ARM: 7805/1: mm: change max*pfn to include the physical offset of memory
[cascardo/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION                                 \
70         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
71         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
72         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
73         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT              (5*HZ)
80
81 static char version[] =
82         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87                    "BCM57710/57711/57711E/"
88                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89                    "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99                  " Set number of queues (default is as a number of CPUs)");
100
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108                                 "(1 INT#x; 2 MSI)");
109
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121
122 struct workqueue_struct *bnx2x_wq;
123
124 struct bnx2x_mac_vals {
125         u32 xmac_addr;
126         u32 xmac_val;
127         u32 emac_addr;
128         u32 emac_val;
129         u32 umac_addr;
130         u32 umac_val;
131         u32 bmac_addr;
132         u32 bmac_val[2];
133 };
134
135 enum bnx2x_board_type {
136         BCM57710 = 0,
137         BCM57711,
138         BCM57711E,
139         BCM57712,
140         BCM57712_MF,
141         BCM57712_VF,
142         BCM57800,
143         BCM57800_MF,
144         BCM57800_VF,
145         BCM57810,
146         BCM57810_MF,
147         BCM57810_VF,
148         BCM57840_4_10,
149         BCM57840_2_20,
150         BCM57840_MF,
151         BCM57840_VF,
152         BCM57811,
153         BCM57811_MF,
154         BCM57840_O,
155         BCM57840_MFO,
156         BCM57811_VF
157 };
158
159 /* indexed by board_type, above */
160 static struct {
161         char *name;
162 } board_info[] = {
163         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
248 #endif
249
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272         { 0 }
273 };
274
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286                                        u32 addr, dma_addr_t mapping)
287 {
288         REG_WR(bp,  addr, U64_LO(mapping));
289         REG_WR(bp,  addr + 4, U64_HI(mapping));
290 }
291
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293                                   dma_addr_t mapping, u16 abs_fid)
294 {
295         u32 addr = XSEM_REG_FAST_MEMORY +
296                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297
298         __storm_memset_dma_mapping(bp, addr, mapping);
299 }
300
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302                                   u16 pf_id)
303 {
304         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305                 pf_id);
306         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307                 pf_id);
308         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309                 pf_id);
310         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311                 pf_id);
312 }
313
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315                                  u8 enable)
316 {
317         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318                 enable);
319         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320                 enable);
321         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322                 enable);
323         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324                 enable);
325 }
326
327 static void storm_memset_eq_data(struct bnx2x *bp,
328                                  struct event_ring_data *eq_data,
329                                 u16 pfid)
330 {
331         size_t size = sizeof(struct event_ring_data);
332
333         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334
335         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339                                  u16 pfid)
340 {
341         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342         REG_WR16(bp, addr, eq_prod);
343 }
344
345 /* used only at init
346  * locking is done by mcp
347  */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353                                PCICFG_VENDOR_ID_OFFSET);
354 }
355
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358         u32 val;
359
360         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363                                PCICFG_VENDOR_ID_OFFSET);
364
365         return val;
366 }
367
368 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE        "dst_addr [none]"
373
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375                           struct dmae_command *dmae, int msglvl)
376 {
377         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378         int i;
379
380         switch (dmae->opcode & DMAE_COMMAND_DST) {
381         case DMAE_CMD_DST_PCI:
382                 if (src_type == DMAE_CMD_SRC_PCI)
383                         DP(msglvl, "DMAE: opcode 0x%08x\n"
384                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
386                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388                            dmae->comp_addr_hi, dmae->comp_addr_lo,
389                            dmae->comp_val);
390                 else
391                         DP(msglvl, "DMAE: opcode 0x%08x\n"
392                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
393                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
394                            dmae->opcode, dmae->src_addr_lo >> 2,
395                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396                            dmae->comp_addr_hi, dmae->comp_addr_lo,
397                            dmae->comp_val);
398                 break;
399         case DMAE_CMD_DST_GRC:
400                 if (src_type == DMAE_CMD_SRC_PCI)
401                         DP(msglvl, "DMAE: opcode 0x%08x\n"
402                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
404                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405                            dmae->len, dmae->dst_addr_lo >> 2,
406                            dmae->comp_addr_hi, dmae->comp_addr_lo,
407                            dmae->comp_val);
408                 else
409                         DP(msglvl, "DMAE: opcode 0x%08x\n"
410                            "src [%08x], len [%d*4], dst [%08x]\n"
411                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
412                            dmae->opcode, dmae->src_addr_lo >> 2,
413                            dmae->len, dmae->dst_addr_lo >> 2,
414                            dmae->comp_addr_hi, dmae->comp_addr_lo,
415                            dmae->comp_val);
416                 break;
417         default:
418                 if (src_type == DMAE_CMD_SRC_PCI)
419                         DP(msglvl, "DMAE: opcode 0x%08x\n"
420                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
421                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
422                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424                            dmae->comp_val);
425                 else
426                         DP(msglvl, "DMAE: opcode 0x%08x\n"
427                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
428                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429                            dmae->opcode, dmae->src_addr_lo >> 2,
430                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431                            dmae->comp_val);
432                 break;
433         }
434
435         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437                    i, *(((u32 *)dmae) + i));
438 }
439
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443         u32 cmd_offset;
444         int i;
445
446         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449         }
450         REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456                            DMAE_CMD_C_ENABLE);
457 }
458
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461         return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465                              bool with_comp, u8 comp_type)
466 {
467         u32 opcode = 0;
468
469         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470                    (dst_type << DMAE_COMMAND_DST_SHIFT));
471
472         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473
474         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478
479 #ifdef __BIG_ENDIAN
480         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484         if (with_comp)
485                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486         return opcode;
487 }
488
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490                                       struct dmae_command *dmae,
491                                       u8 src_type, u8 dst_type)
492 {
493         memset(dmae, 0, sizeof(struct dmae_command));
494
495         /* set the opcode */
496         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497                                          true, DMAE_COMP_PCI);
498
499         /* fill in the completion parameters */
500         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502         dmae->comp_val = DMAE_COMP_VAL;
503 }
504
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
507 {
508         u32 *wb_comp = bnx2x_sp(bp, wb_comp);
509         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510         int rc = 0;
511
512         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513
514         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
515          * as long as this code is called both from syscall context and
516          * from ndo_set_rx_mode() flow that may be called from BH.
517          */
518         spin_lock_bh(&bp->dmae_lock);
519
520         /* reset completion */
521         *wb_comp = 0;
522
523         /* post the command on the channel used for initializations */
524         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525
526         /* wait for completion */
527         udelay(5);
528         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529
530                 if (!cnt ||
531                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533                         BNX2X_ERR("DMAE timeout!\n");
534                         rc = DMAE_TIMEOUT;
535                         goto unlock;
536                 }
537                 cnt--;
538                 udelay(50);
539         }
540         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541                 BNX2X_ERR("DMAE PCI error!\n");
542                 rc = DMAE_PCI_ERROR;
543         }
544
545 unlock:
546         spin_unlock_bh(&bp->dmae_lock);
547         return rc;
548 }
549
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551                       u32 len32)
552 {
553         int rc;
554         struct dmae_command dmae;
555
556         if (!bp->dmae_ready) {
557                 u32 *data = bnx2x_sp(bp, wb_data[0]);
558
559                 if (CHIP_IS_E1(bp))
560                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561                 else
562                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
563                 return;
564         }
565
566         /* set opcode and fixed command fields */
567         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568
569         /* fill in addresses and len */
570         dmae.src_addr_lo = U64_LO(dma_addr);
571         dmae.src_addr_hi = U64_HI(dma_addr);
572         dmae.dst_addr_lo = dst_addr >> 2;
573         dmae.dst_addr_hi = 0;
574         dmae.len = len32;
575
576         /* issue the command and wait for completion */
577         rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
578         if (rc) {
579                 BNX2X_ERR("DMAE returned failure %d\n", rc);
580                 bnx2x_panic();
581         }
582 }
583
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
585 {
586         int rc;
587         struct dmae_command dmae;
588
589         if (!bp->dmae_ready) {
590                 u32 *data = bnx2x_sp(bp, wb_data[0]);
591                 int i;
592
593                 if (CHIP_IS_E1(bp))
594                         for (i = 0; i < len32; i++)
595                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596                 else
597                         for (i = 0; i < len32; i++)
598                                 data[i] = REG_RD(bp, src_addr + i*4);
599
600                 return;
601         }
602
603         /* set opcode and fixed command fields */
604         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
605
606         /* fill in addresses and len */
607         dmae.src_addr_lo = src_addr >> 2;
608         dmae.src_addr_hi = 0;
609         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611         dmae.len = len32;
612
613         /* issue the command and wait for completion */
614         rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
615         if (rc) {
616                 BNX2X_ERR("DMAE returned failure %d\n", rc);
617                 bnx2x_panic();
618         }
619 }
620
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622                                       u32 addr, u32 len)
623 {
624         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625         int offset = 0;
626
627         while (len > dmae_wr_max) {
628                 bnx2x_write_dmae(bp, phys_addr + offset,
629                                  addr + offset, dmae_wr_max);
630                 offset += dmae_wr_max * 4;
631                 len -= dmae_wr_max;
632         }
633
634         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
635 }
636
637 static int bnx2x_mc_assert(struct bnx2x *bp)
638 {
639         char last_idx;
640         int i, rc = 0;
641         u32 row0, row1, row2, row3;
642
643         /* XSTORM */
644         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
646         if (last_idx)
647                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
648
649         /* print the asserts */
650         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
651
652                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653                               XSTORM_ASSERT_LIST_OFFSET(i));
654                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
660
661                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663                                   i, row3, row2, row1, row0);
664                         rc++;
665                 } else {
666                         break;
667                 }
668         }
669
670         /* TSTORM */
671         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
673         if (last_idx)
674                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
675
676         /* print the asserts */
677         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
678
679                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680                               TSTORM_ASSERT_LIST_OFFSET(i));
681                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
687
688                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690                                   i, row3, row2, row1, row0);
691                         rc++;
692                 } else {
693                         break;
694                 }
695         }
696
697         /* CSTORM */
698         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
700         if (last_idx)
701                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
702
703         /* print the asserts */
704         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
705
706                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707                               CSTORM_ASSERT_LIST_OFFSET(i));
708                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
714
715                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717                                   i, row3, row2, row1, row0);
718                         rc++;
719                 } else {
720                         break;
721                 }
722         }
723
724         /* USTORM */
725         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726                            USTORM_ASSERT_LIST_INDEX_OFFSET);
727         if (last_idx)
728                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
729
730         /* print the asserts */
731         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
732
733                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734                               USTORM_ASSERT_LIST_OFFSET(i));
735                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
737                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
739                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
741
742                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744                                   i, row3, row2, row1, row0);
745                         rc++;
746                 } else {
747                         break;
748                 }
749         }
750
751         return rc;
752 }
753
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756         u32 addr, val;
757         u32 mark, offset;
758         __be32 data[9];
759         int word;
760         u32 trace_shmem_base;
761         if (BP_NOMCP(bp)) {
762                 BNX2X_ERR("NO MCP - can not dump\n");
763                 return;
764         }
765         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766                 (bp->common.bc_ver & 0xff0000) >> 16,
767                 (bp->common.bc_ver & 0xff00) >> 8,
768                 (bp->common.bc_ver & 0xff));
769
770         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773
774         if (BP_PATH(bp) == 0)
775                 trace_shmem_base = bp->common.shmem_base;
776         else
777                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778         addr = trace_shmem_base - 0x800;
779
780         /* validate TRCB signature */
781         mark = REG_RD(bp, addr);
782         if (mark != MFW_TRACE_SIGNATURE) {
783                 BNX2X_ERR("Trace buffer signature is missing.");
784                 return ;
785         }
786
787         /* read cyclic buffer pointer */
788         addr += 4;
789         mark = REG_RD(bp, addr);
790         mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
791                         + ((mark + 0x3) & ~0x3) - 0x08000000;
792         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
793
794         printk("%s", lvl);
795
796         /* dump buffer after the mark */
797         for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
798                 for (word = 0; word < 8; word++)
799                         data[word] = htonl(REG_RD(bp, offset + 4*word));
800                 data[8] = 0x0;
801                 pr_cont("%s", (char *)data);
802         }
803
804         /* dump buffer before the mark */
805         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
806                 for (word = 0; word < 8; word++)
807                         data[word] = htonl(REG_RD(bp, offset + 4*word));
808                 data[8] = 0x0;
809                 pr_cont("%s", (char *)data);
810         }
811         printk("%s" "end of fw dump\n", lvl);
812 }
813
814 static void bnx2x_fw_dump(struct bnx2x *bp)
815 {
816         bnx2x_fw_dump_lvl(bp, KERN_ERR);
817 }
818
819 static void bnx2x_hc_int_disable(struct bnx2x *bp)
820 {
821         int port = BP_PORT(bp);
822         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
823         u32 val = REG_RD(bp, addr);
824
825         /* in E1 we must use only PCI configuration space to disable
826          * MSI/MSIX capability
827          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
828          */
829         if (CHIP_IS_E1(bp)) {
830                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
831                  * Use mask register to prevent from HC sending interrupts
832                  * after we exit the function
833                  */
834                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
835
836                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
837                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
838                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
839         } else
840                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
841                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
842                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
843                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
844
845         DP(NETIF_MSG_IFDOWN,
846            "write %x to HC %d (addr 0x%x)\n",
847            val, port, addr);
848
849         /* flush all outstanding writes */
850         mmiowb();
851
852         REG_WR(bp, addr, val);
853         if (REG_RD(bp, addr) != val)
854                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
855 }
856
857 static void bnx2x_igu_int_disable(struct bnx2x *bp)
858 {
859         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
860
861         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
862                  IGU_PF_CONF_INT_LINE_EN |
863                  IGU_PF_CONF_ATTN_BIT_EN);
864
865         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
866
867         /* flush all outstanding writes */
868         mmiowb();
869
870         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
871         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
872                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874
875 static void bnx2x_int_disable(struct bnx2x *bp)
876 {
877         if (bp->common.int_block == INT_BLOCK_HC)
878                 bnx2x_hc_int_disable(bp);
879         else
880                 bnx2x_igu_int_disable(bp);
881 }
882
883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
884 {
885         int i;
886         u16 j;
887         struct hc_sp_status_block_data sp_sb_data;
888         int func = BP_FUNC(bp);
889 #ifdef BNX2X_STOP_ON_ERROR
890         u16 start = 0, end = 0;
891         u8 cos;
892 #endif
893         if (disable_int)
894                 bnx2x_int_disable(bp);
895
896         bp->stats_state = STATS_STATE_DISABLED;
897         bp->eth_stats.unrecoverable_error++;
898         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
899
900         BNX2X_ERR("begin crash dump -----------------\n");
901
902         /* Indices */
903         /* Common */
904         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
905                   bp->def_idx, bp->def_att_idx, bp->attn_state,
906                   bp->spq_prod_idx, bp->stats_counter);
907         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
908                   bp->def_status_blk->atten_status_block.attn_bits,
909                   bp->def_status_blk->atten_status_block.attn_bits_ack,
910                   bp->def_status_blk->atten_status_block.status_block_id,
911                   bp->def_status_blk->atten_status_block.attn_bits_index);
912         BNX2X_ERR("     def (");
913         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
914                 pr_cont("0x%x%s",
915                         bp->def_status_blk->sp_sb.index_values[i],
916                         (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
917
918         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
919                 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
920                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
921                         i*sizeof(u32));
922
923         pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
924                sp_sb_data.igu_sb_id,
925                sp_sb_data.igu_seg_id,
926                sp_sb_data.p_func.pf_id,
927                sp_sb_data.p_func.vnic_id,
928                sp_sb_data.p_func.vf_id,
929                sp_sb_data.p_func.vf_valid,
930                sp_sb_data.state);
931
932         for_each_eth_queue(bp, i) {
933                 struct bnx2x_fastpath *fp = &bp->fp[i];
934                 int loop;
935                 struct hc_status_block_data_e2 sb_data_e2;
936                 struct hc_status_block_data_e1x sb_data_e1x;
937                 struct hc_status_block_sm  *hc_sm_p =
938                         CHIP_IS_E1x(bp) ?
939                         sb_data_e1x.common.state_machine :
940                         sb_data_e2.common.state_machine;
941                 struct hc_index_data *hc_index_p =
942                         CHIP_IS_E1x(bp) ?
943                         sb_data_e1x.index_data :
944                         sb_data_e2.index_data;
945                 u8 data_size, cos;
946                 u32 *sb_data_p;
947                 struct bnx2x_fp_txdata txdata;
948
949                 /* Rx */
950                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
951                           i, fp->rx_bd_prod, fp->rx_bd_cons,
952                           fp->rx_comp_prod,
953                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
954                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
955                           fp->rx_sge_prod, fp->last_max_sge,
956                           le16_to_cpu(fp->fp_hc_idx));
957
958                 /* Tx */
959                 for_each_cos_in_tx_queue(fp, cos)
960                 {
961                         txdata = *fp->txdata_ptr[cos];
962                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
963                                   i, txdata.tx_pkt_prod,
964                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
965                                   txdata.tx_bd_cons,
966                                   le16_to_cpu(*txdata.tx_cons_sb));
967                 }
968
969                 loop = CHIP_IS_E1x(bp) ?
970                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
971
972                 /* host sb data */
973
974                 if (IS_FCOE_FP(fp))
975                         continue;
976
977                 BNX2X_ERR("     run indexes (");
978                 for (j = 0; j < HC_SB_MAX_SM; j++)
979                         pr_cont("0x%x%s",
980                                fp->sb_running_index[j],
981                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
982
983                 BNX2X_ERR("     indexes (");
984                 for (j = 0; j < loop; j++)
985                         pr_cont("0x%x%s",
986                                fp->sb_index_values[j],
987                                (j == loop - 1) ? ")" : " ");
988                 /* fw sb data */
989                 data_size = CHIP_IS_E1x(bp) ?
990                         sizeof(struct hc_status_block_data_e1x) :
991                         sizeof(struct hc_status_block_data_e2);
992                 data_size /= sizeof(u32);
993                 sb_data_p = CHIP_IS_E1x(bp) ?
994                         (u32 *)&sb_data_e1x :
995                         (u32 *)&sb_data_e2;
996                 /* copy sb data in here */
997                 for (j = 0; j < data_size; j++)
998                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
999                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1000                                 j * sizeof(u32));
1001
1002                 if (!CHIP_IS_E1x(bp)) {
1003                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1004                                 sb_data_e2.common.p_func.pf_id,
1005                                 sb_data_e2.common.p_func.vf_id,
1006                                 sb_data_e2.common.p_func.vf_valid,
1007                                 sb_data_e2.common.p_func.vnic_id,
1008                                 sb_data_e2.common.same_igu_sb_1b,
1009                                 sb_data_e2.common.state);
1010                 } else {
1011                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1012                                 sb_data_e1x.common.p_func.pf_id,
1013                                 sb_data_e1x.common.p_func.vf_id,
1014                                 sb_data_e1x.common.p_func.vf_valid,
1015                                 sb_data_e1x.common.p_func.vnic_id,
1016                                 sb_data_e1x.common.same_igu_sb_1b,
1017                                 sb_data_e1x.common.state);
1018                 }
1019
1020                 /* SB_SMs data */
1021                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1022                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1023                                 j, hc_sm_p[j].__flags,
1024                                 hc_sm_p[j].igu_sb_id,
1025                                 hc_sm_p[j].igu_seg_id,
1026                                 hc_sm_p[j].time_to_expire,
1027                                 hc_sm_p[j].timer_value);
1028                 }
1029
1030                 /* Indices data */
1031                 for (j = 0; j < loop; j++) {
1032                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1033                                hc_index_p[j].flags,
1034                                hc_index_p[j].timeout);
1035                 }
1036         }
1037
1038 #ifdef BNX2X_STOP_ON_ERROR
1039
1040         /* event queue */
1041         BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1042         for (i = 0; i < NUM_EQ_DESC; i++) {
1043                 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1044
1045                 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1046                           i, bp->eq_ring[i].message.opcode,
1047                           bp->eq_ring[i].message.error);
1048                 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1049         }
1050
1051         /* Rings */
1052         /* Rx */
1053         for_each_valid_rx_queue(bp, i) {
1054                 struct bnx2x_fastpath *fp = &bp->fp[i];
1055
1056                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1057                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1058                 for (j = start; j != end; j = RX_BD(j + 1)) {
1059                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1060                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1061
1062                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1063                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1064                 }
1065
1066                 start = RX_SGE(fp->rx_sge_prod);
1067                 end = RX_SGE(fp->last_max_sge);
1068                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1069                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1070                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1071
1072                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1073                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1074                 }
1075
1076                 start = RCQ_BD(fp->rx_comp_cons - 10);
1077                 end = RCQ_BD(fp->rx_comp_cons + 503);
1078                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1079                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1080
1081                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1082                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1083                 }
1084         }
1085
1086         /* Tx */
1087         for_each_valid_tx_queue(bp, i) {
1088                 struct bnx2x_fastpath *fp = &bp->fp[i];
1089                 for_each_cos_in_tx_queue(fp, cos) {
1090                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1091
1092                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1093                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1094                         for (j = start; j != end; j = TX_BD(j + 1)) {
1095                                 struct sw_tx_bd *sw_bd =
1096                                         &txdata->tx_buf_ring[j];
1097
1098                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1099                                           i, cos, j, sw_bd->skb,
1100                                           sw_bd->first_bd);
1101                         }
1102
1103                         start = TX_BD(txdata->tx_bd_cons - 10);
1104                         end = TX_BD(txdata->tx_bd_cons + 254);
1105                         for (j = start; j != end; j = TX_BD(j + 1)) {
1106                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1107
1108                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1109                                           i, cos, j, tx_bd[0], tx_bd[1],
1110                                           tx_bd[2], tx_bd[3]);
1111                         }
1112                 }
1113         }
1114 #endif
1115         bnx2x_fw_dump(bp);
1116         bnx2x_mc_assert(bp);
1117         BNX2X_ERR("end crash dump -----------------\n");
1118 }
1119
1120 /*
1121  * FLR Support for E2
1122  *
1123  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1124  * initialization.
1125  */
1126 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1127 #define FLR_WAIT_INTERVAL       50      /* usec */
1128 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1129
1130 struct pbf_pN_buf_regs {
1131         int pN;
1132         u32 init_crd;
1133         u32 crd;
1134         u32 crd_freed;
1135 };
1136
1137 struct pbf_pN_cmd_regs {
1138         int pN;
1139         u32 lines_occup;
1140         u32 lines_freed;
1141 };
1142
1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1144                                      struct pbf_pN_buf_regs *regs,
1145                                      u32 poll_count)
1146 {
1147         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1148         u32 cur_cnt = poll_count;
1149
1150         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1151         crd = crd_start = REG_RD(bp, regs->crd);
1152         init_crd = REG_RD(bp, regs->init_crd);
1153
1154         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1155         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1156         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1157
1158         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1159                (init_crd - crd_start))) {
1160                 if (cur_cnt--) {
1161                         udelay(FLR_WAIT_INTERVAL);
1162                         crd = REG_RD(bp, regs->crd);
1163                         crd_freed = REG_RD(bp, regs->crd_freed);
1164                 } else {
1165                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1166                            regs->pN);
1167                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1168                            regs->pN, crd);
1169                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1170                            regs->pN, crd_freed);
1171                         break;
1172                 }
1173         }
1174         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1175            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1176 }
1177
1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1179                                      struct pbf_pN_cmd_regs *regs,
1180                                      u32 poll_count)
1181 {
1182         u32 occup, to_free, freed, freed_start;
1183         u32 cur_cnt = poll_count;
1184
1185         occup = to_free = REG_RD(bp, regs->lines_occup);
1186         freed = freed_start = REG_RD(bp, regs->lines_freed);
1187
1188         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1189         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1190
1191         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1192                 if (cur_cnt--) {
1193                         udelay(FLR_WAIT_INTERVAL);
1194                         occup = REG_RD(bp, regs->lines_occup);
1195                         freed = REG_RD(bp, regs->lines_freed);
1196                 } else {
1197                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1198                            regs->pN);
1199                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1200                            regs->pN, occup);
1201                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1202                            regs->pN, freed);
1203                         break;
1204                 }
1205         }
1206         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1207            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1208 }
1209
1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1211                                     u32 expected, u32 poll_count)
1212 {
1213         u32 cur_cnt = poll_count;
1214         u32 val;
1215
1216         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1217                 udelay(FLR_WAIT_INTERVAL);
1218
1219         return val;
1220 }
1221
1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1223                                     char *msg, u32 poll_cnt)
1224 {
1225         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1226         if (val != 0) {
1227                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1228                 return 1;
1229         }
1230         return 0;
1231 }
1232
1233 /* Common routines with VF FLR cleanup */
1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1235 {
1236         /* adjust polling timeout */
1237         if (CHIP_REV_IS_EMUL(bp))
1238                 return FLR_POLL_CNT * 2000;
1239
1240         if (CHIP_REV_IS_FPGA(bp))
1241                 return FLR_POLL_CNT * 120;
1242
1243         return FLR_POLL_CNT;
1244 }
1245
1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1247 {
1248         struct pbf_pN_cmd_regs cmd_regs[] = {
1249                 {0, (CHIP_IS_E3B0(bp)) ?
1250                         PBF_REG_TQ_OCCUPANCY_Q0 :
1251                         PBF_REG_P0_TQ_OCCUPANCY,
1252                     (CHIP_IS_E3B0(bp)) ?
1253                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1254                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1255                 {1, (CHIP_IS_E3B0(bp)) ?
1256                         PBF_REG_TQ_OCCUPANCY_Q1 :
1257                         PBF_REG_P1_TQ_OCCUPANCY,
1258                     (CHIP_IS_E3B0(bp)) ?
1259                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1260                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1261                 {4, (CHIP_IS_E3B0(bp)) ?
1262                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1263                         PBF_REG_P4_TQ_OCCUPANCY,
1264                     (CHIP_IS_E3B0(bp)) ?
1265                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1266                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1267         };
1268
1269         struct pbf_pN_buf_regs buf_regs[] = {
1270                 {0, (CHIP_IS_E3B0(bp)) ?
1271                         PBF_REG_INIT_CRD_Q0 :
1272                         PBF_REG_P0_INIT_CRD ,
1273                     (CHIP_IS_E3B0(bp)) ?
1274                         PBF_REG_CREDIT_Q0 :
1275                         PBF_REG_P0_CREDIT,
1276                     (CHIP_IS_E3B0(bp)) ?
1277                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1278                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1279                 {1, (CHIP_IS_E3B0(bp)) ?
1280                         PBF_REG_INIT_CRD_Q1 :
1281                         PBF_REG_P1_INIT_CRD,
1282                     (CHIP_IS_E3B0(bp)) ?
1283                         PBF_REG_CREDIT_Q1 :
1284                         PBF_REG_P1_CREDIT,
1285                     (CHIP_IS_E3B0(bp)) ?
1286                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1287                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1288                 {4, (CHIP_IS_E3B0(bp)) ?
1289                         PBF_REG_INIT_CRD_LB_Q :
1290                         PBF_REG_P4_INIT_CRD,
1291                     (CHIP_IS_E3B0(bp)) ?
1292                         PBF_REG_CREDIT_LB_Q :
1293                         PBF_REG_P4_CREDIT,
1294                     (CHIP_IS_E3B0(bp)) ?
1295                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1296                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1297         };
1298
1299         int i;
1300
1301         /* Verify the command queues are flushed P0, P1, P4 */
1302         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1303                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1304
1305         /* Verify the transmission buffers are flushed P0, P1, P4 */
1306         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1307                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1308 }
1309
1310 #define OP_GEN_PARAM(param) \
1311         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1312
1313 #define OP_GEN_TYPE(type) \
1314         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1315
1316 #define OP_GEN_AGG_VECT(index) \
1317         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1318
1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1320 {
1321         u32 op_gen_command = 0;
1322         u32 comp_addr = BAR_CSTRORM_INTMEM +
1323                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1324         int ret = 0;
1325
1326         if (REG_RD(bp, comp_addr)) {
1327                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1328                 return 1;
1329         }
1330
1331         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1332         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1333         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1334         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1335
1336         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1337         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1338
1339         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1340                 BNX2X_ERR("FW final cleanup did not succeed\n");
1341                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1342                    (REG_RD(bp, comp_addr)));
1343                 bnx2x_panic();
1344                 return 1;
1345         }
1346         /* Zero completion for next FLR */
1347         REG_WR(bp, comp_addr, 0);
1348
1349         return ret;
1350 }
1351
1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1353 {
1354         u16 status;
1355
1356         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1357         return status & PCI_EXP_DEVSTA_TRPND;
1358 }
1359
1360 /* PF FLR specific routines
1361 */
1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1363 {
1364         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1365         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1367                         "CFC PF usage counter timed out",
1368                         poll_cnt))
1369                 return 1;
1370
1371         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1372         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373                         DORQ_REG_PF_USAGE_CNT,
1374                         "DQ PF usage counter timed out",
1375                         poll_cnt))
1376                 return 1;
1377
1378         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1379         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1381                         "QM PF usage counter timed out",
1382                         poll_cnt))
1383                 return 1;
1384
1385         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1386         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1388                         "Timers VNIC usage counter timed out",
1389                         poll_cnt))
1390                 return 1;
1391         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1393                         "Timers NUM_SCANS usage counter timed out",
1394                         poll_cnt))
1395                 return 1;
1396
1397         /* Wait DMAE PF usage counter to zero */
1398         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1399                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1400                         "DMAE command register timed out",
1401                         poll_cnt))
1402                 return 1;
1403
1404         return 0;
1405 }
1406
1407 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1408 {
1409         u32 val;
1410
1411         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1412         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1413
1414         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1415         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1416
1417         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1418         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1419
1420         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1421         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1422
1423         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1424         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1425
1426         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1427         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1428
1429         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1430         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1431
1432         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1433         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1434            val);
1435 }
1436
1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1438 {
1439         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1440
1441         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1442
1443         /* Re-enable PF target read access */
1444         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1445
1446         /* Poll HW usage counters */
1447         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1448         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1449                 return -EBUSY;
1450
1451         /* Zero the igu 'trailing edge' and 'leading edge' */
1452
1453         /* Send the FW cleanup command */
1454         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1455                 return -EBUSY;
1456
1457         /* ATC cleanup */
1458
1459         /* Verify TX hw is flushed */
1460         bnx2x_tx_hw_flushed(bp, poll_cnt);
1461
1462         /* Wait 100ms (not adjusted according to platform) */
1463         msleep(100);
1464
1465         /* Verify no pending pci transactions */
1466         if (bnx2x_is_pcie_pending(bp->pdev))
1467                 BNX2X_ERR("PCIE Transactions still pending\n");
1468
1469         /* Debug */
1470         bnx2x_hw_enable_status(bp);
1471
1472         /*
1473          * Master enable - Due to WB DMAE writes performed before this
1474          * register is re-initialized as part of the regular function init
1475          */
1476         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1477
1478         return 0;
1479 }
1480
1481 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1482 {
1483         int port = BP_PORT(bp);
1484         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1485         u32 val = REG_RD(bp, addr);
1486         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1487         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1488         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1489
1490         if (msix) {
1491                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1493                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495                 if (single_msix)
1496                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1497         } else if (msi) {
1498                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1499                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1500                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1501                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502         } else {
1503                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1504                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1505                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1506                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1507
1508                 if (!CHIP_IS_E1(bp)) {
1509                         DP(NETIF_MSG_IFUP,
1510                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1511
1512                         REG_WR(bp, addr, val);
1513
1514                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1515                 }
1516         }
1517
1518         if (CHIP_IS_E1(bp))
1519                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1520
1521         DP(NETIF_MSG_IFUP,
1522            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1523            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1524
1525         REG_WR(bp, addr, val);
1526         /*
1527          * Ensure that HC_CONFIG is written before leading/trailing edge config
1528          */
1529         mmiowb();
1530         barrier();
1531
1532         if (!CHIP_IS_E1(bp)) {
1533                 /* init leading/trailing edge */
1534                 if (IS_MF(bp)) {
1535                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1536                         if (bp->port.pmf)
1537                                 /* enable nig and gpio3 attention */
1538                                 val |= 0x1100;
1539                 } else
1540                         val = 0xffff;
1541
1542                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1543                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1544         }
1545
1546         /* Make sure that interrupts are indeed enabled from here on */
1547         mmiowb();
1548 }
1549
1550 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1551 {
1552         u32 val;
1553         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556
1557         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1558
1559         if (msix) {
1560                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1561                          IGU_PF_CONF_SINGLE_ISR_EN);
1562                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563                         IGU_PF_CONF_ATTN_BIT_EN);
1564
1565                 if (single_msix)
1566                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1567         } else if (msi) {
1568                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1569                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1570                         IGU_PF_CONF_ATTN_BIT_EN |
1571                         IGU_PF_CONF_SINGLE_ISR_EN);
1572         } else {
1573                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1574                 val |= (IGU_PF_CONF_INT_LINE_EN |
1575                         IGU_PF_CONF_ATTN_BIT_EN |
1576                         IGU_PF_CONF_SINGLE_ISR_EN);
1577         }
1578
1579         /* Clean previous status - need to configure igu prior to ack*/
1580         if ((!msix) || single_msix) {
1581                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1582                 bnx2x_ack_int(bp);
1583         }
1584
1585         val |= IGU_PF_CONF_FUNC_EN;
1586
1587         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1588            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589
1590         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1591
1592         if (val & IGU_PF_CONF_INT_LINE_EN)
1593                 pci_intx(bp->pdev, true);
1594
1595         barrier();
1596
1597         /* init leading/trailing edge */
1598         if (IS_MF(bp)) {
1599                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600                 if (bp->port.pmf)
1601                         /* enable nig and gpio3 attention */
1602                         val |= 0x1100;
1603         } else
1604                 val = 0xffff;
1605
1606         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1607         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1608
1609         /* Make sure that interrupts are indeed enabled from here on */
1610         mmiowb();
1611 }
1612
1613 void bnx2x_int_enable(struct bnx2x *bp)
1614 {
1615         if (bp->common.int_block == INT_BLOCK_HC)
1616                 bnx2x_hc_int_enable(bp);
1617         else
1618                 bnx2x_igu_int_enable(bp);
1619 }
1620
1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1622 {
1623         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1624         int i, offset;
1625
1626         if (disable_hw)
1627                 /* prevent the HW from sending interrupts */
1628                 bnx2x_int_disable(bp);
1629
1630         /* make sure all ISRs are done */
1631         if (msix) {
1632                 synchronize_irq(bp->msix_table[0].vector);
1633                 offset = 1;
1634                 if (CNIC_SUPPORT(bp))
1635                         offset++;
1636                 for_each_eth_queue(bp, i)
1637                         synchronize_irq(bp->msix_table[offset++].vector);
1638         } else
1639                 synchronize_irq(bp->pdev->irq);
1640
1641         /* make sure sp_task is not running */
1642         cancel_delayed_work(&bp->sp_task);
1643         cancel_delayed_work(&bp->period_task);
1644         flush_workqueue(bnx2x_wq);
1645 }
1646
1647 /* fast path */
1648
1649 /*
1650  * General service functions
1651  */
1652
1653 /* Return true if succeeded to acquire the lock */
1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1655 {
1656         u32 lock_status;
1657         u32 resource_bit = (1 << resource);
1658         int func = BP_FUNC(bp);
1659         u32 hw_lock_control_reg;
1660
1661         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662            "Trying to take a lock on resource %d\n", resource);
1663
1664         /* Validating that the resource is within range */
1665         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1666                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1667                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1668                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1669                 return false;
1670         }
1671
1672         if (func <= 5)
1673                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1674         else
1675                 hw_lock_control_reg =
1676                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1677
1678         /* Try to acquire the lock */
1679         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1680         lock_status = REG_RD(bp, hw_lock_control_reg);
1681         if (lock_status & resource_bit)
1682                 return true;
1683
1684         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1685            "Failed to get a lock on resource %d\n", resource);
1686         return false;
1687 }
1688
1689 /**
1690  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1691  *
1692  * @bp: driver handle
1693  *
1694  * Returns the recovery leader resource id according to the engine this function
1695  * belongs to. Currently only only 2 engines is supported.
1696  */
1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1698 {
1699         if (BP_PATH(bp))
1700                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1701         else
1702                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1703 }
1704
1705 /**
1706  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1707  *
1708  * @bp: driver handle
1709  *
1710  * Tries to acquire a leader lock for current engine.
1711  */
1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1713 {
1714         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1715 }
1716
1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1718
1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1721 {
1722         /* Set the interrupt occurred bit for the sp-task to recognize it
1723          * must ack the interrupt and transition according to the IGU
1724          * state machine.
1725          */
1726         atomic_set(&bp->interrupt_occurred, 1);
1727
1728         /* The sp_task must execute only after this bit
1729          * is set, otherwise we will get out of sync and miss all
1730          * further interrupts. Hence, the barrier.
1731          */
1732         smp_wmb();
1733
1734         /* schedule sp_task to workqueue */
1735         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1736 }
1737
1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1739 {
1740         struct bnx2x *bp = fp->bp;
1741         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1742         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1743         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1744         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1745
1746         DP(BNX2X_MSG_SP,
1747            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1748            fp->index, cid, command, bp->state,
1749            rr_cqe->ramrod_cqe.ramrod_type);
1750
1751         /* If cid is within VF range, replace the slowpath object with the
1752          * one corresponding to this VF
1753          */
1754         if (cid >= BNX2X_FIRST_VF_CID  &&
1755             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1756                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1757
1758         switch (command) {
1759         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1760                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1761                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1762                 break;
1763
1764         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1765                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1766                 drv_cmd = BNX2X_Q_CMD_SETUP;
1767                 break;
1768
1769         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1770                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1771                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1772                 break;
1773
1774         case (RAMROD_CMD_ID_ETH_HALT):
1775                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1776                 drv_cmd = BNX2X_Q_CMD_HALT;
1777                 break;
1778
1779         case (RAMROD_CMD_ID_ETH_TERMINATE):
1780                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1781                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1782                 break;
1783
1784         case (RAMROD_CMD_ID_ETH_EMPTY):
1785                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1786                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1787                 break;
1788
1789         default:
1790                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1791                           command, fp->index);
1792                 return;
1793         }
1794
1795         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1796             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1797                 /* q_obj->complete_cmd() failure means that this was
1798                  * an unexpected completion.
1799                  *
1800                  * In this case we don't want to increase the bp->spq_left
1801                  * because apparently we haven't sent this command the first
1802                  * place.
1803                  */
1804 #ifdef BNX2X_STOP_ON_ERROR
1805                 bnx2x_panic();
1806 #else
1807                 return;
1808 #endif
1809         /* SRIOV: reschedule any 'in_progress' operations */
1810         bnx2x_iov_sp_event(bp, cid, true);
1811
1812         smp_mb__before_atomic_inc();
1813         atomic_inc(&bp->cq_spq_left);
1814         /* push the change in bp->spq_left and towards the memory */
1815         smp_mb__after_atomic_inc();
1816
1817         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1818
1819         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1820             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1821                 /* if Q update ramrod is completed for last Q in AFEX vif set
1822                  * flow, then ACK MCP at the end
1823                  *
1824                  * mark pending ACK to MCP bit.
1825                  * prevent case that both bits are cleared.
1826                  * At the end of load/unload driver checks that
1827                  * sp_state is cleared, and this order prevents
1828                  * races
1829                  */
1830                 smp_mb__before_clear_bit();
1831                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1832                 wmb();
1833                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1834                 smp_mb__after_clear_bit();
1835
1836                 /* schedule the sp task as mcp ack is required */
1837                 bnx2x_schedule_sp_task(bp);
1838         }
1839
1840         return;
1841 }
1842
1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1844 {
1845         struct bnx2x *bp = netdev_priv(dev_instance);
1846         u16 status = bnx2x_ack_int(bp);
1847         u16 mask;
1848         int i;
1849         u8 cos;
1850
1851         /* Return here if interrupt is shared and it's not for us */
1852         if (unlikely(status == 0)) {
1853                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1854                 return IRQ_NONE;
1855         }
1856         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1857
1858 #ifdef BNX2X_STOP_ON_ERROR
1859         if (unlikely(bp->panic))
1860                 return IRQ_HANDLED;
1861 #endif
1862
1863         for_each_eth_queue(bp, i) {
1864                 struct bnx2x_fastpath *fp = &bp->fp[i];
1865
1866                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1867                 if (status & mask) {
1868                         /* Handle Rx or Tx according to SB id */
1869                         for_each_cos_in_tx_queue(fp, cos)
1870                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1871                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1872                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1873                         status &= ~mask;
1874                 }
1875         }
1876
1877         if (CNIC_SUPPORT(bp)) {
1878                 mask = 0x2;
1879                 if (status & (mask | 0x1)) {
1880                         struct cnic_ops *c_ops = NULL;
1881
1882                         rcu_read_lock();
1883                         c_ops = rcu_dereference(bp->cnic_ops);
1884                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1885                                       CNIC_DRV_STATE_HANDLES_IRQ))
1886                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1887                         rcu_read_unlock();
1888
1889                         status &= ~mask;
1890                 }
1891         }
1892
1893         if (unlikely(status & 0x1)) {
1894
1895                 /* schedule sp task to perform default status block work, ack
1896                  * attentions and enable interrupts.
