spi/ti-qspi: Fix return from mmap path
[cascardo/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/semaphore.h>
56 #include <linux/stringify.h>
57 #include <linux/vmalloc.h>
58
59 #include "bnx2x.h"
60 #include "bnx2x_init.h"
61 #include "bnx2x_init_ops.h"
62 #include "bnx2x_cmn.h"
63 #include "bnx2x_vfpf.h"
64 #include "bnx2x_dcb.h"
65 #include "bnx2x_sp.h"
66
67 #include <linux/firmware.h>
68 #include "bnx2x_fw_file_hdr.h"
69 /* FW files */
70 #define FW_FILE_VERSION                                 \
71         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
72         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
73         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
74         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
75 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT              (5*HZ)
81
82 static char version[] =
83         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88                    "BCM57710/57711/57711E/"
89                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90                    "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96
97 int bnx2x_num_queues;
98 module_param_named(num_queues, bnx2x_num_queues, int, 0);
99 MODULE_PARM_DESC(num_queues,
100                  " Set number of queues (default is as a number of CPUs)");
101
102 static int disable_tpa;
103 module_param(disable_tpa, int, 0);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105
106 static int int_mode;
107 module_param(int_mode, int, 0);
108 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109                                 "(1 INT#x; 2 MSI)");
110
111 static int dropless_fc;
112 module_param(dropless_fc, int, 0);
113 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114
115 static int mrrs = -1;
116 module_param(mrrs, int, 0);
117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118
119 static int debug;
120 module_param(debug, int, 0);
121 MODULE_PARM_DESC(debug, " Default debug msglevel");
122
123 struct workqueue_struct *bnx2x_wq;
124
125 struct bnx2x_mac_vals {
126         u32 xmac_addr;
127         u32 xmac_val;
128         u32 emac_addr;
129         u32 emac_val;
130         u32 umac_addr;
131         u32 umac_val;
132         u32 bmac_addr;
133         u32 bmac_val[2];
134 };
135
136 enum bnx2x_board_type {
137         BCM57710 = 0,
138         BCM57711,
139         BCM57711E,
140         BCM57712,
141         BCM57712_MF,
142         BCM57712_VF,
143         BCM57800,
144         BCM57800_MF,
145         BCM57800_VF,
146         BCM57810,
147         BCM57810_MF,
148         BCM57810_VF,
149         BCM57840_4_10,
150         BCM57840_2_20,
151         BCM57840_MF,
152         BCM57840_VF,
153         BCM57811,
154         BCM57811_MF,
155         BCM57840_O,
156         BCM57840_MFO,
157         BCM57811_VF
158 };
159
160 /* indexed by board_type, above */
161 static struct {
162         char *name;
163 } board_info[] = {
164         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
165         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
166         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
167         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
168         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
169         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
170         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
171         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
172         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
173         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
174         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
175         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
176         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
177         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
178         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
179         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
180         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
181         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
182         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
183         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
184         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
185 };
186
187 #ifndef PCI_DEVICE_ID_NX2_57710
188 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
189 #endif
190 #ifndef PCI_DEVICE_ID_NX2_57711
191 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711E
194 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57712
197 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712_MF
200 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_VF
203 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57800
206 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800_MF
209 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_VF
212 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57810
215 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810_MF
218 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57840_O
221 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57810_VF
224 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
227 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
230 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
233 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MF
236 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_VF
239 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57811
242 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811_MF
245 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_VF
248 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
249 #endif
250
251 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
252         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
253         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
273         { 0 }
274 };
275
276 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
277
278 /* Global resources for unloading a previously loaded device */
279 #define BNX2X_PREV_WAIT_NEEDED 1
280 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
281 static LIST_HEAD(bnx2x_prev_list);
282
283 /* Forward declaration */
284 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
285 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
286 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
287
288 /****************************************************************************
289 * General service functions
290 ****************************************************************************/
291
292 static void __storm_memset_dma_mapping(struct bnx2x *bp,
293                                        u32 addr, dma_addr_t mapping)
294 {
295         REG_WR(bp,  addr, U64_LO(mapping));
296         REG_WR(bp,  addr + 4, U64_HI(mapping));
297 }
298
299 static void storm_memset_spq_addr(struct bnx2x *bp,
300                                   dma_addr_t mapping, u16 abs_fid)
301 {
302         u32 addr = XSEM_REG_FAST_MEMORY +
303                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
304
305         __storm_memset_dma_mapping(bp, addr, mapping);
306 }
307
308 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
309                                   u16 pf_id)
310 {
311         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
312                 pf_id);
313         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
314                 pf_id);
315         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
316                 pf_id);
317         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
318                 pf_id);
319 }
320
321 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
322                                  u8 enable)
323 {
324         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
325                 enable);
326         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
327                 enable);
328         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
329                 enable);
330         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
331                 enable);
332 }
333
334 static void storm_memset_eq_data(struct bnx2x *bp,
335                                  struct event_ring_data *eq_data,
336                                 u16 pfid)
337 {
338         size_t size = sizeof(struct event_ring_data);
339
340         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
341
342         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
343 }
344
345 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
346                                  u16 pfid)
347 {
348         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
349         REG_WR16(bp, addr, eq_prod);
350 }
351
352 /* used only at init
353  * locking is done by mcp
354  */
355 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
356 {
357         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
358         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
359         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
360                                PCICFG_VENDOR_ID_OFFSET);
361 }
362
363 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
364 {
365         u32 val;
366
367         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
368         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
369         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
370                                PCICFG_VENDOR_ID_OFFSET);
371
372         return val;
373 }
374
375 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
376 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
377 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
378 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
379 #define DMAE_DP_DST_NONE        "dst_addr [none]"
380
381 static void bnx2x_dp_dmae(struct bnx2x *bp,
382                           struct dmae_command *dmae, int msglvl)
383 {
384         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
385         int i;
386
387         switch (dmae->opcode & DMAE_COMMAND_DST) {
388         case DMAE_CMD_DST_PCI:
389                 if (src_type == DMAE_CMD_SRC_PCI)
390                         DP(msglvl, "DMAE: opcode 0x%08x\n"
391                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
392                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
393                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
394                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
395                            dmae->comp_addr_hi, dmae->comp_addr_lo,
396                            dmae->comp_val);
397                 else
398                         DP(msglvl, "DMAE: opcode 0x%08x\n"
399                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
400                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
401                            dmae->opcode, dmae->src_addr_lo >> 2,
402                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403                            dmae->comp_addr_hi, dmae->comp_addr_lo,
404                            dmae->comp_val);
405                 break;
406         case DMAE_CMD_DST_GRC:
407                 if (src_type == DMAE_CMD_SRC_PCI)
408                         DP(msglvl, "DMAE: opcode 0x%08x\n"
409                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
410                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
411                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
412                            dmae->len, dmae->dst_addr_lo >> 2,
413                            dmae->comp_addr_hi, dmae->comp_addr_lo,
414                            dmae->comp_val);
415                 else
416                         DP(msglvl, "DMAE: opcode 0x%08x\n"
417                            "src [%08x], len [%d*4], dst [%08x]\n"
418                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
419                            dmae->opcode, dmae->src_addr_lo >> 2,
420                            dmae->len, dmae->dst_addr_lo >> 2,
421                            dmae->comp_addr_hi, dmae->comp_addr_lo,
422                            dmae->comp_val);
423                 break;
424         default:
425                 if (src_type == DMAE_CMD_SRC_PCI)
426                         DP(msglvl, "DMAE: opcode 0x%08x\n"
427                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
428                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
430                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431                            dmae->comp_val);
432                 else
433                         DP(msglvl, "DMAE: opcode 0x%08x\n"
434                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
435                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
436                            dmae->opcode, dmae->src_addr_lo >> 2,
437                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
438                            dmae->comp_val);
439                 break;
440         }
441
442         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
443                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
444                    i, *(((u32 *)dmae) + i));
445 }
446
447 /* copy command into DMAE command memory and set DMAE command go */
448 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
449 {
450         u32 cmd_offset;
451         int i;
452
453         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
454         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
455                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
456         }
457         REG_WR(bp, dmae_reg_go_c[idx], 1);
458 }
459
460 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
461 {
462         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
463                            DMAE_CMD_C_ENABLE);
464 }
465
466 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
467 {
468         return opcode & ~DMAE_CMD_SRC_RESET;
469 }
470
471 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
472                              bool with_comp, u8 comp_type)
473 {
474         u32 opcode = 0;
475
476         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
477                    (dst_type << DMAE_COMMAND_DST_SHIFT));
478
479         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
480
481         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
482         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
483                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
484         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
485
486 #ifdef __BIG_ENDIAN
487         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
488 #else
489         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
490 #endif
491         if (with_comp)
492                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
493         return opcode;
494 }
495
496 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
497                                       struct dmae_command *dmae,
498                                       u8 src_type, u8 dst_type)
499 {
500         memset(dmae, 0, sizeof(struct dmae_command));
501
502         /* set the opcode */
503         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
504                                          true, DMAE_COMP_PCI);
505
506         /* fill in the completion parameters */
507         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
508         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
509         dmae->comp_val = DMAE_COMP_VAL;
510 }
511
512 /* issue a dmae command over the init-channel and wait for completion */
513 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
514                                u32 *comp)
515 {
516         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
517         int rc = 0;
518
519         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
520
521         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
522          * as long as this code is called both from syscall context and
523          * from ndo_set_rx_mode() flow that may be called from BH.
524          */
525         spin_lock_bh(&bp->dmae_lock);
526
527         /* reset completion */
528         *comp = 0;
529
530         /* post the command on the channel used for initializations */
531         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
532
533         /* wait for completion */
534         udelay(5);
535         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
536
537                 if (!cnt ||
538                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
539                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
540                         BNX2X_ERR("DMAE timeout!\n");
541                         rc = DMAE_TIMEOUT;
542                         goto unlock;
543                 }
544                 cnt--;
545                 udelay(50);
546         }
547         if (*comp & DMAE_PCI_ERR_FLAG) {
548                 BNX2X_ERR("DMAE PCI error!\n");
549                 rc = DMAE_PCI_ERROR;
550         }
551
552 unlock:
553         spin_unlock_bh(&bp->dmae_lock);
554         return rc;
555 }
556
557 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
558                       u32 len32)
559 {
560         int rc;
561         struct dmae_command dmae;
562
563         if (!bp->dmae_ready) {
564                 u32 *data = bnx2x_sp(bp, wb_data[0]);
565
566                 if (CHIP_IS_E1(bp))
567                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
568                 else
569                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
570                 return;
571         }
572
573         /* set opcode and fixed command fields */
574         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
575
576         /* fill in addresses and len */
577         dmae.src_addr_lo = U64_LO(dma_addr);
578         dmae.src_addr_hi = U64_HI(dma_addr);
579         dmae.dst_addr_lo = dst_addr >> 2;
580         dmae.dst_addr_hi = 0;
581         dmae.len = len32;
582
583         /* issue the command and wait for completion */
584         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
585         if (rc) {
586                 BNX2X_ERR("DMAE returned failure %d\n", rc);
587 #ifdef BNX2X_STOP_ON_ERROR
588                 bnx2x_panic();
589 #endif
590         }
591 }
592
593 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
594 {
595         int rc;
596         struct dmae_command dmae;
597
598         if (!bp->dmae_ready) {
599                 u32 *data = bnx2x_sp(bp, wb_data[0]);
600                 int i;
601
602                 if (CHIP_IS_E1(bp))
603                         for (i = 0; i < len32; i++)
604                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
605                 else
606                         for (i = 0; i < len32; i++)
607                                 data[i] = REG_RD(bp, src_addr + i*4);
608
609                 return;
610         }
611
612         /* set opcode and fixed command fields */
613         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
614
615         /* fill in addresses and len */
616         dmae.src_addr_lo = src_addr >> 2;
617         dmae.src_addr_hi = 0;
618         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
619         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
620         dmae.len = len32;
621
622         /* issue the command and wait for completion */
623         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
624         if (rc) {
625                 BNX2X_ERR("DMAE returned failure %d\n", rc);
626 #ifdef BNX2X_STOP_ON_ERROR
627                 bnx2x_panic();
628 #endif
629         }
630 }
631
632 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
633                                       u32 addr, u32 len)
634 {
635         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
636         int offset = 0;
637
638         while (len > dmae_wr_max) {
639                 bnx2x_write_dmae(bp, phys_addr + offset,
640                                  addr + offset, dmae_wr_max);
641                 offset += dmae_wr_max * 4;
642                 len -= dmae_wr_max;
643         }
644
645         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
646 }
647
648 static int bnx2x_mc_assert(struct bnx2x *bp)
649 {
650         char last_idx;
651         int i, rc = 0;
652         u32 row0, row1, row2, row3;
653
654         /* XSTORM */
655         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
656                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
657         if (last_idx)
658                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
659
660         /* print the asserts */
661         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
662
663                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
664                               XSTORM_ASSERT_LIST_OFFSET(i));
665                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
666                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
667                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
668                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
669                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
670                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
671
672                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
673                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
674                                   i, row3, row2, row1, row0);
675                         rc++;
676                 } else {
677                         break;
678                 }
679         }
680
681         /* TSTORM */
682         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
683                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
684         if (last_idx)
685                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
686
687         /* print the asserts */
688         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
689
690                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
691                               TSTORM_ASSERT_LIST_OFFSET(i));
692                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
693                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
694                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
695                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
696                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
697                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
698
699                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
700                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
701                                   i, row3, row2, row1, row0);
702                         rc++;
703                 } else {
704                         break;
705                 }
706         }
707
708         /* CSTORM */
709         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
710                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
711         if (last_idx)
712                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
713
714         /* print the asserts */
715         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
716
717                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
718                               CSTORM_ASSERT_LIST_OFFSET(i));
719                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
720                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
721                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
722                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
723                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
724                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
725
726                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
727                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
728                                   i, row3, row2, row1, row0);
729                         rc++;
730                 } else {
731                         break;
732                 }
733         }
734
735         /* USTORM */
736         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
737                            USTORM_ASSERT_LIST_INDEX_OFFSET);
738         if (last_idx)
739                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
740
741         /* print the asserts */
742         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
743
744                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
745                               USTORM_ASSERT_LIST_OFFSET(i));
746                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
747                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
748                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
749                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
750                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
751                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
752
753                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
754                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
755                                   i, row3, row2, row1, row0);
756                         rc++;
757                 } else {
758                         break;
759                 }
760         }
761
762         return rc;
763 }
764
765 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
766 #define SCRATCH_BUFFER_SIZE(bp) \
767         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
768
769 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
770 {
771         u32 addr, val;
772         u32 mark, offset;
773         __be32 data[9];
774         int word;
775         u32 trace_shmem_base;
776         if (BP_NOMCP(bp)) {
777                 BNX2X_ERR("NO MCP - can not dump\n");
778                 return;
779         }
780         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
781                 (bp->common.bc_ver & 0xff0000) >> 16,
782                 (bp->common.bc_ver & 0xff00) >> 8,
783                 (bp->common.bc_ver & 0xff));
784
785         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
786         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
787                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
788
789         if (BP_PATH(bp) == 0)
790                 trace_shmem_base = bp->common.shmem_base;
791         else
792                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
793
794         /* sanity */
795         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
796             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
797                                 SCRATCH_BUFFER_SIZE(bp)) {
798                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
799                           trace_shmem_base);
800                 return;
801         }
802
803         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
804
805         /* validate TRCB signature */
806         mark = REG_RD(bp, addr);
807         if (mark != MFW_TRACE_SIGNATURE) {
808                 BNX2X_ERR("Trace buffer signature is missing.");
809                 return ;
810         }
811
812         /* read cyclic buffer pointer */
813         addr += 4;
814         mark = REG_RD(bp, addr);
815         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
816         if (mark >= trace_shmem_base || mark < addr + 4) {
817                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
818                 return;
819         }
820         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
821
822         printk("%s", lvl);
823
824         /* dump buffer after the mark */
825         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
826                 for (word = 0; word < 8; word++)
827                         data[word] = htonl(REG_RD(bp, offset + 4*word));
828                 data[8] = 0x0;
829                 pr_cont("%s", (char *)data);
830         }
831
832         /* dump buffer before the mark */
833         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
834                 for (word = 0; word < 8; word++)
835                         data[word] = htonl(REG_RD(bp, offset + 4*word));
836                 data[8] = 0x0;
837                 pr_cont("%s", (char *)data);
838         }
839         printk("%s" "end of fw dump\n", lvl);
840 }
841
842 static void bnx2x_fw_dump(struct bnx2x *bp)
843 {
844         bnx2x_fw_dump_lvl(bp, KERN_ERR);
845 }
846
847 static void bnx2x_hc_int_disable(struct bnx2x *bp)
848 {
849         int port = BP_PORT(bp);
850         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
851         u32 val = REG_RD(bp, addr);
852
853         /* in E1 we must use only PCI configuration space to disable
854          * MSI/MSIX capability
855          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
856          */
857         if (CHIP_IS_E1(bp)) {
858                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
859                  * Use mask register to prevent from HC sending interrupts
860                  * after we exit the function
861                  */
862                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
863
864                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
865                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
866                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
867         } else
868                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
869                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
870                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
871                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
872
873         DP(NETIF_MSG_IFDOWN,
874            "write %x to HC %d (addr 0x%x)\n",
875            val, port, addr);
876
877         /* flush all outstanding writes */
878         mmiowb();
879
880         REG_WR(bp, addr, val);
881         if (REG_RD(bp, addr) != val)
882                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
883 }
884
885 static void bnx2x_igu_int_disable(struct bnx2x *bp)
886 {
887         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
888
889         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
890                  IGU_PF_CONF_INT_LINE_EN |
891                  IGU_PF_CONF_ATTN_BIT_EN);
892
893         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
894
895         /* flush all outstanding writes */
896         mmiowb();
897
898         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
899         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
900                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
901 }
902
903 static void bnx2x_int_disable(struct bnx2x *bp)
904 {
905         if (bp->common.int_block == INT_BLOCK_HC)
906                 bnx2x_hc_int_disable(bp);
907         else
908                 bnx2x_igu_int_disable(bp);
909 }
910
911 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
912 {
913         int i;
914         u16 j;
915         struct hc_sp_status_block_data sp_sb_data;
916         int func = BP_FUNC(bp);
917 #ifdef BNX2X_STOP_ON_ERROR
918         u16 start = 0, end = 0;
919         u8 cos;
920 #endif
921         if (disable_int)
922                 bnx2x_int_disable(bp);
923
924         bp->stats_state = STATS_STATE_DISABLED;
925         bp->eth_stats.unrecoverable_error++;
926         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
927
928         BNX2X_ERR("begin crash dump -----------------\n");
929
930         /* Indices */
931         /* Common */
932         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
933                   bp->def_idx, bp->def_att_idx, bp->attn_state,
934                   bp->spq_prod_idx, bp->stats_counter);
935         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
936                   bp->def_status_blk->atten_status_block.attn_bits,
937                   bp->def_status_blk->atten_status_block.attn_bits_ack,
938                   bp->def_status_blk->atten_status_block.status_block_id,
939                   bp->def_status_blk->atten_status_block.attn_bits_index);
940         BNX2X_ERR("     def (");
941         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
942                 pr_cont("0x%x%s",
943                         bp->def_status_blk->sp_sb.index_values[i],
944                         (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
945
946         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
947                 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
948                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
949                         i*sizeof(u32));
950
951         pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
952                sp_sb_data.igu_sb_id,
953                sp_sb_data.igu_seg_id,
954                sp_sb_data.p_func.pf_id,
955                sp_sb_data.p_func.vnic_id,
956                sp_sb_data.p_func.vf_id,
957                sp_sb_data.p_func.vf_valid,
958                sp_sb_data.state);
959
960         for_each_eth_queue(bp, i) {
961                 struct bnx2x_fastpath *fp = &bp->fp[i];
962                 int loop;
963                 struct hc_status_block_data_e2 sb_data_e2;
964                 struct hc_status_block_data_e1x sb_data_e1x;
965                 struct hc_status_block_sm  *hc_sm_p =
966                         CHIP_IS_E1x(bp) ?
967                         sb_data_e1x.common.state_machine :
968                         sb_data_e2.common.state_machine;
969                 struct hc_index_data *hc_index_p =
970                         CHIP_IS_E1x(bp) ?
971                         sb_data_e1x.index_data :
972                         sb_data_e2.index_data;
973                 u8 data_size, cos;
974                 u32 *sb_data_p;
975                 struct bnx2x_fp_txdata txdata;
976
977                 /* Rx */
978                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
979                           i, fp->rx_bd_prod, fp->rx_bd_cons,
980                           fp->rx_comp_prod,
981                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
982                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
983                           fp->rx_sge_prod, fp->last_max_sge,
984                           le16_to_cpu(fp->fp_hc_idx));
985
986                 /* Tx */
987                 for_each_cos_in_tx_queue(fp, cos)
988                 {
989                         txdata = *fp->txdata_ptr[cos];
990                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
991                                   i, txdata.tx_pkt_prod,
992                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
993                                   txdata.tx_bd_cons,
994                                   le16_to_cpu(*txdata.tx_cons_sb));
995                 }
996
997                 loop = CHIP_IS_E1x(bp) ?
998                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
999
1000                 /* host sb data */
1001
1002                 if (IS_FCOE_FP(fp))
1003                         continue;
1004
1005                 BNX2X_ERR("     run indexes (");
1006                 for (j = 0; j < HC_SB_MAX_SM; j++)
1007                         pr_cont("0x%x%s",
1008                                fp->sb_running_index[j],
1009                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1010
1011                 BNX2X_ERR("     indexes (");
1012                 for (j = 0; j < loop; j++)
1013                         pr_cont("0x%x%s",
1014                                fp->sb_index_values[j],
1015                                (j == loop - 1) ? ")" : " ");
1016                 /* fw sb data */
1017                 data_size = CHIP_IS_E1x(bp) ?
1018                         sizeof(struct hc_status_block_data_e1x) :
1019                         sizeof(struct hc_status_block_data_e2);
1020                 data_size /= sizeof(u32);
1021                 sb_data_p = CHIP_IS_E1x(bp) ?
1022                         (u32 *)&sb_data_e1x :
1023                         (u32 *)&sb_data_e2;
1024                 /* copy sb data in here */
1025                 for (j = 0; j < data_size; j++)
1026                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1027                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1028                                 j * sizeof(u32));
1029
1030                 if (!CHIP_IS_E1x(bp)) {
1031                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1032                                 sb_data_e2.common.p_func.pf_id,
1033                                 sb_data_e2.common.p_func.vf_id,
1034                                 sb_data_e2.common.p_func.vf_valid,
1035                                 sb_data_e2.common.p_func.vnic_id,
1036                                 sb_data_e2.common.same_igu_sb_1b,
1037                                 sb_data_e2.common.state);
1038                 } else {
1039                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1040                                 sb_data_e1x.common.p_func.pf_id,
1041                                 sb_data_e1x.common.p_func.vf_id,
1042                                 sb_data_e1x.common.p_func.vf_valid,
1043                                 sb_data_e1x.common.p_func.vnic_id,
1044                                 sb_data_e1x.common.same_igu_sb_1b,
1045                                 sb_data_e1x.common.state);
1046                 }
1047
1048                 /* SB_SMs data */
1049                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1050                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1051                                 j, hc_sm_p[j].__flags,
1052                                 hc_sm_p[j].igu_sb_id,
1053                                 hc_sm_p[j].igu_seg_id,
1054                                 hc_sm_p[j].time_to_expire,
1055                                 hc_sm_p[j].timer_value);
1056                 }
1057
1058                 /* Indices data */
1059                 for (j = 0; j < loop; j++) {
1060                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1061                                hc_index_p[j].flags,
1062                                hc_index_p[j].timeout);
1063                 }
1064         }
1065
1066 #ifdef BNX2X_STOP_ON_ERROR
1067
1068         /* event queue */
1069         BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1070         for (i = 0; i < NUM_EQ_DESC; i++) {
1071                 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1072
1073                 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1074                           i, bp->eq_ring[i].message.opcode,
1075                           bp->eq_ring[i].message.error);
1076                 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1077         }
1078
1079         /* Rings */
1080         /* Rx */
1081         for_each_valid_rx_queue(bp, i) {
1082                 struct bnx2x_fastpath *fp = &bp->fp[i];
1083
1084                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1085                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1086                 for (j = start; j != end; j = RX_BD(j + 1)) {
1087                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1088                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1089
1090                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1091                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1092                 }
1093
1094                 start = RX_SGE(fp->rx_sge_prod);
1095                 end = RX_SGE(fp->last_max_sge);
1096                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1097                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1098                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1099
1100                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1101                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1102                 }
1103
1104                 start = RCQ_BD(fp->rx_comp_cons - 10);
1105                 end = RCQ_BD(fp->rx_comp_cons + 503);
1106                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1107                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1108
1109                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1110                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1111                 }
1112         }
1113
1114         /* Tx */
1115         for_each_valid_tx_queue(bp, i) {
1116                 struct bnx2x_fastpath *fp = &bp->fp[i];
1117                 for_each_cos_in_tx_queue(fp, cos) {
1118                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1119
1120                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1121                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1122                         for (j = start; j != end; j = TX_BD(j + 1)) {
1123                                 struct sw_tx_bd *sw_bd =
1124                                         &txdata->tx_buf_ring[j];
1125
1126                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1127                                           i, cos, j, sw_bd->skb,
1128                                           sw_bd->first_bd);
1129                         }
1130
1131                         start = TX_BD(txdata->tx_bd_cons - 10);
1132                         end = TX_BD(txdata->tx_bd_cons + 254);
1133                         for (j = start; j != end; j = TX_BD(j + 1)) {
1134                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1135
1136                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1137                                           i, cos, j, tx_bd[0], tx_bd[1],
1138                                           tx_bd[2], tx_bd[3]);
1139                         }
1140                 }
1141         }
1142 #endif
1143         bnx2x_fw_dump(bp);
1144         bnx2x_mc_assert(bp);
1145         BNX2X_ERR("end crash dump -----------------\n");
1146 }
1147
1148 /*
1149  * FLR Support for E2
1150  *
1151  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1152  * initialization.
1153  */
1154 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1155 #define FLR_WAIT_INTERVAL       50      /* usec */
1156 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1157
1158 struct pbf_pN_buf_regs {
1159         int pN;
1160         u32 init_crd;
1161         u32 crd;
1162         u32 crd_freed;
1163 };
1164
1165 struct pbf_pN_cmd_regs {
1166         int pN;
1167         u32 lines_occup;
1168         u32 lines_freed;
1169 };
1170
1171 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1172                                      struct pbf_pN_buf_regs *regs,
1173                                      u32 poll_count)
1174 {
1175         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1176         u32 cur_cnt = poll_count;
1177
1178         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1179         crd = crd_start = REG_RD(bp, regs->crd);
1180         init_crd = REG_RD(bp, regs->init_crd);
1181
1182         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1183         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1184         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1185
1186         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1187                (init_crd - crd_start))) {
1188                 if (cur_cnt--) {
1189                         udelay(FLR_WAIT_INTERVAL);
1190                         crd = REG_RD(bp, regs->crd);
1191                         crd_freed = REG_RD(bp, regs->crd_freed);
1192                 } else {
1193                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1194                            regs->pN);
1195                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1196                            regs->pN, crd);
1197                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1198                            regs->pN, crd_freed);
1199                         break;
1200                 }
1201         }
1202         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1203            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1204 }
1205
1206 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1207                                      struct pbf_pN_cmd_regs *regs,
1208                                      u32 poll_count)
1209 {
1210         u32 occup, to_free, freed, freed_start;
1211         u32 cur_cnt = poll_count;
1212
1213         occup = to_free = REG_RD(bp, regs->lines_occup);
1214         freed = freed_start = REG_RD(bp, regs->lines_freed);
1215
1216         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1217         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1218
1219         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1220                 if (cur_cnt--) {
1221                         udelay(FLR_WAIT_INTERVAL);
1222                         occup = REG_RD(bp, regs->lines_occup);
1223                         freed = REG_RD(bp, regs->lines_freed);
1224                 } else {
1225                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1226                            regs->pN);
1227                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1228                            regs->pN, occup);
1229                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1230                            regs->pN, freed);
1231                         break;
1232                 }
1233         }
1234         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1235            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1236 }
1237
1238 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1239                                     u32 expected, u32 poll_count)
1240 {
1241         u32 cur_cnt = poll_count;
1242         u32 val;
1243
1244         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1245                 udelay(FLR_WAIT_INTERVAL);
1246
1247         return val;
1248 }
1249
1250 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1251                                     char *msg, u32 poll_cnt)
1252 {
1253         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1254         if (val != 0) {
1255                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1256                 return 1;
1257         }
1258         return 0;
1259 }
1260
1261 /* Common routines with VF FLR cleanup */
1262 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1263 {
1264         /* adjust polling timeout */
1265         if (CHIP_REV_IS_EMUL(bp))
1266                 return FLR_POLL_CNT * 2000;
1267
1268         if (CHIP_REV_IS_FPGA(bp))
1269                 return FLR_POLL_CNT * 120;
1270
1271         return FLR_POLL_CNT;
1272 }
1273
1274 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1275 {
1276         struct pbf_pN_cmd_regs cmd_regs[] = {
1277                 {0, (CHIP_IS_E3B0(bp)) ?
1278                         PBF_REG_TQ_OCCUPANCY_Q0 :
1279                         PBF_REG_P0_TQ_OCCUPANCY,
1280                     (CHIP_IS_E3B0(bp)) ?
1281                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1282                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1283                 {1, (CHIP_IS_E3B0(bp)) ?
1284                         PBF_REG_TQ_OCCUPANCY_Q1 :
1285                         PBF_REG_P1_TQ_OCCUPANCY,
1286                     (CHIP_IS_E3B0(bp)) ?
1287                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1288                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1289                 {4, (CHIP_IS_E3B0(bp)) ?
1290                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1291                         PBF_REG_P4_TQ_OCCUPANCY,
1292                     (CHIP_IS_E3B0(bp)) ?
1293                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1294                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1295         };
1296
1297         struct pbf_pN_buf_regs buf_regs[] = {
1298                 {0, (CHIP_IS_E3B0(bp)) ?
1299                         PBF_REG_INIT_CRD_Q0 :
1300                         PBF_REG_P0_INIT_CRD ,
1301                     (CHIP_IS_E3B0(bp)) ?
1302                         PBF_REG_CREDIT_Q0 :
1303                         PBF_REG_P0_CREDIT,
1304                     (CHIP_IS_E3B0(bp)) ?
1305                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1306                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1307                 {1, (CHIP_IS_E3B0(bp)) ?
1308                         PBF_REG_INIT_CRD_Q1 :
1309                         PBF_REG_P1_INIT_CRD,
1310                     (CHIP_IS_E3B0(bp)) ?
1311                         PBF_REG_CREDIT_Q1 :
1312                         PBF_REG_P1_CREDIT,
1313                     (CHIP_IS_E3B0(bp)) ?
1314                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1315                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1316                 {4, (CHIP_IS_E3B0(bp)) ?
1317                         PBF_REG_INIT_CRD_LB_Q :
1318                         PBF_REG_P4_INIT_CRD,
1319                     (CHIP_IS_E3B0(bp)) ?
1320                         PBF_REG_CREDIT_LB_Q :
1321                         PBF_REG_P4_CREDIT,
1322                     (CHIP_IS_E3B0(bp)) ?
1323                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1324                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1325         };
1326
1327         int i;
1328
1329         /* Verify the command queues are flushed P0, P1, P4 */
1330         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1331                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1332
1333         /* Verify the transmission buffers are flushed P0, P1, P4 */
1334         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1335                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1336 }
1337
1338 #define OP_GEN_PARAM(param) \
1339         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1340
1341 #define OP_GEN_TYPE(type) \
1342         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1343
1344 #define OP_GEN_AGG_VECT(index) \
1345         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1346
1347 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1348 {
1349         u32 op_gen_command = 0;
1350         u32 comp_addr = BAR_CSTRORM_INTMEM +
1351                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1352         int ret = 0;
1353
1354         if (REG_RD(bp, comp_addr)) {
1355                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1356                 return 1;
1357         }
1358
1359         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1360         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1361         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1362         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1363
1364         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1365         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1366
1367         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1368                 BNX2X_ERR("FW final cleanup did not succeed\n");
1369                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1370                    (REG_RD(bp, comp_addr)));
1371                 bnx2x_panic();
1372                 return 1;
1373         }
1374         /* Zero completion for next FLR */
1375         REG_WR(bp, comp_addr, 0);
1376
1377         return ret;
1378 }
1379
1380 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1381 {
1382         u16 status;
1383
1384         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1385         return status & PCI_EXP_DEVSTA_TRPND;
1386 }
1387
1388 /* PF FLR specific routines
1389 */
1390 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1391 {
1392         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1393         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1394                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1395                         "CFC PF usage counter timed out",
1396                         poll_cnt))
1397                 return 1;
1398
1399         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1400         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1401                         DORQ_REG_PF_USAGE_CNT,
1402                         "DQ PF usage counter timed out",
1403                         poll_cnt))
1404                 return 1;
1405
1406         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1407         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1408                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1409                         "QM PF usage counter timed out",
1410                         poll_cnt))
1411                 return 1;
1412
1413         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1414         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1415                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1416                         "Timers VNIC usage counter timed out",
1417                         poll_cnt))
1418                 return 1;
1419         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1420                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1421                         "Timers NUM_SCANS usage counter timed out",
1422                         poll_cnt))
1423                 return 1;
1424
1425         /* Wait DMAE PF usage counter to zero */
1426         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1427                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1428                         "DMAE command register timed out",
1429                         poll_cnt))
1430                 return 1;
1431
1432         return 0;
1433 }
1434
1435 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1436 {
1437         u32 val;
1438
1439         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1440         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1441
1442         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1443         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1444
1445         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1446         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1447
1448         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1449         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1450
1451         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1452         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1453
1454         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1455         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1456
1457         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1458         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1459
1460         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1461         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1462            val);
1463 }
1464
1465 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1466 {
1467         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1468
1469         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1470
1471         /* Re-enable PF target read access */
1472         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1473
1474         /* Poll HW usage counters */
1475         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1476         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1477                 return -EBUSY;
1478
1479         /* Zero the igu 'trailing edge' and 'leading edge' */
1480
1481         /* Send the FW cleanup command */
1482         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1483                 return -EBUSY;
1484
1485         /* ATC cleanup */
1486
1487         /* Verify TX hw is flushed */
1488         bnx2x_tx_hw_flushed(bp, poll_cnt);
1489
1490         /* Wait 100ms (not adjusted according to platform) */
1491         msleep(100);
1492
1493         /* Verify no pending pci transactions */
1494         if (bnx2x_is_pcie_pending(bp->pdev))
1495                 BNX2X_ERR("PCIE Transactions still pending\n");
1496
1497         /* Debug */
1498         bnx2x_hw_enable_status(bp);
1499
1500         /*
1501          * Master enable - Due to WB DMAE writes performed before this
1502          * register is re-initialized as part of the regular function init
1503          */
1504         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1505
1506         return 0;
1507 }
1508
1509 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1510 {
1511         int port = BP_PORT(bp);
1512         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1513         u32 val = REG_RD(bp, addr);
1514         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1515         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1516         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1517
1518         if (msix) {
1519                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1520                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1521                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1522                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1523                 if (single_msix)
1524                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1525         } else if (msi) {
1526                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1527                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1528                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1529                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1530         } else {
1531                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1532                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1533                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1534                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1535
1536                 if (!CHIP_IS_E1(bp)) {
1537                         DP(NETIF_MSG_IFUP,
1538                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1539
1540                         REG_WR(bp, addr, val);
1541
1542                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1543                 }
1544         }
1545
1546         if (CHIP_IS_E1(bp))
1547                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1548
1549         DP(NETIF_MSG_IFUP,
1550            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1551            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1552
1553         REG_WR(bp, addr, val);
1554         /*
1555          * Ensure that HC_CONFIG is written before leading/trailing edge config
1556          */
1557         mmiowb();
1558         barrier();
1559
1560         if (!CHIP_IS_E1(bp)) {
1561                 /* init leading/trailing edge */
1562                 if (IS_MF(bp)) {
1563                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1564                         if (bp->port.pmf)
1565                                 /* enable nig and gpio3 attention */
1566                                 val |= 0x1100;
1567                 } else
1568                         val = 0xffff;
1569
1570                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1571                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1572         }
1573
1574         /* Make sure that interrupts are indeed enabled from here on */
1575         mmiowb();
1576 }
1577
1578 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1579 {
1580         u32 val;
1581         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1582         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1583         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1584
1585         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1586
1587         if (msix) {
1588                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1589                          IGU_PF_CONF_SINGLE_ISR_EN);
1590                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1591                         IGU_PF_CONF_ATTN_BIT_EN);
1592
1593                 if (single_msix)
1594                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1595         } else if (msi) {
1596                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1597                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1598                         IGU_PF_CONF_ATTN_BIT_EN |
1599                         IGU_PF_CONF_SINGLE_ISR_EN);
1600         } else {
1601                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1602                 val |= (IGU_PF_CONF_INT_LINE_EN |
1603                         IGU_PF_CONF_ATTN_BIT_EN |
1604                         IGU_PF_CONF_SINGLE_ISR_EN);
1605         }
1606
1607         /* Clean previous status - need to configure igu prior to ack*/
1608         if ((!msix) || single_msix) {
1609                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1610                 bnx2x_ack_int(bp);
1611         }
1612
1613         val |= IGU_PF_CONF_FUNC_EN;
1614
1615         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1616            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1617
1618         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1619
1620         if (val & IGU_PF_CONF_INT_LINE_EN)
1621                 pci_intx(bp->pdev, true);
1622
1623         barrier();
1624
1625         /* init leading/trailing edge */
1626         if (IS_MF(bp)) {
1627                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1628                 if (bp->port.pmf)
1629                         /* enable nig and gpio3 attention */
1630                         val |= 0x1100;
1631         } else
1632                 val = 0xffff;
1633
1634         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1635         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1636
1637         /* Make sure that interrupts are indeed enabled from here on */
1638         mmiowb();
1639 }
1640
1641 void bnx2x_int_enable(struct bnx2x *bp)
1642 {
1643         if (bp->common.int_block == INT_BLOCK_HC)
1644                 bnx2x_hc_int_enable(bp);
1645         else
1646                 bnx2x_igu_int_enable(bp);
1647 }
1648
1649 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1650 {
1651         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1652         int i, offset;
1653
1654         if (disable_hw)
1655                 /* prevent the HW from sending interrupts */
1656                 bnx2x_int_disable(bp);
1657
1658         /* make sure all ISRs are done */
1659         if (msix) {
1660                 synchronize_irq(bp->msix_table[0].vector);
1661                 offset = 1;
1662                 if (CNIC_SUPPORT(bp))
1663                         offset++;
1664                 for_each_eth_queue(bp, i)
1665                         synchronize_irq(bp->msix_table[offset++].vector);
1666         } else
1667                 synchronize_irq(bp->pdev->irq);
1668
1669         /* make sure sp_task is not running */
1670         cancel_delayed_work(&bp->sp_task);
1671         cancel_delayed_work(&bp->period_task);
1672         flush_workqueue(bnx2x_wq);
1673 }
1674
1675 /* fast path */
1676
1677 /*
1678  * General service functions
1679  */
1680
1681 /* Return true if succeeded to acquire the lock */
1682 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1683 {
1684         u32 lock_status;
1685         u32 resource_bit = (1 << resource);
1686         int func = BP_FUNC(bp);
1687         u32 hw_lock_control_reg;
1688
1689         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1690            "Trying to take a lock on resource %d\n", resource);
1691
1692         /* Validating that the resource is within range */
1693         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1694                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1695                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1696                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1697                 return false;
1698         }
1699
1700         if (func <= 5)
1701                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1702         else
1703                 hw_lock_control_reg =
1704                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1705
1706         /* Try to acquire the lock */
1707         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1708         lock_status = REG_RD(bp, hw_lock_control_reg);
1709         if (lock_status & resource_bit)
1710                 return true;
1711
1712         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1713            "Failed to get a lock on resource %d\n", resource);
1714         return false;
1715 }
1716
1717 /**
1718  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1719  *
1720  * @bp: driver handle
1721  *
1722  * Returns the recovery leader resource id according to the engine this function
1723  * belongs to. Currently only only 2 engines is supported.
1724  */
1725 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1726 {
1727         if (BP_PATH(bp))
1728                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1729         else
1730                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1731 }
1732
1733 /**
1734  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1735  *
1736  * @bp: driver handle
1737  *
1738  * Tries to acquire a leader lock for current engine.
1739  */
1740 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1741 {
1742         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1743 }
1744
1745 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1746
1747 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1748 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1749 {
1750         /* Set the interrupt occurred bit for the sp-task to recognize it
1751          * must ack the interrupt and transition according to the IGU
1752          * state machine.
1753          */
1754         atomic_set(&bp->interrupt_occurred, 1);
1755
1756         /* The sp_task must execute only after this bit
1757          * is set, otherwise we will get out of sync and miss all
1758          * further interrupts. Hence, the barrier.
1759          */
1760         smp_wmb();
1761
1762         /* schedule sp_task to workqueue */
1763         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1764 }
1765
1766 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1767 {
1768         struct bnx2x *bp = fp->bp;
1769         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1770         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1771         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1772         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1773
1774         DP(BNX2X_MSG_SP,
1775            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1776            fp->index, cid, command, bp->state,
1777            rr_cqe->ramrod_cqe.ramrod_type);
1778
1779         /* If cid is within VF range, replace the slowpath object with the
1780          * one corresponding to this VF
1781          */
1782         if (cid >= BNX2X_FIRST_VF_CID  &&
1783             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1784                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1785
1786         switch (command) {
1787         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1788                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1789                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1790                 break;
1791
1792         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1793                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1794                 drv_cmd = BNX2X_Q_CMD_SETUP;
1795                 break;
1796
1797         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1798                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1799                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1800                 break;
1801
1802         case (RAMROD_CMD_ID_ETH_HALT):
1803                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1804                 drv_cmd = BNX2X_Q_CMD_HALT;
1805                 break;
1806
1807         case (RAMROD_CMD_ID_ETH_TERMINATE):
1808                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1809                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1810                 break;
1811
1812         case (RAMROD_CMD_ID_ETH_EMPTY):
1813                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1814                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1815                 break;
1816
1817         default:
1818                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1819                           command, fp->index);
1820                 return;
1821         }
1822
1823         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1824             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1825                 /* q_obj->complete_cmd() failure means that this was
1826                  * an unexpected completion.
1827                  *
1828                  * In this case we don't want to increase the bp->spq_left
1829                  * because apparently we haven't sent this command the first
1830                  * place.
1831                  */
1832 #ifdef BNX2X_STOP_ON_ERROR
1833                 bnx2x_panic();
1834 #else
1835                 return;
1836 #endif
1837         /* SRIOV: reschedule any 'in_progress' operations */
1838         bnx2x_iov_sp_event(bp, cid, true);
1839
1840         smp_mb__before_atomic_inc();
1841         atomic_inc(&bp->cq_spq_left);
1842         /* push the change in bp->spq_left and towards the memory */
1843         smp_mb__after_atomic_inc();
1844
1845         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1846
1847         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1848             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1849                 /* if Q update ramrod is completed for last Q in AFEX vif set
1850                  * flow, then ACK MCP at the end
1851                  *
1852                  * mark pending ACK to MCP bit.
1853                  * prevent case that both bits are cleared.
1854                  * At the end of load/unload driver checks that
1855                  * sp_state is cleared, and this order prevents
1856                  * races
1857                  */
1858                 smp_mb__before_clear_bit();
1859                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1860                 wmb();
1861                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1862                 smp_mb__after_clear_bit();
1863
1864                 /* schedule the sp task as mcp ack is required */
1865                 bnx2x_schedule_sp_task(bp);
1866         }
1867
1868         return;
1869 }
1870
1871 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1872 {
1873         struct bnx2x *bp = netdev_priv(dev_instance);
1874         u16 status = bnx2x_ack_int(bp);
1875         u16 mask;
1876         int i;
1877         u8 cos;
1878
1879         /* Return here if interrupt is shared and it's not for us */
1880         if (unlikely(status == 0)) {
1881                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1882                 return IRQ_NONE;
1883         }
1884         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1885
1886 #ifdef BNX2X_STOP_ON_ERROR
1887         if (unlikely(bp->panic))
1888                 return IRQ_HANDLED;
1889 #endif
1890
1891         for_each_eth_queue(bp, i) {
1892                 struct bnx2x_fastpath *fp = &bp->fp[i];
1893
1894                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1895                 if (status & mask) {
1896                         /* Handle Rx or Tx according to SB id */
1897                         for_each_cos_in_tx_queue(fp, cos)
1898                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1899                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1900                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1901                         status &= ~mask;
1902                 }
1903         }
1904
1905         if (CNIC_SUPPORT(bp)) {
1906                 mask = 0x2;
1907                 if (status & (mask | 0x1)) {
1908                         struct cnic_ops *c_ops = NULL;
1909
1910                         rcu_read_lock();
1911                         c_ops = rcu_dereference(bp->cnic_ops);
1912                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1913                                       CNIC_DRV_STATE_HANDLES_IRQ))
1914                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1915                         rcu_read_unlock();
1916
1917                         status &= ~mask;
1918                 }
1919         }
1920
1921         if (unlikely(status & 0x1)) {
1922
1923                 /* schedule sp task to perform default status block work, ack
1924                  * attentions and enable interrupts.
