277         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12278
12279         /* Opcodes */
12280         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12281
12282         /* Offsets */
12283         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12284                             be16_to_cpu_n);
12285
12286         /* STORMs firmware */
12287         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12288                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12289         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12290                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12291         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12292                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12293         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12294                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
12295         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12296                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12297         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12298                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12299         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12300                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12301         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12302                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
12303         /* IRO */
12304         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12305
12306         return 0;
12307
12308 iro_alloc_err:
12309         kfree(bp->init_ops_offsets);
12310 init_offsets_alloc_err:
12311         kfree(bp->init_ops);
12312 init_ops_alloc_err:
12313         kfree(bp->init_data);
12314 request_firmware_exit:
12315         release_firmware(bp->firmware);
12316         bp->firmware = NULL;
12317
12318         return rc;
12319 }
12320
12321 static void bnx2x_release_firmware(struct bnx2x *bp)
12322 {
12323         kfree(bp->init_ops_offsets);
12324         kfree(bp->init_ops);
12325         kfree(bp->init_data);
12326         release_firmware(bp->firmware);
12327         bp->firmware = NULL;
12328 }
12329
12330
12331 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12332         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12333         .init_hw_cmn      = bnx2x_init_hw_common,
12334         .init_hw_port     = bnx2x_init_hw_port,
12335         .init_hw_func     = bnx2x_init_hw_func,
12336
12337         .reset_hw_cmn     = bnx2x_reset_common,
12338         .reset_hw_port    = bnx2x_reset_port,
12339         .reset_hw_func    = bnx2x_reset_func,
12340
12341         .gunzip_init      = bnx2x_gunzip_init,
12342         .gunzip_end       = bnx2x_gunzip_end,
12343
12344         .init_fw          = bnx2x_init_firmware,
12345         .release_fw       = bnx2x_release_firmware,
12346 };
12347
12348 void bnx2x__init_func_obj(struct bnx2x *bp)
12349 {
12350         /* Prepare DMAE related driver resources */
12351         bnx2x_setup_dmae(bp);
12352
12353         bnx2x_init_func_obj(bp, &bp->func_obj,
12354                             bnx2x_sp(bp, func_rdata),
12355                             bnx2x_sp_mapping(bp, func_rdata),
12356                             bnx2x_sp(bp, func_afex_rdata),
12357                             bnx2x_sp_mapping(bp, func_afex_rdata),
12358                             &bnx2x_func_sp_drv);
12359 }
12360
12361 /* must be called after sriov-enable */
12362 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12363 {
12364         int cid_count = BNX2X_L2_MAX_CID(bp);
12365
12366         if (IS_SRIOV(bp))
12367                 cid_count += BNX2X_VF_CIDS;
12368
12369         if (CNIC_SUPPORT(bp))
12370                 cid_count += CNIC_CID_MAX;
12371
12372         return roundup(cid_count, QM_CID_ROUND);
12373 }
12374
12375 /**
12376  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12377  *
12378  * @dev:        pci device
12379  *
12380  */
12381 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12382                                      int cnic_cnt, bool is_vf)
12383 {
12384         int pos, index;
12385         u16 control = 0;
12386
12387         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12388
12389         /*
12390          * If MSI-X is not supported - return number of SBs needed to support
12391          * one fast path queue: one FP queue + SB for CNIC
12392          */
12393         if (!pos) {
12394                 dev_info(&pdev->dev, "no msix capability found\n");
12395                 return 1 + cnic_cnt;
12396         }
12397         dev_info(&pdev->dev, "msix capability found\n");
12398
12399         /*
12400          * The value in the PCI configuration space is the index of the last
12401          * entry, namely one less than the actual size of the table, which is
12402          * exactly what we want to return from this function: number of all SBs
12403          * without the default SB.
12404          * For VFs there is no default SB, then we return (index+1).