1897                  */
1898                 bnx2x_schedule_sp_task(bp);
1899
1900                 status &= ~0x1;
1901                 if (!status)
1902                         return IRQ_HANDLED;
1903         }
1904
1905         if (unlikely(status))
1906                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1907                    status);
1908
1909         return IRQ_HANDLED;
1910 }
1911
1912 /* Link */
1913
1914 /*
1915  * General service functions
1916  */
1917
1918 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1919 {
1920         u32 lock_status;
1921         u32 resource_bit = (1 << resource);
1922         int func = BP_FUNC(bp);
1923         u32 hw_lock_control_reg;
1924         int cnt;
1925
1926         /* Validating that the resource is within range */
1927         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1928                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1929                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1930                 return -EINVAL;
1931         }
1932
1933         if (func <= 5) {
1934                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1935         } else {
1936                 hw_lock_control_reg =
1937                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1938         }
1939
1940         /* Validating that the resource is not already taken */
1941         lock_status = REG_RD(bp, hw_lock_control_reg);
1942         if (lock_status & resource_bit) {
1943                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1944                    lock_status, resource_bit);
1945                 return -EEXIST;
1946         }
1947
1948         /* Try for 5 second every 5ms */
1949         for (cnt = 0; cnt < 1000; cnt++) {
1950                 /* Try to acquire the lock */
1951                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1952                 lock_status = REG_RD(bp, hw_lock_control_reg);
1953                 if (lock_status & resource_bit)
1954                         return 0;
1955
1956                 usleep_range(5000, 10000);
1957         }
1958         BNX2X_ERR("Timeout\n");
1959         return -EAGAIN;
1960 }
1961
1962 int bnx2x_release_leader_lock(struct bnx2x *bp)
1963 {
1964         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1965 }
1966
1967 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969         u32 lock_status;
1970         u32 resource_bit = (1 << resource);
1971         int func = BP_FUNC(bp);
1972         u32 hw_lock_control_reg;
1973
1974         /* Validating that the resource is within range */
1975         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1976                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1977                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1978                 return -EINVAL;
1979         }
1980
1981         if (func <= 5) {
1982                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1983         } else {
1984                 hw_lock_control_reg =
1985                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1986         }
1987
1988         /* Validating that the resource is currently taken */
1989         lock_status = REG_RD(bp, hw_lock_control_reg);
1990         if (!(lock_status & resource_bit)) {
1991                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
1992                           lock_status, resource_bit);
1993                 return -EFAULT;
1994         }
1995
1996         REG_WR(bp, hw_lock_control_reg, resource_bit);
1997         return 0;
1998 }
1999
2000 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2001 {
2002         /* The GPIO should be swapped if swap register is set and active */
2003         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2004                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2005         int gpio_shift = gpio_num +
2006                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2007         u32 gpio_mask = (1 << gpio_shift);
2008         u32 gpio_reg;
2009         int value;
2010
2011         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2012                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2013                 return -EINVAL;
2014         }
2015
2016         /* read GPIO value */
2017         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2018
2019         /* get the requested pin value */
2020         if ((gpio_reg & gpio_mask) == gpio_mask)
2021                 value = 1;
2022         else
2023                 value = 0;
2024
2025         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2026
2027         return value;
2028 }
2029
2030 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2031 {
2032         /* The GPIO should be swapped if swap register is set and active */
2033         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2034                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2035         int gpio_shift = gpio_num +
2036                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2037         u32 gpio_mask = (1 << gpio_shift);
2038         u32 gpio_reg;
2039
2040         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2041                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2042                 return -EINVAL;
2043         }
2044
2045         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2046         /* read GPIO and mask except the float bits */
2047         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2048
2049         switch (mode) {
2050         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2051                 DP(NETIF_MSG_LINK,
2052                    "Set GPIO %d (shift %d) -> output low\n",
2053                    gpio_num, gpio_shift);
2054                 /* clear FLOAT and set CLR */
2055                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2057                 break;
2058
2059         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2060                 DP(NETIF_MSG_LINK,
2061                    "Set GPIO %d (shift %d) -> output high\n",
2062                    gpio_num, gpio_shift);
2063                 /* clear FLOAT and set SET */
2064                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2066                 break;
2067
2068         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2069                 DP(NETIF_MSG_LINK,
2070                    "Set GPIO %d (shift %d) -> input\n",
2071                    gpio_num, gpio_shift);
2072                 /* set FLOAT */
2073                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2074                 break;
2075
2076         default:
2077                 break;
2078         }
2079
2080         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2081         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2082
2083         return 0;
2084 }
2085
2086 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2087 {
2088         u32 gpio_reg = 0;
2089         int rc = 0;
2090
2091         /* Any port swapping should be handled by caller. */
2092
2093         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2094         /* read GPIO and mask except the float bits */
2095         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2096         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2097         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2098         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2099
2100         switch (mode) {
2101         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2102                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2103                 /* set CLR */
2104                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2105                 break;
2106
2107         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2108                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2109                 /* set SET */
2110                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2111                 break;
2112
2113         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2114                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2115                 /* set FLOAT */
2116                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2117                 break;
2118
2119         default:
2120                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2121                 rc = -EINVAL;
2122                 break;
2123         }
2124
2125         if (rc == 0)
2126                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2127
2128         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2129
2130         return rc;
2131 }
2132
2133 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2134 {
2135         /* The GPIO should be swapped if swap register is set and active */
2136         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2137                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2138         int gpio_shift = gpio_num +
2139                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2140         u32 gpio_mask = (1 << gpio_shift);
2141         u32 gpio_reg;
2142
2143         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2144                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2145                 return -EINVAL;
2146         }
2147
2148         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2149         /* read GPIO int */
2150         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2151
2152         switch (mode) {
2153         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2154                 DP(NETIF_MSG_LINK,
2155                    "Clear GPIO INT %d (shift %d) -> output low\n",
2156                    gpio_num, gpio_shift);
2157                 /* clear SET and set CLR */
2158                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2159                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2160                 break;
2161
2162         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2163                 DP(NETIF_MSG_LINK,
2164                    "Set GPIO INT %d (shift %d) -> output high\n",
2165                    gpio_num, gpio_shift);
2166                 /* clear CLR and set SET */
2167                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2168                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2169                 break;
2170
2171         default:
2172                 break;
2173         }
2174
2175         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2176         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177
2178         return 0;
2179 }
2180
2181 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2182 {
2183         u32 spio_reg;
2184
2185         /* Only 2 SPIOs are configurable */
2186         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2187                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2188                 return -EINVAL;
2189         }
2190
2191         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2192         /* read SPIO and mask except the float bits */
2193         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2194
2195         switch (mode) {
2196         case MISC_SPIO_OUTPUT_LOW:
2197                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2198                 /* clear FLOAT and set CLR */
2199                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2200                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2201                 break;
2202
2203         case MISC_SPIO_OUTPUT_HIGH:
2204                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2205                 /* clear FLOAT and set SET */
2206                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2207                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2208                 break;
2209
2210         case MISC_SPIO_INPUT_HI_Z:
2211                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2212                 /* set FLOAT */
2213                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2214                 break;
2215
2216         default:
2217                 break;
2218         }
2219
2220         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2221         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2222
2223         return 0;
2224 }
2225
2226 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2227 {
2228         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2229         switch (bp->link_vars.ieee_fc &
2230                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2231         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2232                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2233                                                    ADVERTISED_Pause);
2234                 break;
2235
2236         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2237                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2238                                                   ADVERTISED_Pause);
2239                 break;
2240
2241         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2242                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2243                 break;
2244
2245         default:
2246                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2247                                                    ADVERTISED_Pause);
2248                 break;
2249         }
2250 }
2251
2252 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2253 {
2254         /* Initialize link parameters structure variables
2255          * It is recommended to turn off RX FC for jumbo frames
2256          *  for better performance
2257          */
2258         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2259                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2260         else
2261                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2262 }
2263
2264 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2265 {
2266         u32 pause_enabled = 0;
2267
2268         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2269                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2270                         pause_enabled = 1;
2271
2272                 REG_WR(bp, BAR_USTRORM_INTMEM +
2273                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2274                        pause_enabled);
2275         }
2276
2277         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2278            pause_enabled ? "enabled" : "disabled");
2279 }
2280
2281 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2282 {
2283         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2284         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2285
2286         if (!BP_NOMCP(bp)) {
2287                 bnx2x_set_requested_fc(bp);
2288                 bnx2x_acquire_phy_lock(bp);
2289
2290                 if (load_mode == LOAD_DIAG) {
2291                         struct link_params *lp = &bp->link_params;
2292                         lp->loopback_mode = LOOPBACK_XGXS;
2293                         /* do PHY loopback at 10G speed, if possible */
2294                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2295                                 if (lp->speed_cap_mask[cfx_idx] &
2296                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2297                                         lp->req_line_speed[cfx_idx] =
2298                                         SPEED_10000;
2299                                 else
2300                                         lp->req_line_speed[cfx_idx] =
2301                                         SPEED_1000;
2302                         }
2303                 }
2304
2305                 if (load_mode == LOAD_LOOPBACK_EXT) {
2306                         struct link_params *lp = &bp->link_params;
2307                         lp->loopback_mode = LOOPBACK_EXT;
2308                 }
2309
2310                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2311
2312                 bnx2x_release_phy_lock(bp);
2313
2314                 bnx2x_init_dropless_fc(bp);
2315
2316                 bnx2x_calc_fc_adv(bp);
2317
2318                 if (bp->link_vars.link_up) {
2319                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2320                         bnx2x_link_report(bp);
2321                 }
2322                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2323                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2324                 return rc;
2325         }
2326         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2327         return -EINVAL;
2328 }
2329
2330 void bnx2x_link_set(struct bnx2x *bp)
2331 {
2332         if (!BP_NOMCP(bp)) {
2333                 bnx2x_acquire_phy_lock(bp);
2334                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2335                 bnx2x_release_phy_lock(bp);
2336
2337                 bnx2x_init_dropless_fc(bp);
2338
2339                 bnx2x_calc_fc_adv(bp);
2340         } else
2341                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2342 }
2343
2344 static void bnx2x__link_reset(struct bnx2x *bp)
2345 {
2346         if (!BP_NOMCP(bp)) {
2347                 bnx2x_acquire_phy_lock(bp);
2348                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2349                 bnx2x_release_phy_lock(bp);
2350         } else
2351                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2352 }
2353
2354 void bnx2x_force_link_reset(struct bnx2x *bp)
2355 {
2356         bnx2x_acquire_phy_lock(bp);
2357         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2358         bnx2x_release_phy_lock(bp);
2359 }
2360
2361 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2362 {
2363         u8 rc = 0;
2364
2365         if (!BP_NOMCP(bp)) {
2366                 bnx2x_acquire_phy_lock(bp);
2367                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2368                                      is_serdes);
2369                 bnx2x_release_phy_lock(bp);
2370         } else
2371                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2372
2373         return rc;
2374 }
2375
2376 /* Calculates the sum of vn_min_rates.
2377    It's needed for further normalizing of the min_rates.
2378    Returns:
2379      sum of vn_min_rates.
2380        or
2381      0 - if all the min_rates are 0.
2382      In the later case fairness algorithm should be deactivated.
2383      If not all min_rates are zero then those that are zeroes will be set to 1.
2384  */
2385 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2386                                       struct cmng_init_input *input)
2387 {
2388         int all_zero = 1;
2389         int vn;
2390
2391         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2392                 u32 vn_cfg = bp->mf_config[vn];
2393                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2394                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2395
2396                 /* Skip hidden vns */
2397                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2398                         vn_min_rate = 0;
2399                 /* If min rate is zero - set it to 1 */
2400                 else if (!vn_min_rate)
2401                         vn_min_rate = DEF_MIN_RATE;
2402                 else
2403                         all_zero = 0;
2404
2405                 input->vnic_min_rate[vn] = vn_min_rate;
2406         }
2407
2408         /* if ETS or all min rates are zeros - disable fairness */
2409         if (BNX2X_IS_ETS_ENABLED(bp)) {
2410                 input->flags.cmng_enables &=
2411                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2412                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2413         } else if (all_zero) {
2414                 input->flags.cmng_enables &=
2415                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2416                 DP(NETIF_MSG_IFUP,
2417                    "All MIN values are zeroes fairness will be disabled\n");
2418         } else
2419                 input->flags.cmng_enables |=
2420                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2421 }
2422
2423 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2424                                     struct cmng_init_input *input)
2425 {
2426         u16 vn_max_rate;
2427         u32 vn_cfg = bp->mf_config[vn];
2428
2429         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2430                 vn_max_rate = 0;
2431         else {
2432                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2433
2434                 if (IS_MF_SI(bp)) {
2435                         /* maxCfg in percents of linkspeed */
2436                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2437                 } else /* SD modes */
2438                         /* maxCfg is absolute in 100Mb units */
2439                         vn_max_rate = maxCfg * 100;
2440         }
2441
2442         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2443
2444         input->vnic_max_rate[vn] = vn_max_rate;
2445 }
2446
2447 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2448 {
2449         if (CHIP_REV_IS_SLOW(bp))
2450                 return CMNG_FNS_NONE;
2451         if (IS_MF(bp))
2452                 return CMNG_FNS_MINMAX;
2453
2454         return CMNG_FNS_NONE;
2455 }
2456
2457 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2458 {
2459         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2460
2461         if (BP_NOMCP(bp))
2462                 return; /* what should be the default value in this case */
2463
2464         /* For 2 port configuration the absolute function number formula
2465          * is:
2466          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2467          *
2468          *      and there are 4 functions per port
2469          *
2470          * For 4 port configuration it is
2471          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2472          *
2473          *      and there are 2 functions per port
2474          */
2475         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2476                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2477
2478                 if (func >= E1H_FUNC_MAX)
2479                         break;
2480
2481                 bp->mf_config[vn] =
2482                         MF_CFG_RD(bp, func_mf_config[func].config);
2483         }
2484         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2485                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2486                 bp->flags |= MF_FUNC_DIS;
2487         } else {
2488                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2489                 bp->flags &= ~MF_FUNC_DIS;
2490         }
2491 }
2492
2493 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2494 {
2495         struct cmng_init_input input;
2496         memset(&input, 0, sizeof(struct cmng_init_input));
2497
2498         input.port_rate = bp->link_vars.line_speed;
2499
2500         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2501                 int vn;
2502
2503                 /* read mf conf from shmem */
2504                 if (read_cfg)
2505                         bnx2x_read_mf_cfg(bp);
2506
2507                 /* vn_weight_sum and enable fairness if not 0 */
2508                 bnx2x_calc_vn_min(bp, &input);
2509
2510                 /* calculate and set min-max rate for each vn */
2511                 if (bp->port.pmf)
2512                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2513                                 bnx2x_calc_vn_max(bp, vn, &input);
2514
2515                 /* always enable rate shaping and fairness */
2516                 input.flags.cmng_enables |=
2517                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2518
2519                 bnx2x_init_cmng(&input, &bp->cmng);
2520                 return;
2521         }
2522
2523         /* rate shaping and fairness are disabled */
2524         DP(NETIF_MSG_IFUP,
2525            "rate shaping and fairness are disabled\n");
2526 }
2527
2528 static void storm_memset_cmng(struct bnx2x *bp,
2529                               struct cmng_init *cmng,
2530                               u8 port)
2531 {
2532         int vn;
2533         size_t size = sizeof(struct cmng_struct_per_port);
2534
2535         u32 addr = BAR_XSTRORM_INTMEM +
2536                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2537
2538         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2539
2540         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2541                 int func = func_by_vn(bp, vn);
2542
2543                 addr = BAR_XSTRORM_INTMEM +
2544                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2545                 size = sizeof(struct rate_shaping_vars_per_vn);
2546                 __storm_memset_struct(bp, addr, size,
2547                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2548
2549                 addr = BAR_XSTRORM_INTMEM +
2550                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2551                 size = sizeof(struct fairness_vars_per_vn);
2552                 __storm_memset_struct(bp, addr, size,
2553                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2554         }
2555 }
2556
2557 /* init cmng mode in HW according to local configuration */
2558 void bnx2x_set_local_cmng(struct bnx2x *bp)
2559 {
2560         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2561
2562         if (cmng_fns != CMNG_FNS_NONE) {
2563                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2564                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2565         } else {
2566                 /* rate shaping and fairness are disabled */
2567                 DP(NETIF_MSG_IFUP,
2568                    "single function mode without fairness\n");
2569         }
2570 }
2571
2572 /* This function is called upon link interrupt */
2573 static void bnx2x_link_attn(struct bnx2x *bp)
2574 {
2575         /* Make sure that we are synced with the current statistics */
2576         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2577
2578         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2579
2580         bnx2x_init_dropless_fc(bp);
2581
2582         if (bp->link_vars.link_up) {
2583
2584                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2585                         struct host_port_stats *pstats;
2586
2587                         pstats = bnx2x_sp(bp, port_stats);
2588                         /* reset old mac stats */
2589                         memset(&(pstats->mac_stx[0]), 0,
2590                                sizeof(struct mac_stx));
2591                 }
2592                 if (bp->state == BNX2X_STATE_OPEN)
2593                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2594         }
2595
2596         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2597                 bnx2x_set_local_cmng(bp);
2598
2599         __bnx2x_link_report(bp);
2600
2601         if (IS_MF(bp))
2602                 bnx2x_link_sync_notify(bp);
2603 }
2604
2605 void bnx2x__link_status_update(struct bnx2x *bp)
2606 {
2607         if (bp->state != BNX2X_STATE_OPEN)
2608                 return;
2609
2610         /* read updated dcb configuration */
2611         if (IS_PF(bp)) {
2612                 bnx2x_dcbx_pmf_update(bp);
2613                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2614                 if (bp->link_vars.link_up)
2615                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2616                 else
2617                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2618                         /* indicate link status */
2619                 bnx2x_link_report(bp);
2620
2621         } else { /* VF */
2622                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2623                                           SUPPORTED_10baseT_Full |
2624                                           SUPPORTED_100baseT_Half |
2625                                           SUPPORTED_100baseT_Full |
2626                                           SUPPORTED_1000baseT_Full |
2627                                           SUPPORTED_2500baseX_Full |
2628                                           SUPPORTED_10000baseT_Full |
2629                                           SUPPORTED_TP |
2630                                           SUPPORTED_FIBRE |
2631                                           SUPPORTED_Autoneg |
2632                                           SUPPORTED_Pause |
2633                                           SUPPORTED_Asym_Pause);
2634                 bp->port.advertising[0] = bp->port.supported[0];
2635
2636                 bp->link_params.bp = bp;
2637                 bp->link_params.port = BP_PORT(bp);
2638                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2639                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2640                 bp->link_params.req_line_speed[0] = SPEED_10000;
2641                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2642                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2643                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2644                 bp->link_vars.line_speed = SPEED_10000;
2645                 bp->link_vars.link_status =
2646                         (LINK_STATUS_LINK_UP |
2647                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2648                 bp->link_vars.link_up = 1;
2649                 bp->link_vars.duplex = DUPLEX_FULL;
2650                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2651                 __bnx2x_link_report(bp);
2652                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2653         }
2654 }
2655
2656 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2657                                   u16 vlan_val, u8 allowed_prio)
2658 {
2659         struct bnx2x_func_state_params func_params = {NULL};
2660         struct bnx2x_func_afex_update_params *f_update_params =
2661                 &func_params.params.afex_update;
2662
2663         func_params.f_obj = &bp->func_obj;
2664         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2665
2666         /* no need to wait for RAMROD completion, so don't
2667          * set RAMROD_COMP_WAIT flag
2668          */
2669
2670         f_update_params->vif_id = vifid;
2671         f_update_params->afex_default_vlan = vlan_val;
2672         f_update_params->allowed_priorities = allowed_prio;
2673
2674         /* if ramrod can not be sent, response to MCP immediately */
2675         if (bnx2x_func_state_change(bp, &func_params) < 0)
2676                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2677
2678         return 0;
2679 }
2680
2681 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2682                                           u16 vif_index, u8 func_bit_map)
2683 {
2684         struct bnx2x_func_state_params func_params = {NULL};
2685         struct bnx2x_func_afex_viflists_params *update_params =
2686                 &func_params.params.afex_viflists;
2687         int rc;
2688         u32 drv_msg_code;
2689
2690         /* validate only LIST_SET and LIST_GET are received from switch */
2691         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2692                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2693                           cmd_type);
2694
2695         func_params.f_obj = &bp->func_obj;
2696         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2697
2698         /* set parameters according to cmd_type */
2699         update_params->afex_vif_list_command = cmd_type;
2700         update_params->vif_list_index = vif_index;
2701         update_params->func_bit_map =
2702                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2703         update_params->func_to_clear = 0;
2704         drv_msg_code =
2705                 (cmd_type == VIF_LIST_RULE_GET) ?
2706                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2707                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2708
2709         /* if ramrod can not be sent, respond to MCP immediately for
2710          * SET and GET requests (other are not triggered from MCP)
2711          */
2712         rc = bnx2x_func_state_change(bp, &func_params);
2713         if (rc < 0)
2714                 bnx2x_fw_command(bp, drv_msg_code, 0);
2715
2716         return 0;
2717 }
2718
2719 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2720 {
2721         struct afex_stats afex_stats;
2722         u32 func = BP_ABS_FUNC(bp);
2723         u32 mf_config;
2724         u16 vlan_val;
2725         u32 vlan_prio;
2726         u16 vif_id;
2727         u8 allowed_prio;
2728         u8 vlan_mode;
2729         u32 addr_to_write, vifid, addrs, stats_type, i;
2730
2731         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2732                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2733                 DP(BNX2X_MSG_MCP,
2734                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2735                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2736         }
2737
2738         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2739                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2740                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2741                 DP(BNX2X_MSG_MCP,
2742                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2743                    vifid, addrs);
2744                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2745                                                addrs);
2746         }
2747
2748         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2749                 addr_to_write = SHMEM2_RD(bp,
2750                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2751                 stats_type = SHMEM2_RD(bp,
2752                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2753
2754                 DP(BNX2X_MSG_MCP,
2755                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2756                    addr_to_write);
2757
2758                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2759
2760                 /* write response to scratchpad, for MCP */
2761                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2762                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2763                                *(((u32 *)(&afex_stats))+i));
2764
2765                 /* send ack message to MCP */
2766                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2767         }
2768
2769         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2770                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2771                 bp->mf_config[BP_VN(bp)] = mf_config;
2772                 DP(BNX2X_MSG_MCP,
2773                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2774                    mf_config);
2775
2776                 /* if VIF_SET is "enabled" */
2777                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2778                         /* set rate limit directly to internal RAM */
2779                         struct cmng_init_input cmng_input;
2780                         struct rate_shaping_vars_per_vn m_rs_vn;
2781                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2782                         u32 addr = BAR_XSTRORM_INTMEM +
2783                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2784
2785                         bp->mf_config[BP_VN(bp)] = mf_config;
2786
2787                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2788                         m_rs_vn.vn_counter.rate =
2789                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2790                         m_rs_vn.vn_counter.quota =
2791                                 (m_rs_vn.vn_counter.rate *
2792                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2793
2794                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2795
2796                         /* read relevant values from mf_cfg struct in shmem */
2797                         vif_id =
2798                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2799                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2800                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2801                         vlan_val =
2802                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2803                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2804                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2805                         vlan_prio = (mf_config &
2806                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2807                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2808                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2809                         vlan_mode =
2810                                 (MF_CFG_RD(bp,
2811                                            func_mf_config[func].afex_config) &
2812                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2813                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2814                         allowed_prio =
2815                                 (MF_CFG_RD(bp,
2816                                            func_mf_config[func].afex_config) &
2817                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2818                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2819
2820                         /* send ramrod to FW, return in case of failure */
2821                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2822                                                    allowed_prio))
2823                                 return;
2824
2825                         bp->afex_def_vlan_tag = vlan_val;
2826                         bp->afex_vlan_mode = vlan_mode;
2827                 } else {
2828                         /* notify link down because BP->flags is disabled */
2829                         bnx2x_link_report(bp);
2830
2831                         /* send INVALID VIF ramrod to FW */
2832                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2833
2834                         /* Reset the default afex VLAN */
2835                         bp->afex_def_vlan_tag = -1;
2836                 }
2837         }
2838 }
2839
2840 static void bnx2x_pmf_update(struct bnx2x *bp)
2841 {
2842         int port = BP_PORT(bp);
2843         u32 val;
2844
2845         bp->port.pmf = 1;
2846         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2847
2848         /*
2849          * We need the mb() to ensure the ordering between the writing to
2850          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2851          */
2852         smp_mb();
2853
2854         /* queue a periodic task */
2855         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2856
2857         bnx2x_dcbx_pmf_update(bp);
2858
2859         /* enable nig attention */
2860         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2861         if (bp->common.int_block == INT_BLOCK_HC) {
2862                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2863                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2864         } else if (!CHIP_IS_E1x(bp)) {
2865                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2866                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2867         }
2868
2869         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2870 }
2871
2872 /* end of Link */
2873
2874 /* slow path */
2875
2876 /*
2877  * General service functions
2878  */
2879
2880 /* send the MCP a request, block until there is a reply */
2881 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2882 {
2883         int mb_idx = BP_FW_MB_IDX(bp);
2884         u32 seq;
2885         u32 rc = 0;
2886         u32 cnt = 1;
2887         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2888
2889         mutex_lock(&bp->fw_mb_mutex);
2890         seq = ++bp->fw_seq;
2891         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2892         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2893
2894         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2895                         (command | seq), param);
2896
2897         do {
2898                 /* let the FW do it's magic ... */
2899                 msleep(delay);
2900
2901                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2902
2903                 /* Give the FW up to 5 second (500*10ms) */
2904         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2905
2906         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2907            cnt*delay, rc, seq);
2908
2909         /* is this a reply to our command? */
2910         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2911                 rc &= FW_MSG_CODE_MASK;
2912         else {
2913                 /* FW BUG! */
2914                 BNX2X_ERR("FW failed to respond!\n");
2915                 bnx2x_fw_dump(bp);
2916                 rc = 0;
2917         }
2918         mutex_unlock(&bp->fw_mb_mutex);
2919
2920         return rc;
2921 }
2922
2923 static void storm_memset_func_cfg(struct bnx2x *bp,
2924                                  struct tstorm_eth_function_common_config *tcfg,
2925                                  u16 abs_fid)
2926 {
2927         size_t size = sizeof(struct tstorm_eth_function_common_config);
2928
2929         u32 addr = BAR_TSTRORM_INTMEM +
2930                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2931
2932         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2933 }
2934
2935 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2936 {
2937         if (CHIP_IS_E1x(bp)) {
2938                 struct tstorm_eth_function_common_config tcfg = {0};
2939
2940                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2941         }
2942
2943         /* Enable the function in the FW */
2944         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2945         storm_memset_func_en(bp, p->func_id, 1);
2946
2947         /* spq */
2948         if (p->func_flgs & FUNC_FLG_SPQ) {
2949                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2950                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2951                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2952         }
2953 }
2954
2955 /**
2956  * bnx2x_get_common_flags - Return common flags
2957  *
2958  * @bp          device handle
2959  * @fp          queue handle
2960  * @zero_stats  TRUE if statistics zeroing is needed
2961  *
2962  * Return the flags that are common for the Tx-only and not normal connections.
2963  */
2964 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2965                                             struct bnx2x_fastpath *fp,
2966                                             bool zero_stats)
2967 {
2968         unsigned long flags = 0;
2969
2970         /* PF driver will always initialize the Queue to an ACTIVE state */
2971         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2972
2973         /* tx only connections collect statistics (on the same index as the
2974          * parent connection). The statistics are zeroed when the parent
2975          * connection is initialized.
2976          */
2977
2978         __set_bit(BNX2X_Q_FLG_STATS, &flags);
2979         if (zero_stats)
2980                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2981
2982         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2983         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2984
2985 #ifdef BNX2X_STOP_ON_ERROR
2986         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2987 #endif
2988
2989         return flags;
2990 }
2991
2992 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2993                                        struct bnx2x_fastpath *fp,
2994                                        bool leading)
2995 {
2996         unsigned long flags = 0;
2997
2998         /* calculate other queue flags */
2999         if (IS_MF_SD(bp))
3000                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3001
3002         if (IS_FCOE_FP(fp)) {
3003                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3004                 /* For FCoE - force usage of default priority (for afex) */
3005                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3006         }
3007
3008         if (!fp->disable_tpa) {
3009                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3010                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3011                 if (fp->mode == TPA_MODE_GRO)
3012                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3013         }
3014
3015         if (leading) {
3016                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3017                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3018         }
3019
3020         /* Always set HW VLAN stripping */
3021         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3022
3023         /* configure silent vlan removal */
3024         if (IS_MF_AFEX(bp))
3025                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3026
3027         return flags | bnx2x_get_common_flags(bp, fp, true);
3028 }
3029
3030 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3031         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3032         u8 cos)
3033 {
3034         gen_init->stat_id = bnx2x_stats_id(fp);
3035         gen_init->spcl_id = fp->cl_id;
3036
3037         /* Always use mini-jumbo MTU for FCoE L2 ring */
3038         if (IS_FCOE_FP(fp))
3039                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3040         else
3041                 gen_init->mtu = bp->dev->mtu;
3042
3043         gen_init->cos = cos;
3044 }
3045
3046 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3047         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3048         struct bnx2x_rxq_setup_params *rxq_init)
3049 {
3050         u8 max_sge = 0;
3051         u16 sge_sz = 0;
3052         u16 tpa_agg_size = 0;
3053
3054         if (!fp->disable_tpa) {
3055                 pause->sge_th_lo = SGE_TH_LO(bp);
3056                 pause->sge_th_hi = SGE_TH_HI(bp);
3057
3058                 /* validate SGE ring has enough to cross high threshold */
3059                 WARN_ON(bp->dropless_fc &&
3060                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3061                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3062
3063                 tpa_agg_size = TPA_AGG_SIZE;
3064                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3065                         SGE_PAGE_SHIFT;
3066                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3067                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3068                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3069         }
3070
3071         /* pause - not for e1 */
3072         if (!CHIP_IS_E1(bp)) {
3073                 pause->bd_th_lo = BD_TH_LO(bp);
3074                 pause->bd_th_hi = BD_TH_HI(bp);
3075
3076                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3077                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3078                 /*
3079                  * validate that rings have enough entries to cross
3080                  * high thresholds
3081                  */
3082                 WARN_ON(bp->dropless_fc &&
3083                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3084                                 bp->rx_ring_size);
3085                 WARN_ON(bp->dropless_fc &&
3086                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3087                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3088
3089                 pause->pri_map = 1;
3090         }
3091
3092         /* rxq setup */
3093         rxq_init->dscr_map = fp->rx_desc_mapping;
3094         rxq_init->sge_map = fp->rx_sge_mapping;
3095         rxq_init->rcq_map = fp->rx_comp_mapping;
3096         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3097
3098         /* This should be a maximum number of data bytes that may be
3099          * placed on the BD (not including paddings).
3100          */
3101         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3102                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3103
3104         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3105         rxq_init->tpa_agg_sz = tpa_agg_size;
3106         rxq_init->sge_buf_sz = sge_sz;
3107         rxq_init->max_sges_pkt = max_sge;
3108         rxq_init->rss_engine_id = BP_FUNC(bp);
3109         rxq_init->mcast_engine_id = BP_FUNC(bp);
3110
3111         /* Maximum number or simultaneous TPA aggregation for this Queue.
3112          *
3113          * For PF Clients it should be the maximum available number.
3114          * VF driver(s) may want to define it to a smaller value.
3115          */
3116         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3117
3118         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3119         rxq_init->fw_sb_id = fp->fw_sb_id;
3120
3121         if (IS_FCOE_FP(fp))
3122                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3123         else
3124                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3125         /* configure silent vlan removal
3126          * if multi function mode is afex, then mask default vlan
3127          */
3128         if (IS_MF_AFEX(bp)) {
3129                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3130                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3131         }
3132 }
3133
3134 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3135         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3136         u8 cos)
3137 {
3138         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3139         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3140         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3141         txq_init->fw_sb_id = fp->fw_sb_id;
3142
3143         /*
3144          * set the tss leading client id for TX classification ==
3145          * leading RSS client id
3146          */
3147         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3148
3149         if (IS_FCOE_FP(fp)) {
3150                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3151                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3152         }
3153 }
3154
3155 static void bnx2x_pf_init(struct bnx2x *bp)
3156 {
3157         struct bnx2x_func_init_params func_init = {0};
3158         struct event_ring_data eq_data = { {0} };
3159         u16 flags;
3160
3161         if (!CHIP_IS_E1x(bp)) {
3162                 /* reset IGU PF statistics: MSIX + ATTN */
3163                 /* PF */
3164                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3165                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3166                            (CHIP_MODE_IS_4_PORT(bp) ?
3167                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3168                 /* ATTN */
3169                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3170                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3171                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3172                            (CHIP_MODE_IS_4_PORT(bp) ?
3173                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3174         }
3175
3176         /* function setup flags */
3177         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3178
3179         /* This flag is relevant for E1x only.
3180          * E2 doesn't have a TPA configuration in a function level.
3181          */
3182         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3183
3184         func_init.func_flgs = flags;
3185         func_init.pf_id = BP_FUNC(bp);
3186         func_init.func_id = BP_FUNC(bp);
3187         func_init.spq_map = bp->spq_mapping;
3188         func_init.spq_prod = bp->spq_prod_idx;
3189
3190         bnx2x_func_init(bp, &func_init);
3191
3192         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3193
3194         /*
3195          * Congestion management values depend on the link rate
3196          * There is no active link so initial link rate is set to 10 Gbps.
3197          * When the link comes up The congestion management values are
3198          * re-calculated according to the actual link rate.
3199          */
3200         bp->link_vars.line_speed = SPEED_10000;
3201         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3202
3203         /* Only the PMF sets the HW */
3204         if (bp->port.pmf)
3205                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3206
3207         /* init Event Queue - PCI bus guarantees correct endianity*/
3208         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3209         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3210         eq_data.producer = bp->eq_prod;
3211         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3212         eq_data.sb_id = DEF_SB_ID;
3213         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3214 }
3215
3216 static void bnx2x_e1h_disable(struct bnx2x *bp)
3217 {
3218         int port = BP_PORT(bp);
3219
3220         bnx2x_tx_disable(bp);
3221
3222         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3223 }
3224
3225 static void bnx2x_e1h_enable(struct bnx2x *bp)
3226 {
3227         int port = BP_PORT(bp);
3228
3229         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3230
3231         /* Tx queue should be only re-enabled */
3232         netif_tx_wake_all_queues(bp->dev);
3233
3234         /*
3235          * Should not call netif_carrier_on since it will be called if the link
3236          * is up when checking for link state
3237          */
3238 }
3239
3240 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3241
3242 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3243 {
3244         struct eth_stats_info *ether_stat =
3245                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3246         struct bnx2x_vlan_mac_obj *mac_obj =
3247                 &bp->sp_objs->mac_obj;
3248         int i;
3249
3250         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3251                 ETH_STAT_INFO_VERSION_LEN);
3252
3253         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3254          * mac_local field in ether_stat struct. The base address is offset by 2
3255          * bytes to account for the field being 8 bytes but a mac address is
3256          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3257          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3258          * allocated by the ether_stat struct, so the macs will land in their
3259          * proper positions.
3260          */
3261         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3262                 memset(ether_stat->mac_local + i, 0,
3263                        sizeof(ether_stat->mac_local[0]));
3264         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3265                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3266                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3267                                 ETH_ALEN);
3268         ether_stat->mtu_size = bp->dev->mtu;
3269         if (bp->dev->features & NETIF_F_RXCSUM)
3270                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3271         if (bp->dev->features & NETIF_F_TSO)
3272                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3273         ether_stat->feature_flags |= bp->common.boot_mode;
3274
3275         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3276
3277         ether_stat->txq_size = bp->tx_ring_size;
3278         ether_stat->rxq_size = bp->rx_ring_size;
3279 }
3280
3281 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3282 {
3283         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3284         struct fcoe_stats_info *fcoe_stat =
3285                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3286
3287         if (!CNIC_LOADED(bp))
3288                 return;
3289
3290         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3291
3292         fcoe_stat->qos_priority =
3293                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3294
3295         /* insert FCoE stats from ramrod response */
3296         if (!NO_FCOE(bp)) {
3297                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3298                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3299                         tstorm_queue_statistics;
3300
3301                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3302                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3303                         xstorm_queue_statistics;
3304
3305                 struct fcoe_statistics_params *fw_fcoe_stat =
3306                         &bp->fw_stats_data->fcoe;
3307
3308                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3309                           fcoe_stat->rx_bytes_lo,
3310                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3311
3312                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3313                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3314                           fcoe_stat->rx_bytes_lo,
3315                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3316
3317                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3318                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3319                           fcoe_stat->rx_bytes_lo,
3320                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3321
3322                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3323                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3324                           fcoe_stat->rx_bytes_lo,
3325                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3326
3327                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3328                           fcoe_stat->rx_frames_lo,
3329                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3330
3331                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3332                           fcoe_stat->rx_frames_lo,
3333                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3334
3335                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3336                           fcoe_stat->rx_frames_lo,
3337                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3338
3339                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3340                           fcoe_stat->rx_frames_lo,
3341                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3342
3343                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3344                           fcoe_stat->tx_bytes_lo,
3345                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3346
3347                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3348                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3349                           fcoe_stat->tx_bytes_lo,
3350                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3351
3352                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3353                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3354                           fcoe_stat->tx_bytes_lo,
3355                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3356
3357                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3358                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3359                           fcoe_stat->tx_bytes_lo,
3360                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3361
3362                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3363                           fcoe_stat->tx_frames_lo,
3364                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3365
3366                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3367                           fcoe_stat->tx_frames_lo,
3368                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3369
3370                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3371                           fcoe_stat->tx_frames_lo,
3372                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3373
3374                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3375                           fcoe_stat->tx_frames_lo,
3376                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3377         }
3378
3379         /* ask L5 driver to add data to the struct */
3380         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3381 }
3382
3383 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3384 {
3385         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3386         struct iscsi_stats_info *iscsi_stat =
3387                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3388
3389         if (!CNIC_LOADED(bp))
3390                 return;
3391
3392         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3393                ETH_ALEN);
3394
3395         iscsi_stat->qos_priority =
3396                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3397
3398         /* ask L5 driver to add data to the struct */
3399         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3400 }
3401
3402 /* called due to MCP event (on pmf):
3403  *      reread new bandwidth configuration
3404  *      configure FW
3405  *      notify others function about the change
3406  */
3407 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3408 {
3409         if (bp->link_vars.link_up) {
3410                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3411                 bnx2x_link_sync_notify(bp);
3412         }
3413         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3414 }
3415
3416 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3417 {
3418         bnx2x_config_mf_bw(bp);
3419         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3420 }
3421
3422 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3423 {
3424         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3425         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3426 }
3427
3428 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3429 {
3430         enum drv_info_opcode op_code;
3431         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3432
3433         /* if drv_info version supported by MFW doesn't match - send NACK */
3434         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3435                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3436                 return;
3437         }
3438
3439         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3440                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3441
3442         memset(&bp->slowpath->drv_info_to_mcp, 0,
3443                sizeof(union drv_info_to_mcp));
3444
3445         switch (op_code) {
3446         case ETH_STATS_OPCODE:
3447                 bnx2x_drv_info_ether_stat(bp);
3448                 break;
3449         case FCOE_STATS_OPCODE:
3450                 bnx2x_drv_info_fcoe_stat(bp);
3451                 break;
3452         case ISCSI_STATS_OPCODE:
3453                 bnx2x_drv_info_iscsi_stat(bp);
3454                 break;
3455         default:
3456                 /* if op code isn't supported - send NACK */
3457                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3458                 return;
3459         }
3460
3461         /* if we got drv_info attn from MFW then these fields are defined in
3462          * shmem2 for sure
3463          */
3464         SHMEM2_WR(bp, drv_info_host_addr_lo,
3465                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3466         SHMEM2_WR(bp, drv_info_host_addr_hi,
3467                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3468
3469         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3470 }
3471
3472 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3473 {
3474         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3475
3476         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3477
3478                 /*
3479                  * This is the only place besides the function initialization
3480                  * where the bp->flags can change so it is done without any
3481                  * locks
3482                  */
3483                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3484                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3485                         bp->flags |= MF_FUNC_DIS;
3486
3487                         bnx2x_e1h_disable(bp);
3488                 } else {
3489                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3490                         bp->flags &= ~MF_FUNC_DIS;
3491
3492                         bnx2x_e1h_enable(bp);
3493                 }
3494                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3495         }
3496         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3497                 bnx2x_config_mf_bw(bp);
3498                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3499         }
3500
3501         /* Report results to MCP */
3502         if (dcc_event)
3503                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3504         else
3505                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3506 }
3507
3508 /* must be called under the spq lock */
3509 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3510 {
3511         struct eth_spe *next_spe = bp->spq_prod_bd;
3512
3513         if (bp->spq_prod_bd == bp->spq_last_bd) {
3514                 bp->spq_prod_bd = bp->spq;
3515                 bp->spq_prod_idx = 0;
3516                 DP(BNX2X_MSG_SP, "end of spq\n");
3517         } else {
3518                 bp->spq_prod_bd++;
3519                 bp->spq_prod_idx++;
3520         }
3521         return next_spe;
3522 }
3523
3524 /* must be called under the spq lock */
3525 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3526 {
3527         int func = BP_FUNC(bp);
3528
3529         /*
3530          * Make sure that BD data is updated before writing the producer:
3531          * BD data is written to the memory, the producer is read from the
3532          * memory, thus we need a full memory barrier to ensure the ordering.
3533          */
3534         mb();
3535
3536         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3537                  bp->spq_prod_idx);
3538         mmiowb();
3539 }
3540
3541 /**
3542  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3543  *
3544  * @cmd:        command to check
3545  * @cmd_type:   command type
3546  */
3547 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3548 {
3549         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3550             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3551             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3552             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3553             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3554             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3555             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3556                 return true;
3557         else
3558                 return false;
3559 }
3560
3561 /**
3562  * bnx2x_sp_post - place a single command on an SP ring
3563  *
3564  * @bp:         driver handle
3565  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3566  * @cid:        SW CID the command is related to
3567  * @data_hi:    command private data address (high 32 bits)
3568  * @data_lo:    command private data address (low 32 bits)
3569  * @cmd_type:   command type (e.g. NONE, ETH)
3570  *
3571  * SP data is handled as if it's always an address pair, thus data fields are
3572  * not swapped to little endian in upper functions. Instead this function swaps
3573  * data as if it's two u32 fields.
3574  */
3575 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3576                   u32 data_hi, u32 data_lo, int cmd_type)
3577 {
3578         struct eth_spe *spe;
3579         u16 type;
3580         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3581
3582 #ifdef BNX2X_STOP_ON_ERROR
3583         if (unlikely(bp->panic)) {
3584                 BNX2X_ERR("Can't post SP when there is panic\n");
3585                 return -EIO;
3586         }
3587 #endif
3588
3589         spin_lock_bh(&bp->spq_lock);
3590
3591         if (common) {
3592                 if (!atomic_read(&bp->eq_spq_left)) {
3593                         BNX2X_ERR("BUG! EQ ring full!\n");
3594                         spin_unlock_bh(&bp->spq_lock);
3595                         bnx2x_panic();
3596                         return -EBUSY;
3597                 }
3598         } else if (!atomic_read(&bp->cq_spq_left)) {
3599                         BNX2X_ERR("BUG! SPQ ring full!\n");
3600                         spin_unlock_bh(&bp->spq_lock);
3601                         bnx2x_panic();
3602                         return -EBUSY;
3603         }
3604
3605         spe = bnx2x_sp_get_next(bp);
3606
3607         /* CID needs port number to be encoded int it */
3608         spe->hdr.conn_and_cmd_data =
3609                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3610                                     HW_CID(bp, cid));
3611
3612         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3613
3614         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3615                  SPE_HDR_FUNCTION_ID);
3616
3617         spe->hdr.type = cpu_to_le16(type);
3618
3619         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3620         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3621
3622         /*
3623          * It's ok if the actual decrement is issued towards the memory
3624          * somewhere between the spin_lock and spin_unlock. Thus no
3625          * more explicit memory barrier is needed.
3626          */
3627         if (common)
3628                 atomic_dec(&bp->eq_spq_left);
3629         else
3630                 atomic_dec(&bp->cq_spq_left);
3631
3632         DP(BNX2X_MSG_SP,
3633            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3634            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3635            (u32)(U64_LO(bp->spq_mapping) +
3636            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3637            HW_CID(bp, cid), data_hi, data_lo, type,
3638            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3639
3640         bnx2x_sp_prod_update(bp);
3641         spin_unlock_bh(&bp->spq_lock);
3642         return 0;
3643 }
3644
3645 /* acquire split MCP access lock register */
3646 static int bnx2x_acquire_alr(struct bnx2x *bp)
3647 {
3648         u32 j, val;
3649         int rc = 0;
3650
3651         might_sleep();
3652         for (j = 0; j < 1000; j++) {
3653                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3654                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3655                 if (val & MCPR_ACCESS_LOCK_LOCK)
3656                         break;
3657
3658                 usleep_range(5000, 10000);
3659         }
3660         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3661                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3662                 rc = -EBUSY;
3663         }
3664
3665         return rc;
3666 }
3667
3668 /* release split MCP access lock register */
3669 static void bnx2x_release_alr(struct bnx2x *bp)
3670 {
3671         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3672 }
3673
3674 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3675 #define BNX2X_DEF_SB_IDX        0x0002
3676
3677 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3678 {
3679         struct host_sp_status_block *def_sb = bp->def_status_blk;
3680         u16 rc = 0;
3681
3682         barrier(); /* status block is written to by the chip */
3683         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3684                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3685                 rc |= BNX2X_DEF_SB_ATT_IDX;
3686         }
3687
3688         if (bp->def_idx != def_sb->sp_sb.running_index) {
3689                 bp->def_idx = def_sb->sp_sb.running_index;
3690                 rc |= BNX2X_DEF_SB_IDX;
3691         }
3692
3693         /* Do not reorder: indices reading should complete before handling */
3694         barrier();
3695         return rc;
3696 }
3697
3698 /*
3699  * slow path service functions
3700  */
3701
3702 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3703 {
3704         int port = BP_PORT(bp);
3705         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3706                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3707         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3708                                        NIG_REG_MASK_INTERRUPT_PORT0;
3709         u32 aeu_mask;
3710         u32 nig_mask = 0;
3711         u32 reg_addr;
3712
3713         if (bp->attn_state & asserted)
3714                 BNX2X_ERR("IGU ERROR\n");
3715
3716         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3717         aeu_mask = REG_RD(bp, aeu_addr);
3718
3719         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3720            aeu_mask, asserted);
3721         aeu_mask &= ~(asserted & 0x3ff);
3722         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3723
3724         REG_WR(bp, aeu_addr, aeu_mask);
3725         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3726
3727         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3728         bp->attn_state |= asserted;
3729         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3730
3731         if (asserted & ATTN_HARD_WIRED_MASK) {
3732                 if (asserted & ATTN_NIG_FOR_FUNC) {
3733
3734                         bnx2x_acquire_phy_lock(bp);
3735
3736                         /* save nig interrupt mask */
3737                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3738
3739                         /* If nig_mask is not set, no need to call the update
3740                          * function.
3741                          */
3742                         if (nig_mask) {
3743                                 REG_WR(bp, nig_int_mask_addr, 0);
3744
3745                                 bnx2x_link_attn(bp);
3746                         }
3747
3748                         /* handle unicore attn? */
3749                 }
3750                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3751                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3752
3753                 if (asserted & GPIO_2_FUNC)
3754                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3755
3756                 if (asserted & GPIO_3_FUNC)
3757                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3758
3759                 if (asserted & GPIO_4_FUNC)
3760                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3761
3762                 if (port == 0) {
3763                         if (asserted & ATTN_GENERAL_ATTN_1) {
3764                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3765                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3766                         }
3767                         if (asserted & ATTN_GENERAL_ATTN_2) {
3768                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3769                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3770                         }
3771                         if (asserted & ATTN_GENERAL_ATTN_3) {
3772                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3773                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3774                         }
3775                 } else {
3776                         if (asserted & ATTN_GENERAL_ATTN_4) {
3777                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3778                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3779                         }
3780                         if (asserted & ATTN_GENERAL_ATTN_5) {
3781                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3782                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3783                         }
3784                         if (asserted & ATTN_GENERAL_ATTN_6) {
3785                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3786                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3787                         }
3788                 }
3789
3790         } /* if hardwired */
3791
3792         if (bp->common.int_block == INT_BLOCK_HC)
3793                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3794                             COMMAND_REG_ATTN_BITS_SET);
3795         else
3796                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3797
3798         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3799            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3800         REG_WR(bp, reg_addr, asserted);
3801
3802         /* now set back the mask */
3803         if (asserted & ATTN_NIG_FOR_FUNC) {
3804                 /* Verify that IGU ack through BAR was written before restoring
3805                  * NIG mask. This loop should exit after 2-3 iterations max.
3806                  */
3807                 if (bp->common.int_block != INT_BLOCK_HC) {
3808                         u32 cnt = 0, igu_acked;
3809                         do {
3810                                 igu_acked = REG_RD(bp,
3811                                                    IGU_REG_ATTENTION_ACK_BITS);
3812                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3813                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
3814                         if (!igu_acked)
3815                                 DP(NETIF_MSG_HW,
3816                                    "Failed to verify IGU ack on time\n");
3817                         barrier();
3818                 }
3819                 REG_WR(bp, nig_int_mask_addr, nig_mask);
3820                 bnx2x_release_phy_lock(bp);
3821         }
3822 }
3823
3824 static void bnx2x_fan_failure(struct bnx2x *bp)
3825 {
3826         int port = BP_PORT(bp);
3827         u32 ext_phy_config;
3828         /* mark the failure */
3829         ext_phy_config =
3830                 SHMEM_RD(bp,
3831                          dev_info.port_hw_config[port].external_phy_config);
3832
3833         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3834         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3835         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3836                  ext_phy_config);
3837
3838         /* log the failure */
3839         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3840                             "Please contact OEM Support for assistance\n");
3841
3842         /* Schedule device reset (unload)
3843          * This is due to some boards consuming sufficient power when driver is
3844          * up to overheat if fan fails.