1925                  */
1926                 bnx2x_schedule_sp_task(bp);
1927
1928                 status &= ~0x1;
1929                 if (!status)
1930                         return IRQ_HANDLED;
1931         }
1932
1933         if (unlikely(status))
1934                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1935                    status);
1936
1937         return IRQ_HANDLED;
1938 }
1939
1940 /* Link */
1941
1942 /*
1943  * General service functions
1944  */
1945
1946 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1947 {
1948         u32 lock_status;
1949         u32 resource_bit = (1 << resource);
1950         int func = BP_FUNC(bp);
1951         u32 hw_lock_control_reg;
1952         int cnt;
1953
1954         /* Validating that the resource is within range */
1955         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1956                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1957                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1958                 return -EINVAL;
1959         }
1960
1961         if (func <= 5) {
1962                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1963         } else {
1964                 hw_lock_control_reg =
1965                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1966         }
1967
1968         /* Validating that the resource is not already taken */
1969         lock_status = REG_RD(bp, hw_lock_control_reg);
1970         if (lock_status & resource_bit) {
1971                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1972                    lock_status, resource_bit);
1973                 return -EEXIST;
1974         }
1975
1976         /* Try for 5 second every 5ms */
1977         for (cnt = 0; cnt < 1000; cnt++) {
1978                 /* Try to acquire the lock */
1979                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1980                 lock_status = REG_RD(bp, hw_lock_control_reg);
1981                 if (lock_status & resource_bit)
1982                         return 0;
1983
1984                 usleep_range(5000, 10000);
1985         }
1986         BNX2X_ERR("Timeout\n");
1987         return -EAGAIN;
1988 }
1989
1990 int bnx2x_release_leader_lock(struct bnx2x *bp)
1991 {
1992         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1993 }
1994
1995 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1996 {
1997         u32 lock_status;
1998         u32 resource_bit = (1 << resource);
1999         int func = BP_FUNC(bp);
2000         u32 hw_lock_control_reg;
2001
2002         /* Validating that the resource is within range */
2003         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2004                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2005                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2006                 return -EINVAL;
2007         }
2008
2009         if (func <= 5) {
2010                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2011         } else {
2012                 hw_lock_control_reg =
2013                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2014         }
2015
2016         /* Validating that the resource is currently taken */
2017         lock_status = REG_RD(bp, hw_lock_control_reg);
2018         if (!(lock_status & resource_bit)) {
2019                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2020                           lock_status, resource_bit);
2021                 return -EFAULT;
2022         }
2023
2024         REG_WR(bp, hw_lock_control_reg, resource_bit);
2025         return 0;
2026 }
2027
2028 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2029 {
2030         /* The GPIO should be swapped if swap register is set and active */
2031         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2032                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2033         int gpio_shift = gpio_num +
2034                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2035         u32 gpio_mask = (1 << gpio_shift);
2036         u32 gpio_reg;
2037         int value;
2038
2039         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2040                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2041                 return -EINVAL;
2042         }
2043
2044         /* read GPIO value */
2045         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2046
2047         /* get the requested pin value */
2048         if ((gpio_reg & gpio_mask) == gpio_mask)
2049                 value = 1;
2050         else
2051                 value = 0;
2052
2053         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2054
2055         return value;
2056 }
2057
2058 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2059 {
2060         /* The GPIO should be swapped if swap register is set and active */
2061         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2062                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2063         int gpio_shift = gpio_num +
2064                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2065         u32 gpio_mask = (1 << gpio_shift);
2066         u32 gpio_reg;
2067
2068         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2069                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2070                 return -EINVAL;
2071         }
2072
2073         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2074         /* read GPIO and mask except the float bits */
2075         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2076
2077         switch (mode) {
2078         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2079                 DP(NETIF_MSG_LINK,
2080                    "Set GPIO %d (shift %d) -> output low\n",
2081                    gpio_num, gpio_shift);
2082                 /* clear FLOAT and set CLR */
2083                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2084                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2085                 break;
2086
2087         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2088                 DP(NETIF_MSG_LINK,
2089                    "Set GPIO %d (shift %d) -> output high\n",
2090                    gpio_num, gpio_shift);
2091                 /* clear FLOAT and set SET */
2092                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2093                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2094                 break;
2095
2096         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2097                 DP(NETIF_MSG_LINK,
2098                    "Set GPIO %d (shift %d) -> input\n",
2099                    gpio_num, gpio_shift);
2100                 /* set FLOAT */
2101                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2102                 break;
2103
2104         default:
2105                 break;
2106         }
2107
2108         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2109         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2110
2111         return 0;
2112 }
2113
2114 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2115 {
2116         u32 gpio_reg = 0;
2117         int rc = 0;
2118
2119         /* Any port swapping should be handled by caller. */
2120
2121         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2122         /* read GPIO and mask except the float bits */
2123         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2124         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2125         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2126         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2127
2128         switch (mode) {
2129         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2130                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2131                 /* set CLR */
2132                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2133                 break;
2134
2135         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2136                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2137                 /* set SET */
2138                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2139                 break;
2140
2141         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2142                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2143                 /* set FLOAT */
2144                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2145                 break;
2146
2147         default:
2148                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2149                 rc = -EINVAL;
2150                 break;
2151         }
2152
2153         if (rc == 0)
2154                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2155
2156         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2157
2158         return rc;
2159 }
2160
2161 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2162 {
2163         /* The GPIO should be swapped if swap register is set and active */
2164         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2165                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2166         int gpio_shift = gpio_num +
2167                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2168         u32 gpio_mask = (1 << gpio_shift);
2169         u32 gpio_reg;
2170
2171         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2172                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2173                 return -EINVAL;
2174         }
2175
2176         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177         /* read GPIO int */
2178         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2179
2180         switch (mode) {
2181         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2182                 DP(NETIF_MSG_LINK,
2183                    "Clear GPIO INT %d (shift %d) -> output low\n",
2184                    gpio_num, gpio_shift);
2185                 /* clear SET and set CLR */
2186                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2187                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2188                 break;
2189
2190         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2191                 DP(NETIF_MSG_LINK,
2192                    "Set GPIO INT %d (shift %d) -> output high\n",
2193                    gpio_num, gpio_shift);
2194                 /* clear CLR and set SET */
2195                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2196                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2197                 break;
2198
2199         default:
2200                 break;
2201         }
2202
2203         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2204         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2205
2206         return 0;
2207 }
2208
2209 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2210 {
2211         u32 spio_reg;
2212
2213         /* Only 2 SPIOs are configurable */
2214         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2215                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2216                 return -EINVAL;
2217         }
2218
2219         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2220         /* read SPIO and mask except the float bits */
2221         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2222
2223         switch (mode) {
2224         case MISC_SPIO_OUTPUT_LOW:
2225                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2226                 /* clear FLOAT and set CLR */
2227                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2228                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2229                 break;
2230
2231         case MISC_SPIO_OUTPUT_HIGH:
2232                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2233                 /* clear FLOAT and set SET */
2234                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2235                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2236                 break;
2237
2238         case MISC_SPIO_INPUT_HI_Z:
2239                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2240                 /* set FLOAT */
2241                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2242                 break;
2243
2244         default:
2245                 break;
2246         }
2247
2248         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2249         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2250
2251         return 0;
2252 }
2253
2254 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2255 {
2256         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2257         switch (bp->link_vars.ieee_fc &
2258                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2259         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2260                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2261                                                    ADVERTISED_Pause);
2262                 break;
2263
2264         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2265                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2266                                                   ADVERTISED_Pause);
2267                 break;
2268
2269         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2270                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2271                 break;
2272
2273         default:
2274                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2275                                                    ADVERTISED_Pause);
2276                 break;
2277         }
2278 }
2279
2280 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2281 {
2282         /* Initialize link parameters structure variables
2283          * It is recommended to turn off RX FC for jumbo frames
2284          *  for better performance
2285          */
2286         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2287                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2288         else
2289                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2290 }
2291
2292 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2293 {
2294         u32 pause_enabled = 0;
2295
2296         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2297                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2298                         pause_enabled = 1;
2299
2300                 REG_WR(bp, BAR_USTRORM_INTMEM +
2301                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2302                        pause_enabled);
2303         }
2304
2305         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2306            pause_enabled ? "enabled" : "disabled");
2307 }
2308
2309 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2310 {
2311         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2312         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2313
2314         if (!BP_NOMCP(bp)) {
2315                 bnx2x_set_requested_fc(bp);
2316                 bnx2x_acquire_phy_lock(bp);
2317
2318                 if (load_mode == LOAD_DIAG) {
2319                         struct link_params *lp = &bp->link_params;
2320                         lp->loopback_mode = LOOPBACK_XGXS;
2321                         /* do PHY loopback at 10G speed, if possible */
2322                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2323                                 if (lp->speed_cap_mask[cfx_idx] &
2324                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2325                                         lp->req_line_speed[cfx_idx] =
2326                                         SPEED_10000;
2327                                 else
2328                                         lp->req_line_speed[cfx_idx] =
2329                                         SPEED_1000;
2330                         }
2331                 }
2332
2333                 if (load_mode == LOAD_LOOPBACK_EXT) {
2334                         struct link_params *lp = &bp->link_params;
2335                         lp->loopback_mode = LOOPBACK_EXT;
2336                 }
2337
2338                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2339
2340                 bnx2x_release_phy_lock(bp);
2341
2342                 bnx2x_init_dropless_fc(bp);
2343
2344                 bnx2x_calc_fc_adv(bp);
2345
2346                 if (bp->link_vars.link_up) {
2347                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2348                         bnx2x_link_report(bp);
2349                 }
2350                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2351                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2352                 return rc;
2353         }
2354         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2355         return -EINVAL;
2356 }
2357
2358 void bnx2x_link_set(struct bnx2x *bp)
2359 {
2360         if (!BP_NOMCP(bp)) {
2361                 bnx2x_acquire_phy_lock(bp);
2362                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2363                 bnx2x_release_phy_lock(bp);
2364
2365                 bnx2x_init_dropless_fc(bp);
2366
2367                 bnx2x_calc_fc_adv(bp);
2368         } else
2369                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2370 }
2371
2372 static void bnx2x__link_reset(struct bnx2x *bp)
2373 {
2374         if (!BP_NOMCP(bp)) {
2375                 bnx2x_acquire_phy_lock(bp);
2376                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2377                 bnx2x_release_phy_lock(bp);
2378         } else
2379                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2380 }
2381
2382 void bnx2x_force_link_reset(struct bnx2x *bp)
2383 {
2384         bnx2x_acquire_phy_lock(bp);
2385         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2386         bnx2x_release_phy_lock(bp);
2387 }
2388
2389 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2390 {
2391         u8 rc = 0;
2392
2393         if (!BP_NOMCP(bp)) {
2394                 bnx2x_acquire_phy_lock(bp);
2395                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2396                                      is_serdes);
2397                 bnx2x_release_phy_lock(bp);
2398         } else
2399                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2400
2401         return rc;
2402 }
2403
2404 /* Calculates the sum of vn_min_rates.
2405    It's needed for further normalizing of the min_rates.
2406    Returns:
2407      sum of vn_min_rates.
2408        or
2409      0 - if all the min_rates are 0.
2410      In the later case fairness algorithm should be deactivated.
2411      If not all min_rates are zero then those that are zeroes will be set to 1.
2412  */
2413 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2414                                       struct cmng_init_input *input)
2415 {
2416         int all_zero = 1;
2417         int vn;
2418
2419         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2420                 u32 vn_cfg = bp->mf_config[vn];
2421                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2422                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2423
2424                 /* Skip hidden vns */
2425                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2426                         vn_min_rate = 0;
2427                 /* If min rate is zero - set it to 1 */
2428                 else if (!vn_min_rate)
2429                         vn_min_rate = DEF_MIN_RATE;
2430                 else
2431                         all_zero = 0;
2432
2433                 input->vnic_min_rate[vn] = vn_min_rate;
2434         }
2435
2436         /* if ETS or all min rates are zeros - disable fairness */
2437         if (BNX2X_IS_ETS_ENABLED(bp)) {
2438                 input->flags.cmng_enables &=
2439                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2440                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2441         } else if (all_zero) {
2442                 input->flags.cmng_enables &=
2443                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2444                 DP(NETIF_MSG_IFUP,
2445                    "All MIN values are zeroes fairness will be disabled\n");
2446         } else
2447                 input->flags.cmng_enables |=
2448                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2449 }
2450
2451 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2452                                     struct cmng_init_input *input)
2453 {
2454         u16 vn_max_rate;
2455         u32 vn_cfg = bp->mf_config[vn];
2456
2457         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2458                 vn_max_rate = 0;
2459         else {
2460                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2461
2462                 if (IS_MF_SI(bp)) {
2463                         /* maxCfg in percents of linkspeed */
2464                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2465                 } else /* SD modes */
2466                         /* maxCfg is absolute in 100Mb units */
2467                         vn_max_rate = maxCfg * 100;
2468         }
2469
2470         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2471
2472         input->vnic_max_rate[vn] = vn_max_rate;
2473 }
2474
2475 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2476 {
2477         if (CHIP_REV_IS_SLOW(bp))
2478                 return CMNG_FNS_NONE;
2479         if (IS_MF(bp))
2480                 return CMNG_FNS_MINMAX;
2481
2482         return CMNG_FNS_NONE;
2483 }
2484
2485 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2486 {
2487         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2488
2489         if (BP_NOMCP(bp))
2490                 return; /* what should be the default value in this case */
2491
2492         /* For 2 port configuration the absolute function number formula
2493          * is:
2494          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2495          *
2496          *      and there are 4 functions per port
2497          *
2498          * For 4 port configuration it is
2499          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2500          *
2501          *      and there are 2 functions per port
2502          */
2503         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2504                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2505
2506                 if (func >= E1H_FUNC_MAX)
2507                         break;
2508
2509                 bp->mf_config[vn] =
2510                         MF_CFG_RD(bp, func_mf_config[func].config);
2511         }
2512         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2513                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2514                 bp->flags |= MF_FUNC_DIS;
2515         } else {
2516                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2517                 bp->flags &= ~MF_FUNC_DIS;
2518         }
2519 }
2520
2521 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2522 {
2523         struct cmng_init_input input;
2524         memset(&input, 0, sizeof(struct cmng_init_input));
2525
2526         input.port_rate = bp->link_vars.line_speed;
2527
2528         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2529                 int vn;
2530
2531                 /* read mf conf from shmem */
2532                 if (read_cfg)
2533                         bnx2x_read_mf_cfg(bp);
2534
2535                 /* vn_weight_sum and enable fairness if not 0 */
2536                 bnx2x_calc_vn_min(bp, &input);
2537
2538                 /* calculate and set min-max rate for each vn */
2539                 if (bp->port.pmf)
2540                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2541                                 bnx2x_calc_vn_max(bp, vn, &input);
2542
2543                 /* always enable rate shaping and fairness */
2544                 input.flags.cmng_enables |=
2545                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2546
2547                 bnx2x_init_cmng(&input, &bp->cmng);
2548                 return;
2549         }
2550
2551         /* rate shaping and fairness are disabled */
2552         DP(NETIF_MSG_IFUP,
2553            "rate shaping and fairness are disabled\n");
2554 }
2555
2556 static void storm_memset_cmng(struct bnx2x *bp,
2557                               struct cmng_init *cmng,
2558                               u8 port)
2559 {
2560         int vn;
2561         size_t size = sizeof(struct cmng_struct_per_port);
2562
2563         u32 addr = BAR_XSTRORM_INTMEM +
2564                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2565
2566         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2567
2568         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2569                 int func = func_by_vn(bp, vn);
2570
2571                 addr = BAR_XSTRORM_INTMEM +
2572                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2573                 size = sizeof(struct rate_shaping_vars_per_vn);
2574                 __storm_memset_struct(bp, addr, size,
2575                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2576
2577                 addr = BAR_XSTRORM_INTMEM +
2578                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2579                 size = sizeof(struct fairness_vars_per_vn);
2580                 __storm_memset_struct(bp, addr, size,
2581                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2582         }
2583 }
2584
2585 /* init cmng mode in HW according to local configuration */
2586 void bnx2x_set_local_cmng(struct bnx2x *bp)
2587 {
2588         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2589
2590         if (cmng_fns != CMNG_FNS_NONE) {
2591                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2592                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2593         } else {
2594                 /* rate shaping and fairness are disabled */
2595                 DP(NETIF_MSG_IFUP,
2596                    "single function mode without fairness\n");
2597         }
2598 }
2599
2600 /* This function is called upon link interrupt */
2601 static void bnx2x_link_attn(struct bnx2x *bp)
2602 {
2603         /* Make sure that we are synced with the current statistics */
2604         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2605
2606         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2607
2608         bnx2x_init_dropless_fc(bp);
2609
2610         if (bp->link_vars.link_up) {
2611
2612                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2613                         struct host_port_stats *pstats;
2614
2615                         pstats = bnx2x_sp(bp, port_stats);
2616                         /* reset old mac stats */
2617                         memset(&(pstats->mac_stx[0]), 0,
2618                                sizeof(struct mac_stx));
2619                 }
2620                 if (bp->state == BNX2X_STATE_OPEN)
2621                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2622         }
2623
2624         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2625                 bnx2x_set_local_cmng(bp);
2626
2627         __bnx2x_link_report(bp);
2628
2629         if (IS_MF(bp))
2630                 bnx2x_link_sync_notify(bp);
2631 }
2632
2633 void bnx2x__link_status_update(struct bnx2x *bp)
2634 {
2635         if (bp->state != BNX2X_STATE_OPEN)
2636                 return;
2637
2638         /* read updated dcb configuration */
2639         if (IS_PF(bp)) {
2640                 bnx2x_dcbx_pmf_update(bp);
2641                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2642                 if (bp->link_vars.link_up)
2643                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2644                 else
2645                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2646                         /* indicate link status */
2647                 bnx2x_link_report(bp);
2648
2649         } else { /* VF */
2650                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2651                                           SUPPORTED_10baseT_Full |
2652                                           SUPPORTED_100baseT_Half |
2653                                           SUPPORTED_100baseT_Full |
2654                                           SUPPORTED_1000baseT_Full |
2655                                           SUPPORTED_2500baseX_Full |
2656                                           SUPPORTED_10000baseT_Full |
2657                                           SUPPORTED_TP |
2658                                           SUPPORTED_FIBRE |
2659                                           SUPPORTED_Autoneg |
2660                                           SUPPORTED_Pause |
2661                                           SUPPORTED_Asym_Pause);
2662                 bp->port.advertising[0] = bp->port.supported[0];
2663
2664                 bp->link_params.bp = bp;
2665                 bp->link_params.port = BP_PORT(bp);
2666                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2667                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2668                 bp->link_params.req_line_speed[0] = SPEED_10000;
2669                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2670                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2671                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2672                 bp->link_vars.line_speed = SPEED_10000;
2673                 bp->link_vars.link_status =
2674                         (LINK_STATUS_LINK_UP |
2675                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2676                 bp->link_vars.link_up = 1;
2677                 bp->link_vars.duplex = DUPLEX_FULL;
2678                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2679                 __bnx2x_link_report(bp);
2680                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2681         }
2682 }
2683
2684 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2685                                   u16 vlan_val, u8 allowed_prio)
2686 {
2687         struct bnx2x_func_state_params func_params = {NULL};
2688         struct bnx2x_func_afex_update_params *f_update_params =
2689                 &func_params.params.afex_update;
2690
2691         func_params.f_obj = &bp->func_obj;
2692         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2693
2694         /* no need to wait for RAMROD completion, so don't
2695          * set RAMROD_COMP_WAIT flag
2696          */
2697
2698         f_update_params->vif_id = vifid;
2699         f_update_params->afex_default_vlan = vlan_val;
2700         f_update_params->allowed_priorities = allowed_prio;
2701
2702         /* if ramrod can not be sent, response to MCP immediately */
2703         if (bnx2x_func_state_change(bp, &func_params) < 0)
2704                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2705
2706         return 0;
2707 }
2708
2709 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2710                                           u16 vif_index, u8 func_bit_map)
2711 {
2712         struct bnx2x_func_state_params func_params = {NULL};
2713         struct bnx2x_func_afex_viflists_params *update_params =
2714                 &func_params.params.afex_viflists;
2715         int rc;
2716         u32 drv_msg_code;
2717
2718         /* validate only LIST_SET and LIST_GET are received from switch */
2719         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2720                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2721                           cmd_type);
2722
2723         func_params.f_obj = &bp->func_obj;
2724         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2725
2726         /* set parameters according to cmd_type */
2727         update_params->afex_vif_list_command = cmd_type;
2728         update_params->vif_list_index = vif_index;
2729         update_params->func_bit_map =
2730                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2731         update_params->func_to_clear = 0;
2732         drv_msg_code =
2733                 (cmd_type == VIF_LIST_RULE_GET) ?
2734                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2735                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2736
2737         /* if ramrod can not be sent, respond to MCP immediately for
2738          * SET and GET requests (other are not triggered from MCP)
2739          */
2740         rc = bnx2x_func_state_change(bp, &func_params);
2741         if (rc < 0)
2742                 bnx2x_fw_command(bp, drv_msg_code, 0);
2743
2744         return 0;
2745 }
2746
2747 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2748 {
2749         struct afex_stats afex_stats;
2750         u32 func = BP_ABS_FUNC(bp);
2751         u32 mf_config;
2752         u16 vlan_val;
2753         u32 vlan_prio;
2754         u16 vif_id;
2755         u8 allowed_prio;
2756         u8 vlan_mode;
2757         u32 addr_to_write, vifid, addrs, stats_type, i;
2758
2759         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2760                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2761                 DP(BNX2X_MSG_MCP,
2762                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2763                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2764         }
2765
2766         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2767                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2768                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2769                 DP(BNX2X_MSG_MCP,
2770                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2771                    vifid, addrs);
2772                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2773                                                addrs);
2774         }
2775
2776         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2777                 addr_to_write = SHMEM2_RD(bp,
2778                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2779                 stats_type = SHMEM2_RD(bp,
2780                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2781
2782                 DP(BNX2X_MSG_MCP,
2783                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2784                    addr_to_write);
2785
2786                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2787
2788                 /* write response to scratchpad, for MCP */
2789                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2790                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2791                                *(((u32 *)(&afex_stats))+i));
2792
2793                 /* send ack message to MCP */
2794                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2795         }
2796
2797         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2798                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2799                 bp->mf_config[BP_VN(bp)] = mf_config;
2800                 DP(BNX2X_MSG_MCP,
2801                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2802                    mf_config);
2803
2804                 /* if VIF_SET is "enabled" */
2805                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2806                         /* set rate limit directly to internal RAM */
2807                         struct cmng_init_input cmng_input;
2808                         struct rate_shaping_vars_per_vn m_rs_vn;
2809                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2810                         u32 addr = BAR_XSTRORM_INTMEM +
2811                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2812
2813                         bp->mf_config[BP_VN(bp)] = mf_config;
2814
2815                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2816                         m_rs_vn.vn_counter.rate =
2817                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2818                         m_rs_vn.vn_counter.quota =
2819                                 (m_rs_vn.vn_counter.rate *
2820                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2821
2822                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2823
2824                         /* read relevant values from mf_cfg struct in shmem */
2825                         vif_id =
2826                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2827                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2828                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2829                         vlan_val =
2830                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2831                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2832                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2833                         vlan_prio = (mf_config &
2834                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2835                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2836                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2837                         vlan_mode =
2838                                 (MF_CFG_RD(bp,
2839                                            func_mf_config[func].afex_config) &
2840                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2841                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2842                         allowed_prio =
2843                                 (MF_CFG_RD(bp,
2844                                            func_mf_config[func].afex_config) &
2845                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2846                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2847
2848                         /* send ramrod to FW, return in case of failure */
2849                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2850                                                    allowed_prio))
2851                                 return;
2852
2853                         bp->afex_def_vlan_tag = vlan_val;
2854                         bp->afex_vlan_mode = vlan_mode;
2855                 } else {
2856                         /* notify link down because BP->flags is disabled */
2857                         bnx2x_link_report(bp);
2858
2859                         /* send INVALID VIF ramrod to FW */
2860                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2861
2862                         /* Reset the default afex VLAN */
2863                         bp->afex_def_vlan_tag = -1;
2864                 }
2865         }
2866 }
2867
2868 static void bnx2x_pmf_update(struct bnx2x *bp)
2869 {
2870         int port = BP_PORT(bp);
2871         u32 val;
2872
2873         bp->port.pmf = 1;
2874         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2875
2876         /*
2877          * We need the mb() to ensure the ordering between the writing to
2878          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2879          */
2880         smp_mb();
2881
2882         /* queue a periodic task */
2883         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2884
2885         bnx2x_dcbx_pmf_update(bp);
2886
2887         /* enable nig attention */
2888         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2889         if (bp->common.int_block == INT_BLOCK_HC) {
2890                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2891                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2892         } else if (!CHIP_IS_E1x(bp)) {
2893                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2894                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2895         }
2896
2897         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2898 }
2899
2900 /* end of Link */
2901
2902 /* slow path */
2903
2904 /*
2905  * General service functions
2906  */
2907
2908 /* send the MCP a request, block until there is a reply */
2909 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2910 {
2911         int mb_idx = BP_FW_MB_IDX(bp);
2912         u32 seq;
2913         u32 rc = 0;
2914         u32 cnt = 1;
2915         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2916
2917         mutex_lock(&bp->fw_mb_mutex);
2918         seq = ++bp->fw_seq;
2919         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2920         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2921
2922         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2923                         (command | seq), param);
2924
2925         do {
2926                 /* let the FW do it's magic ... */
2927                 msleep(delay);
2928
2929                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2930
2931                 /* Give the FW up to 5 second (500*10ms) */
2932         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2933
2934         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2935            cnt*delay, rc, seq);
2936
2937         /* is this a reply to our command? */
2938         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2939                 rc &= FW_MSG_CODE_MASK;
2940         else {
2941                 /* FW BUG! */
2942                 BNX2X_ERR("FW failed to respond!\n");
2943                 bnx2x_fw_dump(bp);
2944                 rc = 0;
2945         }
2946         mutex_unlock(&bp->fw_mb_mutex);
2947
2948         return rc;
2949 }
2950
2951 static void storm_memset_func_cfg(struct bnx2x *bp,
2952                                  struct tstorm_eth_function_common_config *tcfg,
2953                                  u16 abs_fid)
2954 {
2955         size_t size = sizeof(struct tstorm_eth_function_common_config);
2956
2957         u32 addr = BAR_TSTRORM_INTMEM +
2958                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2959
2960         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2961 }
2962
2963 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2964 {
2965         if (CHIP_IS_E1x(bp)) {
2966                 struct tstorm_eth_function_common_config tcfg = {0};
2967
2968                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2969         }
2970
2971         /* Enable the function in the FW */
2972         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2973         storm_memset_func_en(bp, p->func_id, 1);
2974
2975         /* spq */
2976         if (p->func_flgs & FUNC_FLG_SPQ) {
2977                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2978                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2979                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2980         }
2981 }
2982
2983 /**
2984  * bnx2x_get_common_flags - Return common flags
2985  *
2986  * @bp          device handle
2987  * @fp          queue handle
2988  * @zero_stats  TRUE if statistics zeroing is needed
2989  *
2990  * Return the flags that are common for the Tx-only and not normal connections.
2991  */
2992 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2993                                             struct bnx2x_fastpath *fp,
2994                                             bool zero_stats)
2995 {
2996         unsigned long flags = 0;
2997
2998         /* PF driver will always initialize the Queue to an ACTIVE state */
2999         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3000
3001         /* tx only connections collect statistics (on the same index as the
3002          * parent connection). The statistics are zeroed when the parent
3003          * connection is initialized.
3004          */
3005
3006         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3007         if (zero_stats)
3008                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3009
3010         if (bp->flags & TX_SWITCHING)
3011                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3012
3013         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3014         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3015
3016 #ifdef BNX2X_STOP_ON_ERROR
3017         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3018 #endif
3019
3020         return flags;
3021 }
3022
3023 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3024                                        struct bnx2x_fastpath *fp,
3025                                        bool leading)
3026 {
3027         unsigned long flags = 0;
3028
3029         /* calculate other queue flags */
3030         if (IS_MF_SD(bp))
3031                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3032
3033         if (IS_FCOE_FP(fp)) {
3034                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3035                 /* For FCoE - force usage of default priority (for afex) */
3036                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3037         }
3038
3039         if (!fp->disable_tpa) {
3040                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3041                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3042                 if (fp->mode == TPA_MODE_GRO)
3043                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3044         }
3045
3046         if (leading) {
3047                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3048                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3049         }
3050
3051         /* Always set HW VLAN stripping */
3052         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3053
3054         /* configure silent vlan removal */
3055         if (IS_MF_AFEX(bp))
3056                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3057
3058         return flags | bnx2x_get_common_flags(bp, fp, true);
3059 }
3060
3061 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3062         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3063         u8 cos)
3064 {
3065         gen_init->stat_id = bnx2x_stats_id(fp);
3066         gen_init->spcl_id = fp->cl_id;
3067
3068         /* Always use mini-jumbo MTU for FCoE L2 ring */
3069         if (IS_FCOE_FP(fp))
3070                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3071         else
3072                 gen_init->mtu = bp->dev->mtu;
3073
3074         gen_init->cos = cos;
3075 }
3076
3077 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3078         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3079         struct bnx2x_rxq_setup_params *rxq_init)
3080 {
3081         u8 max_sge = 0;
3082         u16 sge_sz = 0;
3083         u16 tpa_agg_size = 0;
3084
3085         if (!fp->disable_tpa) {
3086                 pause->sge_th_lo = SGE_TH_LO(bp);
3087                 pause->sge_th_hi = SGE_TH_HI(bp);
3088
3089                 /* validate SGE ring has enough to cross high threshold */
3090                 WARN_ON(bp->dropless_fc &&
3091                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3092                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3093
3094                 tpa_agg_size = TPA_AGG_SIZE;
3095                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3096                         SGE_PAGE_SHIFT;
3097                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3098                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3099                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3100         }
3101
3102         /* pause - not for e1 */
3103         if (!CHIP_IS_E1(bp)) {
3104                 pause->bd_th_lo = BD_TH_LO(bp);
3105                 pause->bd_th_hi = BD_TH_HI(bp);
3106
3107                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3108                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3109                 /*
3110                  * validate that rings have enough entries to cross
3111                  * high thresholds
3112                  */
3113                 WARN_ON(bp->dropless_fc &&
3114                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3115                                 bp->rx_ring_size);
3116                 WARN_ON(bp->dropless_fc &&
3117                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3118                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3119
3120                 pause->pri_map = 1;
3121         }
3122
3123         /* rxq setup */
3124         rxq_init->dscr_map = fp->rx_desc_mapping;
3125         rxq_init->sge_map = fp->rx_sge_mapping;
3126         rxq_init->rcq_map = fp->rx_comp_mapping;
3127         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3128
3129         /* This should be a maximum number of data bytes that may be
3130          * placed on the BD (not including paddings).
3131          */
3132         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3133                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3134
3135         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3136         rxq_init->tpa_agg_sz = tpa_agg_size;
3137         rxq_init->sge_buf_sz = sge_sz;
3138         rxq_init->max_sges_pkt = max_sge;
3139         rxq_init->rss_engine_id = BP_FUNC(bp);
3140         rxq_init->mcast_engine_id = BP_FUNC(bp);
3141
3142         /* Maximum number or simultaneous TPA aggregation for this Queue.
3143          *
3144          * For PF Clients it should be the maximum available number.
3145          * VF driver(s) may want to define it to a smaller value.
3146          */
3147         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3148
3149         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3150         rxq_init->fw_sb_id = fp->fw_sb_id;
3151
3152         if (IS_FCOE_FP(fp))
3153                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3154         else
3155                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3156         /* configure silent vlan removal
3157          * if multi function mode is afex, then mask default vlan
3158          */
3159         if (IS_MF_AFEX(bp)) {
3160                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3161                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3162         }
3163 }
3164
3165 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3166         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3167         u8 cos)
3168 {
3169         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3170         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3171         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3172         txq_init->fw_sb_id = fp->fw_sb_id;
3173
3174         /*
3175          * set the tss leading client id for TX classification ==
3176          * leading RSS client id
3177          */
3178         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3179
3180         if (IS_FCOE_FP(fp)) {
3181                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3182                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3183         }
3184 }
3185
3186 static void bnx2x_pf_init(struct bnx2x *bp)
3187 {
3188         struct bnx2x_func_init_params func_init = {0};
3189         struct event_ring_data eq_data = { {0} };
3190         u16 flags;
3191
3192         if (!CHIP_IS_E1x(bp)) {
3193                 /* reset IGU PF statistics: MSIX + ATTN */
3194                 /* PF */
3195                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3196                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3197                            (CHIP_MODE_IS_4_PORT(bp) ?
3198                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3199                 /* ATTN */
3200                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3201                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3202                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3203                            (CHIP_MODE_IS_4_PORT(bp) ?
3204                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3205         }
3206
3207         /* function setup flags */
3208         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3209
3210         /* This flag is relevant for E1x only.
3211          * E2 doesn't have a TPA configuration in a function level.
3212          */
3213         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3214
3215         func_init.func_flgs = flags;
3216         func_init.pf_id = BP_FUNC(bp);
3217         func_init.func_id = BP_FUNC(bp);
3218         func_init.spq_map = bp->spq_mapping;
3219         func_init.spq_prod = bp->spq_prod_idx;
3220
3221         bnx2x_func_init(bp, &func_init);
3222
3223         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3224
3225         /*
3226          * Congestion management values depend on the link rate
3227          * There is no active link so initial link rate is set to 10 Gbps.
3228          * When the link comes up The congestion management values are
3229          * re-calculated according to the actual link rate.
3230          */
3231         bp->link_vars.line_speed = SPEED_10000;
3232         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3233
3234         /* Only the PMF sets the HW */
3235         if (bp->port.pmf)
3236                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3237
3238         /* init Event Queue - PCI bus guarantees correct endianity*/
3239         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3240         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3241         eq_data.producer = bp->eq_prod;
3242         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3243         eq_data.sb_id = DEF_SB_ID;
3244         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3245 }
3246
3247 static void bnx2x_e1h_disable(struct bnx2x *bp)
3248 {
3249         int port = BP_PORT(bp);
3250
3251         bnx2x_tx_disable(bp);
3252
3253         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3254 }
3255
3256 static void bnx2x_e1h_enable(struct bnx2x *bp)
3257 {
3258         int port = BP_PORT(bp);
3259
3260         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3261
3262         /* Tx queue should be only re-enabled */
3263         netif_tx_wake_all_queues(bp->dev);
3264
3265         /*
3266          * Should not call netif_carrier_on since it will be called if the link
3267          * is up when checking for link state
3268          */
3269 }
3270
3271 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3272
3273 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3274 {
3275         struct eth_stats_info *ether_stat =
3276                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3277         struct bnx2x_vlan_mac_obj *mac_obj =
3278                 &bp->sp_objs->mac_obj;
3279         int i;
3280
3281         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3282                 ETH_STAT_INFO_VERSION_LEN);
3283
3284         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3285          * mac_local field in ether_stat struct. The base address is offset by 2
3286          * bytes to account for the field being 8 bytes but a mac address is
3287          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3288          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3289          * allocated by the ether_stat struct, so the macs will land in their
3290          * proper positions.
3291          */
3292         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3293                 memset(ether_stat->mac_local + i, 0,
3294                        sizeof(ether_stat->mac_local[0]));
3295         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3296                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3297                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3298                                 ETH_ALEN);
3299         ether_stat->mtu_size = bp->dev->mtu;
3300         if (bp->dev->features & NETIF_F_RXCSUM)
3301                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3302         if (bp->dev->features & NETIF_F_TSO)
3303                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3304         ether_stat->feature_flags |= bp->common.boot_mode;
3305
3306         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3307
3308         ether_stat->txq_size = bp->tx_ring_size;
3309         ether_stat->rxq_size = bp->rx_ring_size;
3310
3311 #ifdef CONFIG_BNX2X_SRIOV
3312         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3313 #endif
3314 }
3315
3316 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3317 {
3318         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3319         struct fcoe_stats_info *fcoe_stat =
3320                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3321
3322         if (!CNIC_LOADED(bp))
3323                 return;
3324
3325         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3326
3327         fcoe_stat->qos_priority =
3328                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3329
3330         /* insert FCoE stats from ramrod response */
3331         if (!NO_FCOE(bp)) {
3332                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3333                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3334                         tstorm_queue_statistics;
3335
3336                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3337                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3338                         xstorm_queue_statistics;
3339
3340                 struct fcoe_statistics_params *fw_fcoe_stat =
3341                         &bp->fw_stats_data->fcoe;
3342
3343                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3344                           fcoe_stat->rx_bytes_lo,
3345                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3346
3347                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3348                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3349                           fcoe_stat->rx_bytes_lo,
3350                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3351
3352                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3353                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3354                           fcoe_stat->rx_bytes_lo,
3355                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3356
3357                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3358                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3359                           fcoe_stat->rx_bytes_lo,
3360                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3361
3362                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3363                           fcoe_stat->rx_frames_lo,
3364                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3365
3366                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3367                           fcoe_stat->rx_frames_lo,
3368                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3369
3370                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3371                           fcoe_stat->rx_frames_lo,
3372                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3373
3374                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3375                           fcoe_stat->rx_frames_lo,
3376                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3377
3378                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3379                           fcoe_stat->tx_bytes_lo,
3380                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3381
3382                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3383                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3384                           fcoe_stat->tx_bytes_lo,
3385                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3386
3387                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3388                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3389                           fcoe_stat->tx_bytes_lo,
3390                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3391
3392                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3393                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3394                           fcoe_stat->tx_bytes_lo,
3395                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3396
3397                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3398                           fcoe_stat->tx_frames_lo,
3399                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3400
3401                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3402                           fcoe_stat->tx_frames_lo,
3403                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3404
3405                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3406                           fcoe_stat->tx_frames_lo,
3407                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3408
3409                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3410                           fcoe_stat->tx_frames_lo,
3411                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3412         }
3413
3414         /* ask L5 driver to add data to the struct */
3415         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3416 }
3417
3418 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3419 {
3420         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3421         struct iscsi_stats_info *iscsi_stat =
3422                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3423
3424         if (!CNIC_LOADED(bp))
3425                 return;
3426
3427         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3428                ETH_ALEN);
3429
3430         iscsi_stat->qos_priority =
3431                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3432
3433         /* ask L5 driver to add data to the struct */
3434         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3435 }
3436
3437 /* called due to MCP event (on pmf):
3438  *      reread new bandwidth configuration
3439  *      configure FW
3440  *      notify others function about the change
3441  */
3442 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3443 {
3444         if (bp->link_vars.link_up) {
3445                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3446                 bnx2x_link_sync_notify(bp);
3447         }
3448         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3449 }
3450
3451 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3452 {
3453         bnx2x_config_mf_bw(bp);
3454         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3455 }
3456
3457 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3458 {
3459         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3460         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3461 }
3462
3463 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3464 {
3465         enum drv_info_opcode op_code;
3466         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3467
3468         /* if drv_info version supported by MFW doesn't match - send NACK */
3469         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3470                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3471                 return;
3472         }
3473
3474         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3475                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3476
3477         memset(&bp->slowpath->drv_info_to_mcp, 0,
3478                sizeof(union drv_info_to_mcp));
3479
3480         switch (op_code) {
3481         case ETH_STATS_OPCODE:
3482                 bnx2x_drv_info_ether_stat(bp);
3483                 break;
3484         case FCOE_STATS_OPCODE:
3485                 bnx2x_drv_info_fcoe_stat(bp);
3486                 break;
3487         case ISCSI_STATS_OPCODE:
3488                 bnx2x_drv_info_iscsi_stat(bp);
3489                 break;
3490         default:
3491                 /* if op code isn't supported - send NACK */
3492                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3493                 return;
3494         }
3495
3496         /* if we got drv_info attn from MFW then these fields are defined in
3497          * shmem2 for sure
3498          */
3499         SHMEM2_WR(bp, drv_info_host_addr_lo,
3500                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3501         SHMEM2_WR(bp, drv_info_host_addr_hi,
3502                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3503
3504         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3505 }
3506
3507 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3508 {
3509         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3510
3511         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3512
3513                 /*
3514                  * This is the only place besides the function initialization
3515                  * where the bp->flags can change so it is done without any
3516                  * locks
3517                  */
3518                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3519                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3520                         bp->flags |= MF_FUNC_DIS;
3521
3522                         bnx2x_e1h_disable(bp);
3523                 } else {
3524                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3525                         bp->flags &= ~MF_FUNC_DIS;
3526
3527                         bnx2x_e1h_enable(bp);
3528                 }
3529                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3530         }
3531         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3532                 bnx2x_config_mf_bw(bp);
3533                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3534         }
3535
3536         /* Report results to MCP */
3537         if (dcc_event)
3538                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3539         else
3540                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3541 }
3542
3543 /* must be called under the spq lock */
3544 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3545 {
3546         struct eth_spe *next_spe = bp->spq_prod_bd;
3547
3548         if (bp->spq_prod_bd == bp->spq_last_bd) {
3549                 bp->spq_prod_bd = bp->spq;
3550                 bp->spq_prod_idx = 0;
3551                 DP(BNX2X_MSG_SP, "end of spq\n");
3552         } else {
3553                 bp->spq_prod_bd++;
3554                 bp->spq_prod_idx++;
3555         }
3556         return next_spe;
3557 }
3558
3559 /* must be called under the spq lock */
3560 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3561 {
3562         int func = BP_FUNC(bp);
3563
3564         /*
3565          * Make sure that BD data is updated before writing the producer:
3566          * BD data is written to the memory, the producer is read from the
3567          * memory, thus we need a full memory barrier to ensure the ordering.
3568          */
3569         mb();
3570
3571         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3572                  bp->spq_prod_idx);
3573         mmiowb();
3574 }
3575
3576 /**
3577  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3578  *
3579  * @cmd:        command to check
3580  * @cmd_type:   command type
3581  */
3582 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3583 {
3584         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3585             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3586             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3587             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3588             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3589             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3590             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3591                 return true;
3592         else
3593                 return false;
3594 }
3595
3596 /**
3597  * bnx2x_sp_post - place a single command on an SP ring
3598  *
3599  * @bp:         driver handle
3600  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3601  * @cid:        SW CID the command is related to
3602  * @data_hi:    command private data address (high 32 bits)
3603  * @data_lo:    command private data address (low 32 bits)
3604  * @cmd_type:   command type (e.g. NONE, ETH)
3605  *
3606  * SP data is handled as if it's always an address pair, thus data fields are
3607  * not swapped to little endian in upper functions. Instead this function swaps
3608  * data as if it's two u32 fields.
3609  */
3610 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3611                   u32 data_hi, u32 data_lo, int cmd_type)
3612 {
3613         struct eth_spe *spe;
3614         u16 type;
3615         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3616
3617 #ifdef BNX2X_STOP_ON_ERROR
3618         if (unlikely(bp->panic)) {
3619                 BNX2X_ERR("Can't post SP when there is panic\n");
3620                 return -EIO;
3621         }
3622 #endif
3623
3624         spin_lock_bh(&bp->spq_lock);
3625
3626         if (common) {
3627                 if (!atomic_read(&bp->eq_spq_left)) {
3628                         BNX2X_ERR("BUG! EQ ring full!\n");
3629                         spin_unlock_bh(&bp->spq_lock);
3630                         bnx2x_panic();
3631                         return -EBUSY;
3632                 }
3633         } else if (!atomic_read(&bp->cq_spq_left)) {
3634                         BNX2X_ERR("BUG! SPQ ring full!\n");
3635                         spin_unlock_bh(&bp->spq_lock);
3636                         bnx2x_panic();
3637                         return -EBUSY;
3638         }
3639
3640         spe = bnx2x_sp_get_next(bp);
3641
3642         /* CID needs port number to be encoded int it */
3643         spe->hdr.conn_and_cmd_data =
3644                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3645                                     HW_CID(bp, cid));
3646
3647         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3648
3649         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3650                  SPE_HDR_FUNCTION_ID);
3651
3652         spe->hdr.type = cpu_to_le16(type);
3653
3654         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3655         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3656
3657         /*
3658          * It's ok if the actual decrement is issued towards the memory
3659          * somewhere between the spin_lock and spin_unlock. Thus no
3660          * more explicit memory barrier is needed.
3661          */
3662         if (common)
3663                 atomic_dec(&bp->eq_spq_left);
3664         else
3665                 atomic_dec(&bp->cq_spq_left);
3666
3667         DP(BNX2X_MSG_SP,
3668            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3669            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3670            (u32)(U64_LO(bp->spq_mapping) +
3671            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3672            HW_CID(bp, cid), data_hi, data_lo, type,
3673            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3674
3675         bnx2x_sp_prod_update(bp);
3676         spin_unlock_bh(&bp->spq_lock);
3677         return 0;
3678 }
3679
3680 /* acquire split MCP access lock register */
3681 static int bnx2x_acquire_alr(struct bnx2x *bp)
3682 {
3683         u32 j, val;
3684         int rc = 0;
3685
3686         might_sleep();
3687         for (j = 0; j < 1000; j++) {
3688                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3689                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3690                 if (val & MCPR_ACCESS_LOCK_LOCK)
3691                         break;
3692
3693                 usleep_range(5000, 10000);
3694         }
3695         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3696                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3697                 rc = -EBUSY;
3698         }
3699
3700         return rc;
3701 }
3702
3703 /* release split MCP access lock register */
3704 static void bnx2x_release_alr(struct bnx2x *bp)
3705 {
3706         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3707 }
3708
3709 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3710 #define BNX2X_DEF_SB_IDX        0x0002
3711
3712 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3713 {
3714         struct host_sp_status_block *def_sb = bp->def_status_blk;
3715         u16 rc = 0;
3716
3717         barrier(); /* status block is written to by the chip */
3718         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3719                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3720                 rc |= BNX2X_DEF_SB_ATT_IDX;
3721         }
3722
3723         if (bp->def_idx != def_sb->sp_sb.running_index) {
3724                 bp->def_idx = def_sb->sp_sb.running_index;
3725                 rc |= BNX2X_DEF_SB_IDX;
3726         }
3727
3728         /* Do not reorder: indices reading should complete before handling */
3729         barrier();
3730         return rc;
3731 }
3732
3733 /*
3734  * slow path service functions
3735  */
3736
3737 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3738 {
3739         int port = BP_PORT(bp);
3740         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3741                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3742         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3743                                        NIG_REG_MASK_INTERRUPT_PORT0;
3744         u32 aeu_mask;
3745         u32 nig_mask = 0;
3746         u32 reg_addr;
3747
3748         if (bp->attn_state & asserted)
3749                 BNX2X_ERR("IGU ERROR\n");
3750
3751         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3752         aeu_mask = REG_RD(bp, aeu_addr);
3753
3754         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3755            aeu_mask, asserted);
3756         aeu_mask &= ~(asserted & 0x3ff);
3757         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3758
3759         REG_WR(bp, aeu_addr, aeu_mask);
3760         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3761
3762         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3763         bp->attn_state |= asserted;
3764         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3765
3766         if (asserted & ATTN_HARD_WIRED_MASK) {
3767                 if (asserted & ATTN_NIG_FOR_FUNC) {
3768
3769                         bnx2x_acquire_phy_lock(bp);
3770
3771                         /* save nig interrupt mask */
3772                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3773
3774                         /* If nig_mask is not set, no need to call the update
3775                          * function.
