Merge branch 'clockevents/3.19' of http://git.linaro.org/people/daniel.lezcano/linux...
[cascardo/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <linux/crash_dump.h>
45 #include <net/ip.h>
46 #include <net/ipv6.h>
47 #include <net/tcp.h>
48 #include <net/checksum.h>
49 #include <net/ip6_checksum.h>
50 #include <linux/workqueue.h>
51 #include <linux/crc32.h>
52 #include <linux/crc32c.h>
53 #include <linux/prefetch.h>
54 #include <linux/zlib.h>
55 #include <linux/io.h>
56 #include <linux/semaphore.h>
57 #include <linux/stringify.h>
58 #include <linux/vmalloc.h>
59
60 #include "bnx2x.h"
61 #include "bnx2x_init.h"
62 #include "bnx2x_init_ops.h"
63 #include "bnx2x_cmn.h"
64 #include "bnx2x_vfpf.h"
65 #include "bnx2x_dcb.h"
66 #include "bnx2x_sp.h"
67 #include <linux/firmware.h>
68 #include "bnx2x_fw_file_hdr.h"
69 /* FW files */
70 #define FW_FILE_VERSION                                 \
71         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
72         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
73         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
74         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
75 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT              (5*HZ)
81
82 static char version[] =
83         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88                    "BCM57710/57711/57711E/"
89                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90                    "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96
97 int bnx2x_num_queues;
98 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
99 MODULE_PARM_DESC(num_queues,
100                  " Set number of queues (default is as a number of CPUs)");
101
102 static int disable_tpa;
103 module_param(disable_tpa, int, S_IRUGO);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105
106 static int int_mode;
107 module_param(int_mode, int, S_IRUGO);
108 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109                                 "(1 INT#x; 2 MSI)");
110
111 static int dropless_fc;
112 module_param(dropless_fc, int, S_IRUGO);
113 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114
115 static int mrrs = -1;
116 module_param(mrrs, int, S_IRUGO);
117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118
119 static int debug;
120 module_param(debug, int, S_IRUGO);
121 MODULE_PARM_DESC(debug, " Default debug msglevel");
122
123 static struct workqueue_struct *bnx2x_wq;
124 struct workqueue_struct *bnx2x_iov_wq;
125
126 struct bnx2x_mac_vals {
127         u32 xmac_addr;
128         u32 xmac_val;
129         u32 emac_addr;
130         u32 emac_val;
131         u32 umac_addr;
132         u32 umac_val;
133         u32 bmac_addr;
134         u32 bmac_val[2];
135 };
136
137 enum bnx2x_board_type {
138         BCM57710 = 0,
139         BCM57711,
140         BCM57711E,
141         BCM57712,
142         BCM57712_MF,
143         BCM57712_VF,
144         BCM57800,
145         BCM57800_MF,
146         BCM57800_VF,
147         BCM57810,
148         BCM57810_MF,
149         BCM57810_VF,
150         BCM57840_4_10,
151         BCM57840_2_20,
152         BCM57840_MF,
153         BCM57840_VF,
154         BCM57811,
155         BCM57811_MF,
156         BCM57840_O,
157         BCM57840_MFO,
158         BCM57811_VF
159 };
160
161 /* indexed by board_type, above */
162 static struct {
163         char *name;
164 } board_info[] = {
165         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
166         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
167         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
168         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
169         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
170         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
171         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
172         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
173         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
174         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
175         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
176         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
177         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
178         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
179         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
180         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
181         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
182         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
183         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
184         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
185         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
186 };
187
188 #ifndef PCI_DEVICE_ID_NX2_57710
189 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57711
192 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711E
195 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57712
198 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712_MF
201 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_VF
204 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57800
207 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800_MF
210 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_VF
213 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57810
216 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810_MF
219 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57840_O
222 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57810_VF
225 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
228 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
231 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
234 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MF
237 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_VF
240 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57811
243 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811_MF
246 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_VF
249 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
250 #endif
251
252 static const struct pci_device_id bnx2x_pci_tbl[] = {
253         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
273         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
274         { 0 }
275 };
276
277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
278
279 /* Global resources for unloading a previously loaded device */
280 #define BNX2X_PREV_WAIT_NEEDED 1
281 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
282 static LIST_HEAD(bnx2x_prev_list);
283
284 /* Forward declaration */
285 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
286 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
287 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
288
289 /****************************************************************************
290 * General service functions
291 ****************************************************************************/
292
293 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
294
295 static void __storm_memset_dma_mapping(struct bnx2x *bp,
296                                        u32 addr, dma_addr_t mapping)
297 {
298         REG_WR(bp,  addr, U64_LO(mapping));
299         REG_WR(bp,  addr + 4, U64_HI(mapping));
300 }
301
302 static void storm_memset_spq_addr(struct bnx2x *bp,
303                                   dma_addr_t mapping, u16 abs_fid)
304 {
305         u32 addr = XSEM_REG_FAST_MEMORY +
306                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
307
308         __storm_memset_dma_mapping(bp, addr, mapping);
309 }
310
311 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
312                                   u16 pf_id)
313 {
314         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
315                 pf_id);
316         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
317                 pf_id);
318         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
319                 pf_id);
320         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
321                 pf_id);
322 }
323
324 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
325                                  u8 enable)
326 {
327         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
328                 enable);
329         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
330                 enable);
331         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
332                 enable);
333         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
334                 enable);
335 }
336
337 static void storm_memset_eq_data(struct bnx2x *bp,
338                                  struct event_ring_data *eq_data,
339                                 u16 pfid)
340 {
341         size_t size = sizeof(struct event_ring_data);
342
343         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
344
345         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
346 }
347
348 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
349                                  u16 pfid)
350 {
351         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
352         REG_WR16(bp, addr, eq_prod);
353 }
354
355 /* used only at init
356  * locking is done by mcp
357  */
358 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
359 {
360         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
362         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363                                PCICFG_VENDOR_ID_OFFSET);
364 }
365
366 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
367 {
368         u32 val;
369
370         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
371         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
372         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
373                                PCICFG_VENDOR_ID_OFFSET);
374
375         return val;
376 }
377
378 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
379 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
380 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
381 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
382 #define DMAE_DP_DST_NONE        "dst_addr [none]"
383
384 static void bnx2x_dp_dmae(struct bnx2x *bp,
385                           struct dmae_command *dmae, int msglvl)
386 {
387         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
388         int i;
389
390         switch (dmae->opcode & DMAE_COMMAND_DST) {
391         case DMAE_CMD_DST_PCI:
392                 if (src_type == DMAE_CMD_SRC_PCI)
393                         DP(msglvl, "DMAE: opcode 0x%08x\n"
394                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
395                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
396                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
397                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
398                            dmae->comp_addr_hi, dmae->comp_addr_lo,
399                            dmae->comp_val);
400                 else
401                         DP(msglvl, "DMAE: opcode 0x%08x\n"
402                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
403                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
404                            dmae->opcode, dmae->src_addr_lo >> 2,
405                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
406                            dmae->comp_addr_hi, dmae->comp_addr_lo,
407                            dmae->comp_val);
408                 break;
409         case DMAE_CMD_DST_GRC:
410                 if (src_type == DMAE_CMD_SRC_PCI)
411                         DP(msglvl, "DMAE: opcode 0x%08x\n"
412                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
413                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
414                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
415                            dmae->len, dmae->dst_addr_lo >> 2,
416                            dmae->comp_addr_hi, dmae->comp_addr_lo,
417                            dmae->comp_val);
418                 else
419                         DP(msglvl, "DMAE: opcode 0x%08x\n"
420                            "src [%08x], len [%d*4], dst [%08x]\n"
421                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
422                            dmae->opcode, dmae->src_addr_lo >> 2,
423                            dmae->len, dmae->dst_addr_lo >> 2,
424                            dmae->comp_addr_hi, dmae->comp_addr_lo,
425                            dmae->comp_val);
426                 break;
427         default:
428                 if (src_type == DMAE_CMD_SRC_PCI)
429                         DP(msglvl, "DMAE: opcode 0x%08x\n"
430                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
431                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
432                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
433                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
434                            dmae->comp_val);
435                 else
436                         DP(msglvl, "DMAE: opcode 0x%08x\n"
437                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
438                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
439                            dmae->opcode, dmae->src_addr_lo >> 2,
440                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
441                            dmae->comp_val);
442                 break;
443         }
444
445         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
446                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
447                    i, *(((u32 *)dmae) + i));
448 }
449
450 /* copy command into DMAE command memory and set DMAE command go */
451 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
452 {
453         u32 cmd_offset;
454         int i;
455
456         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
457         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
458                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
459         }
460         REG_WR(bp, dmae_reg_go_c[idx], 1);
461 }
462
463 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
464 {
465         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
466                            DMAE_CMD_C_ENABLE);
467 }
468
469 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
470 {
471         return opcode & ~DMAE_CMD_SRC_RESET;
472 }
473
474 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
475                              bool with_comp, u8 comp_type)
476 {
477         u32 opcode = 0;
478
479         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
480                    (dst_type << DMAE_COMMAND_DST_SHIFT));
481
482         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
483
484         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
485         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
486                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
487         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
488
489 #ifdef __BIG_ENDIAN
490         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
491 #else
492         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
493 #endif
494         if (with_comp)
495                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
496         return opcode;
497 }
498
499 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
500                                       struct dmae_command *dmae,
501                                       u8 src_type, u8 dst_type)
502 {
503         memset(dmae, 0, sizeof(struct dmae_command));
504
505         /* set the opcode */
506         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
507                                          true, DMAE_COMP_PCI);
508
509         /* fill in the completion parameters */
510         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
511         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
512         dmae->comp_val = DMAE_COMP_VAL;
513 }
514
515 /* issue a dmae command over the init-channel and wait for completion */
516 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
517                                u32 *comp)
518 {
519         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
520         int rc = 0;
521
522         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
523
524         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
525          * as long as this code is called both from syscall context and
526          * from ndo_set_rx_mode() flow that may be called from BH.