3845          */
3846         smp_mb__before_clear_bit();
3847         set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3848         smp_mb__after_clear_bit();
3849         schedule_delayed_work(&bp->sp_rtnl_task, 0);
3850 }
3851
3852 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3853 {
3854         int port = BP_PORT(bp);
3855         int reg_offset;
3856         u32 val;
3857
3858         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3859                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3860
3861         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3862
3863                 val = REG_RD(bp, reg_offset);
3864                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3865                 REG_WR(bp, reg_offset, val);
3866
3867                 BNX2X_ERR("SPIO5 hw attention\n");
3868
3869                 /* Fan failure attention */
3870                 bnx2x_hw_reset_phy(&bp->link_params);
3871                 bnx2x_fan_failure(bp);
3872         }
3873
3874         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3875                 bnx2x_acquire_phy_lock(bp);
3876                 bnx2x_handle_module_detect_int(&bp->link_params);
3877                 bnx2x_release_phy_lock(bp);
3878         }
3879
3880         if (attn & HW_INTERRUT_ASSERT_SET_0) {
3881
3882                 val = REG_RD(bp, reg_offset);
3883                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3884                 REG_WR(bp, reg_offset, val);
3885
3886                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3887                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3888                 bnx2x_panic();
3889         }
3890 }
3891
3892 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3893 {
3894         u32 val;
3895
3896         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3897
3898                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3899                 BNX2X_ERR("DB hw attention 0x%x\n", val);
3900                 /* DORQ discard attention */
3901                 if (val & 0x2)
3902                         BNX2X_ERR("FATAL error from DORQ\n");
3903         }
3904
3905         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3906
3907                 int port = BP_PORT(bp);
3908                 int reg_offset;
3909
3910                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3911                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3912
3913                 val = REG_RD(bp, reg_offset);
3914                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3915                 REG_WR(bp, reg_offset, val);
3916
3917                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3918                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3919                 bnx2x_panic();
3920         }
3921 }
3922
3923 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3924 {
3925         u32 val;
3926
3927         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3928
3929                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3930                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3931                 /* CFC error attention */
3932                 if (val & 0x2)
3933                         BNX2X_ERR("FATAL error from CFC\n");
3934         }
3935
3936         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3937                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3938                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3939                 /* RQ_USDMDP_FIFO_OVERFLOW */
3940                 if (val & 0x18000)
3941                         BNX2X_ERR("FATAL error from PXP\n");
3942
3943                 if (!CHIP_IS_E1x(bp)) {
3944                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3945                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3946                 }
3947         }
3948
3949         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3950
3951                 int port = BP_PORT(bp);
3952                 int reg_offset;
3953
3954                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3955                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3956
3957                 val = REG_RD(bp, reg_offset);
3958                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3959                 REG_WR(bp, reg_offset, val);
3960
3961                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3962                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3963                 bnx2x_panic();
3964         }
3965 }
3966
3967 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3968 {
3969         u32 val;
3970
3971         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3972
3973                 if (attn & BNX2X_PMF_LINK_ASSERT) {
3974                         int func = BP_FUNC(bp);
3975
3976                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3977                         bnx2x_read_mf_cfg(bp);
3978                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3979                                         func_mf_config[BP_ABS_FUNC(bp)].config);
3980                         val = SHMEM_RD(bp,
3981                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
3982                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3983                                 bnx2x_dcc_event(bp,
3984                                             (val & DRV_STATUS_DCC_EVENT_MASK));
3985
3986                         if (val & DRV_STATUS_SET_MF_BW)
3987                                 bnx2x_set_mf_bw(bp);
3988
3989                         if (val & DRV_STATUS_DRV_INFO_REQ)
3990                                 bnx2x_handle_drv_info_req(bp);
3991
3992                         if (val & DRV_STATUS_VF_DISABLED)
3993                                 bnx2x_vf_handle_flr_event(bp);
3994
3995                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3996                                 bnx2x_pmf_update(bp);
3997
3998                         if (bp->port.pmf &&
3999                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4000                                 bp->dcbx_enabled > 0)
4001                                 /* start dcbx state machine */
4002                                 bnx2x_dcbx_set_params(bp,
4003                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4004                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4005                                 bnx2x_handle_afex_cmd(bp,
4006                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4007                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4008                                 bnx2x_handle_eee_event(bp);
4009                         if (bp->link_vars.periodic_flags &
4010                             PERIODIC_FLAGS_LINK_EVENT) {
4011                                 /*  sync with link */
4012                                 bnx2x_acquire_phy_lock(bp);
4013                                 bp->link_vars.periodic_flags &=
4014                                         ~PERIODIC_FLAGS_LINK_EVENT;
4015                                 bnx2x_release_phy_lock(bp);
4016                                 if (IS_MF(bp))
4017                                         bnx2x_link_sync_notify(bp);
4018                                 bnx2x_link_report(bp);
4019                         }
4020                         /* Always call it here: bnx2x_link_report() will
4021                          * prevent the link indication duplication.
4022                          */
4023                         bnx2x__link_status_update(bp);
4024                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4025
4026                         BNX2X_ERR("MC assert!\n");
4027                         bnx2x_mc_assert(bp);
4028                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4029                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4030                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4031                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4032                         bnx2x_panic();
4033
4034                 } else if (attn & BNX2X_MCP_ASSERT) {
4035
4036                         BNX2X_ERR("MCP assert!\n");
4037                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4038                         bnx2x_fw_dump(bp);
4039
4040                 } else
4041                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4042         }
4043
4044         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4045                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4046                 if (attn & BNX2X_GRC_TIMEOUT) {
4047                         val = CHIP_IS_E1(bp) ? 0 :
4048                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4049                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4050                 }
4051                 if (attn & BNX2X_GRC_RSV) {
4052                         val = CHIP_IS_E1(bp) ? 0 :
4053                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4054                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4055                 }
4056                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4057         }
4058 }
4059
4060 /*
4061  * Bits map:
4062  * 0-7   - Engine0 load counter.
4063  * 8-15  - Engine1 load counter.
4064  * 16    - Engine0 RESET_IN_PROGRESS bit.
4065  * 17    - Engine1 RESET_IN_PROGRESS bit.
4066  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4067  *         on the engine
4068  * 19    - Engine1 ONE_IS_LOADED.
4069  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4070  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4071  *         just the one belonging to its engine).
4072  *
4073  */
4074 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4075
4076 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4077 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4078 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4079 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4080 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4081 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4082 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4083
4084 /*
4085  * Set the GLOBAL_RESET bit.
4086  *
4087  * Should be run under rtnl lock
4088  */
4089 void bnx2x_set_reset_global(struct bnx2x *bp)
4090 {
4091         u32 val;
4092         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4093         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4094         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4095         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4096 }
4097
4098 /*
4099  * Clear the GLOBAL_RESET bit.
4100  *
4101  * Should be run under rtnl lock
4102  */
4103 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4104 {
4105         u32 val;
4106         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4107         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4108         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4109         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4110 }
4111
4112 /*
4113  * Checks the GLOBAL_RESET bit.
4114  *
4115  * should be run under rtnl lock
4116  */
4117 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4118 {
4119         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4120
4121         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4122         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4123 }
4124
4125 /*
4126  * Clear RESET_IN_PROGRESS bit for the current engine.
4127  *
4128  * Should be run under rtnl lock
4129  */
4130 static void bnx2x_set_reset_done(struct bnx2x *bp)
4131 {
4132         u32 val;
4133         u32 bit = BP_PATH(bp) ?
4134                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4135         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4136         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4137
4138         /* Clear the bit */
4139         val &= ~bit;
4140         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4141
4142         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4143 }
4144
4145 /*
4146  * Set RESET_IN_PROGRESS for the current engine.
4147  *
4148  * should be run under rtnl lock
4149  */
4150 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4151 {
4152         u32 val;
4153         u32 bit = BP_PATH(bp) ?
4154                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4155         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4156         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4157
4158         /* Set the bit */
4159         val |= bit;
4160         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4161         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4162 }
4163
4164 /*
4165  * Checks the RESET_IN_PROGRESS bit for the given engine.
4166  * should be run under rtnl lock
4167  */
4168 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4169 {
4170         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4171         u32 bit = engine ?
4172                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4173
4174         /* return false if bit is set */
4175         return (val & bit) ? false : true;
4176 }
4177
4178 /*
4179  * set pf load for the current pf.
4180  *
4181  * should be run under rtnl lock
4182  */
4183 void bnx2x_set_pf_load(struct bnx2x *bp)
4184 {
4185         u32 val1, val;
4186         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4187                              BNX2X_PATH0_LOAD_CNT_MASK;
4188         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4189                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4190
4191         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4192         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4193
4194         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4195
4196         /* get the current counter value */
4197         val1 = (val & mask) >> shift;
4198
4199         /* set bit of that PF */
4200         val1 |= (1 << bp->pf_num);
4201
4202         /* clear the old value */
4203         val &= ~mask;
4204
4205         /* set the new one */
4206         val |= ((val1 << shift) & mask);
4207
4208         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4209         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4210 }
4211
4212 /**
4213  * bnx2x_clear_pf_load - clear pf load mark
4214  *
4215  * @bp:         driver handle
4216  *
4217  * Should be run under rtnl lock.
4218  * Decrements the load counter for the current engine. Returns
4219  * whether other functions are still loaded
4220  */
4221 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4222 {
4223         u32 val1, val;
4224         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4225                              BNX2X_PATH0_LOAD_CNT_MASK;
4226         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4227                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4228
4229         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4230         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4231         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4232
4233         /* get the current counter value */
4234         val1 = (val & mask) >> shift;
4235
4236         /* clear bit of that PF */
4237         val1 &= ~(1 << bp->pf_num);
4238
4239         /* clear the old value */
4240         val &= ~mask;
4241
4242         /* set the new one */
4243         val |= ((val1 << shift) & mask);
4244
4245         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4246         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4247         return val1 != 0;
4248 }
4249
4250 /*
4251  * Read the load status for the current engine.
4252  *
4253  * should be run under rtnl lock
4254  */
4255 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4256 {
4257         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4258                              BNX2X_PATH0_LOAD_CNT_MASK);
4259         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4260                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4261         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4262
4263         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4264
4265         val = (val & mask) >> shift;
4266
4267         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4268            engine, val);
4269
4270         return val != 0;
4271 }
4272
4273 static void _print_parity(struct bnx2x *bp, u32 reg)
4274 {
4275         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4276 }
4277
4278 static void _print_next_block(int idx, const char *blk)
4279 {
4280         pr_cont("%s%s", idx ? ", " : "", blk);
4281 }
4282
4283 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4284                                             int par_num, bool print)
4285 {
4286         int i = 0;
4287         u32 cur_bit = 0;
4288         for (i = 0; sig; i++) {
4289                 cur_bit = ((u32)0x1 << i);
4290                 if (sig & cur_bit) {
4291                         switch (cur_bit) {
4292                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4293                                 if (print) {
4294                                         _print_next_block(par_num++, "BRB");
4295                                         _print_parity(bp,
4296                                                       BRB1_REG_BRB1_PRTY_STS);
4297                                 }
4298                                 break;
4299                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4300                                 if (print) {
4301                                         _print_next_block(par_num++, "PARSER");
4302                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4303                                 }
4304                                 break;
4305                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4306                                 if (print) {
4307                                         _print_next_block(par_num++, "TSDM");
4308                                         _print_parity(bp,
4309                                                       TSDM_REG_TSDM_PRTY_STS);
4310                                 }
4311                                 break;
4312                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4313                                 if (print) {
4314                                         _print_next_block(par_num++,
4315                                                           "SEARCHER");
4316                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4317                                 }
4318                                 break;
4319                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4320                                 if (print) {
4321                                         _print_next_block(par_num++, "TCM");
4322                                         _print_parity(bp,
4323                                                       TCM_REG_TCM_PRTY_STS);
4324                                 }
4325                                 break;
4326                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4327                                 if (print) {
4328                                         _print_next_block(par_num++, "TSEMI");
4329                                         _print_parity(bp,
4330                                                       TSEM_REG_TSEM_PRTY_STS_0);
4331                                         _print_parity(bp,
4332                                                       TSEM_REG_TSEM_PRTY_STS_1);
4333                                 }
4334                                 break;
4335                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4336                                 if (print) {
4337                                         _print_next_block(par_num++, "XPB");
4338                                         _print_parity(bp, GRCBASE_XPB +
4339                                                           PB_REG_PB_PRTY_STS);
4340                                 }
4341                                 break;
4342                         }
4343
4344                         /* Clear the bit */
4345                         sig &= ~cur_bit;
4346                 }
4347         }
4348
4349         return par_num;
4350 }
4351
4352 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4353                                             int par_num, bool *global,
4354                                             bool print)
4355 {
4356         int i = 0;
4357         u32 cur_bit = 0;
4358         for (i = 0; sig; i++) {
4359                 cur_bit = ((u32)0x1 << i);
4360                 if (sig & cur_bit) {
4361                         switch (cur_bit) {
4362                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4363                                 if (print) {
4364                                         _print_next_block(par_num++, "PBF");
4365                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4366                                 }
4367                                 break;
4368                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4369                                 if (print) {
4370                                         _print_next_block(par_num++, "QM");
4371                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4372                                 }
4373                                 break;
4374                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4375                                 if (print) {
4376                                         _print_next_block(par_num++, "TM");
4377                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4378                                 }
4379                                 break;
4380                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4381                                 if (print) {
4382                                         _print_next_block(par_num++, "XSDM");
4383                                         _print_parity(bp,
4384                                                       XSDM_REG_XSDM_PRTY_STS);
4385                                 }
4386                                 break;
4387                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4388                                 if (print) {
4389                                         _print_next_block(par_num++, "XCM");
4390                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4391                                 }
4392                                 break;
4393                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4394                                 if (print) {
4395                                         _print_next_block(par_num++, "XSEMI");
4396                                         _print_parity(bp,
4397                                                       XSEM_REG_XSEM_PRTY_STS_0);
4398                                         _print_parity(bp,
4399                                                       XSEM_REG_XSEM_PRTY_STS_1);
4400                                 }
4401                                 break;
4402                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4403                                 if (print) {
4404                                         _print_next_block(par_num++,
4405                                                           "DOORBELLQ");
4406                                         _print_parity(bp,
4407                                                       DORQ_REG_DORQ_PRTY_STS);
4408                                 }
4409                                 break;
4410                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4411                                 if (print) {
4412                                         _print_next_block(par_num++, "NIG");
4413                                         if (CHIP_IS_E1x(bp)) {
4414                                                 _print_parity(bp,
4415                                                         NIG_REG_NIG_PRTY_STS);
4416                                         } else {
4417                                                 _print_parity(bp,
4418                                                         NIG_REG_NIG_PRTY_STS_0);
4419                                                 _print_parity(bp,
4420                                                         NIG_REG_NIG_PRTY_STS_1);
4421                                         }
4422                                 }
4423                                 break;
4424                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4425                                 if (print)
4426                                         _print_next_block(par_num++,
4427                                                           "VAUX PCI CORE");
4428                                 *global = true;
4429                                 break;
4430                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4431                                 if (print) {
4432                                         _print_next_block(par_num++, "DEBUG");
4433                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4434                                 }
4435                                 break;
4436                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4437                                 if (print) {
4438                                         _print_next_block(par_num++, "USDM");
4439                                         _print_parity(bp,
4440                                                       USDM_REG_USDM_PRTY_STS);
4441                                 }
4442                                 break;
4443                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4444                                 if (print) {
4445                                         _print_next_block(par_num++, "UCM");
4446                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4447                                 }
4448                                 break;
4449                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4450                                 if (print) {
4451                                         _print_next_block(par_num++, "USEMI");
4452                                         _print_parity(bp,
4453                                                       USEM_REG_USEM_PRTY_STS_0);
4454                                         _print_parity(bp,
4455                                                       USEM_REG_USEM_PRTY_STS_1);
4456                                 }
4457                                 break;
4458                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4459                                 if (print) {
4460                                         _print_next_block(par_num++, "UPB");
4461                                         _print_parity(bp, GRCBASE_UPB +
4462                                                           PB_REG_PB_PRTY_STS);
4463                                 }
4464                                 break;
4465                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4466                                 if (print) {
4467                                         _print_next_block(par_num++, "CSDM");
4468                                         _print_parity(bp,
4469                                                       CSDM_REG_CSDM_PRTY_STS);
4470                                 }
4471                                 break;
4472                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4473                                 if (print) {
4474                                         _print_next_block(par_num++, "CCM");
4475                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4476                                 }
4477                                 break;
4478                         }
4479
4480                         /* Clear the bit */
4481                         sig &= ~cur_bit;
4482                 }
4483         }
4484
4485         return par_num;
4486 }
4487
4488 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4489                                             int par_num, bool print)
4490 {
4491         int i = 0;
4492         u32 cur_bit = 0;
4493         for (i = 0; sig; i++) {
4494                 cur_bit = ((u32)0x1 << i);
4495                 if (sig & cur_bit) {
4496                         switch (cur_bit) {
4497                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4498                                 if (print) {
4499                                         _print_next_block(par_num++, "CSEMI");
4500                                         _print_parity(bp,
4501                                                       CSEM_REG_CSEM_PRTY_STS_0);
4502                                         _print_parity(bp,
4503                                                       CSEM_REG_CSEM_PRTY_STS_1);
4504                                 }
4505                                 break;
4506                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4507                                 if (print) {
4508                                         _print_next_block(par_num++, "PXP");
4509                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4510                                         _print_parity(bp,
4511                                                       PXP2_REG_PXP2_PRTY_STS_0);
4512                                         _print_parity(bp,
4513                                                       PXP2_REG_PXP2_PRTY_STS_1);
4514                                 }
4515                                 break;
4516                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4517                                 if (print)
4518                                         _print_next_block(par_num++,
4519                                         "PXPPCICLOCKCLIENT");
4520                                 break;
4521                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4522                                 if (print) {
4523                                         _print_next_block(par_num++, "CFC");
4524                                         _print_parity(bp,
4525                                                       CFC_REG_CFC_PRTY_STS);
4526                                 }
4527                                 break;
4528                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4529                                 if (print) {
4530                                         _print_next_block(par_num++, "CDU");
4531                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4532                                 }
4533                                 break;
4534                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4535                                 if (print) {
4536                                         _print_next_block(par_num++, "DMAE");
4537                                         _print_parity(bp,
4538                                                       DMAE_REG_DMAE_PRTY_STS);
4539                                 }
4540                                 break;
4541                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4542                                 if (print) {
4543                                         _print_next_block(par_num++, "IGU");
4544                                         if (CHIP_IS_E1x(bp))
4545                                                 _print_parity(bp,
4546                                                         HC_REG_HC_PRTY_STS);
4547                                         else
4548                                                 _print_parity(bp,
4549                                                         IGU_REG_IGU_PRTY_STS);
4550                                 }
4551                                 break;
4552                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4553                                 if (print) {
4554                                         _print_next_block(par_num++, "MISC");
4555                                         _print_parity(bp,
4556                                                       MISC_REG_MISC_PRTY_STS);
4557                                 }
4558                                 break;
4559                         }
4560
4561                         /* Clear the bit */
4562                         sig &= ~cur_bit;
4563                 }
4564         }
4565
4566         return par_num;
4567 }
4568
4569 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4570                                            bool *global, bool print)
4571 {
4572         int i = 0;
4573         u32 cur_bit = 0;
4574         for (i = 0; sig; i++) {
4575                 cur_bit = ((u32)0x1 << i);
4576                 if (sig & cur_bit) {
4577                         switch (cur_bit) {
4578                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4579                                 if (print)
4580                                         _print_next_block(par_num++, "MCP ROM");
4581                                 *global = true;
4582                                 break;
4583                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4584                                 if (print)
4585                                         _print_next_block(par_num++,
4586                                                           "MCP UMP RX");
4587                                 *global = true;
4588                                 break;
4589                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4590                                 if (print)
4591                                         _print_next_block(par_num++,
4592                                                           "MCP UMP TX");
4593                                 *global = true;
4594                                 break;
4595                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4596                                 if (print)
4597                                         _print_next_block(par_num++,
4598                                                           "MCP SCPAD");
4599                                 *global = true;
4600                                 break;
4601                         }
4602
4603                         /* Clear the bit */
4604                         sig &= ~cur_bit;
4605                 }
4606         }
4607
4608         return par_num;
4609 }
4610
4611 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4612                                             int par_num, bool print)
4613 {
4614         int i = 0;
4615         u32 cur_bit = 0;
4616         for (i = 0; sig; i++) {
4617                 cur_bit = ((u32)0x1 << i);
4618                 if (sig & cur_bit) {
4619                         switch (cur_bit) {
4620                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4621                                 if (print) {
4622                                         _print_next_block(par_num++, "PGLUE_B");
4623                                         _print_parity(bp,
4624                                                 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4625                                 }
4626                                 break;
4627                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4628                                 if (print) {
4629                                         _print_next_block(par_num++, "ATC");
4630                                         _print_parity(bp,
4631                                                       ATC_REG_ATC_PRTY_STS);
4632                                 }
4633                                 break;
4634                         }
4635
4636                         /* Clear the bit */
4637                         sig &= ~cur_bit;
4638                 }
4639         }
4640
4641         return par_num;
4642 }
4643
4644 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4645                               u32 *sig)
4646 {
4647         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4648             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4649             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4650             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4651             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4652                 int par_num = 0;
4653                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4654                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4655                           sig[0] & HW_PRTY_ASSERT_SET_0,
4656                           sig[1] & HW_PRTY_ASSERT_SET_1,
4657                           sig[2] & HW_PRTY_ASSERT_SET_2,
4658                           sig[3] & HW_PRTY_ASSERT_SET_3,
4659                           sig[4] & HW_PRTY_ASSERT_SET_4);
4660                 if (print)
4661                         netdev_err(bp->dev,
4662                                    "Parity errors detected in blocks: ");
4663                 par_num = bnx2x_check_blocks_with_parity0(bp,
4664                         sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4665                 par_num = bnx2x_check_blocks_with_parity1(bp,
4666                         sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4667                 par_num = bnx2x_check_blocks_with_parity2(bp,
4668                         sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4669                 par_num = bnx2x_check_blocks_with_parity3(
4670                         sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4671                 par_num = bnx2x_check_blocks_with_parity4(bp,
4672                         sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4673
4674                 if (print)
4675                         pr_cont("\n");
4676
4677                 return true;
4678         } else
4679                 return false;
4680 }
4681
4682 /**
4683  * bnx2x_chk_parity_attn - checks for parity attentions.
4684  *
4685  * @bp:         driver handle
4686  * @global:     true if there was a global attention
4687  * @print:      show parity attention in syslog
4688  */
4689 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4690 {
4691         struct attn_route attn = { {0} };
4692         int port = BP_PORT(bp);
4693
4694         attn.sig[0] = REG_RD(bp,
4695                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4696                              port*4);
4697         attn.sig[1] = REG_RD(bp,
4698                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4699                              port*4);
4700         attn.sig[2] = REG_RD(bp,
4701                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4702                              port*4);
4703         attn.sig[3] = REG_RD(bp,
4704                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4705                              port*4);
4706
4707         if (!CHIP_IS_E1x(bp))
4708                 attn.sig[4] = REG_RD(bp,
4709                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4710                                      port*4);
4711
4712         return bnx2x_parity_attn(bp, global, print, attn.sig);
4713 }
4714
4715 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4716 {
4717         u32 val;
4718         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4719
4720                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4721                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4722                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4723                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4724                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4725                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4726                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4727                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4728                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4729                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4730                 if (val &
4731                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4732                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4733                 if (val &
4734                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4735                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4736                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4737                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4738                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4739                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4740                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4741                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4742         }
4743         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4744                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4745                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4746                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4747                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4748                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4749                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4750                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4751                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4752                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4753                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4754                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4755                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4756                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4757                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4758         }
4759
4760         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4761                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4762                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4763                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4764                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4765         }
4766 }
4767
4768 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4769 {
4770         struct attn_route attn, *group_mask;
4771         int port = BP_PORT(bp);
4772         int index;
4773         u32 reg_addr;
4774         u32 val;
4775         u32 aeu_mask;
4776         bool global = false;
4777
4778         /* need to take HW lock because MCP or other port might also
4779            try to handle this event */
4780         bnx2x_acquire_alr(bp);
4781
4782         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4783 #ifndef BNX2X_STOP_ON_ERROR
4784                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4785                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4786                 /* Disable HW interrupts */
4787                 bnx2x_int_disable(bp);
4788                 /* In case of parity errors don't handle attentions so that
4789                  * other function would "see" parity errors.
4790                  */
4791 #else
4792                 bnx2x_panic();
4793 #endif
4794                 bnx2x_release_alr(bp);
4795                 return;
4796         }
4797
4798         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4799         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4800         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4801         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4802         if (!CHIP_IS_E1x(bp))
4803                 attn.sig[4] =
4804                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4805         else
4806                 attn.sig[4] = 0;
4807
4808         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4809            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4810
4811         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4812                 if (deasserted & (1 << index)) {
4813                         group_mask = &bp->attn_group[index];
4814
4815                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4816                            index,
4817                            group_mask->sig[0], group_mask->sig[1],
4818                            group_mask->sig[2], group_mask->sig[3],
4819                            group_mask->sig[4]);
4820
4821                         bnx2x_attn_int_deasserted4(bp,
4822                                         attn.sig[4] & group_mask->sig[4]);
4823                         bnx2x_attn_int_deasserted3(bp,
4824                                         attn.sig[3] & group_mask->sig[3]);
4825                         bnx2x_attn_int_deasserted1(bp,
4826                                         attn.sig[1] & group_mask->sig[1]);
4827                         bnx2x_attn_int_deasserted2(bp,
4828                                         attn.sig[2] & group_mask->sig[2]);
4829                         bnx2x_attn_int_deasserted0(bp,
4830                                         attn.sig[0] & group_mask->sig[0]);
4831                 }
4832         }
4833
4834         bnx2x_release_alr(bp);
4835
4836         if (bp->common.int_block == INT_BLOCK_HC)
4837                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4838                             COMMAND_REG_ATTN_BITS_CLR);
4839         else
4840                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4841
4842         val = ~deasserted;
4843         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4844            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4845         REG_WR(bp, reg_addr, val);
4846
4847         if (~bp->attn_state & deasserted)
4848                 BNX2X_ERR("IGU ERROR\n");
4849
4850         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4851                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
4852
4853         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4854         aeu_mask = REG_RD(bp, reg_addr);
4855
4856         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4857            aeu_mask, deasserted);
4858         aeu_mask |= (deasserted & 0x3ff);
4859         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4860
4861         REG_WR(bp, reg_addr, aeu_mask);
4862         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4863
4864         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4865         bp->attn_state &= ~deasserted;
4866         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4867 }
4868
4869 static void bnx2x_attn_int(struct bnx2x *bp)
4870 {
4871         /* read local copy of bits */
4872         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4873                                                                 attn_bits);
4874         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4875                                                                 attn_bits_ack);
4876         u32 attn_state = bp->attn_state;
4877
4878         /* look for changed bits */
4879         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4880         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4881
4882         DP(NETIF_MSG_HW,
4883            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4884            attn_bits, attn_ack, asserted, deasserted);
4885
4886         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4887                 BNX2X_ERR("BAD attention state\n");
4888
4889         /* handle bits that were raised */
4890         if (asserted)
4891                 bnx2x_attn_int_asserted(bp, asserted);
4892
4893         if (deasserted)
4894                 bnx2x_attn_int_deasserted(bp, deasserted);
4895 }
4896
4897 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4898                       u16 index, u8 op, u8 update)
4899 {
4900         u32 igu_addr = bp->igu_base_addr;
4901         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4902         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4903                              igu_addr);
4904 }
4905
4906 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4907 {
4908         /* No memory barriers */
4909         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4910         mmiowb(); /* keep prod updates ordered */
4911 }
4912
4913 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4914                                       union event_ring_elem *elem)
4915 {
4916         u8 err = elem->message.error;
4917
4918         if (!bp->cnic_eth_dev.starting_cid  ||
4919             (cid < bp->cnic_eth_dev.starting_cid &&
4920             cid != bp->cnic_eth_dev.iscsi_l2_cid))
4921                 return 1;
4922
4923         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4924
4925         if (unlikely(err)) {
4926
4927                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4928                           cid);
4929                 bnx2x_panic_dump(bp, false);
4930         }
4931         bnx2x_cnic_cfc_comp(bp, cid, err);
4932         return 0;
4933 }
4934
4935 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4936 {
4937         struct bnx2x_mcast_ramrod_params rparam;
4938         int rc;
4939
4940         memset(&rparam, 0, sizeof(rparam));
4941
4942         rparam.mcast_obj = &bp->mcast_obj;
4943
4944         netif_addr_lock_bh(bp->dev);
4945
4946         /* Clear pending state for the last command */
4947         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4948
4949         /* If there are pending mcast commands - send them */
4950         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4951                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4952                 if (rc < 0)
4953                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4954                                   rc);
4955         }
4956
4957         netif_addr_unlock_bh(bp->dev);
4958 }
4959
4960 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4961                                             union event_ring_elem *elem)
4962 {
4963         unsigned long ramrod_flags = 0;
4964         int rc = 0;
4965         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4966         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4967
4968         /* Always push next commands out, don't wait here */
4969         __set_bit(RAMROD_CONT, &ramrod_flags);
4970
4971         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4972                             >> BNX2X_SWCID_SHIFT) {
4973         case BNX2X_FILTER_MAC_PENDING:
4974                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4975                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4976                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4977                 else
4978                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4979
4980                 break;
4981         case BNX2X_FILTER_MCAST_PENDING:
4982                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4983                 /* This is only relevant for 57710 where multicast MACs are
4984                  * configured as unicast MACs using the same ramrod.
4985                  */
4986                 bnx2x_handle_mcast_eqe(bp);
4987                 return;
4988         default:
4989                 BNX2X_ERR("Unsupported classification command: %d\n",
4990                           elem->message.data.eth_event.echo);
4991                 return;
4992         }
4993
4994         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4995
4996         if (rc < 0)
4997                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4998         else if (rc > 0)
4999                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5000 }
5001
5002 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5003
5004 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5005 {
5006         netif_addr_lock_bh(bp->dev);
5007
5008         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5009
5010         /* Send rx_mode command again if was requested */
5011         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5012                 bnx2x_set_storm_rx_mode(bp);
5013         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5014                                     &bp->sp_state))
5015                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5016         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5017                                     &bp->sp_state))
5018                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5019
5020         netif_addr_unlock_bh(bp->dev);
5021 }
5022
5023 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5024                                               union event_ring_elem *elem)
5025 {
5026         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5027                 DP(BNX2X_MSG_SP,
5028                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5029                    elem->message.data.vif_list_event.func_bit_map);
5030                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5031                         elem->message.data.vif_list_event.func_bit_map);
5032         } else if (elem->message.data.vif_list_event.echo ==
5033                    VIF_LIST_RULE_SET) {
5034                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5035                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5036         }
5037 }
5038
5039 /* called with rtnl_lock */
5040 static void bnx2x_after_function_update(struct bnx2x *bp)
5041 {
5042         int q, rc;
5043         struct bnx2x_fastpath *fp;
5044         struct bnx2x_queue_state_params queue_params = {NULL};
5045         struct bnx2x_queue_update_params *q_update_params =
5046                 &queue_params.params.update;
5047
5048         /* Send Q update command with afex vlan removal values for all Qs */
5049         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5050
5051         /* set silent vlan removal values according to vlan mode */
5052         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5053                   &q_update_params->update_flags);
5054         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5055                   &q_update_params->update_flags);
5056         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5057
5058         /* in access mode mark mask and value are 0 to strip all vlans */
5059         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5060                 q_update_params->silent_removal_value = 0;
5061                 q_update_params->silent_removal_mask = 0;
5062         } else {
5063                 q_update_params->silent_removal_value =
5064                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5065                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5066         }
5067
5068         for_each_eth_queue(bp, q) {
5069                 /* Set the appropriate Queue object */
5070                 fp = &bp->fp[q];
5071                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5072
5073                 /* send the ramrod */
5074                 rc = bnx2x_queue_state_change(bp, &queue_params);
5075                 if (rc < 0)
5076                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5077                                   q);
5078         }
5079
5080         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5081                 fp = &bp->fp[FCOE_IDX(bp)];
5082                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5083
5084                 /* clear pending completion bit */
5085                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5086
5087                 /* mark latest Q bit */
5088                 smp_mb__before_clear_bit();
5089                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5090                 smp_mb__after_clear_bit();
5091
5092                 /* send Q update ramrod for FCoE Q */
5093                 rc = bnx2x_queue_state_change(bp, &queue_params);
5094                 if (rc < 0)
5095                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5096                                   q);
5097         } else {
5098                 /* If no FCoE ring - ACK MCP now */
5099                 bnx2x_link_report(bp);
5100                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5101         }
5102 }
5103
5104 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5105         struct bnx2x *bp, u32 cid)
5106 {
5107         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5108
5109         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5110                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5111         else
5112                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5113 }
5114
5115 static void bnx2x_eq_int(struct bnx2x *bp)
5116 {
5117         u16 hw_cons, sw_cons, sw_prod;
5118         union event_ring_elem *elem;
5119         u8 echo;
5120         u32 cid;
5121         u8 opcode;
5122         int rc, spqe_cnt = 0;
5123         struct bnx2x_queue_sp_obj *q_obj;
5124         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5125         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5126
5127         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5128
5129         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5130          * when we get the next-page we need to adjust so the loop
5131          * condition below will be met. The next element is the size of a
5132          * regular element and hence incrementing by 1
5133          */
5134         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5135                 hw_cons++;
5136
5137         /* This function may never run in parallel with itself for a
5138          * specific bp, thus there is no need in "paired" read memory
5139          * barrier here.
5140          */
5141         sw_cons = bp->eq_cons;
5142         sw_prod = bp->eq_prod;
5143
5144         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5145                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5146
5147         for (; sw_cons != hw_cons;
5148               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5149
5150                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5151
5152                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5153                 if (!rc) {
5154                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5155                            rc);
5156                         goto next_spqe;
5157                 }
5158
5159                 /* elem CID originates from FW; actually LE */
5160                 cid = SW_CID((__force __le32)
5161                              elem->message.data.cfc_del_event.cid);
5162                 opcode = elem->message.opcode;
5163
5164                 /* handle eq element */
5165                 switch (opcode) {
5166                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5167                         DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5168                         bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5169                         continue;
5170
5171                 case EVENT_RING_OPCODE_STAT_QUERY:
5172                         DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5173                            "got statistics comp event %d\n",
5174                            bp->stats_comp++);
5175                         /* nothing to do with stats comp */
5176                         goto next_spqe;
5177
5178                 case EVENT_RING_OPCODE_CFC_DEL:
5179                         /* handle according to cid range */
5180                         /*
5181                          * we may want to verify here that the bp state is
5182                          * HALTING
5183                          */
5184                         DP(BNX2X_MSG_SP,
5185                            "got delete ramrod for MULTI[%d]\n", cid);
5186
5187                         if (CNIC_LOADED(bp) &&
5188                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5189                                 goto next_spqe;
5190
5191                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5192
5193                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5194                                 break;
5195
5196                         goto next_spqe;
5197
5198                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5199                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5200                         if (f_obj->complete_cmd(bp, f_obj,
5201                                                 BNX2X_F_CMD_TX_STOP))
5202                                 break;
5203                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5204                         goto next_spqe;
5205
5206                 case EVENT_RING_OPCODE_START_TRAFFIC:
5207                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5208                         if (f_obj->complete_cmd(bp, f_obj,
5209                                                 BNX2X_F_CMD_TX_START))
5210                                 break;
5211                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5212                         goto next_spqe;
5213
5214                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5215                         echo = elem->message.data.function_update_event.echo;
5216                         if (echo == SWITCH_UPDATE) {
5217                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5218                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5219                                 if (f_obj->complete_cmd(
5220                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5221                                         break;
5222
5223                         } else {
5224                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5225                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5226                                 f_obj->complete_cmd(bp, f_obj,
5227                                                     BNX2X_F_CMD_AFEX_UPDATE);
5228
5229                                 /* We will perform the Queues update from
5230                                  * sp_rtnl task as all Queue SP operations
5231                                  * should run under rtnl_lock.
5232                                  */
5233                                 smp_mb__before_clear_bit();
5234                                 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5235                                         &bp->sp_rtnl_state);
5236                                 smp_mb__after_clear_bit();
5237
5238                                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5239                         }
5240
5241                         goto next_spqe;
5242
5243                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5244                         f_obj->complete_cmd(bp, f_obj,
5245                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5246                         bnx2x_after_afex_vif_lists(bp, elem);
5247                         goto next_spqe;
5248                 case EVENT_RING_OPCODE_FUNCTION_START:
5249                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5250                            "got FUNC_START ramrod\n");
5251                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5252                                 break;
5253
5254                         goto next_spqe;
5255
5256                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5257                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5258                            "got FUNC_STOP ramrod\n");
5259                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5260                                 break;
5261
5262                         goto next_spqe;
5263                 }
5264
5265                 switch (opcode | bp->state) {
5266                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5267                       BNX2X_STATE_OPEN):
5268                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5269                       BNX2X_STATE_OPENING_WAIT4_PORT):
5270                         cid = elem->message.data.eth_event.echo &
5271                                 BNX2X_SWCID_MASK;
5272                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5273                            cid);
5274                         rss_raw->clear_pending(rss_raw);
5275                         break;
5276
5277                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5278                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5279                 case (EVENT_RING_OPCODE_SET_MAC |
5280                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5281                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5282                       BNX2X_STATE_OPEN):
5283                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5284                       BNX2X_STATE_DIAG):
5285                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5286                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5287                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5288                         bnx2x_handle_classification_eqe(bp, elem);
5289                         break;
5290
5291                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5292                       BNX2X_STATE_OPEN):
5293                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5294                       BNX2X_STATE_DIAG):
5295                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5296                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5297                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5298                         bnx2x_handle_mcast_eqe(bp);
5299                         break;
5300
5301                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5302                       BNX2X_STATE_OPEN):
5303                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5304                       BNX2X_STATE_DIAG):
5305                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5306                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5307                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5308                         bnx2x_handle_rx_mode_eqe(bp);
5309                         break;
5310                 default:
5311                         /* unknown event log error and continue */
5312                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5313                                   elem->message.opcode, bp->state);
5314                 }
5315 next_spqe:
5316                 spqe_cnt++;
5317         } /* for */
5318
5319         smp_mb__before_atomic_inc();
5320         atomic_add(spqe_cnt, &bp->eq_spq_left);
5321
5322         bp->eq_cons = sw_cons;
5323         bp->eq_prod = sw_prod;
5324         /* Make sure that above mem writes were issued towards the memory */
5325         smp_wmb();
5326
5327         /* update producer */
5328         bnx2x_update_eq_prod(bp, bp->eq_prod);
5329 }
5330
5331 static void bnx2x_sp_task(struct work_struct *work)
5332 {
5333         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5334
5335         DP(BNX2X_MSG_SP, "sp task invoked\n");
5336
5337         /* make sure the atomic interrupt_occurred has been written */
5338         smp_rmb();
5339         if (atomic_read(&bp->interrupt_occurred)) {
5340
5341                 /* what work needs to be performed? */
5342                 u16 status = bnx2x_update_dsb_idx(bp);
5343
5344                 DP(BNX2X_MSG_SP, "status %x\n", status);
5345                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5346                 atomic_set(&bp->interrupt_occurred, 0);
5347
5348                 /* HW attentions */
5349                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5350                         bnx2x_attn_int(bp);
5351                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5352                 }
5353
5354                 /* SP events: STAT_QUERY and others */
5355                 if (status & BNX2X_DEF_SB_IDX) {
5356                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5357
5358                 if (FCOE_INIT(bp) &&
5359                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5360                                 /* Prevent local bottom-halves from running as
5361                                  * we are going to change the local NAPI list.
5362                                  */
5363                                 local_bh_disable();
5364                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5365                                 local_bh_enable();
5366                         }
5367
5368                         /* Handle EQ completions */
5369                         bnx2x_eq_int(bp);
5370                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5371                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5372
5373                         status &= ~BNX2X_DEF_SB_IDX;
5374                 }
5375
5376                 /* if status is non zero then perhaps something went wrong */
5377                 if (unlikely(status))
5378                         DP(BNX2X_MSG_SP,
5379                            "got an unknown interrupt! (status 0x%x)\n", status);
5380
5381                 /* ack status block only if something was actually handled */
5382                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5383                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5384         }
5385
5386         /* must be called after the EQ processing (since eq leads to sriov
5387          * ramrod completion flows).
5388          * This flow may have been scheduled by the arrival of a ramrod
5389          * completion, or by the sriov code rescheduling itself.
5390          */
5391         bnx2x_iov_sp_task(bp);
5392
5393         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5394         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5395                                &bp->sp_state)) {
5396                 bnx2x_link_report(bp);
5397                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5398         }
5399 }
5400
5401 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5402 {
5403         struct net_device *dev = dev_instance;
5404         struct bnx2x *bp = netdev_priv(dev);
5405
5406         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5407                      IGU_INT_DISABLE, 0);
5408
5409 #ifdef BNX2X_STOP_ON_ERROR
5410         if (unlikely(bp->panic))
5411                 return IRQ_HANDLED;
5412 #endif
5413
5414         if (CNIC_LOADED(bp)) {
5415                 struct cnic_ops *c_ops;
5416
5417                 rcu_read_lock();
5418                 c_ops = rcu_dereference(bp->cnic_ops);
5419                 if (c_ops)
5420                         c_ops->cnic_handler(bp->cnic_data, NULL);
5421                 rcu_read_unlock();
5422         }
5423
5424         /* schedule sp task to perform default status block work, ack
5425          * attentions and enable interrupts.