3776                          */
3777                         if (nig_mask) {
3778                                 REG_WR(bp, nig_int_mask_addr, 0);
3779
3780                                 bnx2x_link_attn(bp);
3781                         }
3782
3783                         /* handle unicore attn? */
3784                 }
3785                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3786                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3787
3788                 if (asserted & GPIO_2_FUNC)
3789                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3790
3791                 if (asserted & GPIO_3_FUNC)
3792                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3793
3794                 if (asserted & GPIO_4_FUNC)
3795                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3796
3797                 if (port == 0) {
3798                         if (asserted & ATTN_GENERAL_ATTN_1) {
3799                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3800                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3801                         }
3802                         if (asserted & ATTN_GENERAL_ATTN_2) {
3803                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3804                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3805                         }
3806                         if (asserted & ATTN_GENERAL_ATTN_3) {
3807                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3808                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3809                         }
3810                 } else {
3811                         if (asserted & ATTN_GENERAL_ATTN_4) {
3812                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3813                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3814                         }
3815                         if (asserted & ATTN_GENERAL_ATTN_5) {
3816                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3817                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3818                         }
3819                         if (asserted & ATTN_GENERAL_ATTN_6) {
3820                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3821                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3822                         }
3823                 }
3824
3825         } /* if hardwired */
3826
3827         if (bp->common.int_block == INT_BLOCK_HC)
3828                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3829                             COMMAND_REG_ATTN_BITS_SET);
3830         else
3831                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3832
3833         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3834            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3835         REG_WR(bp, reg_addr, asserted);
3836
3837         /* now set back the mask */
3838         if (asserted & ATTN_NIG_FOR_FUNC) {
3839                 /* Verify that IGU ack through BAR was written before restoring
3840                  * NIG mask. This loop should exit after 2-3 iterations max.
3841                  */
3842                 if (bp->common.int_block != INT_BLOCK_HC) {
3843                         u32 cnt = 0, igu_acked;
3844                         do {
3845                                 igu_acked = REG_RD(bp,
3846                                                    IGU_REG_ATTENTION_ACK_BITS);
3847                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3848                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
3849                         if (!igu_acked)
3850                                 DP(NETIF_MSG_HW,
3851                                    "Failed to verify IGU ack on time\n");
3852                         barrier();
3853                 }
3854                 REG_WR(bp, nig_int_mask_addr, nig_mask);
3855                 bnx2x_release_phy_lock(bp);
3856         }
3857 }
3858
3859 static void bnx2x_fan_failure(struct bnx2x *bp)
3860 {
3861         int port = BP_PORT(bp);
3862         u32 ext_phy_config;
3863         /* mark the failure */
3864         ext_phy_config =
3865                 SHMEM_RD(bp,
3866                          dev_info.port_hw_config[port].external_phy_config);
3867
3868         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3869         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3870         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3871                  ext_phy_config);
3872
3873         /* log the failure */
3874         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3875                             "Please contact OEM Support for assistance\n");
3876
3877         /* Schedule device reset (unload)
3878          * This is due to some boards consuming sufficient power when driver is
3879          * up to overheat if fan fails.
3880          */
3881         smp_mb__before_clear_bit();
3882         set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3883         smp_mb__after_clear_bit();
3884         schedule_delayed_work(&bp->sp_rtnl_task, 0);
3885 }
3886
3887 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3888 {
3889         int port = BP_PORT(bp);
3890         int reg_offset;
3891         u32 val;
3892
3893         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3894                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3895
3896         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3897
3898                 val = REG_RD(bp, reg_offset);
3899                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3900                 REG_WR(bp, reg_offset, val);
3901
3902                 BNX2X_ERR("SPIO5 hw attention\n");
3903
3904                 /* Fan failure attention */
3905                 bnx2x_hw_reset_phy(&bp->link_params);
3906                 bnx2x_fan_failure(bp);
3907         }
3908
3909         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3910                 bnx2x_acquire_phy_lock(bp);
3911                 bnx2x_handle_module_detect_int(&bp->link_params);
3912                 bnx2x_release_phy_lock(bp);
3913         }
3914
3915         if (attn & HW_INTERRUT_ASSERT_SET_0) {
3916
3917                 val = REG_RD(bp, reg_offset);
3918                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3919                 REG_WR(bp, reg_offset, val);
3920
3921                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3922                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3923                 bnx2x_panic();
3924         }
3925 }
3926
3927 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3928 {
3929         u32 val;
3930
3931         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3932
3933                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3934                 BNX2X_ERR("DB hw attention 0x%x\n", val);
3935                 /* DORQ discard attention */
3936                 if (val & 0x2)
3937                         BNX2X_ERR("FATAL error from DORQ\n");
3938         }
3939
3940         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3941
3942                 int port = BP_PORT(bp);
3943                 int reg_offset;
3944
3945                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3946                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3947
3948                 val = REG_RD(bp, reg_offset);
3949                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3950                 REG_WR(bp, reg_offset, val);
3951
3952                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3953                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3954                 bnx2x_panic();
3955         }
3956 }
3957
3958 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3959 {
3960         u32 val;
3961
3962         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3963
3964                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3965                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3966                 /* CFC error attention */
3967                 if (val & 0x2)
3968                         BNX2X_ERR("FATAL error from CFC\n");
3969         }
3970
3971         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3972                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3973                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3974                 /* RQ_USDMDP_FIFO_OVERFLOW */
3975                 if (val & 0x18000)
3976                         BNX2X_ERR("FATAL error from PXP\n");
3977
3978                 if (!CHIP_IS_E1x(bp)) {
3979                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3980                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3981                 }
3982         }
3983
3984         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3985
3986                 int port = BP_PORT(bp);
3987                 int reg_offset;
3988
3989                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3990                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3991
3992                 val = REG_RD(bp, reg_offset);
3993                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3994                 REG_WR(bp, reg_offset, val);
3995
3996                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3997                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3998                 bnx2x_panic();
3999         }
4000 }
4001
4002 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4003 {
4004         u32 val;
4005
4006         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4007
4008                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4009                         int func = BP_FUNC(bp);
4010
4011                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4012                         bnx2x_read_mf_cfg(bp);
4013                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4014                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4015                         val = SHMEM_RD(bp,
4016                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4017                         if (val & DRV_STATUS_DCC_EVENT_MASK)
4018                                 bnx2x_dcc_event(bp,
4019                                             (val & DRV_STATUS_DCC_EVENT_MASK));
4020
4021                         if (val & DRV_STATUS_SET_MF_BW)
4022                                 bnx2x_set_mf_bw(bp);
4023
4024                         if (val & DRV_STATUS_DRV_INFO_REQ)
4025                                 bnx2x_handle_drv_info_req(bp);
4026
4027                         if (val & DRV_STATUS_VF_DISABLED)
4028                                 bnx2x_vf_handle_flr_event(bp);
4029
4030                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4031                                 bnx2x_pmf_update(bp);
4032
4033                         if (bp->port.pmf &&
4034                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4035                                 bp->dcbx_enabled > 0)
4036                                 /* start dcbx state machine */
4037                                 bnx2x_dcbx_set_params(bp,
4038                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4039                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4040                                 bnx2x_handle_afex_cmd(bp,
4041                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4042                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4043                                 bnx2x_handle_eee_event(bp);
4044                         if (bp->link_vars.periodic_flags &
4045                             PERIODIC_FLAGS_LINK_EVENT) {
4046                                 /*  sync with link */
4047                                 bnx2x_acquire_phy_lock(bp);
4048                                 bp->link_vars.periodic_flags &=
4049                                         ~PERIODIC_FLAGS_LINK_EVENT;
4050                                 bnx2x_release_phy_lock(bp);
4051                                 if (IS_MF(bp))
4052                                         bnx2x_link_sync_notify(bp);
4053                                 bnx2x_link_report(bp);
4054                         }
4055                         /* Always call it here: bnx2x_link_report() will
4056                          * prevent the link indication duplication.
4057                          */
4058                         bnx2x__link_status_update(bp);
4059                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4060
4061                         BNX2X_ERR("MC assert!\n");
4062                         bnx2x_mc_assert(bp);
4063                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4064                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4065                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4066                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4067                         bnx2x_panic();
4068
4069                 } else if (attn & BNX2X_MCP_ASSERT) {
4070
4071                         BNX2X_ERR("MCP assert!\n");
4072                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4073                         bnx2x_fw_dump(bp);
4074
4075                 } else
4076                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4077         }
4078
4079         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4080                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4081                 if (attn & BNX2X_GRC_TIMEOUT) {
4082                         val = CHIP_IS_E1(bp) ? 0 :
4083                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4084                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4085                 }
4086                 if (attn & BNX2X_GRC_RSV) {
4087                         val = CHIP_IS_E1(bp) ? 0 :
4088                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4089                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4090                 }
4091                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4092         }
4093 }
4094
4095 /*
4096  * Bits map:
4097  * 0-7   - Engine0 load counter.
4098  * 8-15  - Engine1 load counter.
4099  * 16    - Engine0 RESET_IN_PROGRESS bit.
4100  * 17    - Engine1 RESET_IN_PROGRESS bit.
4101  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4102  *         on the engine
4103  * 19    - Engine1 ONE_IS_LOADED.
4104  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4105  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4106  *         just the one belonging to its engine).
4107  *
4108  */
4109 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4110
4111 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4112 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4113 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4114 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4115 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4116 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4117 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4118
4119 /*
4120  * Set the GLOBAL_RESET bit.
4121  *
4122  * Should be run under rtnl lock
4123  */
4124 void bnx2x_set_reset_global(struct bnx2x *bp)
4125 {
4126         u32 val;
4127         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4128         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4129         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4130         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4131 }
4132
4133 /*
4134  * Clear the GLOBAL_RESET bit.
4135  *
4136  * Should be run under rtnl lock
4137  */
4138 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4139 {
4140         u32 val;
4141         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4142         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4143         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4144         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4145 }
4146
4147 /*
4148  * Checks the GLOBAL_RESET bit.
4149  *
4150  * should be run under rtnl lock
4151  */
4152 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4153 {
4154         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4155
4156         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4157         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4158 }
4159
4160 /*
4161  * Clear RESET_IN_PROGRESS bit for the current engine.
4162  *
4163  * Should be run under rtnl lock
4164  */
4165 static void bnx2x_set_reset_done(struct bnx2x *bp)
4166 {
4167         u32 val;
4168         u32 bit = BP_PATH(bp) ?
4169                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4170         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4171         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4172
4173         /* Clear the bit */
4174         val &= ~bit;
4175         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4176
4177         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4178 }
4179
4180 /*
4181  * Set RESET_IN_PROGRESS for the current engine.
4182  *
4183  * should be run under rtnl lock
4184  */
4185 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4186 {
4187         u32 val;
4188         u32 bit = BP_PATH(bp) ?
4189                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4190         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4191         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4192
4193         /* Set the bit */
4194         val |= bit;
4195         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4196         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4197 }
4198
4199 /*
4200  * Checks the RESET_IN_PROGRESS bit for the given engine.
4201  * should be run under rtnl lock
4202  */
4203 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4204 {
4205         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4206         u32 bit = engine ?
4207                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4208
4209         /* return false if bit is set */
4210         return (val & bit) ? false : true;
4211 }
4212
4213 /*
4214  * set pf load for the current pf.
4215  *
4216  * should be run under rtnl lock
4217  */
4218 void bnx2x_set_pf_load(struct bnx2x *bp)
4219 {
4220         u32 val1, val;
4221         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4222                              BNX2X_PATH0_LOAD_CNT_MASK;
4223         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4224                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4225
4226         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4227         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4228
4229         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4230
4231         /* get the current counter value */
4232         val1 = (val & mask) >> shift;
4233
4234         /* set bit of that PF */
4235         val1 |= (1 << bp->pf_num);
4236
4237         /* clear the old value */
4238         val &= ~mask;
4239
4240         /* set the new one */
4241         val |= ((val1 << shift) & mask);
4242
4243         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4244         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4245 }
4246
4247 /**
4248  * bnx2x_clear_pf_load - clear pf load mark
4249  *
4250  * @bp:         driver handle
4251  *
4252  * Should be run under rtnl lock.
4253  * Decrements the load counter for the current engine. Returns
4254  * whether other functions are still loaded
4255  */
4256 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4257 {
4258         u32 val1, val;
4259         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4260                              BNX2X_PATH0_LOAD_CNT_MASK;
4261         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4262                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4263
4264         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4265         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4266         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4267
4268         /* get the current counter value */
4269         val1 = (val & mask) >> shift;
4270
4271         /* clear bit of that PF */
4272         val1 &= ~(1 << bp->pf_num);
4273
4274         /* clear the old value */
4275         val &= ~mask;
4276
4277         /* set the new one */
4278         val |= ((val1 << shift) & mask);
4279
4280         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4281         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4282         return val1 != 0;
4283 }
4284
4285 /*
4286  * Read the load status for the current engine.
4287  *
4288  * should be run under rtnl lock
4289  */
4290 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4291 {
4292         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4293                              BNX2X_PATH0_LOAD_CNT_MASK);
4294         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4295                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4296         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4297
4298         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4299
4300         val = (val & mask) >> shift;
4301
4302         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4303            engine, val);
4304
4305         return val != 0;
4306 }
4307
4308 static void _print_parity(struct bnx2x *bp, u32 reg)
4309 {
4310         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4311 }
4312
4313 static void _print_next_block(int idx, const char *blk)
4314 {
4315         pr_cont("%s%s", idx ? ", " : "", blk);
4316 }
4317
4318 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4319                                             int *par_num, bool print)
4320 {
4321         u32 cur_bit;
4322         bool res;
4323         int i;
4324
4325         res = false;
4326
4327         for (i = 0; sig; i++) {
4328                 cur_bit = (0x1UL << i);
4329                 if (sig & cur_bit) {
4330                         res |= true; /* Each bit is real error! */
4331
4332                         if (print) {
4333                                 switch (cur_bit) {
4334                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4335                                         _print_next_block((*par_num)++, "BRB");
4336                                         _print_parity(bp,
4337                                                       BRB1_REG_BRB1_PRTY_STS);
4338                                         break;
4339                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4340                                         _print_next_block((*par_num)++,
4341                                                           "PARSER");
4342                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4343                                         break;
4344                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4345                                         _print_next_block((*par_num)++, "TSDM");
4346                                         _print_parity(bp,
4347                                                       TSDM_REG_TSDM_PRTY_STS);
4348                                         break;
4349                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4350                                         _print_next_block((*par_num)++,
4351                                                           "SEARCHER");
4352                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4353                                         break;
4354                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4355                                         _print_next_block((*par_num)++, "TCM");
4356                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4357                                         break;
4358                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4359                                         _print_next_block((*par_num)++,
4360                                                           "TSEMI");
4361                                         _print_parity(bp,
4362                                                       TSEM_REG_TSEM_PRTY_STS_0);
4363                                         _print_parity(bp,
4364                                                       TSEM_REG_TSEM_PRTY_STS_1);
4365                                         break;
4366                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4367                                         _print_next_block((*par_num)++, "XPB");
4368                                         _print_parity(bp, GRCBASE_XPB +
4369                                                           PB_REG_PB_PRTY_STS);
4370                                         break;
4371                                 }
4372                         }
4373
4374                         /* Clear the bit */
4375                         sig &= ~cur_bit;
4376                 }
4377         }
4378
4379         return res;
4380 }
4381
4382 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4383                                             int *par_num, bool *global,
4384                                             bool print)
4385 {
4386         u32 cur_bit;
4387         bool res;
4388         int i;
4389
4390         res = false;
4391
4392         for (i = 0; sig; i++) {
4393                 cur_bit = (0x1UL << i);
4394                 if (sig & cur_bit) {
4395                         res |= true; /* Each bit is real error! */
4396                         switch (cur_bit) {
4397                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4398                                 if (print) {
4399                                         _print_next_block((*par_num)++, "PBF");
4400                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4401                                 }
4402                                 break;
4403                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4404                                 if (print) {
4405                                         _print_next_block((*par_num)++, "QM");
4406                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4407                                 }
4408                                 break;
4409                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4410                                 if (print) {
4411                                         _print_next_block((*par_num)++, "TM");
4412                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4413                                 }
4414                                 break;
4415                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4416                                 if (print) {
4417                                         _print_next_block((*par_num)++, "XSDM");
4418                                         _print_parity(bp,
4419                                                       XSDM_REG_XSDM_PRTY_STS);
4420                                 }
4421                                 break;
4422                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4423                                 if (print) {
4424                                         _print_next_block((*par_num)++, "XCM");
4425                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4426                                 }
4427                                 break;
4428                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4429                                 if (print) {
4430                                         _print_next_block((*par_num)++,
4431                                                           "XSEMI");
4432                                         _print_parity(bp,
4433                                                       XSEM_REG_XSEM_PRTY_STS_0);
4434                                         _print_parity(bp,
4435                                                       XSEM_REG_XSEM_PRTY_STS_1);
4436                                 }
4437                                 break;
4438                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4439                                 if (print) {
4440                                         _print_next_block((*par_num)++,
4441                                                           "DOORBELLQ");
4442                                         _print_parity(bp,
4443                                                       DORQ_REG_DORQ_PRTY_STS);
4444                                 }
4445                                 break;
4446                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4447                                 if (print) {
4448                                         _print_next_block((*par_num)++, "NIG");
4449                                         if (CHIP_IS_E1x(bp)) {
4450                                                 _print_parity(bp,
4451                                                         NIG_REG_NIG_PRTY_STS);
4452                                         } else {
4453                                                 _print_parity(bp,
4454                                                         NIG_REG_NIG_PRTY_STS_0);
4455                                                 _print_parity(bp,
4456                                                         NIG_REG_NIG_PRTY_STS_1);
4457                                         }
4458                                 }
4459                                 break;
4460                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4461                                 if (print)
4462                                         _print_next_block((*par_num)++,
4463                                                           "VAUX PCI CORE");
4464                                 *global = true;
4465                                 break;
4466                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4467                                 if (print) {
4468                                         _print_next_block((*par_num)++,
4469                                                           "DEBUG");
4470                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4471                                 }
4472                                 break;
4473                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4474                                 if (print) {
4475                                         _print_next_block((*par_num)++, "USDM");
4476                                         _print_parity(bp,
4477                                                       USDM_REG_USDM_PRTY_STS);
4478                                 }
4479                                 break;
4480                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4481                                 if (print) {
4482                                         _print_next_block((*par_num)++, "UCM");
4483                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4484                                 }
4485                                 break;
4486                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4487                                 if (print) {
4488                                         _print_next_block((*par_num)++,
4489                                                           "USEMI");
4490                                         _print_parity(bp,
4491                                                       USEM_REG_USEM_PRTY_STS_0);
4492                                         _print_parity(bp,
4493                                                       USEM_REG_USEM_PRTY_STS_1);
4494                                 }
4495                                 break;
4496                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4497                                 if (print) {
4498                                         _print_next_block((*par_num)++, "UPB");
4499                                         _print_parity(bp, GRCBASE_UPB +
4500                                                           PB_REG_PB_PRTY_STS);
4501                                 }
4502                                 break;
4503                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4504                                 if (print) {
4505                                         _print_next_block((*par_num)++, "CSDM");
4506                                         _print_parity(bp,
4507                                                       CSDM_REG_CSDM_PRTY_STS);
4508                                 }
4509                                 break;
4510                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4511                                 if (print) {
4512                                         _print_next_block((*par_num)++, "CCM");
4513                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4514                                 }
4515                                 break;
4516                         }
4517
4518                         /* Clear the bit */
4519                         sig &= ~cur_bit;
4520                 }
4521         }
4522
4523         return res;
4524 }
4525
4526 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4527                                             int *par_num, bool print)
4528 {
4529         u32 cur_bit;
4530         bool res;
4531         int i;
4532
4533         res = false;
4534
4535         for (i = 0; sig; i++) {
4536                 cur_bit = (0x1UL << i);
4537                 if (sig & cur_bit) {
4538                         res |= true; /* Each bit is real error! */
4539                         if (print) {
4540                                 switch (cur_bit) {
4541                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4542                                         _print_next_block((*par_num)++,
4543                                                           "CSEMI");
4544                                         _print_parity(bp,
4545                                                       CSEM_REG_CSEM_PRTY_STS_0);
4546                                         _print_parity(bp,
4547                                                       CSEM_REG_CSEM_PRTY_STS_1);
4548                                         break;
4549                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4550                                         _print_next_block((*par_num)++, "PXP");
4551                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4552                                         _print_parity(bp,
4553                                                       PXP2_REG_PXP2_PRTY_STS_0);
4554                                         _print_parity(bp,
4555                                                       PXP2_REG_PXP2_PRTY_STS_1);
4556                                         break;
4557                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4558                                         _print_next_block((*par_num)++,
4559                                                           "PXPPCICLOCKCLIENT");
4560                                         break;
4561                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4562                                         _print_next_block((*par_num)++, "CFC");
4563                                         _print_parity(bp,
4564                                                       CFC_REG_CFC_PRTY_STS);
4565                                         break;
4566                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4567                                         _print_next_block((*par_num)++, "CDU");
4568                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4569                                         break;
4570                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4571                                         _print_next_block((*par_num)++, "DMAE");
4572                                         _print_parity(bp,
4573                                                       DMAE_REG_DMAE_PRTY_STS);
4574                                         break;
4575                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4576                                         _print_next_block((*par_num)++, "IGU");
4577                                         if (CHIP_IS_E1x(bp))
4578                                                 _print_parity(bp,
4579                                                         HC_REG_HC_PRTY_STS);
4580                                         else
4581                                                 _print_parity(bp,
4582                                                         IGU_REG_IGU_PRTY_STS);
4583                                         break;
4584                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4585                                         _print_next_block((*par_num)++, "MISC");
4586                                         _print_parity(bp,
4587                                                       MISC_REG_MISC_PRTY_STS);
4588                                         break;
4589                                 }
4590                         }
4591
4592                         /* Clear the bit */
4593                         sig &= ~cur_bit;
4594                 }
4595         }
4596
4597         return res;
4598 }
4599
4600 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4601                                             int *par_num, bool *global,
4602                                             bool print)
4603 {
4604         bool res = false;
4605         u32 cur_bit;
4606         int i;
4607
4608         for (i = 0; sig; i++) {
4609                 cur_bit = (0x1UL << i);
4610                 if (sig & cur_bit) {
4611                         switch (cur_bit) {
4612                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4613                                 if (print)
4614                                         _print_next_block((*par_num)++,
4615                                                           "MCP ROM");
4616                                 *global = true;
4617                                 res |= true;
4618                                 break;
4619                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4620                                 if (print)
4621                                         _print_next_block((*par_num)++,
4622                                                           "MCP UMP RX");
4623                                 *global = true;
4624                                 res |= true;
4625                                 break;
4626                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4627                                 if (print)
4628                                         _print_next_block((*par_num)++,
4629                                                           "MCP UMP TX");
4630                                 *global = true;
4631                                 res |= true;
4632                                 break;
4633                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4634                                 if (print)
4635                                         _print_next_block((*par_num)++,
4636                                                           "MCP SCPAD");
4637                                 /* clear latched SCPAD PATIRY from MCP */
4638                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4639                                        1UL << 10);
4640                                 break;
4641                         }
4642
4643                         /* Clear the bit */
4644                         sig &= ~cur_bit;
4645                 }
4646         }
4647
4648         return res;
4649 }
4650
4651 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4652                                             int *par_num, bool print)
4653 {
4654         u32 cur_bit;
4655         bool res;
4656         int i;
4657
4658         res = false;
4659
4660         for (i = 0; sig; i++) {
4661                 cur_bit = (0x1UL << i);
4662                 if (sig & cur_bit) {
4663                         res |= true; /* Each bit is real error! */
4664                         if (print) {
4665                                 switch (cur_bit) {
4666                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4667                                         _print_next_block((*par_num)++,
4668                                                           "PGLUE_B");
4669                                         _print_parity(bp,
4670                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4671                                         break;
4672                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4673                                         _print_next_block((*par_num)++, "ATC");
4674                                         _print_parity(bp,
4675                                                       ATC_REG_ATC_PRTY_STS);
4676                                         break;
4677                                 }
4678                         }
4679                         /* Clear the bit */
4680                         sig &= ~cur_bit;
4681                 }
4682         }
4683
4684         return res;
4685 }
4686
4687 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4688                               u32 *sig)
4689 {
4690         bool res = false;
4691
4692         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4693             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4694             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4695             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4696             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4697                 int par_num = 0;
4698                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4699                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4700                           sig[0] & HW_PRTY_ASSERT_SET_0,
4701                           sig[1] & HW_PRTY_ASSERT_SET_1,
4702                           sig[2] & HW_PRTY_ASSERT_SET_2,
4703                           sig[3] & HW_PRTY_ASSERT_SET_3,
4704                           sig[4] & HW_PRTY_ASSERT_SET_4);
4705                 if (print)
4706                         netdev_err(bp->dev,
4707                                    "Parity errors detected in blocks: ");
4708                 res |= bnx2x_check_blocks_with_parity0(bp,
4709                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4710                 res |= bnx2x_check_blocks_with_parity1(bp,
4711                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4712                 res |= bnx2x_check_blocks_with_parity2(bp,
4713                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4714                 res |= bnx2x_check_blocks_with_parity3(bp,
4715                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4716                 res |= bnx2x_check_blocks_with_parity4(bp,
4717                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4718
4719                 if (print)
4720                         pr_cont("\n");
4721         }
4722
4723         return res;
4724 }
4725
4726 /**
4727  * bnx2x_chk_parity_attn - checks for parity attentions.
4728  *
4729  * @bp:         driver handle
4730  * @global:     true if there was a global attention
4731  * @print:      show parity attention in syslog
4732  */
4733 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4734 {
4735         struct attn_route attn = { {0} };
4736         int port = BP_PORT(bp);
4737
4738         attn.sig[0] = REG_RD(bp,
4739                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4740                              port*4);
4741         attn.sig[1] = REG_RD(bp,
4742                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4743                              port*4);
4744         attn.sig[2] = REG_RD(bp,
4745                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4746                              port*4);
4747         attn.sig[3] = REG_RD(bp,
4748                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4749                              port*4);
4750         /* Since MCP attentions can't be disabled inside the block, we need to
4751          * read AEU registers to see whether they're currently disabled
4752          */
4753         attn.sig[3] &= ((REG_RD(bp,
4754                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4755                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4756                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4757                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4758
4759         if (!CHIP_IS_E1x(bp))
4760                 attn.sig[4] = REG_RD(bp,
4761                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4762                                      port*4);
4763
4764         return bnx2x_parity_attn(bp, global, print, attn.sig);
4765 }
4766
4767 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4768 {
4769         u32 val;
4770         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4771
4772                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4773                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4774                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4775                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4776                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4777                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4778                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4779                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4780                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4781                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4782                 if (val &
4783                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4784                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4785                 if (val &
4786                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4787                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4788                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4789                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4790                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4791                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4792                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4793                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4794         }
4795         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4796                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4797                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4798                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4799                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4800                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4801                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4802                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4803                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4804                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4805                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4806                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4807                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4808                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4809                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4810         }
4811
4812         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4813                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4814                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4815                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4816                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4817         }
4818 }
4819
4820 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4821 {
4822         struct attn_route attn, *group_mask;
4823         int port = BP_PORT(bp);
4824         int index;
4825         u32 reg_addr;
4826         u32 val;
4827         u32 aeu_mask;
4828         bool global = false;
4829
4830         /* need to take HW lock because MCP or other port might also
4831            try to handle this event */
4832         bnx2x_acquire_alr(bp);
4833
4834         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4835 #ifndef BNX2X_STOP_ON_ERROR
4836                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4837                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4838                 /* Disable HW interrupts */
4839                 bnx2x_int_disable(bp);
4840                 /* In case of parity errors don't handle attentions so that
4841                  * other function would "see" parity errors.
4842                  */
4843 #else
4844                 bnx2x_panic();
4845 #endif
4846                 bnx2x_release_alr(bp);
4847                 return;
4848         }
4849
4850         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4851         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4852         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4853         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4854         if (!CHIP_IS_E1x(bp))
4855                 attn.sig[4] =
4856                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4857         else
4858                 attn.sig[4] = 0;
4859
4860         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4861            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4862
4863         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4864                 if (deasserted & (1 << index)) {
4865                         group_mask = &bp->attn_group[index];
4866
4867                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4868                            index,
4869                            group_mask->sig[0], group_mask->sig[1],
4870                            group_mask->sig[2], group_mask->sig[3],
4871                            group_mask->sig[4]);
4872
4873                         bnx2x_attn_int_deasserted4(bp,
4874                                         attn.sig[4] & group_mask->sig[4]);
4875                         bnx2x_attn_int_deasserted3(bp,
4876                                         attn.sig[3] & group_mask->sig[3]);
4877                         bnx2x_attn_int_deasserted1(bp,
4878                                         attn.sig[1] & group_mask->sig[1]);
4879                         bnx2x_attn_int_deasserted2(bp,
4880                                         attn.sig[2] & group_mask->sig[2]);
4881                         bnx2x_attn_int_deasserted0(bp,
4882                                         attn.sig[0] & group_mask->sig[0]);
4883                 }
4884         }
4885
4886         bnx2x_release_alr(bp);
4887
4888         if (bp->common.int_block == INT_BLOCK_HC)
4889                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4890                             COMMAND_REG_ATTN_BITS_CLR);
4891         else
4892                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4893
4894         val = ~deasserted;
4895         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4896            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4897         REG_WR(bp, reg_addr, val);
4898
4899         if (~bp->attn_state & deasserted)
4900                 BNX2X_ERR("IGU ERROR\n");
4901
4902         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4903                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
4904
4905         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4906         aeu_mask = REG_RD(bp, reg_addr);
4907
4908         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4909            aeu_mask, deasserted);
4910         aeu_mask |= (deasserted & 0x3ff);
4911         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4912
4913         REG_WR(bp, reg_addr, aeu_mask);
4914         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4915
4916         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4917         bp->attn_state &= ~deasserted;
4918         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4919 }
4920
4921 static void bnx2x_attn_int(struct bnx2x *bp)
4922 {
4923         /* read local copy of bits */
4924         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4925                                                                 attn_bits);
4926         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4927                                                                 attn_bits_ack);
4928         u32 attn_state = bp->attn_state;
4929
4930         /* look for changed bits */
4931         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4932         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4933
4934         DP(NETIF_MSG_HW,
4935            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4936            attn_bits, attn_ack, asserted, deasserted);
4937
4938         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4939                 BNX2X_ERR("BAD attention state\n");
4940
4941         /* handle bits that were raised */
4942         if (asserted)
4943                 bnx2x_attn_int_asserted(bp, asserted);
4944
4945         if (deasserted)
4946                 bnx2x_attn_int_deasserted(bp, deasserted);
4947 }
4948
4949 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4950                       u16 index, u8 op, u8 update)
4951 {
4952         u32 igu_addr = bp->igu_base_addr;
4953         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4954         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4955                              igu_addr);
4956 }
4957
4958 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4959 {
4960         /* No memory barriers */
4961         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4962         mmiowb(); /* keep prod updates ordered */
4963 }
4964
4965 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4966                                       union event_ring_elem *elem)
4967 {
4968         u8 err = elem->message.error;
4969
4970         if (!bp->cnic_eth_dev.starting_cid  ||
4971             (cid < bp->cnic_eth_dev.starting_cid &&
4972             cid != bp->cnic_eth_dev.iscsi_l2_cid))
4973                 return 1;
4974
4975         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4976
4977         if (unlikely(err)) {
4978
4979                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4980                           cid);
4981                 bnx2x_panic_dump(bp, false);
4982         }
4983         bnx2x_cnic_cfc_comp(bp, cid, err);
4984         return 0;
4985 }
4986
4987 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4988 {
4989         struct bnx2x_mcast_ramrod_params rparam;
4990         int rc;
4991
4992         memset(&rparam, 0, sizeof(rparam));
4993
4994         rparam.mcast_obj = &bp->mcast_obj;
4995
4996         netif_addr_lock_bh(bp->dev);
4997
4998         /* Clear pending state for the last command */
4999         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5000
5001         /* If there are pending mcast commands - send them */
5002         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5003                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5004                 if (rc < 0)
5005                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5006                                   rc);
5007         }
5008
5009         netif_addr_unlock_bh(bp->dev);
5010 }
5011
5012 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5013                                             union event_ring_elem *elem)
5014 {
5015         unsigned long ramrod_flags = 0;
5016         int rc = 0;
5017         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5018         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5019
5020         /* Always push next commands out, don't wait here */
5021         __set_bit(RAMROD_CONT, &ramrod_flags);
5022
5023         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5024                             >> BNX2X_SWCID_SHIFT) {
5025         case BNX2X_FILTER_MAC_PENDING:
5026                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5027                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5028                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5029                 else
5030                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5031
5032                 break;
5033         case BNX2X_FILTER_MCAST_PENDING:
5034                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5035                 /* This is only relevant for 57710 where multicast MACs are
5036                  * configured as unicast MACs using the same ramrod.
5037                  */
5038                 bnx2x_handle_mcast_eqe(bp);
5039                 return;
5040         default:
5041                 BNX2X_ERR("Unsupported classification command: %d\n",
5042                           elem->message.data.eth_event.echo);
5043                 return;
5044         }
5045
5046         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5047
5048         if (rc < 0)
5049                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5050         else if (rc > 0)
5051                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5052 }
5053
5054 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5055
5056 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5057 {
5058         netif_addr_lock_bh(bp->dev);
5059
5060         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5061
5062         /* Send rx_mode command again if was requested */
5063         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5064                 bnx2x_set_storm_rx_mode(bp);
5065         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5066                                     &bp->sp_state))
5067                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5068         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5069                                     &bp->sp_state))
5070                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5071
5072         netif_addr_unlock_bh(bp->dev);
5073 }
5074
5075 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5076                                               union event_ring_elem *elem)
5077 {
5078         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5079                 DP(BNX2X_MSG_SP,
5080                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5081                    elem->message.data.vif_list_event.func_bit_map);
5082                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5083                         elem->message.data.vif_list_event.func_bit_map);
5084         } else if (elem->message.data.vif_list_event.echo ==
5085                    VIF_LIST_RULE_SET) {
5086                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5087                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5088         }
5089 }
5090
5091 /* called with rtnl_lock */
5092 static void bnx2x_after_function_update(struct bnx2x *bp)
5093 {
5094         int q, rc;
5095         struct bnx2x_fastpath *fp;
5096         struct bnx2x_queue_state_params queue_params = {NULL};
5097         struct bnx2x_queue_update_params *q_update_params =
5098                 &queue_params.params.update;
5099
5100         /* Send Q update command with afex vlan removal values for all Qs */
5101         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5102
5103         /* set silent vlan removal values according to vlan mode */
5104         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5105                   &q_update_params->update_flags);
5106         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5107                   &q_update_params->update_flags);
5108         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5109
5110         /* in access mode mark mask and value are 0 to strip all vlans */
5111         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5112                 q_update_params->silent_removal_value = 0;
5113                 q_update_params->silent_removal_mask = 0;
5114         } else {
5115                 q_update_params->silent_removal_value =
5116                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5117                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5118         }
5119
5120         for_each_eth_queue(bp, q) {
5121                 /* Set the appropriate Queue object */
5122                 fp = &bp->fp[q];
5123                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5124
5125                 /* send the ramrod */
5126                 rc = bnx2x_queue_state_change(bp, &queue_params);
5127                 if (rc < 0)
5128                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5129                                   q);
5130         }
5131
5132         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5133                 fp = &bp->fp[FCOE_IDX(bp)];
5134                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5135
5136                 /* clear pending completion bit */
5137                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5138
5139                 /* mark latest Q bit */
5140                 smp_mb__before_clear_bit();
5141                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5142                 smp_mb__after_clear_bit();
5143
5144                 /* send Q update ramrod for FCoE Q */
5145                 rc = bnx2x_queue_state_change(bp, &queue_params);
5146                 if (rc < 0)
5147                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5148                                   q);
5149         } else {
5150                 /* If no FCoE ring - ACK MCP now */
5151                 bnx2x_link_report(bp);
5152                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5153         }
5154 }
5155
5156 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5157         struct bnx2x *bp, u32 cid)
5158 {
5159         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5160
5161         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5162                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5163         else
5164                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5165 }
5166
5167 static void bnx2x_eq_int(struct bnx2x *bp)
5168 {
5169         u16 hw_cons, sw_cons, sw_prod;
5170         union event_ring_elem *elem;
5171         u8 echo;
5172         u32 cid;
5173         u8 opcode;
5174         int rc, spqe_cnt = 0;
5175         struct bnx2x_queue_sp_obj *q_obj;
5176         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5177         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5178
5179         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5180
5181         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5182          * when we get the next-page we need to adjust so the loop
5183          * condition below will be met. The next element is the size of a
5184          * regular element and hence incrementing by 1
5185          */
5186         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5187                 hw_cons++;
5188
5189         /* This function may never run in parallel with itself for a
5190          * specific bp, thus there is no need in "paired" read memory
5191          * barrier here.
5192          */
5193         sw_cons = bp->eq_cons;
5194         sw_prod = bp->eq_prod;
5195
5196         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5197                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5198
5199         for (; sw_cons != hw_cons;
5200               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5201
5202                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5203
5204                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5205                 if (!rc) {
5206                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5207                            rc);
5208                         goto next_spqe;
5209                 }
5210
5211                 /* elem CID originates from FW; actually LE */
5212                 cid = SW_CID((__force __le32)
5213                              elem->message.data.cfc_del_event.cid);
5214                 opcode = elem->message.opcode;
5215
5216                 /* handle eq element */
5217                 switch (opcode) {
5218                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5219                         DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5220                         bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5221                         continue;
5222
5223                 case EVENT_RING_OPCODE_STAT_QUERY:
5224                         DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5225                            "got statistics comp event %d\n",
5226                            bp->stats_comp++);
5227                         /* nothing to do with stats comp */
5228                         goto next_spqe;
5229
5230                 case EVENT_RING_OPCODE_CFC_DEL:
5231                         /* handle according to cid range */
5232                         /*
5233                          * we may want to verify here that the bp state is
5234                          * HALTING
5235                          */
5236                         DP(BNX2X_MSG_SP,
5237                            "got delete ramrod for MULTI[%d]\n", cid);
5238
5239                         if (CNIC_LOADED(bp) &&
5240                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5241                                 goto next_spqe;
5242
5243                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5244
5245                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5246                                 break;
5247
5248                         goto next_spqe;
5249
5250                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5251                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5252                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5253                         if (f_obj->complete_cmd(bp, f_obj,
5254                                                 BNX2X_F_CMD_TX_STOP))
5255                                 break;
5256                         goto next_spqe;
5257
5258                 case EVENT_RING_OPCODE_START_TRAFFIC:
5259                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5260                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5261                         if (f_obj->complete_cmd(bp, f_obj,
5262                                                 BNX2X_F_CMD_TX_START))
5263                                 break;
5264                         goto next_spqe;
5265
5266                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5267                         echo = elem->message.data.function_update_event.echo;
5268                         if (echo == SWITCH_UPDATE) {
5269                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5270                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5271                                 if (f_obj->complete_cmd(
5272                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5273                                         break;
5274
5275                         } else {
5276                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5277                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5278                                 f_obj->complete_cmd(bp, f_obj,
5279                                                     BNX2X_F_CMD_AFEX_UPDATE);
5280
5281                                 /* We will perform the Queues update from
5282                                  * sp_rtnl task as all Queue SP operations
5283                                  * should run under rtnl_lock.
5284                                  */
5285                                 smp_mb__before_clear_bit();
5286                                 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5287                                         &bp->sp_rtnl_state);
5288                                 smp_mb__after_clear_bit();
5289
5290                                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5291                         }
5292
5293                         goto next_spqe;
5294
5295                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5296                         f_obj->complete_cmd(bp, f_obj,
5297                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5298                         bnx2x_after_afex_vif_lists(bp, elem);
5299                         goto next_spqe;
5300                 case EVENT_RING_OPCODE_FUNCTION_START:
5301                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5302                            "got FUNC_START ramrod\n");
5303                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5304                                 break;
5305
5306                         goto next_spqe;
5307
5308                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5309                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5310                            "got FUNC_STOP ramrod\n");
5311                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5312                                 break;
5313
5314                         goto next_spqe;
5315                 }
5316
5317                 switch (opcode | bp->state) {
5318                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5319                       BNX2X_STATE_OPEN):
5320                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5321                       BNX2X_STATE_OPENING_WAIT4_PORT):
5322                         cid = elem->message.data.eth_event.echo &
5323                                 BNX2X_SWCID_MASK;
5324                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5325                            cid);
5326                         rss_raw->clear_pending(rss_raw);
5327                         break;
5328
5329                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5330                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5331                 case (EVENT_RING_OPCODE_SET_MAC |
5332                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5333                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5334                       BNX2X_STATE_OPEN):
5335                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5336                       BNX2X_STATE_DIAG):
5337                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5338                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5339                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5340                         bnx2x_handle_classification_eqe(bp, elem);
5341                         break;
5342
5343                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5344                       BNX2X_STATE_OPEN):
5345                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5346                       BNX2X_STATE_DIAG):
5347                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5348                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5349                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5350                         bnx2x_handle_mcast_eqe(bp);
5351                         break;
5352
5353                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5354                       BNX2X_STATE_OPEN):
5355                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5356                       BNX2X_STATE_DIAG):
5357                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5358                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5359                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5360                         bnx2x_handle_rx_mode_eqe(bp);
5361                         break;
5362                 default:
5363                         /* unknown event log error and continue */
5364                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5365                                   elem->message.opcode, bp->state);
5366                 }
5367 next_spqe:
5368                 spqe_cnt++;
5369         } /* for */
5370
5371         smp_mb__before_atomic_inc();
5372         atomic_add(spqe_cnt, &bp->eq_spq_left);
5373
5374         bp->eq_cons = sw_cons;
5375         bp->eq_prod = sw_prod;
5376         /* Make sure that above mem writes were issued towards the memory */
5377         smp_wmb();
5378
5379         /* update producer */
5380         bnx2x_update_eq_prod(bp, bp->eq_prod);
5381 }
5382
5383 static void bnx2x_sp_task(struct work_struct *work)
5384 {
5385         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5386
5387         DP(BNX2X_MSG_SP, "sp task invoked\n");
5388
5389         /* make sure the atomic interrupt_occurred has been written */
5390         smp_rmb();
5391         if (atomic_read(&bp->interrupt_occurred)) {
5392
5393                 /* what work needs to be performed? */
5394                 u16 status = bnx2x_update_dsb_idx(bp);
5395
5396                 DP(BNX2X_MSG_SP, "status %x\n", status);
5397                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5398                 atomic_set(&bp->interrupt_occurred, 0);
5399
5400                 /* HW attentions */
5401                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5402                         bnx2x_attn_int(bp);
5403                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5404                 }
5405
5406                 /* SP events: STAT_QUERY and others */
5407                 if (status & BNX2X_DEF_SB_IDX) {
5408                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5409
5410                 if (FCOE_INIT(bp) &&
5411                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5412                                 /* Prevent local bottom-halves from running as
5413                                  * we are going to change the local NAPI list.
5414                                  */
5415                                 local_bh_disable();
5416                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5417                                 local_bh_enable();
5418                         }
5419
5420                         /* Handle EQ completions */
5421                         bnx2x_eq_int(bp);
5422                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5423                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5424
5425                         status &= ~BNX2X_DEF_SB_IDX;
5426                 }
5427
5428                 /* if status is non zero then perhaps something went wrong */
5429                 if (unlikely(status))
5430                         DP(BNX2X_MSG_SP,
5431                            "got an unknown interrupt! (status 0x%x)\n", status);
5432
5433                 /* ack status block only if something was actually handled */
5434                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5435                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5436         }
5437
5438         /* must be called after the EQ processing (since eq leads to sriov
5439          * ramrod completion flows).
5440          * This flow may have been scheduled by the arrival of a ramrod
5441          * completion, or by the sriov code rescheduling itself.
5442          */
5443         bnx2x_iov_sp_task(bp);
5444
5445         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5446         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5447                                &bp->sp_state)) {
5448                 bnx2x_link_report(bp);
5449                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5450         }
5451 }
5452
5453 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5454 {
5455         struct net_device *dev = dev_instance;
5456         struct bnx2x *bp = netdev_priv(dev);
5457
5458         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5459                      IGU_INT_DISABLE, 0);
5460
5461 #ifdef BNX2X_STOP_ON_ERROR
5462         if (unlikely(bp->panic))
5463                 return IRQ_HANDLED;
5464 #endif
5465
5466         if (CNIC_LOADED(bp)) {
5467                 struct cnic_ops *c_ops;
5468
5469                 rcu_read_lock();
5470                 c_ops = rcu_dereference(bp->cnic_ops);
5471                 if (c_ops)
5472                         c_ops->cnic_handler(bp->cnic_data, NULL);
5473                 rcu_read_unlock();
5474         }
5475
5476         /* schedule sp task to perform default status block work, ack
5477          * attentions and enable interrupts.
5478          */
5479         bnx2x_schedule_sp_task(bp);
5480
5481         return IRQ_HANDLED;
5482 }
5483
5484 /* end of slow path */
5485
5486 void bnx2x_drv_pulse(struct bnx2x *bp)
5487 {
5488         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5489                  bp->fw_drv_pulse_wr_seq);
5490 }
5491
5492 static void bnx2x_timer(unsigned long data)
5493 {
5494         struct bnx2x *bp = (struct bnx2x *) data;
5495
5496         if (!netif_running(bp->dev))
5497                 return;
5498
5499         if (IS_PF(bp) &&
5500             !BP_NOMCP(bp)) {
5501                 int mb_idx = BP_FW_MB_IDX(bp);
5502                 u16 drv_pulse;
5503                 u16 mcp_pulse;
5504
5505                 ++bp->fw_drv_pulse_wr_seq;
5506                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5507                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5508                 bnx2x_drv_pulse(bp);
5509
5510                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5511                              MCP_PULSE_SEQ_MASK);
5512                 /* The delta between driver pulse and mcp response
5513                  * should not get too big. If the MFW is more than 5 pulses
5514                  * behind, we should worry about it enough to generate an error
5515                  * log.