527          */
528
529         spin_lock_bh(&bp->dmae_lock);
530
531         /* reset completion */
532         *comp = 0;
533
534         /* post the command on the channel used for initializations */
535         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
536
537         /* wait for completion */
538         udelay(5);
539         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
540
541                 if (!cnt ||
542                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
543                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
544                         BNX2X_ERR("DMAE timeout!\n");
545                         rc = DMAE_TIMEOUT;
546                         goto unlock;
547                 }
548                 cnt--;
549                 udelay(50);
550         }
551         if (*comp & DMAE_PCI_ERR_FLAG) {
552                 BNX2X_ERR("DMAE PCI error!\n");
553                 rc = DMAE_PCI_ERROR;
554         }
555
556 unlock:
557
558         spin_unlock_bh(&bp->dmae_lock);
559
560         return rc;
561 }
562
563 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
564                       u32 len32)
565 {
566         int rc;
567         struct dmae_command dmae;
568
569         if (!bp->dmae_ready) {
570                 u32 *data = bnx2x_sp(bp, wb_data[0]);
571
572                 if (CHIP_IS_E1(bp))
573                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
574                 else
575                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
576                 return;
577         }
578
579         /* set opcode and fixed command fields */
580         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
581
582         /* fill in addresses and len */
583         dmae.src_addr_lo = U64_LO(dma_addr);
584         dmae.src_addr_hi = U64_HI(dma_addr);
585         dmae.dst_addr_lo = dst_addr >> 2;
586         dmae.dst_addr_hi = 0;
587         dmae.len = len32;
588
589         /* issue the command and wait for completion */
590         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
591         if (rc) {
592                 BNX2X_ERR("DMAE returned failure %d\n", rc);
593 #ifdef BNX2X_STOP_ON_ERROR
594                 bnx2x_panic();
595 #endif
596         }
597 }
598
599 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
600 {
601         int rc;
602         struct dmae_command dmae;
603
604         if (!bp->dmae_ready) {
605                 u32 *data = bnx2x_sp(bp, wb_data[0]);
606                 int i;
607
608                 if (CHIP_IS_E1(bp))
609                         for (i = 0; i < len32; i++)
610                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
611                 else
612                         for (i = 0; i < len32; i++)
613                                 data[i] = REG_RD(bp, src_addr + i*4);
614
615                 return;
616         }
617
618         /* set opcode and fixed command fields */
619         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
620
621         /* fill in addresses and len */
622         dmae.src_addr_lo = src_addr >> 2;
623         dmae.src_addr_hi = 0;
624         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
625         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
626         dmae.len = len32;
627
628         /* issue the command and wait for completion */
629         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
630         if (rc) {
631                 BNX2X_ERR("DMAE returned failure %d\n", rc);
632 #ifdef BNX2X_STOP_ON_ERROR
633                 bnx2x_panic();
634 #endif
635         }
636 }
637
638 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
639                                       u32 addr, u32 len)
640 {
641         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
642         int offset = 0;
643
644         while (len > dmae_wr_max) {
645                 bnx2x_write_dmae(bp, phys_addr + offset,
646                                  addr + offset, dmae_wr_max);
647                 offset += dmae_wr_max * 4;
648                 len -= dmae_wr_max;
649         }
650
651         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
652 }
653
654 enum storms {
655            XSTORM,
656            TSTORM,
657            CSTORM,
658            USTORM,
659            MAX_STORMS
660 };
661
662 #define STORMS_NUM 4
663 #define REGS_IN_ENTRY 4
664
665 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
666                                               enum storms storm,
667                                               int entry)
668 {
669         switch (storm) {
670         case XSTORM:
671                 return XSTORM_ASSERT_LIST_OFFSET(entry);
672         case TSTORM:
673                 return TSTORM_ASSERT_LIST_OFFSET(entry);
674         case CSTORM:
675                 return CSTORM_ASSERT_LIST_OFFSET(entry);
676         case USTORM:
677                 return USTORM_ASSERT_LIST_OFFSET(entry);
678         case MAX_STORMS:
679         default:
680                 BNX2X_ERR("unknown storm\n");
681         }
682         return -EINVAL;
683 }
684
685 static int bnx2x_mc_assert(struct bnx2x *bp)
686 {
687         char last_idx;
688         int i, j, rc = 0;
689         enum storms storm;
690         u32 regs[REGS_IN_ENTRY];
691         u32 bar_storm_intmem[STORMS_NUM] = {
692                 BAR_XSTRORM_INTMEM,
693                 BAR_TSTRORM_INTMEM,
694                 BAR_CSTRORM_INTMEM,
695                 BAR_USTRORM_INTMEM
696         };
697         u32 storm_assert_list_index[STORMS_NUM] = {
698                 XSTORM_ASSERT_LIST_INDEX_OFFSET,
699                 TSTORM_ASSERT_LIST_INDEX_OFFSET,
700                 CSTORM_ASSERT_LIST_INDEX_OFFSET,
701                 USTORM_ASSERT_LIST_INDEX_OFFSET
702         };
703         char *storms_string[STORMS_NUM] = {
704                 "XSTORM",
705                 "TSTORM",
706                 "CSTORM",
707                 "USTORM"
708         };
709
710         for (storm = XSTORM; storm < MAX_STORMS; storm++) {
711                 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
712                                    storm_assert_list_index[storm]);
713                 if (last_idx)
714                         BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
715                                   storms_string[storm], last_idx);
716
717                 /* print the asserts */
718                 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
719                         /* read a single assert entry */
720                         for (j = 0; j < REGS_IN_ENTRY; j++)
721                                 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
722                                           bnx2x_get_assert_list_entry(bp,
723                                                                       storm,
724                                                                       i) +
725                                           sizeof(u32) * j);
726
727                         /* log entry if it contains a valid assert */
728                         if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
729                                 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
730                                           storms_string[storm], i, regs[3],
731                                           regs[2], regs[1], regs[0]);
732                                 rc++;
733                         } else {
734                                 break;
735                         }
736                 }
737         }
738
739         BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
740                   CHIP_IS_E1(bp) ? "everest1" :
741                   CHIP_IS_E1H(bp) ? "everest1h" :
742                   CHIP_IS_E2(bp) ? "everest2" : "everest3",
743                   BCM_5710_FW_MAJOR_VERSION,
744                   BCM_5710_FW_MINOR_VERSION,
745                   BCM_5710_FW_REVISION_VERSION);
746
747         return rc;
748 }
749
750 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
751 #define SCRATCH_BUFFER_SIZE(bp) \
752         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
753
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756         u32 addr, val;
757         u32 mark, offset;
758         __be32 data[9];
759         int word;
760         u32 trace_shmem_base;
761         if (BP_NOMCP(bp)) {
762                 BNX2X_ERR("NO MCP - can not dump\n");
763                 return;
764         }
765         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766                 (bp->common.bc_ver & 0xff0000) >> 16,
767                 (bp->common.bc_ver & 0xff00) >> 8,
768                 (bp->common.bc_ver & 0xff));
769
770         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773
774         if (BP_PATH(bp) == 0)
775                 trace_shmem_base = bp->common.shmem_base;
776         else
777                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778
779         /* sanity */
780         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
781             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
782                                 SCRATCH_BUFFER_SIZE(bp)) {
783                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
784                           trace_shmem_base);
785                 return;
786         }
787
788         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
789
790         /* validate TRCB signature */
791         mark = REG_RD(bp, addr);
792         if (mark != MFW_TRACE_SIGNATURE) {
793                 BNX2X_ERR("Trace buffer signature is missing.");
794                 return ;
795         }
796
797         /* read cyclic buffer pointer */
798         addr += 4;
799         mark = REG_RD(bp, addr);
800         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
801         if (mark >= trace_shmem_base || mark < addr + 4) {
802                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
803                 return;
804         }
805         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
806
807         printk("%s", lvl);
808
809         /* dump buffer after the mark */
810         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
811                 for (word = 0; word < 8; word++)
812                         data[word] = htonl(REG_RD(bp, offset + 4*word));
813                 data[8] = 0x0;
814                 pr_cont("%s", (char *)data);
815         }
816
817         /* dump buffer before the mark */
818         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
819                 for (word = 0; word < 8; word++)
820                         data[word] = htonl(REG_RD(bp, offset + 4*word));
821                 data[8] = 0x0;
822                 pr_cont("%s", (char *)data);
823         }
824         printk("%s" "end of fw dump\n", lvl);
825 }
826
827 static void bnx2x_fw_dump(struct bnx2x *bp)
828 {
829         bnx2x_fw_dump_lvl(bp, KERN_ERR);
830 }
831
832 static void bnx2x_hc_int_disable(struct bnx2x *bp)
833 {
834         int port = BP_PORT(bp);
835         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
836         u32 val = REG_RD(bp, addr);
837
838         /* in E1 we must use only PCI configuration space to disable
839          * MSI/MSIX capability
840          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
841          */
842         if (CHIP_IS_E1(bp)) {
843                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
844                  * Use mask register to prevent from HC sending interrupts
845                  * after we exit the function
846                  */
847                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
848
849                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
850                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
851                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
852         } else
853                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
854                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
855                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
856                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
857
858         DP(NETIF_MSG_IFDOWN,
859            "write %x to HC %d (addr 0x%x)\n",
860            val, port, addr);
861
862         /* flush all outstanding writes */
863         mmiowb();
864
865         REG_WR(bp, addr, val);
866         if (REG_RD(bp, addr) != val)
867                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
868 }
869
870 static void bnx2x_igu_int_disable(struct bnx2x *bp)
871 {
872         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
873
874         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
875                  IGU_PF_CONF_INT_LINE_EN |
876                  IGU_PF_CONF_ATTN_BIT_EN);
877
878         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
879
880         /* flush all outstanding writes */
881         mmiowb();
882
883         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
884         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
885                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
886 }
887
888 static void bnx2x_int_disable(struct bnx2x *bp)
889 {
890         if (bp->common.int_block == INT_BLOCK_HC)
891                 bnx2x_hc_int_disable(bp);
892         else
893                 bnx2x_igu_int_disable(bp);
894 }
895
896 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
897 {
898         int i;
899         u16 j;
900         struct hc_sp_status_block_data sp_sb_data;
901         int func = BP_FUNC(bp);
902 #ifdef BNX2X_STOP_ON_ERROR
903         u16 start = 0, end = 0;
904         u8 cos;
905 #endif
906         if (IS_PF(bp) && disable_int)
907                 bnx2x_int_disable(bp);
908
909         bp->stats_state = STATS_STATE_DISABLED;
910         bp->eth_stats.unrecoverable_error++;
911         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
912
913         BNX2X_ERR("begin crash dump -----------------\n");
914
915         /* Indices */
916         /* Common */
917         if (IS_PF(bp)) {
918                 struct host_sp_status_block *def_sb = bp->def_status_blk;
919                 int data_size, cstorm_offset;
920
921                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
922                           bp->def_idx, bp->def_att_idx, bp->attn_state,
923                           bp->spq_prod_idx, bp->stats_counter);
924                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
925                           def_sb->atten_status_block.attn_bits,
926                           def_sb->atten_status_block.attn_bits_ack,
927                           def_sb->atten_status_block.status_block_id,
928                           def_sb->atten_status_block.attn_bits_index);
929                 BNX2X_ERR("     def (");
930                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
931                         pr_cont("0x%x%s",
932                                 def_sb->sp_sb.index_values[i],
933                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
934
935                 data_size = sizeof(struct hc_sp_status_block_data) /
936                             sizeof(u32);
937                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
938                 for (i = 0; i < data_size; i++)
939                         *((u32 *)&sp_sb_data + i) =
940                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
941                                            i * sizeof(u32));
942
943                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
944                         sp_sb_data.igu_sb_id,
945                         sp_sb_data.igu_seg_id,
946                         sp_sb_data.p_func.pf_id,
947                         sp_sb_data.p_func.vnic_id,
948                         sp_sb_data.p_func.vf_id,
949                         sp_sb_data.p_func.vf_valid,
950                         sp_sb_data.state);
951         }
952
953         for_each_eth_queue(bp, i) {
954                 struct bnx2x_fastpath *fp = &bp->fp[i];
955                 int loop;
956                 struct hc_status_block_data_e2 sb_data_e2;
957                 struct hc_status_block_data_e1x sb_data_e1x;