5426          */
5427         bnx2x_schedule_sp_task(bp);
5428
5429         return IRQ_HANDLED;
5430 }
5431
5432 /* end of slow path */
5433
5434 void bnx2x_drv_pulse(struct bnx2x *bp)
5435 {
5436         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5437                  bp->fw_drv_pulse_wr_seq);
5438 }
5439
5440 static void bnx2x_timer(unsigned long data)
5441 {
5442         struct bnx2x *bp = (struct bnx2x *) data;
5443
5444         if (!netif_running(bp->dev))
5445                 return;
5446
5447         if (IS_PF(bp) &&
5448             !BP_NOMCP(bp)) {
5449                 int mb_idx = BP_FW_MB_IDX(bp);
5450                 u32 drv_pulse;
5451                 u32 mcp_pulse;
5452
5453                 ++bp->fw_drv_pulse_wr_seq;
5454                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5455                 /* TBD - add SYSTEM_TIME */
5456                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5457                 bnx2x_drv_pulse(bp);
5458
5459                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5460                              MCP_PULSE_SEQ_MASK);
5461                 /* The delta between driver pulse and mcp response
5462                  * should be 1 (before mcp response) or 0 (after mcp response)
5463                  */
5464                 if ((drv_pulse != mcp_pulse) &&
5465                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5466                         /* someone lost a heartbeat... */
5467                         BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5468                                   drv_pulse, mcp_pulse);
5469                 }
5470         }
5471
5472         if (bp->state == BNX2X_STATE_OPEN)
5473                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5474
5475         /* sample pf vf bulletin board for new posts from pf */
5476         if (IS_VF(bp))
5477                 bnx2x_timer_sriov(bp);
5478
5479         mod_timer(&bp->timer, jiffies + bp->current_interval);
5480 }
5481
5482 /* end of Statistics */
5483
5484 /* nic init */
5485
5486 /*
5487  * nic init service functions
5488  */
5489
5490 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5491 {
5492         u32 i;
5493         if (!(len%4) && !(addr%4))
5494                 for (i = 0; i < len; i += 4)
5495                         REG_WR(bp, addr + i, fill);
5496         else
5497                 for (i = 0; i < len; i++)
5498                         REG_WR8(bp, addr + i, fill);
5499 }
5500
5501 /* helper: writes FP SP data to FW - data_size in dwords */
5502 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5503                                 int fw_sb_id,
5504                                 u32 *sb_data_p,
5505                                 u32 data_size)
5506 {
5507         int index;
5508         for (index = 0; index < data_size; index++)
5509                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5510                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5511                         sizeof(u32)*index,
5512                         *(sb_data_p + index));
5513 }
5514
5515 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5516 {
5517         u32 *sb_data_p;
5518         u32 data_size = 0;
5519         struct hc_status_block_data_e2 sb_data_e2;
5520         struct hc_status_block_data_e1x sb_data_e1x;
5521
5522         /* disable the function first */
5523         if (!CHIP_IS_E1x(bp)) {
5524                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5525                 sb_data_e2.common.state = SB_DISABLED;
5526                 sb_data_e2.common.p_func.vf_valid = false;
5527                 sb_data_p = (u32 *)&sb_data_e2;
5528                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5529         } else {
5530                 memset(&sb_data_e1x, 0,
5531                        sizeof(struct hc_status_block_data_e1x));
5532                 sb_data_e1x.common.state = SB_DISABLED;
5533                 sb_data_e1x.common.p_func.vf_valid = false;
5534                 sb_data_p = (u32 *)&sb_data_e1x;
5535                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5536         }
5537         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5538
5539         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5540                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5541                         CSTORM_STATUS_BLOCK_SIZE);
5542         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5543                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5544                         CSTORM_SYNC_BLOCK_SIZE);
5545 }
5546
5547 /* helper:  writes SP SB data to FW */
5548 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5549                 struct hc_sp_status_block_data *sp_sb_data)
5550 {
5551         int func = BP_FUNC(bp);
5552         int i;
5553         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5554                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5555                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5556                         i*sizeof(u32),
5557                         *((u32 *)sp_sb_data + i));
5558 }
5559
5560 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5561 {
5562         int func = BP_FUNC(bp);
5563         struct hc_sp_status_block_data sp_sb_data;
5564         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5565
5566         sp_sb_data.state = SB_DISABLED;
5567         sp_sb_data.p_func.vf_valid = false;
5568
5569         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5570
5571         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5572                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5573                         CSTORM_SP_STATUS_BLOCK_SIZE);
5574         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5575                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5576                         CSTORM_SP_SYNC_BLOCK_SIZE);
5577 }
5578
5579 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5580                                            int igu_sb_id, int igu_seg_id)
5581 {
5582         hc_sm->igu_sb_id = igu_sb_id;
5583         hc_sm->igu_seg_id = igu_seg_id;
5584         hc_sm->timer_value = 0xFF;
5585         hc_sm->time_to_expire = 0xFFFFFFFF;
5586 }
5587
5588 /* allocates state machine ids. */
5589 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5590 {
5591         /* zero out state machine indices */
5592         /* rx indices */
5593         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5594
5595         /* tx indices */
5596         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5597         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5598         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5599         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5600
5601         /* map indices */
5602         /* rx indices */
5603         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5604                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5605
5606         /* tx indices */
5607         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5608                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5609         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5610                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5611         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5612                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5613         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5614                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5615 }
5616
5617 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5618                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5619 {
5620         int igu_seg_id;
5621
5622         struct hc_status_block_data_e2 sb_data_e2;
5623         struct hc_status_block_data_e1x sb_data_e1x;
5624         struct hc_status_block_sm  *hc_sm_p;
5625         int data_size;
5626         u32 *sb_data_p;
5627
5628         if (CHIP_INT_MODE_IS_BC(bp))
5629                 igu_seg_id = HC_SEG_ACCESS_NORM;
5630         else
5631                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5632
5633         bnx2x_zero_fp_sb(bp, fw_sb_id);
5634
5635         if (!CHIP_IS_E1x(bp)) {
5636                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5637                 sb_data_e2.common.state = SB_ENABLED;
5638                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5639                 sb_data_e2.common.p_func.vf_id = vfid;
5640                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5641                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5642                 sb_data_e2.common.same_igu_sb_1b = true;
5643                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5644                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5645                 hc_sm_p = sb_data_e2.common.state_machine;
5646                 sb_data_p = (u32 *)&sb_data_e2;
5647                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5648                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5649         } else {
5650                 memset(&sb_data_e1x, 0,
5651                        sizeof(struct hc_status_block_data_e1x));
5652                 sb_data_e1x.common.state = SB_ENABLED;
5653                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5654                 sb_data_e1x.common.p_func.vf_id = 0xff;
5655                 sb_data_e1x.common.p_func.vf_valid = false;
5656                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5657                 sb_data_e1x.common.same_igu_sb_1b = true;
5658                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5659                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5660                 hc_sm_p = sb_data_e1x.common.state_machine;
5661                 sb_data_p = (u32 *)&sb_data_e1x;
5662                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5663                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5664         }
5665
5666         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5667                                        igu_sb_id, igu_seg_id);
5668         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5669                                        igu_sb_id, igu_seg_id);
5670
5671         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5672
5673         /* write indices to HW - PCI guarantees endianity of regpairs */
5674         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5675 }
5676
5677 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5678                                      u16 tx_usec, u16 rx_usec)
5679 {
5680         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5681                                     false, rx_usec);
5682         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5683                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5684                                        tx_usec);
5685         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5686                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5687                                        tx_usec);
5688         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5689                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5690                                        tx_usec);
5691 }
5692
5693 static void bnx2x_init_def_sb(struct bnx2x *bp)
5694 {
5695         struct host_sp_status_block *def_sb = bp->def_status_blk;
5696         dma_addr_t mapping = bp->def_status_blk_mapping;
5697         int igu_sp_sb_index;
5698         int igu_seg_id;
5699         int port = BP_PORT(bp);
5700         int func = BP_FUNC(bp);
5701         int reg_offset, reg_offset_en5;
5702         u64 section;
5703         int index;
5704         struct hc_sp_status_block_data sp_sb_data;
5705         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5706
5707         if (CHIP_INT_MODE_IS_BC(bp)) {
5708                 igu_sp_sb_index = DEF_SB_IGU_ID;
5709                 igu_seg_id = HC_SEG_ACCESS_DEF;
5710         } else {
5711                 igu_sp_sb_index = bp->igu_dsb_id;
5712                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5713         }
5714
5715         /* ATTN */
5716         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5717                                             atten_status_block);
5718         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5719
5720         bp->attn_state = 0;
5721
5722         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5723                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5724         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5725                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5726         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5727                 int sindex;
5728                 /* take care of sig[0]..sig[4] */
5729                 for (sindex = 0; sindex < 4; sindex++)
5730                         bp->attn_group[index].sig[sindex] =
5731                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5732
5733                 if (!CHIP_IS_E1x(bp))
5734                         /*
5735                          * enable5 is separate from the rest of the registers,
5736                          * and therefore the address skip is 4
5737                          * and not 16 between the different groups
5738                          */
5739                         bp->attn_group[index].sig[4] = REG_RD(bp,
5740                                         reg_offset_en5 + 0x4*index);
5741                 else
5742                         bp->attn_group[index].sig[4] = 0;
5743         }
5744
5745         if (bp->common.int_block == INT_BLOCK_HC) {
5746                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5747                                      HC_REG_ATTN_MSG0_ADDR_L);
5748
5749                 REG_WR(bp, reg_offset, U64_LO(section));
5750                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5751         } else if (!CHIP_IS_E1x(bp)) {
5752                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5753                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5754         }
5755
5756         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5757                                             sp_sb);
5758
5759         bnx2x_zero_sp_sb(bp);
5760
5761         /* PCI guarantees endianity of regpairs */
5762         sp_sb_data.state                = SB_ENABLED;
5763         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5764         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5765         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5766         sp_sb_data.igu_seg_id           = igu_seg_id;
5767         sp_sb_data.p_func.pf_id         = func;
5768         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5769         sp_sb_data.p_func.vf_id         = 0xff;
5770
5771         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5772
5773         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5774 }
5775
5776 void bnx2x_update_coalesce(struct bnx2x *bp)
5777 {
5778         int i;
5779
5780         for_each_eth_queue(bp, i)
5781                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5782                                          bp->tx_ticks, bp->rx_ticks);
5783 }
5784
5785 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5786 {
5787         spin_lock_init(&bp->spq_lock);
5788         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5789
5790         bp->spq_prod_idx = 0;
5791         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5792         bp->spq_prod_bd = bp->spq;
5793         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5794 }
5795
5796 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5797 {
5798         int i;
5799         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5800                 union event_ring_elem *elem =
5801                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5802
5803                 elem->next_page.addr.hi =
5804                         cpu_to_le32(U64_HI(bp->eq_mapping +
5805                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5806                 elem->next_page.addr.lo =
5807                         cpu_to_le32(U64_LO(bp->eq_mapping +
5808                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5809         }
5810         bp->eq_cons = 0;
5811         bp->eq_prod = NUM_EQ_DESC;
5812         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5813         /* we want a warning message before it gets wrought... */
5814         atomic_set(&bp->eq_spq_left,
5815                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5816 }
5817
5818 /* called with netif_addr_lock_bh() */
5819 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5820                         unsigned long rx_mode_flags,
5821                         unsigned long rx_accept_flags,
5822                         unsigned long tx_accept_flags,
5823                         unsigned long ramrod_flags)
5824 {
5825         struct bnx2x_rx_mode_ramrod_params ramrod_param;
5826         int rc;
5827
5828         memset(&ramrod_param, 0, sizeof(ramrod_param));
5829
5830         /* Prepare ramrod parameters */
5831         ramrod_param.cid = 0;
5832         ramrod_param.cl_id = cl_id;
5833         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5834         ramrod_param.func_id = BP_FUNC(bp);
5835
5836         ramrod_param.pstate = &bp->sp_state;
5837         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5838
5839         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5840         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5841
5842         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5843
5844         ramrod_param.ramrod_flags = ramrod_flags;
5845         ramrod_param.rx_mode_flags = rx_mode_flags;
5846
5847         ramrod_param.rx_accept_flags = rx_accept_flags;
5848         ramrod_param.tx_accept_flags = tx_accept_flags;
5849
5850         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5851         if (rc < 0) {
5852                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5853                 return rc;
5854         }
5855
5856         return 0;
5857 }
5858
5859 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5860                                    unsigned long *rx_accept_flags,
5861                                    unsigned long *tx_accept_flags)
5862 {
5863         /* Clear the flags first */
5864         *rx_accept_flags = 0;
5865         *tx_accept_flags = 0;
5866
5867         switch (rx_mode) {
5868         case BNX2X_RX_MODE_NONE:
5869                 /*
5870                  * 'drop all' supersedes any accept flags that may have been
5871                  * passed to the function.
5872                  */
5873                 break;
5874         case BNX2X_RX_MODE_NORMAL:
5875                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5876                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5877                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5878
5879                 /* internal switching mode */
5880                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5881                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5882                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5883
5884                 break;
5885         case BNX2X_RX_MODE_ALLMULTI:
5886                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5887                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5888                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5889
5890                 /* internal switching mode */
5891                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5892                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5893                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5894
5895                 break;
5896         case BNX2X_RX_MODE_PROMISC:
5897                 /* According to definition of SI mode, iface in promisc mode
5898                  * should receive matched and unmatched (in resolution of port)
5899                  * unicast packets.
5900                  */
5901                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5902                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5903                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5904                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5905
5906                 /* internal switching mode */
5907                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5908                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5909
5910                 if (IS_MF_SI(bp))
5911                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5912                 else
5913                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5914
5915                 break;
5916         default:
5917                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5918                 return -EINVAL;
5919         }
5920
5921         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5922         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5923                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5924                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5925         }
5926
5927         return 0;
5928 }
5929
5930 /* called with netif_addr_lock_bh() */
5931 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5932 {
5933         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5934         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5935         int rc;
5936
5937         if (!NO_FCOE(bp))
5938                 /* Configure rx_mode of FCoE Queue */
5939                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5940
5941         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5942                                      &tx_accept_flags);
5943         if (rc)
5944                 return rc;
5945
5946         __set_bit(RAMROD_RX, &ramrod_flags);
5947         __set_bit(RAMROD_TX, &ramrod_flags);
5948
5949         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5950                                    rx_accept_flags, tx_accept_flags,
5951                                    ramrod_flags);
5952 }
5953
5954 static void bnx2x_init_internal_common(struct bnx2x *bp)
5955 {
5956         int i;
5957
5958         if (IS_MF_SI(bp))
5959                 /*
5960                  * In switch independent mode, the TSTORM needs to accept
5961                  * packets that failed classification, since approximate match
5962                  * mac addresses aren't written to NIG LLH
5963                  */
5964                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5965                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5966         else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5967                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5968                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5969
5970         /* Zero this manually as its initialization is
5971            currently missing in the initTool */
5972         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5973                 REG_WR(bp, BAR_USTRORM_INTMEM +
5974                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
5975         if (!CHIP_IS_E1x(bp)) {
5976                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5977                         CHIP_INT_MODE_IS_BC(bp) ?
5978                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5979         }
5980 }
5981
5982 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5983 {
5984         switch (load_code) {
5985         case FW_MSG_CODE_DRV_LOAD_COMMON:
5986         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5987                 bnx2x_init_internal_common(bp);
5988                 /* no break */
5989
5990         case FW_MSG_CODE_DRV_LOAD_PORT:
5991                 /* nothing to do */
5992                 /* no break */
5993
5994         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5995                 /* internal memory per function is
5996                    initialized inside bnx2x_pf_init */
5997                 break;
5998
5999         default:
6000                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6001                 break;
6002         }
6003 }
6004
6005 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6006 {
6007         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6008 }
6009
6010 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6011 {
6012         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6013 }
6014
6015 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6016 {
6017         if (CHIP_IS_E1x(fp->bp))
6018                 return BP_L_ID(fp->bp) + fp->index;
6019         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6020                 return bnx2x_fp_igu_sb_id(fp);
6021 }
6022
6023 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6024 {
6025         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6026         u8 cos;
6027         unsigned long q_type = 0;
6028         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6029         fp->rx_queue = fp_idx;
6030         fp->cid = fp_idx;
6031         fp->cl_id = bnx2x_fp_cl_id(fp);
6032         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6033         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6034         /* qZone id equals to FW (per path) client id */
6035         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6036
6037         /* init shortcut */
6038         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6039
6040         /* Setup SB indices */
6041         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6042
6043         /* Configure Queue State object */
6044         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6045         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6046
6047         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6048
6049         /* init tx data */
6050         for_each_cos_in_tx_queue(fp, cos) {
6051                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6052                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6053                                   FP_COS_TO_TXQ(fp, cos, bp),
6054                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6055                 cids[cos] = fp->txdata_ptr[cos]->cid;
6056         }
6057
6058         /* nothing more for vf to do here */
6059         if (IS_VF(bp))
6060                 return;
6061
6062         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6063                       fp->fw_sb_id, fp->igu_sb_id);
6064         bnx2x_update_fpsb_idx(fp);
6065         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6066                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6067                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6068
6069         /**
6070          * Configure classification DBs: Always enable Tx switching
6071          */
6072         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6073
6074         DP(NETIF_MSG_IFUP,
6075            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6076            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6077            fp->igu_sb_id);
6078 }
6079
6080 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6081 {
6082         int i;
6083
6084         for (i = 1; i <= NUM_TX_RINGS; i++) {
6085                 struct eth_tx_next_bd *tx_next_bd =
6086                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6087
6088                 tx_next_bd->addr_hi =
6089                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6090                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6091                 tx_next_bd->addr_lo =
6092                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6093                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6094         }
6095
6096         *txdata->tx_cons_sb = cpu_to_le16(0);
6097
6098         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6099         txdata->tx_db.data.zero_fill1 = 0;
6100         txdata->tx_db.data.prod = 0;
6101
6102         txdata->tx_pkt_prod = 0;
6103         txdata->tx_pkt_cons = 0;
6104         txdata->tx_bd_prod = 0;
6105         txdata->tx_bd_cons = 0;
6106         txdata->tx_pkt = 0;
6107 }
6108
6109 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6110 {
6111         int i;
6112
6113         for_each_tx_queue_cnic(bp, i)
6114                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6115 }
6116
6117 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6118 {
6119         int i;
6120         u8 cos;
6121
6122         for_each_eth_queue(bp, i)
6123                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6124                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6125 }
6126
6127 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6128 {
6129         if (!NO_FCOE(bp))
6130                 bnx2x_init_fcoe_fp(bp);
6131
6132         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6133                       BNX2X_VF_ID_INVALID, false,
6134                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6135
6136         /* ensure status block indices were read */
6137         rmb();
6138         bnx2x_init_rx_rings_cnic(bp);
6139         bnx2x_init_tx_rings_cnic(bp);
6140
6141         /* flush all */
6142         mb();
6143         mmiowb();
6144 }
6145
6146 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6147 {
6148         int i;
6149
6150         /* Setup NIC internals and enable interrupts */
6151         for_each_eth_queue(bp, i)
6152                 bnx2x_init_eth_fp(bp, i);
6153
6154         /* ensure status block indices were read */
6155         rmb();
6156         bnx2x_init_rx_rings(bp);
6157         bnx2x_init_tx_rings(bp);
6158
6159         if (IS_PF(bp)) {
6160                 /* Initialize MOD_ABS interrupts */
6161                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6162                                        bp->common.shmem_base,
6163                                        bp->common.shmem2_base, BP_PORT(bp));
6164
6165                 /* initialize the default status block and sp ring */
6166                 bnx2x_init_def_sb(bp);
6167                 bnx2x_update_dsb_idx(bp);
6168                 bnx2x_init_sp_ring(bp);
6169         } else {
6170                 bnx2x_memset_stats(bp);
6171         }
6172 }
6173
6174 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6175 {
6176         bnx2x_init_eq_ring(bp);
6177         bnx2x_init_internal(bp, load_code);
6178         bnx2x_pf_init(bp);
6179         bnx2x_stats_init(bp);
6180
6181         /* flush all before enabling interrupts */
6182         mb();
6183         mmiowb();
6184
6185         bnx2x_int_enable(bp);
6186
6187         /* Check for SPIO5 */
6188         bnx2x_attn_int_deasserted0(bp,
6189                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6190                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6191 }
6192
6193 /* gzip service functions */
6194 static int bnx2x_gunzip_init(struct bnx2x *bp)
6195 {
6196         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6197                                             &bp->gunzip_mapping, GFP_KERNEL);
6198         if (bp->gunzip_buf  == NULL)
6199                 goto gunzip_nomem1;
6200
6201         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6202         if (bp->strm  == NULL)
6203                 goto gunzip_nomem2;
6204
6205         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6206         if (bp->strm->workspace == NULL)
6207                 goto gunzip_nomem3;
6208
6209         return 0;
6210
6211 gunzip_nomem3:
6212         kfree(bp->strm);
6213         bp->strm = NULL;
6214
6215 gunzip_nomem2:
6216         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6217                           bp->gunzip_mapping);
6218         bp->gunzip_buf = NULL;
6219
6220 gunzip_nomem1:
6221         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6222         return -ENOMEM;
6223 }
6224
6225 static void bnx2x_gunzip_end(struct bnx2x *bp)
6226 {
6227         if (bp->strm) {
6228                 vfree(bp->strm->workspace);
6229                 kfree(bp->strm);
6230                 bp->strm = NULL;
6231         }
6232
6233         if (bp->gunzip_buf) {
6234                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6235                                   bp->gunzip_mapping);
6236                 bp->gunzip_buf = NULL;
6237         }
6238 }
6239
6240 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6241 {
6242         int n, rc;
6243
6244         /* check gzip header */
6245         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6246                 BNX2X_ERR("Bad gzip header\n");
6247                 return -EINVAL;
6248         }
6249
6250         n = 10;
6251
6252 #define FNAME                           0x8
6253
6254         if (zbuf[3] & FNAME)
6255                 while ((zbuf[n++] != 0) && (n < len));
6256
6257         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6258         bp->strm->avail_in = len - n;
6259         bp->strm->next_out = bp->gunzip_buf;
6260         bp->strm->avail_out = FW_BUF_SIZE;
6261
6262         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6263         if (rc != Z_OK)
6264                 return rc;
6265
6266         rc = zlib_inflate(bp->strm, Z_FINISH);
6267         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6268                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6269                            bp->strm->msg);
6270
6271         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6272         if (bp->gunzip_outlen & 0x3)
6273                 netdev_err(bp->dev,
6274                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6275                                 bp->gunzip_outlen);
6276         bp->gunzip_outlen >>= 2;
6277
6278         zlib_inflateEnd(bp->strm);
6279
6280         if (rc == Z_STREAM_END)
6281                 return 0;
6282
6283         return rc;
6284 }
6285
6286 /* nic load/unload */
6287
6288 /*
6289  * General service functions
6290  */
6291
6292 /* send a NIG loopback debug packet */
6293 static void bnx2x_lb_pckt(struct bnx2x *bp)
6294 {
6295         u32 wb_write[3];
6296
6297         /* Ethernet source and destination addresses */
6298         wb_write[0] = 0x55555555;
6299         wb_write[1] = 0x55555555;
6300         wb_write[2] = 0x20;             /* SOP */
6301         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6302
6303         /* NON-IP protocol */
6304         wb_write[0] = 0x09000000;
6305         wb_write[1] = 0x55555555;
6306         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6307         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6308 }
6309
6310 /* some of the internal memories
6311  * are not directly readable from the driver
6312  * to test them we send debug packets
6313  */
6314 static int bnx2x_int_mem_test(struct bnx2x *bp)
6315 {
6316         int factor;
6317         int count, i;
6318         u32 val = 0;
6319
6320         if (CHIP_REV_IS_FPGA(bp))
6321                 factor = 120;
6322         else if (CHIP_REV_IS_EMUL(bp))
6323                 factor = 200;
6324         else
6325                 factor = 1;
6326
6327         /* Disable inputs of parser neighbor blocks */
6328         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6329         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6330         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6331         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6332
6333         /*  Write 0 to parser credits for CFC search request */
6334         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6335
6336         /* send Ethernet packet */
6337         bnx2x_lb_pckt(bp);
6338
6339         /* TODO do i reset NIG statistic? */
6340         /* Wait until NIG register shows 1 packet of size 0x10 */
6341         count = 1000 * factor;
6342         while (count) {
6343
6344                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6345                 val = *bnx2x_sp(bp, wb_data[0]);
6346                 if (val == 0x10)
6347                         break;
6348
6349                 usleep_range(10000, 20000);
6350                 count--;
6351         }
6352         if (val != 0x10) {
6353                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6354                 return -1;
6355         }
6356
6357         /* Wait until PRS register shows 1 packet */
6358         count = 1000 * factor;
6359         while (count) {
6360                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6361                 if (val == 1)
6362                         break;
6363
6364                 usleep_range(10000, 20000);
6365                 count--;
6366         }
6367         if (val != 0x1) {
6368                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6369                 return -2;
6370         }
6371
6372         /* Reset and init BRB, PRS */
6373         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6374         msleep(50);
6375         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6376         msleep(50);
6377         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6378         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6379
6380         DP(NETIF_MSG_HW, "part2\n");
6381
6382         /* Disable inputs of parser neighbor blocks */
6383         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6384         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6385         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6386         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6387
6388         /* Write 0 to parser credits for CFC search request */
6389         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6390
6391         /* send 10 Ethernet packets */
6392         for (i = 0; i < 10; i++)
6393                 bnx2x_lb_pckt(bp);
6394
6395         /* Wait until NIG register shows 10 + 1
6396            packets of size 11*0x10 = 0xb0 */
6397         count = 1000 * factor;
6398         while (count) {
6399
6400                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6401                 val = *bnx2x_sp(bp, wb_data[0]);
6402                 if (val == 0xb0)
6403                         break;
6404
6405                 usleep_range(10000, 20000);
6406                 count--;
6407         }
6408         if (val != 0xb0) {
6409                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6410                 return -3;
6411         }
6412
6413         /* Wait until PRS register shows 2 packets */
6414         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6415         if (val != 2)
6416                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6417
6418         /* Write 1 to parser credits for CFC search request */
6419         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6420
6421         /* Wait until PRS register shows 3 packets */
6422         msleep(10 * factor);
6423         /* Wait until NIG register shows 1 packet of size 0x10 */
6424         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6425         if (val != 3)
6426                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6427
6428         /* clear NIG EOP FIFO */
6429         for (i = 0; i < 11; i++)
6430                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6431         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6432         if (val != 1) {
6433                 BNX2X_ERR("clear of NIG failed\n");
6434                 return -4;
6435         }
6436
6437         /* Reset and init BRB, PRS, NIG */
6438         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6439         msleep(50);
6440         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6441         msleep(50);
6442         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6443         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6444         if (!CNIC_SUPPORT(bp))
6445                 /* set NIC mode */
6446                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6447
6448         /* Enable inputs of parser neighbor blocks */
6449         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6450         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6451         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6452         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6453
6454         DP(NETIF_MSG_HW, "done\n");
6455
6456         return 0; /* OK */
6457 }
6458
6459 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6460 {
6461         u32 val;
6462
6463         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6464         if (!CHIP_IS_E1x(bp))
6465                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6466         else
6467                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6468         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6469         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6470         /*
6471          * mask read length error interrupts in brb for parser
6472          * (parsing unit and 'checksum and crc' unit)
6473          * these errors are legal (PU reads fixed length and CAC can cause
6474          * read length error on truncated packets)
6475          */
6476         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6477         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6478         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6479         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6480         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6481         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6482 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6483 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6484         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6485         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6486         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6487 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6488 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6489         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6490         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6491         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6492         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6493 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6494 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6495
6496         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6497                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6498                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6499         if (!CHIP_IS_E1x(bp))
6500                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6501                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6502         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6503
6504         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6505         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6506         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6507 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6508
6509         if (!CHIP_IS_E1x(bp))
6510                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6511                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6512
6513         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6514         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6515 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6516         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6517 }
6518
6519 static void bnx2x_reset_common(struct bnx2x *bp)
6520 {
6521         u32 val = 0x1400;
6522
6523         /* reset_common */
6524         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6525                0xd3ffff7f);
6526
6527         if (CHIP_IS_E3(bp)) {
6528                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6529                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6530         }
6531
6532         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6533 }
6534
6535 static void bnx2x_setup_dmae(struct bnx2x *bp)
6536 {
6537         bp->dmae_ready = 0;
6538         spin_lock_init(&bp->dmae_lock);
6539 }
6540
6541 static void bnx2x_init_pxp(struct bnx2x *bp)
6542 {
6543         u16 devctl;
6544         int r_order, w_order;
6545
6546         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6547         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6548         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6549         if (bp->mrrs == -1)
6550                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6551         else {
6552                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6553                 r_order = bp->mrrs;
6554         }
6555
6556         bnx2x_init_pxp_arb(bp, r_order, w_order);
6557 }
6558
6559 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6560 {
6561         int is_required;
6562         u32 val;
6563         int port;
6564
6565         if (BP_NOMCP(bp))
6566                 return;
6567
6568         is_required = 0;
6569         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6570               SHARED_HW_CFG_FAN_FAILURE_MASK;
6571
6572         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6573                 is_required = 1;
6574
6575         /*
6576          * The fan failure mechanism is usually related to the PHY type since
6577          * the power consumption of the board is affected by the PHY. Currently,
6578          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6579          */
6580         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6581                 for (port = PORT_0; port < PORT_MAX; port++) {
6582                         is_required |=
6583                                 bnx2x_fan_failure_det_req(
6584                                         bp,
6585                                         bp->common.shmem_base,
6586                                         bp->common.shmem2_base,
6587                                         port);
6588                 }
6589
6590         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6591
6592         if (is_required == 0)
6593                 return;
6594
6595         /* Fan failure is indicated by SPIO 5 */
6596         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6597
6598         /* set to active low mode */
6599         val = REG_RD(bp, MISC_REG_SPIO_INT);
6600         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6601         REG_WR(bp, MISC_REG_SPIO_INT, val);
6602
6603         /* enable interrupt to signal the IGU */
6604         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6605         val |= MISC_SPIO_SPIO5;
6606         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6607 }
6608
6609 void bnx2x_pf_disable(struct bnx2x *bp)
6610 {
6611         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6612         val &= ~IGU_PF_CONF_FUNC_EN;
6613
6614         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6615         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6616         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6617 }
6618
6619 static void bnx2x__common_init_phy(struct bnx2x *bp)
6620 {
6621         u32 shmem_base[2], shmem2_base[2];
6622         /* Avoid common init in case MFW supports LFA */
6623         if (SHMEM2_RD(bp, size) >
6624             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6625                 return;
6626         shmem_base[0] =  bp->common.shmem_base;
6627         shmem2_base[0] = bp->common.shmem2_base;
6628         if (!CHIP_IS_E1x(bp)) {
6629                 shmem_base[1] =
6630                         SHMEM2_RD(bp, other_shmem_base_addr);
6631                 shmem2_base[1] =
6632                         SHMEM2_RD(bp, other_shmem2_base_addr);
6633         }
6634         bnx2x_acquire_phy_lock(bp);
6635         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6636                               bp->common.chip_id);
6637         bnx2x_release_phy_lock(bp);
6638 }
6639
6640 /**
6641  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6642  *
6643  * @bp:         driver handle
6644  */
6645 static int bnx2x_init_hw_common(struct bnx2x *bp)
6646 {
6647         u32 val;
6648
6649         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6650
6651         /*
6652          * take the RESET lock to protect undi_unload flow from accessing
6653          * registers while we're resetting the chip
6654          */
6655         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6656
6657         bnx2x_reset_common(bp);
6658         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6659
6660         val = 0xfffc;
6661         if (CHIP_IS_E3(bp)) {
6662                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6663                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6664         }
6665         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6666
6667         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6668
6669         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6670
6671         if (!CHIP_IS_E1x(bp)) {
6672                 u8 abs_func_id;
6673
6674                 /**
6675                  * 4-port mode or 2-port mode we need to turn of master-enable
6676                  * for everyone, after that, turn it back on for self.
6677                  * so, we disregard multi-function or not, and always disable
6678                  * for all functions on the given path, this means 0,2,4,6 for
6679                  * path 0 and 1,3,5,7 for path 1
6680                  */
6681                 for (abs_func_id = BP_PATH(bp);
6682                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6683                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6684                                 REG_WR(bp,
6685                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6686                                     1);
6687                                 continue;
6688                         }
6689
6690                         bnx2x_pretend_func(bp, abs_func_id);
6691                         /* clear pf enable */
6692                         bnx2x_pf_disable(bp);
6693                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6694                 }
6695         }
6696
6697         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6698         if (CHIP_IS_E1(bp)) {
6699                 /* enable HW interrupt from PXP on USDM overflow
6700                    bit 16 on INT_MASK_0 */
6701                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6702         }
6703
6704         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6705         bnx2x_init_pxp(bp);
6706
6707 #ifdef __BIG_ENDIAN
6708         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6709         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6710         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6711         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6712         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6713         /* make sure this value is 0 */
6714         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6715
6716 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6717         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6718         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6719         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6720         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6721 #endif
6722
6723         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6724
6725         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6726                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6727
6728         /* let the HW do it's magic ... */
6729         msleep(100);
6730         /* finish PXP init */
6731         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6732         if (val != 1) {
6733                 BNX2X_ERR("PXP2 CFG failed\n");
6734                 return -EBUSY;
6735         }
6736         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6737         if (val != 1) {
6738                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6739                 return -EBUSY;
6740         }
6741
6742         /* Timers bug workaround E2 only. We need to set the entire ILT to
6743          * have entries with value "0" and valid bit on.
6744          * This needs to be done by the first PF that is loaded in a path
6745          * (i.e. common phase)
6746          */
6747         if (!CHIP_IS_E1x(bp)) {
6748 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6749  * (i.e. vnic3) to start even if it is marked as "scan-off".
6750  * This occurs when a different function (func2,3) is being marked
6751  * as "scan-off". Real-life scenario for example: if a driver is being
6752  * load-unloaded while func6,7 are down. This will cause the timer to access
6753  * the ilt, translate to a logical address and send a request to read/write.
6754  * Since the ilt for the function that is down is not valid, this will cause
6755  * a translation error which is unrecoverable.
6756  * The Workaround is intended to make sure that when this happens nothing fatal
6757  * will occur. The workaround:
6758  *      1.  First PF driver which loads on a path will:
6759  *              a.  After taking the chip out of reset, by using pretend,
6760  *                  it will write "0" to the following registers of
6761  *                  the other vnics.
6762  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6763  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6764  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6765  *                  And for itself it will write '1' to
6766  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6767  *                  dmae-operations (writing to pram for example.)
6768  *                  note: can be done for only function 6,7 but cleaner this
6769  *                        way.
6770  *              b.  Write zero+valid to the entire ILT.
6771  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6772  *                  VNIC3 (of that port). The range allocated will be the
6773  *                  entire ILT. This is needed to prevent  ILT range error.
6774  *      2.  Any PF driver load flow:
6775  *              a.  ILT update with the physical addresses of the allocated
6776  *                  logical pages.
6777  *              b.  Wait 20msec. - note that this timeout is needed to make
6778  *                  sure there are no requests in one of the PXP internal
6779  *                  queues with "old" ILT addresses.
6780  *              c.  PF enable in the PGLC.
6781  *              d.  Clear the was_error of the PF in the PGLC. (could have
6782  *                  occurred while driver was down)
6783  *              e.  PF enable in the CFC (WEAK + STRONG)
6784  *              f.  Timers scan enable
6785  *      3.  PF driver unload flow:
6786  *              a.  Clear the Timers scan_en.
6787  *              b.  Polling for scan_on=0 for that PF.
6788  *              c.  Clear the PF enable bit in the PXP.
6789  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
6790  *              e.  Write zero+valid to all ILT entries (The valid bit must
6791  *                  stay set)
6792  *              f.  If this is VNIC 3 of a port then also init
6793  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
6794  *                  to the last entry in the ILT.
6795  *
6796  *      Notes:
6797  *      Currently the PF error in the PGLC is non recoverable.
6798  *      In the future the there will be a recovery routine for this error.
6799  *      Currently attention is masked.
6800  *      Having an MCP lock on the load/unload process does not guarantee that
6801  *      there is no Timer disable during Func6/7 enable. This is because the
6802  *      Timers scan is currently being cleared by the MCP on FLR.
6803  *      Step 2.d can be done only for PF6/7 and the driver can also check if
6804  *      there is error before clearing it. But the flow above is simpler and
6805  *      more general.
6806  *      All ILT entries are written by zero+valid and not just PF6/7
6807  *      ILT entries since in the future the ILT entries allocation for
6808  *      PF-s might be dynamic.
6809  */
6810                 struct ilt_client_info ilt_cli;
6811                 struct bnx2x_ilt ilt;
6812                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6813                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6814
6815                 /* initialize dummy TM client */
6816                 ilt_cli.start = 0;
6817                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6818                 ilt_cli.client_num = ILT_CLIENT_TM;
6819
6820                 /* Step 1: set zeroes to all ilt page entries with valid bit on
6821                  * Step 2: set the timers first/last ilt entry to point
6822                  * to the entire range to prevent ILT range error for 3rd/4th
6823                  * vnic (this code assumes existence of the vnic)
6824                  *
6825                  * both steps performed by call to bnx2x_ilt_client_init_op()
6826                  * with dummy TM client
6827                  *
6828                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6829                  * and his brother are split registers
6830                  */
6831                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6832                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6833                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6834
6835                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6836                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6837                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6838         }
6839
6840         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6841         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6842
6843         if (!CHIP_IS_E1x(bp)) {
6844                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6845                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6846                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6847
6848                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6849
6850                 /* let the HW do it's magic ... */
6851                 do {
6852                         msleep(200);
6853                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6854                 } while (factor-- && (val != 1));
6855
6856                 if (val != 1) {
6857                         BNX2X_ERR("ATC_INIT failed\n");
6858                         return -EBUSY;
6859                 }
6860         }
6861
6862         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6863
6864         bnx2x_iov_init_dmae(bp);
6865
6866         /* clean the DMAE memory */
6867         bp->dmae_ready = 1;
6868         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6869
6870         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6871
6872         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6873
6874         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6875
6876         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6877
6878         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6879         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6880         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6881         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6882
6883         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6884
6885         /* QM queues pointers table */
6886         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6887
6888         /* soft reset pulse */
6889         REG_WR(bp, QM_REG_SOFT_RESET, 1);
6890         REG_WR(bp, QM_REG_SOFT_RESET, 0);
6891
6892         if (CNIC_SUPPORT(bp))
6893                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6894
6895         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6896
6897         if (!CHIP_REV_IS_SLOW(bp))
6898                 /* enable hw interrupt from doorbell Q */
6899                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6900
6901         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6902
6903         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6904         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6905
6906         if (!CHIP_IS_E1(bp))
6907                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6908
6909         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6910                 if (IS_MF_AFEX(bp)) {
6911                         /* configure that VNTag and VLAN headers must be
6912                          * received in afex mode
6913                          */
6914                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6915                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6916                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6917                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6918                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6919                 } else {
6920                         /* Bit-map indicating which L2 hdrs may appear
6921                          * after the basic Ethernet header
6922                          */
6923                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6924                                bp->path_has_ovlan ? 7 : 6);
6925                 }
6926         }
6927
6928         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6929         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6930         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6931         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6932
6933         if (!CHIP_IS_E1x(bp)) {
6934                 /* reset VFC memories */
6935                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6936                            VFC_MEMORIES_RST_REG_CAM_RST |
6937                            VFC_MEMORIES_RST_REG_RAM_RST);
6938                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6939                            VFC_MEMORIES_RST_REG_CAM_RST |
6940                            VFC_MEMORIES_RST_REG_RAM_RST);
6941
6942                 msleep(20);
6943         }
6944
6945         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6946         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6947         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6948         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6949
6950         /* sync semi rtc */
6951         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6952                0x80000000);
6953         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6954                0x80000000);
6955
6956         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6957         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6958         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6959
6960         if (!CHIP_IS_E1x(bp)) {
6961                 if (IS_MF_AFEX(bp)) {
6962                         /* configure that VNTag and VLAN headers must be
6963                          * sent in afex mode
6964                          */
6965                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6966                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6967                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6968                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6969                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6970                 } else {
6971                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6972                                bp->path_has_ovlan ? 7 : 6);
6973                 }
6974         }
6975
6976         REG_WR(bp, SRC_REG_SOFT_RST, 1);
6977
6978         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6979
6980         if (CNIC_SUPPORT(bp)) {
6981                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6982                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6983                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6984                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6985                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6986                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6987                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6988                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6989                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6990                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6991         }
6992         REG_WR(bp, SRC_REG_SOFT_RST, 0);
6993
6994         if (sizeof(union cdu_context) != 1024)
6995                 /* we currently assume that a context is 1024 bytes */
6996                 dev_alert(&bp->pdev->dev,
6997                           "please adjust the size of cdu_context(%ld)\n",
6998                           (long)sizeof(union cdu_context));
6999
7000         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7001         val = (4 << 24) + (0 << 12) + 1024;
7002         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7003
7004         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7005         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7006         /* enable context validation interrupt from CFC */
7007         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7008
7009         /* set the thresholds to prevent CFC/CDU race */
7010         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7011
7012         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7013
7014         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7015                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7016
7017         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7018         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7019
7020         /* Reset PCIE errors for debug */
7021         REG_WR(bp, 0x2814, 0xffffffff);
7022         REG_WR(bp, 0x3820, 0xffffffff);
7023
7024         if (!CHIP_IS_E1x(bp)) {
7025                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7026                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7027                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7028                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7029                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7030                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7031                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7032                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7033                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7034                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7035                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7036         }
7037
7038         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7039         if (!CHIP_IS_E1(bp)) {
7040                 /* in E3 this done in per-port section */
7041                 if (!CHIP_IS_E3(bp))
7042                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7043         }
7044         if (CHIP_IS_E1H(bp))
7045                 /* not applicable for E2 (and above ...) */
7046                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7047
7048         if (CHIP_REV_IS_SLOW(bp))
7049                 msleep(200);
7050
7051         /* finish CFC init */
7052         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7053         if (val != 1) {
7054                 BNX2X_ERR("CFC LL_INIT failed\n");
7055                 return -EBUSY;
7056         }
7057         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7058         if (val != 1) {
7059                 BNX2X_ERR("CFC AC_INIT failed\n");
7060                 return -EBUSY;
7061         }
7062         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7063         if (val != 1) {
7064                 BNX2X_ERR("CFC CAM_INIT failed\n");
7065                 return -EBUSY;
7066         }
7067         REG_WR(bp, CFC_REG_DEBUG0, 0);
7068
7069         if (CHIP_IS_E1(bp)) {
7070                 /* read NIG statistic
7071                    to see if this is our first up since powerup */
7072                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7073                 val = *bnx2x_sp(bp, wb_data[0]);
7074
7075                 /* do internal memory self test */
7076                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7077                         BNX2X_ERR("internal mem self test failed\n");
7078                         return -EBUSY;
7079                 }
7080         }
7081
7082         bnx2x_setup_fan_failure_detection(bp);
7083
7084         /* clear PXP2 attentions */
7085         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7086
7087         bnx2x_enable_blocks_attention(bp);
7088         bnx2x_enable_blocks_parity(bp);
7089
7090         if (!BP_NOMCP(bp)) {
7091                 if (CHIP_IS_E1x(bp))
7092                         bnx2x__common_init_phy(bp);
7093         } else
7094                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7095
7096         return 0;
7097 }
7098
7099 /**
7100  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7101  *
7102  * @bp:         driver handle
7103  */
7104 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7105 {
7106         int rc = bnx2x_init_hw_common(bp);
7107
7108         if (rc)
7109                 return rc;
7110
7111         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7112         if (!BP_NOMCP(bp))
7113                 bnx2x__common_init_phy(bp);
7114
7115         return 0;
7116 }
7117
7118 static int bnx2x_init_hw_port(struct bnx2x *bp)
7119 {
7120         int port = BP_PORT(bp);
7121         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7122         u32 low, high;
7123         u32 val;
7124
7125         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7126
7127         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7128
7129         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7130         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7131         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7132
7133         /* Timers bug workaround: disables the pf_master bit in pglue at
7134          * common phase, we need to enable it here before any dmae access are
7135          * attempted. Therefore we manually added the enable-master to the
7136          * port phase (it also happens in the function phase)
7137          */
7138         if (!CHIP_IS_E1x(bp))
7139                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7140
7141         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7142         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7143         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7144         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7145
7146         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7147         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7148         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7149         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7150
7151         /* QM cid (connection) count */
7152         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7153
7154         if (CNIC_SUPPORT(bp)) {
7155                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7156                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7157                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7158         }
7159
7160         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7161
7162         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7163
7164         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7165
7166                 if (IS_MF(bp))
7167                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7168                 else if (bp->dev->mtu > 4096) {
7169                         if (bp->flags & ONE_PORT_FLAG)
7170                                 low = 160;
7171                         else {
7172                                 val = bp->dev->mtu;
7173                                 /* (24*1024 + val*4)/256 */
7174                                 low = 96 + (val/64) +
7175                                                 ((val % 64) ? 1 : 0);
7176                         }
7177                 } else
7178                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7179                 high = low + 56;        /* 14*1024/256 */
7180                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7181                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7182         }
7183
7184         if (CHIP_MODE_IS_4_PORT(bp))
7185                 REG_WR(bp, (BP_PORT(bp) ?
7186                             BRB1_REG_MAC_GUARANTIED_1 :
7187                             BRB1_REG_MAC_GUARANTIED_0), 40);
7188
7189         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7190         if (CHIP_IS_E3B0(bp)) {
7191                 if (IS_MF_AFEX(bp)) {
7192                         /* configure headers for AFEX mode */
7193                         REG_WR(bp, BP_PORT(bp) ?
7194                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7195                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7196                         REG_WR(bp, BP_PORT(bp) ?
7197                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7198                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7199                         REG_WR(bp, BP_PORT(bp) ?
7200                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7201                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7202                 } else {
7203                         /* Ovlan exists only if we are in multi-function +
7204                          * switch-dependent mode, in switch-independent there
7205                          * is no ovlan headers
7206                          */
7207                         REG_WR(bp, BP_PORT(bp) ?
7208                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7209                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7210                                (bp->path_has_ovlan ? 7 : 6));
7211                 }
7212         }
7213
7214         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7215         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7216         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7217         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7218
7219         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7220         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7221         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7222         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7223
7224         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7225         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7226
7227         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7228
7229         if (CHIP_IS_E1x(bp)) {
7230                 /* configure PBF to work without PAUSE mtu 9000 */
7231                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7232
7233                 /* update threshold */
7234                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7235                 /* update init credit */
7236                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7237
7238                 /* probe changes */
7239                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7240                 udelay(50);
7241                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7242         }
7243
7244         if (CNIC_SUPPORT(bp))
7245                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7246
7247         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7248         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7249
7250         if (CHIP_IS_E1(bp)) {
7251                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7252                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7253         }
7254         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7255
7256         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7257
7258         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7259         /* init aeu_mask_attn_func_0/1:
7260          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7261          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7262          *             bits 4-7 are used for "per vn group attention" */
7263         val = IS_MF(bp) ? 0xF7 : 0x7;
7264         /* Enable DCBX attention for all but E1 */
7265         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7266         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7267
7268         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7269
7270         if (!CHIP_IS_E1x(bp)) {
7271                 /* Bit-map indicating which L2 hdrs may appear after the
7272                  * basic Ethernet header
7273                  */
7274                 if (IS_MF_AFEX(bp))
7275                         REG_WR(bp, BP_PORT(bp) ?
7276                                NIG_REG_P1_HDRS_AFTER_BASIC :
7277                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7278                 else
7279                         REG_WR(bp, BP_PORT(bp) ?
7280                                NIG_REG_P1_HDRS_AFTER_BASIC :
7281                                NIG_REG_P0_HDRS_AFTER_BASIC,
7282                                IS_MF_SD(bp) ? 7 : 6);
7283
7284                 if (CHIP_IS_E3(bp))
7285                         REG_WR(bp, BP_PORT(bp) ?
7286                                    NIG_REG_LLH1_MF_MODE :
7287                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7288         }
7289         if (!CHIP_IS_E3(bp))
7290                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7291
7292         if (!CHIP_IS_E1(bp)) {
7293                 /* 0x2 disable mf_ov, 0x1 enable */
7294                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7295                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7296
7297                 if (!CHIP_IS_E1x(bp)) {
7298                         val = 0;
7299                         switch (bp->mf_mode) {
7300                         case MULTI_FUNCTION_SD:
7301                                 val = 1;
7302                                 break;
7303                         case MULTI_FUNCTION_SI:
7304                         case MULTI_FUNCTION_AFEX:
7305                                 val = 2;
7306                                 break;
7307                         }
7308
7309                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7310                                                   NIG_REG_LLH0_CLS_TYPE), val);
7311                 }
7312                 {
7313                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7314                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7315                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7316                 }
7317         }
7318
7319         /* If SPIO5 is set to generate interrupts, enable it for this port */
7320         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7321         if (val & MISC_SPIO_SPIO5) {
7322                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7323                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7324                 val = REG_RD(bp, reg_addr);
7325                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7326                 REG_WR(bp, reg_addr, val);
7327         }
7328
7329         return 0;
7330 }
7331
7332 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7333 {
7334         int reg;
7335         u32 wb_write[2];
7336
7337         if (CHIP_IS_E1(bp))
7338                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7339         else
7340                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7341
7342         wb_write[0] = ONCHIP_ADDR1(addr);
7343         wb_write[1] = ONCHIP_ADDR2(addr);
7344         REG_WR_DMAE(bp, reg, wb_write, 2);
7345 }
7346
7347 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7348 {
7349         u32 data, ctl, cnt = 100;
7350         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7351         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7352         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7353         u32 sb_bit =  1 << (idu_sb_id%32);
7354         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7355         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7356
7357         /* Not supported in BC mode */
7358         if (CHIP_INT_MODE_IS_BC(bp))
7359                 return;
7360
7361         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7362                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7363                 IGU_REGULAR_CLEANUP_SET                         |
7364                 IGU_REGULAR_BCLEANUP;
7365
7366         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7367               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7368               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7369
7370         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7371                          data, igu_addr_data);
7372         REG_WR(bp, igu_addr_data, data);
7373         mmiowb();
7374         barrier();
7375         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7376                           ctl, igu_addr_ctl);
7377         REG_WR(bp, igu_addr_ctl, ctl);
7378         mmiowb();
7379         barrier();
7380
7381         /* wait for clean up to finish */
7382         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7383                 msleep(20);
7384
7385         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7386                 DP(NETIF_MSG_HW,
7387                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7388                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7389         }
7390 }
7391
7392 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7393 {
7394         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7395 }
7396
7397 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7398 {
7399         u32 i, base = FUNC_ILT_BASE(func);
7400         for (i = base; i < base + ILT_PER_FUNC; i++)
7401                 bnx2x_ilt_wr(bp, i, 0);
7402 }
7403
7404 static void bnx2x_init_searcher(struct bnx2x *bp)
7405 {
7406         int port = BP_PORT(bp);
7407         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7408         /* T1 hash bits value determines the T1 number of entries */
7409         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7410 }
7411
7412 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7413 {
7414         int rc;
7415         struct bnx2x_func_state_params func_params = {NULL};
7416         struct bnx2x_func_switch_update_params *switch_update_params =
7417                 &func_params.params.switch_update;
7418
7419         /* Prepare parameters for function state transitions */
7420         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7421         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7422
7423         func_params.f_obj = &bp->func_obj;
7424         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7425
7426         /* Function parameters */
7427         switch_update_params->suspend = suspend;
7428
7429         rc = bnx2x_func_state_change(bp, &func_params);
7430
7431         return rc;
7432 }
7433
7434 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7435 {
7436         int rc, i, port = BP_PORT(bp);
7437         int vlan_en = 0, mac_en[NUM_MACS];
7438
7439         /* Close input from network */
7440         if (bp->mf_mode == SINGLE_FUNCTION) {
7441                 bnx2x_set_rx_filter(&bp->link_params, 0);
7442         } else {
7443                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7444                                    NIG_REG_LLH0_FUNC_EN);
7445                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7446                           NIG_REG_LLH0_FUNC_EN, 0);
7447                 for (i = 0; i < NUM_MACS; i++) {
7448                         mac_en[i] = REG_RD(bp, port ?