5516                  */
5517                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5518                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5519                                   drv_pulse, mcp_pulse);
5520         }
5521
5522         if (bp->state == BNX2X_STATE_OPEN)
5523                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5524
5525         /* sample pf vf bulletin board for new posts from pf */
5526         if (IS_VF(bp))
5527                 bnx2x_timer_sriov(bp);
5528
5529         mod_timer(&bp->timer, jiffies + bp->current_interval);
5530 }
5531
5532 /* end of Statistics */
5533
5534 /* nic init */
5535
5536 /*
5537  * nic init service functions
5538  */
5539
5540 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5541 {
5542         u32 i;
5543         if (!(len%4) && !(addr%4))
5544                 for (i = 0; i < len; i += 4)
5545                         REG_WR(bp, addr + i, fill);
5546         else
5547                 for (i = 0; i < len; i++)
5548                         REG_WR8(bp, addr + i, fill);
5549 }
5550
5551 /* helper: writes FP SP data to FW - data_size in dwords */
5552 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5553                                 int fw_sb_id,
5554                                 u32 *sb_data_p,
5555                                 u32 data_size)
5556 {
5557         int index;
5558         for (index = 0; index < data_size; index++)
5559                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5560                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5561                         sizeof(u32)*index,
5562                         *(sb_data_p + index));
5563 }
5564
5565 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5566 {
5567         u32 *sb_data_p;
5568         u32 data_size = 0;
5569         struct hc_status_block_data_e2 sb_data_e2;
5570         struct hc_status_block_data_e1x sb_data_e1x;
5571
5572         /* disable the function first */
5573         if (!CHIP_IS_E1x(bp)) {
5574                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5575                 sb_data_e2.common.state = SB_DISABLED;
5576                 sb_data_e2.common.p_func.vf_valid = false;
5577                 sb_data_p = (u32 *)&sb_data_e2;
5578                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5579         } else {
5580                 memset(&sb_data_e1x, 0,
5581                        sizeof(struct hc_status_block_data_e1x));
5582                 sb_data_e1x.common.state = SB_DISABLED;
5583                 sb_data_e1x.common.p_func.vf_valid = false;
5584                 sb_data_p = (u32 *)&sb_data_e1x;
5585                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5586         }
5587         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5588
5589         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5590                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5591                         CSTORM_STATUS_BLOCK_SIZE);
5592         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5593                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5594                         CSTORM_SYNC_BLOCK_SIZE);
5595 }
5596
5597 /* helper:  writes SP SB data to FW */
5598 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5599                 struct hc_sp_status_block_data *sp_sb_data)
5600 {
5601         int func = BP_FUNC(bp);
5602         int i;
5603         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5604                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5605                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5606                         i*sizeof(u32),
5607                         *((u32 *)sp_sb_data + i));
5608 }
5609
5610 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5611 {
5612         int func = BP_FUNC(bp);
5613         struct hc_sp_status_block_data sp_sb_data;
5614         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5615
5616         sp_sb_data.state = SB_DISABLED;
5617         sp_sb_data.p_func.vf_valid = false;
5618
5619         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5620
5621         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5622                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5623                         CSTORM_SP_STATUS_BLOCK_SIZE);
5624         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5625                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5626                         CSTORM_SP_SYNC_BLOCK_SIZE);
5627 }
5628
5629 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5630                                            int igu_sb_id, int igu_seg_id)
5631 {
5632         hc_sm->igu_sb_id = igu_sb_id;
5633         hc_sm->igu_seg_id = igu_seg_id;
5634         hc_sm->timer_value = 0xFF;
5635         hc_sm->time_to_expire = 0xFFFFFFFF;
5636 }
5637
5638 /* allocates state machine ids. */
5639 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5640 {
5641         /* zero out state machine indices */
5642         /* rx indices */
5643         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5644
5645         /* tx indices */
5646         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5647         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5648         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5649         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5650
5651         /* map indices */
5652         /* rx indices */
5653         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5654                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5655
5656         /* tx indices */
5657         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5658                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5659         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5660                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5661         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5662                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5663         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5664                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5665 }
5666
5667 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5668                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5669 {
5670         int igu_seg_id;
5671
5672         struct hc_status_block_data_e2 sb_data_e2;
5673         struct hc_status_block_data_e1x sb_data_e1x;
5674         struct hc_status_block_sm  *hc_sm_p;
5675         int data_size;
5676         u32 *sb_data_p;
5677
5678         if (CHIP_INT_MODE_IS_BC(bp))
5679                 igu_seg_id = HC_SEG_ACCESS_NORM;
5680         else
5681                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5682
5683         bnx2x_zero_fp_sb(bp, fw_sb_id);
5684
5685         if (!CHIP_IS_E1x(bp)) {
5686                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5687                 sb_data_e2.common.state = SB_ENABLED;
5688                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5689                 sb_data_e2.common.p_func.vf_id = vfid;
5690                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5691                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5692                 sb_data_e2.common.same_igu_sb_1b = true;
5693                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5694                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5695                 hc_sm_p = sb_data_e2.common.state_machine;
5696                 sb_data_p = (u32 *)&sb_data_e2;
5697                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5698                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5699         } else {
5700                 memset(&sb_data_e1x, 0,
5701                        sizeof(struct hc_status_block_data_e1x));
5702                 sb_data_e1x.common.state = SB_ENABLED;
5703                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5704                 sb_data_e1x.common.p_func.vf_id = 0xff;
5705                 sb_data_e1x.common.p_func.vf_valid = false;
5706                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5707                 sb_data_e1x.common.same_igu_sb_1b = true;
5708                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5709                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5710                 hc_sm_p = sb_data_e1x.common.state_machine;
5711                 sb_data_p = (u32 *)&sb_data_e1x;
5712                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5713                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5714         }
5715
5716         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5717                                        igu_sb_id, igu_seg_id);
5718         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5719                                        igu_sb_id, igu_seg_id);
5720
5721         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5722
5723         /* write indices to HW - PCI guarantees endianity of regpairs */
5724         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5725 }
5726
5727 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5728                                      u16 tx_usec, u16 rx_usec)
5729 {
5730         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5731                                     false, rx_usec);
5732         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5733                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5734                                        tx_usec);
5735         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5736                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5737                                        tx_usec);
5738         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5739                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5740                                        tx_usec);
5741 }
5742
5743 static void bnx2x_init_def_sb(struct bnx2x *bp)
5744 {
5745         struct host_sp_status_block *def_sb = bp->def_status_blk;
5746         dma_addr_t mapping = bp->def_status_blk_mapping;
5747         int igu_sp_sb_index;
5748         int igu_seg_id;
5749         int port = BP_PORT(bp);
5750         int func = BP_FUNC(bp);
5751         int reg_offset, reg_offset_en5;
5752         u64 section;
5753         int index;
5754         struct hc_sp_status_block_data sp_sb_data;
5755         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5756
5757         if (CHIP_INT_MODE_IS_BC(bp)) {
5758                 igu_sp_sb_index = DEF_SB_IGU_ID;
5759                 igu_seg_id = HC_SEG_ACCESS_DEF;
5760         } else {
5761                 igu_sp_sb_index = bp->igu_dsb_id;
5762                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5763         }
5764
5765         /* ATTN */
5766         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5767                                             atten_status_block);
5768         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5769
5770         bp->attn_state = 0;
5771
5772         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5773                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5774         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5775                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5776         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5777                 int sindex;
5778                 /* take care of sig[0]..sig[4] */
5779                 for (sindex = 0; sindex < 4; sindex++)
5780                         bp->attn_group[index].sig[sindex] =
5781                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5782
5783                 if (!CHIP_IS_E1x(bp))
5784                         /*
5785                          * enable5 is separate from the rest of the registers,
5786                          * and therefore the address skip is 4
5787                          * and not 16 between the different groups
5788                          */
5789                         bp->attn_group[index].sig[4] = REG_RD(bp,
5790                                         reg_offset_en5 + 0x4*index);
5791                 else
5792                         bp->attn_group[index].sig[4] = 0;
5793         }
5794
5795         if (bp->common.int_block == INT_BLOCK_HC) {
5796                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5797                                      HC_REG_ATTN_MSG0_ADDR_L);
5798
5799                 REG_WR(bp, reg_offset, U64_LO(section));
5800                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5801         } else if (!CHIP_IS_E1x(bp)) {
5802                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5803                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5804         }
5805
5806         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5807                                             sp_sb);
5808
5809         bnx2x_zero_sp_sb(bp);
5810
5811         /* PCI guarantees endianity of regpairs */
5812         sp_sb_data.state                = SB_ENABLED;
5813         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5814         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5815         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5816         sp_sb_data.igu_seg_id           = igu_seg_id;
5817         sp_sb_data.p_func.pf_id         = func;
5818         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5819         sp_sb_data.p_func.vf_id         = 0xff;
5820
5821         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5822
5823         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5824 }
5825
5826 void bnx2x_update_coalesce(struct bnx2x *bp)
5827 {
5828         int i;
5829
5830         for_each_eth_queue(bp, i)
5831                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5832                                          bp->tx_ticks, bp->rx_ticks);
5833 }
5834
5835 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5836 {
5837         spin_lock_init(&bp->spq_lock);
5838         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5839
5840         bp->spq_prod_idx = 0;
5841         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5842         bp->spq_prod_bd = bp->spq;
5843         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5844 }
5845
5846 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5847 {
5848         int i;
5849         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5850                 union event_ring_elem *elem =
5851                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5852
5853                 elem->next_page.addr.hi =
5854                         cpu_to_le32(U64_HI(bp->eq_mapping +
5855                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5856                 elem->next_page.addr.lo =
5857                         cpu_to_le32(U64_LO(bp->eq_mapping +
5858                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5859         }
5860         bp->eq_cons = 0;
5861         bp->eq_prod = NUM_EQ_DESC;
5862         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5863         /* we want a warning message before it gets wrought... */
5864         atomic_set(&bp->eq_spq_left,
5865                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5866 }
5867
5868 /* called with netif_addr_lock_bh() */
5869 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5870                                unsigned long rx_mode_flags,
5871                                unsigned long rx_accept_flags,
5872                                unsigned long tx_accept_flags,
5873                                unsigned long ramrod_flags)
5874 {
5875         struct bnx2x_rx_mode_ramrod_params ramrod_param;
5876         int rc;
5877
5878         memset(&ramrod_param, 0, sizeof(ramrod_param));
5879
5880         /* Prepare ramrod parameters */
5881         ramrod_param.cid = 0;
5882         ramrod_param.cl_id = cl_id;
5883         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5884         ramrod_param.func_id = BP_FUNC(bp);
5885
5886         ramrod_param.pstate = &bp->sp_state;
5887         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5888
5889         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5890         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5891
5892         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5893
5894         ramrod_param.ramrod_flags = ramrod_flags;
5895         ramrod_param.rx_mode_flags = rx_mode_flags;
5896
5897         ramrod_param.rx_accept_flags = rx_accept_flags;
5898         ramrod_param.tx_accept_flags = tx_accept_flags;
5899
5900         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5901         if (rc < 0) {
5902                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5903                 return rc;
5904         }
5905
5906         return 0;
5907 }
5908
5909 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5910                                    unsigned long *rx_accept_flags,
5911                                    unsigned long *tx_accept_flags)
5912 {
5913         /* Clear the flags first */
5914         *rx_accept_flags = 0;
5915         *tx_accept_flags = 0;
5916
5917         switch (rx_mode) {
5918         case BNX2X_RX_MODE_NONE:
5919                 /*
5920                  * 'drop all' supersedes any accept flags that may have been
5921                  * passed to the function.
5922                  */
5923                 break;
5924         case BNX2X_RX_MODE_NORMAL:
5925                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5926                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5927                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5928
5929                 /* internal switching mode */
5930                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5931                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5932                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5933
5934                 break;
5935         case BNX2X_RX_MODE_ALLMULTI:
5936                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5937                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5938                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5939
5940                 /* internal switching mode */
5941                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5942                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5943                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5944
5945                 break;
5946         case BNX2X_RX_MODE_PROMISC:
5947                 /* According to definition of SI mode, iface in promisc mode
5948                  * should receive matched and unmatched (in resolution of port)
5949                  * unicast packets.
5950                  */
5951                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5952                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5953                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5954                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5955
5956                 /* internal switching mode */
5957                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5958                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5959
5960                 if (IS_MF_SI(bp))
5961                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5962                 else
5963                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5964
5965                 break;
5966         default:
5967                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5968                 return -EINVAL;
5969         }
5970
5971         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5972         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5973                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5974                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5975         }
5976
5977         return 0;
5978 }
5979
5980 /* called with netif_addr_lock_bh() */
5981 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5982 {
5983         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5984         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5985         int rc;
5986
5987         if (!NO_FCOE(bp))
5988                 /* Configure rx_mode of FCoE Queue */
5989                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5990
5991         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5992                                      &tx_accept_flags);
5993         if (rc)
5994                 return rc;
5995
5996         __set_bit(RAMROD_RX, &ramrod_flags);
5997         __set_bit(RAMROD_TX, &ramrod_flags);
5998
5999         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6000                                    rx_accept_flags, tx_accept_flags,
6001                                    ramrod_flags);
6002 }
6003
6004 static void bnx2x_init_internal_common(struct bnx2x *bp)
6005 {
6006         int i;
6007
6008         if (IS_MF_SI(bp))
6009                 /*
6010                  * In switch independent mode, the TSTORM needs to accept
6011                  * packets that failed classification, since approximate match
6012                  * mac addresses aren't written to NIG LLH
6013                  */
6014                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
6015                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
6016         else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
6017                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
6018                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
6019
6020         /* Zero this manually as its initialization is
6021            currently missing in the initTool */
6022         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6023                 REG_WR(bp, BAR_USTRORM_INTMEM +
6024                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6025         if (!CHIP_IS_E1x(bp)) {
6026                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6027                         CHIP_INT_MODE_IS_BC(bp) ?
6028                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6029         }
6030 }
6031
6032 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6033 {
6034         switch (load_code) {
6035         case FW_MSG_CODE_DRV_LOAD_COMMON:
6036         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6037                 bnx2x_init_internal_common(bp);
6038                 /* no break */
6039
6040         case FW_MSG_CODE_DRV_LOAD_PORT:
6041                 /* nothing to do */
6042                 /* no break */
6043
6044         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6045                 /* internal memory per function is
6046                    initialized inside bnx2x_pf_init */
6047                 break;
6048
6049         default:
6050                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6051                 break;
6052         }
6053 }
6054
6055 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6056 {
6057         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6058 }
6059
6060 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6061 {
6062         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6063 }
6064
6065 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6066 {
6067         if (CHIP_IS_E1x(fp->bp))
6068                 return BP_L_ID(fp->bp) + fp->index;
6069         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6070                 return bnx2x_fp_igu_sb_id(fp);
6071 }
6072
6073 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6074 {
6075         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6076         u8 cos;
6077         unsigned long q_type = 0;
6078         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6079         fp->rx_queue = fp_idx;
6080         fp->cid = fp_idx;
6081         fp->cl_id = bnx2x_fp_cl_id(fp);
6082         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6083         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6084         /* qZone id equals to FW (per path) client id */
6085         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6086
6087         /* init shortcut */
6088         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6089
6090         /* Setup SB indices */
6091         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6092
6093         /* Configure Queue State object */
6094         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6095         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6096
6097         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6098
6099         /* init tx data */
6100         for_each_cos_in_tx_queue(fp, cos) {
6101                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6102                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6103                                   FP_COS_TO_TXQ(fp, cos, bp),
6104                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6105                 cids[cos] = fp->txdata_ptr[cos]->cid;
6106         }
6107
6108         /* nothing more for vf to do here */
6109         if (IS_VF(bp))
6110                 return;
6111
6112         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6113                       fp->fw_sb_id, fp->igu_sb_id);
6114         bnx2x_update_fpsb_idx(fp);
6115         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6116                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6117                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6118
6119         /**
6120          * Configure classification DBs: Always enable Tx switching
6121          */
6122         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6123
6124         DP(NETIF_MSG_IFUP,
6125            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6126            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6127            fp->igu_sb_id);
6128 }
6129
6130 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6131 {
6132         int i;
6133
6134         for (i = 1; i <= NUM_TX_RINGS; i++) {
6135                 struct eth_tx_next_bd *tx_next_bd =
6136                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6137
6138                 tx_next_bd->addr_hi =
6139                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6140                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6141                 tx_next_bd->addr_lo =
6142                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6143                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6144         }
6145
6146         *txdata->tx_cons_sb = cpu_to_le16(0);
6147
6148         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6149         txdata->tx_db.data.zero_fill1 = 0;
6150         txdata->tx_db.data.prod = 0;
6151
6152         txdata->tx_pkt_prod = 0;
6153         txdata->tx_pkt_cons = 0;
6154         txdata->tx_bd_prod = 0;
6155         txdata->tx_bd_cons = 0;
6156         txdata->tx_pkt = 0;
6157 }
6158
6159 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6160 {
6161         int i;
6162
6163         for_each_tx_queue_cnic(bp, i)
6164                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6165 }
6166
6167 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6168 {
6169         int i;
6170         u8 cos;
6171
6172         for_each_eth_queue(bp, i)
6173                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6174                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6175 }
6176
6177 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6178 {
6179         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6180         unsigned long q_type = 0;
6181
6182         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6183         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6184                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6185         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6186         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6187         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6188         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6189         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6190                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6191                           fp);
6192
6193         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6194
6195         /* qZone id equals to FW (per path) client id */
6196         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6197         /* init shortcut */
6198         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6199                 bnx2x_rx_ustorm_prods_offset(fp);
6200
6201         /* Configure Queue State object */
6202         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6203         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6204
6205         /* No multi-CoS for FCoE L2 client */
6206         BUG_ON(fp->max_cos != 1);
6207
6208         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6209                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6210                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6211
6212         DP(NETIF_MSG_IFUP,
6213            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6214            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6215            fp->igu_sb_id);
6216 }
6217
6218 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6219 {
6220         if (!NO_FCOE(bp))
6221                 bnx2x_init_fcoe_fp(bp);
6222
6223         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6224                       BNX2X_VF_ID_INVALID, false,
6225                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6226
6227         /* ensure status block indices were read */
6228         rmb();
6229         bnx2x_init_rx_rings_cnic(bp);
6230         bnx2x_init_tx_rings_cnic(bp);
6231
6232         /* flush all */
6233         mb();
6234         mmiowb();
6235 }
6236
6237 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6238 {
6239         int i;
6240
6241         /* Setup NIC internals and enable interrupts */
6242         for_each_eth_queue(bp, i)
6243                 bnx2x_init_eth_fp(bp, i);
6244
6245         /* ensure status block indices were read */
6246         rmb();
6247         bnx2x_init_rx_rings(bp);
6248         bnx2x_init_tx_rings(bp);
6249
6250         if (IS_PF(bp)) {
6251                 /* Initialize MOD_ABS interrupts */
6252                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6253                                        bp->common.shmem_base,
6254                                        bp->common.shmem2_base, BP_PORT(bp));
6255
6256                 /* initialize the default status block and sp ring */
6257                 bnx2x_init_def_sb(bp);
6258                 bnx2x_update_dsb_idx(bp);
6259                 bnx2x_init_sp_ring(bp);
6260         } else {
6261                 bnx2x_memset_stats(bp);
6262         }
6263 }
6264
6265 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6266 {
6267         bnx2x_init_eq_ring(bp);
6268         bnx2x_init_internal(bp, load_code);
6269         bnx2x_pf_init(bp);
6270         bnx2x_stats_init(bp);
6271
6272         /* flush all before enabling interrupts */
6273         mb();
6274         mmiowb();
6275
6276         bnx2x_int_enable(bp);
6277
6278         /* Check for SPIO5 */
6279         bnx2x_attn_int_deasserted0(bp,
6280                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6281                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6282 }
6283
6284 /* gzip service functions */
6285 static int bnx2x_gunzip_init(struct bnx2x *bp)
6286 {
6287         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6288                                             &bp->gunzip_mapping, GFP_KERNEL);
6289         if (bp->gunzip_buf  == NULL)
6290                 goto gunzip_nomem1;
6291
6292         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6293         if (bp->strm  == NULL)
6294                 goto gunzip_nomem2;
6295
6296         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6297         if (bp->strm->workspace == NULL)
6298                 goto gunzip_nomem3;
6299
6300         return 0;
6301
6302 gunzip_nomem3:
6303         kfree(bp->strm);
6304         bp->strm = NULL;
6305
6306 gunzip_nomem2:
6307         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6308                           bp->gunzip_mapping);
6309         bp->gunzip_buf = NULL;
6310
6311 gunzip_nomem1:
6312         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6313         return -ENOMEM;
6314 }
6315
6316 static void bnx2x_gunzip_end(struct bnx2x *bp)
6317 {
6318         if (bp->strm) {
6319                 vfree(bp->strm->workspace);
6320                 kfree(bp->strm);
6321                 bp->strm = NULL;
6322         }
6323
6324         if (bp->gunzip_buf) {
6325                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6326                                   bp->gunzip_mapping);
6327                 bp->gunzip_buf = NULL;
6328         }
6329 }
6330
6331 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6332 {
6333         int n, rc;
6334
6335         /* check gzip header */
6336         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6337                 BNX2X_ERR("Bad gzip header\n");
6338                 return -EINVAL;
6339         }
6340
6341         n = 10;
6342
6343 #define FNAME                           0x8
6344
6345         if (zbuf[3] & FNAME)
6346                 while ((zbuf[n++] != 0) && (n < len));
6347
6348         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6349         bp->strm->avail_in = len - n;
6350         bp->strm->next_out = bp->gunzip_buf;
6351         bp->strm->avail_out = FW_BUF_SIZE;
6352
6353         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6354         if (rc != Z_OK)
6355                 return rc;
6356
6357         rc = zlib_inflate(bp->strm, Z_FINISH);
6358         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6359                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6360                            bp->strm->msg);
6361
6362         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6363         if (bp->gunzip_outlen & 0x3)
6364                 netdev_err(bp->dev,
6365                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6366                                 bp->gunzip_outlen);
6367         bp->gunzip_outlen >>= 2;
6368
6369         zlib_inflateEnd(bp->strm);
6370
6371         if (rc == Z_STREAM_END)
6372                 return 0;
6373
6374         return rc;
6375 }
6376
6377 /* nic load/unload */
6378
6379 /*
6380  * General service functions
6381  */
6382
6383 /* send a NIG loopback debug packet */
6384 static void bnx2x_lb_pckt(struct bnx2x *bp)
6385 {
6386         u32 wb_write[3];
6387
6388         /* Ethernet source and destination addresses */
6389         wb_write[0] = 0x55555555;
6390         wb_write[1] = 0x55555555;
6391         wb_write[2] = 0x20;             /* SOP */
6392         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6393
6394         /* NON-IP protocol */
6395         wb_write[0] = 0x09000000;
6396         wb_write[1] = 0x55555555;
6397         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6398         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6399 }
6400
6401 /* some of the internal memories
6402  * are not directly readable from the driver
6403  * to test them we send debug packets
6404  */
6405 static int bnx2x_int_mem_test(struct bnx2x *bp)
6406 {
6407         int factor;
6408         int count, i;
6409         u32 val = 0;
6410
6411         if (CHIP_REV_IS_FPGA(bp))
6412                 factor = 120;
6413         else if (CHIP_REV_IS_EMUL(bp))
6414                 factor = 200;
6415         else
6416                 factor = 1;
6417
6418         /* Disable inputs of parser neighbor blocks */
6419         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6420         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6421         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6422         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6423
6424         /*  Write 0 to parser credits for CFC search request */
6425         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6426
6427         /* send Ethernet packet */
6428         bnx2x_lb_pckt(bp);
6429
6430         /* TODO do i reset NIG statistic? */
6431         /* Wait until NIG register shows 1 packet of size 0x10 */
6432         count = 1000 * factor;
6433         while (count) {
6434
6435                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6436                 val = *bnx2x_sp(bp, wb_data[0]);
6437                 if (val == 0x10)
6438                         break;
6439
6440                 usleep_range(10000, 20000);
6441                 count--;
6442         }
6443         if (val != 0x10) {
6444                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6445                 return -1;
6446         }
6447
6448         /* Wait until PRS register shows 1 packet */
6449         count = 1000 * factor;
6450         while (count) {
6451                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6452                 if (val == 1)
6453                         break;
6454
6455                 usleep_range(10000, 20000);
6456                 count--;
6457         }
6458         if (val != 0x1) {
6459                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6460                 return -2;
6461         }
6462
6463         /* Reset and init BRB, PRS */
6464         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6465         msleep(50);
6466         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6467         msleep(50);
6468         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6469         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6470
6471         DP(NETIF_MSG_HW, "part2\n");
6472
6473         /* Disable inputs of parser neighbor blocks */
6474         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6475         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6476         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6477         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6478
6479         /* Write 0 to parser credits for CFC search request */
6480         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6481
6482         /* send 10 Ethernet packets */
6483         for (i = 0; i < 10; i++)
6484                 bnx2x_lb_pckt(bp);
6485
6486         /* Wait until NIG register shows 10 + 1
6487            packets of size 11*0x10 = 0xb0 */
6488         count = 1000 * factor;
6489         while (count) {
6490
6491                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6492                 val = *bnx2x_sp(bp, wb_data[0]);
6493                 if (val == 0xb0)
6494                         break;
6495
6496                 usleep_range(10000, 20000);
6497                 count--;
6498         }
6499         if (val != 0xb0) {
6500                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6501                 return -3;
6502         }
6503
6504         /* Wait until PRS register shows 2 packets */
6505         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6506         if (val != 2)
6507                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6508
6509         /* Write 1 to parser credits for CFC search request */
6510         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6511
6512         /* Wait until PRS register shows 3 packets */
6513         msleep(10 * factor);
6514         /* Wait until NIG register shows 1 packet of size 0x10 */
6515         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6516         if (val != 3)
6517                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6518
6519         /* clear NIG EOP FIFO */
6520         for (i = 0; i < 11; i++)
6521                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6522         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6523         if (val != 1) {
6524                 BNX2X_ERR("clear of NIG failed\n");
6525                 return -4;
6526         }
6527
6528         /* Reset and init BRB, PRS, NIG */
6529         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6530         msleep(50);
6531         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6532         msleep(50);
6533         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6534         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6535         if (!CNIC_SUPPORT(bp))
6536                 /* set NIC mode */
6537                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6538
6539         /* Enable inputs of parser neighbor blocks */
6540         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6541         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6542         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6543         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6544
6545         DP(NETIF_MSG_HW, "done\n");
6546
6547         return 0; /* OK */
6548 }
6549
6550 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6551 {
6552         u32 val;
6553
6554         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6555         if (!CHIP_IS_E1x(bp))
6556                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6557         else
6558                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6559         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6560         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6561         /*
6562          * mask read length error interrupts in brb for parser
6563          * (parsing unit and 'checksum and crc' unit)
6564          * these errors are legal (PU reads fixed length and CAC can cause
6565          * read length error on truncated packets)
6566          */
6567         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6568         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6569         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6570         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6571         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6572         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6573 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6574 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6575         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6576         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6577         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6578 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6579 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6580         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6581         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6582         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6583         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6584 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6585 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6586
6587         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6588                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6589                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6590         if (!CHIP_IS_E1x(bp))
6591                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6592                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6593         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6594
6595         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6596         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6597         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6598 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6599
6600         if (!CHIP_IS_E1x(bp))
6601                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6602                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6603
6604         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6605         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6606 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6607         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6608 }
6609
6610 static void bnx2x_reset_common(struct bnx2x *bp)
6611 {
6612         u32 val = 0x1400;
6613
6614         /* reset_common */
6615         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6616                0xd3ffff7f);
6617
6618         if (CHIP_IS_E3(bp)) {
6619                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6620                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6621         }
6622
6623         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6624 }
6625
6626 static void bnx2x_setup_dmae(struct bnx2x *bp)
6627 {
6628         bp->dmae_ready = 0;
6629         spin_lock_init(&bp->dmae_lock);
6630 }
6631
6632 static void bnx2x_init_pxp(struct bnx2x *bp)
6633 {
6634         u16 devctl;
6635         int r_order, w_order;
6636
6637         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6638         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6639         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6640         if (bp->mrrs == -1)
6641                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6642         else {
6643                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6644                 r_order = bp->mrrs;
6645         }
6646
6647         bnx2x_init_pxp_arb(bp, r_order, w_order);
6648 }
6649
6650 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6651 {
6652         int is_required;
6653         u32 val;
6654         int port;
6655
6656         if (BP_NOMCP(bp))
6657                 return;
6658
6659         is_required = 0;
6660         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6661               SHARED_HW_CFG_FAN_FAILURE_MASK;
6662
6663         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6664                 is_required = 1;
6665
6666         /*
6667          * The fan failure mechanism is usually related to the PHY type since
6668          * the power consumption of the board is affected by the PHY. Currently,
6669          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6670          */
6671         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6672                 for (port = PORT_0; port < PORT_MAX; port++) {
6673                         is_required |=
6674                                 bnx2x_fan_failure_det_req(
6675                                         bp,
6676                                         bp->common.shmem_base,
6677                                         bp->common.shmem2_base,
6678                                         port);
6679                 }
6680
6681         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6682
6683         if (is_required == 0)
6684                 return;
6685
6686         /* Fan failure is indicated by SPIO 5 */
6687         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6688
6689         /* set to active low mode */
6690         val = REG_RD(bp, MISC_REG_SPIO_INT);
6691         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6692         REG_WR(bp, MISC_REG_SPIO_INT, val);
6693
6694         /* enable interrupt to signal the IGU */
6695         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6696         val |= MISC_SPIO_SPIO5;
6697         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6698 }
6699
6700 void bnx2x_pf_disable(struct bnx2x *bp)
6701 {
6702         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6703         val &= ~IGU_PF_CONF_FUNC_EN;
6704
6705         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6706         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6707         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6708 }
6709
6710 static void bnx2x__common_init_phy(struct bnx2x *bp)
6711 {
6712         u32 shmem_base[2], shmem2_base[2];
6713         /* Avoid common init in case MFW supports LFA */
6714         if (SHMEM2_RD(bp, size) >
6715             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6716                 return;
6717         shmem_base[0] =  bp->common.shmem_base;
6718         shmem2_base[0] = bp->common.shmem2_base;
6719         if (!CHIP_IS_E1x(bp)) {
6720                 shmem_base[1] =
6721                         SHMEM2_RD(bp, other_shmem_base_addr);
6722                 shmem2_base[1] =
6723                         SHMEM2_RD(bp, other_shmem2_base_addr);
6724         }
6725         bnx2x_acquire_phy_lock(bp);
6726         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6727                               bp->common.chip_id);
6728         bnx2x_release_phy_lock(bp);
6729 }
6730
6731 /**
6732  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6733  *
6734  * @bp:         driver handle
6735  */
6736 static int bnx2x_init_hw_common(struct bnx2x *bp)
6737 {
6738         u32 val;
6739
6740         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6741
6742         /*
6743          * take the RESET lock to protect undi_unload flow from accessing
6744          * registers while we're resetting the chip
6745          */
6746         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6747
6748         bnx2x_reset_common(bp);
6749         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6750
6751         val = 0xfffc;
6752         if (CHIP_IS_E3(bp)) {
6753                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6754                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6755         }
6756         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6757
6758         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6759
6760         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6761
6762         if (!CHIP_IS_E1x(bp)) {
6763                 u8 abs_func_id;
6764
6765                 /**
6766                  * 4-port mode or 2-port mode we need to turn of master-enable
6767                  * for everyone, after that, turn it back on for self.
6768                  * so, we disregard multi-function or not, and always disable
6769                  * for all functions on the given path, this means 0,2,4,6 for
6770                  * path 0 and 1,3,5,7 for path 1
6771                  */
6772                 for (abs_func_id = BP_PATH(bp);
6773                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6774                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6775                                 REG_WR(bp,
6776                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6777                                     1);
6778                                 continue;
6779                         }
6780
6781                         bnx2x_pretend_func(bp, abs_func_id);
6782                         /* clear pf enable */
6783                         bnx2x_pf_disable(bp);
6784                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6785                 }
6786         }
6787
6788         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6789         if (CHIP_IS_E1(bp)) {
6790                 /* enable HW interrupt from PXP on USDM overflow
6791                    bit 16 on INT_MASK_0 */
6792                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6793         }
6794
6795         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6796         bnx2x_init_pxp(bp);
6797
6798 #ifdef __BIG_ENDIAN
6799         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6800         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6801         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6802         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6803         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6804         /* make sure this value is 0 */
6805         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6806
6807 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6808         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6809         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6810         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6811         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6812 #endif
6813
6814         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6815
6816         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6817                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6818
6819         /* let the HW do it's magic ... */
6820         msleep(100);
6821         /* finish PXP init */
6822         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6823         if (val != 1) {
6824                 BNX2X_ERR("PXP2 CFG failed\n");
6825                 return -EBUSY;
6826         }
6827         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6828         if (val != 1) {
6829                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6830                 return -EBUSY;
6831         }
6832
6833         /* Timers bug workaround E2 only. We need to set the entire ILT to
6834          * have entries with value "0" and valid bit on.
6835          * This needs to be done by the first PF that is loaded in a path
6836          * (i.e. common phase)
6837          */
6838         if (!CHIP_IS_E1x(bp)) {
6839 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6840  * (i.e. vnic3) to start even if it is marked as "scan-off".
6841  * This occurs when a different function (func2,3) is being marked
6842  * as "scan-off". Real-life scenario for example: if a driver is being
6843  * load-unloaded while func6,7 are down. This will cause the timer to access
6844  * the ilt, translate to a logical address and send a request to read/write.
6845  * Since the ilt for the function that is down is not valid, this will cause
6846  * a translation error which is unrecoverable.
6847  * The Workaround is intended to make sure that when this happens nothing fatal
6848  * will occur. The workaround:
6849  *      1.  First PF driver which loads on a path will:
6850  *              a.  After taking the chip out of reset, by using pretend,
6851  *                  it will write "0" to the following registers of
6852  *                  the other vnics.
6853  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6854  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6855  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6856  *                  And for itself it will write '1' to
6857  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6858  *                  dmae-operations (writing to pram for example.)
6859  *                  note: can be done for only function 6,7 but cleaner this
6860  *                        way.
6861  *              b.  Write zero+valid to the entire ILT.
6862  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6863  *                  VNIC3 (of that port). The range allocated will be the
6864  *                  entire ILT. This is needed to prevent  ILT range error.
6865  *      2.  Any PF driver load flow:
6866  *              a.  ILT update with the physical addresses of the allocated
6867  *                  logical pages.
6868  *              b.  Wait 20msec. - note that this timeout is needed to make
6869  *                  sure there are no requests in one of the PXP internal
6870  *                  queues with "old" ILT addresses.
6871  *              c.  PF enable in the PGLC.
6872  *              d.  Clear the was_error of the PF in the PGLC. (could have
6873  *                  occurred while driver was down)
6874  *              e.  PF enable in the CFC (WEAK + STRONG)
6875  *              f.  Timers scan enable
6876  *      3.  PF driver unload flow:
6877  *              a.  Clear the Timers scan_en.
6878  *              b.  Polling for scan_on=0 for that PF.
6879  *              c.  Clear the PF enable bit in the PXP.
6880  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
6881  *              e.  Write zero+valid to all ILT entries (The valid bit must
6882  *                  stay set)
6883  *              f.  If this is VNIC 3 of a port then also init
6884  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
6885  *                  to the last entry in the ILT.
6886  *
6887  *      Notes:
6888  *      Currently the PF error in the PGLC is non recoverable.
6889  *      In the future the there will be a recovery routine for this error.
6890  *      Currently attention is masked.
6891  *      Having an MCP lock on the load/unload process does not guarantee that
6892  *      there is no Timer disable during Func6/7 enable. This is because the
6893  *      Timers scan is currently being cleared by the MCP on FLR.
6894  *      Step 2.d can be done only for PF6/7 and the driver can also check if
6895  *      there is error before clearing it. But the flow above is simpler and
6896  *      more general.
6897  *      All ILT entries are written by zero+valid and not just PF6/7
6898  *      ILT entries since in the future the ILT entries allocation for
6899  *      PF-s might be dynamic.
6900  */
6901                 struct ilt_client_info ilt_cli;
6902                 struct bnx2x_ilt ilt;
6903                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6904                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6905
6906                 /* initialize dummy TM client */
6907                 ilt_cli.start = 0;
6908                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6909                 ilt_cli.client_num = ILT_CLIENT_TM;
6910
6911                 /* Step 1: set zeroes to all ilt page entries with valid bit on
6912                  * Step 2: set the timers first/last ilt entry to point
6913                  * to the entire range to prevent ILT range error for 3rd/4th
6914                  * vnic (this code assumes existence of the vnic)
6915                  *
6916                  * both steps performed by call to bnx2x_ilt_client_init_op()
6917                  * with dummy TM client
6918                  *
6919                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6920                  * and his brother are split registers
6921                  */
6922                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6923                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6924                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6925
6926                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6927                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6928                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6929         }
6930
6931         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6932         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6933
6934         if (!CHIP_IS_E1x(bp)) {
6935                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6936                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6937                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6938
6939                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6940
6941                 /* let the HW do it's magic ... */
6942                 do {
6943                         msleep(200);
6944                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6945                 } while (factor-- && (val != 1));
6946
6947                 if (val != 1) {
6948                         BNX2X_ERR("ATC_INIT failed\n");
6949                         return -EBUSY;
6950                 }
6951         }
6952
6953         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6954
6955         bnx2x_iov_init_dmae(bp);
6956
6957         /* clean the DMAE memory */
6958         bp->dmae_ready = 1;
6959         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6960
6961         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6962
6963         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6964
6965         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6966
6967         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6968
6969         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6970         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6971         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6972         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6973
6974         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6975
6976         /* QM queues pointers table */
6977         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6978
6979         /* soft reset pulse */
6980         REG_WR(bp, QM_REG_SOFT_RESET, 1);
6981         REG_WR(bp, QM_REG_SOFT_RESET, 0);
6982
6983         if (CNIC_SUPPORT(bp))
6984                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6985
6986         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6987
6988         if (!CHIP_REV_IS_SLOW(bp))
6989                 /* enable hw interrupt from doorbell Q */
6990                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6991
6992         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6993
6994         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6995         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6996
6997         if (!CHIP_IS_E1(bp))
6998                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6999
7000         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7001                 if (IS_MF_AFEX(bp)) {
7002                         /* configure that VNTag and VLAN headers must be
7003                          * received in afex mode
7004                          */
7005                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7006                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7007                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7008                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7009                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7010                 } else {
7011                         /* Bit-map indicating which L2 hdrs may appear
7012                          * after the basic Ethernet header
7013                          */
7014                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7015                                bp->path_has_ovlan ? 7 : 6);
7016                 }
7017         }
7018
7019         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7020         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7021         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7022         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7023
7024         if (!CHIP_IS_E1x(bp)) {
7025                 /* reset VFC memories */
7026                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7027                            VFC_MEMORIES_RST_REG_CAM_RST |
7028                            VFC_MEMORIES_RST_REG_RAM_RST);
7029                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7030                            VFC_MEMORIES_RST_REG_CAM_RST |
7031                            VFC_MEMORIES_RST_REG_RAM_RST);
7032
7033                 msleep(20);
7034         }
7035
7036         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7037         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7038         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7039         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7040
7041         /* sync semi rtc */
7042         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7043                0x80000000);
7044         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7045                0x80000000);
7046
7047         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7048         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7049         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7050
7051         if (!CHIP_IS_E1x(bp)) {
7052                 if (IS_MF_AFEX(bp)) {
7053                         /* configure that VNTag and VLAN headers must be
7054                          * sent in afex mode
7055                          */
7056                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7057                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7058                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7059                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7060                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7061                 } else {
7062                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7063                                bp->path_has_ovlan ? 7 : 6);
7064                 }
7065         }
7066
7067         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7068
7069         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7070
7071         if (CNIC_SUPPORT(bp)) {
7072                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7073                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7074                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7075                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7076                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7077                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7078                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7079                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7080                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7081                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7082         }
7083         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7084
7085         if (sizeof(union cdu_context) != 1024)
7086                 /* we currently assume that a context is 1024 bytes */
7087                 dev_alert(&bp->pdev->dev,
7088                           "please adjust the size of cdu_context(%ld)\n",
7089                           (long)sizeof(union cdu_context));
7090
7091         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7092         val = (4 << 24) + (0 << 12) + 1024;
7093         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7094
7095         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7096         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7097         /* enable context validation interrupt from CFC */
7098         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7099
7100         /* set the thresholds to prevent CFC/CDU race */
7101         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7102
7103         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7104
7105         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7106                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7107
7108         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7109         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7110
7111         /* Reset PCIE errors for debug */
7112         REG_WR(bp, 0x2814, 0xffffffff);
7113         REG_WR(bp, 0x3820, 0xffffffff);
7114
7115         if (!CHIP_IS_E1x(bp)) {
7116                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7117                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7118                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7119                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7120                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7121                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7122                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7123                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7124                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7125                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7126                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7127         }
7128
7129         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7130         if (!CHIP_IS_E1(bp)) {
7131                 /* in E3 this done in per-port section */
7132                 if (!CHIP_IS_E3(bp))
7133                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7134         }
7135         if (CHIP_IS_E1H(bp))
7136                 /* not applicable for E2 (and above ...) */
7137                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7138
7139         if (CHIP_REV_IS_SLOW(bp))
7140                 msleep(200);
7141
7142         /* finish CFC init */
7143         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7144         if (val != 1) {
7145                 BNX2X_ERR("CFC LL_INIT failed\n");
7146                 return -EBUSY;
7147         }
7148         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7149         if (val != 1) {
7150                 BNX2X_ERR("CFC AC_INIT failed\n");
7151                 return -EBUSY;
7152         }
7153         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7154         if (val != 1) {
7155                 BNX2X_ERR("CFC CAM_INIT failed\n");
7156                 return -EBUSY;
7157         }
7158         REG_WR(bp, CFC_REG_DEBUG0, 0);
7159
7160         if (CHIP_IS_E1(bp)) {
7161                 /* read NIG statistic
7162                    to see if this is our first up since powerup */
7163                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7164                 val = *bnx2x_sp(bp, wb_data[0]);
7165
7166                 /* do internal memory self test */
7167                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7168                         BNX2X_ERR("internal mem self test failed\n");
7169                         return -EBUSY;
7170                 }
7171         }
7172
7173         bnx2x_setup_fan_failure_detection(bp);
7174
7175         /* clear PXP2 attentions */
7176         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7177
7178         bnx2x_enable_blocks_attention(bp);
7179         bnx2x_enable_blocks_parity(bp);
7180
7181         if (!BP_NOMCP(bp)) {
7182                 if (CHIP_IS_E1x(bp))
7183                         bnx2x__common_init_phy(bp);
7184         } else
7185                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7186
7187         return 0;
7188 }
7189
7190 /**
7191  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7192  *
7193  * @bp:         driver handle
7194  */
7195 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7196 {
7197         int rc = bnx2x_init_hw_common(bp);
7198
7199         if (rc)
7200                 return rc;
7201
7202         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7203         if (!BP_NOMCP(bp))
7204                 bnx2x__common_init_phy(bp);
7205
7206         return 0;
7207 }
7208
7209 static int bnx2x_init_hw_port(struct bnx2x *bp)
7210 {
7211         int port = BP_PORT(bp);
7212         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7213         u32 low, high;
7214         u32 val, reg;
7215
7216         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7217
7218         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7219
7220         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7221         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7222         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7223
7224         /* Timers bug workaround: disables the pf_master bit in pglue at
7225          * common phase, we need to enable it here before any dmae access are
7226          * attempted. Therefore we manually added the enable-master to the
7227          * port phase (it also happens in the function phase)
7228          */
7229         if (!CHIP_IS_E1x(bp))
7230                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7231
7232         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7233         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7234         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7235         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7236
7237         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7238         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7239         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7240         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7241
7242         /* QM cid (connection) count */
7243         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7244
7245         if (CNIC_SUPPORT(bp)) {
7246                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7247                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7248                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7249         }
7250
7251         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7252
7253         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7254
7255         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7256
7257                 if (IS_MF(bp))
7258                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7259                 else if (bp->dev->mtu > 4096) {
7260                         if (bp->flags & ONE_PORT_FLAG)
7261                                 low = 160;
7262                         else {
7263                                 val = bp->dev->mtu;
7264                                 /* (24*1024 + val*4)/256 */
7265                                 low = 96 + (val/64) +
7266                                                 ((val % 64) ? 1 : 0);
7267                         }
7268                 } else
7269                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7270                 high = low + 56;        /* 14*1024/256 */
7271                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7272                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7273         }
7274
7275         if (CHIP_MODE_IS_4_PORT(bp))
7276                 REG_WR(bp, (BP_PORT(bp) ?
7277                             BRB1_REG_MAC_GUARANTIED_1 :
7278                             BRB1_REG_MAC_GUARANTIED_0), 40);
7279
7280         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7281         if (CHIP_IS_E3B0(bp)) {
7282                 if (IS_MF_AFEX(bp)) {
7283                         /* configure headers for AFEX mode */
7284                         REG_WR(bp, BP_PORT(bp) ?
7285                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7286                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7287                         REG_WR(bp, BP_PORT(bp) ?
7288                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7289                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7290                         REG_WR(bp, BP_PORT(bp) ?