12405          */
12406         pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
12407
12408         index = control & PCI_MSIX_FLAGS_QSIZE;
12409
12410         return is_vf ? index + 1 : index;
12411 }
12412
12413 static int set_max_cos_est(int chip_id)
12414 {
12415         switch (chip_id) {
12416         case BCM57710:
12417         case BCM57711:
12418         case BCM57711E:
12419                 return BNX2X_MULTI_TX_COS_E1X;
12420         case BCM57712:
12421         case BCM57712_MF:
12422         case BCM57712_VF:
12423                 return BNX2X_MULTI_TX_COS_E2_E3A0;
12424         case BCM57800:
12425         case BCM57800_MF:
12426         case BCM57800_VF:
12427         case BCM57810:
12428         case BCM57810_MF:
12429         case BCM57840_4_10:
12430         case BCM57840_2_20:
12431         case BCM57840_O:
12432         case BCM57840_MFO:
12433         case BCM57810_VF:
12434         case BCM57840_MF:
12435         case BCM57840_VF:
12436         case BCM57811:
12437         case BCM57811_MF:
12438         case BCM57811_VF:
12439                 return BNX2X_MULTI_TX_COS_E3B0;
12440                 return 1;
12441         default:
12442                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12443                 return -ENODEV;
12444         }
12445 }
12446
12447 static int set_is_vf(int chip_id)
12448 {
12449         switch (chip_id) {
12450         case BCM57712_VF:
12451         case BCM57800_VF:
12452         case BCM57810_VF:
12453         case BCM57840_VF:
12454         case BCM57811_VF:
12455                 return true;
12456         default:
12457                 return false;
12458         }
12459 }
12460
12461 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12462
12463 static int bnx2x_init_one(struct pci_dev *pdev,
12464                                     const struct pci_device_id *ent)
12465 {
12466         struct net_device *dev = NULL;
12467         struct bnx2x *bp;
12468         int pcie_width, pcie_speed;
12469         int rc, max_non_def_sbs;
12470         int rx_count, tx_count, rss_count, doorbell_size;
12471         int max_cos_est;
12472         bool is_vf;
12473         int cnic_cnt;
12474
12475         /* An estimated maximum supported CoS number according to the chip
12476          * version.
12477          * We will try to roughly estimate the maximum number of CoSes this chip
12478          * may support in order to minimize the memory allocated for Tx
12479          * netdev_queue's. This number will be accurately calculated during the
12480          * initialization of bp->max_cos based on the chip versions AND chip
12481          * revision in the bnx2x_init_bp().
12482          */
12483         max_cos_est = set_max_cos_est(ent->driver_data);
12484         if (max_cos_est < 0)
12485                 return max_cos_est;
12486         is_vf = set_is_vf(ent->driver_data);
12487         cnic_cnt = is_vf ? 0 : 1;
12488
12489         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
12490
12491         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12492         rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
12493
12494         if (rss_count < 1)
12495                 return -EINVAL;
12496
12497         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12498         rx_count = rss_count + cnic_cnt;
12499
12500         /* Maximum number of netdev Tx queues:
12501          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12502          */
12503         tx_count = rss_count * max_cos_est + cnic_cnt;
12504
12505         /* dev zeroed in init_etherdev */
12506         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12507         if (!dev)
12508                 return -ENOMEM;
12509
12510         bp = netdev_priv(dev);
12511
12512         bp->flags = 0;
12513         if (is_vf)
12514                 bp->flags |= IS_VF_FLAG;
12515
12516         bp->igu_sb_cnt = max_non_def_sbs;
12517         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12518         bp->msg_enable = debug;
12519         bp->cnic_support = cnic_cnt;
12520         bp->cnic_probe = bnx2x_cnic_probe;
12521
12522         pci_set_drvdata(pdev, dev);
12523
12524         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12525         if (rc < 0) {
12526                 free_netdev(dev);
12527                 return rc;
12528         }
12529
12530         BNX2X_DEV_INFO("This is a %s function\n",
12531                        IS_PF(bp) ? "physical" : "virtual");
12532         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12533         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12534         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12535                        tx_count, rx_count);
12536
12537         rc = bnx2x_init_bp(bp);
12538         if (rc)
12539                 goto init_one_exit;
12540
12541         /* Map doorbells here as we need the real value of bp->max_cos which
12542          * is initialized in bnx2x_init_bp() to determine the number of
12543          * l2 connections.
12544          */
12545         if (IS_VF(bp)) {
12546                 bp->doorbells = bnx2x_vf_doorbells(bp);
12547                 rc = bnx2x_vf_pci_alloc(bp);
12548                 if (rc)
12549                         goto init_one_exit;
12550         } else {
12551                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12552                 if (doorbell_size > pci_resource_len(pdev, 2)) {
12553                         dev_err(&bp->pdev->dev,
12554                                 "Cannot map doorbells, bar size too small, aborting\n");
12555                         rc = -ENOMEM;
12556                         goto init_one_exit;
12557                 }
12558                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12559                                                 doorbell_size);
12560         }
12561         if (!bp->doorbells) {
12562                 dev_err(&bp->pdev->dev,
12563                         "Cannot map doorbell space, aborting\n");
12564                 rc = -ENOMEM;
12565                 goto init_one_exit;
12566         }
12567
12568         if (IS_VF(bp)) {
12569                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12570                 if (rc)
12571                         goto init_one_exit;
12572         }
12573
12574         /* Enable SRIOV if capability found in configuration space */
12575         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12576         if (rc)
12577                 goto init_one_exit;
12578
12579         /* calc qm_cid_count */
12580         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12581         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12582
12583         /* disable FCOE L2 queue for E1x*/
12584         if (CHIP_IS_E1x(bp))
12585                 bp->flags |= NO_FCOE_FLAG;
12586
12587         /* Set bp->num_queues for MSI-X mode*/
12588         bnx2x_set_num_queues(bp);
12589
12590         /* Configure interrupt mode: try to enable MSI-X/MSI if
12591          * needed.