958                 struct hc_status_block_sm  *hc_sm_p =
959                         CHIP_IS_E1x(bp) ?
960                         sb_data_e1x.common.state_machine :
961                         sb_data_e2.common.state_machine;
962                 struct hc_index_data *hc_index_p =
963                         CHIP_IS_E1x(bp) ?
964                         sb_data_e1x.index_data :
965                         sb_data_e2.index_data;
966                 u8 data_size, cos;
967                 u32 *sb_data_p;
968                 struct bnx2x_fp_txdata txdata;
969
970                 if (!bp->fp)
971                         break;
972
973                 if (!fp->rx_cons_sb)
974                         continue;
975
976                 /* Rx */
977                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
978                           i, fp->rx_bd_prod, fp->rx_bd_cons,
979                           fp->rx_comp_prod,
980                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
981                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
982                           fp->rx_sge_prod, fp->last_max_sge,
983                           le16_to_cpu(fp->fp_hc_idx));
984
985                 /* Tx */
986                 for_each_cos_in_tx_queue(fp, cos)
987                 {
988                         if (!fp->txdata_ptr[cos])
989                                 break;
990
991                         txdata = *fp->txdata_ptr[cos];
992
993                         if (!txdata.tx_cons_sb)
994                                 continue;
995
996                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
997                                   i, txdata.tx_pkt_prod,
998                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
999                                   txdata.tx_bd_cons,
1000                                   le16_to_cpu(*txdata.tx_cons_sb));
1001                 }
1002
1003                 loop = CHIP_IS_E1x(bp) ?
1004                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1005
1006                 /* host sb data */
1007
1008                 if (IS_FCOE_FP(fp))
1009                         continue;
1010
1011                 BNX2X_ERR("     run indexes (");
1012                 for (j = 0; j < HC_SB_MAX_SM; j++)
1013                         pr_cont("0x%x%s",
1014                                fp->sb_running_index[j],
1015                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1016
1017                 BNX2X_ERR("     indexes (");
1018                 for (j = 0; j < loop; j++)
1019                         pr_cont("0x%x%s",
1020                                fp->sb_index_values[j],
1021                                (j == loop - 1) ? ")" : " ");
1022
1023                 /* VF cannot access FW refelection for status block */
1024                 if (IS_VF(bp))
1025                         continue;
1026
1027                 /* fw sb data */
1028                 data_size = CHIP_IS_E1x(bp) ?
1029                         sizeof(struct hc_status_block_data_e1x) :
1030                         sizeof(struct hc_status_block_data_e2);
1031                 data_size /= sizeof(u32);
1032                 sb_data_p = CHIP_IS_E1x(bp) ?
1033                         (u32 *)&sb_data_e1x :
1034                         (u32 *)&sb_data_e2;
1035                 /* copy sb data in here */
1036                 for (j = 0; j < data_size; j++)
1037                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1038                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1039                                 j * sizeof(u32));
1040
1041                 if (!CHIP_IS_E1x(bp)) {
1042                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1043                                 sb_data_e2.common.p_func.pf_id,
1044                                 sb_data_e2.common.p_func.vf_id,
1045                                 sb_data_e2.common.p_func.vf_valid,
1046                                 sb_data_e2.common.p_func.vnic_id,
1047                                 sb_data_e2.common.same_igu_sb_1b,
1048                                 sb_data_e2.common.state);
1049                 } else {
1050                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1051                                 sb_data_e1x.common.p_func.pf_id,
1052                                 sb_data_e1x.common.p_func.vf_id,
1053                                 sb_data_e1x.common.p_func.vf_valid,
1054                                 sb_data_e1x.common.p_func.vnic_id,
1055                                 sb_data_e1x.common.same_igu_sb_1b,
1056                                 sb_data_e1x.common.state);
1057                 }
1058
1059                 /* SB_SMs data */
1060                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1061                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1062                                 j, hc_sm_p[j].__flags,
1063                                 hc_sm_p[j].igu_sb_id,
1064                                 hc_sm_p[j].igu_seg_id,
1065                                 hc_sm_p[j].time_to_expire,
1066                                 hc_sm_p[j].timer_value);
1067                 }
1068
1069                 /* Indices data */
1070                 for (j = 0; j < loop; j++) {
1071                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1072                                hc_index_p[j].flags,
1073                                hc_index_p[j].timeout);
1074                 }
1075         }
1076
1077 #ifdef BNX2X_STOP_ON_ERROR
1078         if (IS_PF(bp)) {
1079                 /* event queue */
1080                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1081                 for (i = 0; i < NUM_EQ_DESC; i++) {
1082                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1083
1084                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1085                                   i, bp->eq_ring[i].message.opcode,
1086                                   bp->eq_ring[i].message.error);
1087                         BNX2X_ERR("data: %x %x %x\n",
1088                                   data[0], data[1], data[2]);
1089                 }
1090         }
1091
1092         /* Rings */
1093         /* Rx */
1094         for_each_valid_rx_queue(bp, i) {
1095                 struct bnx2x_fastpath *fp = &bp->fp[i];
1096
1097                 if (!bp->fp)
1098                         break;
1099
1100                 if (!fp->rx_cons_sb)
1101                         continue;
1102
1103                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1104                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1105                 for (j = start; j != end; j = RX_BD(j + 1)) {
1106                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1107                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1108
1109                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1110                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1111                 }
1112
1113                 start = RX_SGE(fp->rx_sge_prod);
1114                 end = RX_SGE(fp->last_max_sge);
1115                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1116                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1117                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1118
1119                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1120                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1121                 }
1122
1123                 start = RCQ_BD(fp->rx_comp_cons - 10);
1124                 end = RCQ_BD(fp->rx_comp_cons + 503);
1125                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1126                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1127
1128                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1129                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1130                 }
1131         }
1132
1133         /* Tx */
1134         for_each_valid_tx_queue(bp, i) {
1135                 struct bnx2x_fastpath *fp = &bp->fp[i];
1136
1137                 if (!bp->fp)
1138                         break;
1139
1140                 for_each_cos_in_tx_queue(fp, cos) {
1141                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1142
1143                         if (!fp->txdata_ptr[cos])
1144                                 break;
1145
1146                         if (!txdata->tx_cons_sb)
1147                                 continue;
1148
1149                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1150                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1151                         for (j = start; j != end; j = TX_BD(j + 1)) {
1152                                 struct sw_tx_bd *sw_bd =
1153                                         &txdata->tx_buf_ring[j];
1154
1155                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1156                                           i, cos, j, sw_bd->skb,
1157                                           sw_bd->first_bd);
1158                         }
1159
1160                         start = TX_BD(txdata->tx_bd_cons - 10);
1161                         end = TX_BD(txdata->tx_bd_cons + 254);
1162                         for (j = start; j != end; j = TX_BD(j + 1)) {
1163                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1164
1165                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1166                                           i, cos, j, tx_bd[0], tx_bd[1],
1167                                           tx_bd[2], tx_bd[3]);
1168                         }
1169                 }
1170         }
1171 #endif
1172         if (IS_PF(bp)) {
1173                 bnx2x_fw_dump(bp);
1174                 bnx2x_mc_assert(bp);
1175         }
1176         BNX2X_ERR("end crash dump -----------------\n");
1177 }
1178
1179 /*
1180  * FLR Support for E2
1181  *
1182  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1183  * initialization.