7449                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7450                                               4 * i) :
7451                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7452                                               4 * i));
7453                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7454                                               4 * i) :
7455                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7456                 }
7457         }
7458
7459         /* Close BMC to host */
7460         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7461                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7462
7463         /* Suspend Tx switching to the PF. Completion of this ramrod
7464          * further guarantees that all the packets of that PF / child
7465          * VFs in BRB were processed by the Parser, so it is safe to
7466          * change the NIC_MODE register.
7467          */
7468         rc = bnx2x_func_switch_update(bp, 1);
7469         if (rc) {
7470                 BNX2X_ERR("Can't suspend tx-switching!\n");
7471                 return rc;
7472         }
7473
7474         /* Change NIC_MODE register */
7475         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7476
7477         /* Open input from network */
7478         if (bp->mf_mode == SINGLE_FUNCTION) {
7479                 bnx2x_set_rx_filter(&bp->link_params, 1);
7480         } else {
7481                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7482                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7483                 for (i = 0; i < NUM_MACS; i++) {
7484                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7485                                               4 * i) :
7486                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7487                                   mac_en[i]);
7488                 }
7489         }
7490
7491         /* Enable BMC to host */
7492         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7493                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7494
7495         /* Resume Tx switching to the PF */
7496         rc = bnx2x_func_switch_update(bp, 0);
7497         if (rc) {
7498                 BNX2X_ERR("Can't resume tx-switching!\n");
7499                 return rc;
7500         }
7501
7502         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7503         return 0;
7504 }
7505
7506 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7507 {
7508         int rc;
7509
7510         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7511
7512         if (CONFIGURE_NIC_MODE(bp)) {
7513                 /* Configure searcher as part of function hw init */
7514                 bnx2x_init_searcher(bp);
7515
7516                 /* Reset NIC mode */
7517                 rc = bnx2x_reset_nic_mode(bp);
7518                 if (rc)
7519                         BNX2X_ERR("Can't change NIC mode!\n");
7520                 return rc;
7521         }
7522
7523         return 0;
7524 }
7525
7526 static int bnx2x_init_hw_func(struct bnx2x *bp)
7527 {
7528         int port = BP_PORT(bp);
7529         int func = BP_FUNC(bp);
7530         int init_phase = PHASE_PF0 + func;
7531         struct bnx2x_ilt *ilt = BP_ILT(bp);
7532         u16 cdu_ilt_start;
7533         u32 addr, val;
7534         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7535         int i, main_mem_width, rc;
7536
7537         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7538
7539         /* FLR cleanup - hmmm */
7540         if (!CHIP_IS_E1x(bp)) {
7541                 rc = bnx2x_pf_flr_clnup(bp);
7542                 if (rc) {
7543                         bnx2x_fw_dump(bp);
7544                         return rc;
7545                 }
7546         }
7547
7548         /* set MSI reconfigure capability */
7549         if (bp->common.int_block == INT_BLOCK_HC) {
7550                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7551                 val = REG_RD(bp, addr);
7552                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7553                 REG_WR(bp, addr, val);
7554         }
7555
7556         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7557         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7558
7559         ilt = BP_ILT(bp);
7560         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7561
7562         if (IS_SRIOV(bp))
7563                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7564         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7565
7566         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7567          * those of the VFs, so start line should be reset
7568          */
7569         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7570         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7571                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7572                 ilt->lines[cdu_ilt_start + i].page_mapping =
7573                         bp->context[i].cxt_mapping;
7574                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7575         }
7576
7577         bnx2x_ilt_init_op(bp, INITOP_SET);
7578
7579         if (!CONFIGURE_NIC_MODE(bp)) {
7580                 bnx2x_init_searcher(bp);
7581                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7582                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7583         } else {
7584                 /* Set NIC mode */
7585                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7586                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7587         }
7588
7589         if (!CHIP_IS_E1x(bp)) {
7590                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7591
7592                 /* Turn on a single ISR mode in IGU if driver is going to use
7593                  * INT#x or MSI
7594                  */
7595                 if (!(bp->flags & USING_MSIX_FLAG))
7596                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7597                 /*
7598                  * Timers workaround bug: function init part.
7599                  * Need to wait 20msec after initializing ILT,
7600                  * needed to make sure there are no requests in
7601                  * one of the PXP internal queues with "old" ILT addresses
7602                  */
7603                 msleep(20);
7604                 /*
7605                  * Master enable - Due to WB DMAE writes performed before this
7606                  * register is re-initialized as part of the regular function
7607                  * init
7608                  */
7609                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7610                 /* Enable the function in IGU */
7611                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7612         }
7613
7614         bp->dmae_ready = 1;
7615
7616         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7617
7618         if (!CHIP_IS_E1x(bp))
7619                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7620
7621         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7622         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7623         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7624         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7625         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7626         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7627         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7628         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7629         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7630         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7631         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7632         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7633         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7634
7635         if (!CHIP_IS_E1x(bp))
7636                 REG_WR(bp, QM_REG_PF_EN, 1);
7637
7638         if (!CHIP_IS_E1x(bp)) {
7639                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7640                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7641                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7642                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7643         }
7644         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7645
7646         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7647         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7648         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7649
7650         bnx2x_iov_init_dq(bp);
7651
7652         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7653         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7654         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7655         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7656         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7657         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7658         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7659         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7660         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7661         if (!CHIP_IS_E1x(bp))
7662                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7663
7664         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7665
7666         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7667
7668         if (!CHIP_IS_E1x(bp))
7669                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7670
7671         if (IS_MF(bp)) {
7672                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7673                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7674         }
7675
7676         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7677
7678         /* HC init per function */
7679         if (bp->common.int_block == INT_BLOCK_HC) {
7680                 if (CHIP_IS_E1H(bp)) {
7681                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7682
7683                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7684                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7685                 }
7686                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7687
7688         } else {
7689                 int num_segs, sb_idx, prod_offset;
7690
7691                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7692
7693                 if (!CHIP_IS_E1x(bp)) {
7694                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7695                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7696                 }
7697
7698                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7699
7700                 if (!CHIP_IS_E1x(bp)) {
7701                         int dsb_idx = 0;
7702                         /**
7703                          * Producer memory:
7704                          * E2 mode: address 0-135 match to the mapping memory;
7705                          * 136 - PF0 default prod; 137 - PF1 default prod;
7706                          * 138 - PF2 default prod; 139 - PF3 default prod;
7707                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7708                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7709                          * 144-147 reserved.
7710                          *
7711                          * E1.5 mode - In backward compatible mode;
7712                          * for non default SB; each even line in the memory
7713                          * holds the U producer and each odd line hold
7714                          * the C producer. The first 128 producers are for
7715                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7716                          * producers are for the DSB for each PF.
7717                          * Each PF has five segments: (the order inside each
7718                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7719                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7720                          * 144-147 attn prods;
7721                          */
7722                         /* non-default-status-blocks */
7723                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7724                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7725                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7726                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7727                                         num_segs;
7728
7729                                 for (i = 0; i < num_segs; i++) {
7730                                         addr = IGU_REG_PROD_CONS_MEMORY +
7731                                                         (prod_offset + i) * 4;
7732                                         REG_WR(bp, addr, 0);
7733                                 }
7734                                 /* send consumer update with value 0 */
7735                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7736                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7737                                 bnx2x_igu_clear_sb(bp,
7738                                                    bp->igu_base_sb + sb_idx);
7739                         }
7740
7741                         /* default-status-blocks */
7742                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7743                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7744
7745                         if (CHIP_MODE_IS_4_PORT(bp))
7746                                 dsb_idx = BP_FUNC(bp);
7747                         else
7748                                 dsb_idx = BP_VN(bp);
7749
7750                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7751                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7752                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7753
7754                         /*
7755                          * igu prods come in chunks of E1HVN_MAX (4) -
7756                          * does not matters what is the current chip mode
7757                          */
7758                         for (i = 0; i < (num_segs * E1HVN_MAX);
7759                              i += E1HVN_MAX) {
7760                                 addr = IGU_REG_PROD_CONS_MEMORY +
7761                                                         (prod_offset + i)*4;
7762                                 REG_WR(bp, addr, 0);
7763                         }
7764                         /* send consumer update with 0 */
7765                         if (CHIP_INT_MODE_IS_BC(bp)) {
7766                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7767                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7768                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7769                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7770                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7771                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7772                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7773                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
7774                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7775                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7776                         } else {
7777                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7778                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7779                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7780                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7781                         }
7782                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7783
7784                         /* !!! These should become driver const once
7785                            rf-tool supports split-68 const */
7786                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7787                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7788                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7789                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7790                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7791                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7792                 }
7793         }
7794
7795         /* Reset PCIE errors for debug */
7796         REG_WR(bp, 0x2114, 0xffffffff);
7797         REG_WR(bp, 0x2120, 0xffffffff);
7798
7799         if (CHIP_IS_E1x(bp)) {
7800                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7801                 main_mem_base = HC_REG_MAIN_MEMORY +
7802                                 BP_PORT(bp) * (main_mem_size * 4);
7803                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7804                 main_mem_width = 8;
7805
7806                 val = REG_RD(bp, main_mem_prty_clr);
7807                 if (val)
7808                         DP(NETIF_MSG_HW,
7809                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7810                            val);
7811
7812                 /* Clear "false" parity errors in MSI-X table */
7813                 for (i = main_mem_base;
7814                      i < main_mem_base + main_mem_size * 4;
7815                      i += main_mem_width) {
7816                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
7817                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7818                                          i, main_mem_width / 4);
7819                 }
7820                 /* Clear HC parity attention */
7821                 REG_RD(bp, main_mem_prty_clr);
7822         }
7823
7824 #ifdef BNX2X_STOP_ON_ERROR
7825         /* Enable STORMs SP logging */
7826         REG_WR8(bp, BAR_USTRORM_INTMEM +
7827                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7828         REG_WR8(bp, BAR_TSTRORM_INTMEM +
7829                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7830         REG_WR8(bp, BAR_CSTRORM_INTMEM +
7831                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7832         REG_WR8(bp, BAR_XSTRORM_INTMEM +
7833                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7834 #endif
7835
7836         bnx2x_phy_probe(&bp->link_params);
7837
7838         return 0;
7839 }
7840
7841 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7842 {
7843         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7844
7845         if (!CHIP_IS_E1x(bp))
7846                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7847                                sizeof(struct host_hc_status_block_e2));
7848         else
7849                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7850                                sizeof(struct host_hc_status_block_e1x));
7851
7852         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7853 }
7854
7855 void bnx2x_free_mem(struct bnx2x *bp)
7856 {
7857         int i;
7858
7859         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7860                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7861
7862         if (IS_VF(bp))
7863                 return;
7864
7865         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7866                        sizeof(struct host_sp_status_block));
7867
7868         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7869                        sizeof(struct bnx2x_slowpath));
7870
7871         for (i = 0; i < L2_ILT_LINES(bp); i++)
7872                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7873                                bp->context[i].size);
7874         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7875
7876         BNX2X_FREE(bp->ilt->lines);
7877
7878         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7879
7880         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7881                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
7882
7883         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7884
7885         bnx2x_iov_free_mem(bp);
7886 }
7887
7888 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7889 {
7890         if (!CHIP_IS_E1x(bp))
7891                 /* size = the status block + ramrod buffers */
7892                 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7893                                 sizeof(struct host_hc_status_block_e2));
7894         else
7895                 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7896                                 &bp->cnic_sb_mapping,
7897                                 sizeof(struct
7898                                        host_hc_status_block_e1x));
7899
7900         if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7901                 /* allocate searcher T2 table, as it wasn't allocated before */
7902                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7903
7904         /* write address to which L5 should insert its values */
7905         bp->cnic_eth_dev.addr_drv_info_to_mcp =
7906                 &bp->slowpath->drv_info_to_mcp;
7907
7908         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7909                 goto alloc_mem_err;
7910
7911         return 0;
7912
7913 alloc_mem_err:
7914         bnx2x_free_mem_cnic(bp);
7915         BNX2X_ERR("Can't allocate memory\n");
7916         return -ENOMEM;
7917 }
7918
7919 int bnx2x_alloc_mem(struct bnx2x *bp)
7920 {
7921         int i, allocated, context_size;
7922
7923         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7924                 /* allocate searcher T2 table */
7925                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7926
7927         BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7928                         sizeof(struct host_sp_status_block));
7929
7930         BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7931                         sizeof(struct bnx2x_slowpath));
7932
7933         /* Allocate memory for CDU context:
7934          * This memory is allocated separately and not in the generic ILT
7935          * functions because CDU differs in few aspects:
7936          * 1. There are multiple entities allocating memory for context -
7937          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7938          * its own ILT lines.
7939          * 2. Since CDU page-size is not a single 4KB page (which is the case
7940          * for the other ILT clients), to be efficient we want to support
7941          * allocation of sub-page-size in the last entry.
7942          * 3. Context pointers are used by the driver to pass to FW / update
7943          * the context (for the other ILT clients the pointers are used just to
7944          * free the memory during unload).
7945          */
7946         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7947
7948         for (i = 0, allocated = 0; allocated < context_size; i++) {
7949                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7950                                           (context_size - allocated));
7951                 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7952                                 &bp->context[i].cxt_mapping,
7953                                 bp->context[i].size);
7954                 allocated += bp->context[i].size;
7955         }
7956         BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7957
7958         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7959                 goto alloc_mem_err;
7960
7961         if (bnx2x_iov_alloc_mem(bp))
7962                 goto alloc_mem_err;
7963
7964         /* Slow path ring */
7965         BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7966
7967         /* EQ */
7968         BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7969                         BCM_PAGE_SIZE * NUM_EQ_PAGES);
7970
7971         return 0;
7972
7973 alloc_mem_err:
7974         bnx2x_free_mem(bp);
7975         BNX2X_ERR("Can't allocate memory\n");
7976         return -ENOMEM;
7977 }
7978
7979 /*
7980  * Init service functions
7981  */
7982
7983 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7984                       struct bnx2x_vlan_mac_obj *obj, bool set,
7985                       int mac_type, unsigned long *ramrod_flags)
7986 {
7987         int rc;
7988         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7989
7990         memset(&ramrod_param, 0, sizeof(ramrod_param));
7991
7992         /* Fill general parameters */
7993         ramrod_param.vlan_mac_obj = obj;
7994         ramrod_param.ramrod_flags = *ramrod_flags;
7995
7996         /* Fill a user request section if needed */
7997         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7998                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7999
8000                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8001
8002                 /* Set the command: ADD or DEL */
8003                 if (set)
8004                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8005                 else
8006                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8007         }
8008
8009         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8010
8011         if (rc == -EEXIST) {
8012                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8013                 /* do not treat adding same MAC as error */
8014                 rc = 0;
8015         } else if (rc < 0)
8016                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8017
8018         return rc;
8019 }
8020
8021 int bnx2x_del_all_macs(struct bnx2x *bp,
8022                        struct bnx2x_vlan_mac_obj *mac_obj,
8023                        int mac_type, bool wait_for_comp)
8024 {
8025         int rc;
8026         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8027
8028         /* Wait for completion of requested */
8029         if (wait_for_comp)
8030                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8031
8032         /* Set the mac type of addresses we want to clear */
8033         __set_bit(mac_type, &vlan_mac_flags);
8034
8035         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8036         if (rc < 0)
8037                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8038
8039         return rc;
8040 }
8041
8042 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8043 {
8044         if (is_zero_ether_addr(bp->dev->dev_addr) &&
8045             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8046                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8047                    "Ignoring Zero MAC for STORAGE SD mode\n");
8048                 return 0;
8049         }
8050
8051         if (IS_PF(bp)) {
8052                 unsigned long ramrod_flags = 0;
8053
8054                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8055                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8056                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8057                                          &bp->sp_objs->mac_obj, set,
8058                                          BNX2X_ETH_MAC, &ramrod_flags);
8059         } else { /* vf */
8060                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8061                                              bp->fp->index, true);
8062         }
8063 }
8064
8065 int bnx2x_setup_leading(struct bnx2x *bp)
8066 {
8067         if (IS_PF(bp))
8068                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8069         else /* VF */
8070                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8071 }
8072
8073 /**
8074  * bnx2x_set_int_mode - configure interrupt mode
8075  *
8076  * @bp:         driver handle
8077  *
8078  * In case of MSI-X it will also try to enable MSI-X.
8079  */
8080 int bnx2x_set_int_mode(struct bnx2x *bp)
8081 {
8082         int rc = 0;
8083
8084         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8085                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8086                 return -EINVAL;
8087         }
8088
8089         switch (int_mode) {
8090         case BNX2X_INT_MODE_MSIX:
8091                 /* attempt to enable msix */
8092                 rc = bnx2x_enable_msix(bp);
8093
8094                 /* msix attained */
8095                 if (!rc)
8096                         return 0;
8097
8098                 /* vfs use only msix */
8099                 if (rc && IS_VF(bp))
8100                         return rc;
8101
8102                 /* failed to enable multiple MSI-X */
8103                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8104                                bp->num_queues,
8105                                1 + bp->num_cnic_queues);
8106
8107                 /* falling through... */
8108         case BNX2X_INT_MODE_MSI:
8109                 bnx2x_enable_msi(bp);
8110
8111                 /* falling through... */
8112         case BNX2X_INT_MODE_INTX:
8113                 bp->num_ethernet_queues = 1;
8114                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8115                 BNX2X_DEV_INFO("set number of queues to 1\n");
8116                 break;
8117         default:
8118                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8119                 return -EINVAL;
8120         }
8121         return 0;
8122 }
8123
8124 /* must be called prior to any HW initializations */
8125 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8126 {
8127         if (IS_SRIOV(bp))
8128                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8129         return L2_ILT_LINES(bp);
8130 }
8131
8132 void bnx2x_ilt_set_info(struct bnx2x *bp)
8133 {
8134         struct ilt_client_info *ilt_client;
8135         struct bnx2x_ilt *ilt = BP_ILT(bp);
8136         u16 line = 0;
8137
8138         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8139         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8140
8141         /* CDU */
8142         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8143         ilt_client->client_num = ILT_CLIENT_CDU;
8144         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8145         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8146         ilt_client->start = line;
8147         line += bnx2x_cid_ilt_lines(bp);
8148
8149         if (CNIC_SUPPORT(bp))
8150                 line += CNIC_ILT_LINES;
8151         ilt_client->end = line - 1;
8152
8153         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8154            ilt_client->start,
8155            ilt_client->end,
8156            ilt_client->page_size,
8157            ilt_client->flags,
8158            ilog2(ilt_client->page_size >> 12));
8159
8160         /* QM */
8161         if (QM_INIT(bp->qm_cid_count)) {
8162                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8163                 ilt_client->client_num = ILT_CLIENT_QM;
8164                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8165                 ilt_client->flags = 0;
8166                 ilt_client->start = line;
8167
8168                 /* 4 bytes for each cid */
8169                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8170                                                          QM_ILT_PAGE_SZ);
8171
8172                 ilt_client->end = line - 1;
8173
8174                 DP(NETIF_MSG_IFUP,
8175                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8176                    ilt_client->start,
8177                    ilt_client->end,
8178                    ilt_client->page_size,
8179                    ilt_client->flags,
8180                    ilog2(ilt_client->page_size >> 12));
8181         }
8182
8183         if (CNIC_SUPPORT(bp)) {
8184                 /* SRC */
8185                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8186                 ilt_client->client_num = ILT_CLIENT_SRC;
8187                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8188                 ilt_client->flags = 0;
8189                 ilt_client->start = line;
8190                 line += SRC_ILT_LINES;
8191                 ilt_client->end = line - 1;
8192
8193                 DP(NETIF_MSG_IFUP,
8194                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8195                    ilt_client->start,
8196                    ilt_client->end,
8197                    ilt_client->page_size,
8198                    ilt_client->flags,
8199                    ilog2(ilt_client->page_size >> 12));
8200
8201                 /* TM */
8202                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8203                 ilt_client->client_num = ILT_CLIENT_TM;
8204                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8205                 ilt_client->flags = 0;
8206                 ilt_client->start = line;
8207                 line += TM_ILT_LINES;
8208                 ilt_client->end = line - 1;
8209
8210                 DP(NETIF_MSG_IFUP,
8211                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8212                    ilt_client->start,
8213                    ilt_client->end,
8214                    ilt_client->page_size,
8215                    ilt_client->flags,
8216                    ilog2(ilt_client->page_size >> 12));
8217         }
8218
8219         BUG_ON(line > ILT_MAX_LINES);
8220 }
8221
8222 /**
8223  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8224  *
8225  * @bp:                 driver handle
8226  * @fp:                 pointer to fastpath
8227  * @init_params:        pointer to parameters structure
8228  *
8229  * parameters configured:
8230  *      - HC configuration
8231  *      - Queue's CDU context
8232  */
8233 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8234         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8235 {
8236         u8 cos;
8237         int cxt_index, cxt_offset;
8238
8239         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8240         if (!IS_FCOE_FP(fp)) {
8241                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8242                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8243
8244                 /* If HC is supported, enable host coalescing in the transition
8245                  * to INIT state.
8246                  */
8247                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8248                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8249
8250                 /* HC rate */
8251                 init_params->rx.hc_rate = bp->rx_ticks ?
8252                         (1000000 / bp->rx_ticks) : 0;
8253                 init_params->tx.hc_rate = bp->tx_ticks ?
8254                         (1000000 / bp->tx_ticks) : 0;
8255
8256                 /* FW SB ID */
8257                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8258                         fp->fw_sb_id;
8259
8260                 /*
8261                  * CQ index among the SB indices: FCoE clients uses the default
8262                  * SB, therefore it's different.
8263                  */
8264                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8265                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8266         }
8267
8268         /* set maximum number of COSs supported by this queue */
8269         init_params->max_cos = fp->max_cos;
8270
8271         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8272             fp->index, init_params->max_cos);
8273
8274         /* set the context pointers queue object */
8275         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8276                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8277                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8278                                 ILT_PAGE_CIDS);
8279                 init_params->cxts[cos] =
8280                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8281         }
8282 }
8283
8284 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8285                         struct bnx2x_queue_state_params *q_params,
8286                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8287                         int tx_index, bool leading)
8288 {
8289         memset(tx_only_params, 0, sizeof(*tx_only_params));
8290
8291         /* Set the command */
8292         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8293
8294         /* Set tx-only QUEUE flags: don't zero statistics */
8295         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8296
8297         /* choose the index of the cid to send the slow path on */
8298         tx_only_params->cid_index = tx_index;
8299
8300         /* Set general TX_ONLY_SETUP parameters */
8301         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8302
8303         /* Set Tx TX_ONLY_SETUP parameters */
8304         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8305
8306         DP(NETIF_MSG_IFUP,
8307            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8308            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8309            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8310            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8311
8312         /* send the ramrod */
8313         return bnx2x_queue_state_change(bp, q_params);
8314 }
8315
8316 /**
8317  * bnx2x_setup_queue - setup queue
8318  *
8319  * @bp:         driver handle
8320  * @fp:         pointer to fastpath
8321  * @leading:    is leading
8322  *
8323  * This function performs 2 steps in a Queue state machine
8324  *      actually: 1) RESET->INIT 2) INIT->SETUP
8325  */
8326
8327 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8328                        bool leading)
8329 {
8330         struct bnx2x_queue_state_params q_params = {NULL};
8331         struct bnx2x_queue_setup_params *setup_params =
8332                                                 &q_params.params.setup;
8333         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8334                                                 &q_params.params.tx_only;
8335         int rc;
8336         u8 tx_index;
8337
8338         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8339
8340         /* reset IGU state skip FCoE L2 queue */
8341         if (!IS_FCOE_FP(fp))
8342                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8343                              IGU_INT_ENABLE, 0);
8344
8345         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8346         /* We want to wait for completion in this context */
8347         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8348
8349         /* Prepare the INIT parameters */
8350         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8351
8352         /* Set the command */
8353         q_params.cmd = BNX2X_Q_CMD_INIT;
8354
8355         /* Change the state to INIT */
8356         rc = bnx2x_queue_state_change(bp, &q_params);
8357         if (rc) {
8358                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8359                 return rc;
8360         }
8361
8362         DP(NETIF_MSG_IFUP, "init complete\n");
8363
8364         /* Now move the Queue to the SETUP state... */
8365         memset(setup_params, 0, sizeof(*setup_params));
8366
8367         /* Set QUEUE flags */
8368         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8369
8370         /* Set general SETUP parameters */
8371         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8372                                 FIRST_TX_COS_INDEX);
8373
8374         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8375                             &setup_params->rxq_params);
8376
8377         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8378                            FIRST_TX_COS_INDEX);
8379
8380         /* Set the command */
8381         q_params.cmd = BNX2X_Q_CMD_SETUP;
8382
8383         if (IS_FCOE_FP(fp))
8384                 bp->fcoe_init = true;
8385
8386         /* Change the state to SETUP */
8387         rc = bnx2x_queue_state_change(bp, &q_params);
8388         if (rc) {
8389                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8390                 return rc;
8391         }
8392
8393         /* loop through the relevant tx-only indices */
8394         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8395               tx_index < fp->max_cos;
8396               tx_index++) {
8397
8398                 /* prepare and send tx-only ramrod*/
8399                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8400                                           tx_only_params, tx_index, leading);
8401                 if (rc) {
8402                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8403                                   fp->index, tx_index);
8404                         return rc;
8405                 }
8406         }
8407
8408         return rc;
8409 }
8410
8411 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8412 {
8413         struct bnx2x_fastpath *fp = &bp->fp[index];
8414         struct bnx2x_fp_txdata *txdata;
8415         struct bnx2x_queue_state_params q_params = {NULL};
8416         int rc, tx_index;
8417
8418         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8419
8420         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8421         /* We want to wait for completion in this context */
8422         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8423
8424         /* close tx-only connections */
8425         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8426              tx_index < fp->max_cos;
8427              tx_index++){
8428
8429                 /* ascertain this is a normal queue*/
8430                 txdata = fp->txdata_ptr[tx_index];
8431
8432                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8433                                                         txdata->txq_index);
8434
8435                 /* send halt terminate on tx-only connection */
8436                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8437                 memset(&q_params.params.terminate, 0,
8438                        sizeof(q_params.params.terminate));
8439                 q_params.params.terminate.cid_index = tx_index;
8440
8441                 rc = bnx2x_queue_state_change(bp, &q_params);
8442                 if (rc)
8443                         return rc;
8444
8445                 /* send halt terminate on tx-only connection */
8446                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8447                 memset(&q_params.params.cfc_del, 0,
8448                        sizeof(q_params.params.cfc_del));
8449                 q_params.params.cfc_del.cid_index = tx_index;
8450                 rc = bnx2x_queue_state_change(bp, &q_params);
8451                 if (rc)
8452                         return rc;
8453         }
8454         /* Stop the primary connection: */
8455         /* ...halt the connection */
8456         q_params.cmd = BNX2X_Q_CMD_HALT;
8457         rc = bnx2x_queue_state_change(bp, &q_params);
8458         if (rc)
8459                 return rc;
8460
8461         /* ...terminate the connection */
8462         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8463         memset(&q_params.params.terminate, 0,
8464                sizeof(q_params.params.terminate));
8465         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8466         rc = bnx2x_queue_state_change(bp, &q_params);
8467         if (rc)
8468                 return rc;
8469         /* ...delete cfc entry */
8470         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8471         memset(&q_params.params.cfc_del, 0,
8472                sizeof(q_params.params.cfc_del));
8473         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8474         return bnx2x_queue_state_change(bp, &q_params);
8475 }
8476
8477 static void bnx2x_reset_func(struct bnx2x *bp)
8478 {
8479         int port = BP_PORT(bp);
8480         int func = BP_FUNC(bp);
8481         int i;
8482
8483         /* Disable the function in the FW */
8484         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8485         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8486         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8487         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8488
8489         /* FP SBs */
8490         for_each_eth_queue(bp, i) {
8491                 struct bnx2x_fastpath *fp = &bp->fp[i];
8492                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8493                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8494                            SB_DISABLED);
8495         }
8496
8497         if (CNIC_LOADED(bp))
8498                 /* CNIC SB */
8499                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8500                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8501                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8502
8503         /* SP SB */
8504         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8505                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8506                 SB_DISABLED);
8507
8508         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8509                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8510                        0);
8511
8512         /* Configure IGU */
8513         if (bp->common.int_block == INT_BLOCK_HC) {
8514                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8515                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8516         } else {
8517                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8518                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8519         }
8520
8521         if (CNIC_LOADED(bp)) {
8522                 /* Disable Timer scan */
8523                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8524                 /*
8525                  * Wait for at least 10ms and up to 2 second for the timers
8526                  * scan to complete
8527                  */
8528                 for (i = 0; i < 200; i++) {
8529                         usleep_range(10000, 20000);
8530                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8531                                 break;
8532                 }
8533         }
8534         /* Clear ILT */
8535         bnx2x_clear_func_ilt(bp, func);
8536
8537         /* Timers workaround bug for E2: if this is vnic-3,
8538          * we need to set the entire ilt range for this timers.
8539          */
8540         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8541                 struct ilt_client_info ilt_cli;
8542                 /* use dummy TM client */
8543                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8544                 ilt_cli.start = 0;
8545                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8546                 ilt_cli.client_num = ILT_CLIENT_TM;
8547
8548                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8549         }
8550
8551         /* this assumes that reset_port() called before reset_func()*/
8552         if (!CHIP_IS_E1x(bp))
8553                 bnx2x_pf_disable(bp);
8554
8555         bp->dmae_ready = 0;
8556 }
8557
8558 static void bnx2x_reset_port(struct bnx2x *bp)
8559 {
8560         int port = BP_PORT(bp);
8561         u32 val;
8562
8563         /* Reset physical Link */
8564         bnx2x__link_reset(bp);
8565
8566         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8567
8568         /* Do not rcv packets to BRB */
8569         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8570         /* Do not direct rcv packets that are not for MCP to the BRB */
8571         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8572                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8573
8574         /* Configure AEU */
8575         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8576
8577         msleep(100);
8578         /* Check for BRB port occupancy */
8579         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8580         if (val)
8581                 DP(NETIF_MSG_IFDOWN,
8582                    "BRB1 is not empty  %d blocks are occupied\n", val);
8583
8584         /* TODO: Close Doorbell port? */
8585 }
8586
8587 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8588 {
8589         struct bnx2x_func_state_params func_params = {NULL};
8590
8591         /* Prepare parameters for function state transitions */
8592         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8593
8594         func_params.f_obj = &bp->func_obj;
8595         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8596
8597         func_params.params.hw_init.load_phase = load_code;
8598
8599         return bnx2x_func_state_change(bp, &func_params);
8600 }
8601
8602 static int bnx2x_func_stop(struct bnx2x *bp)
8603 {
8604         struct bnx2x_func_state_params func_params = {NULL};
8605         int rc;
8606
8607         /* Prepare parameters for function state transitions */
8608         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8609         func_params.f_obj = &bp->func_obj;
8610         func_params.cmd = BNX2X_F_CMD_STOP;
8611
8612         /*
8613          * Try to stop the function the 'good way'. If fails (in case
8614          * of a parity error during bnx2x_chip_cleanup()) and we are
8615          * not in a debug mode, perform a state transaction in order to
8616          * enable further HW_RESET transaction.
8617          */
8618         rc = bnx2x_func_state_change(bp, &func_params);
8619         if (rc) {
8620 #ifdef BNX2X_STOP_ON_ERROR
8621                 return rc;
8622 #else
8623                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8624                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8625                 return bnx2x_func_state_change(bp, &func_params);
8626 #endif
8627         }
8628
8629         return 0;
8630 }
8631
8632 /**
8633  * bnx2x_send_unload_req - request unload mode from the MCP.
8634  *
8635  * @bp:                 driver handle
8636  * @unload_mode:        requested function's unload mode
8637  *
8638  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8639  */
8640 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8641 {
8642         u32 reset_code = 0;
8643         int port = BP_PORT(bp);
8644
8645         /* Select the UNLOAD request mode */
8646         if (unload_mode == UNLOAD_NORMAL)
8647                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8648
8649         else if (bp->flags & NO_WOL_FLAG)
8650                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8651
8652         else if (bp->wol) {
8653                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8654                 u8 *mac_addr = bp->dev->dev_addr;
8655                 u32 val;
8656                 u16 pmc;
8657
8658                 /* The mac address is written to entries 1-4 to
8659                  * preserve entry 0 which is used by the PMF
8660                  */
8661                 u8 entry = (BP_VN(bp) + 1)*8;
8662
8663                 val = (mac_addr[0] << 8) | mac_addr[1];
8664                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8665
8666                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8667                       (mac_addr[4] << 8) | mac_addr[5];
8668                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8669
8670                 /* Enable the PME and clear the status */
8671                 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8672                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8673                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8674
8675                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8676
8677         } else
8678                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8679
8680         /* Send the request to the MCP */
8681         if (!BP_NOMCP(bp))
8682                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8683         else {
8684                 int path = BP_PATH(bp);
8685
8686                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8687                    path, load_count[path][0], load_count[path][1],
8688                    load_count[path][2]);
8689                 load_count[path][0]--;
8690                 load_count[path][1 + port]--;
8691                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8692                    path, load_count[path][0], load_count[path][1],
8693                    load_count[path][2]);
8694                 if (load_count[path][0] == 0)
8695                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8696                 else if (load_count[path][1 + port] == 0)
8697                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8698                 else
8699                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8700         }
8701
8702         return reset_code;
8703 }
8704
8705 /**
8706  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8707  *
8708  * @bp:         driver handle
8709  * @keep_link:          true iff link should be kept up
8710  */
8711 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8712 {
8713         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8714
8715         /* Report UNLOAD_DONE to MCP */
8716         if (!BP_NOMCP(bp))
8717                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8718 }
8719
8720 static int bnx2x_func_wait_started(struct bnx2x *bp)
8721 {
8722         int tout = 50;
8723         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8724
8725         if (!bp->port.pmf)
8726                 return 0;
8727
8728         /*
8729          * (assumption: No Attention from MCP at this stage)
8730          * PMF probably in the middle of TX disable/enable transaction
8731          * 1. Sync IRS for default SB
8732          * 2. Sync SP queue - this guarantees us that attention handling started
8733          * 3. Wait, that TX disable/enable transaction completes
8734          *
8735          * 1+2 guarantee that if DCBx attention was scheduled it already changed
8736          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8737          * received completion for the transaction the state is TX_STOPPED.
8738          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8739          * transaction.
8740          */
8741
8742         /* make sure default SB ISR is done */
8743         if (msix)
8744                 synchronize_irq(bp->msix_table[0].vector);
8745         else
8746                 synchronize_irq(bp->pdev->irq);
8747
8748         flush_workqueue(bnx2x_wq);
8749
8750         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8751                                 BNX2X_F_STATE_STARTED && tout--)
8752                 msleep(20);
8753
8754         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8755                                                 BNX2X_F_STATE_STARTED) {
8756 #ifdef BNX2X_STOP_ON_ERROR
8757                 BNX2X_ERR("Wrong function state\n");
8758                 return -EBUSY;
8759 #else
8760                 /*
8761                  * Failed to complete the transaction in a "good way"
8762                  * Force both transactions with CLR bit
8763                  */
8764                 struct bnx2x_func_state_params func_params = {NULL};
8765
8766                 DP(NETIF_MSG_IFDOWN,
8767                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8768
8769                 func_params.f_obj = &bp->func_obj;
8770                 __set_bit(RAMROD_DRV_CLR_ONLY,
8771                                         &func_params.ramrod_flags);
8772
8773                 /* STARTED-->TX_ST0PPED */
8774                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8775                 bnx2x_func_state_change(bp, &func_params);
8776
8777                 /* TX_ST0PPED-->STARTED */
8778                 func_params.cmd = BNX2X_F_CMD_TX_START;
8779                 return bnx2x_func_state_change(bp, &func_params);
8780 #endif
8781         }
8782
8783         return 0;
8784 }
8785
8786 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8787 {
8788         int port = BP_PORT(bp);
8789         int i, rc = 0;
8790         u8 cos;
8791         struct bnx2x_mcast_ramrod_params rparam = {NULL};
8792         u32 reset_code;
8793
8794         /* Wait until tx fastpath tasks complete */
8795         for_each_tx_queue(bp, i) {
8796                 struct bnx2x_fastpath *fp = &bp->fp[i];
8797
8798                 for_each_cos_in_tx_queue(fp, cos)
8799                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8800 #ifdef BNX2X_STOP_ON_ERROR
8801                 if (rc)
8802                         return;
8803 #endif
8804         }
8805
8806         /* Give HW time to discard old tx messages */
8807         usleep_range(1000, 2000);
8808
8809         /* Clean all ETH MACs */
8810         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8811                                 false);
8812         if (rc < 0)
8813                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8814
8815         /* Clean up UC list  */
8816         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8817                                 true);
8818         if (rc < 0)
8819                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8820                           rc);
8821
8822         /* Disable LLH */
8823         if (!CHIP_IS_E1(bp))
8824                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8825
8826         /* Set "drop all" (stop Rx).
8827          * We need to take a netif_addr_lock() here in order to prevent
8828          * a race between the completion code and this code.
8829          */
8830         netif_addr_lock_bh(bp->dev);
8831         /* Schedule the rx_mode command */
8832         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8833                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8834         else
8835                 bnx2x_set_storm_rx_mode(bp);
8836
8837         /* Cleanup multicast configuration */
8838         rparam.mcast_obj = &bp->mcast_obj;
8839         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8840         if (rc < 0)
8841                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8842
8843         netif_addr_unlock_bh(bp->dev);
8844
8845         bnx2x_iov_chip_cleanup(bp);
8846
8847         /*
8848          * Send the UNLOAD_REQUEST to the MCP. This will return if
8849          * this function should perform FUNC, PORT or COMMON HW
8850          * reset.
8851          */
8852         reset_code = bnx2x_send_unload_req(bp, unload_mode);
8853
8854         /*
8855          * (assumption: No Attention from MCP at this stage)
8856          * PMF probably in the middle of TX disable/enable transaction
8857          */
8858         rc = bnx2x_func_wait_started(bp);
8859         if (rc) {
8860                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8861 #ifdef BNX2X_STOP_ON_ERROR
8862                 return;
8863 #endif
8864         }
8865
8866         /* Close multi and leading connections
8867          * Completions for ramrods are collected in a synchronous way
8868          */
8869         for_each_eth_queue(bp, i)
8870                 if (bnx2x_stop_queue(bp, i))
8871 #ifdef BNX2X_STOP_ON_ERROR
8872                         return;
8873 #else
8874                         goto unload_error;
8875 #endif
8876
8877         if (CNIC_LOADED(bp)) {
8878                 for_each_cnic_queue(bp, i)
8879                         if (bnx2x_stop_queue(bp, i))
8880 #ifdef BNX2X_STOP_ON_ERROR
8881                                 return;
8882 #else
8883                                 goto unload_error;
8884 #endif
8885         }
8886
8887         /* If SP settings didn't get completed so far - something
8888          * very wrong has happen.
8889          */
8890         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8891                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8892
8893 #ifndef BNX2X_STOP_ON_ERROR
8894 unload_error:
8895 #endif
8896         rc = bnx2x_func_stop(bp);
8897         if (rc) {
8898                 BNX2X_ERR("Function stop failed!\n");
8899 #ifdef BNX2X_STOP_ON_ERROR
8900                 return;
8901 #endif
8902         }
8903
8904         /* Disable HW interrupts, NAPI */
8905         bnx2x_netif_stop(bp, 1);
8906         /* Delete all NAPI objects */
8907         bnx2x_del_all_napi(bp);
8908         if (CNIC_LOADED(bp))
8909                 bnx2x_del_all_napi_cnic(bp);
8910
8911         /* Release IRQs */
8912         bnx2x_free_irq(bp);
8913
8914         /* Reset the chip */
8915         rc = bnx2x_reset_hw(bp, reset_code);
8916         if (rc)
8917                 BNX2X_ERR("HW_RESET failed\n");
8918
8919         /* Report UNLOAD_DONE to MCP */
8920         bnx2x_send_unload_done(bp, keep_link);
8921 }
8922
8923 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8924 {
8925         u32 val;
8926
8927         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8928
8929         if (CHIP_IS_E1(bp)) {
8930                 int port = BP_PORT(bp);
8931                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8932                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
8933
8934                 val = REG_RD(bp, addr);
8935                 val &= ~(0x300);
8936                 REG_WR(bp, addr, val);
8937         } else {
8938                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8939                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8940                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8941                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8942         }
8943 }
8944
8945 /* Close gates #2, #3 and #4: */
8946 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8947 {
8948         u32 val;
8949
8950         /* Gates #2 and #4a are closed/opened for "not E1" only */
8951         if (!CHIP_IS_E1(bp)) {
8952                 /* #4 */
8953                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8954                 /* #2 */
8955                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8956         }
8957
8958         /* #3 */
8959         if (CHIP_IS_E1x(bp)) {
8960                 /* Prevent interrupts from HC on both ports */
8961                 val = REG_RD(bp, HC_REG_CONFIG_1);
8962                 REG_WR(bp, HC_REG_CONFIG_1,
8963                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8964                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8965
8966                 val = REG_RD(bp, HC_REG_CONFIG_0);
8967                 REG_WR(bp, HC_REG_CONFIG_0,
8968                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8969                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8970         } else {
8971                 /* Prevent incoming interrupts in IGU */
8972                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8973
8974                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8975                        (!close) ?
8976                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8977                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8978         }
8979
8980         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8981                 close ? "closing" : "opening");
8982         mmiowb();
8983 }
8984
8985 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8986
8987 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8988 {
8989         /* Do some magic... */
8990         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8991         *magic_val = val & SHARED_MF_CLP_MAGIC;
8992         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8993 }
8994
8995 /**
8996  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8997  *
8998  * @bp:         driver handle
8999  * @magic_val:  old value of the `magic' bit.
9000  */
9001 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9002 {
9003         /* Restore the `magic' bit value... */
9004         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9005         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9006                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9007 }
9008
9009 /**
9010  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9011  *
9012  * @bp:         driver handle
9013  * @magic_val:  old value of 'magic' bit.
9014  *
9015  * Takes care of CLP configurations.