12592          */
12593         rc = bnx2x_set_int_mode(bp);
12594         if (rc) {
12595                 dev_err(&pdev->dev, "Cannot set interrupts\n");
12596                 goto init_one_exit;
12597         }
12598         BNX2X_DEV_INFO("set interrupts successfully\n");
12599
12600         /* register the net device */
12601         rc = register_netdev(dev);
12602         if (rc) {
12603                 dev_err(&pdev->dev, "Cannot register net device\n");
12604                 goto init_one_exit;
12605         }
12606         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12607
12608
12609         if (!NO_FCOE(bp)) {
12610                 /* Add storage MAC address */
12611                 rtnl_lock();
12612                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12613                 rtnl_unlock();
12614         }
12615
12616         bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12617         BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12618                        pcie_width, pcie_speed);
12619
12620         BNX2X_DEV_INFO(
12621                 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12622                     board_info[ent->driver_data].name,
12623                     (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12624                     pcie_width,
12625                     ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
12626                      (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
12627                     "5GHz (Gen2)" : "2.5GHz",
12628                     dev->base_addr, bp->pdev->irq, dev->dev_addr);
12629
12630         return 0;
12631
12632 init_one_exit:
12633         if (bp->regview)
12634                 iounmap(bp->regview);
12635
12636         if (IS_PF(bp) && bp->doorbells)
12637                 iounmap(bp->doorbells);
12638
12639         free_netdev(dev);
12640
12641         if (atomic_read(&pdev->enable_cnt) == 1)
12642                 pci_release_regions(pdev);
12643
12644         pci_disable_device(pdev);
12645         pci_set_drvdata(pdev, NULL);
12646
12647         return rc;
12648 }
12649
12650 static void bnx2x_remove_one(struct pci_dev *pdev)
12651 {
12652         struct net_device *dev = pci_get_drvdata(pdev);
12653         struct bnx2x *bp;
12654
12655         if (!dev) {
12656                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12657                 return;
12658         }
12659         bp = netdev_priv(dev);
12660
12661         /* Delete storage MAC address */
12662         if (!NO_FCOE(bp)) {
12663                 rtnl_lock();
12664                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12665                 rtnl_unlock();
12666         }
12667
12668 #ifdef BCM_DCBNL
12669         /* Delete app tlvs from dcbnl */
12670         bnx2x_dcbnl_update_applist(bp, true);
12671 #endif
12672
12673         unregister_netdev(dev);
12674
12675         /* Power on: we can't let PCI layer write to us while we are in D3 */
12676         if (IS_PF(bp))
12677                 bnx2x_set_power_state(bp, PCI_D0);
12678
12679         /* Disable MSI/MSI-X */
12680         bnx2x_disable_msi(bp);
12681
12682         /* Power off */
12683         if (IS_PF(bp))
12684                 bnx2x_set_power_state(bp, PCI_D3hot);
12685
12686         /* Make sure RESET task is not scheduled before continuing */
12687         cancel_delayed_work_sync(&bp->sp_rtnl_task);
12688
12689         bnx2x_iov_remove_one(bp);
12690
12691         /* send message via vfpf channel to release the resources of this vf */
12692         if (IS_VF(bp))
12693                 bnx2x_vfpf_release(bp);
12694
12695         if (bp->regview)
12696                 iounmap(bp->regview);
12697
12698         /* for vf doorbells are part of the regview and were unmapped along with
12699          * it. FW is only loaded by PF.
12700          */
12701         if (IS_PF(bp)) {
12702                 if (bp->doorbells)
12703                         iounmap(bp->doorbells);
12704
12705                 bnx2x_release_firmware(bp);
12706         }
12707         bnx2x_free_mem_bp(bp);
12708
12709         free_netdev(dev);
12710
12711         if (atomic_read(&pdev->enable_cnt) == 1)
12712                 pci_release_regions(pdev);
12713
12714         pci_disable_device(pdev);
12715         pci_set_drvdata(pdev, NULL);
12716 }
12717
12718 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12719 {
12720         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12721
12722         bp->rx_mode = BNX2X_RX_MODE_NONE;
12723
12724         if (CNIC_LOADED(bp))
12725                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12726
12727         /* Stop Tx */
12728         bnx2x_tx_disable(bp);
12729         /* Delete all NAPI objects */
12730         bnx2x_del_all_napi(bp);
12731         if (CNIC_LOADED(bp))
12732                 bnx2x_del_all_napi_cnic(bp);
12733         netdev_reset_tc(bp->dev);
12734
12735         del_timer_sync(&bp->timer);
12736         cancel_delayed_work(&bp->sp_task);
12737         cancel_delayed_work(&bp->period_task);
12738
12739         spin_lock_bh(&bp->stats_lock);
12740         bp->stats_state = STATS_STATE_DISABLED;
12741         spin_unlock_bh(&bp->stats_lock);
12742
12743         bnx2x_save_statistics(bp);
12744
12745         netif_carrier_off(bp->dev);
12746
12747         return 0;
12748 }
12749
12750 static void bnx2x_eeh_recover(struct bnx2x *bp)
12751 {
12752         u32 val;
12753
12754         mutex_init(&bp->port.phy_mutex);
12755
12756
12757         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
12758         if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12759                 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12760                 BNX2X_ERR("BAD MCP validity signature\n");
12761 }
12762
12763 /**
12764  * bnx2x_io_error_detected - called when PCI error is detected
12765  * @pdev: Pointer to PCI device
12766  * @state: The current pci connection state
12767  *
12768  * This function is called after a PCI bus error affecting
12769  * this device has been detected.