1184  */
1185 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1186 #define FLR_WAIT_INTERVAL       50      /* usec */
1187 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1188
1189 struct pbf_pN_buf_regs {
1190         int pN;
1191         u32 init_crd;
1192         u32 crd;
1193         u32 crd_freed;
1194 };
1195
1196 struct pbf_pN_cmd_regs {
1197         int pN;
1198         u32 lines_occup;
1199         u32 lines_freed;
1200 };
1201
1202 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1203                                      struct pbf_pN_buf_regs *regs,
1204                                      u32 poll_count)
1205 {
1206         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1207         u32 cur_cnt = poll_count;
1208
1209         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1210         crd = crd_start = REG_RD(bp, regs->crd);
1211         init_crd = REG_RD(bp, regs->init_crd);
1212
1213         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1214         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1215         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1216
1217         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1218                (init_crd - crd_start))) {
1219                 if (cur_cnt--) {
1220                         udelay(FLR_WAIT_INTERVAL);
1221                         crd = REG_RD(bp, regs->crd);
1222                         crd_freed = REG_RD(bp, regs->crd_freed);
1223                 } else {
1224                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1225                            regs->pN);
1226                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1227                            regs->pN, crd);
1228                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1229                            regs->pN, crd_freed);
1230                         break;
1231                 }
1232         }
1233         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1234            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1235 }
1236
1237 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1238                                      struct pbf_pN_cmd_regs *regs,
1239                                      u32 poll_count)
1240 {
1241         u32 occup, to_free, freed, freed_start;
1242         u32 cur_cnt = poll_count;
1243
1244         occup = to_free = REG_RD(bp, regs->lines_occup);
1245         freed = freed_start = REG_RD(bp, regs->lines_freed);
1246
1247         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1248         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1249
1250         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1251                 if (cur_cnt--) {
1252                         udelay(FLR_WAIT_INTERVAL);
1253                         occup = REG_RD(bp, regs->lines_occup);
1254                         freed = REG_RD(bp, regs->lines_freed);
1255                 } else {
1256                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1257                            regs->pN);
1258                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1259                            regs->pN, occup);
1260                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1261                            regs->pN, freed);
1262                         break;
1263                 }
1264         }
1265         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1266            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1267 }
1268
1269 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1270                                     u32 expected, u32 poll_count)
1271 {
1272         u32 cur_cnt = poll_count;
1273         u32 val;
1274
1275         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1276                 udelay(FLR_WAIT_INTERVAL);
1277
1278         return val;
1279 }
1280
1281 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1282                                     char *msg, u32 poll_cnt)
1283 {
1284         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1285         if (val != 0) {
1286                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1287                 return 1;
1288         }
1289         return 0;
1290 }
1291
1292 /* Common routines with VF FLR cleanup */
1293 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1294 {
1295         /* adjust polling timeout */
1296         if (CHIP_REV_IS_EMUL(bp))
1297                 return FLR_POLL_CNT * 2000;
1298
1299         if (CHIP_REV_IS_FPGA(bp))
1300                 return FLR_POLL_CNT * 120;
1301
1302         return FLR_POLL_CNT;
1303 }
1304
1305 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1306 {
1307         struct pbf_pN_cmd_regs cmd_regs[] = {
1308                 {0, (CHIP_IS_E3B0(bp)) ?
1309                         PBF_REG_TQ_OCCUPANCY_Q0 :
1310                         PBF_REG_P0_TQ_OCCUPANCY,
1311                     (CHIP_IS_E3B0(bp)) ?
1312                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1313                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1314                 {1, (CHIP_IS_E3B0(bp)) ?
1315                         PBF_REG_TQ_OCCUPANCY_Q1 :
1316                         PBF_REG_P1_TQ_OCCUPANCY,
1317                     (CHIP_IS_E3B0(bp)) ?
1318                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1319                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1320                 {4, (CHIP_IS_E3B0(bp)) ?
1321                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1322                         PBF_REG_P4_TQ_OCCUPANCY,
1323                     (CHIP_IS_E3B0(bp)) ?
1324                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1325                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1326         };
1327
1328         struct pbf_pN_buf_regs buf_regs[] = {
1329                 {0, (CHIP_IS_E3B0(bp)) ?
1330                         PBF_REG_INIT_CRD_Q0 :
1331                         PBF_REG_P0_INIT_CRD ,
1332                     (CHIP_IS_E3B0(bp)) ?
1333                         PBF_REG_CREDIT_Q0 :
1334                         PBF_REG_P0_CREDIT,
1335                     (CHIP_IS_E3B0(bp)) ?
1336                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1337                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1338                 {1, (CHIP_IS_E3B0(bp)) ?
1339                         PBF_REG_INIT_CRD_Q1 :
1340                         PBF_REG_P1_INIT_CRD,
1341                     (CHIP_IS_E3B0(bp)) ?
1342                         PBF_REG_CREDIT_Q1 :
1343                         PBF_REG_P1_CREDIT,
1344                     (CHIP_IS_E3B0(bp)) ?
1345                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1346                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1347                 {4, (CHIP_IS_E3B0(bp)) ?
1348                         PBF_REG_INIT_CRD_LB_Q :
1349                         PBF_REG_P4_INIT_CRD,
1350                     (CHIP_IS_E3B0(bp)) ?
1351                         PBF_REG_CREDIT_LB_Q :
1352                         PBF_REG_P4_CREDIT,
1353                     (CHIP_IS_E3B0(bp)) ?
1354                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1355                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1356         };
1357
1358         int i;
1359
1360         /* Verify the command queues are flushed P0, P1, P4 */
1361         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1362                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1363
1364         /* Verify the transmission buffers are flushed P0, P1, P4 */
1365         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1366                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1367 }
1368
1369 #define OP_GEN_PARAM(param) \
1370         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1371
1372 #define OP_GEN_TYPE(type) \
1373         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1374
1375 #define OP_GEN_AGG_VECT(index) \
1376         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1377
1378 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1379 {
1380         u32 op_gen_command = 0;
1381         u32 comp_addr = BAR_CSTRORM_INTMEM +
1382                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1383         int ret = 0;
1384
1385         if (REG_RD(bp, comp_addr)) {
1386                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1387                 return 1;
1388         }
1389
1390         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1391         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1392         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1393         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1394
1395         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1396         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1397
1398         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1399                 BNX2X_ERR("FW final cleanup did not succeed\n");
1400                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1401                    (REG_RD(bp, comp_addr)));
1402                 bnx2x_panic();
1403                 return 1;
1404         }
1405         /* Zero completion for next FLR */
1406         REG_WR(bp, comp_addr, 0);
1407
1408         return ret;
1409 }
1410
1411 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1412 {
1413         u16 status;
1414
1415         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1416         return status & PCI_EXP_DEVSTA_TRPND;
1417 }
1418
1419 /* PF FLR specific routines
1420 */
1421 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1422 {
1423         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1424         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1425                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1426                         "CFC PF usage counter timed out",
1427                         poll_cnt))
1428                 return 1;
1429
1430         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1431         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1432                         DORQ_REG_PF_USAGE_CNT,
1433                         "DQ PF usage counter timed out",
1434                         poll_cnt))
1435                 return 1;
1436
1437         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1438         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1439                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1440                         "QM PF usage counter timed out",
1441                         poll_cnt))
1442                 return 1;
1443
1444         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1445         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1446                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1447                         "Timers VNIC usage counter timed out",
1448                         poll_cnt))
1449                 return 1;
1450         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1451                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1452                         "Timers NUM_SCANS usage counter timed out",
1453                         poll_cnt))
1454                 return 1;
1455
1456         /* Wait DMAE PF usage counter to zero */
1457         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1458                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1459                         "DMAE command register timed out",
1460                         poll_cnt))
1461                 return 1;
1462
1463         return 0;
1464 }
1465
1466 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1467 {
1468         u32 val;
1469
1470         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1471         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1472
1473         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1474         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1475
1476         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1477         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1478
1479         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1480         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1481
1482         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1483         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1484
1485         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1486         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1487
1488         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1489         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1490
1491         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1492         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1493            val);
1494 }
1495
1496 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1497 {
1498         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1499
1500         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1501
1502         /* Re-enable PF target read access */
1503         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1504
1505         /* Poll HW usage counters */
1506         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1507         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1508                 return -EBUSY;
1509
1510         /* Zero the igu 'trailing edge' and 'leading edge' */
1511
1512         /* Send the FW cleanup command */
1513         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1514                 return -EBUSY;
1515
1516         /* ATC cleanup */
1517
1518         /* Verify TX hw is flushed */
1519         bnx2x_tx_hw_flushed(bp, poll_cnt);
1520
1521         /* Wait 100ms (not adjusted according to platform) */
1522         msleep(100);
1523
1524         /* Verify no pending pci transactions */
1525         if (bnx2x_is_pcie_pending(bp->pdev))
1526                 BNX2X_ERR("PCIE Transactions still pending\n");
1527
1528         /* Debug */
1529         bnx2x_hw_enable_status(bp);
1530
1531         /*
1532          * Master enable - Due to WB DMAE writes performed before this
1533          * register is re-initialized as part of the regular function init
1534          */
1535         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1536
1537         return 0;
1538 }
1539
1540 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1541 {
1542         int port = BP_PORT(bp);
1543         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1544         u32 val = REG_RD(bp, addr);
1545         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1546         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1547         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1548
1549         if (msix) {
1550                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1551                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1552                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1553                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1554                 if (single_msix)
1555                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1556         } else if (msi) {
1557                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1558                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1559                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1560                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1561         } else {