7291                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7292                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7293                 } else {
7294                         /* Ovlan exists only if we are in multi-function +
7295                          * switch-dependent mode, in switch-independent there
7296                          * is no ovlan headers
7297                          */
7298                         REG_WR(bp, BP_PORT(bp) ?
7299                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7300                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7301                                (bp->path_has_ovlan ? 7 : 6));
7302                 }
7303         }
7304
7305         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7306         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7307         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7308         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7309
7310         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7311         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7312         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7313         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7314
7315         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7316         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7317
7318         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7319
7320         if (CHIP_IS_E1x(bp)) {
7321                 /* configure PBF to work without PAUSE mtu 9000 */
7322                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7323
7324                 /* update threshold */
7325                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7326                 /* update init credit */
7327                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7328
7329                 /* probe changes */
7330                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7331                 udelay(50);
7332                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7333         }
7334
7335         if (CNIC_SUPPORT(bp))
7336                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7337
7338         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7339         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7340
7341         if (CHIP_IS_E1(bp)) {
7342                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7343                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7344         }
7345         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7346
7347         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7348
7349         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7350         /* init aeu_mask_attn_func_0/1:
7351          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7352          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7353          *             bits 4-7 are used for "per vn group attention" */
7354         val = IS_MF(bp) ? 0xF7 : 0x7;
7355         /* Enable DCBX attention for all but E1 */
7356         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7357         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7358
7359         /* SCPAD_PARITY should NOT trigger close the gates */
7360         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7361         REG_WR(bp, reg,
7362                REG_RD(bp, reg) &
7363                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7364
7365         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7366         REG_WR(bp, reg,
7367                REG_RD(bp, reg) &
7368                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7369
7370         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7371
7372         if (!CHIP_IS_E1x(bp)) {
7373                 /* Bit-map indicating which L2 hdrs may appear after the
7374                  * basic Ethernet header
7375                  */
7376                 if (IS_MF_AFEX(bp))
7377                         REG_WR(bp, BP_PORT(bp) ?
7378                                NIG_REG_P1_HDRS_AFTER_BASIC :
7379                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7380                 else
7381                         REG_WR(bp, BP_PORT(bp) ?
7382                                NIG_REG_P1_HDRS_AFTER_BASIC :
7383                                NIG_REG_P0_HDRS_AFTER_BASIC,
7384                                IS_MF_SD(bp) ? 7 : 6);
7385
7386                 if (CHIP_IS_E3(bp))
7387                         REG_WR(bp, BP_PORT(bp) ?
7388                                    NIG_REG_LLH1_MF_MODE :
7389                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7390         }
7391         if (!CHIP_IS_E3(bp))
7392                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7393
7394         if (!CHIP_IS_E1(bp)) {
7395                 /* 0x2 disable mf_ov, 0x1 enable */
7396                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7397                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7398
7399                 if (!CHIP_IS_E1x(bp)) {
7400                         val = 0;
7401                         switch (bp->mf_mode) {
7402                         case MULTI_FUNCTION_SD:
7403                                 val = 1;
7404                                 break;
7405                         case MULTI_FUNCTION_SI:
7406                         case MULTI_FUNCTION_AFEX:
7407                                 val = 2;
7408                                 break;
7409                         }
7410
7411                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7412                                                   NIG_REG_LLH0_CLS_TYPE), val);
7413                 }
7414                 {
7415                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7416                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7417                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7418                 }
7419         }
7420
7421         /* If SPIO5 is set to generate interrupts, enable it for this port */
7422         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7423         if (val & MISC_SPIO_SPIO5) {
7424                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7425                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7426                 val = REG_RD(bp, reg_addr);
7427                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7428                 REG_WR(bp, reg_addr, val);
7429         }
7430
7431         return 0;
7432 }
7433
7434 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7435 {
7436         int reg;
7437         u32 wb_write[2];
7438
7439         if (CHIP_IS_E1(bp))
7440                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7441         else
7442                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7443
7444         wb_write[0] = ONCHIP_ADDR1(addr);
7445         wb_write[1] = ONCHIP_ADDR2(addr);
7446         REG_WR_DMAE(bp, reg, wb_write, 2);
7447 }
7448
7449 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7450 {
7451         u32 data, ctl, cnt = 100;
7452         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7453         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7454         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7455         u32 sb_bit =  1 << (idu_sb_id%32);
7456         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7457         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7458
7459         /* Not supported in BC mode */
7460         if (CHIP_INT_MODE_IS_BC(bp))
7461                 return;
7462
7463         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7464                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7465                 IGU_REGULAR_CLEANUP_SET                         |
7466                 IGU_REGULAR_BCLEANUP;
7467
7468         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7469               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7470               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7471
7472         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7473                          data, igu_addr_data);
7474         REG_WR(bp, igu_addr_data, data);
7475         mmiowb();
7476         barrier();
7477         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7478                           ctl, igu_addr_ctl);
7479         REG_WR(bp, igu_addr_ctl, ctl);
7480         mmiowb();
7481         barrier();
7482
7483         /* wait for clean up to finish */
7484         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7485                 msleep(20);
7486
7487         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7488                 DP(NETIF_MSG_HW,
7489                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7490                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7491         }
7492 }
7493
7494 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7495 {
7496         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7497 }
7498
7499 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7500 {
7501         u32 i, base = FUNC_ILT_BASE(func);
7502         for (i = base; i < base + ILT_PER_FUNC; i++)
7503                 bnx2x_ilt_wr(bp, i, 0);
7504 }
7505
7506 static void bnx2x_init_searcher(struct bnx2x *bp)
7507 {
7508         int port = BP_PORT(bp);
7509         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7510         /* T1 hash bits value determines the T1 number of entries */
7511         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7512 }
7513
7514 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7515 {
7516         int rc;
7517         struct bnx2x_func_state_params func_params = {NULL};
7518         struct bnx2x_func_switch_update_params *switch_update_params =
7519                 &func_params.params.switch_update;
7520
7521         /* Prepare parameters for function state transitions */
7522         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7523         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7524
7525         func_params.f_obj = &bp->func_obj;
7526         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7527
7528         /* Function parameters */
7529         switch_update_params->suspend = suspend;
7530
7531         rc = bnx2x_func_state_change(bp, &func_params);
7532
7533         return rc;
7534 }
7535
7536 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7537 {
7538         int rc, i, port = BP_PORT(bp);
7539         int vlan_en = 0, mac_en[NUM_MACS];
7540
7541         /* Close input from network */
7542         if (bp->mf_mode == SINGLE_FUNCTION) {
7543                 bnx2x_set_rx_filter(&bp->link_params, 0);
7544         } else {
7545                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7546                                    NIG_REG_LLH0_FUNC_EN);
7547                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7548                           NIG_REG_LLH0_FUNC_EN, 0);
7549                 for (i = 0; i < NUM_MACS; i++) {
7550                         mac_en[i] = REG_RD(bp, port ?
7551                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7552                                               4 * i) :
7553                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7554                                               4 * i));
7555                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7556                                               4 * i) :
7557                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7558                 }
7559         }
7560
7561         /* Close BMC to host */
7562         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7563                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7564
7565         /* Suspend Tx switching to the PF. Completion of this ramrod
7566          * further guarantees that all the packets of that PF / child
7567          * VFs in BRB were processed by the Parser, so it is safe to
7568          * change the NIC_MODE register.
7569          */
7570         rc = bnx2x_func_switch_update(bp, 1);
7571         if (rc) {
7572                 BNX2X_ERR("Can't suspend tx-switching!\n");
7573                 return rc;
7574         }
7575
7576         /* Change NIC_MODE register */
7577         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7578
7579         /* Open input from network */
7580         if (bp->mf_mode == SINGLE_FUNCTION) {
7581                 bnx2x_set_rx_filter(&bp->link_params, 1);
7582         } else {
7583                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7584                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7585                 for (i = 0; i < NUM_MACS; i++) {
7586                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7587                                               4 * i) :
7588                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7589                                   mac_en[i]);
7590                 }
7591         }
7592
7593         /* Enable BMC to host */
7594         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7595                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7596
7597         /* Resume Tx switching to the PF */
7598         rc = bnx2x_func_switch_update(bp, 0);
7599         if (rc) {
7600                 BNX2X_ERR("Can't resume tx-switching!\n");
7601                 return rc;
7602         }
7603
7604         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7605         return 0;
7606 }
7607
7608 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7609 {
7610         int rc;
7611
7612         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7613
7614         if (CONFIGURE_NIC_MODE(bp)) {
7615                 /* Configure searcher as part of function hw init */
7616                 bnx2x_init_searcher(bp);
7617
7618                 /* Reset NIC mode */
7619                 rc = bnx2x_reset_nic_mode(bp);
7620                 if (rc)
7621                         BNX2X_ERR("Can't change NIC mode!\n");
7622                 return rc;
7623         }
7624
7625         return 0;
7626 }
7627
7628 static int bnx2x_init_hw_func(struct bnx2x *bp)
7629 {
7630         int port = BP_PORT(bp);
7631         int func = BP_FUNC(bp);
7632         int init_phase = PHASE_PF0 + func;
7633         struct bnx2x_ilt *ilt = BP_ILT(bp);
7634         u16 cdu_ilt_start;
7635         u32 addr, val;
7636         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7637         int i, main_mem_width, rc;
7638
7639         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7640
7641         /* FLR cleanup - hmmm */
7642         if (!CHIP_IS_E1x(bp)) {
7643                 rc = bnx2x_pf_flr_clnup(bp);
7644                 if (rc) {
7645                         bnx2x_fw_dump(bp);
7646                         return rc;
7647                 }
7648         }
7649
7650         /* set MSI reconfigure capability */
7651         if (bp->common.int_block == INT_BLOCK_HC) {
7652                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7653                 val = REG_RD(bp, addr);
7654                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7655                 REG_WR(bp, addr, val);
7656         }
7657
7658         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7659         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7660
7661         ilt = BP_ILT(bp);
7662         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7663
7664         if (IS_SRIOV(bp))
7665                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7666         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7667
7668         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7669          * those of the VFs, so start line should be reset
7670          */
7671         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7672         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7673                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7674                 ilt->lines[cdu_ilt_start + i].page_mapping =
7675                         bp->context[i].cxt_mapping;
7676                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7677         }
7678
7679         bnx2x_ilt_init_op(bp, INITOP_SET);
7680
7681         if (!CONFIGURE_NIC_MODE(bp)) {
7682                 bnx2x_init_searcher(bp);
7683                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7684                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7685         } else {
7686                 /* Set NIC mode */
7687                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7688                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7689         }
7690
7691         if (!CHIP_IS_E1x(bp)) {
7692                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7693
7694                 /* Turn on a single ISR mode in IGU if driver is going to use
7695                  * INT#x or MSI
7696                  */
7697                 if (!(bp->flags & USING_MSIX_FLAG))
7698                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7699                 /*
7700                  * Timers workaround bug: function init part.
7701                  * Need to wait 20msec after initializing ILT,
7702                  * needed to make sure there are no requests in
7703                  * one of the PXP internal queues with "old" ILT addresses
7704                  */
7705                 msleep(20);
7706                 /*
7707                  * Master enable - Due to WB DMAE writes performed before this
7708                  * register is re-initialized as part of the regular function
7709                  * init
7710                  */
7711                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7712                 /* Enable the function in IGU */
7713                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7714         }
7715
7716         bp->dmae_ready = 1;
7717
7718         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7719
7720         if (!CHIP_IS_E1x(bp))
7721                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7722
7723         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7724         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7725         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7726         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7727         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7728         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7729         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7730         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7731         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7732         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7733         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7734         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7735         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7736
7737         if (!CHIP_IS_E1x(bp))
7738                 REG_WR(bp, QM_REG_PF_EN, 1);
7739
7740         if (!CHIP_IS_E1x(bp)) {
7741                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7742                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7743                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7744                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7745         }
7746         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7747
7748         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7749         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7750         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7751
7752         bnx2x_iov_init_dq(bp);
7753
7754         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7755         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7756         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7757         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7758         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7759         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7760         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7761         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7762         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7763         if (!CHIP_IS_E1x(bp))
7764                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7765
7766         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7767
7768         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7769
7770         if (!CHIP_IS_E1x(bp))
7771                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7772
7773         if (IS_MF(bp)) {
7774                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7775                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7776         }
7777
7778         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7779
7780         /* HC init per function */
7781         if (bp->common.int_block == INT_BLOCK_HC) {
7782                 if (CHIP_IS_E1H(bp)) {
7783                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7784
7785                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7786                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7787                 }
7788                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7789
7790         } else {
7791                 int num_segs, sb_idx, prod_offset;
7792
7793                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7794
7795                 if (!CHIP_IS_E1x(bp)) {
7796                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7797                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7798                 }
7799
7800                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7801
7802                 if (!CHIP_IS_E1x(bp)) {
7803                         int dsb_idx = 0;
7804                         /**
7805                          * Producer memory:
7806                          * E2 mode: address 0-135 match to the mapping memory;
7807                          * 136 - PF0 default prod; 137 - PF1 default prod;
7808                          * 138 - PF2 default prod; 139 - PF3 default prod;
7809                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7810                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7811                          * 144-147 reserved.
7812                          *
7813                          * E1.5 mode - In backward compatible mode;
7814                          * for non default SB; each even line in the memory
7815                          * holds the U producer and each odd line hold
7816                          * the C producer. The first 128 producers are for
7817                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7818                          * producers are for the DSB for each PF.
7819                          * Each PF has five segments: (the order inside each
7820                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7821                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7822                          * 144-147 attn prods;
7823                          */
7824                         /* non-default-status-blocks */
7825                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7826                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7827                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7828                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7829                                         num_segs;
7830
7831                                 for (i = 0; i < num_segs; i++) {
7832                                         addr = IGU_REG_PROD_CONS_MEMORY +
7833                                                         (prod_offset + i) * 4;
7834                                         REG_WR(bp, addr, 0);
7835                                 }
7836                                 /* send consumer update with value 0 */
7837                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7838                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7839                                 bnx2x_igu_clear_sb(bp,
7840                                                    bp->igu_base_sb + sb_idx);
7841                         }
7842
7843                         /* default-status-blocks */
7844                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7845                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7846
7847                         if (CHIP_MODE_IS_4_PORT(bp))
7848                                 dsb_idx = BP_FUNC(bp);
7849                         else
7850                                 dsb_idx = BP_VN(bp);
7851
7852                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7853                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7854                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7855
7856                         /*
7857                          * igu prods come in chunks of E1HVN_MAX (4) -
7858                          * does not matters what is the current chip mode
7859                          */
7860                         for (i = 0; i < (num_segs * E1HVN_MAX);
7861                              i += E1HVN_MAX) {
7862                                 addr = IGU_REG_PROD_CONS_MEMORY +
7863                                                         (prod_offset + i)*4;
7864                                 REG_WR(bp, addr, 0);
7865                         }
7866                         /* send consumer update with 0 */
7867                         if (CHIP_INT_MODE_IS_BC(bp)) {
7868                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7869                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7870                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7871                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7872                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7873                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7874                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7875                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
7876                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7877                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7878                         } else {
7879                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7880                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7881                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7882                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7883                         }
7884                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7885
7886                         /* !!! These should become driver const once
7887                            rf-tool supports split-68 const */
7888                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7889                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7890                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7891                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7892                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7893                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7894                 }
7895         }
7896
7897         /* Reset PCIE errors for debug */
7898         REG_WR(bp, 0x2114, 0xffffffff);
7899         REG_WR(bp, 0x2120, 0xffffffff);
7900
7901         if (CHIP_IS_E1x(bp)) {
7902                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7903                 main_mem_base = HC_REG_MAIN_MEMORY +
7904                                 BP_PORT(bp) * (main_mem_size * 4);
7905                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7906                 main_mem_width = 8;
7907
7908                 val = REG_RD(bp, main_mem_prty_clr);
7909                 if (val)
7910                         DP(NETIF_MSG_HW,
7911                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7912                            val);
7913
7914                 /* Clear "false" parity errors in MSI-X table */
7915                 for (i = main_mem_base;
7916                      i < main_mem_base + main_mem_size * 4;
7917                      i += main_mem_width) {
7918                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
7919                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7920                                          i, main_mem_width / 4);
7921                 }
7922                 /* Clear HC parity attention */
7923                 REG_RD(bp, main_mem_prty_clr);
7924         }
7925
7926 #ifdef BNX2X_STOP_ON_ERROR
7927         /* Enable STORMs SP logging */
7928         REG_WR8(bp, BAR_USTRORM_INTMEM +
7929                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7930         REG_WR8(bp, BAR_TSTRORM_INTMEM +
7931                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7932         REG_WR8(bp, BAR_CSTRORM_INTMEM +
7933                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7934         REG_WR8(bp, BAR_XSTRORM_INTMEM +
7935                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7936 #endif
7937
7938         bnx2x_phy_probe(&bp->link_params);
7939
7940         return 0;
7941 }
7942
7943 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7944 {
7945         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7946
7947         if (!CHIP_IS_E1x(bp))
7948                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7949                                sizeof(struct host_hc_status_block_e2));
7950         else
7951                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7952                                sizeof(struct host_hc_status_block_e1x));
7953
7954         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7955 }
7956
7957 void bnx2x_free_mem(struct bnx2x *bp)
7958 {
7959         int i;
7960
7961         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7962                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7963
7964         if (IS_VF(bp))
7965                 return;
7966
7967         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7968                        sizeof(struct host_sp_status_block));
7969
7970         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7971                        sizeof(struct bnx2x_slowpath));
7972
7973         for (i = 0; i < L2_ILT_LINES(bp); i++)
7974                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7975                                bp->context[i].size);
7976         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7977
7978         BNX2X_FREE(bp->ilt->lines);
7979
7980         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7981
7982         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7983                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
7984
7985         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7986
7987         bnx2x_iov_free_mem(bp);
7988 }
7989
7990 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7991 {
7992         if (!CHIP_IS_E1x(bp))
7993                 /* size = the status block + ramrod buffers */
7994                 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7995                                 sizeof(struct host_hc_status_block_e2));
7996         else
7997                 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7998                                 &bp->cnic_sb_mapping,
7999                                 sizeof(struct
8000                                        host_hc_status_block_e1x));
8001
8002         if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
8003                 /* allocate searcher T2 table, as it wasn't allocated before */
8004                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
8005
8006         /* write address to which L5 should insert its values */
8007         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8008                 &bp->slowpath->drv_info_to_mcp;
8009
8010         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8011                 goto alloc_mem_err;
8012
8013         return 0;
8014
8015 alloc_mem_err:
8016         bnx2x_free_mem_cnic(bp);
8017         BNX2X_ERR("Can't allocate memory\n");
8018         return -ENOMEM;
8019 }
8020
8021 int bnx2x_alloc_mem(struct bnx2x *bp)
8022 {
8023         int i, allocated, context_size;
8024
8025         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
8026                 /* allocate searcher T2 table */
8027                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
8028
8029         BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
8030                         sizeof(struct host_sp_status_block));
8031
8032         BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
8033                         sizeof(struct bnx2x_slowpath));
8034
8035         /* Allocate memory for CDU context:
8036          * This memory is allocated separately and not in the generic ILT
8037          * functions because CDU differs in few aspects:
8038          * 1. There are multiple entities allocating memory for context -
8039          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8040          * its own ILT lines.
8041          * 2. Since CDU page-size is not a single 4KB page (which is the case
8042          * for the other ILT clients), to be efficient we want to support
8043          * allocation of sub-page-size in the last entry.
8044          * 3. Context pointers are used by the driver to pass to FW / update
8045          * the context (for the other ILT clients the pointers are used just to
8046          * free the memory during unload).
8047          */
8048         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8049
8050         for (i = 0, allocated = 0; allocated < context_size; i++) {
8051                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8052                                           (context_size - allocated));
8053                 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
8054                                 &bp->context[i].cxt_mapping,
8055                                 bp->context[i].size);
8056                 allocated += bp->context[i].size;
8057         }
8058         BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
8059
8060         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8061                 goto alloc_mem_err;
8062
8063         if (bnx2x_iov_alloc_mem(bp))
8064                 goto alloc_mem_err;
8065
8066         /* Slow path ring */
8067         BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
8068
8069         /* EQ */
8070         BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
8071                         BCM_PAGE_SIZE * NUM_EQ_PAGES);
8072
8073         return 0;
8074
8075 alloc_mem_err:
8076         bnx2x_free_mem(bp);
8077         BNX2X_ERR("Can't allocate memory\n");
8078         return -ENOMEM;
8079 }
8080
8081 /*
8082  * Init service functions
8083  */
8084
8085 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8086                       struct bnx2x_vlan_mac_obj *obj, bool set,
8087                       int mac_type, unsigned long *ramrod_flags)
8088 {
8089         int rc;
8090         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8091
8092         memset(&ramrod_param, 0, sizeof(ramrod_param));
8093
8094         /* Fill general parameters */
8095         ramrod_param.vlan_mac_obj = obj;
8096         ramrod_param.ramrod_flags = *ramrod_flags;
8097
8098         /* Fill a user request section if needed */
8099         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8100                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8101
8102                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8103
8104                 /* Set the command: ADD or DEL */
8105                 if (set)
8106                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8107                 else
8108                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8109         }
8110
8111         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8112
8113         if (rc == -EEXIST) {
8114                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8115                 /* do not treat adding same MAC as error */
8116                 rc = 0;
8117         } else if (rc < 0)
8118                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8119
8120         return rc;
8121 }
8122
8123 int bnx2x_del_all_macs(struct bnx2x *bp,
8124                        struct bnx2x_vlan_mac_obj *mac_obj,
8125                        int mac_type, bool wait_for_comp)
8126 {
8127         int rc;
8128         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8129
8130         /* Wait for completion of requested */
8131         if (wait_for_comp)
8132                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8133
8134         /* Set the mac type of addresses we want to clear */
8135         __set_bit(mac_type, &vlan_mac_flags);
8136
8137         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8138         if (rc < 0)
8139                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8140
8141         return rc;
8142 }
8143
8144 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8145 {
8146         if (is_zero_ether_addr(bp->dev->dev_addr) &&
8147             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8148                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8149                    "Ignoring Zero MAC for STORAGE SD mode\n");
8150                 return 0;
8151         }
8152
8153         if (IS_PF(bp)) {
8154                 unsigned long ramrod_flags = 0;
8155
8156                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8157                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8158                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8159                                          &bp->sp_objs->mac_obj, set,
8160                                          BNX2X_ETH_MAC, &ramrod_flags);
8161         } else { /* vf */
8162                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8163                                              bp->fp->index, true);
8164         }
8165 }
8166
8167 int bnx2x_setup_leading(struct bnx2x *bp)
8168 {
8169         if (IS_PF(bp))
8170                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8171         else /* VF */
8172                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8173 }
8174
8175 /**
8176  * bnx2x_set_int_mode - configure interrupt mode
8177  *
8178  * @bp:         driver handle
8179  *
8180  * In case of MSI-X it will also try to enable MSI-X.
8181  */
8182 int bnx2x_set_int_mode(struct bnx2x *bp)
8183 {
8184         int rc = 0;
8185
8186         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8187                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8188                 return -EINVAL;
8189         }
8190
8191         switch (int_mode) {
8192         case BNX2X_INT_MODE_MSIX:
8193                 /* attempt to enable msix */
8194                 rc = bnx2x_enable_msix(bp);
8195
8196                 /* msix attained */
8197                 if (!rc)
8198                         return 0;
8199
8200                 /* vfs use only msix */
8201                 if (rc && IS_VF(bp))
8202                         return rc;
8203
8204                 /* failed to enable multiple MSI-X */
8205                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8206                                bp->num_queues,
8207                                1 + bp->num_cnic_queues);
8208
8209                 /* falling through... */
8210         case BNX2X_INT_MODE_MSI:
8211                 bnx2x_enable_msi(bp);
8212
8213                 /* falling through... */
8214         case BNX2X_INT_MODE_INTX:
8215                 bp->num_ethernet_queues = 1;
8216                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8217                 BNX2X_DEV_INFO("set number of queues to 1\n");
8218                 break;
8219         default:
8220                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8221                 return -EINVAL;
8222         }
8223         return 0;
8224 }
8225
8226 /* must be called prior to any HW initializations */
8227 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8228 {
8229         if (IS_SRIOV(bp))
8230                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8231         return L2_ILT_LINES(bp);
8232 }
8233
8234 void bnx2x_ilt_set_info(struct bnx2x *bp)
8235 {
8236         struct ilt_client_info *ilt_client;
8237         struct bnx2x_ilt *ilt = BP_ILT(bp);
8238         u16 line = 0;
8239
8240         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8241         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8242
8243         /* CDU */
8244         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8245         ilt_client->client_num = ILT_CLIENT_CDU;
8246         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8247         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8248         ilt_client->start = line;
8249         line += bnx2x_cid_ilt_lines(bp);
8250
8251         if (CNIC_SUPPORT(bp))
8252                 line += CNIC_ILT_LINES;
8253         ilt_client->end = line - 1;
8254
8255         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8256            ilt_client->start,
8257            ilt_client->end,
8258            ilt_client->page_size,
8259            ilt_client->flags,
8260            ilog2(ilt_client->page_size >> 12));
8261
8262         /* QM */
8263         if (QM_INIT(bp->qm_cid_count)) {
8264                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8265                 ilt_client->client_num = ILT_CLIENT_QM;
8266                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8267                 ilt_client->flags = 0;
8268                 ilt_client->start = line;
8269
8270                 /* 4 bytes for each cid */
8271                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8272                                                          QM_ILT_PAGE_SZ);
8273
8274                 ilt_client->end = line - 1;
8275
8276                 DP(NETIF_MSG_IFUP,
8277                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8278                    ilt_client->start,
8279                    ilt_client->end,
8280                    ilt_client->page_size,
8281                    ilt_client->flags,
8282                    ilog2(ilt_client->page_size >> 12));
8283         }
8284
8285         if (CNIC_SUPPORT(bp)) {
8286                 /* SRC */
8287                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8288                 ilt_client->client_num = ILT_CLIENT_SRC;
8289                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8290                 ilt_client->flags = 0;
8291                 ilt_client->start = line;
8292                 line += SRC_ILT_LINES;
8293                 ilt_client->end = line - 1;
8294
8295                 DP(NETIF_MSG_IFUP,
8296                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8297                    ilt_client->start,
8298                    ilt_client->end,
8299                    ilt_client->page_size,
8300                    ilt_client->flags,
8301                    ilog2(ilt_client->page_size >> 12));
8302
8303                 /* TM */
8304                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8305                 ilt_client->client_num = ILT_CLIENT_TM;
8306                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8307                 ilt_client->flags = 0;
8308                 ilt_client->start = line;
8309                 line += TM_ILT_LINES;
8310                 ilt_client->end = line - 1;
8311
8312                 DP(NETIF_MSG_IFUP,
8313                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8314                    ilt_client->start,
8315                    ilt_client->end,
8316                    ilt_client->page_size,
8317                    ilt_client->flags,
8318                    ilog2(ilt_client->page_size >> 12));
8319         }
8320
8321         BUG_ON(line > ILT_MAX_LINES);
8322 }
8323
8324 /**
8325  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8326  *
8327  * @bp:                 driver handle
8328  * @fp:                 pointer to fastpath
8329  * @init_params:        pointer to parameters structure
8330  *
8331  * parameters configured:
8332  *      - HC configuration
8333  *      - Queue's CDU context
8334  */
8335 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8336         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8337 {
8338         u8 cos;
8339         int cxt_index, cxt_offset;
8340
8341         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8342         if (!IS_FCOE_FP(fp)) {
8343                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8344                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8345
8346                 /* If HC is supported, enable host coalescing in the transition
8347                  * to INIT state.
8348                  */
8349                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8350                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8351
8352                 /* HC rate */
8353                 init_params->rx.hc_rate = bp->rx_ticks ?
8354                         (1000000 / bp->rx_ticks) : 0;
8355                 init_params->tx.hc_rate = bp->tx_ticks ?
8356                         (1000000 / bp->tx_ticks) : 0;
8357
8358                 /* FW SB ID */
8359                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8360                         fp->fw_sb_id;
8361
8362                 /*
8363                  * CQ index among the SB indices: FCoE clients uses the default
8364                  * SB, therefore it's different.
8365                  */
8366                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8367                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8368         }
8369
8370         /* set maximum number of COSs supported by this queue */
8371         init_params->max_cos = fp->max_cos;
8372
8373         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8374             fp->index, init_params->max_cos);
8375
8376         /* set the context pointers queue object */
8377         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8378                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8379                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8380                                 ILT_PAGE_CIDS);
8381                 init_params->cxts[cos] =
8382                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8383         }
8384 }
8385
8386 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8387                         struct bnx2x_queue_state_params *q_params,
8388                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8389                         int tx_index, bool leading)
8390 {
8391         memset(tx_only_params, 0, sizeof(*tx_only_params));
8392
8393         /* Set the command */
8394         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8395
8396         /* Set tx-only QUEUE flags: don't zero statistics */
8397         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8398
8399         /* choose the index of the cid to send the slow path on */
8400         tx_only_params->cid_index = tx_index;
8401
8402         /* Set general TX_ONLY_SETUP parameters */
8403         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8404
8405         /* Set Tx TX_ONLY_SETUP parameters */
8406         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8407
8408         DP(NETIF_MSG_IFUP,
8409            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8410            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8411            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8412            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8413
8414         /* send the ramrod */
8415         return bnx2x_queue_state_change(bp, q_params);
8416 }
8417
8418 /**
8419  * bnx2x_setup_queue - setup queue
8420  *
8421  * @bp:         driver handle
8422  * @fp:         pointer to fastpath
8423  * @leading:    is leading
8424  *
8425  * This function performs 2 steps in a Queue state machine
8426  *      actually: 1) RESET->INIT 2) INIT->SETUP
8427  */
8428
8429 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8430                        bool leading)
8431 {
8432         struct bnx2x_queue_state_params q_params = {NULL};
8433         struct bnx2x_queue_setup_params *setup_params =
8434                                                 &q_params.params.setup;
8435         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8436                                                 &q_params.params.tx_only;
8437         int rc;
8438         u8 tx_index;
8439
8440         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8441
8442         /* reset IGU state skip FCoE L2 queue */
8443         if (!IS_FCOE_FP(fp))
8444                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8445                              IGU_INT_ENABLE, 0);
8446
8447         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8448         /* We want to wait for completion in this context */
8449         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8450
8451         /* Prepare the INIT parameters */
8452         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8453
8454         /* Set the command */
8455         q_params.cmd = BNX2X_Q_CMD_INIT;
8456
8457         /* Change the state to INIT */
8458         rc = bnx2x_queue_state_change(bp, &q_params);
8459         if (rc) {
8460                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8461                 return rc;
8462         }
8463
8464         DP(NETIF_MSG_IFUP, "init complete\n");
8465
8466         /* Now move the Queue to the SETUP state... */
8467         memset(setup_params, 0, sizeof(*setup_params));
8468
8469         /* Set QUEUE flags */
8470         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8471
8472         /* Set general SETUP parameters */
8473         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8474                                 FIRST_TX_COS_INDEX);
8475
8476         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8477                             &setup_params->rxq_params);
8478
8479         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8480                            FIRST_TX_COS_INDEX);
8481
8482         /* Set the command */
8483         q_params.cmd = BNX2X_Q_CMD_SETUP;
8484
8485         if (IS_FCOE_FP(fp))
8486                 bp->fcoe_init = true;
8487
8488         /* Change the state to SETUP */
8489         rc = bnx2x_queue_state_change(bp, &q_params);
8490         if (rc) {
8491                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8492                 return rc;
8493         }
8494
8495         /* loop through the relevant tx-only indices */
8496         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8497               tx_index < fp->max_cos;
8498               tx_index++) {
8499
8500                 /* prepare and send tx-only ramrod*/
8501                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8502                                           tx_only_params, tx_index, leading);
8503                 if (rc) {
8504                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8505                                   fp->index, tx_index);
8506                         return rc;
8507                 }
8508         }
8509
8510         return rc;
8511 }
8512
8513 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8514 {
8515         struct bnx2x_fastpath *fp = &bp->fp[index];
8516         struct bnx2x_fp_txdata *txdata;
8517         struct bnx2x_queue_state_params q_params = {NULL};
8518         int rc, tx_index;
8519
8520         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8521
8522         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8523         /* We want to wait for completion in this context */
8524         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8525
8526         /* close tx-only connections */
8527         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8528              tx_index < fp->max_cos;
8529              tx_index++){
8530
8531                 /* ascertain this is a normal queue*/
8532                 txdata = fp->txdata_ptr[tx_index];
8533
8534                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8535                                                         txdata->txq_index);
8536
8537                 /* send halt terminate on tx-only connection */
8538                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8539                 memset(&q_params.params.terminate, 0,
8540                        sizeof(q_params.params.terminate));
8541                 q_params.params.terminate.cid_index = tx_index;
8542
8543                 rc = bnx2x_queue_state_change(bp, &q_params);
8544                 if (rc)
8545                         return rc;
8546
8547                 /* send halt terminate on tx-only connection */
8548                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8549                 memset(&q_params.params.cfc_del, 0,
8550                        sizeof(q_params.params.cfc_del));
8551                 q_params.params.cfc_del.cid_index = tx_index;
8552                 rc = bnx2x_queue_state_change(bp, &q_params);
8553                 if (rc)
8554                         return rc;
8555         }
8556         /* Stop the primary connection: */
8557         /* ...halt the connection */
8558         q_params.cmd = BNX2X_Q_CMD_HALT;
8559         rc = bnx2x_queue_state_change(bp, &q_params);
8560         if (rc)
8561                 return rc;
8562
8563         /* ...terminate the connection */
8564         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8565         memset(&q_params.params.terminate, 0,
8566                sizeof(q_params.params.terminate));
8567         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8568         rc = bnx2x_queue_state_change(bp, &q_params);
8569         if (rc)
8570                 return rc;
8571         /* ...delete cfc entry */
8572         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8573         memset(&q_params.params.cfc_del, 0,
8574                sizeof(q_params.params.cfc_del));
8575         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8576         return bnx2x_queue_state_change(bp, &q_params);
8577 }
8578
8579 static void bnx2x_reset_func(struct bnx2x *bp)
8580 {
8581         int port = BP_PORT(bp);
8582         int func = BP_FUNC(bp);
8583         int i;
8584
8585         /* Disable the function in the FW */
8586         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8587         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8588         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8589         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8590
8591         /* FP SBs */
8592         for_each_eth_queue(bp, i) {
8593                 struct bnx2x_fastpath *fp = &bp->fp[i];
8594                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8595                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8596                            SB_DISABLED);
8597         }
8598
8599         if (CNIC_LOADED(bp))
8600                 /* CNIC SB */
8601                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8602                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8603                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8604
8605         /* SP SB */
8606         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8607                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8608                 SB_DISABLED);
8609
8610         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8611                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8612                        0);
8613
8614         /* Configure IGU */
8615         if (bp->common.int_block == INT_BLOCK_HC) {
8616                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8617                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8618         } else {
8619                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8620                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8621         }
8622
8623         if (CNIC_LOADED(bp)) {
8624                 /* Disable Timer scan */
8625                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8626                 /*
8627                  * Wait for at least 10ms and up to 2 second for the timers
8628                  * scan to complete
8629                  */
8630                 for (i = 0; i < 200; i++) {
8631                         usleep_range(10000, 20000);
8632                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8633                                 break;
8634                 }
8635         }
8636         /* Clear ILT */
8637         bnx2x_clear_func_ilt(bp, func);
8638
8639         /* Timers workaround bug for E2: if this is vnic-3,
8640          * we need to set the entire ilt range for this timers.
8641          */
8642         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8643                 struct ilt_client_info ilt_cli;
8644                 /* use dummy TM client */
8645                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8646                 ilt_cli.start = 0;
8647                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8648                 ilt_cli.client_num = ILT_CLIENT_TM;
8649
8650                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8651         }
8652
8653         /* this assumes that reset_port() called before reset_func()*/
8654         if (!CHIP_IS_E1x(bp))
8655                 bnx2x_pf_disable(bp);
8656
8657         bp->dmae_ready = 0;
8658 }
8659
8660 static void bnx2x_reset_port(struct bnx2x *bp)
8661 {
8662         int port = BP_PORT(bp);
8663         u32 val;
8664
8665         /* Reset physical Link */
8666         bnx2x__link_reset(bp);
8667
8668         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8669
8670         /* Do not rcv packets to BRB */
8671         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8672         /* Do not direct rcv packets that are not for MCP to the BRB */
8673         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8674                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8675
8676         /* Configure AEU */
8677         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8678
8679         msleep(100);
8680         /* Check for BRB port occupancy */
8681         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8682         if (val)
8683                 DP(NETIF_MSG_IFDOWN,
8684                    "BRB1 is not empty  %d blocks are occupied\n", val);
8685
8686         /* TODO: Close Doorbell port? */
8687 }
8688
8689 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8690 {
8691         struct bnx2x_func_state_params func_params = {NULL};
8692
8693         /* Prepare parameters for function state transitions */
8694         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8695
8696         func_params.f_obj = &bp->func_obj;
8697         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8698
8699         func_params.params.hw_init.load_phase = load_code;
8700
8701         return bnx2x_func_state_change(bp, &func_params);
8702 }
8703
8704 static int bnx2x_func_stop(struct bnx2x *bp)
8705 {
8706         struct bnx2x_func_state_params func_params = {NULL};
8707         int rc;
8708
8709         /* Prepare parameters for function state transitions */
8710         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8711         func_params.f_obj = &bp->func_obj;
8712         func_params.cmd = BNX2X_F_CMD_STOP;
8713
8714         /*
8715          * Try to stop the function the 'good way'. If fails (in case
8716          * of a parity error during bnx2x_chip_cleanup()) and we are
8717          * not in a debug mode, perform a state transaction in order to
8718          * enable further HW_RESET transaction.
8719          */
8720         rc = bnx2x_func_state_change(bp, &func_params);
8721         if (rc) {
8722 #ifdef BNX2X_STOP_ON_ERROR
8723                 return rc;
8724 #else
8725                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8726                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8727                 return bnx2x_func_state_change(bp, &func_params);
8728 #endif
8729         }
8730
8731         return 0;
8732 }
8733
8734 /**
8735  * bnx2x_send_unload_req - request unload mode from the MCP.
8736  *
8737  * @bp:                 driver handle
8738  * @unload_mode:        requested function's unload mode
8739  *
8740  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8741  */
8742 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8743 {
8744         u32 reset_code = 0;
8745         int port = BP_PORT(bp);
8746
8747         /* Select the UNLOAD request mode */
8748         if (unload_mode == UNLOAD_NORMAL)
8749                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8750
8751         else if (bp->flags & NO_WOL_FLAG)
8752                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8753
8754         else if (bp->wol) {
8755                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8756                 u8 *mac_addr = bp->dev->dev_addr;
8757                 struct pci_dev *pdev = bp->pdev;
8758                 u32 val;
8759                 u16 pmc;
8760
8761                 /* The mac address is written to entries 1-4 to
8762                  * preserve entry 0 which is used by the PMF
8763                  */
8764                 u8 entry = (BP_VN(bp) + 1)*8;
8765
8766                 val = (mac_addr[0] << 8) | mac_addr[1];
8767                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8768
8769                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8770                       (mac_addr[4] << 8) | mac_addr[5];
8771                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8772
8773                 /* Enable the PME and clear the status */
8774                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8775                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8776                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8777
8778                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8779
8780         } else
8781                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8782
8783         /* Send the request to the MCP */
8784         if (!BP_NOMCP(bp))
8785                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8786         else {
8787                 int path = BP_PATH(bp);
8788
8789                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8790                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8791                    bnx2x_load_count[path][2]);
8792                 bnx2x_load_count[path][0]--;
8793                 bnx2x_load_count[path][1 + port]--;
8794                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8795                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8796                    bnx2x_load_count[path][2]);
8797                 if (bnx2x_load_count[path][0] == 0)
8798                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8799                 else if (bnx2x_load_count[path][1 + port] == 0)
8800                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8801                 else
8802                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8803         }
8804
8805         return reset_code;
8806 }
8807
8808 /**
8809  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8810  *
8811  * @bp:         driver handle
8812  * @keep_link:          true iff link should be kept up
8813  */
8814 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8815 {
8816         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8817
8818         /* Report UNLOAD_DONE to MCP */
8819         if (!BP_NOMCP(bp))
8820                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8821 }
8822
8823 static int bnx2x_func_wait_started(struct bnx2x *bp)
8824 {
8825         int tout = 50;
8826         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8827
8828         if (!bp->port.pmf)
8829                 return 0;
8830
8831         /*
8832          * (assumption: No Attention from MCP at this stage)
8833          * PMF probably in the middle of TX disable/enable transaction
8834          * 1. Sync IRS for default SB
8835          * 2. Sync SP queue - this guarantees us that attention handling started
8836          * 3. Wait, that TX disable/enable transaction completes
8837          *
8838          * 1+2 guarantee that if DCBx attention was scheduled it already changed
8839          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8840          * received completion for the transaction the state is TX_STOPPED.
8841          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8842          * transaction.
8843          */
8844
8845         /* make sure default SB ISR is done */
8846         if (msix)
8847                 synchronize_irq(bp->msix_table[0].vector);
8848         else
8849                 synchronize_irq(bp->pdev->irq);
8850
8851         flush_workqueue(bnx2x_wq);
8852
8853         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8854                                 BNX2X_F_STATE_STARTED && tout--)
8855                 msleep(20);
8856
8857         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8858                                                 BNX2X_F_STATE_STARTED) {
8859 #ifdef BNX2X_STOP_ON_ERROR
8860                 BNX2X_ERR("Wrong function state\n");
8861                 return -EBUSY;
8862 #else
8863                 /*
8864                  * Failed to complete the transaction in a "good way"
8865                  * Force both transactions with CLR bit
8866                  */
8867                 struct bnx2x_func_state_params func_params = {NULL};
8868
8869                 DP(NETIF_MSG_IFDOWN,
8870                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8871
8872                 func_params.f_obj = &bp->func_obj;
8873                 __set_bit(RAMROD_DRV_CLR_ONLY,
8874                                         &func_params.ramrod_flags);
8875
8876                 /* STARTED-->TX_ST0PPED */
8877                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8878                 bnx2x_func_state_change(bp, &func_params);
8879
8880                 /* TX_ST0PPED-->STARTED */
8881                 func_params.cmd = BNX2X_F_CMD_TX_START;
8882                 return bnx2x_func_state_change(bp, &func_params);
8883 #endif
8884         }
8885
8886         return 0;
8887 }
8888
8889 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8890 {
8891         int port = BP_PORT(bp);
8892         int i, rc = 0;
8893         u8 cos;
8894         struct bnx2x_mcast_ramrod_params rparam = {NULL};
8895         u32 reset_code;
8896
8897         /* Wait until tx fastpath tasks complete */
8898         for_each_tx_queue(bp, i) {
8899                 struct bnx2x_fastpath *fp = &bp->fp[i];
8900
8901                 for_each_cos_in_tx_queue(fp, cos)
8902                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8903 #ifdef BNX2X_STOP_ON_ERROR
8904                 if (rc)
8905                         return;
8906 #endif
8907         }
8908
8909         /* Give HW time to discard old tx messages */
8910         usleep_range(1000, 2000);
8911
8912         /* Clean all ETH MACs */
8913         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8914                                 false);
8915         if (rc < 0)
8916                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8917
8918         /* Clean up UC list  */
8919         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8920                                 true);
8921         if (rc < 0)
8922                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8923                           rc);
8924
8925         /* Disable LLH */
8926         if (!CHIP_IS_E1(bp))
8927                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8928
8929         /* Set "drop all" (stop Rx).
8930          * We need to take a netif_addr_lock() here in order to prevent
8931          * a race between the completion code and this code.
8932          */
8933         netif_addr_lock_bh(bp->dev);
8934         /* Schedule the rx_mode command */
8935         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8936                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8937         else
8938                 bnx2x_set_storm_rx_mode(bp);
8939
8940         /* Cleanup multicast configuration */
8941         rparam.mcast_obj = &bp->mcast_obj;
8942         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8943         if (rc < 0)
8944                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8945
8946         netif_addr_unlock_bh(bp->dev);
8947
8948         bnx2x_iov_chip_cleanup(bp);
8949
8950         /*
8951          * Send the UNLOAD_REQUEST to the MCP. This will return if
8952          * this function should perform FUNC, PORT or COMMON HW
8953          * reset.
8954          */
8955         reset_code = bnx2x_send_unload_req(bp, unload_mode);
8956
8957         /*
8958          * (assumption: No Attention from MCP at this stage)
8959          * PMF probably in the middle of TX disable/enable transaction
8960          */
8961         rc = bnx2x_func_wait_started(bp);
8962         if (rc) {
8963                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8964 #ifdef BNX2X_STOP_ON_ERROR
8965                 return;
8966 #endif
8967         }
8968
8969         /* Close multi and leading connections
8970          * Completions for ramrods are collected in a synchronous way
8971          */
8972         for_each_eth_queue(bp, i)
8973                 if (bnx2x_stop_queue(bp, i))
8974 #ifdef BNX2X_STOP_ON_ERROR
8975                         return;
8976 #else
8977                         goto unload_error;
8978 #endif
8979
8980         if (CNIC_LOADED(bp)) {
8981                 for_each_cnic_queue(bp, i)
8982                         if (bnx2x_stop_queue(bp, i))
8983 #ifdef BNX2X_STOP_ON_ERROR
8984                                 return;
8985 #else
8986                                 goto unload_error;
8987 #endif
8988         }
8989
8990         /* If SP settings didn't get completed so far - something
8991          * very wrong has happen.
8992          */
8993         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8994                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8995
8996 #ifndef BNX2X_STOP_ON_ERROR
8997 unload_error:
8998 #endif
8999         rc = bnx2x_func_stop(bp);
9000         if (rc) {
9001                 BNX2X_ERR("Function stop failed!\n");
9002 #ifdef BNX2X_STOP_ON_ERROR
9003                 return;
9004 #endif
9005         }
9006
9007         /* Disable HW interrupts, NAPI */
9008         bnx2x_netif_stop(bp, 1);
9009         /* Delete all NAPI objects */
9010         bnx2x_del_all_napi(bp);
9011         if (CNIC_LOADED(bp))
9012                 bnx2x_del_all_napi_cnic(bp);
9013
9014         /* Release IRQs */
9015         bnx2x_free_irq(bp);
9016
9017         /* Reset the chip */
9018         rc = bnx2x_reset_hw(bp, reset_code);
9019         if (rc)
9020                 BNX2X_ERR("HW_RESET failed\n");
9021
9022         /* Report UNLOAD_DONE to MCP */
9023         bnx2x_send_unload_done(bp, keep_link);
9024 }
9025
9026 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9027 {
9028         u32 val;
9029
9030         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9031
9032         if (CHIP_IS_E1(bp)) {
9033                 int port = BP_PORT(bp);
9034                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9035                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9036
9037                 val = REG_RD(bp, addr);
9038                 val &= ~(0x300);
9039                 REG_WR(bp, addr, val);
9040         } else {
9041                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9042                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9043                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9044                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9045         }
9046 }
9047
9048 /* Close gates #2, #3 and #4: */
9049 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9050 {
9051         u32 val;
9052
9053         /* Gates #2 and #4a are closed/opened for "not E1" only */
9054         if (!CHIP_IS_E1(bp)) {
9055                 /* #4 */
9056                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9057                 /* #2 */
9058                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9059         }
9060
9061         /* #3 */
9062         if (CHIP_IS_E1x(bp)) {
9063                 /* Prevent interrupts from HC on both ports */
9064                 val = REG_RD(bp, HC_REG_CONFIG_1);
9065                 REG_WR(bp, HC_REG_CONFIG_1,
9066                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9067                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9068
9069                 val = REG_RD(bp, HC_REG_CONFIG_0);
9070                 REG_WR(bp, HC_REG_CONFIG_0,
9071                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9072                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9073         } else {
9074                 /* Prevent incoming interrupts in IGU */
9075                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9076
9077                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9078                        (!close) ?
9079                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9080                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9081         }
9082
9083         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9084                 close ? "closing" : "opening");
9085         mmiowb();
9086 }
9087
9088 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9089
9090 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9091 {
9092         /* Do some magic... */
9093         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9094         *magic_val = val & SHARED_MF_CLP_MAGIC;
9095         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9096 }
9097
9098 /**
9099  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9100  *
9101  * @bp:         driver handle
9102  * @magic_val:  old value of the `magic' bit.
9103  */
9104 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9105 {
9106         /* Restore the `magic' bit value... */
9107         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9108         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9109                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9110 }
9111
9112 /**
9113  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9114  *
9115  * @bp:         driver handle
9116  * @magic_val:  old value of 'magic' bit.
9117  *
9118  * Takes care of CLP configurations.