12770  */
12771 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12772                                                 pci_channel_state_t state)
12773 {
12774         struct net_device *dev = pci_get_drvdata(pdev);
12775         struct bnx2x *bp = netdev_priv(dev);
12776
12777         rtnl_lock();
12778
12779         BNX2X_ERR("IO error detected\n");
12780
12781         netif_device_detach(dev);
12782
12783         if (state == pci_channel_io_perm_failure) {
12784                 rtnl_unlock();
12785                 return PCI_ERS_RESULT_DISCONNECT;
12786         }
12787
12788         if (netif_running(dev))
12789                 bnx2x_eeh_nic_unload(bp);
12790
12791         bnx2x_prev_path_mark_eeh(bp);
12792
12793         pci_disable_device(pdev);
12794
12795         rtnl_unlock();
12796
12797         /* Request a slot reset */
12798         return PCI_ERS_RESULT_NEED_RESET;
12799 }
12800
12801 /**
12802  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12803  * @pdev: Pointer to PCI device
12804  *
12805  * Restart the card from scratch, as if from a cold-boot.
12806  */
12807 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12808 {
12809         struct net_device *dev = pci_get_drvdata(pdev);
12810         struct bnx2x *bp = netdev_priv(dev);
12811         int i;
12812
12813         rtnl_lock();
12814         BNX2X_ERR("IO slot reset initializing...\n");
12815         if (pci_enable_device(pdev)) {
12816                 dev_err(&pdev->dev,
12817                         "Cannot re-enable PCI device after reset\n");
12818                 rtnl_unlock();
12819                 return PCI_ERS_RESULT_DISCONNECT;
12820         }
12821
12822         pci_set_master(pdev);
12823         pci_restore_state(pdev);
12824         pci_save_state(pdev);
12825
12826         if (netif_running(dev))
12827                 bnx2x_set_power_state(bp, PCI_D0);
12828
12829         if (netif_running(dev)) {
12830                 BNX2X_ERR("IO slot reset --> driver unload\n");
12831                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
12832                         u32 v;
12833
12834                         v = SHMEM2_RD(bp,
12835                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
12836                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
12837                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
12838                 }
12839                 bnx2x_drain_tx_queues(bp);
12840                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
12841                 bnx2x_netif_stop(bp, 1);
12842                 bnx2x_free_irq(bp);
12843
12844                 /* Report UNLOAD_DONE to MCP */
12845                 bnx2x_send_unload_done(bp, true);
12846
12847                 bp->sp_state = 0;
12848                 bp->port.pmf = 0;
12849
12850                 bnx2x_prev_unload(bp);
12851
12852                 /* We should have resetted the engine, so It's fair to
12853                  * assume the FW will no longer write to the bnx2x driver.
12854                  */
12855                 bnx2x_squeeze_objects(bp);
12856                 bnx2x_free_skbs(bp);
12857                 for_each_rx_queue(bp, i)
12858                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
12859                 bnx2x_free_fp_mem(bp);
12860                 bnx2x_free_mem(bp);
12861
12862                 bp->state = BNX2X_STATE_CLOSED;
12863         }
12864
12865         rtnl_unlock();
12866
12867         return PCI_ERS_RESULT_RECOVERED;
12868 }
12869
12870 /**
12871  * bnx2x_io_resume - called when traffic can start flowing again
12872  * @pdev: Pointer to PCI device
12873  *
12874  * This callback is called when the error recovery driver tells us that
12875  * its OK to resume normal operation.