9016  */
9017 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9018 {
9019         u32 shmem;
9020         u32 validity_offset;
9021
9022         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9023
9024         /* Set `magic' bit in order to save MF config */
9025         if (!CHIP_IS_E1(bp))
9026                 bnx2x_clp_reset_prep(bp, magic_val);
9027
9028         /* Get shmem offset */
9029         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9030         validity_offset =
9031                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9032
9033         /* Clear validity map flags */
9034         if (shmem > 0)
9035                 REG_WR(bp, shmem + validity_offset, 0);
9036 }
9037
9038 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9039 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9040
9041 /**
9042  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9043  *
9044  * @bp: driver handle
9045  */
9046 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9047 {
9048         /* special handling for emulation and FPGA,
9049            wait 10 times longer */
9050         if (CHIP_REV_IS_SLOW(bp))
9051                 msleep(MCP_ONE_TIMEOUT*10);
9052         else
9053                 msleep(MCP_ONE_TIMEOUT);
9054 }
9055
9056 /*
9057  * initializes bp->common.shmem_base and waits for validity signature to appear
9058  */
9059 static int bnx2x_init_shmem(struct bnx2x *bp)
9060 {
9061         int cnt = 0;
9062         u32 val = 0;
9063
9064         do {
9065                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9066                 if (bp->common.shmem_base) {
9067                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9068                         if (val & SHR_MEM_VALIDITY_MB)
9069                                 return 0;
9070                 }
9071
9072                 bnx2x_mcp_wait_one(bp);
9073
9074         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9075
9076         BNX2X_ERR("BAD MCP validity signature\n");
9077
9078         return -ENODEV;
9079 }
9080
9081 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9082 {
9083         int rc = bnx2x_init_shmem(bp);
9084
9085         /* Restore the `magic' bit value */
9086         if (!CHIP_IS_E1(bp))
9087                 bnx2x_clp_reset_done(bp, magic_val);
9088
9089         return rc;
9090 }
9091
9092 static void bnx2x_pxp_prep(struct bnx2x *bp)
9093 {
9094         if (!CHIP_IS_E1(bp)) {
9095                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9096                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9097                 mmiowb();
9098         }
9099 }
9100
9101 /*
9102  * Reset the whole chip except for:
9103  *      - PCIE core
9104  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9105  *              one reset bit)
9106  *      - IGU
9107  *      - MISC (including AEU)
9108  *      - GRC
9109  *      - RBCN, RBCP
9110  */
9111 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9112 {
9113         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9114         u32 global_bits2, stay_reset2;
9115
9116         /*
9117          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9118          * (per chip) blocks.
9119          */
9120         global_bits2 =
9121                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9122                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9123
9124         /* Don't reset the following blocks.
9125          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9126          *            reset, as in 4 port device they might still be owned
9127          *            by the MCP (there is only one leader per path).
9128          */
9129         not_reset_mask1 =
9130                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9131                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9132                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9133
9134         not_reset_mask2 =
9135                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9136                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9137                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9138                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9139                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9140                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9141                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9142                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9143                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9144                 MISC_REGISTERS_RESET_REG_2_PGLC |
9145                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9146                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9147                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9148                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9149                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9150                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9151
9152         /*
9153          * Keep the following blocks in reset:
9154          *  - all xxMACs are handled by the bnx2x_link code.
9155          */
9156         stay_reset2 =
9157                 MISC_REGISTERS_RESET_REG_2_XMAC |
9158                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9159
9160         /* Full reset masks according to the chip */
9161         reset_mask1 = 0xffffffff;
9162
9163         if (CHIP_IS_E1(bp))
9164                 reset_mask2 = 0xffff;
9165         else if (CHIP_IS_E1H(bp))
9166                 reset_mask2 = 0x1ffff;
9167         else if (CHIP_IS_E2(bp))
9168                 reset_mask2 = 0xfffff;
9169         else /* CHIP_IS_E3 */
9170                 reset_mask2 = 0x3ffffff;
9171
9172         /* Don't reset global blocks unless we need to */
9173         if (!global)
9174                 reset_mask2 &= ~global_bits2;
9175
9176         /*
9177          * In case of attention in the QM, we need to reset PXP
9178          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9179          * because otherwise QM reset would release 'close the gates' shortly
9180          * before resetting the PXP, then the PSWRQ would send a write
9181          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9182          * read the payload data from PSWWR, but PSWWR would not
9183          * respond. The write queue in PGLUE would stuck, dmae commands
9184          * would not return. Therefore it's important to reset the second
9185          * reset register (containing the
9186          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9187          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9188          * bit).
9189          */
9190         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9191                reset_mask2 & (~not_reset_mask2));
9192
9193         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9194                reset_mask1 & (~not_reset_mask1));
9195
9196         barrier();
9197         mmiowb();
9198
9199         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9200                reset_mask2 & (~stay_reset2));
9201
9202         barrier();
9203         mmiowb();
9204
9205         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9206         mmiowb();
9207 }
9208
9209 /**
9210  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9211  * It should get cleared in no more than 1s.
9212  *
9213  * @bp: driver handle
9214  *
9215  * It should get cleared in no more than 1s. Returns 0 if
9216  * pending writes bit gets cleared.
9217  */
9218 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9219 {
9220         u32 cnt = 1000;
9221         u32 pend_bits = 0;
9222
9223         do {
9224                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9225
9226                 if (pend_bits == 0)
9227                         break;
9228
9229                 usleep_range(1000, 2000);
9230         } while (cnt-- > 0);
9231
9232         if (cnt <= 0) {
9233                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9234                           pend_bits);
9235                 return -EBUSY;
9236         }
9237
9238         return 0;
9239 }
9240
9241 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9242 {
9243         int cnt = 1000;
9244         u32 val = 0;
9245         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9246         u32 tags_63_32 = 0;
9247
9248         /* Empty the Tetris buffer, wait for 1s */
9249         do {
9250                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9251                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9252                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9253                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9254                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9255                 if (CHIP_IS_E3(bp))
9256                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9257
9258                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9259                     ((port_is_idle_0 & 0x1) == 0x1) &&
9260                     ((port_is_idle_1 & 0x1) == 0x1) &&
9261                     (pgl_exp_rom2 == 0xffffffff) &&
9262                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9263                         break;
9264                 usleep_range(1000, 2000);
9265         } while (cnt-- > 0);
9266
9267         if (cnt <= 0) {
9268                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9269                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9270                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9271                           pgl_exp_rom2);
9272                 return -EAGAIN;
9273         }
9274
9275         barrier();
9276
9277         /* Close gates #2, #3 and #4 */
9278         bnx2x_set_234_gates(bp, true);
9279
9280         /* Poll for IGU VQs for 57712 and newer chips */
9281         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9282                 return -EAGAIN;
9283
9284         /* TBD: Indicate that "process kill" is in progress to MCP */
9285
9286         /* Clear "unprepared" bit */
9287         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9288         barrier();
9289
9290         /* Make sure all is written to the chip before the reset */
9291         mmiowb();
9292
9293         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9294          * PSWHST, GRC and PSWRD Tetris buffer.
9295          */
9296         usleep_range(1000, 2000);
9297
9298         /* Prepare to chip reset: */
9299         /* MCP */
9300         if (global)
9301                 bnx2x_reset_mcp_prep(bp, &val);
9302
9303         /* PXP */
9304         bnx2x_pxp_prep(bp);
9305         barrier();
9306
9307         /* reset the chip */
9308         bnx2x_process_kill_chip_reset(bp, global);
9309         barrier();
9310
9311         /* Recover after reset: */
9312         /* MCP */
9313         if (global && bnx2x_reset_mcp_comp(bp, val))
9314                 return -EAGAIN;
9315
9316         /* TBD: Add resetting the NO_MCP mode DB here */
9317
9318         /* Open the gates #2, #3 and #4 */
9319         bnx2x_set_234_gates(bp, false);
9320
9321         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9322          * reset state, re-enable attentions. */
9323
9324         return 0;
9325 }
9326
9327 static int bnx2x_leader_reset(struct bnx2x *bp)
9328 {
9329         int rc = 0;
9330         bool global = bnx2x_reset_is_global(bp);
9331         u32 load_code;
9332
9333         /* if not going to reset MCP - load "fake" driver to reset HW while
9334          * driver is owner of the HW
9335          */
9336         if (!global && !BP_NOMCP(bp)) {
9337                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9338                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9339                 if (!load_code) {
9340                         BNX2X_ERR("MCP response failure, aborting\n");
9341                         rc = -EAGAIN;
9342                         goto exit_leader_reset;
9343                 }
9344                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9345                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9346                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9347                         rc = -EAGAIN;
9348                         goto exit_leader_reset2;
9349                 }
9350                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9351                 if (!load_code) {
9352                         BNX2X_ERR("MCP response failure, aborting\n");
9353                         rc = -EAGAIN;
9354                         goto exit_leader_reset2;
9355                 }
9356         }
9357
9358         /* Try to recover after the failure */
9359         if (bnx2x_process_kill(bp, global)) {
9360                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9361                           BP_PATH(bp));
9362                 rc = -EAGAIN;
9363                 goto exit_leader_reset2;
9364         }
9365
9366         /*
9367          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9368          * state.
9369          */
9370         bnx2x_set_reset_done(bp);
9371         if (global)
9372                 bnx2x_clear_reset_global(bp);
9373
9374 exit_leader_reset2:
9375         /* unload "fake driver" if it was loaded */
9376         if (!global && !BP_NOMCP(bp)) {
9377                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9378                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9379         }
9380 exit_leader_reset:
9381         bp->is_leader = 0;
9382         bnx2x_release_leader_lock(bp);
9383         smp_mb();
9384         return rc;
9385 }
9386
9387 static void bnx2x_recovery_failed(struct bnx2x *bp)
9388 {
9389         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9390
9391         /* Disconnect this device */
9392         netif_device_detach(bp->dev);
9393
9394         /*
9395          * Block ifup for all function on this engine until "process kill"
9396          * or power cycle.
9397          */
9398         bnx2x_set_reset_in_progress(bp);
9399
9400         /* Shut down the power */
9401         bnx2x_set_power_state(bp, PCI_D3hot);
9402
9403         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9404
9405         smp_mb();
9406 }
9407
9408 /*
9409  * Assumption: runs under rtnl lock. This together with the fact
9410  * that it's called only from bnx2x_sp_rtnl() ensure that it
9411  * will never be called when netif_running(bp->dev) is false.
9412  */
9413 static void bnx2x_parity_recover(struct bnx2x *bp)
9414 {
9415         bool global = false;
9416         u32 error_recovered, error_unrecovered;
9417         bool is_parity;
9418
9419         DP(NETIF_MSG_HW, "Handling parity\n");
9420         while (1) {
9421                 switch (bp->recovery_state) {
9422                 case BNX2X_RECOVERY_INIT:
9423                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9424                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9425                         WARN_ON(!is_parity);
9426
9427                         /* Try to get a LEADER_LOCK HW lock */
9428                         if (bnx2x_trylock_leader_lock(bp)) {
9429                                 bnx2x_set_reset_in_progress(bp);
9430                                 /*
9431                                  * Check if there is a global attention and if
9432                                  * there was a global attention, set the global
9433                                  * reset bit.
9434                                  */
9435
9436                                 if (global)
9437                                         bnx2x_set_reset_global(bp);
9438
9439                                 bp->is_leader = 1;
9440                         }
9441
9442                         /* Stop the driver */
9443                         /* If interface has been removed - break */
9444                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9445                                 return;
9446
9447                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9448
9449                         /* Ensure "is_leader", MCP command sequence and
9450                          * "recovery_state" update values are seen on other
9451                          * CPUs.
9452                          */
9453                         smp_mb();
9454                         break;
9455
9456                 case BNX2X_RECOVERY_WAIT:
9457                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9458                         if (bp->is_leader) {
9459                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9460                                 bool other_load_status =
9461                                         bnx2x_get_load_status(bp, other_engine);
9462                                 bool load_status =
9463                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9464                                 global = bnx2x_reset_is_global(bp);
9465
9466                                 /*
9467                                  * In case of a parity in a global block, let
9468                                  * the first leader that performs a
9469                                  * leader_reset() reset the global blocks in
9470                                  * order to clear global attentions. Otherwise
9471                                  * the gates will remain closed for that
9472                                  * engine.
9473                                  */
9474                                 if (load_status ||
9475                                     (global && other_load_status)) {
9476                                         /* Wait until all other functions get
9477                                          * down.
9478                                          */
9479                                         schedule_delayed_work(&bp->sp_rtnl_task,
9480                                                                 HZ/10);
9481                                         return;
9482                                 } else {
9483                                         /* If all other functions got down -
9484                                          * try to bring the chip back to
9485                                          * normal. In any case it's an exit
9486                                          * point for a leader.
9487                                          */
9488                                         if (bnx2x_leader_reset(bp)) {
9489                                                 bnx2x_recovery_failed(bp);
9490                                                 return;
9491                                         }
9492
9493                                         /* If we are here, means that the
9494                                          * leader has succeeded and doesn't
9495                                          * want to be a leader any more. Try
9496                                          * to continue as a none-leader.
9497                                          */
9498                                         break;
9499                                 }
9500                         } else { /* non-leader */
9501                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9502                                         /* Try to get a LEADER_LOCK HW lock as
9503                                          * long as a former leader may have
9504                                          * been unloaded by the user or
9505                                          * released a leadership by another
9506                                          * reason.
9507                                          */
9508                                         if (bnx2x_trylock_leader_lock(bp)) {
9509                                                 /* I'm a leader now! Restart a
9510                                                  * switch case.
9511                                                  */
9512                                                 bp->is_leader = 1;
9513                                                 break;
9514                                         }
9515
9516                                         schedule_delayed_work(&bp->sp_rtnl_task,
9517                                                                 HZ/10);
9518                                         return;
9519
9520                                 } else {
9521                                         /*
9522                                          * If there was a global attention, wait
9523                                          * for it to be cleared.
9524                                          */
9525                                         if (bnx2x_reset_is_global(bp)) {
9526                                                 schedule_delayed_work(
9527                                                         &bp->sp_rtnl_task,
9528                                                         HZ/10);
9529                                                 return;
9530                                         }
9531
9532                                         error_recovered =
9533                                           bp->eth_stats.recoverable_error;
9534                                         error_unrecovered =
9535                                           bp->eth_stats.unrecoverable_error;
9536                                         bp->recovery_state =
9537                                                 BNX2X_RECOVERY_NIC_LOADING;
9538                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9539                                                 error_unrecovered++;
9540                                                 netdev_err(bp->dev,
9541                                                            "Recovery failed. Power cycle needed\n");
9542                                                 /* Disconnect this device */
9543                                                 netif_device_detach(bp->dev);
9544                                                 /* Shut down the power */
9545                                                 bnx2x_set_power_state(
9546                                                         bp, PCI_D3hot);
9547                                                 smp_mb();
9548                                         } else {
9549                                                 bp->recovery_state =
9550                                                         BNX2X_RECOVERY_DONE;
9551                                                 error_recovered++;
9552                                                 smp_mb();
9553                                         }
9554                                         bp->eth_stats.recoverable_error =
9555                                                 error_recovered;
9556                                         bp->eth_stats.unrecoverable_error =
9557                                                 error_unrecovered;
9558
9559                                         return;
9560                                 }
9561                         }
9562                 default:
9563                         return;
9564                 }
9565         }
9566 }
9567
9568 static int bnx2x_close(struct net_device *dev);
9569
9570 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9571  * scheduled on a general queue in order to prevent a dead lock.
9572  */
9573 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9574 {
9575         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9576
9577         rtnl_lock();
9578
9579         if (!netif_running(bp->dev)) {
9580                 rtnl_unlock();
9581                 return;
9582         }
9583
9584         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9585 #ifdef BNX2X_STOP_ON_ERROR
9586                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9587                           "you will need to reboot when done\n");
9588                 goto sp_rtnl_not_reset;
9589 #endif
9590                 /*
9591                  * Clear all pending SP commands as we are going to reset the
9592                  * function anyway.
9593                  */
9594                 bp->sp_rtnl_state = 0;
9595                 smp_mb();
9596
9597                 bnx2x_parity_recover(bp);
9598
9599                 rtnl_unlock();
9600                 return;
9601         }
9602
9603         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9604 #ifdef BNX2X_STOP_ON_ERROR
9605                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9606                           "you will need to reboot when done\n");
9607                 goto sp_rtnl_not_reset;
9608 #endif
9609
9610                 /*
9611                  * Clear all pending SP commands as we are going to reset the
9612                  * function anyway.
9613                  */
9614                 bp->sp_rtnl_state = 0;
9615                 smp_mb();
9616
9617                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9618                 bnx2x_nic_load(bp, LOAD_NORMAL);
9619
9620                 rtnl_unlock();
9621                 return;
9622         }
9623 #ifdef BNX2X_STOP_ON_ERROR
9624 sp_rtnl_not_reset:
9625 #endif
9626         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9627                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9628         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9629                 bnx2x_after_function_update(bp);
9630         /*
9631          * in case of fan failure we need to reset id if the "stop on error"
9632          * debug flag is set, since we trying to prevent permanent overheating
9633          * damage
9634          */
9635         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9636                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9637                 netif_device_detach(bp->dev);
9638                 bnx2x_close(bp->dev);
9639                 rtnl_unlock();
9640                 return;
9641         }
9642
9643         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9644                 DP(BNX2X_MSG_SP,
9645                    "sending set mcast vf pf channel message from rtnl sp-task\n");
9646                 bnx2x_vfpf_set_mcast(bp->dev);
9647         }
9648         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9649                                &bp->sp_rtnl_state)){
9650                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9651                         bnx2x_tx_disable(bp);
9652                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9653                 }
9654         }
9655
9656         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9657                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9658                 bnx2x_set_rx_mode_inner(bp);
9659         }
9660
9661         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9662                                &bp->sp_rtnl_state))
9663                 bnx2x_pf_set_vfs_vlan(bp);
9664
9665         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state))
9666                 bnx2x_dcbx_stop_hw_tx(bp);
9667
9668         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_RESUME, &bp->sp_rtnl_state))
9669                 bnx2x_dcbx_resume_hw_tx(bp);
9670
9671         /* work which needs rtnl lock not-taken (as it takes the lock itself and
9672          * can be called from other contexts as well)
9673          */
9674         rtnl_unlock();
9675
9676         /* enable SR-IOV if applicable */
9677         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9678                                                &bp->sp_rtnl_state)) {
9679                 bnx2x_disable_sriov(bp);
9680                 bnx2x_enable_sriov(bp);
9681         }
9682 }
9683
9684 static void bnx2x_period_task(struct work_struct *work)
9685 {
9686         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9687
9688         if (!netif_running(bp->dev))
9689                 goto period_task_exit;
9690
9691         if (CHIP_REV_IS_SLOW(bp)) {
9692                 BNX2X_ERR("period task called on emulation, ignoring\n");
9693                 goto period_task_exit;
9694         }
9695
9696         bnx2x_acquire_phy_lock(bp);
9697         /*
9698          * The barrier is needed to ensure the ordering between the writing to
9699          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9700          * the reading here.
9701          */
9702         smp_mb();
9703         if (bp->port.pmf) {
9704                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9705
9706                 /* Re-queue task in 1 sec */
9707                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9708         }
9709
9710         bnx2x_release_phy_lock(bp);
9711 period_task_exit:
9712         return;
9713 }
9714
9715 /*
9716  * Init service functions
9717  */
9718
9719 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9720 {
9721         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9722         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9723         return base + (BP_ABS_FUNC(bp)) * stride;
9724 }
9725
9726 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9727                                         struct bnx2x_mac_vals *vals)
9728 {
9729         u32 val, base_addr, offset, mask, reset_reg;
9730         bool mac_stopped = false;
9731         u8 port = BP_PORT(bp);
9732
9733         /* reset addresses as they also mark which values were changed */
9734         vals->bmac_addr = 0;
9735         vals->umac_addr = 0;
9736         vals->xmac_addr = 0;
9737         vals->emac_addr = 0;
9738
9739         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9740
9741         if (!CHIP_IS_E3(bp)) {
9742                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9743                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9744                 if ((mask & reset_reg) && val) {
9745                         u32 wb_data[2];
9746                         BNX2X_DEV_INFO("Disable bmac Rx\n");
9747                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9748                                                 : NIG_REG_INGRESS_BMAC0_MEM;
9749                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9750                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
9751
9752                         /*
9753                          * use rd/wr since we cannot use dmae. This is safe
9754                          * since MCP won't access the bus due to the request
9755                          * to unload, and no function on the path can be
9756                          * loaded at this time.
9757                          */
9758                         wb_data[0] = REG_RD(bp, base_addr + offset);
9759                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9760                         vals->bmac_addr = base_addr + offset;
9761                         vals->bmac_val[0] = wb_data[0];
9762                         vals->bmac_val[1] = wb_data[1];
9763                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9764                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
9765                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9766                 }
9767                 BNX2X_DEV_INFO("Disable emac Rx\n");
9768                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9769                 vals->emac_val = REG_RD(bp, vals->emac_addr);
9770                 REG_WR(bp, vals->emac_addr, 0);
9771                 mac_stopped = true;
9772         } else {
9773                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9774                         BNX2X_DEV_INFO("Disable xmac Rx\n");
9775                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9776                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9777                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9778                                val & ~(1 << 1));
9779                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9780                                val | (1 << 1));
9781                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9782                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9783                         REG_WR(bp, vals->xmac_addr, 0);
9784                         mac_stopped = true;
9785                 }
9786                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9787                 if (mask & reset_reg) {
9788                         BNX2X_DEV_INFO("Disable umac Rx\n");
9789                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9790                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9791                         vals->umac_val = REG_RD(bp, vals->umac_addr);
9792                         REG_WR(bp, vals->umac_addr, 0);
9793                         mac_stopped = true;
9794                 }
9795         }
9796
9797         if (mac_stopped)
9798                 msleep(20);
9799 }
9800
9801 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9802 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
9803 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
9804 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
9805
9806 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9807 {
9808         u16 rcq, bd;
9809         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9810
9811         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9812         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9813
9814         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9815         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9816
9817         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9818                        port, bd, rcq);
9819 }
9820
9821 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9822 {
9823         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9824                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9825         if (!rc) {
9826                 BNX2X_ERR("MCP response failure, aborting\n");
9827                 return -EBUSY;
9828         }
9829
9830         return 0;
9831 }
9832
9833 static struct bnx2x_prev_path_list *
9834                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9835 {
9836         struct bnx2x_prev_path_list *tmp_list;
9837
9838         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9839                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9840                     bp->pdev->bus->number == tmp_list->bus &&
9841                     BP_PATH(bp) == tmp_list->path)
9842                         return tmp_list;
9843
9844         return NULL;
9845 }
9846
9847 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9848 {
9849         struct bnx2x_prev_path_list *tmp_list;
9850         int rc;
9851
9852         rc = down_interruptible(&bnx2x_prev_sem);
9853         if (rc) {
9854                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9855                 return rc;
9856         }
9857
9858         tmp_list = bnx2x_prev_path_get_entry(bp);
9859         if (tmp_list) {
9860                 tmp_list->aer = 1;
9861                 rc = 0;
9862         } else {
9863                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9864                           BP_PATH(bp));
9865         }
9866
9867         up(&bnx2x_prev_sem);
9868
9869         return rc;
9870 }
9871
9872 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9873 {
9874         struct bnx2x_prev_path_list *tmp_list;
9875         int rc = false;
9876
9877         if (down_trylock(&bnx2x_prev_sem))
9878                 return false;
9879
9880         tmp_list = bnx2x_prev_path_get_entry(bp);
9881         if (tmp_list) {
9882                 if (tmp_list->aer) {
9883                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9884                            BP_PATH(bp));
9885                 } else {
9886                         rc = true;
9887                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9888                                        BP_PATH(bp));
9889                 }
9890         }
9891
9892         up(&bnx2x_prev_sem);
9893
9894         return rc;
9895 }
9896
9897 bool bnx2x_port_after_undi(struct bnx2x *bp)
9898 {
9899         struct bnx2x_prev_path_list *entry;
9900         bool val;
9901
9902         down(&bnx2x_prev_sem);
9903
9904         entry = bnx2x_prev_path_get_entry(bp);
9905         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9906
9907         up(&bnx2x_prev_sem);
9908
9909         return val;
9910 }
9911
9912 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9913 {
9914         struct bnx2x_prev_path_list *tmp_list;
9915         int rc;
9916
9917         rc = down_interruptible(&bnx2x_prev_sem);
9918         if (rc) {
9919                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9920                 return rc;
9921         }
9922
9923         /* Check whether the entry for this path already exists */
9924         tmp_list = bnx2x_prev_path_get_entry(bp);
9925         if (tmp_list) {
9926                 if (!tmp_list->aer) {
9927                         BNX2X_ERR("Re-Marking the path.\n");
9928                 } else {
9929                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9930                            BP_PATH(bp));
9931                         tmp_list->aer = 0;
9932                 }
9933                 up(&bnx2x_prev_sem);
9934                 return 0;
9935         }
9936         up(&bnx2x_prev_sem);
9937
9938         /* Create an entry for this path and add it */
9939         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9940         if (!tmp_list) {
9941                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9942                 return -ENOMEM;
9943         }
9944
9945         tmp_list->bus = bp->pdev->bus->number;
9946         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9947         tmp_list->path = BP_PATH(bp);
9948         tmp_list->aer = 0;
9949         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9950
9951         rc = down_interruptible(&bnx2x_prev_sem);
9952         if (rc) {
9953                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9954                 kfree(tmp_list);
9955         } else {
9956                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9957                    BP_PATH(bp));
9958                 list_add(&tmp_list->list, &bnx2x_prev_list);
9959                 up(&bnx2x_prev_sem);
9960         }
9961
9962         return rc;
9963 }
9964
9965 static int bnx2x_do_flr(struct bnx2x *bp)
9966 {
9967         struct pci_dev *dev = bp->pdev;
9968
9969         if (CHIP_IS_E1x(bp)) {
9970                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9971                 return -EINVAL;
9972         }
9973
9974         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9975         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9976                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9977                           bp->common.bc_ver);
9978                 return -EINVAL;
9979         }
9980
9981         if (!pci_wait_for_pending_transaction(dev))
9982                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
9983
9984         BNX2X_DEV_INFO("Initiating FLR\n");
9985         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9986
9987         return 0;
9988 }
9989
9990 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9991 {
9992         int rc;
9993
9994         BNX2X_DEV_INFO("Uncommon unload Flow\n");
9995
9996         /* Test if previous unload process was already finished for this path */
9997         if (bnx2x_prev_is_path_marked(bp))
9998                 return bnx2x_prev_mcp_done(bp);
9999
10000         BNX2X_DEV_INFO("Path is unmarked\n");
10001
10002         /* If function has FLR capabilities, and existing FW version matches
10003          * the one required, then FLR will be sufficient to clean any residue
10004          * left by previous driver
10005          */
10006         rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
10007
10008         if (!rc) {
10009                 /* fw version is good */
10010                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10011                 rc = bnx2x_do_flr(bp);
10012         }
10013
10014         if (!rc) {
10015                 /* FLR was performed */
10016                 BNX2X_DEV_INFO("FLR successful\n");
10017                 return 0;
10018         }
10019
10020         BNX2X_DEV_INFO("Could not FLR\n");
10021
10022         /* Close the MCP request, return failure*/
10023         rc = bnx2x_prev_mcp_done(bp);
10024         if (!rc)
10025                 rc = BNX2X_PREV_WAIT_NEEDED;
10026
10027         return rc;
10028 }
10029
10030 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10031 {
10032         u32 reset_reg, tmp_reg = 0, rc;
10033         bool prev_undi = false;
10034         struct bnx2x_mac_vals mac_vals;
10035
10036         /* It is possible a previous function received 'common' answer,
10037          * but hasn't loaded yet, therefore creating a scenario of
10038          * multiple functions receiving 'common' on the same path.
10039          */
10040         BNX2X_DEV_INFO("Common unload Flow\n");
10041
10042         memset(&mac_vals, 0, sizeof(mac_vals));
10043
10044         if (bnx2x_prev_is_path_marked(bp))
10045                 return bnx2x_prev_mcp_done(bp);
10046
10047         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10048
10049         /* Reset should be performed after BRB is emptied */
10050         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10051                 u32 timer_count = 1000;
10052
10053                 /* Close the MAC Rx to prevent BRB from filling up */
10054                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10055
10056                 /* close LLH filters towards the BRB */
10057                 bnx2x_set_rx_filter(&bp->link_params, 0);
10058
10059                 /* Check if the UNDI driver was previously loaded
10060                  * UNDI driver initializes CID offset for normal bell to 0x7
10061                  */
10062                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10063                         tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10064                         if (tmp_reg == 0x7) {
10065                                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10066                                 prev_undi = true;
10067                                 /* clear the UNDI indication */
10068                                 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10069                                 /* clear possible idle check errors */
10070                                 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10071                         }
10072                 }
10073                 if (!CHIP_IS_E1x(bp))
10074                         /* block FW from writing to host */
10075                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10076
10077                 /* wait until BRB is empty */
10078                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10079                 while (timer_count) {
10080                         u32 prev_brb = tmp_reg;
10081
10082                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10083                         if (!tmp_reg)
10084                                 break;
10085
10086                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10087
10088                         /* reset timer as long as BRB actually gets emptied */
10089                         if (prev_brb > tmp_reg)
10090                                 timer_count = 1000;
10091                         else
10092                                 timer_count--;
10093
10094                         /* If UNDI resides in memory, manually increment it */
10095                         if (prev_undi)
10096                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10097
10098                         udelay(10);
10099                 }
10100
10101                 if (!timer_count)
10102                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10103         }
10104
10105         /* No packets are in the pipeline, path is ready for reset */
10106         bnx2x_reset_common(bp);
10107
10108         if (mac_vals.xmac_addr)
10109                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10110         if (mac_vals.umac_addr)
10111                 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10112         if (mac_vals.emac_addr)
10113                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10114         if (mac_vals.bmac_addr) {
10115                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10116                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10117         }
10118
10119         rc = bnx2x_prev_mark_path(bp, prev_undi);
10120         if (rc) {
10121                 bnx2x_prev_mcp_done(bp);
10122                 return rc;
10123         }
10124
10125         return bnx2x_prev_mcp_done(bp);
10126 }
10127
10128 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10129  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10130  * the addresses of the transaction, resulting in was-error bit set in the pci
10131  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10132  * to clear the interrupt which detected this from the pglueb and the was done
10133  * bit
10134  */
10135 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10136 {
10137         if (!CHIP_IS_E1x(bp)) {
10138                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10139                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10140                         DP(BNX2X_MSG_SP,
10141                            "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10142                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10143                                1 << BP_FUNC(bp));
10144                 }
10145         }
10146 }
10147
10148 static int bnx2x_prev_unload(struct bnx2x *bp)
10149 {
10150         int time_counter = 10;
10151         u32 rc, fw, hw_lock_reg, hw_lock_val;
10152         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10153
10154         /* clear hw from errors which may have resulted from an interrupted
10155          * dmae transaction.
10156          */
10157         bnx2x_prev_interrupted_dmae(bp);
10158
10159         /* Release previously held locks */
10160         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10161                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10162                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10163
10164         hw_lock_val = REG_RD(bp, hw_lock_reg);
10165         if (hw_lock_val) {
10166                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10167                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10168                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10169                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10170                 }
10171
10172                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10173                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10174         } else
10175                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10176
10177         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10178                 BNX2X_DEV_INFO("Release previously held alr\n");
10179                 bnx2x_release_alr(bp);
10180         }
10181
10182         do {
10183                 int aer = 0;
10184                 /* Lock MCP using an unload request */
10185                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10186                 if (!fw) {
10187                         BNX2X_ERR("MCP response failure, aborting\n");
10188                         rc = -EBUSY;
10189                         break;
10190                 }
10191
10192                 rc = down_interruptible(&bnx2x_prev_sem);
10193                 if (rc) {
10194                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10195                                   rc);
10196                 } else {
10197                         /* If Path is marked by EEH, ignore unload status */
10198                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10199                                  bnx2x_prev_path_get_entry(bp)->aer);
10200                         up(&bnx2x_prev_sem);
10201                 }
10202
10203                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10204                         rc = bnx2x_prev_unload_common(bp);
10205                         break;
10206                 }
10207
10208                 /* non-common reply from MCP might require looping */
10209                 rc = bnx2x_prev_unload_uncommon(bp);
10210                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10211                         break;
10212
10213                 msleep(20);
10214         } while (--time_counter);
10215
10216         if (!time_counter || rc) {
10217                 BNX2X_ERR("Failed unloading previous driver, aborting\n");
10218                 rc = -EBUSY;
10219         }
10220
10221         /* Mark function if its port was used to boot from SAN */
10222         if (bnx2x_port_after_undi(bp))
10223                 bp->link_params.feature_config_flags |=
10224                         FEATURE_CONFIG_BOOT_FROM_SAN;
10225
10226         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10227
10228         return rc;
10229 }
10230
10231 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10232 {
10233         u32 val, val2, val3, val4, id, boot_mode;
10234         u16 pmc;
10235
10236         /* Get the chip revision id and number. */
10237         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10238         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10239         id = ((val & 0xffff) << 16);
10240         val = REG_RD(bp, MISC_REG_CHIP_REV);
10241         id |= ((val & 0xf) << 12);
10242
10243         /* Metal is read from PCI regs, but we can't access >=0x400 from
10244          * the configuration space (so we need to reg_rd)
10245          */
10246         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10247         id |= (((val >> 24) & 0xf) << 4);
10248         val = REG_RD(bp, MISC_REG_BOND_ID);
10249         id |= (val & 0xf);
10250         bp->common.chip_id = id;
10251
10252         /* force 57811 according to MISC register */
10253         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10254                 if (CHIP_IS_57810(bp))
10255                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10256                                 (bp->common.chip_id & 0x0000FFFF);
10257                 else if (CHIP_IS_57810_MF(bp))
10258                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10259                                 (bp->common.chip_id & 0x0000FFFF);
10260                 bp->common.chip_id |= 0x1;
10261         }
10262
10263         /* Set doorbell size */
10264         bp->db_size = (1 << BNX2X_DB_SHIFT);
10265
10266         if (!CHIP_IS_E1x(bp)) {
10267                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10268                 if ((val & 1) == 0)
10269                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10270                 else
10271                         val = (val >> 1) & 1;
10272                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10273                                                        "2_PORT_MODE");
10274                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10275                                                  CHIP_2_PORT_MODE;
10276
10277                 if (CHIP_MODE_IS_4_PORT(bp))
10278                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10279                 else
10280                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10281         } else {
10282                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10283                 bp->pfid = bp->pf_num;                  /* 0..7 */
10284         }
10285
10286         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10287
10288         bp->link_params.chip_id = bp->common.chip_id;
10289         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10290
10291         val = (REG_RD(bp, 0x2874) & 0x55);
10292         if ((bp->common.chip_id & 0x1) ||
10293             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10294                 bp->flags |= ONE_PORT_FLAG;
10295                 BNX2X_DEV_INFO("single port device\n");
10296         }
10297
10298         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10299         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10300                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10301         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10302                        bp->common.flash_size, bp->common.flash_size);
10303
10304         bnx2x_init_shmem(bp);
10305
10306         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10307                                         MISC_REG_GENERIC_CR_1 :
10308                                         MISC_REG_GENERIC_CR_0));
10309
10310         bp->link_params.shmem_base = bp->common.shmem_base;
10311         bp->link_params.shmem2_base = bp->common.shmem2_base;
10312         if (SHMEM2_RD(bp, size) >
10313             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10314                 bp->link_params.lfa_base =
10315                 REG_RD(bp, bp->common.shmem2_base +
10316                        (u32)offsetof(struct shmem2_region,
10317                                      lfa_host_addr[BP_PORT(bp)]));
10318         else
10319                 bp->link_params.lfa_base = 0;
10320         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10321                        bp->common.shmem_base, bp->common.shmem2_base);
10322
10323         if (!bp->common.shmem_base) {
10324                 BNX2X_DEV_INFO("MCP not active\n");
10325                 bp->flags |= NO_MCP_FLAG;
10326                 return;
10327         }
10328
10329         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10330         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10331
10332         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10333                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10334                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10335
10336         bp->link_params.feature_config_flags = 0;
10337         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10338         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10339                 bp->link_params.feature_config_flags |=
10340                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10341         else
10342                 bp->link_params.feature_config_flags &=
10343                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10344
10345         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10346         bp->common.bc_ver = val;
10347         BNX2X_DEV_INFO("bc_ver %X\n", val);
10348         if (val < BNX2X_BC_VER) {
10349                 /* for now only warn
10350                  * later we might need to enforce this */
10351                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10352                           BNX2X_BC_VER, val);
10353         }
10354         bp->link_params.feature_config_flags |=
10355                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10356                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10357
10358         bp->link_params.feature_config_flags |=
10359                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10360                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10361         bp->link_params.feature_config_flags |=
10362                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10363                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10364         bp->link_params.feature_config_flags |=
10365                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10366                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10367
10368         bp->link_params.feature_config_flags |=
10369                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10370                 FEATURE_CONFIG_MT_SUPPORT : 0;
10371
10372         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10373                         BC_SUPPORTS_PFC_STATS : 0;
10374
10375         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10376                         BC_SUPPORTS_FCOE_FEATURES : 0;
10377
10378         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10379                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10380
10381         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10382                         BC_SUPPORTS_RMMOD_CMD : 0;
10383
10384         boot_mode = SHMEM_RD(bp,
10385                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10386                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10387         switch (boot_mode) {
10388         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10389                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10390                 break;
10391         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10392                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10393                 break;
10394         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10395                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10396                 break;
10397         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10398                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10399                 break;
10400         }
10401
10402         pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10403         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10404
10405         BNX2X_DEV_INFO("%sWoL capable\n",
10406                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10407
10408         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10409         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10410         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10411         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10412
10413         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10414                  val, val2, val3, val4);
10415 }
10416
10417 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10418 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10419
10420 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10421 {
10422         int pfid = BP_FUNC(bp);
10423         int igu_sb_id;
10424         u32 val;
10425         u8 fid, igu_sb_cnt = 0;
10426
10427         bp->igu_base_sb = 0xff;
10428         if (CHIP_INT_MODE_IS_BC(bp)) {
10429                 int vn = BP_VN(bp);
10430                 igu_sb_cnt = bp->igu_sb_cnt;
10431                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10432                         FP_SB_MAX_E1x;
10433
10434                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10435                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10436
10437                 return 0;
10438         }
10439
10440         /* IGU in normal mode - read CAM */
10441         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10442              igu_sb_id++) {
10443                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10444                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10445                         continue;
10446                 fid = IGU_FID(val);
10447                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10448                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10449                                 continue;
10450                         if (IGU_VEC(val) == 0)
10451                                 /* default status block */
10452                                 bp->igu_dsb_id = igu_sb_id;
10453                         else {
10454                                 if (bp->igu_base_sb == 0xff)
10455                                         bp->igu_base_sb = igu_sb_id;
10456                                 igu_sb_cnt++;
10457                         }
10458                 }
10459         }
10460
10461 #ifdef CONFIG_PCI_MSI
10462         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10463          * optional that number of CAM entries will not be equal to the value
10464          * advertised in PCI.
10465          * Driver should use the minimal value of both as the actual status
10466          * block count
10467          */
10468         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10469 #endif
10470
10471         if (igu_sb_cnt == 0) {
10472                 BNX2X_ERR("CAM configuration error\n");
10473                 return -EINVAL;
10474         }
10475
10476         return 0;
10477 }
10478
10479 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10480 {
10481         int cfg_size = 0, idx, port = BP_PORT(bp);
10482
10483         /* Aggregation of supported attributes of all external phys */
10484         bp->port.supported[0] = 0;
10485         bp->port.supported[1] = 0;
10486         switch (bp->link_params.num_phys) {
10487         case 1:
10488                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10489                 cfg_size = 1;
10490                 break;
10491         case 2:
10492                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10493                 cfg_size = 1;
10494                 break;
10495         case 3:
10496                 if (bp->link_params.multi_phy_config &
10497                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10498                         bp->port.supported[1] =
10499                                 bp->link_params.phy[EXT_PHY1].supported;
10500                         bp->port.supported[0] =
10501                                 bp->link_params.phy[EXT_PHY2].supported;
10502                 } else {
10503                         bp->port.supported[0] =
10504                                 bp->link_params.phy[EXT_PHY1].supported;
10505                         bp->port.supported[1] =
10506                                 bp->link_params.phy[EXT_PHY2].supported;
10507                 }
10508                 cfg_size = 2;
10509                 break;
10510         }
10511
10512         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10513                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10514                            SHMEM_RD(bp,
10515                            dev_info.port_hw_config[port].external_phy_config),
10516                            SHMEM_RD(bp,
10517                            dev_info.port_hw_config[port].external_phy_config2));
10518                         return;
10519         }
10520
10521         if (CHIP_IS_E3(bp))
10522                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10523         else {
10524                 switch (switch_cfg) {
10525                 case SWITCH_CFG_1G:
10526                         bp->port.phy_addr = REG_RD(
10527                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10528                         break;
10529                 case SWITCH_CFG_10G:
10530                         bp->port.phy_addr = REG_RD(
10531                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10532                         break;
10533                 default:
10534                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10535                                   bp->port.link_config[0]);
10536                         return;
10537                 }
10538         }
10539         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10540         /* mask what we support according to speed_cap_mask per configuration */
10541         for (idx = 0; idx < cfg_size; idx++) {
10542                 if (!(bp->link_params.speed_cap_mask[idx] &
10543                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10544                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10545
10546                 if (!(bp->link_params.speed_cap_mask[idx] &
10547                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10548                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10549
10550                 if (!(bp->link_params.speed_cap_mask[idx] &
10551                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10552                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10553
10554                 if (!(bp->link_params.speed_cap_mask[idx] &
10555                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10556                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10557
10558                 if (!(bp->link_params.speed_cap_mask[idx] &
10559                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10560                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10561                                                      SUPPORTED_1000baseT_Full);
10562
10563                 if (!(bp->link_params.speed_cap_mask[idx] &
10564                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10565                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10566
10567                 if (!(bp->link_params.speed_cap_mask[idx] &
10568                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10569                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10570
10571                 if (!(bp->link_params.speed_cap_mask[idx] &
10572                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10573                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10574         }
10575
10576         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10577                        bp->port.supported[1]);
10578 }
10579
10580 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10581 {
10582         u32 link_config, idx, cfg_size = 0;
10583         bp->port.advertising[0] = 0;
10584         bp->port.advertising[1] = 0;
10585         switch (bp->link_params.num_phys) {
10586         case 1:
10587         case 2:
10588                 cfg_size = 1;
10589                 break;
10590         case 3:
10591                 cfg_size = 2;
10592                 break;
10593         }
10594         for (idx = 0; idx < cfg_size; idx++) {
10595                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10596                 link_config = bp->port.link_config[idx];
10597                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10598                 case PORT_FEATURE_LINK_SPEED_AUTO:
10599                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10600                                 bp->link_params.req_line_speed[idx] =
10601                                         SPEED_AUTO_NEG;
10602                                 bp->port.advertising[idx] |=
10603                                         bp->port.supported[idx];
10604                                 if (bp->link_params.phy[EXT_PHY1].type ==
10605                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10606                                         bp->port.advertising[idx] |=
10607                                         (SUPPORTED_100baseT_Half |
10608                                          SUPPORTED_100baseT_Full);
10609                         } else {
10610                                 /* force 10G, no AN */
10611                                 bp->link_params.req_line_speed[idx] =
10612                                         SPEED_10000;
10613                                 bp->port.advertising[idx] |=
10614                                         (ADVERTISED_10000baseT_Full |
10615                                          ADVERTISED_FIBRE);
10616                                 continue;
10617                         }
10618                         break;
10619
10620                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10621                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10622                                 bp->link_params.req_line_speed[idx] =
10623                                         SPEED_10;
10624                                 bp->port.advertising[idx] |=
10625                                         (ADVERTISED_10baseT_Full |
10626                                          ADVERTISED_TP);
10627                         } else {
10628                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10629                                             link_config,
10630                                     bp->link_params.speed_cap_mask[idx]);
10631                                 return;
10632                         }
10633                         break;
10634
10635                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10636                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10637                                 bp->link_params.req_line_speed[idx] =
10638                                         SPEED_10;
10639                                 bp->link_params.req_duplex[idx] =
10640                                         DUPLEX_HALF;
10641                                 bp->port.advertising[idx] |=
10642                                         (ADVERTISED_10baseT_Half |
10643                                          ADVERTISED_TP);
10644                         } else {
10645                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10646                                             link_config,
10647                                           bp->link_params.speed_cap_mask[idx]);
10648                                 return;
10649                         }
10650                         break;
10651
10652                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10653                         if (bp->port.supported[idx] &
10654                             SUPPORTED_100baseT_Full) {
10655                                 bp->link_params.req_line_speed[idx] =
10656                                         SPEED_100;
10657                                 bp->port.advertising[idx] |=
10658                                         (ADVERTISED_100baseT_Full |
10659                                          ADVERTISED_TP);
10660                         } else {
10661                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10662                                             link_config,
10663                                           bp->link_params.speed_cap_mask[idx]);
10664                                 return;
10665                         }
10666                         break;
10667
10668                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10669                         if (bp->port.supported[idx] &
10670                             SUPPORTED_100baseT_Half) {
10671                                 bp->link_params.req_line_speed[idx] =
10672                                                                 SPEED_100;
10673                                 bp->link_params.req_duplex[idx] =
10674                                                                 DUPLEX_HALF;
10675                                 bp->port.advertising[idx] |=
10676                                         (ADVERTISED_100baseT_Half |
10677                                          ADVERTISED_TP);
10678                         } else {
10679                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10680                                     link_config,
10681                                     bp->link_params.speed_cap_mask[idx]);
10682                                 return;
10683                         }
10684                         break;
10685
10686                 case PORT_FEATURE_LINK_SPEED_1G:
10687                         if (bp->port.supported[idx] &
10688                             SUPPORTED_1000baseT_Full) {
10689                                 bp->link_params.req_line_speed[idx] =
10690                                         SPEED_1000;
10691                                 bp->port.advertising[idx] |=
10692                                         (ADVERTISED_1000baseT_Full |
10693                                          ADVERTISED_TP);
10694                         } else {
10695                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10696                                     link_config,
10697                                     bp->link_params.speed_cap_mask[idx]);
10698                                 return;
10699                         }
10700                         break;
10701
10702                 case PORT_FEATURE_LINK_SPEED_2_5G:
10703                         if (bp->port.supported[idx] &
10704                             SUPPORTED_2500baseX_Full) {
10705                                 bp->link_params.req_line_speed[idx] =
10706                                         SPEED_2500;
10707                                 bp->port.advertising[idx] |=
10708                                         (ADVERTISED_2500baseX_Full |
10709                                                 ADVERTISED_TP);
10710                         } else {
10711                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10712                                     link_config,
10713                                     bp->link_params.speed_cap_mask[idx]);
10714                                 return;
10715                         }
10716                         break;
10717
10718                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10719                         if (bp->port.supported[idx] &
10720                             SUPPORTED_10000baseT_Full) {
10721                                 bp->link_params.req_line_speed[idx] =
10722                                         SPEED_10000;
10723                                 bp->port.advertising[idx] |=
10724                                         (ADVERTISED_10000baseT_Full |
10725                                                 ADVERTISED_FIBRE);
10726                         } else {
10727                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10728                                     link_config,
10729                                     bp->link_params.speed_cap_mask[idx]);
10730                                 return;
10731                         }
10732                         break;
10733                 case PORT_FEATURE_LINK_SPEED_20G:
10734                         bp->link_params.req_line_speed[idx] = SPEED_20000;
10735
10736                         break;
10737                 default:
10738                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10739                                   link_config);
10740                                 bp->link_params.req_line_speed[idx] =
10741                                                         SPEED_AUTO_NEG;
10742                                 bp->port.advertising[idx] =
10743                                                 bp->port.supported[idx];
10744                         break;
10745                 }
10746
10747                 bp->link_params.req_flow_ctrl[idx] = (link_config &
10748                                          PORT_FEATURE_FLOW_CONTROL_MASK);
10749                 if (bp->link_params.req_flow_ctrl[idx] ==
10750                     BNX2X_FLOW_CTRL_AUTO) {
10751                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10752                                 bp->link_params.req_flow_ctrl[idx] =
10753                                                         BNX2X_FLOW_CTRL_NONE;
10754                         else
10755                                 bnx2x_set_requested_fc(bp);
10756                 }
10757
10758                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10759                                bp->link_params.req_line_speed[idx],
10760                                bp->link_params.req_duplex[idx],
10761                                bp->link_params.req_flow_ctrl[idx],
10762                                bp->port.advertising[idx]);
10763         }
10764 }
10765
10766 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10767 {
10768         __be16 mac_hi_be = cpu_to_be16(mac_hi);
10769         __be32 mac_lo_be = cpu_to_be32(mac_lo);
10770         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10771         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10772 }
10773
10774 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10775 {
10776         int port = BP_PORT(bp);
10777         u32 config;
10778         u32 ext_phy_type, ext_phy_config, eee_mode;
10779
10780         bp->link_params.bp = bp;
10781         bp->link_params.port = port;
10782
10783         bp->link_params.lane_config =
10784                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10785
10786         bp->link_params.speed_cap_mask[0] =
10787                 SHMEM_RD(bp,
10788                          dev_info.port_hw_config[port].speed_capability_mask) &
10789                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10790         bp->link_params.speed_cap_mask[1] =
10791                 SHMEM_RD(bp,
10792                          dev_info.port_hw_config[port].speed_capability_mask2) &
10793                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10794         bp->port.link_config[0] =
10795                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10796
10797         bp->port.link_config[1] =
10798                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10799
10800         bp->link_params.multi_phy_config =
10801                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10802         /* If the device is capable of WoL, set the default state according
10803          * to the HW
10804          */
10805         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10806         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10807                    (config & PORT_FEATURE_WOL_ENABLED));
10808
10809         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10810             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10811                 bp->flags |= NO_ISCSI_FLAG;
10812         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10813             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10814                 bp->flags |= NO_FCOE_FLAG;
10815
10816         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10817                        bp->link_params.lane_config,
10818                        bp->link_params.speed_cap_mask[0],
10819                        bp->port.link_config[0]);
10820
10821         bp->link_params.switch_cfg = (bp->port.link_config[0] &
10822                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
10823         bnx2x_phy_probe(&bp->link_params);
10824         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10825
10826         bnx2x_link_settings_requested(bp);
10827
10828         /*
10829          * If connected directly, work with the internal PHY, otherwise, work
10830          * with the external PHY
10831          */
10832         ext_phy_config =
10833                 SHMEM_RD(bp,
10834                          dev_info.port_hw_config[port].external_phy_config);
10835         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10836         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10837                 bp->mdio.prtad = bp->port.phy_addr;
10838
10839         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10840                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10841                 bp->mdio.prtad =
10842                         XGXS_EXT_PHY_ADDR(ext_phy_config);
10843
10844         /* Configure link feature according to nvram value */
10845         eee_mode = (((SHMEM_RD(bp, dev_info.