1562                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1563                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1564                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1565                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1566
1567                 if (!CHIP_IS_E1(bp)) {
1568                         DP(NETIF_MSG_IFUP,
1569                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1570
1571                         REG_WR(bp, addr, val);
1572
1573                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1574                 }
1575         }
1576
1577         if (CHIP_IS_E1(bp))
1578                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1579
1580         DP(NETIF_MSG_IFUP,
1581            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1582            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1583
1584         REG_WR(bp, addr, val);
1585         /*
1586          * Ensure that HC_CONFIG is written before leading/trailing edge config
1587          */
1588         mmiowb();
1589         barrier();
1590
1591         if (!CHIP_IS_E1(bp)) {
1592                 /* init leading/trailing edge */
1593                 if (IS_MF(bp)) {
1594                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1595                         if (bp->port.pmf)
1596                                 /* enable nig and gpio3 attention */
1597                                 val |= 0x1100;
1598                 } else
1599                         val = 0xffff;
1600
1601                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1602                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1603         }
1604
1605         /* Make sure that interrupts are indeed enabled from here on */
1606         mmiowb();
1607 }
1608
1609 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1610 {
1611         u32 val;
1612         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1613         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1614         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1615
1616         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1617
1618         if (msix) {
1619                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1620                          IGU_PF_CONF_SINGLE_ISR_EN);
1621                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1622                         IGU_PF_CONF_ATTN_BIT_EN);
1623
1624                 if (single_msix)
1625                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1626         } else if (msi) {
1627                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1628                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1629                         IGU_PF_CONF_ATTN_BIT_EN |
1630                         IGU_PF_CONF_SINGLE_ISR_EN);
1631         } else {
1632                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1633                 val |= (IGU_PF_CONF_INT_LINE_EN |
1634                         IGU_PF_CONF_ATTN_BIT_EN |
1635                         IGU_PF_CONF_SINGLE_ISR_EN);
1636         }
1637
1638         /* Clean previous status - need to configure igu prior to ack*/
1639         if ((!msix) || single_msix) {
1640                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1641                 bnx2x_ack_int(bp);
1642         }
1643
1644         val |= IGU_PF_CONF_FUNC_EN;
1645
1646         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1647            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1648
1649         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1650
1651         if (val & IGU_PF_CONF_INT_LINE_EN)
1652                 pci_intx(bp->pdev, true);
1653
1654         barrier();
1655
1656         /* init leading/trailing edge */
1657         if (IS_MF(bp)) {
1658                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1659                 if (bp->port.pmf)
1660                         /* enable nig and gpio3 attention */
1661                         val |= 0x1100;
1662         } else
1663                 val = 0xffff;
1664
1665         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1666         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1667
1668         /* Make sure that interrupts are indeed enabled from here on */
1669         mmiowb();
1670 }
1671
1672 void bnx2x_int_enable(struct bnx2x *bp)
1673 {
1674         if (bp->common.int_block == INT_BLOCK_HC)
1675                 bnx2x_hc_int_enable(bp);
1676         else
1677                 bnx2x_igu_int_enable(bp);
1678 }
1679
1680 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1681 {
1682         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1683         int i, offset;
1684
1685         if (disable_hw)
1686                 /* prevent the HW from sending interrupts */
1687                 bnx2x_int_disable(bp);
1688
1689         /* make sure all ISRs are done */
1690         if (msix) {
1691                 synchronize_irq(bp->msix_table[0].vector);
1692                 offset = 1;
1693                 if (CNIC_SUPPORT(bp))
1694                         offset++;
1695                 for_each_eth_queue(bp, i)
1696                         synchronize_irq(bp->msix_table[offset++].vector);
1697         } else
1698                 synchronize_irq(bp->pdev->irq);
1699
1700         /* make sure sp_task is not running */
1701         cancel_delayed_work(&bp->sp_task);
1702         cancel_delayed_work(&bp->period_task);
1703         flush_workqueue(bnx2x_wq);
1704 }
1705
1706 /* fast path */
1707
1708 /*
1709  * General service functions
1710  */
1711
1712 /* Return true if succeeded to acquire the lock */
1713 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1714 {
1715         u32 lock_status;
1716         u32 resource_bit = (1 << resource);
1717         int func = BP_FUNC(bp);
1718         u32 hw_lock_control_reg;
1719
1720         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1721            "Trying to take a lock on resource %d\n", resource);
1722
1723         /* Validating that the resource is within range */
1724         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1725                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1726                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1727                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1728                 return false;
1729         }
1730
1731         if (func <= 5)
1732                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1733         else
1734                 hw_lock_control_reg =
1735                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1736
1737         /* Try to acquire the lock */
1738         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1739         lock_status = REG_RD(bp, hw_lock_control_reg);
1740         if (lock_status & resource_bit)
1741                 return true;
1742
1743         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1744            "Failed to get a lock on resource %d\n", resource);
1745         return false;
1746 }
1747
1748 /**
1749  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1750  *
1751  * @bp: driver handle
1752  *
1753  * Returns the recovery leader resource id according to the engine this function
1754  * belongs to. Currently only only 2 engines is supported.
1755  */
1756 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1757 {
1758         if (BP_PATH(bp))
1759                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1760         else
1761                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1762 }
1763
1764 /**
1765  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1766  *
1767  * @bp: driver handle
1768  *
1769  * Tries to acquire a leader lock for current engine.
1770  */
1771 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1772 {
1773         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1774 }
1775
1776 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1777
1778 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1779 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1780 {
1781         /* Set the interrupt occurred bit for the sp-task to recognize it
1782          * must ack the interrupt and transition according to the IGU
1783          * state machine.
1784          */
1785         atomic_set(&bp->interrupt_occurred, 1);
1786
1787         /* The sp_task must execute only after this bit
1788          * is set, otherwise we will get out of sync and miss all
1789          * further interrupts. Hence, the barrier.
1790          */
1791         smp_wmb();
1792
1793         /* schedule sp_task to workqueue */
1794         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1795 }
1796
1797 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1798 {
1799         struct bnx2x *bp = fp->bp;
1800         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1801         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1802         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1803         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1804
1805         DP(BNX2X_MSG_SP,
1806            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1807            fp->index, cid, command, bp->state,
1808            rr_cqe->ramrod_cqe.ramrod_type);
1809
1810         /* If cid is within VF range, replace the slowpath object with the
1811          * one corresponding to this VF
1812          */
1813         if (cid >= BNX2X_FIRST_VF_CID  &&
1814             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1815                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1816
1817         switch (command) {
1818         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1819                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1820                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1821                 break;
1822
1823         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1824                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1825                 drv_cmd = BNX2X_Q_CMD_SETUP;
1826                 break;
1827
1828         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1829                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1830                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1831                 break;
1832
1833         case (RAMROD_CMD_ID_ETH_HALT):
1834                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1835                 drv_cmd = BNX2X_Q_CMD_HALT;
1836                 break;
1837
1838         case (RAMROD_CMD_ID_ETH_TERMINATE):
1839                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1840                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1841                 break;
1842
1843         case (RAMROD_CMD_ID_ETH_EMPTY):
1844                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1845                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1846                 break;
1847
1848         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1849                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1850                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1851                 break;
1852
1853         default:
1854                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1855                           command, fp->index);
1856                 return;
1857         }
1858
1859         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1860             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1861                 /* q_obj->complete_cmd() failure means that this was
1862                  * an unexpected completion.
1863                  *
1864                  * In this case we don't want to increase the bp->spq_left
1865                  * because apparently we haven't sent this command the first
1866                  * place.
1867                  */
1868 #ifdef BNX2X_STOP_ON_ERROR
1869                 bnx2x_panic();
1870 #else
1871                 return;
1872 #endif
1873
1874         smp_mb__before_atomic();
1875         atomic_inc(&bp->cq_spq_left);
1876         /* push the change in bp->spq_left and towards the memory */
1877         smp_mb__after_atomic();
1878
1879         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1880
1881         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1882             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1883                 /* if Q update ramrod is completed for last Q in AFEX vif set
1884                  * flow, then ACK MCP at the end
1885                  *
1886                  * mark pending ACK to MCP bit.
1887                  * prevent case that both bits are cleared.
1888                  * At the end of load/unload driver checks that
1889                  * sp_state is cleared, and this order prevents
1890                  * races
1891                  */
1892                 smp_mb__before_atomic();
1893                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1894                 wmb();
1895                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1896                 smp_mb__after_atomic();
1897
1898                 /* schedule the sp task as mcp ack is required */
1899                 bnx2x_schedule_sp_task(bp);
1900         }
1901
1902         return;
1903 }
1904
1905 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1906 {
1907         struct bnx2x *bp = netdev_priv(dev_instance);
1908         u16 status = bnx2x_ack_int(bp);
1909         u16 mask;
1910         int i;
1911         u8 cos;
1912
1913         /* Return here if interrupt is shared and it's not for us */
1914         if (unlikely(status == 0)) {
1915                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1916                 return IRQ_NONE;
1917         }
1918         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1919
1920 #ifdef BNX2X_STOP_ON_ERROR
1921         if (unlikely(bp->panic))
1922                 return IRQ_HANDLED;
1923 #endif
1924
1925         for_each_eth_queue(bp, i) {
1926                 struct bnx2x_fastpath *fp = &bp->fp[i];
1927
1928                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1929                 if (status & mask) {
1930                         /* Handle Rx or Tx according to SB id */
1931                         for_each_cos_in_tx_queue(fp, cos)
1932                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1933                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1934                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1935                         status &= ~mask;
1936                 }
1937         }
1938
1939         if (CNIC_SUPPORT(bp)) {
1940                 mask = 0x2;
1941                 if (status & (mask | 0x1)) {
1942                         struct cnic_ops *c_ops = NULL;
1943
1944                         rcu_read_lock();
1945                         c_ops = rcu_dereference(bp->cnic_ops);
1946                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1947                                       CNIC_DRV_STATE_HANDLES_IRQ))
1948                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1949                         rcu_read_unlock();
1950
1951                         status &= ~mask;
1952                 }
1953         }
1954
1955         if (unlikely(status & 0x1)) {
1956
1957                 /* schedule sp task to perform default status block work, ack
1958                  * attentions and enable interrupts.