12876  */
12877 static void bnx2x_io_resume(struct pci_dev *pdev)
12878 {
12879         struct net_device *dev = pci_get_drvdata(pdev);
12880         struct bnx2x *bp = netdev_priv(dev);
12881
12882         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
12883                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
12884                 return;
12885         }
12886
12887         rtnl_lock();
12888
12889         bnx2x_eeh_recover(bp);
12890
12891         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12892                                                         DRV_MSG_SEQ_NUMBER_MASK;
12893
12894         if (netif_running(dev))
12895                 bnx2x_nic_load(bp, LOAD_NORMAL);
12896
12897         netif_device_attach(dev);
12898
12899         rtnl_unlock();
12900 }
12901
12902 static const struct pci_error_handlers bnx2x_err_handler = {
12903         .error_detected = bnx2x_io_error_detected,
12904         .slot_reset     = bnx2x_io_slot_reset,
12905         .resume         = bnx2x_io_resume,
12906 };
12907
12908 static struct pci_driver bnx2x_pci_driver = {
12909         .name        = DRV_MODULE_NAME,
12910         .id_table    = bnx2x_pci_tbl,
12911         .probe       = bnx2x_init_one,
12912         .remove      = bnx2x_remove_one,
12913         .suspend     = bnx2x_suspend,
12914         .resume      = bnx2x_resume,
12915         .err_handler = &bnx2x_err_handler,
12916 #ifdef CONFIG_BNX2X_SRIOV
12917         .sriov_configure = bnx2x_sriov_configure,
12918 #endif
12919 };
12920
12921 static int __init bnx2x_init(void)
12922 {
12923         int ret;
12924
12925         pr_info("%s", version);
12926
12927         bnx2x_wq = create_singlethread_workqueue("bnx2x");
12928         if (bnx2x_wq == NULL) {
12929                 pr_err("Cannot create workqueue\n");
12930                 return -ENOMEM;
12931         }
12932
12933         ret = pci_register_driver(&bnx2x_pci_driver);
12934         if (ret) {
12935                 pr_err("Cannot register driver\n");
12936                 destroy_workqueue(bnx2x_wq);
12937         }
12938         return ret;
12939 }
12940
12941 static void __exit bnx2x_cleanup(void)
12942 {
12943         struct list_head *pos, *q;
12944         pci_unregister_driver(&bnx2x_pci_driver);
12945
12946         destroy_workqueue(bnx2x_wq);
12947
12948         /* Free globablly allocated resources */
12949         list_for_each_safe(pos, q, &bnx2x_prev_list) {
12950                 struct bnx2x_prev_path_list *tmp =
12951                         list_entry(pos, struct bnx2x_prev_path_list, list);
12952                 list_del(pos);
12953                 kfree(tmp);
12954         }
12955 }
12956
12957 void bnx2x_notify_link_changed(struct bnx2x *bp)
12958 {
12959         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
12960 }
12961
12962 module_init(bnx2x_init);
12963 module_exit(bnx2x_cleanup);
12964
12965 /**
12966  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
12967  *
12968  * @bp:         driver handle
12969  * @set:        set or clear the CAM entry
12970  *
12971  * This function will wait until the ramdord completion returns.
12972  * Return 0 if success, -ENODEV if ramrod doesn't return.
12973  */
12974 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
12975 {
12976         unsigned long ramrod_flags = 0;
12977
12978         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12979         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
12980                                  &bp->iscsi_l2_mac_obj, true,
12981                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
12982 }
12983
12984 /* count denotes the number of new completions we have seen */
12985 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
12986 {
12987         struct eth_spe *spe;
12988         int cxt_index, cxt_offset;
12989
12990 #ifdef BNX2X_STOP_ON_ERROR
12991         if (unlikely(bp->panic))
12992                 return;
12993 #endif
12994
12995         spin_lock_bh(&bp->spq_lock);
12996         BUG_ON(bp->cnic_spq_pending < count);
12997         bp->cnic_spq_pending -= count;
12998
12999
13000         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13001                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13002                                 & SPE_HDR_CONN_TYPE) >>
13003                                 SPE_HDR_CONN_TYPE_SHIFT;
13004                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13005                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13006
13007                 /* Set validation for iSCSI L2 client before sending SETUP
13008                  *  ramrod
13009                  */
13010                 if (type == ETH_CONNECTION_TYPE) {
13011                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13012                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13013                                         ILT_PAGE_CIDS;
13014                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13015                                         (cxt_index * ILT_PAGE_CIDS);
13016                                 bnx2x_set_ctx_validation(bp,
13017                                         &bp->context[cxt_index].
13018                                                          vcxt[cxt_offset].eth,
13019                                         BNX2X_ISCSI_ETH_CID(bp));
13020                         }
13021                 }
13022
13023                 /*
13024                  * There may be not more than 8 L2, not more than 8 L5 SPEs
13025                  * and in the air. We also check that number of outstanding
13026                  * COMMON ramrods is not more than the EQ and SPQ can
13027                  * accommodate.