10846                       port_feature_config[port].eee_power_mode)) &
10847                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10848                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10849         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10850                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10851                                            EEE_MODE_ENABLE_LPI |
10852                                            EEE_MODE_OUTPUT_TIME;
10853         } else {
10854                 bp->link_params.eee_mode = 0;
10855         }
10856 }
10857
10858 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10859 {
10860         u32 no_flags = NO_ISCSI_FLAG;
10861         int port = BP_PORT(bp);
10862         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10863                                 drv_lic_key[port].max_iscsi_conn);
10864
10865         if (!CNIC_SUPPORT(bp)) {
10866                 bp->flags |= no_flags;
10867                 return;
10868         }
10869
10870         /* Get the number of maximum allowed iSCSI connections */
10871         bp->cnic_eth_dev.max_iscsi_conn =
10872                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10873                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10874
10875         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10876                        bp->cnic_eth_dev.max_iscsi_conn);
10877
10878         /*
10879          * If maximum allowed number of connections is zero -
10880          * disable the feature.
10881          */
10882         if (!bp->cnic_eth_dev.max_iscsi_conn)
10883                 bp->flags |= no_flags;
10884 }
10885
10886 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10887 {
10888         /* Port info */
10889         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10890                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10891         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10892                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10893
10894         /* Node info */
10895         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10896                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10897         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10898                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10899 }
10900
10901 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10902 {
10903         u8 count = 0;
10904
10905         if (IS_MF(bp)) {
10906                 u8 fid;
10907
10908                 /* iterate over absolute function ids for this path: */
10909                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10910                         if (IS_MF_SD(bp)) {
10911                                 u32 cfg = MF_CFG_RD(bp,
10912                                                     func_mf_config[fid].config);
10913
10914                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10915                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10916                                             FUNC_MF_CFG_PROTOCOL_FCOE))
10917                                         count++;
10918                         } else {
10919                                 u32 cfg = MF_CFG_RD(bp,
10920                                                     func_ext_config[fid].
10921                                                                       func_cfg);
10922
10923                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10924                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10925                                         count++;
10926                         }
10927                 }
10928         } else { /* SF */
10929                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10930
10931                 for (port = 0; port < port_cnt; port++) {
10932                         u32 lic = SHMEM_RD(bp,
10933                                            drv_lic_key[port].max_fcoe_conn) ^
10934                                   FW_ENCODE_32BIT_PATTERN;
10935                         if (lic)
10936                                 count++;
10937                 }
10938         }
10939
10940         return count;
10941 }
10942
10943 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10944 {
10945         int port = BP_PORT(bp);
10946         int func = BP_ABS_FUNC(bp);
10947         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10948                                 drv_lic_key[port].max_fcoe_conn);
10949         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10950
10951         if (!CNIC_SUPPORT(bp)) {
10952                 bp->flags |= NO_FCOE_FLAG;
10953                 return;
10954         }
10955
10956         /* Get the number of maximum allowed FCoE connections */
10957         bp->cnic_eth_dev.max_fcoe_conn =
10958                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10959                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10960
10961         /* Calculate the number of maximum allowed FCoE tasks */
10962         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10963
10964         /* check if FCoE resources must be shared between different functions */
10965         if (num_fcoe_func)
10966                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
10967
10968         /* Read the WWN: */
10969         if (!IS_MF(bp)) {
10970                 /* Port info */
10971                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10972                         SHMEM_RD(bp,
10973                                  dev_info.port_hw_config[port].
10974                                  fcoe_wwn_port_name_upper);
10975                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10976                         SHMEM_RD(bp,
10977                                  dev_info.port_hw_config[port].
10978                                  fcoe_wwn_port_name_lower);
10979
10980                 /* Node info */
10981                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10982                         SHMEM_RD(bp,
10983                                  dev_info.port_hw_config[port].
10984                                  fcoe_wwn_node_name_upper);
10985                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10986                         SHMEM_RD(bp,
10987                                  dev_info.port_hw_config[port].
10988                                  fcoe_wwn_node_name_lower);
10989         } else if (!IS_MF_SD(bp)) {
10990                 /*
10991                  * Read the WWN info only if the FCoE feature is enabled for
10992                  * this function.
10993                  */
10994                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10995                         bnx2x_get_ext_wwn_info(bp, func);
10996
10997         } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10998                 bnx2x_get_ext_wwn_info(bp, func);
10999         }
11000
11001         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11002
11003         /*
11004          * If maximum allowed number of connections is zero -
11005          * disable the feature.
11006          */
11007         if (!bp->cnic_eth_dev.max_fcoe_conn)
11008                 bp->flags |= NO_FCOE_FLAG;
11009 }
11010
11011 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11012 {
11013         /*
11014          * iSCSI may be dynamically disabled but reading
11015          * info here we will decrease memory usage by driver
11016          * if the feature is disabled for good
11017          */
11018         bnx2x_get_iscsi_info(bp);
11019         bnx2x_get_fcoe_info(bp);
11020 }
11021
11022 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11023 {
11024         u32 val, val2;
11025         int func = BP_ABS_FUNC(bp);
11026         int port = BP_PORT(bp);
11027         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11028         u8 *fip_mac = bp->fip_mac;
11029
11030         if (IS_MF(bp)) {
11031                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11032                  * FCoE MAC then the appropriate feature should be disabled.
11033                  * In non SD mode features configuration comes from struct
11034                  * func_ext_config.
11035                  */
11036                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11037                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11038                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11039                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11040                                                  iscsi_mac_addr_upper);
11041                                 val = MF_CFG_RD(bp, func_ext_config[func].
11042                                                 iscsi_mac_addr_lower);
11043                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11044                                 BNX2X_DEV_INFO
11045                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11046                         } else {
11047                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11048                         }
11049
11050                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11051                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11052                                                  fcoe_mac_addr_upper);
11053                                 val = MF_CFG_RD(bp, func_ext_config[func].
11054                                                 fcoe_mac_addr_lower);
11055                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11056                                 BNX2X_DEV_INFO
11057                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11058                         } else {
11059                                 bp->flags |= NO_FCOE_FLAG;
11060                         }
11061
11062                         bp->mf_ext_config = cfg;
11063
11064                 } else { /* SD MODE */
11065                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11066                                 /* use primary mac as iscsi mac */
11067                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11068
11069                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11070                                 BNX2X_DEV_INFO
11071                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11072                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11073                                 /* use primary mac as fip mac */
11074                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11075                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11076                                 BNX2X_DEV_INFO
11077                                         ("Read FIP MAC: %pM\n", fip_mac);
11078                         }
11079                 }
11080
11081                 /* If this is a storage-only interface, use SAN mac as
11082                  * primary MAC. Notice that for SD this is already the case,
11083                  * as the SAN mac was copied from the primary MAC.
11084                  */
11085                 if (IS_MF_FCOE_AFEX(bp))
11086                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11087         } else {
11088                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11089                                 iscsi_mac_upper);
11090                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11091                                iscsi_mac_lower);
11092                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11093
11094                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11095                                 fcoe_fip_mac_upper);
11096                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11097                                fcoe_fip_mac_lower);
11098                 bnx2x_set_mac_buf(fip_mac, val, val2);
11099         }
11100
11101         /* Disable iSCSI OOO if MAC configuration is invalid. */
11102         if (!is_valid_ether_addr(iscsi_mac)) {
11103                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11104                 memset(iscsi_mac, 0, ETH_ALEN);
11105         }
11106
11107         /* Disable FCoE if MAC configuration is invalid. */
11108         if (!is_valid_ether_addr(fip_mac)) {
11109                 bp->flags |= NO_FCOE_FLAG;
11110                 memset(bp->fip_mac, 0, ETH_ALEN);
11111         }
11112 }
11113
11114 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11115 {
11116         u32 val, val2;
11117         int func = BP_ABS_FUNC(bp);
11118         int port = BP_PORT(bp);
11119
11120         /* Zero primary MAC configuration */
11121         memset(bp->dev->dev_addr, 0, ETH_ALEN);
11122
11123         if (BP_NOMCP(bp)) {
11124                 BNX2X_ERROR("warning: random MAC workaround active\n");
11125                 eth_hw_addr_random(bp->dev);
11126         } else if (IS_MF(bp)) {
11127                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11128                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11129                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11130                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11131                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11132
11133                 if (CNIC_SUPPORT(bp))
11134                         bnx2x_get_cnic_mac_hwinfo(bp);
11135         } else {
11136                 /* in SF read MACs from port configuration */
11137                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11138                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11139                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11140
11141                 if (CNIC_SUPPORT(bp))
11142                         bnx2x_get_cnic_mac_hwinfo(bp);
11143         }
11144
11145         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11146
11147         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11148                 dev_err(&bp->pdev->dev,
11149                         "bad Ethernet MAC address configuration: %pM\n"
11150                         "change it manually before bringing up the appropriate network interface\n",
11151                         bp->dev->dev_addr);
11152 }
11153
11154 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11155 {
11156         int tmp;
11157         u32 cfg;
11158
11159         if (IS_VF(bp))
11160                 return 0;
11161
11162         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11163                 /* Take function: tmp = func */
11164                 tmp = BP_ABS_FUNC(bp);
11165                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11166                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11167         } else {
11168                 /* Take port: tmp = port */
11169                 tmp = BP_PORT(bp);
11170                 cfg = SHMEM_RD(bp,
11171                                dev_info.port_hw_config[tmp].generic_features);
11172                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11173         }
11174         return cfg;
11175 }
11176
11177 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11178 {
11179         int /*abs*/func = BP_ABS_FUNC(bp);
11180         int vn;
11181         u32 val = 0;
11182         int rc = 0;
11183
11184         bnx2x_get_common_hwinfo(bp);
11185
11186         /*
11187          * initialize IGU parameters
11188          */
11189         if (CHIP_IS_E1x(bp)) {
11190                 bp->common.int_block = INT_BLOCK_HC;
11191
11192                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11193                 bp->igu_base_sb = 0;
11194         } else {
11195                 bp->common.int_block = INT_BLOCK_IGU;
11196
11197                 /* do not allow device reset during IGU info processing */
11198                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11199
11200                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11201
11202                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11203                         int tout = 5000;
11204
11205                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11206
11207                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11208                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11209                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11210
11211                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11212                                 tout--;
11213                                 usleep_range(1000, 2000);
11214                         }
11215
11216                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11217                                 dev_err(&bp->pdev->dev,
11218                                         "FORCING Normal Mode failed!!!\n");
11219                                 bnx2x_release_hw_lock(bp,
11220                                                       HW_LOCK_RESOURCE_RESET);
11221                                 return -EPERM;
11222                         }
11223                 }
11224
11225                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11226                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11227                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11228                 } else
11229                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11230
11231                 rc = bnx2x_get_igu_cam_info(bp);
11232                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11233                 if (rc)
11234                         return rc;
11235         }
11236
11237         /*
11238          * set base FW non-default (fast path) status block id, this value is
11239          * used to initialize the fw_sb_id saved on the fp/queue structure to
11240          * determine the id used by the FW.
11241          */
11242         if (CHIP_IS_E1x(bp))
11243                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11244         else /*
11245               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11246               * the same queue are indicated on the same IGU SB). So we prefer
11247               * FW and IGU SBs to be the same value.
11248               */
11249                 bp->base_fw_ndsb = bp->igu_base_sb;
11250
11251         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11252                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11253                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11254
11255         /*
11256          * Initialize MF configuration
11257          */
11258
11259         bp->mf_ov = 0;
11260         bp->mf_mode = 0;
11261         vn = BP_VN(bp);
11262
11263         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11264                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11265                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11266                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11267
11268                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11269                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11270                 else
11271                         bp->common.mf_cfg_base = bp->common.shmem_base +
11272                                 offsetof(struct shmem_region, func_mb) +
11273                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11274                 /*
11275                  * get mf configuration:
11276                  * 1. Existence of MF configuration
11277                  * 2. MAC address must be legal (check only upper bytes)
11278                  *    for  Switch-Independent mode;
11279                  *    OVLAN must be legal for Switch-Dependent mode
11280                  * 3. SF_MODE configures specific MF mode
11281                  */
11282                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11283                         /* get mf configuration */
11284                         val = SHMEM_RD(bp,
11285                                        dev_info.shared_feature_config.config);
11286                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11287
11288                         switch (val) {
11289                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11290                                 val = MF_CFG_RD(bp, func_mf_config[func].
11291                                                 mac_upper);
11292                                 /* check for legal mac (upper bytes)*/
11293                                 if (val != 0xffff) {
11294                                         bp->mf_mode = MULTI_FUNCTION_SI;
11295                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11296                                                    func_mf_config[func].config);
11297                                 } else
11298                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
11299                                 break;
11300                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11301                                 if ((!CHIP_IS_E1x(bp)) &&
11302                                     (MF_CFG_RD(bp, func_mf_config[func].
11303                                                mac_upper) != 0xffff) &&
11304                                     (SHMEM2_HAS(bp,
11305                                                 afex_driver_support))) {
11306                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11307                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11308                                                 func_mf_config[func].config);
11309                                 } else {
11310                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11311                                 }
11312                                 break;
11313                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11314                                 /* get OV configuration */
11315                                 val = MF_CFG_RD(bp,
11316                                         func_mf_config[FUNC_0].e1hov_tag);
11317                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11318
11319                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11320                                         bp->mf_mode = MULTI_FUNCTION_SD;
11321                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11322                                                 func_mf_config[func].config);
11323                                 } else
11324                                         BNX2X_DEV_INFO("illegal OV for SD\n");
11325                                 break;
11326                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11327                                 bp->mf_config[vn] = 0;
11328                                 break;
11329                         default:
11330                                 /* Unknown configuration: reset mf_config */
11331                                 bp->mf_config[vn] = 0;
11332                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11333                         }
11334                 }
11335
11336                 BNX2X_DEV_INFO("%s function mode\n",
11337                                IS_MF(bp) ? "multi" : "single");
11338
11339                 switch (bp->mf_mode) {
11340                 case MULTI_FUNCTION_SD:
11341                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11342                               FUNC_MF_CFG_E1HOV_TAG_MASK;
11343                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11344                                 bp->mf_ov = val;
11345                                 bp->path_has_ovlan = true;
11346
11347                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11348                                                func, bp->mf_ov, bp->mf_ov);
11349                         } else {
11350                                 dev_err(&bp->pdev->dev,
11351                                         "No valid MF OV for func %d, aborting\n",
11352                                         func);
11353                                 return -EPERM;
11354                         }
11355                         break;
11356                 case MULTI_FUNCTION_AFEX:
11357                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11358                         break;
11359                 case MULTI_FUNCTION_SI:
11360                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11361                                        func);
11362                         break;
11363                 default:
11364                         if (vn) {
11365                                 dev_err(&bp->pdev->dev,
11366                                         "VN %d is in a single function mode, aborting\n",
11367                                         vn);
11368                                 return -EPERM;
11369                         }
11370                         break;
11371                 }
11372
11373                 /* check if other port on the path needs ovlan:
11374                  * Since MF configuration is shared between ports
11375                  * Possible mixed modes are only
11376                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11377                  */
11378                 if (CHIP_MODE_IS_4_PORT(bp) &&
11379                     !bp->path_has_ovlan &&
11380                     !IS_MF(bp) &&
11381                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11382                         u8 other_port = !BP_PORT(bp);
11383                         u8 other_func = BP_PATH(bp) + 2*other_port;
11384                         val = MF_CFG_RD(bp,
11385                                         func_mf_config[other_func].e1hov_tag);
11386                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11387                                 bp->path_has_ovlan = true;
11388                 }
11389         }
11390
11391         /* adjust igu_sb_cnt to MF for E1x */
11392         if (CHIP_IS_E1x(bp) && IS_MF(bp))
11393                 bp->igu_sb_cnt /= E1HVN_MAX;
11394
11395         /* port info */
11396         bnx2x_get_port_hwinfo(bp);
11397
11398         /* Get MAC addresses */
11399         bnx2x_get_mac_hwinfo(bp);
11400
11401         bnx2x_get_cnic_info(bp);
11402
11403         return rc;
11404 }
11405
11406 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11407 {
11408         int cnt, i, block_end, rodi;
11409         char vpd_start[BNX2X_VPD_LEN+1];
11410         char str_id_reg[VENDOR_ID_LEN+1];
11411         char str_id_cap[VENDOR_ID_LEN+1];
11412         char *vpd_data;
11413         char *vpd_extended_data = NULL;
11414         u8 len;
11415
11416         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11417         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11418
11419         if (cnt < BNX2X_VPD_LEN)
11420                 goto out_not_found;
11421
11422         /* VPD RO tag should be first tag after identifier string, hence
11423          * we should be able to find it in first BNX2X_VPD_LEN chars
11424          */
11425         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11426                              PCI_VPD_LRDT_RO_DATA);
11427         if (i < 0)
11428                 goto out_not_found;
11429
11430         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11431                     pci_vpd_lrdt_size(&vpd_start[i]);
11432
11433         i += PCI_VPD_LRDT_TAG_SIZE;
11434
11435         if (block_end > BNX2X_VPD_LEN) {
11436                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11437                 if (vpd_extended_data  == NULL)
11438                         goto out_not_found;
11439
11440                 /* read rest of vpd image into vpd_extended_data */
11441                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11442                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11443                                    block_end - BNX2X_VPD_LEN,
11444                                    vpd_extended_data + BNX2X_VPD_LEN);
11445                 if (cnt < (block_end - BNX2X_VPD_LEN))
11446                         goto out_not_found;
11447                 vpd_data = vpd_extended_data;
11448         } else
11449                 vpd_data = vpd_start;
11450
11451         /* now vpd_data holds full vpd content in both cases */
11452
11453         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11454                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11455         if (rodi < 0)
11456                 goto out_not_found;
11457
11458         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11459
11460         if (len != VENDOR_ID_LEN)
11461                 goto out_not_found;
11462
11463         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11464
11465         /* vendor specific info */
11466         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11467         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11468         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11469             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11470
11471                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11472                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11473                 if (rodi >= 0) {
11474                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11475
11476                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11477
11478                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11479                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11480                                 bp->fw_ver[len] = ' ';
11481                         }
11482                 }
11483                 kfree(vpd_extended_data);
11484                 return;
11485         }
11486 out_not_found:
11487         kfree(vpd_extended_data);
11488         return;
11489 }
11490
11491 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11492 {
11493         u32 flags = 0;
11494
11495         if (CHIP_REV_IS_FPGA(bp))
11496                 SET_FLAGS(flags, MODE_FPGA);
11497         else if (CHIP_REV_IS_EMUL(bp))
11498                 SET_FLAGS(flags, MODE_EMUL);
11499         else
11500                 SET_FLAGS(flags, MODE_ASIC);
11501
11502         if (CHIP_MODE_IS_4_PORT(bp))
11503                 SET_FLAGS(flags, MODE_PORT4);
11504         else
11505                 SET_FLAGS(flags, MODE_PORT2);
11506
11507         if (CHIP_IS_E2(bp))
11508                 SET_FLAGS(flags, MODE_E2);
11509         else if (CHIP_IS_E3(bp)) {
11510                 SET_FLAGS(flags, MODE_E3);
11511                 if (CHIP_REV(bp) == CHIP_REV_Ax)
11512                         SET_FLAGS(flags, MODE_E3_A0);
11513                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11514                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11515         }
11516
11517         if (IS_MF(bp)) {
11518                 SET_FLAGS(flags, MODE_MF);
11519                 switch (bp->mf_mode) {
11520                 case MULTI_FUNCTION_SD:
11521                         SET_FLAGS(flags, MODE_MF_SD);
11522                         break;
11523                 case MULTI_FUNCTION_SI:
11524                         SET_FLAGS(flags, MODE_MF_SI);
11525                         break;
11526                 case MULTI_FUNCTION_AFEX:
11527                         SET_FLAGS(flags, MODE_MF_AFEX);
11528                         break;
11529                 }
11530         } else
11531                 SET_FLAGS(flags, MODE_SF);
11532
11533 #if defined(__LITTLE_ENDIAN)
11534         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11535 #else /*(__BIG_ENDIAN)*/
11536         SET_FLAGS(flags, MODE_BIG_ENDIAN);
11537 #endif
11538         INIT_MODE_FLAGS(bp) = flags;
11539 }
11540
11541 static int bnx2x_init_bp(struct bnx2x *bp)
11542 {
11543         int func;
11544         int rc;
11545
11546         mutex_init(&bp->port.phy_mutex);
11547         mutex_init(&bp->fw_mb_mutex);
11548         spin_lock_init(&bp->stats_lock);
11549         sema_init(&bp->stats_sema, 1);
11550
11551         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11552         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11553         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11554         if (IS_PF(bp)) {
11555                 rc = bnx2x_get_hwinfo(bp);
11556                 if (rc)
11557                         return rc;
11558         } else {
11559                 eth_zero_addr(bp->dev->dev_addr);
11560         }
11561
11562         bnx2x_set_modes_bitmap(bp);
11563
11564         rc = bnx2x_alloc_mem_bp(bp);
11565         if (rc)
11566                 return rc;
11567
11568         bnx2x_read_fwinfo(bp);
11569
11570         func = BP_FUNC(bp);
11571
11572         /* need to reset chip if undi was active */
11573         if (IS_PF(bp) && !BP_NOMCP(bp)) {
11574                 /* init fw_seq */
11575                 bp->fw_seq =
11576                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11577                                                         DRV_MSG_SEQ_NUMBER_MASK;
11578                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11579
11580                 bnx2x_prev_unload(bp);
11581         }
11582
11583         if (CHIP_REV_IS_FPGA(bp))
11584                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11585
11586         if (BP_NOMCP(bp) && (func == 0))
11587                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11588
11589         bp->disable_tpa = disable_tpa;
11590         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11591
11592         /* Set TPA flags */
11593         if (bp->disable_tpa) {
11594                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11595                 bp->dev->features &= ~NETIF_F_LRO;
11596         } else {
11597                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11598                 bp->dev->features |= NETIF_F_LRO;
11599         }
11600
11601         if (CHIP_IS_E1(bp))
11602                 bp->dropless_fc = 0;
11603         else
11604                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11605
11606         bp->mrrs = mrrs;
11607
11608         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11609         if (IS_VF(bp))
11610                 bp->rx_ring_size = MAX_RX_AVAIL;
11611
11612         /* make sure that the numbers are in the right granularity */
11613         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11614         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11615
11616         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11617
11618         init_timer(&bp->timer);
11619         bp->timer.expires = jiffies + bp->current_interval;
11620         bp->timer.data = (unsigned long) bp;
11621         bp->timer.function = bnx2x_timer;
11622
11623         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11624             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11625             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11626             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11627                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11628                 bnx2x_dcbx_init_params(bp);
11629         } else {
11630                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11631         }
11632
11633         if (CHIP_IS_E1x(bp))
11634                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11635         else
11636                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11637
11638         /* multiple tx priority */
11639         if (IS_VF(bp))
11640                 bp->max_cos = 1;
11641         else if (CHIP_IS_E1x(bp))
11642                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11643         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11644                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11645         else if (CHIP_IS_E3B0(bp))
11646                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11647         else
11648                 BNX2X_ERR("unknown chip %x revision %x\n",
11649                           CHIP_NUM(bp), CHIP_REV(bp));
11650         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11651
11652         /* We need at least one default status block for slow-path events,
11653          * second status block for the L2 queue, and a third status block for
11654          * CNIC if supported.
11655          */
11656         if (IS_VF(bp))
11657                 bp->min_msix_vec_cnt = 1;
11658         else if (CNIC_SUPPORT(bp))
11659                 bp->min_msix_vec_cnt = 3;
11660         else /* PF w/o cnic */
11661                 bp->min_msix_vec_cnt = 2;
11662         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11663
11664         bp->dump_preset_idx = 1;
11665
11666         return rc;
11667 }
11668
11669 /****************************************************************************
11670 * General service functions
11671 ****************************************************************************/
11672
11673 /*
11674  * net_device service functions
11675  */
11676
11677 /* called with rtnl_lock */
11678 static int bnx2x_open(struct net_device *dev)
11679 {
11680         struct bnx2x *bp = netdev_priv(dev);
11681         bool global = false;
11682         int other_engine = BP_PATH(bp) ? 0 : 1;
11683         bool other_load_status, load_status;
11684         int rc;
11685
11686         bp->stats_init = true;
11687
11688         netif_carrier_off(dev);
11689
11690         bnx2x_set_power_state(bp, PCI_D0);
11691
11692         /* If parity had happen during the unload, then attentions
11693          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11694          * want the first function loaded on the current engine to
11695          * complete the recovery.
11696          * Parity recovery is only relevant for PF driver.
11697          */
11698         if (IS_PF(bp)) {
11699                 other_load_status = bnx2x_get_load_status(bp, other_engine);
11700                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11701                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11702                     bnx2x_chk_parity_attn(bp, &global, true)) {
11703                         do {
11704                                 /* If there are attentions and they are in a
11705                                  * global blocks, set the GLOBAL_RESET bit
11706                                  * regardless whether it will be this function
11707                                  * that will complete the recovery or not.
11708                                  */
11709                                 if (global)
11710                                         bnx2x_set_reset_global(bp);
11711
11712                                 /* Only the first function on the current
11713                                  * engine should try to recover in open. In case
11714                                  * of attentions in global blocks only the first
11715                                  * in the chip should try to recover.
11716                                  */
11717                                 if ((!load_status &&
11718                                      (!global || !other_load_status)) &&
11719                                       bnx2x_trylock_leader_lock(bp) &&
11720                                       !bnx2x_leader_reset(bp)) {
11721                                         netdev_info(bp->dev,
11722                                                     "Recovered in open\n");
11723                                         break;
11724                                 }
11725
11726                                 /* recovery has failed... */
11727                                 bnx2x_set_power_state(bp, PCI_D3hot);
11728                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
11729
11730                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11731                                           "If you still see this message after a few retries then power cycle is required.\n");
11732
11733                                 return -EAGAIN;
11734                         } while (0);
11735                 }
11736         }
11737
11738         bp->recovery_state = BNX2X_RECOVERY_DONE;
11739         rc = bnx2x_nic_load(bp, LOAD_OPEN);
11740         if (rc)
11741                 return rc;
11742         return bnx2x_open_epilog(bp);
11743 }
11744
11745 /* called with rtnl_lock */
11746 static int bnx2x_close(struct net_device *dev)
11747 {
11748         struct bnx2x *bp = netdev_priv(dev);
11749
11750         /* Unload the driver, release IRQs */
11751         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11752
11753         return 0;
11754 }
11755
11756 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11757                                       struct bnx2x_mcast_ramrod_params *p)
11758 {
11759         int mc_count = netdev_mc_count(bp->dev);
11760         struct bnx2x_mcast_list_elem *mc_mac =
11761                 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11762         struct netdev_hw_addr *ha;
11763
11764         if (!mc_mac)
11765                 return -ENOMEM;
11766
11767         INIT_LIST_HEAD(&p->mcast_list);
11768
11769         netdev_for_each_mc_addr(ha, bp->dev) {
11770                 mc_mac->mac = bnx2x_mc_addr(ha);
11771                 list_add_tail(&mc_mac->link, &p->mcast_list);
11772                 mc_mac++;
11773         }
11774
11775         p->mcast_list_len = mc_count;
11776
11777         return 0;
11778 }
11779
11780 static void bnx2x_free_mcast_macs_list(
11781         struct bnx2x_mcast_ramrod_params *p)
11782 {
11783         struct bnx2x_mcast_list_elem *mc_mac =
11784                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11785                                  link);
11786
11787         WARN_ON(!mc_mac);
11788         kfree(mc_mac);
11789 }
11790
11791 /**
11792  * bnx2x_set_uc_list - configure a new unicast MACs list.
11793  *
11794  * @bp: driver handle
11795  *
11796  * We will use zero (0) as a MAC type for these MACs.
11797  */
11798 static int bnx2x_set_uc_list(struct bnx2x *bp)
11799 {
11800         int rc;
11801         struct net_device *dev = bp->dev;
11802         struct netdev_hw_addr *ha;
11803         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11804         unsigned long ramrod_flags = 0;
11805
11806         /* First schedule a cleanup up of old configuration */
11807         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11808         if (rc < 0) {
11809                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11810                 return rc;
11811         }
11812
11813         netdev_for_each_uc_addr(ha, dev) {
11814                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11815                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
11816                 if (rc == -EEXIST) {
11817                         DP(BNX2X_MSG_SP,
11818                            "Failed to schedule ADD operations: %d\n", rc);
11819                         /* do not treat adding same MAC as error */
11820                         rc = 0;
11821
11822                 } else if (rc < 0) {
11823
11824                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11825                                   rc);
11826                         return rc;
11827                 }
11828         }
11829
11830         /* Execute the pending commands */
11831         __set_bit(RAMROD_CONT, &ramrod_flags);
11832         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11833                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
11834 }
11835
11836 static int bnx2x_set_mc_list(struct bnx2x *bp)
11837 {
11838         struct net_device *dev = bp->dev;
11839         struct bnx2x_mcast_ramrod_params rparam = {NULL};
11840         int rc = 0;
11841
11842         rparam.mcast_obj = &bp->mcast_obj;
11843
11844         /* first, clear all configured multicast MACs */
11845         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11846         if (rc < 0) {
11847                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11848                 return rc;
11849         }
11850
11851         /* then, configure a new MACs list */
11852         if (netdev_mc_count(dev)) {
11853                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11854                 if (rc) {
11855                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11856                                   rc);
11857                         return rc;
11858                 }
11859
11860                 /* Now add the new MACs */
11861                 rc = bnx2x_config_mcast(bp, &rparam,
11862                                         BNX2X_MCAST_CMD_ADD);
11863                 if (rc < 0)
11864                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11865                                   rc);
11866
11867                 bnx2x_free_mcast_macs_list(&rparam);
11868         }
11869
11870         return rc;
11871 }
11872
11873 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11874 void bnx2x_set_rx_mode(struct net_device *dev)
11875 {
11876         struct bnx2x *bp = netdev_priv(dev);
11877
11878         if (bp->state != BNX2X_STATE_OPEN) {
11879                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11880                 return;
11881         } else {
11882                 /* Schedule an SP task to handle rest of change */
11883                 DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
11884                 smp_mb__before_clear_bit();
11885                 set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
11886                 smp_mb__after_clear_bit();
11887                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11888         }
11889 }
11890
11891 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
11892 {
11893         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11894
11895         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11896
11897         netif_addr_lock_bh(bp->dev);
11898
11899         if (bp->dev->flags & IFF_PROMISC) {
11900                 rx_mode = BNX2X_RX_MODE_PROMISC;
11901         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
11902                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
11903                     CHIP_IS_E1(bp))) {
11904                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11905         } else {
11906                 if (IS_PF(bp)) {
11907                         /* some multicasts */
11908                         if (bnx2x_set_mc_list(bp) < 0)
11909                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11910
11911                         /* release bh lock, as bnx2x_set_uc_list might sleep */
11912                         netif_addr_unlock_bh(bp->dev);
11913                         if (bnx2x_set_uc_list(bp) < 0)
11914                                 rx_mode = BNX2X_RX_MODE_PROMISC;
11915                         netif_addr_lock_bh(bp->dev);
11916                 } else {
11917                         /* configuring mcast to a vf involves sleeping (when we
11918                          * wait for the pf's response).
11919                          */
11920                         smp_mb__before_clear_bit();
11921                         set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11922                                 &bp->sp_rtnl_state);
11923                         smp_mb__after_clear_bit();
11924                         schedule_delayed_work(&bp->sp_rtnl_task, 0);
11925                 }
11926         }
11927
11928         bp->rx_mode = rx_mode;
11929         /* handle ISCSI SD mode */
11930         if (IS_MF_ISCSI_SD(bp))
11931                 bp->rx_mode = BNX2X_RX_MODE_NONE;
11932
11933         /* Schedule the rx_mode command */
11934         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11935                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11936                 netif_addr_unlock_bh(bp->dev);
11937                 return;
11938         }
11939
11940         if (IS_PF(bp)) {
11941                 bnx2x_set_storm_rx_mode(bp);
11942                 netif_addr_unlock_bh(bp->dev);
11943         } else {
11944                 /* VF will need to request the PF to make this change, and so
11945                  * the VF needs to release the bottom-half lock prior to the
11946                  * request (as it will likely require sleep on the VF side)
11947                  */
11948                 netif_addr_unlock_bh(bp->dev);
11949                 bnx2x_vfpf_storm_rx_mode(bp);
11950         }
11951 }
11952
11953 /* called with rtnl_lock */
11954 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11955                            int devad, u16 addr)
11956 {
11957         struct bnx2x *bp = netdev_priv(netdev);
11958         u16 value;
11959         int rc;
11960
11961         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11962            prtad, devad, addr);
11963
11964         /* The HW expects different devad if CL22 is used */
11965         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11966
11967         bnx2x_acquire_phy_lock(bp);
11968         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11969         bnx2x_release_phy_lock(bp);
11970         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11971
11972         if (!rc)
11973                 rc = value;
11974         return rc;
11975 }
11976
11977 /* called with rtnl_lock */
11978 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11979                             u16 addr, u16 value)
11980 {
11981         struct bnx2x *bp = netdev_priv(netdev);
11982         int rc;
11983
11984         DP(NETIF_MSG_LINK,
11985            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11986            prtad, devad, addr, value);
11987
11988         /* The HW expects different devad if CL22 is used */
11989         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11990
11991         bnx2x_acquire_phy_lock(bp);
11992         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11993         bnx2x_release_phy_lock(bp);
11994         return rc;
11995 }
11996
11997 /* called with rtnl_lock */
11998 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11999 {
12000         struct bnx2x *bp = netdev_priv(dev);
12001         struct mii_ioctl_data *mdio = if_mii(ifr);
12002
12003         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12004            mdio->phy_id, mdio->reg_num, mdio->val_in);
12005
12006         if (!netif_running(dev))
12007                 return -EAGAIN;
12008
12009         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12010 }
12011
12012 #ifdef CONFIG_NET_POLL_CONTROLLER
12013 static void poll_bnx2x(struct net_device *dev)
12014 {
12015         struct bnx2x *bp = netdev_priv(dev);
12016         int i;
12017
12018         for_each_eth_queue(bp, i) {
12019                 struct bnx2x_fastpath *fp = &bp->fp[i];
12020                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12021         }
12022 }
12023 #endif
12024
12025 static int bnx2x_validate_addr(struct net_device *dev)
12026 {
12027         struct bnx2x *bp = netdev_priv(dev);
12028
12029         /* query the bulletin board for mac address configured by the PF */
12030         if (IS_VF(bp))
12031                 bnx2x_sample_bulletin(bp);
12032
12033         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12034                 BNX2X_ERR("Non-valid Ethernet address\n");
12035                 return -EADDRNOTAVAIL;
12036         }
12037         return 0;
12038 }
12039
12040 static const struct net_device_ops bnx2x_netdev_ops = {
12041         .ndo_open               = bnx2x_open,
12042         .ndo_stop               = bnx2x_close,
12043         .ndo_start_xmit         = bnx2x_start_xmit,
12044         .ndo_select_queue       = bnx2x_select_queue,
12045         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12046         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12047         .ndo_validate_addr      = bnx2x_validate_addr,
12048         .ndo_do_ioctl           = bnx2x_ioctl,
12049         .ndo_change_mtu         = bnx2x_change_mtu,
12050         .ndo_fix_features       = bnx2x_fix_features,
12051         .ndo_set_features       = bnx2x_set_features,
12052         .ndo_tx_timeout         = bnx2x_tx_timeout,
12053 #ifdef CONFIG_NET_POLL_CONTROLLER
12054         .ndo_poll_controller    = poll_bnx2x,
12055 #endif
12056         .ndo_setup_tc           = bnx2x_setup_tc,
12057 #ifdef CONFIG_BNX2X_SRIOV
12058         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12059         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12060         .ndo_get_vf_config      = bnx2x_get_vf_config,
12061 #endif
12062 #ifdef NETDEV_FCOE_WWNN
12063         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12064 #endif
12065
12066 #ifdef CONFIG_NET_RX_BUSY_POLL
12067         .ndo_busy_poll          = bnx2x_low_latency_recv,
12068 #endif
12069 };
12070
12071 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12072 {
12073         struct device *dev = &bp->pdev->dev;
12074
12075         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) == 0) {
12076                 bp->flags |= USING_DAC_FLAG;
12077         } else if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12078                 dev_err(dev, "System does not support DMA, aborting\n");
12079                 return -EIO;
12080         }
12081
12082         return 0;
12083 }
12084
12085 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12086                           struct net_device *dev, unsigned long board_type)
12087 {
12088         int rc;
12089         u32 pci_cfg_dword;
12090         bool chip_is_e1x = (board_type == BCM57710 ||
12091                             board_type == BCM57711 ||
12092                             board_type == BCM57711E);
12093
12094         SET_NETDEV_DEV(dev, &pdev->dev);
12095
12096         bp->dev = dev;
12097         bp->pdev = pdev;
12098
12099         rc = pci_enable_device(pdev);
12100         if (rc) {
12101                 dev_err(&bp->pdev->dev,
12102                         "Cannot enable PCI device, aborting\n");
12103                 goto err_out;
12104         }
12105
12106         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12107                 dev_err(&bp->pdev->dev,
12108                         "Cannot find PCI device base address, aborting\n");
12109                 rc = -ENODEV;
12110                 goto err_out_disable;
12111         }
12112
12113         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12114                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12115                 rc = -ENODEV;
12116                 goto err_out_disable;
12117         }
12118
12119         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12120         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12121             PCICFG_REVESION_ID_ERROR_VAL) {
12122                 pr_err("PCI device error, probably due to fan failure, aborting\n");
12123                 rc = -ENODEV;
12124                 goto err_out_disable;
12125         }
12126
12127         if (atomic_read(&pdev->enable_cnt) == 1) {
12128                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12129                 if (rc) {
12130                         dev_err(&bp->pdev->dev,
12131                                 "Cannot obtain PCI resources, aborting\n");
12132                         goto err_out_disable;
12133                 }
12134
12135                 pci_set_master(pdev);
12136                 pci_save_state(pdev);
12137         }
12138
12139         if (IS_PF(bp)) {
12140                 bp->pm_cap = pdev->pm_cap;
12141                 if (bp->pm_cap == 0) {
12142                         dev_err(&bp->pdev->dev,
12143                                 "Cannot find power management capability, aborting\n");
12144                         rc = -EIO;
12145                         goto err_out_release;
12146                 }
12147         }
12148
12149         if (!pci_is_pcie(pdev)) {
12150                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12151                 rc = -EIO;
12152                 goto err_out_release;
12153         }
12154
12155         rc = bnx2x_set_coherency_mask(bp);
12156         if (rc)
12157                 goto err_out_release;
12158
12159         dev->mem_start = pci_resource_start(pdev, 0);
12160         dev->base_addr = dev->mem_start;
12161         dev->mem_end = pci_resource_end(pdev, 0);
12162
12163         dev->irq = pdev->irq;
12164
12165         bp->regview = pci_ioremap_bar(pdev, 0);
12166         if (!bp->regview) {
12167                 dev_err(&bp->pdev->dev,
12168                         "Cannot map register space, aborting\n");
12169                 rc = -ENOMEM;
12170                 goto err_out_release;
12171         }
12172
12173         /* In E1/E1H use pci device function given by kernel.
12174          * In E2/E3 read physical function from ME register since these chips
12175          * support Physical Device Assignment where kernel BDF maybe arbitrary
12176          * (depending on hypervisor).
12177          */
12178         if (chip_is_e1x) {
12179                 bp->pf_num = PCI_FUNC(pdev->devfn);
12180         } else {
12181                 /* chip is E2/3*/
12182                 pci_read_config_dword(bp->pdev,
12183                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
12184                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12185                                   ME_REG_ABS_PF_NUM_SHIFT);
12186         }
12187         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12188
12189         /* clean indirect addresses */
12190         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12191                                PCICFG_VENDOR_ID_OFFSET);
12192         /*
12193          * Clean the following indirect addresses for all functions since it
12194          * is not used by the driver.