1959                  */
1960                 bnx2x_schedule_sp_task(bp);
1961
1962                 status &= ~0x1;
1963                 if (!status)
1964                         return IRQ_HANDLED;
1965         }
1966
1967         if (unlikely(status))
1968                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1969                    status);
1970
1971         return IRQ_HANDLED;
1972 }
1973
1974 /* Link */
1975
1976 /*
1977  * General service functions
1978  */
1979
1980 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1981 {
1982         u32 lock_status;
1983         u32 resource_bit = (1 << resource);
1984         int func = BP_FUNC(bp);
1985         u32 hw_lock_control_reg;
1986         int cnt;
1987
1988         /* Validating that the resource is within range */
1989         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1990                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1991                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1992                 return -EINVAL;
1993         }
1994
1995         if (func <= 5) {
1996                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1997         } else {
1998                 hw_lock_control_reg =
1999                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2000         }
2001
2002         /* Validating that the resource is not already taken */
2003         lock_status = REG_RD(bp, hw_lock_control_reg);
2004         if (lock_status & resource_bit) {
2005                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2006                    lock_status, resource_bit);
2007                 return -EEXIST;
2008         }
2009
2010         /* Try for 5 second every 5ms */
2011         for (cnt = 0; cnt < 1000; cnt++) {
2012                 /* Try to acquire the lock */
2013                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2014                 lock_status = REG_RD(bp, hw_lock_control_reg);
2015                 if (lock_status & resource_bit)
2016                         return 0;
2017
2018                 usleep_range(5000, 10000);
2019         }
2020         BNX2X_ERR("Timeout\n");
2021         return -EAGAIN;
2022 }
2023
2024 int bnx2x_release_leader_lock(struct bnx2x *bp)
2025 {
2026         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2027 }
2028
2029 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2030 {
2031         u32 lock_status;
2032         u32 resource_bit = (1 << resource);
2033         int func = BP_FUNC(bp);
2034         u32 hw_lock_control_reg;
2035
2036         /* Validating that the resource is within range */
2037         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2038                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2039                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2040                 return -EINVAL;
2041         }
2042
2043         if (func <= 5) {
2044                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2045         } else {
2046                 hw_lock_control_reg =
2047                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2048         }
2049
2050         /* Validating that the resource is currently taken */
2051         lock_status = REG_RD(bp, hw_lock_control_reg);
2052         if (!(lock_status & resource_bit)) {
2053                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2054                           lock_status, resource_bit);
2055                 return -EFAULT;
2056         }
2057
2058         REG_WR(bp, hw_lock_control_reg, resource_bit);
2059         return 0;
2060 }
2061
2062 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2063 {
2064         /* The GPIO should be swapped if swap register is set and active */
2065         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2066                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2067         int gpio_shift = gpio_num +
2068                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2069         u32 gpio_mask = (1 << gpio_shift);
2070         u32 gpio_reg;
2071         int value;
2072
2073         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2074                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2075                 return -EINVAL;
2076         }
2077
2078         /* read GPIO value */
2079         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2080
2081         /* get the requested pin value */
2082         if ((gpio_reg & gpio_mask) == gpio_mask)
2083                 value = 1;
2084         else
2085                 value = 0;
2086
2087         return value;
2088 }
2089
2090 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2091 {
2092         /* The GPIO should be swapped if swap register is set and active */
2093         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2094                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2095         int gpio_shift = gpio_num +
2096                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2097         u32 gpio_mask = (1 << gpio_shift);
2098         u32 gpio_reg;
2099
2100         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2101                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2102                 return -EINVAL;
2103         }
2104
2105         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2106         /* read GPIO and mask except the float bits */
2107         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2108
2109         switch (mode) {
2110         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2111                 DP(NETIF_MSG_LINK,
2112                    "Set GPIO %d (shift %d) -> output low\n",
2113                    gpio_num, gpio_shift);
2114                 /* clear FLOAT and set CLR */
2115                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2116                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2117                 break;
2118
2119         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2120                 DP(NETIF_MSG_LINK,
2121                    "Set GPIO %d (shift %d) -> output high\n",
2122                    gpio_num, gpio_shift);
2123                 /* clear FLOAT and set SET */
2124                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2125                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2126                 break;
2127
2128         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2129                 DP(NETIF_MSG_LINK,
2130                    "Set GPIO %d (shift %d) -> input\n",
2131                    gpio_num, gpio_shift);
2132                 /* set FLOAT */
2133                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2134                 break;
2135
2136         default:
2137                 break;
2138         }
2139
2140         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2141         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2142
2143         return 0;
2144 }
2145
2146 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2147 {
2148         u32 gpio_reg = 0;
2149         int rc = 0;
2150
2151         /* Any port swapping should be handled by caller. */
2152
2153         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2154         /* read GPIO and mask except the float bits */
2155         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2156         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2157         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2158         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2159
2160         switch (mode) {
2161         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2162                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2163                 /* set CLR */
2164                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2165                 break;
2166
2167         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2168                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2169                 /* set SET */
2170                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2171                 break;
2172
2173         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2174                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2175                 /* set FLOAT */
2176                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2177                 break;
2178
2179         default:
2180                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2181                 rc = -EINVAL;
2182                 break;
2183         }
2184
2185         if (rc == 0)
2186                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2187
2188         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2189
2190         return rc;
2191 }
2192
2193 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2194 {
2195         /* The GPIO should be swapped if swap register is set and active */
2196         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2197                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2198         int gpio_shift = gpio_num +
2199                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2200         u32 gpio_mask = (1 << gpio_shift);
2201         u32 gpio_reg;
2202
2203         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2204                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2205                 return -EINVAL;
2206         }
2207
2208         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2209         /* read GPIO int */
2210         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2211
2212         switch (mode) {
2213         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2214                 DP(NETIF_MSG_LINK,
2215                    "Clear GPIO INT %d (shift %d) -> output low\n",
2216                    gpio_num, gpio_shift);
2217                 /* clear SET and set CLR */
2218                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2219                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2220                 break;
2221
2222         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2223                 DP(NETIF_MSG_LINK,
2224                    "Set GPIO INT %d (shift %d) -> output high\n",
2225                    gpio_num, gpio_shift);
2226                 /* clear CLR and set SET */
2227                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2228                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2229                 break;
2230
2231         default:
2232                 break;
2233         }
2234
2235         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2236         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2237
2238         return 0;
2239 }
2240
2241 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2242 {
2243         u32 spio_reg;
2244
2245         /* Only 2 SPIOs are configurable */
2246         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2247                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2248                 return -EINVAL;
2249         }
2250
2251         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2252         /* read SPIO and mask except the float bits */
2253         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2254
2255         switch (mode) {
2256         case MISC_SPIO_OUTPUT_LOW:
2257                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2258                 /* clear FLOAT and set CLR */
2259                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2260                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2261                 break;
2262
2263         case MISC_SPIO_OUTPUT_HIGH:
2264                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2265                 /* clear FLOAT and set SET */
2266                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2267                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2268                 break;
2269
2270         case MISC_SPIO_INPUT_HI_Z:
2271                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2272                 /* set FLOAT */
2273                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2274                 break;
2275
2276         default:
2277                 break;
2278         }
2279
2280         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2281         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2282
2283         return 0;
2284 }
2285
2286 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2287 {
2288         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2289         switch (bp->link_vars.ieee_fc &
2290                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2291         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2292                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2293                                                    ADVERTISED_Pause);
2294                 break;
2295
2296         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2297                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2298                                                   ADVERTISED_Pause);
2299                 break;
2300
2301         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2302                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2303                 break;
2304
2305         default:
2306                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2307                                                    ADVERTISED_Pause);
2308                 break;
2309         }
2310 }
2311
2312 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2313 {
2314         /* Initialize link parameters structure variables
2315          * It is recommended to turn off RX FC for jumbo frames
2316          *  for better performance
2317          */
2318         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2319                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2320         else
2321                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2322 }
2323
2324 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2325 {
2326         u32 pause_enabled = 0;
2327
2328         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2329                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2330                         pause_enabled = 1;
2331
2332                 REG_WR(bp, BAR_USTRORM_INTMEM +
2333                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2334                        pause_enabled);
2335         }
2336
2337         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2338            pause_enabled ? "enabled" : "disabled");
2339 }
2340
2341 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2342 {
2343         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2344         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2345
2346         if (!BP_NOMCP(bp)) {
2347                 bnx2x_set_requested_fc(bp);
2348                 bnx2x_acquire_phy_lock(bp);
2349
2350                 if (load_mode == LOAD_DIAG) {
2351                         struct link_params *lp = &bp->link_params;
2352                         lp->loopback_mode = LOOPBACK_XGXS;
2353                         /* do PHY loopback at 10G speed, if possible */
2354                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2355                                 if (lp->speed_cap_mask[cfx_idx] &
2356                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2357                                         lp->req_line_speed[cfx_idx] =
2358                                         SPEED_10000;
2359                                 else
2360                                         lp->req_line_speed[cfx_idx] =
2361                                         SPEED_1000;
2362                         }
2363                 }
2364
2365                 if (load_mode == LOAD_LOOPBACK_EXT) {
2366                         struct link_params *lp = &bp->link_params;
2367                         lp->loopback_mode = LOOPBACK_EXT;
2368                 }
2369
2370                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2371
2372                 bnx2x_release_phy_lock(bp);
2373
2374                 bnx2x_init_dropless_fc(bp);
2375
2376                 bnx2x_calc_fc_adv(bp);
2377
2378                 if (bp->link_vars.link_up) {
2379                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2380                         bnx2x_link_report(bp);
2381                 }
2382                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2383                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2384                 return rc;
2385         }
2386         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2387         return -EINVAL;
2388 }
2389
2390 void bnx2x_link_set(struct bnx2x *bp)
2391 {
2392         if (!BP_NOMCP(bp)) {
2393                 bnx2x_acquire_phy_lock(bp);
2394                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2395                 bnx2x_release_phy_lock(bp);
2396
2397                 bnx2x_init_dropless_fc(bp);
2398
2399                 bnx2x_calc_fc_adv(bp);
2400         } else
2401                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2402 }
2403
2404 static void bnx2x__link_reset(struct bnx2x *bp)
2405 {
2406         if (!BP_NOMCP(bp)) {
2407                 bnx2x_acquire_phy_lock(bp);
2408                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2409                 bnx2x_release_phy_lock(bp);
2410         } else
2411                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2412 }
2413
2414 void bnx2x_force_link_reset(struct bnx2x *bp)
2415 {
2416         bnx2x_acquire_phy_lock(bp);
2417         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2418         bnx2x_release_phy_lock(bp);
2419 }
2420
2421 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2422 {
2423         u8 rc = 0;
2424
2425         if (!BP_NOMCP(bp)) {
2426                 bnx2x_acquire_phy_lock(bp);
2427                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2428                                      is_serdes);
2429                 bnx2x_release_phy_lock(bp);
2430         } else
2431                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2432
2433         return rc;
2434 }
2435
2436 /* Calculates the sum of vn_min_rates.