13028                  */
13029                 if (type == ETH_CONNECTION_TYPE) {
13030                         if (!atomic_read(&bp->cq_spq_left))
13031                                 break;
13032                         else
13033                                 atomic_dec(&bp->cq_spq_left);
13034                 } else if (type == NONE_CONNECTION_TYPE) {
13035                         if (!atomic_read(&bp->eq_spq_left))
13036                                 break;
13037                         else
13038                                 atomic_dec(&bp->eq_spq_left);
13039                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13040                            (type == FCOE_CONNECTION_TYPE)) {
13041                         if (bp->cnic_spq_pending >=
13042                             bp->cnic_eth_dev.max_kwqe_pending)
13043                                 break;
13044                         else
13045                                 bp->cnic_spq_pending++;
13046                 } else {
13047                         BNX2X_ERR("Unknown SPE type: %d\n", type);
13048                         bnx2x_panic();
13049                         break;
13050                 }
13051
13052                 spe = bnx2x_sp_get_next(bp);
13053                 *spe = *bp->cnic_kwq_cons;
13054
13055                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13056                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13057
13058                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13059                         bp->cnic_kwq_cons = bp->cnic_kwq;
13060                 else
13061                         bp->cnic_kwq_cons++;
13062         }
13063         bnx2x_sp_prod_update(bp);
13064         spin_unlock_bh(&bp->spq_lock);
13065 }
13066
13067 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13068                                struct kwqe_16 *kwqes[], u32 count)
13069 {
13070         struct bnx2x *bp = netdev_priv(dev);
13071         int i;
13072
13073 #ifdef BNX2X_STOP_ON_ERROR
13074         if (unlikely(bp->panic)) {
13075                 BNX2X_ERR("Can't post to SP queue while panic\n");
13076                 return -EIO;
13077         }
13078 #endif
13079
13080         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13081             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13082                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13083                 return -EAGAIN;
13084         }
13085
13086         spin_lock_bh(&bp->spq_lock);
13087
13088         for (i = 0; i < count; i++) {
13089                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13090
13091                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13092                         break;
13093
13094                 *bp->cnic_kwq_prod = *spe;
13095
13096                 bp->cnic_kwq_pending++;
13097
13098                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13099                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
13100                    spe->data.update_data_addr.hi,
13101                    spe->data.update_data_addr.lo,
13102                    bp->cnic_kwq_pending);
13103
13104                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13105                         bp->cnic_kwq_prod = bp->cnic_kwq;
13106                 else
13107                         bp->cnic_kwq_prod++;
13108         }
13109
13110         spin_unlock_bh(&bp->spq_lock);
13111
13112         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13113                 bnx2x_cnic_sp_post(bp, 0);
13114
13115         return i;
13116 }
13117
13118 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13119 {
13120         struct cnic_ops *c_ops;
13121         int rc = 0;
13122
13123         mutex_lock(&bp->cnic_mutex);
13124         c_ops = rcu_dereference_protected(bp->cnic_ops,
13125                                           lockdep_is_held(&bp->cnic_mutex));
13126         if (c_ops)
13127                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13128         mutex_unlock(&bp->cnic_mutex);
13129
13130         return rc;
13131 }
13132
13133 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13134 {
13135         struct cnic_ops *c_ops;
13136         int rc = 0;
13137
13138         rcu_read_lock();
13139         c_ops = rcu_dereference(bp->cnic_ops);
13140         if (c_ops)
13141                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13142         rcu_read_unlock();
13143
13144         return rc;
13145 }
13146
13147 /*
13148  * for commands that have no data
13149  */
13150 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13151 {
13152         struct cnic_ctl_info ctl = {0};
13153
13154         ctl.cmd = cmd;
13155
13156         return bnx2x_cnic_ctl_send(bp, &ctl);
13157 }
13158
13159 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13160 {
13161         struct cnic_ctl_info ctl = {0};
13162
13163         /* first we tell CNIC and only then we count this as a completion */
13164         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13165         ctl.data.comp.cid = cid;
13166         ctl.data.comp.error = err;
13167
13168         bnx2x_cnic_ctl_send_bh(bp, &ctl);
13169         bnx2x_cnic_sp_post(bp, 0);
13170 }
13171
13172
13173 /* Called with netif_addr_lock_bh() taken.
13174  * Sets an rx_mode config for an iSCSI ETH client.
13175  * Doesn't block.
13176  * Completion should be checked outside.
13177  */
13178 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13179 {
13180         unsigned long accept_flags = 0, ramrod_flags = 0;
13181         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13182         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13183
13184         if (start) {
13185                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13186                  * because it's the only way for UIO Queue to accept
13187                  * multicasts (in non-promiscuous mode only one Queue per
13188                  * function will receive multicast packets (leading in our
13189                  * case).