9119  */
9120 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9121 {
9122         u32 shmem;
9123         u32 validity_offset;
9124
9125         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9126
9127         /* Set `magic' bit in order to save MF config */
9128         if (!CHIP_IS_E1(bp))
9129                 bnx2x_clp_reset_prep(bp, magic_val);
9130
9131         /* Get shmem offset */
9132         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9133         validity_offset =
9134                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9135
9136         /* Clear validity map flags */
9137         if (shmem > 0)
9138                 REG_WR(bp, shmem + validity_offset, 0);
9139 }
9140
9141 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9142 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9143
9144 /**
9145  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9146  *
9147  * @bp: driver handle
9148  */
9149 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9150 {
9151         /* special handling for emulation and FPGA,
9152            wait 10 times longer */
9153         if (CHIP_REV_IS_SLOW(bp))
9154                 msleep(MCP_ONE_TIMEOUT*10);
9155         else
9156                 msleep(MCP_ONE_TIMEOUT);
9157 }
9158
9159 /*
9160  * initializes bp->common.shmem_base and waits for validity signature to appear
9161  */
9162 static int bnx2x_init_shmem(struct bnx2x *bp)
9163 {
9164         int cnt = 0;
9165         u32 val = 0;
9166
9167         do {
9168                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9169                 if (bp->common.shmem_base) {
9170                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9171                         if (val & SHR_MEM_VALIDITY_MB)
9172                                 return 0;
9173                 }
9174
9175                 bnx2x_mcp_wait_one(bp);
9176
9177         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9178
9179         BNX2X_ERR("BAD MCP validity signature\n");
9180
9181         return -ENODEV;
9182 }
9183
9184 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9185 {
9186         int rc = bnx2x_init_shmem(bp);
9187
9188         /* Restore the `magic' bit value */
9189         if (!CHIP_IS_E1(bp))
9190                 bnx2x_clp_reset_done(bp, magic_val);
9191
9192         return rc;
9193 }
9194
9195 static void bnx2x_pxp_prep(struct bnx2x *bp)
9196 {
9197         if (!CHIP_IS_E1(bp)) {
9198                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9199                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9200                 mmiowb();
9201         }
9202 }
9203
9204 /*
9205  * Reset the whole chip except for:
9206  *      - PCIE core
9207  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9208  *              one reset bit)
9209  *      - IGU
9210  *      - MISC (including AEU)
9211  *      - GRC
9212  *      - RBCN, RBCP
9213  */
9214 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9215 {
9216         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9217         u32 global_bits2, stay_reset2;
9218
9219         /*
9220          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9221          * (per chip) blocks.
9222          */
9223         global_bits2 =
9224                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9225                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9226
9227         /* Don't reset the following blocks.
9228          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9229          *            reset, as in 4 port device they might still be owned
9230          *            by the MCP (there is only one leader per path).
9231          */
9232         not_reset_mask1 =
9233                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9234                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9235                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9236
9237         not_reset_mask2 =
9238                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9239                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9240                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9241                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9242                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9243                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9244                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9245                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9246                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9247                 MISC_REGISTERS_RESET_REG_2_PGLC |
9248                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9249                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9250                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9251                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9252                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9253                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9254
9255         /*
9256          * Keep the following blocks in reset:
9257          *  - all xxMACs are handled by the bnx2x_link code.
9258          */
9259         stay_reset2 =
9260                 MISC_REGISTERS_RESET_REG_2_XMAC |
9261                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9262
9263         /* Full reset masks according to the chip */
9264         reset_mask1 = 0xffffffff;
9265
9266         if (CHIP_IS_E1(bp))
9267                 reset_mask2 = 0xffff;
9268         else if (CHIP_IS_E1H(bp))
9269                 reset_mask2 = 0x1ffff;
9270         else if (CHIP_IS_E2(bp))
9271                 reset_mask2 = 0xfffff;
9272         else /* CHIP_IS_E3 */
9273                 reset_mask2 = 0x3ffffff;
9274
9275         /* Don't reset global blocks unless we need to */
9276         if (!global)
9277                 reset_mask2 &= ~global_bits2;
9278
9279         /*
9280          * In case of attention in the QM, we need to reset PXP
9281          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9282          * because otherwise QM reset would release 'close the gates' shortly
9283          * before resetting the PXP, then the PSWRQ would send a write
9284          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9285          * read the payload data from PSWWR, but PSWWR would not
9286          * respond. The write queue in PGLUE would stuck, dmae commands
9287          * would not return. Therefore it's important to reset the second
9288          * reset register (containing the
9289          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9290          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9291          * bit).
9292          */
9293         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9294                reset_mask2 & (~not_reset_mask2));
9295
9296         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9297                reset_mask1 & (~not_reset_mask1));
9298
9299         barrier();
9300         mmiowb();
9301
9302         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9303                reset_mask2 & (~stay_reset2));
9304
9305         barrier();
9306         mmiowb();
9307
9308         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9309         mmiowb();
9310 }
9311
9312 /**
9313  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9314  * It should get cleared in no more than 1s.
9315  *
9316  * @bp: driver handle
9317  *
9318  * It should get cleared in no more than 1s. Returns 0 if
9319  * pending writes bit gets cleared.
9320  */
9321 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9322 {
9323         u32 cnt = 1000;
9324         u32 pend_bits = 0;
9325
9326         do {
9327                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9328
9329                 if (pend_bits == 0)
9330                         break;
9331
9332                 usleep_range(1000, 2000);
9333         } while (cnt-- > 0);
9334
9335         if (cnt <= 0) {
9336                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9337                           pend_bits);
9338                 return -EBUSY;
9339         }
9340
9341         return 0;
9342 }
9343
9344 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9345 {
9346         int cnt = 1000;
9347         u32 val = 0;
9348         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9349         u32 tags_63_32 = 0;
9350
9351         /* Empty the Tetris buffer, wait for 1s */
9352         do {
9353                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9354                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9355                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9356                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9357                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9358                 if (CHIP_IS_E3(bp))
9359                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9360
9361                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9362                     ((port_is_idle_0 & 0x1) == 0x1) &&
9363                     ((port_is_idle_1 & 0x1) == 0x1) &&
9364                     (pgl_exp_rom2 == 0xffffffff) &&
9365                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9366                         break;
9367                 usleep_range(1000, 2000);
9368         } while (cnt-- > 0);
9369
9370         if (cnt <= 0) {
9371                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9372                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9373                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9374                           pgl_exp_rom2);
9375                 return -EAGAIN;
9376         }
9377
9378         barrier();
9379
9380         /* Close gates #2, #3 and #4 */
9381         bnx2x_set_234_gates(bp, true);
9382
9383         /* Poll for IGU VQs for 57712 and newer chips */
9384         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9385                 return -EAGAIN;
9386
9387         /* TBD: Indicate that "process kill" is in progress to MCP */
9388
9389         /* Clear "unprepared" bit */
9390         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9391         barrier();
9392
9393         /* Make sure all is written to the chip before the reset */
9394         mmiowb();
9395
9396         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9397          * PSWHST, GRC and PSWRD Tetris buffer.
9398          */
9399         usleep_range(1000, 2000);
9400
9401         /* Prepare to chip reset: */
9402         /* MCP */
9403         if (global)
9404                 bnx2x_reset_mcp_prep(bp, &val);
9405
9406         /* PXP */
9407         bnx2x_pxp_prep(bp);
9408         barrier();
9409
9410         /* reset the chip */
9411         bnx2x_process_kill_chip_reset(bp, global);
9412         barrier();
9413
9414         /* clear errors in PGB */
9415         if (!CHIP_IS_E1x(bp))
9416                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9417
9418         /* Recover after reset: */
9419         /* MCP */
9420         if (global && bnx2x_reset_mcp_comp(bp, val))
9421                 return -EAGAIN;
9422
9423         /* TBD: Add resetting the NO_MCP mode DB here */
9424
9425         /* Open the gates #2, #3 and #4 */
9426         bnx2x_set_234_gates(bp, false);
9427
9428         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9429          * reset state, re-enable attentions. */
9430
9431         return 0;
9432 }
9433
9434 static int bnx2x_leader_reset(struct bnx2x *bp)
9435 {
9436         int rc = 0;
9437         bool global = bnx2x_reset_is_global(bp);
9438         u32 load_code;
9439
9440         /* if not going to reset MCP - load "fake" driver to reset HW while
9441          * driver is owner of the HW
9442          */
9443         if (!global && !BP_NOMCP(bp)) {
9444                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9445                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9446                 if (!load_code) {
9447                         BNX2X_ERR("MCP response failure, aborting\n");
9448                         rc = -EAGAIN;
9449                         goto exit_leader_reset;
9450                 }
9451                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9452                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9453                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9454                         rc = -EAGAIN;
9455                         goto exit_leader_reset2;
9456                 }
9457                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9458                 if (!load_code) {
9459                         BNX2X_ERR("MCP response failure, aborting\n");
9460                         rc = -EAGAIN;
9461                         goto exit_leader_reset2;
9462                 }
9463         }
9464
9465         /* Try to recover after the failure */
9466         if (bnx2x_process_kill(bp, global)) {
9467                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9468                           BP_PATH(bp));
9469                 rc = -EAGAIN;
9470                 goto exit_leader_reset2;
9471         }
9472
9473         /*
9474          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9475          * state.
9476          */
9477         bnx2x_set_reset_done(bp);
9478         if (global)
9479                 bnx2x_clear_reset_global(bp);
9480
9481 exit_leader_reset2:
9482         /* unload "fake driver" if it was loaded */
9483         if (!global && !BP_NOMCP(bp)) {
9484                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9485                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9486         }
9487 exit_leader_reset:
9488         bp->is_leader = 0;
9489         bnx2x_release_leader_lock(bp);
9490         smp_mb();
9491         return rc;
9492 }
9493
9494 static void bnx2x_recovery_failed(struct bnx2x *bp)
9495 {
9496         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9497
9498         /* Disconnect this device */
9499         netif_device_detach(bp->dev);
9500
9501         /*
9502          * Block ifup for all function on this engine until "process kill"
9503          * or power cycle.
9504          */
9505         bnx2x_set_reset_in_progress(bp);
9506
9507         /* Shut down the power */
9508         bnx2x_set_power_state(bp, PCI_D3hot);
9509
9510         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9511
9512         smp_mb();
9513 }
9514
9515 /*
9516  * Assumption: runs under rtnl lock. This together with the fact
9517  * that it's called only from bnx2x_sp_rtnl() ensure that it
9518  * will never be called when netif_running(bp->dev) is false.
9519  */
9520 static void bnx2x_parity_recover(struct bnx2x *bp)
9521 {
9522         bool global = false;
9523         u32 error_recovered, error_unrecovered;
9524         bool is_parity;
9525
9526         DP(NETIF_MSG_HW, "Handling parity\n");
9527         while (1) {
9528                 switch (bp->recovery_state) {
9529                 case BNX2X_RECOVERY_INIT:
9530                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9531                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9532                         WARN_ON(!is_parity);
9533
9534                         /* Try to get a LEADER_LOCK HW lock */
9535                         if (bnx2x_trylock_leader_lock(bp)) {
9536                                 bnx2x_set_reset_in_progress(bp);
9537                                 /*
9538                                  * Check if there is a global attention and if
9539                                  * there was a global attention, set the global
9540                                  * reset bit.
9541                                  */
9542
9543                                 if (global)
9544                                         bnx2x_set_reset_global(bp);
9545
9546                                 bp->is_leader = 1;
9547                         }
9548
9549                         /* Stop the driver */
9550                         /* If interface has been removed - break */
9551                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9552                                 return;
9553
9554                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9555
9556                         /* Ensure "is_leader", MCP command sequence and
9557                          * "recovery_state" update values are seen on other
9558                          * CPUs.
9559                          */
9560                         smp_mb();
9561                         break;
9562
9563                 case BNX2X_RECOVERY_WAIT:
9564                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9565                         if (bp->is_leader) {
9566                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9567                                 bool other_load_status =
9568                                         bnx2x_get_load_status(bp, other_engine);
9569                                 bool load_status =
9570                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9571                                 global = bnx2x_reset_is_global(bp);
9572
9573                                 /*
9574                                  * In case of a parity in a global block, let
9575                                  * the first leader that performs a
9576                                  * leader_reset() reset the global blocks in
9577                                  * order to clear global attentions. Otherwise
9578                                  * the gates will remain closed for that
9579                                  * engine.
9580                                  */
9581                                 if (load_status ||
9582                                     (global && other_load_status)) {
9583                                         /* Wait until all other functions get
9584                                          * down.
9585                                          */
9586                                         schedule_delayed_work(&bp->sp_rtnl_task,
9587                                                                 HZ/10);
9588                                         return;
9589                                 } else {
9590                                         /* If all other functions got down -
9591                                          * try to bring the chip back to
9592                                          * normal. In any case it's an exit
9593                                          * point for a leader.
9594                                          */
9595                                         if (bnx2x_leader_reset(bp)) {
9596                                                 bnx2x_recovery_failed(bp);
9597                                                 return;
9598                                         }
9599
9600                                         /* If we are here, means that the
9601                                          * leader has succeeded and doesn't
9602                                          * want to be a leader any more. Try
9603                                          * to continue as a none-leader.
9604                                          */
9605                                         break;
9606                                 }
9607                         } else { /* non-leader */
9608                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9609                                         /* Try to get a LEADER_LOCK HW lock as
9610                                          * long as a former leader may have
9611                                          * been unloaded by the user or
9612                                          * released a leadership by another
9613                                          * reason.
9614                                          */
9615                                         if (bnx2x_trylock_leader_lock(bp)) {
9616                                                 /* I'm a leader now! Restart a
9617                                                  * switch case.
9618                                                  */
9619                                                 bp->is_leader = 1;
9620                                                 break;
9621                                         }
9622
9623                                         schedule_delayed_work(&bp->sp_rtnl_task,
9624                                                                 HZ/10);
9625                                         return;
9626
9627                                 } else {
9628                                         /*
9629                                          * If there was a global attention, wait
9630                                          * for it to be cleared.
9631                                          */
9632                                         if (bnx2x_reset_is_global(bp)) {
9633                                                 schedule_delayed_work(
9634                                                         &bp->sp_rtnl_task,
9635                                                         HZ/10);
9636                                                 return;
9637                                         }
9638
9639                                         error_recovered =
9640                                           bp->eth_stats.recoverable_error;
9641                                         error_unrecovered =
9642                                           bp->eth_stats.unrecoverable_error;
9643                                         bp->recovery_state =
9644                                                 BNX2X_RECOVERY_NIC_LOADING;
9645                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9646                                                 error_unrecovered++;
9647                                                 netdev_err(bp->dev,
9648                                                            "Recovery failed. Power cycle needed\n");
9649                                                 /* Disconnect this device */
9650                                                 netif_device_detach(bp->dev);
9651                                                 /* Shut down the power */
9652                                                 bnx2x_set_power_state(
9653                                                         bp, PCI_D3hot);
9654                                                 smp_mb();
9655                                         } else {
9656                                                 bp->recovery_state =
9657                                                         BNX2X_RECOVERY_DONE;
9658                                                 error_recovered++;
9659                                                 smp_mb();
9660                                         }
9661                                         bp->eth_stats.recoverable_error =
9662                                                 error_recovered;
9663                                         bp->eth_stats.unrecoverable_error =
9664                                                 error_unrecovered;
9665
9666                                         return;
9667                                 }
9668                         }
9669                 default:
9670                         return;
9671                 }
9672         }
9673 }
9674
9675 static int bnx2x_close(struct net_device *dev);
9676
9677 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9678  * scheduled on a general queue in order to prevent a dead lock.
9679  */
9680 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9681 {
9682         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9683
9684         rtnl_lock();
9685
9686         if (!netif_running(bp->dev)) {
9687                 rtnl_unlock();
9688                 return;
9689         }
9690
9691         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9692 #ifdef BNX2X_STOP_ON_ERROR
9693                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9694                           "you will need to reboot when done\n");
9695                 goto sp_rtnl_not_reset;
9696 #endif
9697                 /*
9698                  * Clear all pending SP commands as we are going to reset the
9699                  * function anyway.
9700                  */
9701                 bp->sp_rtnl_state = 0;
9702                 smp_mb();
9703
9704                 bnx2x_parity_recover(bp);
9705
9706                 rtnl_unlock();
9707                 return;
9708         }
9709
9710         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9711 #ifdef BNX2X_STOP_ON_ERROR
9712                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9713                           "you will need to reboot when done\n");
9714                 goto sp_rtnl_not_reset;
9715 #endif
9716
9717                 /*
9718                  * Clear all pending SP commands as we are going to reset the
9719                  * function anyway.
9720                  */
9721                 bp->sp_rtnl_state = 0;
9722                 smp_mb();
9723
9724                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9725                 bnx2x_nic_load(bp, LOAD_NORMAL);
9726
9727                 rtnl_unlock();
9728                 return;
9729         }
9730 #ifdef BNX2X_STOP_ON_ERROR
9731 sp_rtnl_not_reset:
9732 #endif
9733         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9734                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9735         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9736                 bnx2x_after_function_update(bp);
9737         /*
9738          * in case of fan failure we need to reset id if the "stop on error"
9739          * debug flag is set, since we trying to prevent permanent overheating
9740          * damage
9741          */
9742         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9743                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9744                 netif_device_detach(bp->dev);
9745                 bnx2x_close(bp->dev);
9746                 rtnl_unlock();
9747                 return;
9748         }
9749
9750         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9751                 DP(BNX2X_MSG_SP,
9752                    "sending set mcast vf pf channel message from rtnl sp-task\n");
9753                 bnx2x_vfpf_set_mcast(bp->dev);
9754         }
9755         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9756                                &bp->sp_rtnl_state)){
9757                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9758                         bnx2x_tx_disable(bp);
9759                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9760                 }
9761         }
9762
9763         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9764                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9765                 bnx2x_set_rx_mode_inner(bp);
9766         }
9767
9768         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9769                                &bp->sp_rtnl_state))
9770                 bnx2x_pf_set_vfs_vlan(bp);
9771
9772         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
9773                 bnx2x_dcbx_stop_hw_tx(bp);
9774                 bnx2x_dcbx_resume_hw_tx(bp);
9775         }
9776
9777         /* work which needs rtnl lock not-taken (as it takes the lock itself and
9778          * can be called from other contexts as well)
9779          */
9780         rtnl_unlock();
9781
9782         /* enable SR-IOV if applicable */
9783         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9784                                                &bp->sp_rtnl_state)) {
9785                 bnx2x_disable_sriov(bp);
9786                 bnx2x_enable_sriov(bp);
9787         }
9788 }
9789
9790 static void bnx2x_period_task(struct work_struct *work)
9791 {
9792         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9793
9794         if (!netif_running(bp->dev))
9795                 goto period_task_exit;
9796
9797         if (CHIP_REV_IS_SLOW(bp)) {
9798                 BNX2X_ERR("period task called on emulation, ignoring\n");
9799                 goto period_task_exit;
9800         }
9801
9802         bnx2x_acquire_phy_lock(bp);
9803         /*
9804          * The barrier is needed to ensure the ordering between the writing to
9805          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9806          * the reading here.
9807          */
9808         smp_mb();
9809         if (bp->port.pmf) {
9810                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9811
9812                 /* Re-queue task in 1 sec */
9813                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9814         }
9815
9816         bnx2x_release_phy_lock(bp);
9817 period_task_exit:
9818         return;
9819 }
9820
9821 /*
9822  * Init service functions
9823  */
9824
9825 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9826 {
9827         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9828         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9829         return base + (BP_ABS_FUNC(bp)) * stride;
9830 }
9831
9832 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9833                                         struct bnx2x_mac_vals *vals)
9834 {
9835         u32 val, base_addr, offset, mask, reset_reg;
9836         bool mac_stopped = false;
9837         u8 port = BP_PORT(bp);
9838
9839         /* reset addresses as they also mark which values were changed */
9840         vals->bmac_addr = 0;
9841         vals->umac_addr = 0;
9842         vals->xmac_addr = 0;
9843         vals->emac_addr = 0;
9844
9845         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9846
9847         if (!CHIP_IS_E3(bp)) {
9848                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9849                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9850                 if ((mask & reset_reg) && val) {
9851                         u32 wb_data[2];
9852                         BNX2X_DEV_INFO("Disable bmac Rx\n");
9853                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9854                                                 : NIG_REG_INGRESS_BMAC0_MEM;
9855                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9856                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
9857
9858                         /*
9859                          * use rd/wr since we cannot use dmae. This is safe
9860                          * since MCP won't access the bus due to the request
9861                          * to unload, and no function on the path can be
9862                          * loaded at this time.
9863                          */
9864                         wb_data[0] = REG_RD(bp, base_addr + offset);
9865                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9866                         vals->bmac_addr = base_addr + offset;
9867                         vals->bmac_val[0] = wb_data[0];
9868                         vals->bmac_val[1] = wb_data[1];
9869                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9870                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
9871                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9872                 }
9873                 BNX2X_DEV_INFO("Disable emac Rx\n");
9874                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9875                 vals->emac_val = REG_RD(bp, vals->emac_addr);
9876                 REG_WR(bp, vals->emac_addr, 0);
9877                 mac_stopped = true;
9878         } else {
9879                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9880                         BNX2X_DEV_INFO("Disable xmac Rx\n");
9881                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9882                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9883                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9884                                val & ~(1 << 1));
9885                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9886                                val | (1 << 1));
9887                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9888                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9889                         REG_WR(bp, vals->xmac_addr, 0);
9890                         mac_stopped = true;
9891                 }
9892                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9893                 if (mask & reset_reg) {
9894                         BNX2X_DEV_INFO("Disable umac Rx\n");
9895                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9896                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9897                         vals->umac_val = REG_RD(bp, vals->umac_addr);
9898                         REG_WR(bp, vals->umac_addr, 0);
9899                         mac_stopped = true;
9900                 }
9901         }
9902
9903         if (mac_stopped)
9904                 msleep(20);
9905 }
9906
9907 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9908 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
9909 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
9910 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
9911
9912 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
9913 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
9914 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
9915 #define BNX2X_PREV_UNDI_MF_PORT(p)      (0x1a150c + ((p) << 4))
9916 #define BNX2X_PREV_UNDI_MF_FUNC(f)      (0x1a184c + ((f) << 4))
9917 static bool bnx2x_prev_unload_undi_fw_supports_mf(struct bnx2x *bp)
9918 {
9919         u8 major, minor, version;
9920         u32 fw;
9921
9922         /* Must check that FW is loaded */
9923         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
9924              MISC_REGISTERS_RESET_REG_1_RST_XSEM)) {
9925                 BNX2X_DEV_INFO("XSEM is reset - UNDI MF FW is not loaded\n");
9926                 return false;
9927         }
9928
9929         /* Read Currently loaded FW version */
9930         fw = REG_RD(bp, XSEM_REG_PRAM);
9931         major = fw & 0xff;
9932         minor = (fw >> 0x8) & 0xff;
9933         version = (fw >> 0x10) & 0xff;
9934         BNX2X_DEV_INFO("Loaded FW: 0x%08x: Major 0x%02x Minor 0x%02x Version 0x%02x\n",
9935                        fw, major, minor, version);
9936
9937         if (major > BCM_5710_UNDI_FW_MF_MAJOR)
9938                 return true;
9939
9940         if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
9941             (minor > BCM_5710_UNDI_FW_MF_MINOR))
9942                 return true;
9943
9944         if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
9945             (minor == BCM_5710_UNDI_FW_MF_MINOR) &&
9946             (version >= BCM_5710_UNDI_FW_MF_VERS))
9947                 return true;
9948
9949         return false;
9950 }
9951
9952 static void bnx2x_prev_unload_undi_mf(struct bnx2x *bp)
9953 {
9954         int i;
9955
9956         /* Due to legacy (FW) code, the first function on each engine has a
9957          * different offset macro from the rest of the functions.
9958          * Setting this for all 8 functions is harmless regardless of whether
9959          * this is actually a multi-function device.
9960          */
9961         for (i = 0; i < 2; i++)
9962                 REG_WR(bp, BNX2X_PREV_UNDI_MF_PORT(i), 1);
9963
9964         for (i = 2; i < 8; i++)
9965                 REG_WR(bp, BNX2X_PREV_UNDI_MF_FUNC(i - 2), 1);
9966
9967         BNX2X_DEV_INFO("UNDI FW (MF) set to discard\n");
9968 }
9969
9970 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9971 {
9972         u16 rcq, bd;
9973         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9974
9975         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9976         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9977
9978         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9979         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9980
9981         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9982                        port, bd, rcq);
9983 }
9984
9985 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9986 {
9987         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9988                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9989         if (!rc) {
9990                 BNX2X_ERR("MCP response failure, aborting\n");
9991                 return -EBUSY;
9992         }
9993
9994         return 0;
9995 }
9996
9997 static struct bnx2x_prev_path_list *
9998                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9999 {
10000         struct bnx2x_prev_path_list *tmp_list;
10001
10002         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10003                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10004                     bp->pdev->bus->number == tmp_list->bus &&
10005                     BP_PATH(bp) == tmp_list->path)
10006                         return tmp_list;
10007
10008         return NULL;
10009 }
10010
10011 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10012 {
10013         struct bnx2x_prev_path_list *tmp_list;
10014         int rc;
10015
10016         rc = down_interruptible(&bnx2x_prev_sem);
10017         if (rc) {
10018                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10019                 return rc;
10020         }
10021
10022         tmp_list = bnx2x_prev_path_get_entry(bp);
10023         if (tmp_list) {
10024                 tmp_list->aer = 1;
10025                 rc = 0;
10026         } else {
10027                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10028                           BP_PATH(bp));
10029         }
10030
10031         up(&bnx2x_prev_sem);
10032
10033         return rc;
10034 }
10035
10036 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10037 {
10038         struct bnx2x_prev_path_list *tmp_list;
10039         bool rc = false;
10040
10041         if (down_trylock(&bnx2x_prev_sem))
10042                 return false;
10043
10044         tmp_list = bnx2x_prev_path_get_entry(bp);
10045         if (tmp_list) {
10046                 if (tmp_list->aer) {
10047                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10048                            BP_PATH(bp));
10049                 } else {
10050                         rc = true;
10051                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10052                                        BP_PATH(bp));
10053                 }
10054         }
10055
10056         up(&bnx2x_prev_sem);
10057
10058         return rc;
10059 }
10060
10061 bool bnx2x_port_after_undi(struct bnx2x *bp)
10062 {
10063         struct bnx2x_prev_path_list *entry;
10064         bool val;
10065
10066         down(&bnx2x_prev_sem);
10067
10068         entry = bnx2x_prev_path_get_entry(bp);
10069         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10070
10071         up(&bnx2x_prev_sem);
10072
10073         return val;
10074 }
10075
10076 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10077 {
10078         struct bnx2x_prev_path_list *tmp_list;
10079         int rc;
10080
10081         rc = down_interruptible(&bnx2x_prev_sem);
10082         if (rc) {
10083                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10084                 return rc;
10085         }
10086
10087         /* Check whether the entry for this path already exists */
10088         tmp_list = bnx2x_prev_path_get_entry(bp);
10089         if (tmp_list) {
10090                 if (!tmp_list->aer) {
10091                         BNX2X_ERR("Re-Marking the path.\n");
10092                 } else {
10093                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10094                            BP_PATH(bp));
10095                         tmp_list->aer = 0;
10096                 }
10097                 up(&bnx2x_prev_sem);
10098                 return 0;
10099         }
10100         up(&bnx2x_prev_sem);
10101
10102         /* Create an entry for this path and add it */
10103         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10104         if (!tmp_list) {
10105                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10106                 return -ENOMEM;
10107         }
10108
10109         tmp_list->bus = bp->pdev->bus->number;
10110         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10111         tmp_list->path = BP_PATH(bp);
10112         tmp_list->aer = 0;
10113         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10114
10115         rc = down_interruptible(&bnx2x_prev_sem);
10116         if (rc) {
10117                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10118                 kfree(tmp_list);
10119         } else {
10120                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10121                    BP_PATH(bp));
10122                 list_add(&tmp_list->list, &bnx2x_prev_list);
10123                 up(&bnx2x_prev_sem);
10124         }
10125
10126         return rc;
10127 }
10128
10129 static int bnx2x_do_flr(struct bnx2x *bp)
10130 {
10131         struct pci_dev *dev = bp->pdev;
10132
10133         if (CHIP_IS_E1x(bp)) {
10134                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10135                 return -EINVAL;
10136         }
10137
10138         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10139         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10140                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10141                           bp->common.bc_ver);
10142                 return -EINVAL;
10143         }
10144
10145         if (!pci_wait_for_pending_transaction(dev))
10146                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10147
10148         BNX2X_DEV_INFO("Initiating FLR\n");
10149         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10150
10151         return 0;
10152 }
10153
10154 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10155 {
10156         int rc;
10157
10158         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10159
10160         /* Test if previous unload process was already finished for this path */
10161         if (bnx2x_prev_is_path_marked(bp))
10162                 return bnx2x_prev_mcp_done(bp);
10163
10164         BNX2X_DEV_INFO("Path is unmarked\n");
10165
10166         /* If function has FLR capabilities, and existing FW version matches
10167          * the one required, then FLR will be sufficient to clean any residue
10168          * left by previous driver
10169          */
10170         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10171
10172         if (!rc) {
10173                 /* fw version is good */
10174                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10175                 rc = bnx2x_do_flr(bp);
10176         }
10177
10178         if (!rc) {
10179                 /* FLR was performed */
10180                 BNX2X_DEV_INFO("FLR successful\n");
10181                 return 0;
10182         }
10183
10184         BNX2X_DEV_INFO("Could not FLR\n");
10185
10186         /* Close the MCP request, return failure*/
10187         rc = bnx2x_prev_mcp_done(bp);
10188         if (!rc)
10189                 rc = BNX2X_PREV_WAIT_NEEDED;
10190
10191         return rc;
10192 }
10193
10194 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10195 {
10196         u32 reset_reg, tmp_reg = 0, rc;
10197         bool prev_undi = false;
10198         struct bnx2x_mac_vals mac_vals;
10199
10200         /* It is possible a previous function received 'common' answer,
10201          * but hasn't loaded yet, therefore creating a scenario of
10202          * multiple functions receiving 'common' on the same path.
10203          */
10204         BNX2X_DEV_INFO("Common unload Flow\n");
10205
10206         memset(&mac_vals, 0, sizeof(mac_vals));
10207
10208         if (bnx2x_prev_is_path_marked(bp))
10209                 return bnx2x_prev_mcp_done(bp);
10210
10211         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10212
10213         /* Reset should be performed after BRB is emptied */
10214         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10215                 u32 timer_count = 1000;
10216
10217                 /* Close the MAC Rx to prevent BRB from filling up */
10218                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10219
10220                 /* close LLH filters towards the BRB */
10221                 bnx2x_set_rx_filter(&bp->link_params, 0);
10222
10223                 /* Check if the UNDI driver was previously loaded
10224                  * UNDI driver initializes CID offset for normal bell to 0x7
10225                  */
10226                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10227                         tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10228                         if (tmp_reg == 0x7) {
10229                                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10230                                 prev_undi = true;
10231                                 /* clear the UNDI indication */
10232                                 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10233                                 /* clear possible idle check errors */
10234                                 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10235                         }
10236                 }
10237                 if (!CHIP_IS_E1x(bp))
10238                         /* block FW from writing to host */
10239                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10240
10241                 /* wait until BRB is empty */
10242                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10243                 while (timer_count) {
10244                         u32 prev_brb = tmp_reg;
10245
10246                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10247                         if (!tmp_reg)
10248                                 break;
10249
10250                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10251
10252                         /* reset timer as long as BRB actually gets emptied */
10253                         if (prev_brb > tmp_reg)
10254                                 timer_count = 1000;
10255                         else
10256                                 timer_count--;
10257
10258                         /* New UNDI FW supports MF and contains better
10259                          * cleaning methods - might be redundant but harmless.
10260                          */
10261                         if (bnx2x_prev_unload_undi_fw_supports_mf(bp)) {
10262                                 bnx2x_prev_unload_undi_mf(bp);
10263                         } else if (prev_undi) {
10264                                 /* If UNDI resides in memory,
10265                                  * manually increment it
10266                                  */
10267                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10268                         }
10269                         udelay(10);
10270                 }
10271
10272                 if (!timer_count)
10273                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10274         }
10275
10276         /* No packets are in the pipeline, path is ready for reset */
10277         bnx2x_reset_common(bp);
10278
10279         if (mac_vals.xmac_addr)
10280                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10281         if (mac_vals.umac_addr)
10282                 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10283         if (mac_vals.emac_addr)
10284                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10285         if (mac_vals.bmac_addr) {
10286                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10287                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10288         }
10289
10290         rc = bnx2x_prev_mark_path(bp, prev_undi);
10291         if (rc) {
10292                 bnx2x_prev_mcp_done(bp);
10293                 return rc;
10294         }
10295
10296         return bnx2x_prev_mcp_done(bp);
10297 }
10298
10299 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10300  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10301  * the addresses of the transaction, resulting in was-error bit set in the pci
10302  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10303  * to clear the interrupt which detected this from the pglueb and the was done
10304  * bit
10305  */
10306 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10307 {
10308         if (!CHIP_IS_E1x(bp)) {
10309                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10310                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10311                         DP(BNX2X_MSG_SP,
10312                            "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10313                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10314                                1 << BP_FUNC(bp));
10315                 }
10316         }
10317 }
10318
10319 static int bnx2x_prev_unload(struct bnx2x *bp)
10320 {
10321         int time_counter = 10;
10322         u32 rc, fw, hw_lock_reg, hw_lock_val;
10323         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10324
10325         /* clear hw from errors which may have resulted from an interrupted
10326          * dmae transaction.
10327          */
10328         bnx2x_prev_interrupted_dmae(bp);
10329
10330         /* Release previously held locks */
10331         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10332                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10333                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10334
10335         hw_lock_val = REG_RD(bp, hw_lock_reg);
10336         if (hw_lock_val) {
10337                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10338                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10339                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10340                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10341                 }
10342
10343                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10344                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10345         } else
10346                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10347
10348         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10349                 BNX2X_DEV_INFO("Release previously held alr\n");
10350                 bnx2x_release_alr(bp);
10351         }
10352
10353         do {
10354                 int aer = 0;
10355                 /* Lock MCP using an unload request */
10356                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10357                 if (!fw) {
10358                         BNX2X_ERR("MCP response failure, aborting\n");
10359                         rc = -EBUSY;
10360                         break;
10361                 }
10362
10363                 rc = down_interruptible(&bnx2x_prev_sem);
10364                 if (rc) {
10365                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10366                                   rc);
10367                 } else {
10368                         /* If Path is marked by EEH, ignore unload status */
10369                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10370                                  bnx2x_prev_path_get_entry(bp)->aer);
10371                         up(&bnx2x_prev_sem);
10372                 }
10373
10374                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10375                         rc = bnx2x_prev_unload_common(bp);
10376                         break;
10377                 }
10378
10379                 /* non-common reply from MCP might require looping */
10380                 rc = bnx2x_prev_unload_uncommon(bp);
10381                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10382                         break;
10383
10384                 msleep(20);
10385         } while (--time_counter);
10386
10387         if (!time_counter || rc) {
10388                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10389                 rc = -EPROBE_DEFER;
10390         }
10391
10392         /* Mark function if its port was used to boot from SAN */
10393         if (bnx2x_port_after_undi(bp))
10394                 bp->link_params.feature_config_flags |=
10395                         FEATURE_CONFIG_BOOT_FROM_SAN;
10396
10397         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10398
10399         return rc;
10400 }
10401
10402 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10403 {
10404         u32 val, val2, val3, val4, id, boot_mode;
10405         u16 pmc;
10406
10407         /* Get the chip revision id and number. */
10408         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10409         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10410         id = ((val & 0xffff) << 16);
10411         val = REG_RD(bp, MISC_REG_CHIP_REV);
10412         id |= ((val & 0xf) << 12);
10413
10414         /* Metal is read from PCI regs, but we can't access >=0x400 from
10415          * the configuration space (so we need to reg_rd)
10416          */
10417         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10418         id |= (((val >> 24) & 0xf) << 4);
10419         val = REG_RD(bp, MISC_REG_BOND_ID);
10420         id |= (val & 0xf);
10421         bp->common.chip_id = id;
10422
10423         /* force 57811 according to MISC register */
10424         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10425                 if (CHIP_IS_57810(bp))
10426                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10427                                 (bp->common.chip_id & 0x0000FFFF);
10428                 else if (CHIP_IS_57810_MF(bp))
10429                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10430                                 (bp->common.chip_id & 0x0000FFFF);
10431                 bp->common.chip_id |= 0x1;
10432         }
10433
10434         /* Set doorbell size */
10435         bp->db_size = (1 << BNX2X_DB_SHIFT);
10436
10437         if (!CHIP_IS_E1x(bp)) {
10438                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10439                 if ((val & 1) == 0)
10440                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10441                 else
10442                         val = (val >> 1) & 1;
10443                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10444                                                        "2_PORT_MODE");
10445                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10446                                                  CHIP_2_PORT_MODE;
10447
10448                 if (CHIP_MODE_IS_4_PORT(bp))
10449                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10450                 else
10451                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10452         } else {
10453                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10454                 bp->pfid = bp->pf_num;                  /* 0..7 */
10455         }
10456
10457         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10458
10459         bp->link_params.chip_id = bp->common.chip_id;
10460         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10461
10462         val = (REG_RD(bp, 0x2874) & 0x55);
10463         if ((bp->common.chip_id & 0x1) ||
10464             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10465                 bp->flags |= ONE_PORT_FLAG;
10466                 BNX2X_DEV_INFO("single port device\n");
10467         }
10468
10469         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10470         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10471                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10472         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10473                        bp->common.flash_size, bp->common.flash_size);
10474
10475         bnx2x_init_shmem(bp);
10476
10477         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10478                                         MISC_REG_GENERIC_CR_1 :
10479                                         MISC_REG_GENERIC_CR_0));
10480
10481         bp->link_params.shmem_base = bp->common.shmem_base;
10482         bp->link_params.shmem2_base = bp->common.shmem2_base;
10483         if (SHMEM2_RD(bp, size) >
10484             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10485                 bp->link_params.lfa_base =
10486                 REG_RD(bp, bp->common.shmem2_base +
10487                        (u32)offsetof(struct shmem2_region,
10488                                      lfa_host_addr[BP_PORT(bp)]));
10489         else
10490                 bp->link_params.lfa_base = 0;
10491         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10492                        bp->common.shmem_base, bp->common.shmem2_base);
10493
10494         if (!bp->common.shmem_base) {
10495                 BNX2X_DEV_INFO("MCP not active\n");
10496                 bp->flags |= NO_MCP_FLAG;
10497                 return;
10498         }
10499
10500         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10501         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10502
10503         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10504                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10505                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10506
10507         bp->link_params.feature_config_flags = 0;
10508         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10509         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10510                 bp->link_params.feature_config_flags |=
10511                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10512         else
10513                 bp->link_params.feature_config_flags &=
10514                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10515
10516         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10517         bp->common.bc_ver = val;
10518         BNX2X_DEV_INFO("bc_ver %X\n", val);
10519         if (val < BNX2X_BC_VER) {
10520                 /* for now only warn
10521                  * later we might need to enforce this */
10522                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10523                           BNX2X_BC_VER, val);
10524         }
10525         bp->link_params.feature_config_flags |=
10526                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10527                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10528
10529         bp->link_params.feature_config_flags |=
10530                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10531                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10532         bp->link_params.feature_config_flags |=
10533                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10534                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10535         bp->link_params.feature_config_flags |=
10536                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10537                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10538
10539         bp->link_params.feature_config_flags |=
10540                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10541                 FEATURE_CONFIG_MT_SUPPORT : 0;
10542
10543         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10544                         BC_SUPPORTS_PFC_STATS : 0;
10545
10546         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10547                         BC_SUPPORTS_FCOE_FEATURES : 0;
10548
10549         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10550                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10551
10552         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10553                         BC_SUPPORTS_RMMOD_CMD : 0;
10554
10555         boot_mode = SHMEM_RD(bp,
10556                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10557                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10558         switch (boot_mode) {
10559         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10560                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10561                 break;
10562         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10563                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10564                 break;
10565         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10566                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10567                 break;
10568         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10569                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10570                 break;
10571         }
10572
10573         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10574         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10575
10576         BNX2X_DEV_INFO("%sWoL capable\n",
10577                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10578
10579         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10580         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10581         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10582         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10583
10584         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10585                  val, val2, val3, val4);
10586 }
10587
10588 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10589 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10590
10591 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10592 {
10593         int pfid = BP_FUNC(bp);
10594         int igu_sb_id;
10595         u32 val;
10596         u8 fid, igu_sb_cnt = 0;
10597
10598         bp->igu_base_sb = 0xff;
10599         if (CHIP_INT_MODE_IS_BC(bp)) {
10600                 int vn = BP_VN(bp);
10601                 igu_sb_cnt = bp->igu_sb_cnt;
10602                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10603                         FP_SB_MAX_E1x;
10604
10605                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10606                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10607
10608                 return 0;
10609         }
10610
10611         /* IGU in normal mode - read CAM */
10612         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10613              igu_sb_id++) {
10614                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10615                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10616                         continue;
10617                 fid = IGU_FID(val);
10618                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10619                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10620                                 continue;
10621                         if (IGU_VEC(val) == 0)
10622                                 /* default status block */
10623                                 bp->igu_dsb_id = igu_sb_id;
10624                         else {
10625                                 if (bp->igu_base_sb == 0xff)
10626                                         bp->igu_base_sb = igu_sb_id;
10627                                 igu_sb_cnt++;
10628                         }
10629                 }
10630         }
10631
10632 #ifdef CONFIG_PCI_MSI
10633         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10634          * optional that number of CAM entries will not be equal to the value
10635          * advertised in PCI.