2437    It's needed for further normalizing of the min_rates.
2438    Returns:
2439      sum of vn_min_rates.
2440        or
2441      0 - if all the min_rates are 0.
2442      In the later case fairness algorithm should be deactivated.
2443      If not all min_rates are zero then those that are zeroes will be set to 1.
2444  */
2445 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2446                                       struct cmng_init_input *input)
2447 {
2448         int all_zero = 1;
2449         int vn;
2450
2451         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2452                 u32 vn_cfg = bp->mf_config[vn];
2453                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2454                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2455
2456                 /* Skip hidden vns */
2457                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2458                         vn_min_rate = 0;
2459                 /* If min rate is zero - set it to 1 */
2460                 else if (!vn_min_rate)
2461                         vn_min_rate = DEF_MIN_RATE;
2462                 else
2463                         all_zero = 0;
2464
2465                 input->vnic_min_rate[vn] = vn_min_rate;
2466         }
2467
2468         /* if ETS or all min rates are zeros - disable fairness */
2469         if (BNX2X_IS_ETS_ENABLED(bp)) {
2470                 input->flags.cmng_enables &=
2471                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2472                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2473         } else if (all_zero) {
2474                 input->flags.cmng_enables &=
2475                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2476                 DP(NETIF_MSG_IFUP,
2477                    "All MIN values are zeroes fairness will be disabled\n");
2478         } else
2479                 input->flags.cmng_enables |=
2480                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2481 }
2482
2483 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2484                                     struct cmng_init_input *input)
2485 {
2486         u16 vn_max_rate;
2487         u32 vn_cfg = bp->mf_config[vn];
2488
2489         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2490                 vn_max_rate = 0;
2491         else {
2492                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2493
2494                 if (IS_MF_SI(bp)) {
2495                         /* maxCfg in percents of linkspeed */
2496                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2497                 } else /* SD modes */
2498                         /* maxCfg is absolute in 100Mb units */
2499                         vn_max_rate = maxCfg * 100;
2500         }
2501
2502         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2503
2504         input->vnic_max_rate[vn] = vn_max_rate;
2505 }
2506
2507 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2508 {
2509         if (CHIP_REV_IS_SLOW(bp))
2510                 return CMNG_FNS_NONE;
2511         if (IS_MF(bp))
2512                 return CMNG_FNS_MINMAX;
2513
2514         return CMNG_FNS_NONE;
2515 }
2516
2517 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2518 {
2519         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2520
2521         if (BP_NOMCP(bp))
2522                 return; /* what should be the default value in this case */
2523
2524         /* For 2 port configuration the absolute function number formula
2525          * is:
2526          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2527          *
2528          *      and there are 4 functions per port
2529          *
2530          * For 4 port configuration it is
2531          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2532          *
2533          *      and there are 2 functions per port
2534          */
2535         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2536                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2537
2538                 if (func >= E1H_FUNC_MAX)
2539                         break;
2540
2541                 bp->mf_config[vn] =
2542                         MF_CFG_RD(bp, func_mf_config[func].config);
2543         }
2544         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2545                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2546                 bp->flags |= MF_FUNC_DIS;
2547         } else {
2548                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2549                 bp->flags &= ~MF_FUNC_DIS;
2550         }
2551 }
2552
2553 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2554 {
2555         struct cmng_init_input input;
2556         memset(&input, 0, sizeof(struct cmng_init_input));
2557
2558         input.port_rate = bp->link_vars.line_speed;
2559
2560         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2561                 int vn;
2562
2563                 /* read mf conf from shmem */
2564                 if (read_cfg)
2565                         bnx2x_read_mf_cfg(bp);
2566
2567                 /* vn_weight_sum and enable fairness if not 0 */
2568                 bnx2x_calc_vn_min(bp, &input);
2569
2570                 /* calculate and set min-max rate for each vn */
2571                 if (bp->port.pmf)
2572                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2573                                 bnx2x_calc_vn_max(bp, vn, &input);
2574
2575                 /* always enable rate shaping and fairness */
2576                 input.flags.cmng_enables |=
2577                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2578
2579                 bnx2x_init_cmng(&input, &bp->cmng);
2580                 return;
2581         }
2582
2583         /* rate shaping and fairness are disabled */
2584         DP(NETIF_MSG_IFUP,
2585            "rate shaping and fairness are disabled\n");
2586 }
2587
2588 static void storm_memset_cmng(struct bnx2x *bp,
2589                               struct cmng_init *cmng,
2590                               u8 port)
2591 {
2592         int vn;
2593         size_t size = sizeof(struct cmng_struct_per_port);
2594
2595         u32 addr = BAR_XSTRORM_INTMEM +
2596                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2597
2598         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2599
2600         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2601                 int func = func_by_vn(bp, vn);
2602
2603                 addr = BAR_XSTRORM_INTMEM +
2604                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2605                 size = sizeof(struct rate_shaping_vars_per_vn);
2606                 __storm_memset_struct(bp, addr, size,
2607                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2608
2609                 addr = BAR_XSTRORM_INTMEM +
2610                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2611                 size = sizeof(struct fairness_vars_per_vn);
2612                 __storm_memset_struct(bp, addr, size,
2613                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2614         }
2615 }
2616
2617 /* init cmng mode in HW according to local configuration */
2618 void bnx2x_set_local_cmng(struct bnx2x *bp)
2619 {
2620         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2621
2622         if (cmng_fns != CMNG_FNS_NONE) {
2623                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2624                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2625         } else {
2626                 /* rate shaping and fairness are disabled */
2627                 DP(NETIF_MSG_IFUP,
2628                    "single function mode without fairness\n");
2629         }
2630 }
2631
2632 /* This function is called upon link interrupt */
2633 static void bnx2x_link_attn(struct bnx2x *bp)
2634 {
2635         /* Make sure that we are synced with the current statistics */
2636         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2637
2638         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2639
2640         bnx2x_init_dropless_fc(bp);
2641
2642         if (bp->link_vars.link_up) {
2643
2644                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2645                         struct host_port_stats *pstats;
2646
2647                         pstats = bnx2x_sp(bp, port_stats);
2648                         /* reset old mac stats */
2649                         memset(&(pstats->mac_stx[0]), 0,
2650                                sizeof(struct mac_stx));
2651                 }
2652                 if (bp->state == BNX2X_STATE_OPEN)
2653                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2654         }
2655
2656         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2657                 bnx2x_set_local_cmng(bp);
2658
2659         __bnx2x_link_report(bp);
2660
2661         if (IS_MF(bp))
2662                 bnx2x_link_sync_notify(bp);
2663 }
2664
2665 void bnx2x__link_status_update(struct bnx2x *bp)
2666 {
2667         if (bp->state != BNX2X_STATE_OPEN)
2668                 return;
2669
2670         /* read updated dcb configuration */
2671         if (IS_PF(bp)) {
2672                 bnx2x_dcbx_pmf_update(bp);
2673                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2674                 if (bp->link_vars.link_up)
2675                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2676                 else
2677                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2678                         /* indicate link status */
2679                 bnx2x_link_report(bp);
2680
2681         } else { /* VF */
2682                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2683                                           SUPPORTED_10baseT_Full |
2684                                           SUPPORTED_100baseT_Half |
2685                                           SUPPORTED_100baseT_Full |
2686                                           SUPPORTED_1000baseT_Full |
2687                                           SUPPORTED_2500baseX_Full |
2688                                           SUPPORTED_10000baseT_Full |
2689                                           SUPPORTED_TP |
2690                                           SUPPORTED_FIBRE |
2691                                           SUPPORTED_Autoneg |
2692                                           SUPPORTED_Pause |
2693                                           SUPPORTED_Asym_Pause);
2694                 bp->port.advertising[0] = bp->port.supported[0];
2695
2696                 bp->link_params.bp = bp;
2697                 bp->link_params.port = BP_PORT(bp);
2698                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2699                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2700                 bp->link_params.req_line_speed[0] = SPEED_10000;
2701                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2702                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2703                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2704                 bp->link_vars.line_speed = SPEED_10000;
2705                 bp->link_vars.link_status =
2706                         (LINK_STATUS_LINK_UP |
2707                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2708                 bp->link_vars.link_up = 1;
2709                 bp->link_vars.duplex = DUPLEX_FULL;
2710                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2711                 __bnx2x_link_report(bp);
2712
2713                 bnx2x_sample_bulletin(bp);
2714
2715                 /* if bulletin board did not have an update for link status
2716                  * __bnx2x_link_report will report current status
2717                  * but it will NOT duplicate report in case of already reported
2718                  * during sampling bulletin board.
2719                  */
2720                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2721         }
2722 }
2723
2724 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2725                                   u16 vlan_val, u8 allowed_prio)
2726 {
2727         struct bnx2x_func_state_params func_params = {NULL};
2728         struct bnx2x_func_afex_update_params *f_update_params =
2729                 &func_params.params.afex_update;
2730
2731         func_params.f_obj = &bp->func_obj;
2732         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2733
2734         /* no need to wait for RAMROD completion, so don't
2735          * set RAMROD_COMP_WAIT flag
2736          */
2737
2738         f_update_params->vif_id = vifid;
2739         f_update_params->afex_default_vlan = vlan_val;
2740         f_update_params->allowed_priorities = allowed_prio;
2741
2742         /* if ramrod can not be sent, response to MCP immediately */
2743         if (bnx2x_func_state_change(bp, &func_params) < 0)
2744                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2745
2746         return 0;
2747 }
2748
2749 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2750                                           u16 vif_index, u8 func_bit_map)
2751 {
2752         struct bnx2x_func_state_params func_params = {NULL};
2753         struct bnx2x_func_afex_viflists_params *update_params =
2754                 &func_params.params.afex_viflists;
2755         int rc;
2756         u32 drv_msg_code;
2757
2758         /* validate only LIST_SET and LIST_GET are received from switch */
2759         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2760                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2761                           cmd_type);
2762
2763         func_params.f_obj = &bp->func_obj;
2764         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2765
2766         /* set parameters according to cmd_type */
2767         update_params->afex_vif_list_command = cmd_type;
2768         update_params->vif_list_index = vif_index;
2769         update_params->func_bit_map =
2770                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2771         update_params->func_to_clear = 0;
2772         drv_msg_code =
2773                 (cmd_type == VIF_LIST_RULE_GET) ?