13190                  */
13191                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13192                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13193                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13194                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13195
13196                 /* Clear STOP_PENDING bit if START is requested */
13197                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13198
13199                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13200         } else
13201                 /* Clear START_PENDING bit if STOP is requested */
13202                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13203
13204         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13205                 set_bit(sched_state, &bp->sp_state);
13206         else {
13207                 __set_bit(RAMROD_RX, &ramrod_flags);
13208                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13209                                     ramrod_flags);
13210         }
13211 }
13212
13213
13214 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13215 {
13216         struct bnx2x *bp = netdev_priv(dev);
13217         int rc = 0;
13218
13219         switch (ctl->cmd) {
13220         case DRV_CTL_CTXTBL_WR_CMD: {
13221                 u32 index = ctl->data.io.offset;
13222                 dma_addr_t addr = ctl->data.io.dma_addr;
13223
13224                 bnx2x_ilt_wr(bp, index, addr);
13225                 break;
13226         }
13227
13228         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13229                 int count = ctl->data.credit.credit_count;
13230
13231                 bnx2x_cnic_sp_post(bp, count);
13232                 break;
13233         }
13234
13235         /* rtnl_lock is held.  */
13236         case DRV_CTL_START_L2_CMD: {
13237                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13238                 unsigned long sp_bits = 0;
13239
13240                 /* Configure the iSCSI classification object */
13241                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13242                                    cp->iscsi_l2_client_id,
13243                                    cp->iscsi_l2_cid, BP_FUNC(bp),
13244                                    bnx2x_sp(bp, mac_rdata),
13245                                    bnx2x_sp_mapping(bp, mac_rdata),
13246                                    BNX2X_FILTER_MAC_PENDING,
13247                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13248                                    &bp->macs_pool);
13249
13250                 /* Set iSCSI MAC address */
13251                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13252                 if (rc)
13253                         break;
13254
13255                 mmiowb();
13256                 barrier();
13257
13258                 /* Start accepting on iSCSI L2 ring */
13259
13260                 netif_addr_lock_bh(dev);
13261                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13262                 netif_addr_unlock_bh(dev);
13263
13264                 /* bits to wait on */
13265                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13266                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13267
13268                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13269                         BNX2X_ERR("rx_mode completion timed out!\n");
13270
13271                 break;
13272         }
13273
13274         /* rtnl_lock is held.  */
13275         case DRV_CTL_STOP_L2_CMD: {
13276                 unsigned long sp_bits = 0;
13277
13278                 /* Stop accepting on iSCSI L2 ring */
13279                 netif_addr_lock_bh(dev);
13280                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13281                 netif_addr_unlock_bh(dev);
13282
13283                 /* bits to wait on */
13284                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13285                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13286
13287                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13288                         BNX2X_ERR("rx_mode completion timed out!\n");
13289
13290                 mmiowb();
13291                 barrier();
13292
13293                 /* Unset iSCSI L2 MAC */
13294                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13295                                         BNX2X_ISCSI_ETH_MAC, true);
13296                 break;
13297         }
13298         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13299                 int count = ctl->data.credit.credit_count;
13300
13301                 smp_mb__before_atomic_inc();
13302                 atomic_add(count, &bp->cq_spq_left);
13303                 smp_mb__after_atomic_inc();
13304                 break;
13305         }
13306         case DRV_CTL_ULP_REGISTER_CMD: {
13307                 int ulp_type = ctl->data.register_data.ulp_type;
13308
13309                 if (CHIP_IS_E3(bp)) {
13310                         int idx = BP_FW_MB_IDX(bp);
13311                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13312                         int path = BP_PATH(bp);
13313                         int port = BP_PORT(bp);
13314                         int i;
13315                         u32 scratch_offset;
13316                         u32 *host_addr;
13317
13318                         /* first write capability to shmem2 */
13319                         if (ulp_type == CNIC_ULP_ISCSI)
13320                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13321                         else if (ulp_type == CNIC_ULP_FCOE)
13322                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13323                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13324
13325                         if ((ulp_type != CNIC_ULP_FCOE) ||
13326                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13327                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13328                                 break;
13329
13330                         /* if reached here - should write fcoe capabilities */
13331                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13332                         if (!scratch_offset)
13333                                 break;
13334                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
13335                                                    fcoe_features[path][port]);
13336                         host_addr = (u32 *) &(ctl->data.register_data.