10636          * Driver should use the minimal value of both as the actual status
10637          * block count
10638          */
10639         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10640 #endif
10641
10642         if (igu_sb_cnt == 0) {
10643                 BNX2X_ERR("CAM configuration error\n");
10644                 return -EINVAL;
10645         }
10646
10647         return 0;
10648 }
10649
10650 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10651 {
10652         int cfg_size = 0, idx, port = BP_PORT(bp);
10653
10654         /* Aggregation of supported attributes of all external phys */
10655         bp->port.supported[0] = 0;
10656         bp->port.supported[1] = 0;
10657         switch (bp->link_params.num_phys) {
10658         case 1:
10659                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10660                 cfg_size = 1;
10661                 break;
10662         case 2:
10663                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10664                 cfg_size = 1;
10665                 break;
10666         case 3:
10667                 if (bp->link_params.multi_phy_config &
10668                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10669                         bp->port.supported[1] =
10670                                 bp->link_params.phy[EXT_PHY1].supported;
10671                         bp->port.supported[0] =
10672                                 bp->link_params.phy[EXT_PHY2].supported;
10673                 } else {
10674                         bp->port.supported[0] =
10675                                 bp->link_params.phy[EXT_PHY1].supported;
10676                         bp->port.supported[1] =
10677                                 bp->link_params.phy[EXT_PHY2].supported;
10678                 }
10679                 cfg_size = 2;
10680                 break;
10681         }
10682
10683         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10684                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10685                            SHMEM_RD(bp,
10686                            dev_info.port_hw_config[port].external_phy_config),
10687                            SHMEM_RD(bp,
10688                            dev_info.port_hw_config[port].external_phy_config2));
10689                         return;
10690         }
10691
10692         if (CHIP_IS_E3(bp))
10693                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10694         else {
10695                 switch (switch_cfg) {
10696                 case SWITCH_CFG_1G:
10697                         bp->port.phy_addr = REG_RD(
10698                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10699                         break;
10700                 case SWITCH_CFG_10G:
10701                         bp->port.phy_addr = REG_RD(
10702                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10703                         break;
10704                 default:
10705                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10706                                   bp->port.link_config[0]);
10707                         return;
10708                 }
10709         }
10710         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10711         /* mask what we support according to speed_cap_mask per configuration */
10712         for (idx = 0; idx < cfg_size; idx++) {
10713                 if (!(bp->link_params.speed_cap_mask[idx] &
10714                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10715                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10716
10717                 if (!(bp->link_params.speed_cap_mask[idx] &
10718                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10719                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10720
10721                 if (!(bp->link_params.speed_cap_mask[idx] &
10722                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10723                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10724
10725                 if (!(bp->link_params.speed_cap_mask[idx] &
10726                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10727                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10728
10729                 if (!(bp->link_params.speed_cap_mask[idx] &
10730                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10731                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10732                                                      SUPPORTED_1000baseT_Full);
10733
10734                 if (!(bp->link_params.speed_cap_mask[idx] &
10735                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10736                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10737
10738                 if (!(bp->link_params.speed_cap_mask[idx] &
10739                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10740                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10741
10742                 if (!(bp->link_params.speed_cap_mask[idx] &
10743                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10744                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10745         }
10746
10747         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10748                        bp->port.supported[1]);
10749 }
10750
10751 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10752 {
10753         u32 link_config, idx, cfg_size = 0;
10754         bp->port.advertising[0] = 0;
10755         bp->port.advertising[1] = 0;
10756         switch (bp->link_params.num_phys) {
10757         case 1:
10758         case 2:
10759                 cfg_size = 1;
10760                 break;
10761         case 3:
10762                 cfg_size = 2;
10763                 break;
10764         }
10765         for (idx = 0; idx < cfg_size; idx++) {
10766                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10767                 link_config = bp->port.link_config[idx];
10768                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10769                 case PORT_FEATURE_LINK_SPEED_AUTO:
10770                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10771                                 bp->link_params.req_line_speed[idx] =
10772                                         SPEED_AUTO_NEG;
10773                                 bp->port.advertising[idx] |=
10774                                         bp->port.supported[idx];
10775                                 if (bp->link_params.phy[EXT_PHY1].type ==
10776                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10777                                         bp->port.advertising[idx] |=
10778                                         (SUPPORTED_100baseT_Half |
10779                                          SUPPORTED_100baseT_Full);
10780                         } else {
10781                                 /* force 10G, no AN */
10782                                 bp->link_params.req_line_speed[idx] =
10783                                         SPEED_10000;
10784                                 bp->port.advertising[idx] |=
10785                                         (ADVERTISED_10000baseT_Full |
10786                                          ADVERTISED_FIBRE);
10787                                 continue;
10788                         }
10789                         break;
10790
10791                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10792                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10793                                 bp->link_params.req_line_speed[idx] =
10794                                         SPEED_10;
10795                                 bp->port.advertising[idx] |=
10796                                         (ADVERTISED_10baseT_Full |
10797                                          ADVERTISED_TP);
10798                         } else {
10799                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10800                                             link_config,
10801                                     bp->link_params.speed_cap_mask[idx]);
10802                                 return;
10803                         }
10804                         break;
10805
10806                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10807                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10808                                 bp->link_params.req_line_speed[idx] =
10809                                         SPEED_10;
10810                                 bp->link_params.req_duplex[idx] =
10811                                         DUPLEX_HALF;
10812                                 bp->port.advertising[idx] |=
10813                                         (ADVERTISED_10baseT_Half |
10814                                          ADVERTISED_TP);
10815                         } else {
10816                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10817                                             link_config,
10818                                           bp->link_params.speed_cap_mask[idx]);
10819                                 return;
10820                         }
10821                         break;
10822
10823                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10824                         if (bp->port.supported[idx] &
10825                             SUPPORTED_100baseT_Full) {
10826                                 bp->link_params.req_line_speed[idx] =
10827                                         SPEED_100;
10828                                 bp->port.advertising[idx] |=
10829                                         (ADVERTISED_100baseT_Full |
10830                                          ADVERTISED_TP);
10831                         } else {
10832                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10833                                             link_config,
10834                                           bp->link_params.speed_cap_mask[idx]);
10835                                 return;
10836                         }
10837                         break;
10838
10839                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10840                         if (bp->port.supported[idx] &
10841                             SUPPORTED_100baseT_Half) {
10842                                 bp->link_params.req_line_speed[idx] =
10843                                                                 SPEED_100;
10844                                 bp->link_params.req_duplex[idx] =
10845                                                                 DUPLEX_HALF;
10846                                 bp->port.advertising[idx] |=
10847                                         (ADVERTISED_100baseT_Half |
10848                                          ADVERTISED_TP);
10849                         } else {
10850                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10851                                     link_config,
10852                                     bp->link_params.speed_cap_mask[idx]);
10853                                 return;
10854                         }
10855                         break;
10856
10857                 case PORT_FEATURE_LINK_SPEED_1G:
10858                         if (bp->port.supported[idx] &
10859                             SUPPORTED_1000baseT_Full) {
10860                                 bp->link_params.req_line_speed[idx] =
10861                                         SPEED_1000;
10862                                 bp->port.advertising[idx] |=
10863                                         (ADVERTISED_1000baseT_Full |
10864                                          ADVERTISED_TP);
10865                         } else {
10866                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10867                                     link_config,
10868                                     bp->link_params.speed_cap_mask[idx]);
10869                                 return;
10870                         }
10871                         break;
10872
10873                 case PORT_FEATURE_LINK_SPEED_2_5G:
10874                         if (bp->port.supported[idx] &
10875                             SUPPORTED_2500baseX_Full) {
10876                                 bp->link_params.req_line_speed[idx] =
10877                                         SPEED_2500;
10878                                 bp->port.advertising[idx] |=
10879                                         (ADVERTISED_2500baseX_Full |
10880                                                 ADVERTISED_TP);
10881                         } else {
10882                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10883                                     link_config,
10884                                     bp->link_params.speed_cap_mask[idx]);
10885                                 return;
10886                         }
10887                         break;
10888
10889                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10890                         if (bp->port.supported[idx] &
10891                             SUPPORTED_10000baseT_Full) {
10892                                 bp->link_params.req_line_speed[idx] =
10893                                         SPEED_10000;
10894                                 bp->port.advertising[idx] |=
10895                                         (ADVERTISED_10000baseT_Full |
10896                                                 ADVERTISED_FIBRE);
10897                         } else {
10898                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10899                                     link_config,
10900                                     bp->link_params.speed_cap_mask[idx]);
10901                                 return;
10902                         }
10903                         break;
10904                 case PORT_FEATURE_LINK_SPEED_20G:
10905                         bp->link_params.req_line_speed[idx] = SPEED_20000;
10906
10907                         break;
10908                 default:
10909                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10910                                   link_config);
10911                                 bp->link_params.req_line_speed[idx] =
10912                                                         SPEED_AUTO_NEG;
10913                                 bp->port.advertising[idx] =
10914                                                 bp->port.supported[idx];
10915                         break;
10916                 }
10917
10918                 bp->link_params.req_flow_ctrl[idx] = (link_config &
10919                                          PORT_FEATURE_FLOW_CONTROL_MASK);
10920                 if (bp->link_params.req_flow_ctrl[idx] ==
10921                     BNX2X_FLOW_CTRL_AUTO) {
10922                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10923                                 bp->link_params.req_flow_ctrl[idx] =
10924                                                         BNX2X_FLOW_CTRL_NONE;
10925                         else
10926                                 bnx2x_set_requested_fc(bp);
10927                 }
10928
10929                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10930                                bp->link_params.req_line_speed[idx],
10931                                bp->link_params.req_duplex[idx],
10932                                bp->link_params.req_flow_ctrl[idx],
10933                                bp->port.advertising[idx]);
10934         }
10935 }
10936
10937 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10938 {
10939         __be16 mac_hi_be = cpu_to_be16(mac_hi);
10940         __be32 mac_lo_be = cpu_to_be32(mac_lo);
10941         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10942         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10943 }
10944
10945 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10946 {
10947         int port = BP_PORT(bp);
10948         u32 config;
10949         u32 ext_phy_type, ext_phy_config, eee_mode;
10950
10951         bp->link_params.bp = bp;
10952         bp->link_params.port = port;
10953
10954         bp->link_params.lane_config =
10955                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10956
10957         bp->link_params.speed_cap_mask[0] =
10958                 SHMEM_RD(bp,
10959                          dev_info.port_hw_config[port].speed_capability_mask) &
10960                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10961         bp->link_params.speed_cap_mask[1] =
10962                 SHMEM_RD(bp,
10963                          dev_info.port_hw_config[port].speed_capability_mask2) &
10964                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10965         bp->port.link_config[0] =
10966                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10967
10968         bp->port.link_config[1] =
10969                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10970
10971         bp->link_params.multi_phy_config =
10972                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10973         /* If the device is capable of WoL, set the default state according
10974          * to the HW
10975          */
10976         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10977         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10978                    (config & PORT_FEATURE_WOL_ENABLED));
10979
10980         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10981             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10982                 bp->flags |= NO_ISCSI_FLAG;
10983         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10984             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10985                 bp->flags |= NO_FCOE_FLAG;
10986
10987         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10988                        bp->link_params.lane_config,
10989                        bp->link_params.speed_cap_mask[0],
10990                        bp->port.link_config[0]);
10991
10992         bp->link_params.switch_cfg = (bp->port.link_config[0] &
10993                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
10994         bnx2x_phy_probe(&bp->link_params);
10995         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10996
10997         bnx2x_link_settings_requested(bp);
10998
10999         /*
11000          * If connected directly, work with the internal PHY, otherwise, work
11001          * with the external PHY
11002          */
11003         ext_phy_config =
11004                 SHMEM_RD(bp,
11005                          dev_info.port_hw_config[port].external_phy_config);
11006         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11007         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11008                 bp->mdio.prtad = bp->port.phy_addr;
11009
11010         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11011                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11012                 bp->mdio.prtad =
11013                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11014
11015         /* Configure link feature according to nvram value */
11016         eee_mode = (((SHMEM_RD(bp, dev_info.
11017                       port_feature_config[port].eee_power_mode)) &
11018                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11019                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11020         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11021                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11022                                            EEE_MODE_ENABLE_LPI |
11023                                            EEE_MODE_OUTPUT_TIME;
11024         } else {
11025                 bp->link_params.eee_mode = 0;
11026         }
11027 }
11028
11029 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11030 {
11031         u32 no_flags = NO_ISCSI_FLAG;
11032         int port = BP_PORT(bp);
11033         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11034                                 drv_lic_key[port].max_iscsi_conn);
11035
11036         if (!CNIC_SUPPORT(bp)) {
11037                 bp->flags |= no_flags;
11038                 return;
11039         }
11040
11041         /* Get the number of maximum allowed iSCSI connections */
11042         bp->cnic_eth_dev.max_iscsi_conn =
11043                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11044                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11045
11046         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11047                        bp->cnic_eth_dev.max_iscsi_conn);
11048
11049         /*
11050          * If maximum allowed number of connections is zero -
11051          * disable the feature.
11052          */
11053         if (!bp->cnic_eth_dev.max_iscsi_conn)
11054                 bp->flags |= no_flags;
11055 }
11056
11057 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11058 {
11059         /* Port info */
11060         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11061                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11062         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11063                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11064
11065         /* Node info */
11066         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11067                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11068         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11069                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11070 }
11071
11072 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11073 {
11074         u8 count = 0;
11075
11076         if (IS_MF(bp)) {
11077                 u8 fid;
11078
11079                 /* iterate over absolute function ids for this path: */
11080                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11081                         if (IS_MF_SD(bp)) {
11082                                 u32 cfg = MF_CFG_RD(bp,
11083                                                     func_mf_config[fid].config);
11084
11085                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11086                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11087                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11088                                         count++;
11089                         } else {
11090                                 u32 cfg = MF_CFG_RD(bp,
11091                                                     func_ext_config[fid].
11092                                                                       func_cfg);
11093
11094                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11095                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11096                                         count++;
11097                         }
11098                 }
11099         } else { /* SF */
11100                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11101
11102                 for (port = 0; port < port_cnt; port++) {
11103                         u32 lic = SHMEM_RD(bp,
11104                                            drv_lic_key[port].max_fcoe_conn) ^
11105                                   FW_ENCODE_32BIT_PATTERN;
11106                         if (lic)
11107                                 count++;
11108                 }
11109         }
11110
11111         return count;
11112 }
11113
11114 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11115 {
11116         int port = BP_PORT(bp);
11117         int func = BP_ABS_FUNC(bp);
11118         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11119                                 drv_lic_key[port].max_fcoe_conn);
11120         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11121
11122         if (!CNIC_SUPPORT(bp)) {
11123                 bp->flags |= NO_FCOE_FLAG;
11124                 return;
11125         }
11126
11127         /* Get the number of maximum allowed FCoE connections */
11128         bp->cnic_eth_dev.max_fcoe_conn =
11129                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11130                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11131
11132         /* Calculate the number of maximum allowed FCoE tasks */
11133         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11134
11135         /* check if FCoE resources must be shared between different functions */
11136         if (num_fcoe_func)
11137                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11138
11139         /* Read the WWN: */
11140         if (!IS_MF(bp)) {
11141                 /* Port info */
11142                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11143                         SHMEM_RD(bp,
11144                                  dev_info.port_hw_config[port].
11145                                  fcoe_wwn_port_name_upper);
11146                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11147                         SHMEM_RD(bp,
11148                                  dev_info.port_hw_config[port].
11149                                  fcoe_wwn_port_name_lower);
11150
11151                 /* Node info */
11152                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11153                         SHMEM_RD(bp,
11154                                  dev_info.port_hw_config[port].
11155                                  fcoe_wwn_node_name_upper);
11156                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11157                         SHMEM_RD(bp,
11158                                  dev_info.port_hw_config[port].
11159                                  fcoe_wwn_node_name_lower);
11160         } else if (!IS_MF_SD(bp)) {
11161                 /*
11162                  * Read the WWN info only if the FCoE feature is enabled for
11163                  * this function.
11164                  */
11165                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11166                         bnx2x_get_ext_wwn_info(bp, func);
11167
11168         } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11169                 bnx2x_get_ext_wwn_info(bp, func);
11170         }
11171
11172         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11173
11174         /*
11175          * If maximum allowed number of connections is zero -
11176          * disable the feature.
11177          */
11178         if (!bp->cnic_eth_dev.max_fcoe_conn)
11179                 bp->flags |= NO_FCOE_FLAG;
11180 }
11181
11182 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11183 {
11184         /*
11185          * iSCSI may be dynamically disabled but reading
11186          * info here we will decrease memory usage by driver
11187          * if the feature is disabled for good
11188          */
11189         bnx2x_get_iscsi_info(bp);
11190         bnx2x_get_fcoe_info(bp);
11191 }
11192
11193 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11194 {
11195         u32 val, val2;
11196         int func = BP_ABS_FUNC(bp);
11197         int port = BP_PORT(bp);
11198         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11199         u8 *fip_mac = bp->fip_mac;
11200
11201         if (IS_MF(bp)) {
11202                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11203                  * FCoE MAC then the appropriate feature should be disabled.
11204                  * In non SD mode features configuration comes from struct
11205                  * func_ext_config.
11206                  */
11207                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11208                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11209                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11210                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11211                                                  iscsi_mac_addr_upper);
11212                                 val = MF_CFG_RD(bp, func_ext_config[func].
11213                                                 iscsi_mac_addr_lower);
11214                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11215                                 BNX2X_DEV_INFO
11216                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11217                         } else {
11218                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11219                         }
11220
11221                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11222                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11223                                                  fcoe_mac_addr_upper);
11224                                 val = MF_CFG_RD(bp, func_ext_config[func].
11225                                                 fcoe_mac_addr_lower);
11226                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11227                                 BNX2X_DEV_INFO
11228                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11229                         } else {
11230                                 bp->flags |= NO_FCOE_FLAG;
11231                         }
11232
11233                         bp->mf_ext_config = cfg;
11234
11235                 } else { /* SD MODE */
11236                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11237                                 /* use primary mac as iscsi mac */
11238                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11239
11240                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11241                                 BNX2X_DEV_INFO
11242                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11243                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11244                                 /* use primary mac as fip mac */
11245                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11246                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11247                                 BNX2X_DEV_INFO
11248                                         ("Read FIP MAC: %pM\n", fip_mac);
11249                         }
11250                 }
11251
11252                 /* If this is a storage-only interface, use SAN mac as
11253                  * primary MAC. Notice that for SD this is already the case,
11254                  * as the SAN mac was copied from the primary MAC.
11255                  */
11256                 if (IS_MF_FCOE_AFEX(bp))
11257                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11258         } else {
11259                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11260                                 iscsi_mac_upper);
11261                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11262                                iscsi_mac_lower);
11263                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11264
11265                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11266                                 fcoe_fip_mac_upper);
11267                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11268                                fcoe_fip_mac_lower);
11269                 bnx2x_set_mac_buf(fip_mac, val, val2);
11270         }
11271
11272         /* Disable iSCSI OOO if MAC configuration is invalid. */
11273         if (!is_valid_ether_addr(iscsi_mac)) {
11274                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11275                 memset(iscsi_mac, 0, ETH_ALEN);
11276         }
11277
11278         /* Disable FCoE if MAC configuration is invalid. */
11279         if (!is_valid_ether_addr(fip_mac)) {
11280                 bp->flags |= NO_FCOE_FLAG;
11281                 memset(bp->fip_mac, 0, ETH_ALEN);
11282         }
11283 }
11284
11285 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11286 {
11287         u32 val, val2;
11288         int func = BP_ABS_FUNC(bp);
11289         int port = BP_PORT(bp);
11290
11291         /* Zero primary MAC configuration */
11292         memset(bp->dev->dev_addr, 0, ETH_ALEN);
11293
11294         if (BP_NOMCP(bp)) {
11295                 BNX2X_ERROR("warning: random MAC workaround active\n");
11296                 eth_hw_addr_random(bp->dev);
11297         } else if (IS_MF(bp)) {
11298                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11299                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11300                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11301                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11302                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11303
11304                 if (CNIC_SUPPORT(bp))
11305                         bnx2x_get_cnic_mac_hwinfo(bp);
11306         } else {
11307                 /* in SF read MACs from port configuration */
11308                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11309                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11310                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11311
11312                 if (CNIC_SUPPORT(bp))
11313                         bnx2x_get_cnic_mac_hwinfo(bp);
11314         }
11315
11316         if (!BP_NOMCP(bp)) {
11317                 /* Read physical port identifier from shmem */
11318                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11319                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11320                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11321                 bp->flags |= HAS_PHYS_PORT_ID;
11322         }
11323
11324         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11325
11326         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11327                 dev_err(&bp->pdev->dev,
11328                         "bad Ethernet MAC address configuration: %pM\n"
11329                         "change it manually before bringing up the appropriate network interface\n",
11330                         bp->dev->dev_addr);
11331 }
11332
11333 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11334 {
11335         int tmp;
11336         u32 cfg;
11337
11338         if (IS_VF(bp))
11339                 return 0;
11340
11341         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11342                 /* Take function: tmp = func */
11343                 tmp = BP_ABS_FUNC(bp);
11344                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11345                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11346         } else {
11347                 /* Take port: tmp = port */
11348                 tmp = BP_PORT(bp);
11349                 cfg = SHMEM_RD(bp,
11350                                dev_info.port_hw_config[tmp].generic_features);
11351                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11352         }
11353         return cfg;
11354 }
11355
11356 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11357 {
11358         int /*abs*/func = BP_ABS_FUNC(bp);
11359         int vn;
11360         u32 val = 0;
11361         int rc = 0;
11362
11363         bnx2x_get_common_hwinfo(bp);
11364
11365         /*
11366          * initialize IGU parameters
11367          */
11368         if (CHIP_IS_E1x(bp)) {
11369                 bp->common.int_block = INT_BLOCK_HC;
11370
11371                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11372                 bp->igu_base_sb = 0;
11373         } else {
11374                 bp->common.int_block = INT_BLOCK_IGU;
11375
11376                 /* do not allow device reset during IGU info processing */
11377                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11378
11379                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11380
11381                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11382                         int tout = 5000;
11383
11384                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11385
11386                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11387                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11388                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11389
11390                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11391                                 tout--;
11392                                 usleep_range(1000, 2000);
11393                         }
11394
11395                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11396                                 dev_err(&bp->pdev->dev,
11397                                         "FORCING Normal Mode failed!!!\n");
11398                                 bnx2x_release_hw_lock(bp,
11399                                                       HW_LOCK_RESOURCE_RESET);
11400                                 return -EPERM;
11401                         }
11402                 }
11403
11404                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11405                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11406                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11407                 } else
11408                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11409
11410                 rc = bnx2x_get_igu_cam_info(bp);
11411                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11412                 if (rc)
11413                         return rc;
11414         }
11415
11416         /*
11417          * set base FW non-default (fast path) status block id, this value is
11418          * used to initialize the fw_sb_id saved on the fp/queue structure to
11419          * determine the id used by the FW.
11420          */
11421         if (CHIP_IS_E1x(bp))
11422                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11423         else /*
11424               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11425               * the same queue are indicated on the same IGU SB). So we prefer
11426               * FW and IGU SBs to be the same value.
11427               */
11428                 bp->base_fw_ndsb = bp->igu_base_sb;
11429
11430         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11431                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11432                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11433
11434         /*
11435          * Initialize MF configuration
11436          */
11437
11438         bp->mf_ov = 0;
11439         bp->mf_mode = 0;
11440         vn = BP_VN(bp);
11441
11442         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11443                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11444                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11445                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11446
11447                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11448                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11449                 else
11450                         bp->common.mf_cfg_base = bp->common.shmem_base +
11451                                 offsetof(struct shmem_region, func_mb) +
11452                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11453                 /*
11454                  * get mf configuration:
11455                  * 1. Existence of MF configuration
11456                  * 2. MAC address must be legal (check only upper bytes)
11457                  *    for  Switch-Independent mode;
11458                  *    OVLAN must be legal for Switch-Dependent mode
11459                  * 3. SF_MODE configures specific MF mode
11460                  */
11461                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11462                         /* get mf configuration */
11463                         val = SHMEM_RD(bp,
11464                                        dev_info.shared_feature_config.config);
11465                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11466
11467                         switch (val) {
11468                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11469                                 val = MF_CFG_RD(bp, func_mf_config[func].
11470                                                 mac_upper);
11471                                 /* check for legal mac (upper bytes)*/
11472                                 if (val != 0xffff) {
11473                                         bp->mf_mode = MULTI_FUNCTION_SI;
11474                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11475                                                    func_mf_config[func].config);
11476                                 } else
11477                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
11478                                 break;
11479                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11480                                 if ((!CHIP_IS_E1x(bp)) &&
11481                                     (MF_CFG_RD(bp, func_mf_config[func].
11482                                                mac_upper) != 0xffff) &&
11483                                     (SHMEM2_HAS(bp,
11484                                                 afex_driver_support))) {
11485                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11486                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11487                                                 func_mf_config[func].config);
11488                                 } else {
11489                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11490                                 }
11491                                 break;
11492                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11493                                 /* get OV configuration */
11494                                 val = MF_CFG_RD(bp,
11495                                         func_mf_config[FUNC_0].e1hov_tag);
11496                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11497
11498                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11499                                         bp->mf_mode = MULTI_FUNCTION_SD;
11500                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11501                                                 func_mf_config[func].config);
11502                                 } else
11503                                         BNX2X_DEV_INFO("illegal OV for SD\n");
11504                                 break;
11505                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11506                                 bp->mf_config[vn] = 0;
11507                                 break;
11508                         default:
11509                                 /* Unknown configuration: reset mf_config */
11510                                 bp->mf_config[vn] = 0;
11511                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11512                         }
11513                 }
11514
11515                 BNX2X_DEV_INFO("%s function mode\n",
11516                                IS_MF(bp) ? "multi" : "single");
11517
11518                 switch (bp->mf_mode) {
11519                 case MULTI_FUNCTION_SD:
11520                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11521                               FUNC_MF_CFG_E1HOV_TAG_MASK;
11522                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11523                                 bp->mf_ov = val;
11524                                 bp->path_has_ovlan = true;
11525
11526                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11527                                                func, bp->mf_ov, bp->mf_ov);
11528                         } else {
11529                                 dev_err(&bp->pdev->dev,
11530                                         "No valid MF OV for func %d, aborting\n",
11531                                         func);
11532                                 return -EPERM;
11533                         }
11534                         break;
11535                 case MULTI_FUNCTION_AFEX:
11536                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11537                         break;
11538                 case MULTI_FUNCTION_SI:
11539                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11540                                        func);
11541                         break;
11542                 default:
11543                         if (vn) {
11544                                 dev_err(&bp->pdev->dev,
11545                                         "VN %d is in a single function mode, aborting\n",
11546                                         vn);
11547                                 return -EPERM;
11548                         }
11549                         break;
11550                 }
11551
11552                 /* check if other port on the path needs ovlan:
11553                  * Since MF configuration is shared between ports
11554                  * Possible mixed modes are only
11555                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11556                  */
11557                 if (CHIP_MODE_IS_4_PORT(bp) &&
11558                     !bp->path_has_ovlan &&
11559                     !IS_MF(bp) &&
11560                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11561                         u8 other_port = !BP_PORT(bp);
11562                         u8 other_func = BP_PATH(bp) + 2*other_port;
11563                         val = MF_CFG_RD(bp,
11564                                         func_mf_config[other_func].e1hov_tag);
11565                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11566                                 bp->path_has_ovlan = true;
11567                 }
11568         }
11569
11570         /* adjust igu_sb_cnt to MF for E1H */
11571         if (CHIP_IS_E1H(bp) && IS_MF(bp))
11572                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11573
11574         /* port info */
11575         bnx2x_get_port_hwinfo(bp);
11576
11577         /* Get MAC addresses */
11578         bnx2x_get_mac_hwinfo(bp);
11579
11580         bnx2x_get_cnic_info(bp);
11581
11582         return rc;
11583 }
11584
11585 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11586 {
11587         int cnt, i, block_end, rodi;
11588         char vpd_start[BNX2X_VPD_LEN+1];
11589         char str_id_reg[VENDOR_ID_LEN+1];
11590         char str_id_cap[VENDOR_ID_LEN+1];
11591         char *vpd_data;
11592         char *vpd_extended_data = NULL;
11593         u8 len;
11594
11595         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11596         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11597
11598         if (cnt < BNX2X_VPD_LEN)
11599                 goto out_not_found;
11600
11601         /* VPD RO tag should be first tag after identifier string, hence
11602          * we should be able to find it in first BNX2X_VPD_LEN chars
11603          */
11604         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11605                              PCI_VPD_LRDT_RO_DATA);
11606         if (i < 0)
11607                 goto out_not_found;
11608
11609         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11610                     pci_vpd_lrdt_size(&vpd_start[i]);
11611
11612         i += PCI_VPD_LRDT_TAG_SIZE;
11613
11614         if (block_end > BNX2X_VPD_LEN) {
11615                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11616                 if (vpd_extended_data  == NULL)
11617                         goto out_not_found;
11618
11619                 /* read rest of vpd image into vpd_extended_data */
11620                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11621                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11622                                    block_end - BNX2X_VPD_LEN,
11623                                    vpd_extended_data + BNX2X_VPD_LEN);
11624                 if (cnt < (block_end - BNX2X_VPD_LEN))
11625                         goto out_not_found;
11626                 vpd_data = vpd_extended_data;
11627         } else
11628                 vpd_data = vpd_start;
11629
11630         /* now vpd_data holds full vpd content in both cases */
11631
11632         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11633                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11634         if (rodi < 0)
11635                 goto out_not_found;
11636
11637         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11638
11639         if (len != VENDOR_ID_LEN)
11640                 goto out_not_found;
11641
11642         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11643
11644         /* vendor specific info */
11645         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11646         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11647         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11648             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11649
11650                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11651                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11652                 if (rodi >= 0) {
11653                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11654
11655                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11656
11657                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11658                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11659                                 bp->fw_ver[len] = ' ';
11660                         }
11661                 }
11662                 kfree(vpd_extended_data);
11663                 return;
11664         }
11665 out_not_found:
11666         kfree(vpd_extended_data);
11667         return;
11668 }
11669
11670 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11671 {
11672         u32 flags = 0;
11673
11674         if (CHIP_REV_IS_FPGA(bp))
11675                 SET_FLAGS(flags, MODE_FPGA);
11676         else if (CHIP_REV_IS_EMUL(bp))
11677                 SET_FLAGS(flags, MODE_EMUL);
11678         else
11679                 SET_FLAGS(flags, MODE_ASIC);
11680
11681         if (CHIP_MODE_IS_4_PORT(bp))
11682                 SET_FLAGS(flags, MODE_PORT4);
11683         else
11684                 SET_FLAGS(flags, MODE_PORT2);
11685
11686         if (CHIP_IS_E2(bp))
11687                 SET_FLAGS(flags, MODE_E2);
11688         else if (CHIP_IS_E3(bp)) {
11689                 SET_FLAGS(flags, MODE_E3);
11690                 if (CHIP_REV(bp) == CHIP_REV_Ax)
11691                         SET_FLAGS(flags, MODE_E3_A0);
11692                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11693                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11694         }
11695
11696         if (IS_MF(bp)) {
11697                 SET_FLAGS(flags, MODE_MF);
11698                 switch (bp->mf_mode) {
11699                 case MULTI_FUNCTION_SD:
11700                         SET_FLAGS(flags, MODE_MF_SD);
11701                         break;
11702                 case MULTI_FUNCTION_SI:
11703                         SET_FLAGS(flags, MODE_MF_SI);
11704                         break;
11705                 case MULTI_FUNCTION_AFEX:
11706                         SET_FLAGS(flags, MODE_MF_AFEX);
11707                         break;
11708                 }
11709         } else
11710                 SET_FLAGS(flags, MODE_SF);
11711
11712 #if defined(__LITTLE_ENDIAN)
11713         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11714 #else /*(__BIG_ENDIAN)*/
11715         SET_FLAGS(flags, MODE_BIG_ENDIAN);
11716 #endif
11717         INIT_MODE_FLAGS(bp) = flags;
11718 }
11719
11720 static int bnx2x_init_bp(struct bnx2x *bp)
11721 {
11722         int func;
11723         int rc;
11724
11725         mutex_init(&bp->port.phy_mutex);
11726         mutex_init(&bp->fw_mb_mutex);
11727         spin_lock_init(&bp->stats_lock);
11728         sema_init(&bp->stats_sema, 1);
11729
11730         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11731         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11732         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11733         if (IS_PF(bp)) {
11734                 rc = bnx2x_get_hwinfo(bp);
11735                 if (rc)
11736                         return rc;
11737         } else {
11738                 eth_zero_addr(bp->dev->dev_addr);
11739         }
11740
11741         bnx2x_set_modes_bitmap(bp);
11742
11743         rc = bnx2x_alloc_mem_bp(bp);
11744         if (rc)
11745                 return rc;
11746
11747         bnx2x_read_fwinfo(bp);
11748
11749         func = BP_FUNC(bp);
11750
11751         /* need to reset chip if undi was active */
11752         if (IS_PF(bp) && !BP_NOMCP(bp)) {
11753                 /* init fw_seq */
11754                 bp->fw_seq =
11755                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11756                                                         DRV_MSG_SEQ_NUMBER_MASK;
11757                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11758
11759                 rc = bnx2x_prev_unload(bp);
11760                 if (rc) {
11761                         bnx2x_free_mem_bp(bp);
11762                         return rc;
11763                 }
11764         }
11765
11766         if (CHIP_REV_IS_FPGA(bp))
11767                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11768
11769         if (BP_NOMCP(bp) && (func == 0))
11770                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11771
11772         bp->disable_tpa = disable_tpa;
11773         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11774
11775         /* Set TPA flags */
11776         if (bp->disable_tpa) {
11777                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11778                 bp->dev->features &= ~NETIF_F_LRO;
11779         } else {
11780                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11781                 bp->dev->features |= NETIF_F_LRO;
11782         }
11783
11784         if (CHIP_IS_E1(bp))
11785                 bp->dropless_fc = 0;
11786         else
11787                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11788
11789         bp->mrrs = mrrs;
11790
11791         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11792         if (IS_VF(bp))
11793                 bp->rx_ring_size = MAX_RX_AVAIL;
11794
11795         /* make sure that the numbers are in the right granularity */
11796         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11797         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11798
11799         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11800
11801         init_timer(&bp->timer);
11802         bp->timer.expires = jiffies + bp->current_interval;
11803         bp->timer.data = (unsigned long) bp;
11804         bp->timer.function = bnx2x_timer;
11805
11806         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11807             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11808             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11809             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11810                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11811                 bnx2x_dcbx_init_params(bp);
11812         } else {
11813                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11814         }
11815
11816         if (CHIP_IS_E1x(bp))
11817                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11818         else
11819                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11820
11821         /* multiple tx priority */
11822         if (IS_VF(bp))
11823                 bp->max_cos = 1;
11824         else if (CHIP_IS_E1x(bp))
11825                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11826         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11827                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11828         else if (CHIP_IS_E3B0(bp))
11829                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11830         else
11831                 BNX2X_ERR("unknown chip %x revision %x\n",
11832                           CHIP_NUM(bp), CHIP_REV(bp));
11833         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11834
11835         /* We need at least one default status block for slow-path events,
11836          * second status block for the L2 queue, and a third status block for
11837          * CNIC if supported.
11838          */
11839         if (IS_VF(bp))
11840                 bp->min_msix_vec_cnt = 1;
11841         else if (CNIC_SUPPORT(bp))
11842                 bp->min_msix_vec_cnt = 3;
11843         else /* PF w/o cnic */
11844                 bp->min_msix_vec_cnt = 2;
11845         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11846
11847         bp->dump_preset_idx = 1;
11848
11849         return rc;
11850 }
11851
11852 /****************************************************************************
11853 * General service functions
11854 ****************************************************************************/
11855
11856 /*
11857  * net_device service functions
11858  */
11859
11860 /* called with rtnl_lock */
11861 static int bnx2x_open(struct net_device *dev)
11862 {
11863         struct bnx2x *bp = netdev_priv(dev);
11864         int rc;
11865
11866         bp->stats_init = true;
11867
11868         netif_carrier_off(dev);
11869
11870         bnx2x_set_power_state(bp, PCI_D0);
11871
11872         /* If parity had happen during the unload, then attentions
11873          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11874          * want the first function loaded on the current engine to
11875          * complete the recovery.
11876          * Parity recovery is only relevant for PF driver.
11877          */
11878         if (IS_PF(bp)) {
11879                 int other_engine = BP_PATH(bp) ? 0 : 1;
11880                 bool other_load_status, load_status;
11881                 bool global = false;
11882
11883                 other_load_status = bnx2x_get_load_status(bp, other_engine);
11884                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11885                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11886                     bnx2x_chk_parity_attn(bp, &global, true)) {
11887                         do {
11888                                 /* If there are attentions and they are in a
11889                                  * global blocks, set the GLOBAL_RESET bit
11890                                  * regardless whether it will be this function
11891                                  * that will complete the recovery or not.
11892                                  */
11893                                 if (global)
11894                                         bnx2x_set_reset_global(bp);
11895
11896                                 /* Only the first function on the current
11897                                  * engine should try to recover in open. In case
11898                                  * of attentions in global blocks only the first
11899                                  * in the chip should try to recover.
11900                                  */
11901                                 if ((!load_status &&
11902                                      (!global || !other_load_status)) &&
11903                                       bnx2x_trylock_leader_lock(bp) &&
11904                                       !bnx2x_leader_reset(bp)) {
11905                                         netdev_info(bp->dev,
11906                                                     "Recovered in open\n");
11907                                         break;
11908                                 }
11909
11910                                 /* recovery has failed... */
11911                                 bnx2x_set_power_state(bp, PCI_D3hot);
11912                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
11913
11914                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11915                                           "If you still see this message after a few retries then power cycle is required.\n");
11916
11917                                 return -EAGAIN;
11918                         } while (0);
11919                 }
11920         }
11921
11922         bp->recovery_state = BNX2X_RECOVERY_DONE;
11923         rc = bnx2x_nic_load(bp, LOAD_OPEN);
11924         if (rc)
11925                 return rc;
11926         return 0;
11927 }
11928
11929 /* called with rtnl_lock */
11930 static int bnx2x_close(struct net_device *dev)
11931 {
11932         struct bnx2x *bp = netdev_priv(dev);
11933
11934         /* Unload the driver, release IRQs */
11935         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11936
11937         return 0;
11938 }
11939
11940 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11941                                       struct bnx2x_mcast_ramrod_params *p)
11942 {
11943         int mc_count = netdev_mc_count(bp->dev);
11944         struct bnx2x_mcast_list_elem *mc_mac =
11945                 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11946         struct netdev_hw_addr *ha;
11947
11948         if (!mc_mac)
11949                 return -ENOMEM;
11950
11951         INIT_LIST_HEAD(&p->mcast_list);
11952
11953         netdev_for_each_mc_addr(ha, bp->dev) {
11954                 mc_mac->mac = bnx2x_mc_addr(ha);
11955                 list_add_tail(&mc_mac->link, &p->mcast_list);
11956                 mc_mac++;
11957         }
11958
11959         p->mcast_list_len = mc_count;
11960
11961         return 0;
11962 }
11963
11964 static void bnx2x_free_mcast_macs_list(
11965         struct bnx2x_mcast_ramrod_params *p)
11966 {
11967         struct bnx2x_mcast_list_elem *mc_mac =
11968                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11969                                  link);
11970
11971         WARN_ON(!mc_mac);
11972         kfree(mc_mac);
11973 }
11974
11975 /**
11976  * bnx2x_set_uc_list - configure a new unicast MACs list.
11977  *
11978  * @bp: driver handle
11979  *
11980  * We will use zero (0) as a MAC type for these MACs.
11981  */
11982 static int bnx2x_set_uc_list(struct bnx2x *bp)
11983 {
11984         int rc;
11985         struct net_device *dev = bp->dev;
11986         struct netdev_hw_addr *ha;
11987         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11988         unsigned long ramrod_flags = 0;
11989
11990         /* First schedule a cleanup up of old configuration */
11991         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11992         if (rc < 0) {
11993                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11994                 return rc;
11995         }
11996
11997         netdev_for_each_uc_addr(ha, dev) {
11998                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11999                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12000                 if (rc == -EEXIST) {
12001                         DP(BNX2X_MSG_SP,
12002                            "Failed to schedule ADD operations: %d\n", rc);
12003                         /* do not treat adding same MAC as error */
12004                         rc = 0;
12005
12006                 } else if (rc < 0) {
12007
12008                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12009                                   rc);
12010                         return rc;
12011                 }
12012         }
12013
12014         /* Execute the pending commands */
12015         __set_bit(RAMROD_CONT, &ramrod_flags);
12016         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12017                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12018 }
12019
12020 static int bnx2x_set_mc_list(struct bnx2x *bp)
12021 {
12022         struct net_device *dev = bp->dev;
12023         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12024         int rc = 0;
12025
12026         rparam.mcast_obj = &bp->mcast_obj;
12027
12028         /* first, clear all configured multicast MACs */
12029         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12030         if (rc < 0) {
12031                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12032                 return rc;
12033         }
12034
12035         /* then, configure a new MACs list */
12036         if (netdev_mc_count(dev)) {
12037                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12038                 if (rc) {
12039                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12040                                   rc);
12041                         return rc;
12042                 }
12043
12044                 /* Now add the new MACs */
12045                 rc = bnx2x_config_mcast(bp, &rparam,
12046                                         BNX2X_MCAST_CMD_ADD);
12047                 if (rc < 0)
12048                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12049                                   rc);
12050
12051                 bnx2x_free_mcast_macs_list(&rparam);
12052         }
12053
12054         return rc;
12055 }
12056
12057 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12058 static void bnx2x_set_rx_mode(struct net_device *dev)
12059 {
12060         struct bnx2x *bp = netdev_priv(dev);
12061
12062         if (bp->state != BNX2X_STATE_OPEN) {
12063                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12064                 return;
12065         } else {
12066                 /* Schedule an SP task to handle rest of change */
12067                 DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
12068                 smp_mb__before_clear_bit();
12069                 set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
12070                 smp_mb__after_clear_bit();
12071                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
12072         }
12073 }
12074
12075 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12076 {
12077         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12078
12079         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12080
12081         netif_addr_lock_bh(bp->dev);
12082
12083         if (bp->dev->flags & IFF_PROMISC) {
12084                 rx_mode = BNX2X_RX_MODE_PROMISC;
12085         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12086                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12087                     CHIP_IS_E1(bp))) {
12088                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12089         } else {
12090                 if (IS_PF(bp)) {
12091                         /* some multicasts */
12092                         if (bnx2x_set_mc_list(bp) < 0)
12093                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12094
12095                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12096                         netif_addr_unlock_bh(bp->dev);
12097                         if (bnx2x_set_uc_list(bp) < 0)
12098                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12099                         netif_addr_lock_bh(bp->dev);
12100                 } else {
12101                         /* configuring mcast to a vf involves sleeping (when we
12102                          * wait for the pf's response).
12103                          */
12104                         smp_mb__before_clear_bit();
12105                         set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
12106                                 &bp->sp_rtnl_state);
12107                         smp_mb__after_clear_bit();
12108                         schedule_delayed_work(&bp->sp_rtnl_task, 0);
12109                 }
12110         }
12111
12112         bp->rx_mode = rx_mode;
12113         /* handle ISCSI SD mode */
12114         if (IS_MF_ISCSI_SD(bp))
12115                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12116
12117         /* Schedule the rx_mode command */
12118         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12119                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12120                 netif_addr_unlock_bh(bp->dev);
12121                 return;
12122         }
12123
12124         if (IS_PF(bp)) {
12125                 bnx2x_set_storm_rx_mode(bp);
12126                 netif_addr_unlock_bh(bp->dev);
12127         } else {
12128                 /* VF will need to request the PF to make this change, and so
12129                  * the VF needs to release the bottom-half lock prior to the
12130                  * request (as it will likely require sleep on the VF side)
12131                  */
12132                 netif_addr_unlock_bh(bp->dev);
12133                 bnx2x_vfpf_storm_rx_mode(bp);
12134         }
12135 }
12136
12137 /* called with rtnl_lock */
12138 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12139                            int devad, u16 addr)
12140 {
12141         struct bnx2x *bp = netdev_priv(netdev);
12142         u16 value;
12143         int rc;
12144
12145         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12146            prtad, devad, addr);
12147
12148         /* The HW expects different devad if CL22 is used */
12149         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12150
12151         bnx2x_acquire_phy_lock(bp);
12152         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12153         bnx2x_release_phy_lock(bp);
12154         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12155
12156         if (!rc)
12157                 rc = value;
12158         return rc;
12159 }
12160
12161 /* called with rtnl_lock */
12162 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12163                             u16 addr, u16 value)
12164 {
12165         struct bnx2x *bp = netdev_priv(netdev);
12166         int rc;
12167
12168         DP(NETIF_MSG_LINK,
12169            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12170            prtad, devad, addr, value);
12171
12172         /* The HW expects different devad if CL22 is used */
12173         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12174
12175         bnx2x_acquire_phy_lock(bp);
12176         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12177         bnx2x_release_phy_lock(bp);
12178         return rc;
12179 }
12180
12181 /* called with rtnl_lock */
12182 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12183 {
12184         struct bnx2x *bp = netdev_priv(dev);
12185         struct mii_ioctl_data *mdio = if_mii(ifr);
12186
12187         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12188            mdio->phy_id, mdio->reg_num, mdio->val_in);
12189
12190         if (!netif_running(dev))
12191                 return -EAGAIN;
12192
12193         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12194 }
12195
12196 #ifdef CONFIG_NET_POLL_CONTROLLER
12197 static void poll_bnx2x(struct net_device *dev)
12198 {
12199         struct bnx2x *bp = netdev_priv(dev);
12200         int i;
12201
12202         for_each_eth_queue(bp, i) {
12203                 struct bnx2x_fastpath *fp = &bp->fp[i];
12204                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12205         }
12206 }
12207 #endif
12208
12209 static int bnx2x_validate_addr(struct net_device *dev)
12210 {
12211         struct bnx2x *bp = netdev_priv(dev);
12212
12213         /* query the bulletin board for mac address configured by the PF */
12214         if (IS_VF(bp))
12215                 bnx2x_sample_bulletin(bp);
12216
12217         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12218                 BNX2X_ERR("Non-valid Ethernet address\n");
12219                 return -EADDRNOTAVAIL;
12220         }
12221         return 0;
12222 }
12223
12224 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12225                                   struct netdev_phys_port_id *ppid)
12226 {
12227         struct bnx2x *bp = netdev_priv(netdev);
12228
12229         if (!(bp->flags & HAS_PHYS_PORT_ID))
12230                 return -EOPNOTSUPP;
12231
12232         ppid->id_len = sizeof(bp->phys_port_id);
12233         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12234
12235         return 0;
12236 }
12237
12238 static const struct net_device_ops bnx2x_netdev_ops = {
12239         .ndo_open               = bnx2x_open,
12240         .ndo_stop               = bnx2x_close,
12241         .ndo_start_xmit         = bnx2x_start_xmit,
12242         .ndo_select_queue       = bnx2x_select_queue,
12243         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12244         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12245         .ndo_validate_addr      = bnx2x_validate_addr,
12246         .ndo_do_ioctl           = bnx2x_ioctl,
12247         .ndo_change_mtu         = bnx2x_change_mtu,
12248         .ndo_fix_features       = bnx2x_fix_features,
12249         .ndo_set_features       = bnx2x_set_features,
12250         .ndo_tx_timeout         = bnx2x_tx_timeout,
12251 #ifdef CONFIG_NET_POLL_CONTROLLER
12252         .ndo_poll_controller    = poll_bnx2x,
12253 #endif
12254         .ndo_setup_tc           = bnx2x_setup_tc,
12255 #ifdef CONFIG_BNX2X_SRIOV
12256         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12257         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12258         .ndo_get_vf_config      = bnx2x_get_vf_config,
12259 #endif
12260 #ifdef NETDEV_FCOE_WWNN
12261         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12262 #endif
12263
12264 #ifdef CONFIG_NET_RX_BUSY_POLL
12265         .ndo_busy_poll          = bnx2x_low_latency_recv,
12266 #endif
12267         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
12268 };
12269
12270 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12271 {
12272         struct device *dev = &bp->pdev->dev;
12273
12274         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12275             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12276                 dev_err(dev, "System does not support DMA, aborting\n");
12277                 return -EIO;
12278         }
12279
12280         return 0;
12281 }
12282
12283 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12284 {
12285         if (bp->flags & AER_ENABLED) {
12286                 pci_disable_pcie_error_reporting(bp->pdev);
12287                 bp->flags &= ~AER_ENABLED;
12288         }
12289 }
12290
12291 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12292                           struct net_device *dev, unsigned long board_type)
12293 {
12294         int rc;
12295         u32 pci_cfg_dword;
12296         bool chip_is_e1x = (board_type == BCM57710 ||
12297                             board_type == BCM57711 ||
12298                             board_type == BCM57711E);
12299
12300         SET_NETDEV_DEV(dev, &pdev->dev);
12301
12302         bp->dev = dev;
12303         bp->pdev = pdev;
12304
12305         rc = pci_enable_device(pdev);
12306         if (rc) {
12307                 dev_err(&bp->pdev->dev,
12308                         "Cannot enable PCI device, aborting\n");
12309                 goto err_out;
12310         }
12311
12312         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12313                 dev_err(&bp->pdev->dev,
12314                         "Cannot find PCI device base address, aborting\n");
12315                 rc = -ENODEV;
12316                 goto err_out_disable;
12317         }
12318
12319         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12320                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12321                 rc = -ENODEV;
12322                 goto err_out_disable;
12323         }
12324
12325         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12326         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12327             PCICFG_REVESION_ID_ERROR_VAL) {
12328                 pr_err("PCI device error, probably due to fan failure, aborting\n");
12329                 rc = -ENODEV;
12330                 goto err_out_disable;
12331         }
12332
12333         if (atomic_read(&pdev->enable_cnt) == 1) {
12334                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12335                 if (rc) {
12336                         dev_err(&bp->pdev->dev,
12337                                 "Cannot obtain PCI resources, aborting\n");
12338                         goto err_out_disable;
12339                 }
12340
12341                 pci_set_master(pdev);
12342                 pci_save_state(pdev);
12343         }
12344
12345         if (IS_PF(bp)) {
12346                 if (!pdev->pm_cap) {
12347                         dev_err(&bp->pdev->dev,
12348                                 "Cannot find power management capability, aborting\n");
12349                         rc = -EIO;
12350                         goto err_out_release;
12351                 }
12352         }
12353
12354         if (!pci_is_pcie(pdev)) {
12355                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12356                 rc = -EIO;
12357                 goto err_out_release;
12358         }
12359
12360         rc = bnx2x_set_coherency_mask(bp);
12361         if (rc)
12362                 goto err_out_release;
12363
12364         dev->mem_start = pci_resource_start(pdev, 0);
12365         dev->base_addr = dev->mem_start;
12366         dev->mem_end = pci_resource_end(pdev, 0);
12367
12368         dev->irq = pdev->irq;
12369
12370         bp->regview = pci_ioremap_bar(pdev, 0);
12371         if (!bp->regview) {
12372                 dev_err(&bp->pdev->dev,
12373                         "Cannot map register space, aborting\n");
12374                 rc = -ENOMEM;
12375                 goto err_out_release;
12376         }
12377
12378         /* In E1/E1H use pci device function given by kernel.
12379          * In E2/E3 read physical function from ME register since these chips
12380          * support Physical Device Assignment where kernel BDF maybe arbitrary
12381          * (depending on hypervisor).
12382          */
12383         if (chip_is_e1x) {
12384                 bp->pf_num = PCI_FUNC(pdev->devfn);
12385         } else {
12386                 /* chip is E2/3*/
12387                 pci_read_config_dword(bp->pdev,
12388                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
12389                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12390                                   ME_REG_ABS_PF_NUM_SHIFT);
12391         }
12392         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12393
12394         /* clean indirect addresses */
12395         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12396                                PCICFG_VENDOR_ID_OFFSET);
12397
12398         /* AER (Advanced Error reporting) configuration */
12399         rc = pci_enable_pcie_error_reporting(pdev);
12400         if (!rc)
12401                 bp->flags |= AER_ENABLED;
12402         else
12403                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12404
12405         /*
12406          * Clean the following indirect addresses for all functions since it
12407          * is not used by the driver.