12195          */
12196         if (IS_PF(bp)) {
12197                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12198                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12199                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12200                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12201
12202                 if (chip_is_e1x) {
12203                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12204                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12205                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12206                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12207                 }
12208
12209                 /* Enable internal target-read (in case we are probed after PF
12210                  * FLR). Must be done prior to any BAR read access. Only for
12211                  * 57712 and up
12212                  */
12213                 if (!chip_is_e1x)
12214                         REG_WR(bp,
12215                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12216         }
12217
12218         dev->watchdog_timeo = TX_TIMEOUT;
12219
12220         dev->netdev_ops = &bnx2x_netdev_ops;
12221         bnx2x_set_ethtool_ops(bp, dev);
12222
12223         dev->priv_flags |= IFF_UNICAST_FLT;
12224
12225         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12226                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12227                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12228                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12229         if (!CHIP_IS_E1x(bp)) {
12230                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12231                 dev->hw_enc_features =
12232                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12233                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12234                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12235         }
12236
12237         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12238                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12239
12240         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12241         if (bp->flags & USING_DAC_FLAG)
12242                 dev->features |= NETIF_F_HIGHDMA;
12243
12244         /* Add Loopback capability to the device */
12245         dev->hw_features |= NETIF_F_LOOPBACK;
12246
12247 #ifdef BCM_DCBNL
12248         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12249 #endif
12250
12251         /* get_port_hwinfo() will set prtad and mmds properly */
12252         bp->mdio.prtad = MDIO_PRTAD_NONE;
12253         bp->mdio.mmds = 0;
12254         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12255         bp->mdio.dev = dev;
12256         bp->mdio.mdio_read = bnx2x_mdio_read;
12257         bp->mdio.mdio_write = bnx2x_mdio_write;
12258
12259         return 0;
12260
12261 err_out_release:
12262         if (atomic_read(&pdev->enable_cnt) == 1)
12263                 pci_release_regions(pdev);
12264
12265 err_out_disable:
12266         pci_disable_device(pdev);
12267         pci_set_drvdata(pdev, NULL);
12268
12269 err_out:
12270         return rc;
12271 }
12272
12273 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12274                                        enum bnx2x_pci_bus_speed *speed)
12275 {
12276         u32 link_speed, val = 0;
12277
12278         pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12279         *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12280
12281         link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12282
12283         switch (link_speed) {
12284         case 3:
12285                 *speed = BNX2X_PCI_LINK_SPEED_8000;
12286                 break;
12287         case 2:
12288                 *speed = BNX2X_PCI_LINK_SPEED_5000;
12289                 break;
12290         default:
12291                 *speed = BNX2X_PCI_LINK_SPEED_2500;
12292         }
12293 }
12294
12295 static int bnx2x_check_firmware(struct bnx2x *bp)
12296 {
12297         const struct firmware *firmware = bp->firmware;
12298         struct bnx2x_fw_file_hdr *fw_hdr;
12299         struct bnx2x_fw_file_section *sections;
12300         u32 offset, len, num_ops;
12301         __be16 *ops_offsets;
12302         int i;
12303         const u8 *fw_ver;
12304
12305         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12306                 BNX2X_ERR("Wrong FW size\n");
12307                 return -EINVAL;
12308         }
12309
12310         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12311         sections = (struct bnx2x_fw_file_section *)fw_hdr;
12312
12313         /* Make sure none of the offsets and sizes make us read beyond
12314          * the end of the firmware data */
12315         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12316                 offset = be32_to_cpu(sections[i].offset);
12317                 len = be32_to_cpu(sections[i].len);
12318                 if (offset + len > firmware->size) {
12319                         BNX2X_ERR("Section %d length is out of bounds\n", i);
12320                         return -EINVAL;
12321                 }
12322         }
12323
12324         /* Likewise for the init_ops offsets */
12325         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12326         ops_offsets = (__force __be16 *)(firmware->data + offset);
12327         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12328
12329         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12330                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12331                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
12332                         return -EINVAL;
12333                 }
12334         }
12335
12336         /* Check FW version */
12337         offset = be32_to_cpu(fw_hdr->fw_version.offset);
12338         fw_ver = firmware->data + offset;
12339         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12340             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12341             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12342             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12343                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12344                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12345                        BCM_5710_FW_MAJOR_VERSION,
12346                        BCM_5710_FW_MINOR_VERSION,
12347                        BCM_5710_FW_REVISION_VERSION,
12348                        BCM_5710_FW_ENGINEERING_VERSION);
12349                 return -EINVAL;
12350         }
12351
12352         return 0;
12353 }
12354
12355 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12356 {
12357         const __be32 *source = (const __be32 *)_source;
12358         u32 *target = (u32 *)_target;
12359         u32 i;
12360
12361         for (i = 0; i < n/4; i++)
12362                 target[i] = be32_to_cpu(source[i]);
12363 }
12364
12365 /*
12366    Ops array is stored in the following format:
12367    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12368  */
12369 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12370 {
12371         const __be32 *source = (const __be32 *)_source;
12372         struct raw_op *target = (struct raw_op *)_target;
12373         u32 i, j, tmp;
12374
12375         for (i = 0, j = 0; i < n/8; i++, j += 2) {
12376                 tmp = be32_to_cpu(source[j]);
12377                 target[i].op = (tmp >> 24) & 0xff;
12378                 target[i].offset = tmp & 0xffffff;
12379                 target[i].raw_data = be32_to_cpu(source[j + 1]);
12380         }
12381 }
12382
12383 /* IRO array is stored in the following format:
12384  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12385  */
12386 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12387 {
12388         const __be32 *source = (const __be32 *)_source;
12389         struct iro *target = (struct iro *)_target;
12390         u32 i, j, tmp;
12391
12392         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12393                 target[i].base = be32_to_cpu(source[j]);
12394                 j++;
12395                 tmp = be32_to_cpu(source[j]);
12396                 target[i].m1 = (tmp >> 16) & 0xffff;
12397                 target[i].m2 = tmp & 0xffff;
12398                 j++;
12399                 tmp = be32_to_cpu(source[j]);
12400                 target[i].m3 = (tmp >> 16) & 0xffff;
12401                 target[i].size = tmp & 0xffff;
12402                 j++;
12403         }
12404 }
12405
12406 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12407 {
12408         const __be16 *source = (const __be16 *)_source;
12409         u16 *target = (u16 *)_target;
12410         u32 i;
12411
12412         for (i = 0; i < n/2; i++)
12413                 target[i] = be16_to_cpu(source[i]);
12414 }
12415
12416 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12417 do {                                                                    \
12418         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12419         bp->arr = kmalloc(len, GFP_KERNEL);                             \
12420         if (!bp->arr)                                                   \
12421                 goto lbl;                                               \
12422         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12423              (u8 *)bp->arr, len);                                       \
12424 } while (0)
12425
12426 static int bnx2x_init_firmware(struct bnx2x *bp)
12427 {
12428         const char *fw_file_name;
12429         struct bnx2x_fw_file_hdr *fw_hdr;
12430         int rc;
12431
12432         if (bp->firmware)
12433                 return 0;
12434
12435         if (CHIP_IS_E1(bp))
12436                 fw_file_name = FW_FILE_NAME_E1;
12437         else if (CHIP_IS_E1H(bp))
12438                 fw_file_name = FW_FILE_NAME_E1H;
12439         else if (!CHIP_IS_E1x(bp))
12440                 fw_file_name = FW_FILE_NAME_E2;
12441         else {
12442                 BNX2X_ERR("Unsupported chip revision\n");
12443                 return -EINVAL;
12444         }
12445         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12446
12447         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12448         if (rc) {
12449                 BNX2X_ERR("Can't load firmware file %s\n",
12450                           fw_file_name);
12451                 goto request_firmware_exit;
12452         }
12453
12454         rc = bnx2x_check_firmware(bp);
12455         if (rc) {
12456                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12457                 goto request_firmware_exit;
12458         }
12459
12460         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12461
12462         /* Initialize the pointers to the init arrays */
12463         /* Blob */
12464         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12465
12466         /* Opcodes */
12467         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12468
12469         /* Offsets */
12470         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12471                             be16_to_cpu_n);
12472
12473         /* STORMs firmware */
12474         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12475                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12476         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12477                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12478         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12479                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12480         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12481                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
12482         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12483                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12484         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12485                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12486         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12487                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12488         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12489                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
12490         /* IRO */
12491         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12492
12493         return 0;
12494
12495 iro_alloc_err:
12496         kfree(bp->init_ops_offsets);
12497 init_offsets_alloc_err:
12498         kfree(bp->init_ops);
12499 init_ops_alloc_err:
12500         kfree(bp->init_data);
12501 request_firmware_exit:
12502         release_firmware(bp->firmware);
12503         bp->firmware = NULL;
12504
12505         return rc;
12506 }
12507
12508 static void bnx2x_release_firmware(struct bnx2x *bp)
12509 {
12510         kfree(bp->init_ops_offsets);
12511         kfree(bp->init_ops);
12512         kfree(bp->init_data);
12513         release_firmware(bp->firmware);
12514         bp->firmware = NULL;
12515 }
12516
12517 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12518         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12519         .init_hw_cmn      = bnx2x_init_hw_common,
12520         .init_hw_port     = bnx2x_init_hw_port,
12521         .init_hw_func     = bnx2x_init_hw_func,
12522
12523         .reset_hw_cmn     = bnx2x_reset_common,
12524         .reset_hw_port    = bnx2x_reset_port,
12525         .reset_hw_func    = bnx2x_reset_func,
12526
12527         .gunzip_init      = bnx2x_gunzip_init,
12528         .gunzip_end       = bnx2x_gunzip_end,
12529
12530         .init_fw          = bnx2x_init_firmware,
12531         .release_fw       = bnx2x_release_firmware,
12532 };
12533
12534 void bnx2x__init_func_obj(struct bnx2x *bp)
12535 {
12536         /* Prepare DMAE related driver resources */
12537         bnx2x_setup_dmae(bp);
12538
12539         bnx2x_init_func_obj(bp, &bp->func_obj,
12540                             bnx2x_sp(bp, func_rdata),
12541                             bnx2x_sp_mapping(bp, func_rdata),
12542                             bnx2x_sp(bp, func_afex_rdata),
12543                             bnx2x_sp_mapping(bp, func_afex_rdata),
12544                             &bnx2x_func_sp_drv);
12545 }
12546
12547 /* must be called after sriov-enable */
12548 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12549 {
12550         int cid_count = BNX2X_L2_MAX_CID(bp);
12551
12552         if (IS_SRIOV(bp))
12553                 cid_count += BNX2X_VF_CIDS;
12554
12555         if (CNIC_SUPPORT(bp))
12556                 cid_count += CNIC_CID_MAX;
12557
12558         return roundup(cid_count, QM_CID_ROUND);
12559 }
12560
12561 /**
12562  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12563  *
12564  * @dev:        pci device
12565  *
12566  */
12567 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12568 {
12569         int index;
12570         u16 control = 0;
12571
12572         /*
12573          * If MSI-X is not supported - return number of SBs needed to support
12574          * one fast path queue: one FP queue + SB for CNIC
12575          */
12576         if (!pdev->msix_cap) {
12577                 dev_info(&pdev->dev, "no msix capability found\n");
12578                 return 1 + cnic_cnt;
12579         }
12580         dev_info(&pdev->dev, "msix capability found\n");
12581
12582         /*
12583          * The value in the PCI configuration space is the index of the last
12584          * entry, namely one less than the actual size of the table, which is
12585          * exactly what we want to return from this function: number of all SBs
12586          * without the default SB.
12587          * For VFs there is no default SB, then we return (index+1).
12588          */
12589         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12590
12591         index = control & PCI_MSIX_FLAGS_QSIZE;
12592
12593         return index;
12594 }
12595
12596 static int set_max_cos_est(int chip_id)
12597 {
12598         switch (chip_id) {
12599         case BCM57710:
12600         case BCM57711:
12601         case BCM57711E:
12602                 return BNX2X_MULTI_TX_COS_E1X;
12603         case BCM57712:
12604         case BCM57712_MF:
12605         case BCM57712_VF:
12606                 return BNX2X_MULTI_TX_COS_E2_E3A0;
12607         case BCM57800:
12608         case BCM57800_MF:
12609         case BCM57800_VF:
12610         case BCM57810:
12611         case BCM57810_MF:
12612         case BCM57840_4_10:
12613         case BCM57840_2_20:
12614         case BCM57840_O:
12615         case BCM57840_MFO:
12616         case BCM57810_VF:
12617         case BCM57840_MF:
12618         case BCM57840_VF:
12619         case BCM57811:
12620         case BCM57811_MF:
12621         case BCM57811_VF:
12622                 return BNX2X_MULTI_TX_COS_E3B0;
12623                 return 1;
12624         default:
12625                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12626                 return -ENODEV;
12627         }
12628 }
12629
12630 static int set_is_vf(int chip_id)
12631 {
12632         switch (chip_id) {
12633         case BCM57712_VF:
12634         case BCM57800_VF:
12635         case BCM57810_VF:
12636         case BCM57840_VF:
12637         case BCM57811_VF:
12638                 return true;
12639         default:
12640                 return false;
12641         }
12642 }
12643
12644 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12645
12646 static int bnx2x_init_one(struct pci_dev *pdev,
12647                                     const struct pci_device_id *ent)
12648 {
12649         struct net_device *dev = NULL;
12650         struct bnx2x *bp;
12651         int pcie_width;
12652         enum bnx2x_pci_bus_speed pcie_speed;
12653         int rc, max_non_def_sbs;
12654         int rx_count, tx_count, rss_count, doorbell_size;
12655         int max_cos_est;
12656         bool is_vf;
12657         int cnic_cnt;
12658
12659         /* An estimated maximum supported CoS number according to the chip
12660          * version.
12661          * We will try to roughly estimate the maximum number of CoSes this chip
12662          * may support in order to minimize the memory allocated for Tx
12663          * netdev_queue's. This number will be accurately calculated during the
12664          * initialization of bp->max_cos based on the chip versions AND chip
12665          * revision in the bnx2x_init_bp().
12666          */
12667         max_cos_est = set_max_cos_est(ent->driver_data);
12668         if (max_cos_est < 0)
12669                 return max_cos_est;
12670         is_vf = set_is_vf(ent->driver_data);
12671         cnic_cnt = is_vf ? 0 : 1;
12672
12673         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12674
12675         /* add another SB for VF as it has no default SB */
12676         max_non_def_sbs += is_vf ? 1 : 0;
12677
12678         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12679         rss_count = max_non_def_sbs - cnic_cnt;
12680
12681         if (rss_count < 1)
12682                 return -EINVAL;
12683
12684         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12685         rx_count = rss_count + cnic_cnt;
12686
12687         /* Maximum number of netdev Tx queues:
12688          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12689          */
12690         tx_count = rss_count * max_cos_est + cnic_cnt;
12691
12692         /* dev zeroed in init_etherdev */
12693         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12694         if (!dev)
12695                 return -ENOMEM;
12696
12697         bp = netdev_priv(dev);
12698
12699         bp->flags = 0;
12700         if (is_vf)
12701                 bp->flags |= IS_VF_FLAG;
12702
12703         bp->igu_sb_cnt = max_non_def_sbs;
12704         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12705         bp->msg_enable = debug;
12706         bp->cnic_support = cnic_cnt;
12707         bp->cnic_probe = bnx2x_cnic_probe;
12708
12709         pci_set_drvdata(pdev, dev);
12710
12711         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12712         if (rc < 0) {
12713                 free_netdev(dev);
12714                 return rc;
12715         }
12716
12717         BNX2X_DEV_INFO("This is a %s function\n",
12718                        IS_PF(bp) ? "physical" : "virtual");
12719         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12720         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12721         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12722                        tx_count, rx_count);
12723
12724         rc = bnx2x_init_bp(bp);
12725         if (rc)
12726                 goto init_one_exit;
12727
12728         /* Map doorbells here as we need the real value of bp->max_cos which
12729          * is initialized in bnx2x_init_bp() to determine the number of
12730          * l2 connections.
12731          */
12732         if (IS_VF(bp)) {
12733                 bp->doorbells = bnx2x_vf_doorbells(bp);
12734                 rc = bnx2x_vf_pci_alloc(bp);
12735                 if (rc)
12736                         goto init_one_exit;
12737         } else {
12738                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12739                 if (doorbell_size > pci_resource_len(pdev, 2)) {
12740                         dev_err(&bp->pdev->dev,
12741                                 "Cannot map doorbells, bar size too small, aborting\n");
12742                         rc = -ENOMEM;
12743                         goto init_one_exit;
12744                 }
12745                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12746                                                 doorbell_size);
12747         }
12748         if (!bp->doorbells) {
12749                 dev_err(&bp->pdev->dev,
12750                         "Cannot map doorbell space, aborting\n");
12751                 rc = -ENOMEM;
12752                 goto init_one_exit;
12753         }
12754
12755         if (IS_VF(bp)) {
12756                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12757                 if (rc)
12758                         goto init_one_exit;
12759         }
12760
12761         /* Enable SRIOV if capability found in configuration space */
12762         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12763         if (rc)
12764                 goto init_one_exit;
12765
12766         /* calc qm_cid_count */
12767         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12768         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12769
12770         /* disable FCOE L2 queue for E1x*/
12771         if (CHIP_IS_E1x(bp))
12772                 bp->flags |= NO_FCOE_FLAG;
12773
12774         /* Set bp->num_queues for MSI-X mode*/
12775         bnx2x_set_num_queues(bp);
12776
12777         /* Configure interrupt mode: try to enable MSI-X/MSI if
12778          * needed.
12779          */
12780         rc = bnx2x_set_int_mode(bp);
12781         if (rc) {
12782                 dev_err(&pdev->dev, "Cannot set interrupts\n");
12783                 goto init_one_exit;
12784         }
12785         BNX2X_DEV_INFO("set interrupts successfully\n");
12786
12787         /* register the net device */
12788         rc = register_netdev(dev);
12789         if (rc) {
12790                 dev_err(&pdev->dev, "Cannot register net device\n");
12791                 goto init_one_exit;
12792         }
12793         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12794
12795         if (!NO_FCOE(bp)) {
12796                 /* Add storage MAC address */
12797                 rtnl_lock();
12798                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12799                 rtnl_unlock();
12800         }
12801
12802         bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12803         BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12804                        pcie_width, pcie_speed);
12805
12806         BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12807                        board_info[ent->driver_data].name,
12808                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12809                        pcie_width,
12810                        pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12811                        pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12812                        pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12813                        "Unknown",
12814                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
12815
12816         return 0;
12817
12818 init_one_exit:
12819         if (bp->regview)
12820                 iounmap(bp->regview);
12821
12822         if (IS_PF(bp) && bp->doorbells)
12823                 iounmap(bp->doorbells);
12824
12825         free_netdev(dev);
12826
12827         if (atomic_read(&pdev->enable_cnt) == 1)
12828                 pci_release_regions(pdev);
12829
12830         pci_disable_device(pdev);
12831         pci_set_drvdata(pdev, NULL);
12832
12833         return rc;
12834 }
12835
12836 static void __bnx2x_remove(struct pci_dev *pdev,
12837                            struct net_device *dev,
12838                            struct bnx2x *bp,
12839                            bool remove_netdev)
12840 {
12841         /* Delete storage MAC address */
12842         if (!NO_FCOE(bp)) {
12843                 rtnl_lock();
12844                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12845                 rtnl_unlock();
12846         }
12847
12848 #ifdef BCM_DCBNL
12849         /* Delete app tlvs from dcbnl */
12850         bnx2x_dcbnl_update_applist(bp, true);
12851 #endif
12852
12853         if (IS_PF(bp) &&
12854             !BP_NOMCP(bp) &&
12855             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
12856                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
12857
12858         /* Close the interface - either directly or implicitly */
12859         if (remove_netdev) {
12860                 unregister_netdev(dev);
12861         } else {
12862                 rtnl_lock();
12863                 dev_close(dev);
12864                 rtnl_unlock();
12865         }
12866
12867         bnx2x_iov_remove_one(bp);
12868
12869         /* Power on: we can't let PCI layer write to us while we are in D3 */
12870         if (IS_PF(bp))
12871                 bnx2x_set_power_state(bp, PCI_D0);
12872
12873         /* Disable MSI/MSI-X */
12874         bnx2x_disable_msi(bp);
12875
12876         /* Power off */
12877         if (IS_PF(bp))
12878                 bnx2x_set_power_state(bp, PCI_D3hot);
12879
12880         /* Make sure RESET task is not scheduled before continuing */
12881         cancel_delayed_work_sync(&bp->sp_rtnl_task);
12882
12883         /* send message via vfpf channel to release the resources of this vf */
12884         if (IS_VF(bp))
12885                 bnx2x_vfpf_release(bp);
12886
12887         /* Assumes no further PCIe PM changes will occur */
12888         if (system_state == SYSTEM_POWER_OFF) {
12889                 pci_wake_from_d3(pdev, bp->wol);
12890                 pci_set_power_state(pdev, PCI_D3hot);
12891         }
12892
12893         if (bp->regview)
12894                 iounmap(bp->regview);
12895
12896         /* for vf doorbells are part of the regview and were unmapped along with
12897          * it. FW is only loaded by PF.
12898          */
12899         if (IS_PF(bp)) {
12900                 if (bp->doorbells)
12901                         iounmap(bp->doorbells);
12902
12903                 bnx2x_release_firmware(bp);
12904         }
12905         bnx2x_free_mem_bp(bp);
12906
12907         if (remove_netdev)
12908                 free_netdev(dev);
12909
12910         if (atomic_read(&pdev->enable_cnt) == 1)
12911                 pci_release_regions(pdev);
12912
12913         pci_disable_device(pdev);
12914         pci_set_drvdata(pdev, NULL);
12915 }
12916
12917 static void bnx2x_remove_one(struct pci_dev *pdev)
12918 {
12919         struct net_device *dev = pci_get_drvdata(pdev);
12920         struct bnx2x *bp;
12921
12922         if (!dev) {
12923                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12924                 return;
12925         }
12926         bp = netdev_priv(dev);
12927
12928         __bnx2x_remove(pdev, dev, bp, true);
12929 }
12930
12931 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12932 {
12933         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12934
12935         bp->rx_mode = BNX2X_RX_MODE_NONE;
12936
12937         if (CNIC_LOADED(bp))
12938                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12939
12940         /* Stop Tx */
12941         bnx2x_tx_disable(bp);
12942         /* Delete all NAPI objects */
12943         bnx2x_del_all_napi(bp);
12944         if (CNIC_LOADED(bp))
12945                 bnx2x_del_all_napi_cnic(bp);
12946         netdev_reset_tc(bp->dev);
12947
12948         del_timer_sync(&bp->timer);
12949         cancel_delayed_work(&bp->sp_task);
12950         cancel_delayed_work(&bp->period_task);
12951
12952         spin_lock_bh(&bp->stats_lock);
12953         bp->stats_state = STATS_STATE_DISABLED;
12954         spin_unlock_bh(&bp->stats_lock);
12955
12956         bnx2x_save_statistics(bp);
12957
12958         netif_carrier_off(bp->dev);
12959
12960         return 0;
12961 }
12962
12963 /**
12964  * bnx2x_io_error_detected - called when PCI error is detected
12965  * @pdev: Pointer to PCI device
12966  * @state: The current pci connection state
12967  *
12968  * This function is called after a PCI bus error affecting
12969  * this device has been detected.
12970  */
12971 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12972                                                 pci_channel_state_t state)
12973 {
12974         struct net_device *dev = pci_get_drvdata(pdev);
12975         struct bnx2x *bp = netdev_priv(dev);
12976
12977         rtnl_lock();
12978
12979         BNX2X_ERR("IO error detected\n");
12980
12981         netif_device_detach(dev);
12982
12983         if (state == pci_channel_io_perm_failure) {
12984                 rtnl_unlock();
12985                 return PCI_ERS_RESULT_DISCONNECT;
12986         }
12987
12988         if (netif_running(dev))
12989                 bnx2x_eeh_nic_unload(bp);
12990
12991         bnx2x_prev_path_mark_eeh(bp);
12992
12993         pci_disable_device(pdev);
12994
12995         rtnl_unlock();
12996
12997         /* Request a slot reset */
12998         return PCI_ERS_RESULT_NEED_RESET;
12999 }
13000
13001 /**
13002  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13003  * @pdev: Pointer to PCI device
13004  *
13005  * Restart the card from scratch, as if from a cold-boot.
13006  */
13007 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13008 {
13009         struct net_device *dev = pci_get_drvdata(pdev);
13010         struct bnx2x *bp = netdev_priv(dev);
13011         int i;
13012
13013         rtnl_lock();
13014         BNX2X_ERR("IO slot reset initializing...\n");
13015         if (pci_enable_device(pdev)) {
13016                 dev_err(&pdev->dev,
13017                         "Cannot re-enable PCI device after reset\n");
13018                 rtnl_unlock();
13019                 return PCI_ERS_RESULT_DISCONNECT;
13020         }
13021
13022         pci_set_master(pdev);
13023         pci_restore_state(pdev);
13024         pci_save_state(pdev);
13025
13026         if (netif_running(dev))
13027                 bnx2x_set_power_state(bp, PCI_D0);
13028
13029         if (netif_running(dev)) {
13030                 BNX2X_ERR("IO slot reset --> driver unload\n");
13031
13032                 /* MCP should have been reset; Need to wait for validity */
13033                 bnx2x_init_shmem(bp);
13034
13035                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13036                         u32 v;
13037
13038                         v = SHMEM2_RD(bp,
13039                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13040                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13041                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13042                 }
13043                 bnx2x_drain_tx_queues(bp);
13044                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13045                 bnx2x_netif_stop(bp, 1);
13046                 bnx2x_free_irq(bp);
13047
13048                 /* Report UNLOAD_DONE to MCP */
13049                 bnx2x_send_unload_done(bp, true);
13050
13051                 bp->sp_state = 0;
13052                 bp->port.pmf = 0;
13053
13054                 bnx2x_prev_unload(bp);
13055
13056                 /* We should have reseted the engine, so It's fair to
13057                  * assume the FW will no longer write to the bnx2x driver.
13058                  */
13059                 bnx2x_squeeze_objects(bp);
13060                 bnx2x_free_skbs(bp);
13061                 for_each_rx_queue(bp, i)
13062                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13063                 bnx2x_free_fp_mem(bp);
13064                 bnx2x_free_mem(bp);
13065
13066                 bp->state = BNX2X_STATE_CLOSED;
13067         }
13068
13069         rtnl_unlock();
13070
13071         return PCI_ERS_RESULT_RECOVERED;
13072 }
13073
13074 /**
13075  * bnx2x_io_resume - called when traffic can start flowing again
13076  * @pdev: Pointer to PCI device
13077  *
13078  * This callback is called when the error recovery driver tells us that
13079  * its OK to resume normal operation.
13080  */
13081 static void bnx2x_io_resume(struct pci_dev *pdev)
13082 {
13083         struct net_device *dev = pci_get_drvdata(pdev);
13084         struct bnx2x *bp = netdev_priv(dev);
13085
13086         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13087                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13088                 return;
13089         }
13090
13091         rtnl_lock();
13092
13093         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13094                                                         DRV_MSG_SEQ_NUMBER_MASK;
13095
13096         if (netif_running(dev))
13097                 bnx2x_nic_load(bp, LOAD_NORMAL);
13098
13099         netif_device_attach(dev);
13100
13101         rtnl_unlock();
13102 }
13103
13104 static const struct pci_error_handlers bnx2x_err_handler = {
13105         .error_detected = bnx2x_io_error_detected,
13106         .slot_reset     = bnx2x_io_slot_reset,
13107         .resume         = bnx2x_io_resume,
13108 };
13109
13110 static void bnx2x_shutdown(struct pci_dev *pdev)
13111 {
13112         struct net_device *dev = pci_get_drvdata(pdev);
13113         struct bnx2x *bp;
13114
13115         if (!dev)
13116                 return;
13117
13118         bp = netdev_priv(dev);
13119         if (!bp)
13120                 return;
13121
13122         rtnl_lock();
13123         netif_device_detach(dev);
13124         rtnl_unlock();
13125
13126         /* Don't remove the netdevice, as there are scenarios which will cause
13127          * the kernel to hang, e.g., when trying to remove bnx2i while the
13128          * rootfs is mounted from SAN.
13129          */
13130         __bnx2x_remove(pdev, dev, bp, false);
13131 }
13132
13133 static struct pci_driver bnx2x_pci_driver = {
13134         .name        = DRV_MODULE_NAME,
13135         .id_table    = bnx2x_pci_tbl,
13136         .probe       = bnx2x_init_one,
13137         .remove      = bnx2x_remove_one,
13138         .suspend     = bnx2x_suspend,
13139         .resume      = bnx2x_resume,
13140         .err_handler = &bnx2x_err_handler,
13141 #ifdef CONFIG_BNX2X_SRIOV
13142         .sriov_configure = bnx2x_sriov_configure,
13143 #endif
13144         .shutdown    = bnx2x_shutdown,
13145 };
13146
13147 static int __init bnx2x_init(void)
13148 {
13149         int ret;
13150
13151         pr_info("%s", version);
13152
13153         bnx2x_wq = create_singlethread_workqueue("bnx2x");
13154         if (bnx2x_wq == NULL) {
13155                 pr_err("Cannot create workqueue\n");
13156                 return -ENOMEM;
13157         }
13158
13159         ret = pci_register_driver(&bnx2x_pci_driver);
13160         if (ret) {
13161                 pr_err("Cannot register driver\n");
13162                 destroy_workqueue(bnx2x_wq);
13163         }
13164         return ret;
13165 }
13166
13167 static void __exit bnx2x_cleanup(void)
13168 {
13169         struct list_head *pos, *q;
13170
13171         pci_unregister_driver(&bnx2x_pci_driver);
13172
13173         destroy_workqueue(bnx2x_wq);
13174
13175         /* Free globally allocated resources */
13176         list_for_each_safe(pos, q, &bnx2x_prev_list) {
13177                 struct bnx2x_prev_path_list *tmp =
13178                         list_entry(pos, struct bnx2x_prev_path_list, list);
13179                 list_del(pos);
13180                 kfree(tmp);
13181         }
13182 }
13183
13184 void bnx2x_notify_link_changed(struct bnx2x *bp)
13185 {
13186         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13187 }
13188
13189 module_init(bnx2x_init);
13190 module_exit(bnx2x_cleanup);
13191
13192 /**
13193  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13194  *
13195  * @bp:         driver handle
13196  * @set:        set or clear the CAM entry
13197  *
13198  * This function will wait until the ramrod completion returns.
13199  * Return 0 if success, -ENODEV if ramrod doesn't return.
13200  */
13201 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13202 {
13203         unsigned long ramrod_flags = 0;
13204
13205         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13206         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13207                                  &bp->iscsi_l2_mac_obj, true,
13208                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13209 }
13210
13211 /* count denotes the number of new completions we have seen */
13212 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13213 {
13214         struct eth_spe *spe;
13215         int cxt_index, cxt_offset;
13216
13217 #ifdef BNX2X_STOP_ON_ERROR
13218         if (unlikely(bp->panic))
13219                 return;
13220 #endif
13221
13222         spin_lock_bh(&bp->spq_lock);
13223         BUG_ON(bp->cnic_spq_pending < count);
13224         bp->cnic_spq_pending -= count;
13225
13226         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13227                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13228                                 & SPE_HDR_CONN_TYPE) >>
13229                                 SPE_HDR_CONN_TYPE_SHIFT;
13230                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13231                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13232
13233                 /* Set validation for iSCSI L2 client before sending SETUP
13234                  *  ramrod
13235                  */
13236                 if (type == ETH_CONNECTION_TYPE) {
13237                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13238                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13239                                         ILT_PAGE_CIDS;
13240                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13241                                         (cxt_index * ILT_PAGE_CIDS);
13242                                 bnx2x_set_ctx_validation(bp,
13243                                         &bp->context[cxt_index].
13244                                                          vcxt[cxt_offset].eth,
13245                                         BNX2X_ISCSI_ETH_CID(bp));
13246                         }
13247                 }
13248
13249                 /*
13250                  * There may be not more than 8 L2, not more than 8 L5 SPEs
13251                  * and in the air. We also check that number of outstanding
13252                  * COMMON ramrods is not more than the EQ and SPQ can
13253                  * accommodate.
13254                  */
13255                 if (type == ETH_CONNECTION_TYPE) {
13256                         if (!atomic_read(&bp->cq_spq_left))
13257                                 break;
13258                         else
13259                                 atomic_dec(&bp->cq_spq_left);
13260                 } else if (type == NONE_CONNECTION_TYPE) {
13261                         if (!atomic_read(&bp->eq_spq_left))
13262                                 break;
13263                         else
13264                                 atomic_dec(&bp->eq_spq_left);
13265                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13266                            (type == FCOE_CONNECTION_TYPE)) {
13267                         if (bp->cnic_spq_pending >=
13268                             bp->cnic_eth_dev.max_kwqe_pending)
13269                                 break;
13270                         else
13271                                 bp->cnic_spq_pending++;
13272                 } else {
13273                         BNX2X_ERR("Unknown SPE type: %d\n", type);
13274                         bnx2x_panic();
13275                         break;
13276                 }
13277
13278                 spe = bnx2x_sp_get_next(bp);
13279                 *spe = *bp->cnic_kwq_cons;
13280
13281                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13282                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13283
13284                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13285                         bp->cnic_kwq_cons = bp->cnic_kwq;
13286                 else
13287                         bp->cnic_kwq_cons++;
13288         }
13289         bnx2x_sp_prod_update(bp);
13290         spin_unlock_bh(&bp->spq_lock);
13291 }
13292
13293 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13294                                struct kwqe_16 *kwqes[], u32 count)
13295 {
13296         struct bnx2x *bp = netdev_priv(dev);
13297         int i;
13298
13299 #ifdef BNX2X_STOP_ON_ERROR
13300         if (unlikely(bp->panic)) {
13301                 BNX2X_ERR("Can't post to SP queue while panic\n");
13302                 return -EIO;
13303         }
13304 #endif
13305
13306         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13307             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13308                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13309                 return -EAGAIN;
13310         }
13311
13312         spin_lock_bh(&bp->spq_lock);
13313
13314         for (i = 0; i < count; i++) {
13315                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13316
13317                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13318                         break;
13319
13320                 *bp->cnic_kwq_prod = *spe;
13321
13322                 bp->cnic_kwq_pending++;
13323
13324                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13325                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
13326                    spe->data.update_data_addr.hi,
13327                    spe->data.update_data_addr.lo,
13328                    bp->cnic_kwq_pending);
13329
13330                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13331                         bp->cnic_kwq_prod = bp->cnic_kwq;
13332                 else
13333                         bp->cnic_kwq_prod++;
13334         }
13335
13336         spin_unlock_bh(&bp->spq_lock);
13337
13338         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13339                 bnx2x_cnic_sp_post(bp, 0);
13340
13341         return i;
13342 }
13343
13344 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13345 {
13346         struct cnic_ops *c_ops;
13347         int rc = 0;
13348
13349         mutex_lock(&bp->cnic_mutex);
13350         c_ops = rcu_dereference_protected(bp->cnic_ops,
13351                                           lockdep_is_held(&bp->cnic_mutex));
13352         if (c_ops)
13353                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13354         mutex_unlock(&bp->cnic_mutex);
13355
13356         return rc;
13357 }
13358
13359 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13360 {
13361         struct cnic_ops *c_ops;
13362         int rc = 0;
13363
13364         rcu_read_lock();
13365         c_ops = rcu_dereference(bp->cnic_ops);
13366         if (c_ops)
13367                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13368         rcu_read_unlock();
13369
13370         return rc;
13371 }
13372
13373 /*
13374  * for commands that have no data
13375  */
13376 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13377 {
13378         struct cnic_ctl_info ctl = {0};
13379
13380         ctl.cmd = cmd;
13381
13382         return bnx2x_cnic_ctl_send(bp, &ctl);
13383 }
13384
13385 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13386 {
13387         struct cnic_ctl_info ctl = {0};
13388
13389         /* first we tell CNIC and only then we count this as a completion */
13390         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13391         ctl.data.comp.cid = cid;
13392         ctl.data.comp.error = err;
13393
13394         bnx2x_cnic_ctl_send_bh(bp, &ctl);
13395         bnx2x_cnic_sp_post(bp, 0);
13396 }
13397
13398 /* Called with netif_addr_lock_bh() taken.
13399  * Sets an rx_mode config for an iSCSI ETH client.
13400  * Doesn't block.
13401  * Completion should be checked outside.
13402  */
13403 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13404 {
13405         unsigned long accept_flags = 0, ramrod_flags = 0;
13406         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13407         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13408
13409         if (start) {
13410                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13411                  * because it's the only way for UIO Queue to accept
13412                  * multicasts (in non-promiscuous mode only one Queue per
13413                  * function will receive multicast packets (leading in our
13414                  * case).
13415                  */
13416                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13417                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13418                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13419                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13420
13421                 /* Clear STOP_PENDING bit if START is requested */
13422                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13423
13424                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13425         } else
13426                 /* Clear START_PENDING bit if STOP is requested */
13427                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13428
13429         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13430                 set_bit(sched_state, &bp->sp_state);
13431         else {
13432                 __set_bit(RAMROD_RX, &ramrod_flags);
13433                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13434                                     ramrod_flags);
13435         }
13436 }
13437
13438 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13439 {
13440         struct bnx2x *bp = netdev_priv(dev);
13441         int rc = 0;
13442
13443         switch (ctl->cmd) {
13444         case DRV_CTL_CTXTBL_WR_CMD: {
13445                 u32 index = ctl->data.io.offset;
13446                 dma_addr_t addr = ctl->data.io.dma_addr;
13447
13448                 bnx2x_ilt_wr(bp, index, addr);
13449                 break;
13450         }
13451
13452         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13453                 int count = ctl->data.credit.credit_count;
13454
13455                 bnx2x_cnic_sp_post(bp, count);
13456                 break;
13457         }
13458
13459         /* rtnl_lock is held.  */
13460         case DRV_CTL_START_L2_CMD: {
13461                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13462                 unsigned long sp_bits = 0;
13463
13464                 /* Configure the iSCSI classification object */
13465                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13466                                    cp->iscsi_l2_client_id,
13467                                    cp->iscsi_l2_cid, BP_FUNC(bp),
13468                                    bnx2x_sp(bp, mac_rdata),
13469                                    bnx2x_sp_mapping(bp, mac_rdata),
13470                                    BNX2X_FILTER_MAC_PENDING,
13471                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13472                                    &bp->macs_pool);
13473
13474                 /* Set iSCSI MAC address */
13475                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13476                 if (rc)
13477                         break;
13478
13479                 mmiowb();
13480                 barrier();
13481
13482                 /* Start accepting on iSCSI L2 ring */
13483
13484                 netif_addr_lock_bh(dev);
13485                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13486                 netif_addr_unlock_bh(dev);
13487
13488                 /* bits to wait on */
13489                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13490                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13491
13492                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13493                         BNX2X_ERR("rx_mode completion timed out!\n");
13494
13495                 break;
13496         }
13497
13498         /* rtnl_lock is held.  */
13499         case DRV_CTL_STOP_L2_CMD: {
13500                 unsigned long sp_bits = 0;
13501
13502                 /* Stop accepting on iSCSI L2 ring */
13503                 netif_addr_lock_bh(dev);
13504                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13505                 netif_addr_unlock_bh(dev);
13506
13507                 /* bits to wait on */
13508                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13509                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13510
13511                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13512                         BNX2X_ERR("rx_mode completion timed out!\n");
13513
13514                 mmiowb();
13515                 barrier();
13516
13517                 /* Unset iSCSI L2 MAC */
13518                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13519                                         BNX2X_ISCSI_ETH_MAC, true);
13520                 break;
13521         }
13522         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13523                 int count = ctl->data.credit.credit_count;
13524
13525                 smp_mb__before_atomic_inc();
13526                 atomic_add(count, &bp->cq_spq_left);
13527                 smp_mb__after_atomic_inc();
13528                 break;
13529         }
13530         case DRV_CTL_ULP_REGISTER_CMD: {
13531                 int ulp_type = ctl->data.register_data.ulp_type;
13532
13533                 if (CHIP_IS_E3(bp)) {
13534                         int idx = BP_FW_MB_IDX(bp);
13535                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13536                         int path = BP_PATH(bp);
13537                         int port = BP_PORT(bp);
13538                         int i;
13539                         u32 scratch_offset;
13540                         u32 *host_addr;
13541
13542                         /* first write capability to shmem2 */
13543                         if (ulp_type == CNIC_ULP_ISCSI)
13544                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13545                         else if (ulp_type == CNIC_ULP_FCOE)
13546                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13547                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13548
13549                         if ((ulp_type != CNIC_ULP_FCOE) ||
13550                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13551                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13552                                 break;
13553
13554                         /* if reached here - should write fcoe capabilities */
13555                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13556                         if (!scratch_offset)
13557                                 break;
13558                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
13559                                                    fcoe_features[path][port]);
13560                         host_addr = (u32 *) &(ctl->data.register_data.
13561                                               fcoe_features);
13562                         for (i = 0; i < sizeof(struct fcoe_capabilities);
13563                              i += 4)
13564                                 REG_WR(bp, scratch_offset + i,
13565                                        *(host_addr + i/4));
13566                 }
13567                 break;
13568         }
13569
13570         case DRV_CTL_ULP_UNREGISTER_CMD: {
13571                 int ulp_type = ctl->data.ulp_type;
13572
13573                 if (CHIP_IS_E3(bp)) {
13574                         int idx = BP_FW_MB_IDX(bp);
13575                         u32 cap;
13576
13577                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13578                         if (ulp_type == CNIC_ULP_ISCSI)
13579                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13580                         else if (ulp_type == CNIC_ULP_FCOE)
13581                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13582                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13583                 }
13584                 break;
13585         }
13586
13587         default:
13588                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13589                 rc = -EINVAL;
13590         }
13591
13592         return rc;
13593 }
13594
13595 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13596 {
13597         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13598
13599         if (bp->flags & USING_MSIX_FLAG) {
13600                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13601                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13602                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13603         } else {
13604                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13605                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13606         }
13607         if (!CHIP_IS_E1x(bp))
13608                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13609         else
13610                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13611
13612         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13613         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13614         cp->irq_arr[1].status_blk = bp->def_status_blk;
13615         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13616         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13617
13618         cp->num_irq = 2;
13619 }
13620
13621 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13622 {
13623         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13624
13625         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13626                              bnx2x_cid_ilt_lines(bp);
13627         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13628         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13629         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13630
13631         if (NO_ISCSI_OOO(bp))
13632                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13633 }
13634
13635 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13636                                void *data)
13637 {
13638         struct bnx2x *bp = netdev_priv(dev);
13639         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13640         int rc;
13641
13642         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13643
13644         if (ops == NULL) {
13645                 BNX2X_ERR("NULL ops received\n");
13646                 return -EINVAL;
13647         }
13648
13649         if (!CNIC_SUPPORT(bp)) {
13650                 BNX2X_ERR("Can't register CNIC when not supported\n");
13651                 return -EOPNOTSUPP;
13652         }
13653
13654         if (!CNIC_LOADED(bp)) {
13655                 rc = bnx2x_load_cnic(bp);
13656                 if (rc) {
13657                         BNX2X_ERR("CNIC-related load failed\n");
13658                         return rc;
13659                 }
13660         }
13661
13662         bp->cnic_enabled = true;
13663
13664         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13665         if (!bp->cnic_kwq)
13666                 return -ENOMEM;
13667
13668         bp->cnic_kwq_cons = bp->cnic_kwq;
13669         bp->cnic_kwq_prod = bp->cnic_kwq;
13670         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13671
13672         bp->cnic_spq_pending = 0;
13673         bp->cnic_kwq_pending = 0;
13674
13675         bp->cnic_data = data;
13676
13677         cp->num_irq = 0;
13678         cp->drv_state |= CNIC_DRV_STATE_REGD;
13679         cp->iro_arr = bp->iro_arr;
13680
13681         bnx2x_setup_cnic_irq_info(bp);
13682
13683         rcu_assign_pointer(bp->cnic_ops, ops);
13684
13685         return 0;
13686 }
13687
13688 static int bnx2x_unregister_cnic(struct net_device *dev)
13689 {
13690         struct bnx2x *bp = netdev_priv(dev);
13691         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13692
13693         mutex_lock(&bp->cnic_mutex);
13694         cp->drv_state = 0;
13695         RCU_INIT_POINTER(bp->cnic_ops, NULL);
13696         mutex_unlock(&bp->cnic_mutex);
13697         synchronize_rcu();
13698         bp->cnic_enabled = false;
13699         kfree(bp->cnic_kwq);
13700         bp->cnic_kwq = NULL;
13701
13702         return 0;
13703 }
13704
13705 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13706 {
13707         struct bnx2x *bp = netdev_priv(dev);
13708         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13709
13710         /* If both iSCSI and FCoE are disabled - return NULL in
13711          * order to indicate CNIC that it should not try to work
13712          * with this device.
13713          */
13714         if (NO_ISCSI(bp) && NO_FCOE(bp))
13715                 return NULL;
13716
13717         cp->drv_owner = THIS_MODULE;
13718         cp->chip_id = CHIP_ID(bp);
13719         cp->pdev = bp->pdev;
13720         cp->io_base = bp->regview;
13721         cp->io_base2 = bp->doorbells;
13722         cp->max_kwqe_pending = 8;
13723         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13724         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13725                              bnx2x_cid_ilt_lines(bp);
13726         cp->ctx_tbl_len = CNIC_ILT_LINES;
13727         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13728         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13729         cp->drv_ctl = bnx2x_drv_ctl;
13730         cp->drv_register_cnic = bnx2x_register_cnic;
13731         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13732         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13733         cp->iscsi_l2_client_id =
13734                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13735         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13736
13737         if (NO_ISCSI_OOO(bp))
13738                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13739
13740         if (NO_ISCSI(bp))
13741                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13742
13743         if (NO_FCOE(bp))
13744                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13745
13746         BNX2X_DEV_INFO(
13747                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13748            cp->ctx_blk_size,
13749            cp->ctx_tbl_offset,
13750            cp->ctx_tbl_len,
13751            cp->starting_cid);
13752         return cp;
13753 }
13754
13755 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13756 {
13757         struct bnx2x *bp = fp->bp;
13758         u32 offset = BAR_USTRORM_INTMEM;
13759
13760         if (IS_VF(bp))
13761                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
13762         else if (!CHIP_IS_E1x(bp))
13763                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13764         else
13765                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13766
13767         return offset;
13768 }
13769
13770 /* called only on E1H or E2.
13771  * When pretending to be PF, the pretend value is the function number 0...7
13772  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13773  * combination
13774  */
13775 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13776 {
13777         u32 pretend_reg;
13778
13779         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13780                 return -1;
13781
13782         /* get my own pretend register */
13783         pretend_reg = bnx2x_get_pretend_reg(bp);
13784         REG_WR(bp, pretend_reg, pretend_func_val);
13785         REG_RD(bp, pretend_reg);
13786         return 0;
13787 }