13337                                               fcoe_features);
13338                         for (i = 0; i < sizeof(struct fcoe_capabilities);
13339                              i += 4)
13340                                 REG_WR(bp, scratch_offset + i,
13341                                        *(host_addr + i/4));
13342                 }
13343                 break;
13344         }
13345
13346         case DRV_CTL_ULP_UNREGISTER_CMD: {
13347                 int ulp_type = ctl->data.ulp_type;
13348
13349                 if (CHIP_IS_E3(bp)) {
13350                         int idx = BP_FW_MB_IDX(bp);
13351                         u32 cap;
13352
13353                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13354                         if (ulp_type == CNIC_ULP_ISCSI)
13355                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13356                         else if (ulp_type == CNIC_ULP_FCOE)
13357                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13358                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13359                 }
13360                 break;
13361         }
13362
13363         default:
13364                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13365                 rc = -EINVAL;
13366         }
13367
13368         return rc;
13369 }
13370
13371 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13372 {
13373         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13374
13375         if (bp->flags & USING_MSIX_FLAG) {
13376                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13377                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13378                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13379         } else {
13380                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13381                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13382         }
13383         if (!CHIP_IS_E1x(bp))
13384                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13385         else
13386                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13387
13388         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13389         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13390         cp->irq_arr[1].status_blk = bp->def_status_blk;
13391         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13392         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13393
13394         cp->num_irq = 2;
13395 }
13396
13397 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13398 {
13399         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13400
13401
13402         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13403                              bnx2x_cid_ilt_lines(bp);
13404         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13405         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13406         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13407
13408         if (NO_ISCSI_OOO(bp))
13409                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13410 }
13411
13412 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13413                                void *data)
13414 {
13415         struct bnx2x *bp = netdev_priv(dev);
13416         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13417         int rc;
13418
13419         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13420
13421         if (ops == NULL) {
13422                 BNX2X_ERR("NULL ops received\n");
13423                 return -EINVAL;
13424         }
13425
13426         if (!CNIC_SUPPORT(bp)) {
13427                 BNX2X_ERR("Can't register CNIC when not supported\n");
13428                 return -EOPNOTSUPP;
13429         }
13430
13431         if (!CNIC_LOADED(bp)) {
13432                 rc = bnx2x_load_cnic(bp);
13433                 if (rc) {
13434                         BNX2X_ERR("CNIC-related load failed\n");
13435                         return rc;
13436                 }
13437
13438         }
13439
13440         bp->cnic_enabled = true;
13441
13442         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13443         if (!bp->cnic_kwq)
13444                 return -ENOMEM;
13445
13446         bp->cnic_kwq_cons = bp->cnic_kwq;
13447         bp->cnic_kwq_prod = bp->cnic_kwq;
13448         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13449
13450         bp->cnic_spq_pending = 0;
13451         bp->cnic_kwq_pending = 0;
13452
13453         bp->cnic_data = data;
13454
13455         cp->num_irq = 0;
13456         cp->drv_state |= CNIC_DRV_STATE_REGD;
13457         cp->iro_arr = bp->iro_arr;
13458
13459         bnx2x_setup_cnic_irq_info(bp);
13460
13461         rcu_assign_pointer(bp->cnic_ops, ops);
13462
13463         return 0;
13464 }
13465
13466 static int bnx2x_unregister_cnic(struct net_device *dev)
13467 {
13468         struct bnx2x *bp = netdev_priv(dev);
13469         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13470
13471         mutex_lock(&bp->cnic_mutex);
13472         cp->drv_state = 0;
13473         RCU_INIT_POINTER(bp->cnic_ops, NULL);
13474         mutex_unlock(&bp->cnic_mutex);
13475         synchronize_rcu();
13476         bp->cnic_enabled = false;
13477         kfree(bp->cnic_kwq);
13478         bp->cnic_kwq = NULL;
13479
13480         return 0;
13481 }
13482
13483 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13484 {
13485         struct bnx2x *bp = netdev_priv(dev);
13486         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13487
13488         /* If both iSCSI and FCoE are disabled - return NULL in
13489          * order to indicate CNIC that it should not try to work
13490          * with this device.
13491          */
13492         if (NO_ISCSI(bp) && NO_FCOE(bp))
13493                 return NULL;
13494
13495         cp->drv_owner = THIS_MODULE;
13496         cp->chip_id = CHIP_ID(bp);
13497         cp->pdev = bp->pdev;
13498         cp->io_base = bp->regview;
13499         cp->io_base2 = bp->doorbells;
13500         cp->max_kwqe_pending = 8;
13501         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13502         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13503                              bnx2x_cid_ilt_lines(bp);
13504         cp->ctx_tbl_len = CNIC_ILT_LINES;
13505         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13506         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13507         cp->drv_ctl = bnx2x_drv_ctl;
13508         cp->drv_register_cnic = bnx2x_register_cnic;
13509         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13510         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13511         cp->iscsi_l2_client_id =
13512                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13513         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13514
13515         if (NO_ISCSI_OOO(bp))
13516                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13517
13518         if (NO_ISCSI(bp))
13519                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13520
13521         if (NO_FCOE(bp))
13522                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13523
13524         BNX2X_DEV_INFO(
13525                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13526            cp->ctx_blk_size,
13527            cp->ctx_tbl_offset,
13528            cp->ctx_tbl_len,
13529            cp->starting_cid);
13530         return cp;
13531 }
13532
13533 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13534 {
13535         struct bnx2x *bp = fp->bp;
13536         u32 offset = BAR_USTRORM_INTMEM;
13537
13538         if (IS_VF(bp))
13539                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
13540         else if (!CHIP_IS_E1x(bp))
13541                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13542         else
13543                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13544
13545         return offset;
13546 }
13547
13548 /* called only on E1H or E2.
13549  * When pretending to be PF, the pretend value is the function number 0...7
13550  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13551  * combination
13552  */
13553 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13554 {
13555         u32 pretend_reg;
13556
13557         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13558                 return -1;
13559
13560         /* get my own pretend register */
13561         pretend_reg = bnx2x_get_pretend_reg(bp);
13562         REG_WR(bp, pretend_reg, pretend_func_val);
13563         REG_RD(bp, pretend_reg);
13564         return 0;
13565 }