12408          */
12409         if (IS_PF(bp)) {
12410                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12411                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12412                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12413                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12414
12415                 if (chip_is_e1x) {
12416                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12417                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12418                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12419                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12420                 }
12421
12422                 /* Enable internal target-read (in case we are probed after PF
12423                  * FLR). Must be done prior to any BAR read access. Only for
12424                  * 57712 and up
12425                  */
12426                 if (!chip_is_e1x)
12427                         REG_WR(bp,
12428                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12429         }
12430
12431         dev->watchdog_timeo = TX_TIMEOUT;
12432
12433         dev->netdev_ops = &bnx2x_netdev_ops;
12434         bnx2x_set_ethtool_ops(bp, dev);
12435
12436         dev->priv_flags |= IFF_UNICAST_FLT;
12437
12438         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12439                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12440                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12441                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12442         if (!CHIP_IS_E1x(bp)) {
12443                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12444                                     NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12445                 dev->hw_enc_features =
12446                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12447                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12448                         NETIF_F_GSO_IPIP |
12449                         NETIF_F_GSO_SIT |
12450                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12451         }
12452
12453         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12454                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12455
12456         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12457         dev->features |= NETIF_F_HIGHDMA;
12458
12459         /* Add Loopback capability to the device */
12460         dev->hw_features |= NETIF_F_LOOPBACK;
12461
12462 #ifdef BCM_DCBNL
12463         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12464 #endif
12465
12466         /* get_port_hwinfo() will set prtad and mmds properly */
12467         bp->mdio.prtad = MDIO_PRTAD_NONE;
12468         bp->mdio.mmds = 0;
12469         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12470         bp->mdio.dev = dev;
12471         bp->mdio.mdio_read = bnx2x_mdio_read;
12472         bp->mdio.mdio_write = bnx2x_mdio_write;
12473
12474         return 0;
12475
12476 err_out_release:
12477         if (atomic_read(&pdev->enable_cnt) == 1)
12478                 pci_release_regions(pdev);
12479
12480 err_out_disable:
12481         pci_disable_device(pdev);
12482
12483 err_out:
12484         return rc;
12485 }
12486
12487 static int bnx2x_check_firmware(struct bnx2x *bp)
12488 {
12489         const struct firmware *firmware = bp->firmware;
12490         struct bnx2x_fw_file_hdr *fw_hdr;
12491         struct bnx2x_fw_file_section *sections;
12492         u32 offset, len, num_ops;
12493         __be16 *ops_offsets;
12494         int i;
12495         const u8 *fw_ver;
12496
12497         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12498                 BNX2X_ERR("Wrong FW size\n");
12499                 return -EINVAL;
12500         }
12501
12502         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12503         sections = (struct bnx2x_fw_file_section *)fw_hdr;
12504
12505         /* Make sure none of the offsets and sizes make us read beyond
12506          * the end of the firmware data */
12507         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12508                 offset = be32_to_cpu(sections[i].offset);
12509                 len = be32_to_cpu(sections[i].len);
12510                 if (offset + len > firmware->size) {
12511                         BNX2X_ERR("Section %d length is out of bounds\n", i);
12512                         return -EINVAL;
12513                 }
12514         }
12515
12516         /* Likewise for the init_ops offsets */
12517         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12518         ops_offsets = (__force __be16 *)(firmware->data + offset);
12519         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12520
12521         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12522                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12523                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
12524                         return -EINVAL;
12525                 }
12526         }
12527
12528         /* Check FW version */
12529         offset = be32_to_cpu(fw_hdr->fw_version.offset);
12530         fw_ver = firmware->data + offset;
12531         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12532             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12533             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12534             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12535                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12536                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12537                        BCM_5710_FW_MAJOR_VERSION,
12538                        BCM_5710_FW_MINOR_VERSION,
12539                        BCM_5710_FW_REVISION_VERSION,
12540                        BCM_5710_FW_ENGINEERING_VERSION);
12541                 return -EINVAL;
12542         }
12543
12544         return 0;
12545 }
12546
12547 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12548 {
12549         const __be32 *source = (const __be32 *)_source;
12550         u32 *target = (u32 *)_target;
12551         u32 i;
12552
12553         for (i = 0; i < n/4; i++)
12554                 target[i] = be32_to_cpu(source[i]);
12555 }
12556
12557 /*
12558    Ops array is stored in the following format:
12559    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12560  */
12561 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12562 {
12563         const __be32 *source = (const __be32 *)_source;
12564         struct raw_op *target = (struct raw_op *)_target;
12565         u32 i, j, tmp;
12566
12567         for (i = 0, j = 0; i < n/8; i++, j += 2) {
12568                 tmp = be32_to_cpu(source[j]);
12569                 target[i].op = (tmp >> 24) & 0xff;
12570                 target[i].offset = tmp & 0xffffff;
12571                 target[i].raw_data = be32_to_cpu(source[j + 1]);
12572         }
12573 }
12574
12575 /* IRO array is stored in the following format:
12576  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12577  */
12578 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12579 {
12580         const __be32 *source = (const __be32 *)_source;
12581         struct iro *target = (struct iro *)_target;
12582         u32 i, j, tmp;
12583
12584         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12585                 target[i].base = be32_to_cpu(source[j]);
12586                 j++;
12587                 tmp = be32_to_cpu(source[j]);
12588                 target[i].m1 = (tmp >> 16) & 0xffff;
12589                 target[i].m2 = tmp & 0xffff;
12590                 j++;
12591                 tmp = be32_to_cpu(source[j]);
12592                 target[i].m3 = (tmp >> 16) & 0xffff;
12593                 target[i].size = tmp & 0xffff;
12594                 j++;
12595         }
12596 }
12597
12598 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12599 {
12600         const __be16 *source = (const __be16 *)_source;
12601         u16 *target = (u16 *)_target;
12602         u32 i;
12603
12604         for (i = 0; i < n/2; i++)
12605                 target[i] = be16_to_cpu(source[i]);
12606 }
12607
12608 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12609 do {                                                                    \
12610         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12611         bp->arr = kmalloc(len, GFP_KERNEL);                             \
12612         if (!bp->arr)                                                   \
12613                 goto lbl;                                               \
12614         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12615              (u8 *)bp->arr, len);                                       \
12616 } while (0)
12617
12618 static int bnx2x_init_firmware(struct bnx2x *bp)
12619 {
12620         const char *fw_file_name;
12621         struct bnx2x_fw_file_hdr *fw_hdr;
12622         int rc;
12623
12624         if (bp->firmware)
12625                 return 0;
12626
12627         if (CHIP_IS_E1(bp))
12628                 fw_file_name = FW_FILE_NAME_E1;
12629         else if (CHIP_IS_E1H(bp))
12630                 fw_file_name = FW_FILE_NAME_E1H;
12631         else if (!CHIP_IS_E1x(bp))
12632                 fw_file_name = FW_FILE_NAME_E2;
12633         else {
12634                 BNX2X_ERR("Unsupported chip revision\n");
12635                 return -EINVAL;
12636         }
12637         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12638
12639         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12640         if (rc) {
12641                 BNX2X_ERR("Can't load firmware file %s\n",
12642                           fw_file_name);
12643                 goto request_firmware_exit;
12644         }
12645
12646         rc = bnx2x_check_firmware(bp);
12647         if (rc) {
12648                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12649                 goto request_firmware_exit;
12650         }
12651
12652         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12653
12654         /* Initialize the pointers to the init arrays */
12655         /* Blob */
12656         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12657
12658         /* Opcodes */
12659         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12660
12661         /* Offsets */
12662         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12663                             be16_to_cpu_n);
12664
12665         /* STORMs firmware */
12666         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12667                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12668         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12669                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12670         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12671                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12672         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12673                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
12674         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12675                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12676         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12677                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12678         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12679                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12680         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12681                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
12682         /* IRO */
12683         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12684
12685         return 0;
12686
12687 iro_alloc_err:
12688         kfree(bp->init_ops_offsets);
12689 init_offsets_alloc_err:
12690         kfree(bp->init_ops);
12691 init_ops_alloc_err:
12692         kfree(bp->init_data);
12693 request_firmware_exit:
12694         release_firmware(bp->firmware);
12695         bp->firmware = NULL;
12696
12697         return rc;
12698 }
12699
12700 static void bnx2x_release_firmware(struct bnx2x *bp)
12701 {
12702         kfree(bp->init_ops_offsets);
12703         kfree(bp->init_ops);
12704         kfree(bp->init_data);
12705         release_firmware(bp->firmware);
12706         bp->firmware = NULL;
12707 }
12708
12709 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12710         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12711         .init_hw_cmn      = bnx2x_init_hw_common,
12712         .init_hw_port     = bnx2x_init_hw_port,
12713         .init_hw_func     = bnx2x_init_hw_func,
12714
12715         .reset_hw_cmn     = bnx2x_reset_common,
12716         .reset_hw_port    = bnx2x_reset_port,
12717         .reset_hw_func    = bnx2x_reset_func,
12718
12719         .gunzip_init      = bnx2x_gunzip_init,
12720         .gunzip_end       = bnx2x_gunzip_end,
12721
12722         .init_fw          = bnx2x_init_firmware,
12723         .release_fw       = bnx2x_release_firmware,
12724 };
12725
12726 void bnx2x__init_func_obj(struct bnx2x *bp)
12727 {
12728         /* Prepare DMAE related driver resources */
12729         bnx2x_setup_dmae(bp);
12730
12731         bnx2x_init_func_obj(bp, &bp->func_obj,
12732                             bnx2x_sp(bp, func_rdata),
12733                             bnx2x_sp_mapping(bp, func_rdata),
12734                             bnx2x_sp(bp, func_afex_rdata),
12735                             bnx2x_sp_mapping(bp, func_afex_rdata),
12736                             &bnx2x_func_sp_drv);
12737 }
12738
12739 /* must be called after sriov-enable */
12740 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12741 {
12742         int cid_count = BNX2X_L2_MAX_CID(bp);
12743
12744         if (IS_SRIOV(bp))
12745                 cid_count += BNX2X_VF_CIDS;
12746
12747         if (CNIC_SUPPORT(bp))
12748                 cid_count += CNIC_CID_MAX;
12749
12750         return roundup(cid_count, QM_CID_ROUND);
12751 }
12752
12753 /**
12754  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12755  *
12756  * @dev:        pci device
12757  *
12758  */
12759 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12760 {
12761         int index;
12762         u16 control = 0;
12763
12764         /*
12765          * If MSI-X is not supported - return number of SBs needed to support
12766          * one fast path queue: one FP queue + SB for CNIC
12767          */
12768         if (!pdev->msix_cap) {
12769                 dev_info(&pdev->dev, "no msix capability found\n");
12770                 return 1 + cnic_cnt;
12771         }
12772         dev_info(&pdev->dev, "msix capability found\n");
12773
12774         /*
12775          * The value in the PCI configuration space is the index of the last
12776          * entry, namely one less than the actual size of the table, which is
12777          * exactly what we want to return from this function: number of all SBs
12778          * without the default SB.
12779          * For VFs there is no default SB, then we return (index+1).
12780          */
12781         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12782
12783         index = control & PCI_MSIX_FLAGS_QSIZE;
12784
12785         return index;
12786 }
12787
12788 static int set_max_cos_est(int chip_id)
12789 {
12790         switch (chip_id) {
12791         case BCM57710:
12792         case BCM57711:
12793         case BCM57711E:
12794                 return BNX2X_MULTI_TX_COS_E1X;
12795         case BCM57712:
12796         case BCM57712_MF:
12797                 return BNX2X_MULTI_TX_COS_E2_E3A0;
12798         case BCM57800:
12799         case BCM57800_MF:
12800         case BCM57810:
12801         case BCM57810_MF:
12802         case BCM57840_4_10:
12803         case BCM57840_2_20:
12804         case BCM57840_O:
12805         case BCM57840_MFO:
12806         case BCM57840_MF:
12807         case BCM57811:
12808         case BCM57811_MF:
12809                 return BNX2X_MULTI_TX_COS_E3B0;
12810         case BCM57712_VF:
12811         case BCM57800_VF:
12812         case BCM57810_VF:
12813         case BCM57840_VF:
12814         case BCM57811_VF:
12815                 return 1;
12816         default:
12817                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12818                 return -ENODEV;
12819         }
12820 }
12821
12822 static int set_is_vf(int chip_id)
12823 {
12824         switch (chip_id) {
12825         case BCM57712_VF:
12826         case BCM57800_VF:
12827         case BCM57810_VF:
12828         case BCM57840_VF:
12829         case BCM57811_VF:
12830                 return true;
12831         default:
12832                 return false;
12833         }
12834 }
12835
12836 static int bnx2x_init_one(struct pci_dev *pdev,
12837                                     const struct pci_device_id *ent)
12838 {
12839         struct net_device *dev = NULL;
12840         struct bnx2x *bp;
12841         enum pcie_link_width pcie_width;
12842         enum pci_bus_speed pcie_speed;
12843         int rc, max_non_def_sbs;
12844         int rx_count, tx_count, rss_count, doorbell_size;
12845         int max_cos_est;
12846         bool is_vf;
12847         int cnic_cnt;
12848
12849         /* An estimated maximum supported CoS number according to the chip
12850          * version.
12851          * We will try to roughly estimate the maximum number of CoSes this chip
12852          * may support in order to minimize the memory allocated for Tx
12853          * netdev_queue's. This number will be accurately calculated during the
12854          * initialization of bp->max_cos based on the chip versions AND chip
12855          * revision in the bnx2x_init_bp().
12856          */
12857         max_cos_est = set_max_cos_est(ent->driver_data);
12858         if (max_cos_est < 0)
12859                 return max_cos_est;
12860         is_vf = set_is_vf(ent->driver_data);
12861         cnic_cnt = is_vf ? 0 : 1;
12862
12863         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12864
12865         /* add another SB for VF as it has no default SB */
12866         max_non_def_sbs += is_vf ? 1 : 0;
12867
12868         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12869         rss_count = max_non_def_sbs - cnic_cnt;
12870
12871         if (rss_count < 1)
12872                 return -EINVAL;
12873
12874         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12875         rx_count = rss_count + cnic_cnt;
12876
12877         /* Maximum number of netdev Tx queues:
12878          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12879          */
12880         tx_count = rss_count * max_cos_est + cnic_cnt;
12881
12882         /* dev zeroed in init_etherdev */
12883         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12884         if (!dev)
12885                 return -ENOMEM;
12886
12887         bp = netdev_priv(dev);
12888
12889         bp->flags = 0;
12890         if (is_vf)
12891                 bp->flags |= IS_VF_FLAG;
12892
12893         bp->igu_sb_cnt = max_non_def_sbs;
12894         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12895         bp->msg_enable = debug;
12896         bp->cnic_support = cnic_cnt;
12897         bp->cnic_probe = bnx2x_cnic_probe;
12898
12899         pci_set_drvdata(pdev, dev);
12900
12901         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12902         if (rc < 0) {
12903                 free_netdev(dev);
12904                 return rc;
12905         }
12906
12907         BNX2X_DEV_INFO("This is a %s function\n",
12908                        IS_PF(bp) ? "physical" : "virtual");
12909         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12910         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12911         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12912                        tx_count, rx_count);
12913
12914         rc = bnx2x_init_bp(bp);
12915         if (rc)
12916                 goto init_one_exit;
12917
12918         /* Map doorbells here as we need the real value of bp->max_cos which
12919          * is initialized in bnx2x_init_bp() to determine the number of
12920          * l2 connections.
12921          */
12922         if (IS_VF(bp)) {
12923                 bp->doorbells = bnx2x_vf_doorbells(bp);
12924                 rc = bnx2x_vf_pci_alloc(bp);
12925                 if (rc)
12926                         goto init_one_exit;
12927         } else {
12928                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12929                 if (doorbell_size > pci_resource_len(pdev, 2)) {
12930                         dev_err(&bp->pdev->dev,
12931                                 "Cannot map doorbells, bar size too small, aborting\n");
12932                         rc = -ENOMEM;
12933                         goto init_one_exit;
12934                 }
12935                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12936                                                 doorbell_size);
12937         }
12938         if (!bp->doorbells) {
12939                 dev_err(&bp->pdev->dev,
12940                         "Cannot map doorbell space, aborting\n");
12941                 rc = -ENOMEM;
12942                 goto init_one_exit;
12943         }
12944
12945         if (IS_VF(bp)) {
12946                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12947                 if (rc)
12948                         goto init_one_exit;
12949         }
12950
12951         /* Enable SRIOV if capability found in configuration space */
12952         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12953         if (rc)
12954                 goto init_one_exit;
12955
12956         /* calc qm_cid_count */
12957         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12958         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12959
12960         /* disable FCOE L2 queue for E1x*/
12961         if (CHIP_IS_E1x(bp))
12962                 bp->flags |= NO_FCOE_FLAG;
12963
12964         /* Set bp->num_queues for MSI-X mode*/
12965         bnx2x_set_num_queues(bp);
12966
12967         /* Configure interrupt mode: try to enable MSI-X/MSI if
12968          * needed.
12969          */
12970         rc = bnx2x_set_int_mode(bp);
12971         if (rc) {
12972                 dev_err(&pdev->dev, "Cannot set interrupts\n");
12973                 goto init_one_exit;
12974         }
12975         BNX2X_DEV_INFO("set interrupts successfully\n");
12976
12977         /* register the net device */
12978         rc = register_netdev(dev);
12979         if (rc) {
12980                 dev_err(&pdev->dev, "Cannot register net device\n");
12981                 goto init_one_exit;
12982         }
12983         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12984
12985         if (!NO_FCOE(bp)) {
12986                 /* Add storage MAC address */
12987                 rtnl_lock();
12988                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12989                 rtnl_unlock();
12990         }
12991         if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
12992             pcie_speed == PCI_SPEED_UNKNOWN ||
12993             pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
12994                 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
12995         else
12996                 BNX2X_DEV_INFO(
12997                        "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12998                        board_info[ent->driver_data].name,
12999                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13000                        pcie_width,
13001                        pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13002                        pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13003                        pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13004                        "Unknown",
13005                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
13006
13007         return 0;
13008
13009 init_one_exit:
13010         bnx2x_disable_pcie_error_reporting(bp);
13011
13012         if (bp->regview)
13013                 iounmap(bp->regview);
13014
13015         if (IS_PF(bp) && bp->doorbells)
13016                 iounmap(bp->doorbells);
13017
13018         free_netdev(dev);
13019
13020         if (atomic_read(&pdev->enable_cnt) == 1)
13021                 pci_release_regions(pdev);
13022
13023         pci_disable_device(pdev);
13024
13025         return rc;
13026 }
13027
13028 static void __bnx2x_remove(struct pci_dev *pdev,
13029                            struct net_device *dev,
13030                            struct bnx2x *bp,
13031                            bool remove_netdev)
13032 {
13033         /* Delete storage MAC address */
13034         if (!NO_FCOE(bp)) {
13035                 rtnl_lock();
13036                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13037                 rtnl_unlock();
13038         }
13039
13040 #ifdef BCM_DCBNL
13041         /* Delete app tlvs from dcbnl */
13042         bnx2x_dcbnl_update_applist(bp, true);
13043 #endif
13044
13045         if (IS_PF(bp) &&
13046             !BP_NOMCP(bp) &&
13047             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13048                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13049
13050         /* Close the interface - either directly or implicitly */
13051         if (remove_netdev) {
13052                 unregister_netdev(dev);
13053         } else {
13054                 rtnl_lock();
13055                 dev_close(dev);
13056                 rtnl_unlock();
13057         }
13058
13059         bnx2x_iov_remove_one(bp);
13060
13061         /* Power on: we can't let PCI layer write to us while we are in D3 */
13062         if (IS_PF(bp))
13063                 bnx2x_set_power_state(bp, PCI_D0);
13064
13065         /* Disable MSI/MSI-X */
13066         bnx2x_disable_msi(bp);
13067
13068         /* Power off */
13069         if (IS_PF(bp))
13070                 bnx2x_set_power_state(bp, PCI_D3hot);
13071
13072         /* Make sure RESET task is not scheduled before continuing */
13073         cancel_delayed_work_sync(&bp->sp_rtnl_task);
13074
13075         /* send message via vfpf channel to release the resources of this vf */
13076         if (IS_VF(bp))
13077                 bnx2x_vfpf_release(bp);
13078
13079         /* Assumes no further PCIe PM changes will occur */
13080         if (system_state == SYSTEM_POWER_OFF) {
13081                 pci_wake_from_d3(pdev, bp->wol);
13082                 pci_set_power_state(pdev, PCI_D3hot);
13083         }
13084
13085         bnx2x_disable_pcie_error_reporting(bp);
13086         if (remove_netdev) {
13087                 if (bp->regview)
13088                         iounmap(bp->regview);
13089
13090                 /* For vfs, doorbells are part of the regview and were unmapped
13091                  * along with it. FW is only loaded by PF.
13092                  */
13093                 if (IS_PF(bp)) {
13094                         if (bp->doorbells)
13095                                 iounmap(bp->doorbells);
13096
13097                         bnx2x_release_firmware(bp);
13098                 }
13099                 bnx2x_free_mem_bp(bp);
13100
13101                 free_netdev(dev);
13102
13103                 if (atomic_read(&pdev->enable_cnt) == 1)
13104                         pci_release_regions(pdev);
13105
13106                 pci_disable_device(pdev);
13107         }
13108 }
13109
13110 static void bnx2x_remove_one(struct pci_dev *pdev)
13111 {
13112         struct net_device *dev = pci_get_drvdata(pdev);
13113         struct bnx2x *bp;
13114
13115         if (!dev) {
13116                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13117                 return;
13118         }
13119         bp = netdev_priv(dev);
13120
13121         __bnx2x_remove(pdev, dev, bp, true);
13122 }
13123
13124 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13125 {
13126         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13127
13128         bp->rx_mode = BNX2X_RX_MODE_NONE;
13129
13130         if (CNIC_LOADED(bp))
13131                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13132
13133         /* Stop Tx */
13134         bnx2x_tx_disable(bp);
13135         /* Delete all NAPI objects */
13136         bnx2x_del_all_napi(bp);
13137         if (CNIC_LOADED(bp))
13138                 bnx2x_del_all_napi_cnic(bp);
13139         netdev_reset_tc(bp->dev);
13140
13141         del_timer_sync(&bp->timer);
13142         cancel_delayed_work(&bp->sp_task);
13143         cancel_delayed_work(&bp->period_task);
13144
13145         spin_lock_bh(&bp->stats_lock);
13146         bp->stats_state = STATS_STATE_DISABLED;
13147         spin_unlock_bh(&bp->stats_lock);
13148
13149         bnx2x_save_statistics(bp);
13150
13151         netif_carrier_off(bp->dev);
13152
13153         return 0;
13154 }
13155
13156 /**
13157  * bnx2x_io_error_detected - called when PCI error is detected
13158  * @pdev: Pointer to PCI device
13159  * @state: The current pci connection state
13160  *
13161  * This function is called after a PCI bus error affecting
13162  * this device has been detected.
13163  */
13164 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13165                                                 pci_channel_state_t state)
13166 {
13167         struct net_device *dev = pci_get_drvdata(pdev);
13168         struct bnx2x *bp = netdev_priv(dev);
13169
13170         rtnl_lock();
13171
13172         BNX2X_ERR("IO error detected\n");
13173
13174         netif_device_detach(dev);
13175
13176         if (state == pci_channel_io_perm_failure) {
13177                 rtnl_unlock();
13178                 return PCI_ERS_RESULT_DISCONNECT;
13179         }
13180
13181         if (netif_running(dev))
13182                 bnx2x_eeh_nic_unload(bp);
13183
13184         bnx2x_prev_path_mark_eeh(bp);
13185
13186         pci_disable_device(pdev);
13187
13188         rtnl_unlock();
13189
13190         /* Request a slot reset */
13191         return PCI_ERS_RESULT_NEED_RESET;
13192 }
13193
13194 /**
13195  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13196  * @pdev: Pointer to PCI device
13197  *
13198  * Restart the card from scratch, as if from a cold-boot.
13199  */
13200 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13201 {
13202         struct net_device *dev = pci_get_drvdata(pdev);
13203         struct bnx2x *bp = netdev_priv(dev);
13204         int i;
13205
13206         rtnl_lock();
13207         BNX2X_ERR("IO slot reset initializing...\n");
13208         if (pci_enable_device(pdev)) {
13209                 dev_err(&pdev->dev,
13210                         "Cannot re-enable PCI device after reset\n");
13211                 rtnl_unlock();
13212                 return PCI_ERS_RESULT_DISCONNECT;
13213         }
13214
13215         pci_set_master(pdev);
13216         pci_restore_state(pdev);
13217         pci_save_state(pdev);
13218
13219         if (netif_running(dev))
13220                 bnx2x_set_power_state(bp, PCI_D0);
13221
13222         if (netif_running(dev)) {
13223                 BNX2X_ERR("IO slot reset --> driver unload\n");
13224
13225                 /* MCP should have been reset; Need to wait for validity */
13226                 bnx2x_init_shmem(bp);
13227
13228                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13229                         u32 v;
13230
13231                         v = SHMEM2_RD(bp,
13232                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13233                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13234                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13235                 }
13236                 bnx2x_drain_tx_queues(bp);
13237                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13238                 bnx2x_netif_stop(bp, 1);
13239                 bnx2x_free_irq(bp);
13240
13241                 /* Report UNLOAD_DONE to MCP */
13242                 bnx2x_send_unload_done(bp, true);
13243
13244                 bp->sp_state = 0;
13245                 bp->port.pmf = 0;
13246
13247                 bnx2x_prev_unload(bp);
13248
13249                 /* We should have reseted the engine, so It's fair to
13250                  * assume the FW will no longer write to the bnx2x driver.
13251                  */
13252                 bnx2x_squeeze_objects(bp);
13253                 bnx2x_free_skbs(bp);
13254                 for_each_rx_queue(bp, i)
13255                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13256                 bnx2x_free_fp_mem(bp);
13257                 bnx2x_free_mem(bp);
13258
13259                 bp->state = BNX2X_STATE_CLOSED;
13260         }
13261
13262         rtnl_unlock();
13263
13264         /* If AER, perform cleanup of the PCIe registers */
13265         if (bp->flags & AER_ENABLED) {
13266                 if (pci_cleanup_aer_uncorrect_error_status(pdev))
13267                         BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13268                 else
13269                         DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13270         }
13271
13272         return PCI_ERS_RESULT_RECOVERED;
13273 }
13274
13275 /**
13276  * bnx2x_io_resume - called when traffic can start flowing again
13277  * @pdev: Pointer to PCI device
13278  *
13279  * This callback is called when the error recovery driver tells us that
13280  * its OK to resume normal operation.
13281  */
13282 static void bnx2x_io_resume(struct pci_dev *pdev)
13283 {
13284         struct net_device *dev = pci_get_drvdata(pdev);
13285         struct bnx2x *bp = netdev_priv(dev);
13286
13287         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13288                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13289                 return;
13290         }
13291
13292         rtnl_lock();
13293
13294         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13295                                                         DRV_MSG_SEQ_NUMBER_MASK;
13296
13297         if (netif_running(dev))
13298                 bnx2x_nic_load(bp, LOAD_NORMAL);
13299
13300         netif_device_attach(dev);
13301
13302         rtnl_unlock();
13303 }
13304
13305 static const struct pci_error_handlers bnx2x_err_handler = {
13306         .error_detected = bnx2x_io_error_detected,
13307         .slot_reset     = bnx2x_io_slot_reset,
13308         .resume         = bnx2x_io_resume,
13309 };
13310
13311 static void bnx2x_shutdown(struct pci_dev *pdev)
13312 {
13313         struct net_device *dev = pci_get_drvdata(pdev);
13314         struct bnx2x *bp;
13315
13316         if (!dev)
13317                 return;
13318
13319         bp = netdev_priv(dev);
13320         if (!bp)
13321                 return;
13322
13323         rtnl_lock();
13324         netif_device_detach(dev);
13325         rtnl_unlock();
13326
13327         /* Don't remove the netdevice, as there are scenarios which will cause
13328          * the kernel to hang, e.g., when trying to remove bnx2i while the
13329          * rootfs is mounted from SAN.
13330          */
13331         __bnx2x_remove(pdev, dev, bp, false);
13332 }
13333
13334 static struct pci_driver bnx2x_pci_driver = {
13335         .name        = DRV_MODULE_NAME,
13336         .id_table    = bnx2x_pci_tbl,
13337         .probe       = bnx2x_init_one,
13338         .remove      = bnx2x_remove_one,
13339         .suspend     = bnx2x_suspend,
13340         .resume      = bnx2x_resume,
13341         .err_handler = &bnx2x_err_handler,
13342 #ifdef CONFIG_BNX2X_SRIOV
13343         .sriov_configure = bnx2x_sriov_configure,
13344 #endif
13345         .shutdown    = bnx2x_shutdown,
13346 };
13347
13348 static int __init bnx2x_init(void)
13349 {
13350         int ret;
13351
13352         pr_info("%s", version);
13353
13354         bnx2x_wq = create_singlethread_workqueue("bnx2x");
13355         if (bnx2x_wq == NULL) {
13356                 pr_err("Cannot create workqueue\n");
13357                 return -ENOMEM;
13358         }
13359
13360         ret = pci_register_driver(&bnx2x_pci_driver);
13361         if (ret) {
13362                 pr_err("Cannot register driver\n");
13363                 destroy_workqueue(bnx2x_wq);
13364         }
13365         return ret;
13366 }
13367
13368 static void __exit bnx2x_cleanup(void)
13369 {
13370         struct list_head *pos, *q;
13371
13372         pci_unregister_driver(&bnx2x_pci_driver);
13373
13374         destroy_workqueue(bnx2x_wq);
13375
13376         /* Free globally allocated resources */
13377         list_for_each_safe(pos, q, &bnx2x_prev_list) {
13378                 struct bnx2x_prev_path_list *tmp =
13379                         list_entry(pos, struct bnx2x_prev_path_list, list);
13380                 list_del(pos);
13381                 kfree(tmp);
13382         }
13383 }
13384
13385 void bnx2x_notify_link_changed(struct bnx2x *bp)
13386 {
13387         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13388 }
13389
13390 module_init(bnx2x_init);
13391 module_exit(bnx2x_cleanup);
13392
13393 /**
13394  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13395  *
13396  * @bp:         driver handle
13397  * @set:        set or clear the CAM entry
13398  *
13399  * This function will wait until the ramrod completion returns.
13400  * Return 0 if success, -ENODEV if ramrod doesn't return.
13401  */
13402 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13403 {
13404         unsigned long ramrod_flags = 0;
13405
13406         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13407         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13408                                  &bp->iscsi_l2_mac_obj, true,
13409                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13410 }
13411
13412 /* count denotes the number of new completions we have seen */
13413 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13414 {
13415         struct eth_spe *spe;
13416         int cxt_index, cxt_offset;
13417
13418 #ifdef BNX2X_STOP_ON_ERROR
13419         if (unlikely(bp->panic))
13420                 return;
13421 #endif
13422
13423         spin_lock_bh(&bp->spq_lock);
13424         BUG_ON(bp->cnic_spq_pending < count);
13425         bp->cnic_spq_pending -= count;
13426
13427         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13428                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13429                                 & SPE_HDR_CONN_TYPE) >>
13430                                 SPE_HDR_CONN_TYPE_SHIFT;
13431                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13432                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13433
13434                 /* Set validation for iSCSI L2 client before sending SETUP
13435                  *  ramrod
13436                  */
13437                 if (type == ETH_CONNECTION_TYPE) {
13438                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13439                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13440                                         ILT_PAGE_CIDS;
13441                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13442                                         (cxt_index * ILT_PAGE_CIDS);
13443                                 bnx2x_set_ctx_validation(bp,
13444                                         &bp->context[cxt_index].
13445                                                          vcxt[cxt_offset].eth,
13446                                         BNX2X_ISCSI_ETH_CID(bp));
13447                         }
13448                 }
13449
13450                 /*
13451                  * There may be not more than 8 L2, not more than 8 L5 SPEs
13452                  * and in the air. We also check that number of outstanding
13453                  * COMMON ramrods is not more than the EQ and SPQ can
13454                  * accommodate.
13455                  */
13456                 if (type == ETH_CONNECTION_TYPE) {
13457                         if (!atomic_read(&bp->cq_spq_left))
13458                                 break;
13459                         else
13460                                 atomic_dec(&bp->cq_spq_left);
13461                 } else if (type == NONE_CONNECTION_TYPE) {
13462                         if (!atomic_read(&bp->eq_spq_left))
13463                                 break;
13464                         else
13465                                 atomic_dec(&bp->eq_spq_left);
13466                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13467                            (type == FCOE_CONNECTION_TYPE)) {
13468                         if (bp->cnic_spq_pending >=
13469                             bp->cnic_eth_dev.max_kwqe_pending)
13470                                 break;
13471                         else
13472                                 bp->cnic_spq_pending++;
13473                 } else {
13474                         BNX2X_ERR("Unknown SPE type: %d\n", type);
13475                         bnx2x_panic();
13476                         break;
13477                 }
13478
13479                 spe = bnx2x_sp_get_next(bp);
13480                 *spe = *bp->cnic_kwq_cons;
13481
13482                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13483                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13484
13485                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13486                         bp->cnic_kwq_cons = bp->cnic_kwq;
13487                 else
13488                         bp->cnic_kwq_cons++;
13489         }
13490         bnx2x_sp_prod_update(bp);
13491         spin_unlock_bh(&bp->spq_lock);
13492 }
13493
13494 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13495                                struct kwqe_16 *kwqes[], u32 count)
13496 {
13497         struct bnx2x *bp = netdev_priv(dev);
13498         int i;
13499
13500 #ifdef BNX2X_STOP_ON_ERROR
13501         if (unlikely(bp->panic)) {
13502                 BNX2X_ERR("Can't post to SP queue while panic\n");
13503                 return -EIO;
13504         }
13505 #endif
13506
13507         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13508             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13509                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13510                 return -EAGAIN;
13511         }
13512
13513         spin_lock_bh(&bp->spq_lock);
13514
13515         for (i = 0; i < count; i++) {
13516                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13517
13518                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13519                         break;
13520
13521                 *bp->cnic_kwq_prod = *spe;
13522
13523                 bp->cnic_kwq_pending++;
13524
13525                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13526                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
13527                    spe->data.update_data_addr.hi,
13528                    spe->data.update_data_addr.lo,
13529                    bp->cnic_kwq_pending);
13530
13531                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13532                         bp->cnic_kwq_prod = bp->cnic_kwq;
13533                 else
13534                         bp->cnic_kwq_prod++;
13535         }
13536
13537         spin_unlock_bh(&bp->spq_lock);
13538
13539         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13540                 bnx2x_cnic_sp_post(bp, 0);
13541
13542         return i;
13543 }
13544
13545 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13546 {
13547         struct cnic_ops *c_ops;
13548         int rc = 0;
13549
13550         mutex_lock(&bp->cnic_mutex);
13551         c_ops = rcu_dereference_protected(bp->cnic_ops,
13552                                           lockdep_is_held(&bp->cnic_mutex));
13553         if (c_ops)
13554                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13555         mutex_unlock(&bp->cnic_mutex);
13556
13557         return rc;
13558 }
13559
13560 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13561 {
13562         struct cnic_ops *c_ops;
13563         int rc = 0;
13564
13565         rcu_read_lock();
13566         c_ops = rcu_dereference(bp->cnic_ops);
13567         if (c_ops)
13568                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13569         rcu_read_unlock();
13570
13571         return rc;
13572 }
13573
13574 /*
13575  * for commands that have no data
13576  */
13577 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13578 {
13579         struct cnic_ctl_info ctl = {0};
13580
13581         ctl.cmd = cmd;
13582
13583         return bnx2x_cnic_ctl_send(bp, &ctl);
13584 }
13585
13586 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13587 {
13588         struct cnic_ctl_info ctl = {0};
13589
13590         /* first we tell CNIC and only then we count this as a completion */
13591         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13592         ctl.data.comp.cid = cid;
13593         ctl.data.comp.error = err;
13594
13595         bnx2x_cnic_ctl_send_bh(bp, &ctl);
13596         bnx2x_cnic_sp_post(bp, 0);
13597 }
13598
13599 /* Called with netif_addr_lock_bh() taken.
13600  * Sets an rx_mode config for an iSCSI ETH client.
13601  * Doesn't block.
13602  * Completion should be checked outside.
13603  */
13604 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13605 {
13606         unsigned long accept_flags = 0, ramrod_flags = 0;
13607         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13608         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13609
13610         if (start) {
13611                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13612                  * because it's the only way for UIO Queue to accept
13613                  * multicasts (in non-promiscuous mode only one Queue per
13614                  * function will receive multicast packets (leading in our
13615                  * case).
13616                  */
13617                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13618                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13619                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13620                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13621
13622                 /* Clear STOP_PENDING bit if START is requested */
13623                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13624
13625                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13626         } else
13627                 /* Clear START_PENDING bit if STOP is requested */
13628                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13629
13630         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13631                 set_bit(sched_state, &bp->sp_state);
13632         else {
13633                 __set_bit(RAMROD_RX, &ramrod_flags);
13634                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13635                                     ramrod_flags);
13636         }
13637 }
13638
13639 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13640 {
13641         struct bnx2x *bp = netdev_priv(dev);
13642         int rc = 0;
13643
13644         switch (ctl->cmd) {
13645         case DRV_CTL_CTXTBL_WR_CMD: {
13646                 u32 index = ctl->data.io.offset;
13647                 dma_addr_t addr = ctl->data.io.dma_addr;
13648
13649                 bnx2x_ilt_wr(bp, index, addr);
13650                 break;
13651         }
13652
13653         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13654                 int count = ctl->data.credit.credit_count;
13655
13656                 bnx2x_cnic_sp_post(bp, count);
13657                 break;
13658         }
13659
13660         /* rtnl_lock is held.  */
13661         case DRV_CTL_START_L2_CMD: {
13662                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13663                 unsigned long sp_bits = 0;
13664
13665                 /* Configure the iSCSI classification object */
13666                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13667                                    cp->iscsi_l2_client_id,
13668                                    cp->iscsi_l2_cid, BP_FUNC(bp),
13669                                    bnx2x_sp(bp, mac_rdata),
13670                                    bnx2x_sp_mapping(bp, mac_rdata),
13671                                    BNX2X_FILTER_MAC_PENDING,
13672                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13673                                    &bp->macs_pool);
13674
13675                 /* Set iSCSI MAC address */
13676                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13677                 if (rc)
13678                         break;
13679
13680                 mmiowb();
13681                 barrier();
13682
13683                 /* Start accepting on iSCSI L2 ring */
13684
13685                 netif_addr_lock_bh(dev);
13686                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13687                 netif_addr_unlock_bh(dev);
13688
13689                 /* bits to wait on */
13690                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13691                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13692
13693                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13694                         BNX2X_ERR("rx_mode completion timed out!\n");
13695
13696                 break;
13697         }
13698
13699         /* rtnl_lock is held.  */
13700         case DRV_CTL_STOP_L2_CMD: {
13701                 unsigned long sp_bits = 0;
13702
13703                 /* Stop accepting on iSCSI L2 ring */
13704                 netif_addr_lock_bh(dev);
13705                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13706                 netif_addr_unlock_bh(dev);
13707
13708                 /* bits to wait on */
13709                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13710                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13711
13712                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13713                         BNX2X_ERR("rx_mode completion timed out!\n");
13714
13715                 mmiowb();
13716                 barrier();
13717
13718                 /* Unset iSCSI L2 MAC */
13719                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13720                                         BNX2X_ISCSI_ETH_MAC, true);
13721                 break;
13722         }
13723         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13724                 int count = ctl->data.credit.credit_count;
13725
13726                 smp_mb__before_atomic_inc();
13727                 atomic_add(count, &bp->cq_spq_left);
13728                 smp_mb__after_atomic_inc();
13729                 break;
13730         }
13731         case DRV_CTL_ULP_REGISTER_CMD: {
13732                 int ulp_type = ctl->data.register_data.ulp_type;
13733
13734                 if (CHIP_IS_E3(bp)) {
13735                         int idx = BP_FW_MB_IDX(bp);
13736                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13737                         int path = BP_PATH(bp);
13738                         int port = BP_PORT(bp);
13739                         int i;
13740                         u32 scratch_offset;
13741                         u32 *host_addr;
13742
13743                         /* first write capability to shmem2 */
13744                         if (ulp_type == CNIC_ULP_ISCSI)
13745                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13746                         else if (ulp_type == CNIC_ULP_FCOE)
13747                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13748                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13749
13750                         if ((ulp_type != CNIC_ULP_FCOE) ||
13751                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13752                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13753                                 break;
13754
13755                         /* if reached here - should write fcoe capabilities */
13756                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13757                         if (!scratch_offset)
13758                                 break;
13759                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
13760                                                    fcoe_features[path][port]);
13761                         host_addr = (u32 *) &(ctl->data.register_data.
13762                                               fcoe_features);
13763                         for (i = 0; i < sizeof(struct fcoe_capabilities);
13764                              i += 4)
13765                                 REG_WR(bp, scratch_offset + i,
13766                                        *(host_addr + i/4));
13767                 }
13768                 break;
13769         }
13770
13771         case DRV_CTL_ULP_UNREGISTER_CMD: {
13772                 int ulp_type = ctl->data.ulp_type;
13773
13774                 if (CHIP_IS_E3(bp)) {
13775                         int idx = BP_FW_MB_IDX(bp);
13776                         u32 cap;
13777
13778                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13779                         if (ulp_type == CNIC_ULP_ISCSI)
13780                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13781                         else if (ulp_type == CNIC_ULP_FCOE)
13782                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13783                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13784                 }
13785                 break;
13786         }
13787
13788         default:
13789                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13790                 rc = -EINVAL;
13791         }
13792
13793         return rc;
13794 }
13795
13796 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13797 {
13798         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13799
13800         if (bp->flags & USING_MSIX_FLAG) {
13801                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13802                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13803                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13804         } else {
13805                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13806                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13807         }
13808         if (!CHIP_IS_E1x(bp))
13809                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13810         else
13811                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13812
13813         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13814         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13815         cp->irq_arr[1].status_blk = bp->def_status_blk;
13816         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13817         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13818
13819         cp->num_irq = 2;
13820 }
13821
13822 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13823 {
13824         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13825
13826         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13827                              bnx2x_cid_ilt_lines(bp);
13828         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13829         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13830         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13831
13832         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13833            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
13834            cp->iscsi_l2_cid);
13835
13836         if (NO_ISCSI_OOO(bp))
13837                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13838 }
13839
13840 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13841                                void *data)
13842 {
13843         struct bnx2x *bp = netdev_priv(dev);
13844         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13845         int rc;
13846
13847         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13848
13849         if (ops == NULL) {
13850                 BNX2X_ERR("NULL ops received\n");
13851                 return -EINVAL;
13852         }
13853
13854         if (!CNIC_SUPPORT(bp)) {
13855                 BNX2X_ERR("Can't register CNIC when not supported\n");
13856                 return -EOPNOTSUPP;
13857         }
13858
13859         if (!CNIC_LOADED(bp)) {
13860                 rc = bnx2x_load_cnic(bp);
13861                 if (rc) {
13862                         BNX2X_ERR("CNIC-related load failed\n");
13863                         return rc;
13864                 }
13865         }
13866
13867         bp->cnic_enabled = true;
13868
13869         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13870         if (!bp->cnic_kwq)
13871                 return -ENOMEM;
13872
13873         bp->cnic_kwq_cons = bp->cnic_kwq;
13874         bp->cnic_kwq_prod = bp->cnic_kwq;
13875         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13876
13877         bp->cnic_spq_pending = 0;
13878         bp->cnic_kwq_pending = 0;
13879
13880         bp->cnic_data = data;
13881
13882         cp->num_irq = 0;
13883         cp->drv_state |= CNIC_DRV_STATE_REGD;
13884         cp->iro_arr = bp->iro_arr;
13885
13886         bnx2x_setup_cnic_irq_info(bp);
13887
13888         rcu_assign_pointer(bp->cnic_ops, ops);
13889
13890         return 0;
13891 }
13892
13893 static int bnx2x_unregister_cnic(struct net_device *dev)
13894 {
13895         struct bnx2x *bp = netdev_priv(dev);
13896         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13897
13898         mutex_lock(&bp->cnic_mutex);
13899         cp->drv_state = 0;
13900         RCU_INIT_POINTER(bp->cnic_ops, NULL);
13901         mutex_unlock(&bp->cnic_mutex);
13902         synchronize_rcu();
13903         bp->cnic_enabled = false;
13904         kfree(bp->cnic_kwq);
13905         bp->cnic_kwq = NULL;
13906
13907         return 0;
13908 }
13909
13910 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13911 {
13912         struct bnx2x *bp = netdev_priv(dev);
13913         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13914
13915         /* If both iSCSI and FCoE are disabled - return NULL in
13916          * order to indicate CNIC that it should not try to work
13917          * with this device.
13918          */
13919         if (NO_ISCSI(bp) && NO_FCOE(bp))
13920                 return NULL;
13921
13922         cp->drv_owner = THIS_MODULE;
13923         cp->chip_id = CHIP_ID(bp);
13924         cp->pdev = bp->pdev;
13925         cp->io_base = bp->regview;
13926         cp->io_base2 = bp->doorbells;
13927         cp->max_kwqe_pending = 8;
13928         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13929         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13930                              bnx2x_cid_ilt_lines(bp);
13931         cp->ctx_tbl_len = CNIC_ILT_LINES;
13932         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13933         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13934         cp->drv_ctl = bnx2x_drv_ctl;
13935         cp->drv_register_cnic = bnx2x_register_cnic;
13936         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13937         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13938         cp->iscsi_l2_client_id =
13939                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13940         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13941
13942         if (NO_ISCSI_OOO(bp))
13943                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13944
13945         if (NO_ISCSI(bp))
13946                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13947
13948         if (NO_FCOE(bp))
13949                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13950
13951         BNX2X_DEV_INFO(
13952                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13953            cp->ctx_blk_size,
13954            cp->ctx_tbl_offset,
13955            cp->ctx_tbl_len,
13956            cp->starting_cid);
13957         return cp;
13958 }
13959
13960 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13961 {
13962         struct bnx2x *bp = fp->bp;
13963         u32 offset = BAR_USTRORM_INTMEM;
13964
13965         if (IS_VF(bp))
13966                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
13967         else if (!CHIP_IS_E1x(bp))
13968                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13969         else
13970                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13971
13972         return offset;
13973 }
13974
13975 /* called only on E1H or E2.
13976  * When pretending to be PF, the pretend value is the function number 0...7
13977  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13978  * combination
13979  */
13980 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13981 {
13982         u32 pretend_reg;
13983
13984         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13985                 return -1;
13986
13987         /* get my own pretend register */
13988         pretend_reg = bnx2x_get_pretend_reg(bp);
13989         REG_WR(bp, pretend_reg, pretend_func_val);
13990         REG_RD(bp, pretend_reg);
13991         return 0;
13992 }