2774                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2775                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2776
2777         /* if ramrod can not be sent, respond to MCP immediately for
2778          * SET and GET requests (other are not triggered from MCP)
2779          */
2780         rc = bnx2x_func_state_change(bp, &func_params);
2781         if (rc < 0)
2782                 bnx2x_fw_command(bp, drv_msg_code, 0);
2783
2784         return 0;
2785 }
2786
2787 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2788 {
2789         struct afex_stats afex_stats;
2790         u32 func = BP_ABS_FUNC(bp);
2791         u32 mf_config;
2792         u16 vlan_val;
2793         u32 vlan_prio;
2794         u16 vif_id;
2795         u8 allowed_prio;
2796         u8 vlan_mode;
2797         u32 addr_to_write, vifid, addrs, stats_type, i;
2798
2799         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2800                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2801                 DP(BNX2X_MSG_MCP,
2802                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2803                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2804         }
2805
2806         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2807                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2808                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2809                 DP(BNX2X_MSG_MCP,
2810                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2811                    vifid, addrs);
2812                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2813                                                addrs);
2814         }
2815
2816         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2817                 addr_to_write = SHMEM2_RD(bp,
2818                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2819                 stats_type = SHMEM2_RD(bp,
2820                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2821
2822                 DP(BNX2X_MSG_MCP,
2823                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2824                    addr_to_write);
2825
2826                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2827
2828                 /* write response to scratchpad, for MCP */
2829                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2830                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2831                                *(((u32 *)(&afex_stats))+i));
2832
2833                 /* send ack message to MCP */
2834                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2835         }
2836
2837         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2838                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2839                 bp->mf_config[BP_VN(bp)] = mf_config;
2840                 DP(BNX2X_MSG_MCP,
2841                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2842                    mf_config);
2843
2844                 /* if VIF_SET is "enabled" */
2845                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2846                         /* set rate limit directly to internal RAM */
2847                         struct cmng_init_input cmng_input;
2848                         struct rate_shaping_vars_per_vn m_rs_vn;
2849                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2850                         u32 addr = BAR_XSTRORM_INTMEM +
2851                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2852
2853                         bp->mf_config[BP_VN(bp)] = mf_config;
2854
2855                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2856                         m_rs_vn.vn_counter.rate =
2857                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2858                         m_rs_vn.vn_counter.quota =
2859                                 (m_rs_vn.vn_counter.rate *
2860                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2861
2862                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2863
2864                         /* read relevant values from mf_cfg struct in shmem */
2865                         vif_id =
2866                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2867                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2868                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2869                         vlan_val =
2870                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2871                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2872                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2873                         vlan_prio = (mf_config &
2874                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2875                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2876                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2877                         vlan_mode =
2878                                 (MF_CFG_RD(bp,
2879                                            func_mf_config[func].afex_config) &
2880                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2881                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2882                         allowed_prio =
2883                                 (MF_CFG_RD(bp,
2884                                            func_mf_config[func].afex_config) &
2885                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2886                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2887
2888                         /* send ramrod to FW, return in case of failure */
2889                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2890                                                    allowed_prio))
2891                                 return;
2892
2893                         bp->afex_def_vlan_tag = vlan_val;
2894                         bp->afex_vlan_mode = vlan_mode;
2895                 } else {
2896                         /* notify link down because BP->flags is disabled */
2897                         bnx2x_link_report(bp);
2898
2899                         /* send INVALID VIF ramrod to FW */
2900                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2901
2902                         /* Reset the default afex VLAN */
2903                         bp->afex_def_vlan_tag = -1;
2904                 }
2905         }
2906 }
2907
2908 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2909 {
2910         struct bnx2x_func_switch_update_params *switch_update_params;
2911         struct bnx2x_func_state_params func_params;
2912
2913         memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2914         switch_update_params = &func_params.params.switch_update;
2915         func_params.f_obj = &bp->func_obj;
2916         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2917
2918         if (IS_MF_UFP(bp)) {
2919                 int func = BP_ABS_FUNC(bp);
2920                 u32 val;
2921
2922                 /* Re-learn the S-tag from shmem */
2923                 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2924                                 FUNC_MF_CFG_E1HOV_TAG_MASK;
2925                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2926                         bp->mf_ov = val;
2927                 } else {
2928                         BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2929                         goto fail;
2930                 }
2931
2932                 /* Configure new S-tag in LLH */
2933                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2934                        bp->mf_ov);
2935
2936                 /* Send Ramrod to update FW of change */
2937                 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2938                           &switch_update_params->changes);
2939                 switch_update_params->vlan = bp->mf_ov;
2940
2941                 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2942                         BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2943                                   bp->mf_ov);
2944                         goto fail;
2945                 }
2946
2947                 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", bp->mf_ov);
2948
2949                 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2950
2951                 return;
2952         }
2953
2954         /* not supported by SW yet */
2955 fail:
2956         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2957 }
2958
2959 static void bnx2x_pmf_update(struct bnx2x *bp)
2960 {
2961         int port = BP_PORT(bp);
2962         u32 val;
2963
2964         bp->port.pmf = 1;
2965         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2966
2967         /*
2968          * We need the mb() to ensure the ordering between the writing to
2969          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2970          */
2971         smp_mb();
2972
2973         /* queue a periodic task */
2974         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2975
2976         bnx2x_dcbx_pmf_update(bp);
2977
2978         /* enable nig attention */
2979         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2980         if (bp->common.int_block == INT_BLOCK_HC) {
2981                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2982                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2983         } else if (!CHIP_IS_E1x(bp)) {
2984                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2985                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2986         }
2987
2988         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2989 }
2990
2991 /* end of Link */
2992
2993 /* slow path */
2994
2995 /*
2996  * General service functions
2997  */
2998
2999 /* send the MCP a request, block until there is a reply */
3000 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3001 {
3002         int mb_idx = BP_FW_MB_IDX(bp);
3003         u32 seq;
3004         u32 rc = 0;
3005         u32 cnt = 1;
3006         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3007
3008         mutex_lock(&bp->fw_mb_mutex);
3009         seq = ++bp->fw_seq;
3010         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3011         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3012
3013         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3014                         (command | seq), param);
3015
3016         do {
3017                 /* let the FW do it's magic ... */
3018                 msleep(delay);
3019
3020                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3021
3022                 /* Give the FW up to 5 second (500*10ms) */
3023         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3024
3025         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3026            cnt*delay, rc, seq);
3027
3028         /* is this a reply to our command? */
3029         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3030                 rc &= FW_MSG_CODE_MASK;
3031         else {
3032                 /* FW BUG! */
3033                 BNX2X_ERR("FW failed to respond!\n");
3034                 bnx2x_fw_dump(bp);
3035                 rc = 0;
3036         }
3037         mutex_unlock(&bp->fw_mb_mutex);
3038
3039         return rc;
3040 }
3041
3042 static void storm_memset_func_cfg(struct bnx2x *bp,
3043                                  struct tstorm_eth_function_common_config *tcfg,
3044                                  u16 abs_fid)
3045 {
3046         size_t size = sizeof(struct tstorm_eth_function_common_config);
3047
3048         u32 addr = BAR_TSTRORM_INTMEM +
3049                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3050
3051         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3052 }
3053
3054 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3055 {
3056         if (CHIP_IS_E1x(bp)) {
3057                 struct tstorm_eth_function_common_config tcfg = {0};
3058
3059                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3060         }
3061
3062         /* Enable the function in the FW */
3063         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3064         storm_memset_func_en(bp, p->func_id, 1);
3065
3066         /* spq */
3067         if (p->func_flgs & FUNC_FLG_SPQ) {
3068                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3069                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3070                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3071         }
3072 }
3073
3074 /**
3075  * bnx2x_get_common_flags - Return common flags
3076  *
3077  * @bp          device handle
3078  * @fp          queue handle
3079  * @zero_stats  TRUE if statistics zeroing is needed
3080  *
3081  * Return the flags that are common for the Tx-only and not normal connections.
3082  */
3083 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3084                                             struct bnx2x_fastpath *fp,
3085                                             bool zero_stats)
3086 {
3087         unsigned long flags = 0;
3088
3089         /* PF driver will always initialize the Queue to an ACTIVE state */
3090         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3091
3092         /* tx only connections collect statistics (on the same index as the
3093          * parent connection). The statistics are zeroed when the parent
3094          * connection is initialized.
3095          */
3096
3097         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3098         if (zero_stats)
3099                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3100
3101         if (bp->flags & TX_SWITCHING)
3102                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3103
3104         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3105         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3106
3107 #ifdef BNX2X_STOP_ON_ERROR
3108         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3109 #endif
3110
3111         return flags;
3112 }
3113
3114 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3115                                        struct bnx2x_fastpath *fp,
3116                                        bool leading)
3117 {
3118         unsigned long flags = 0;
3119
3120         /* calculate other queue flags */
3121         if (IS_MF_SD(bp))
3122                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3123
3124         if (IS_FCOE_FP(fp)) {
3125                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3126                 /* For FCoE - force usage of default priority (for afex) */
3127                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3128         }
3129
3130         if (!fp->disable_tpa) {
3131                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3132                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3133                 if (fp->mode == TPA_MODE_GRO)
3134                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3135         }
3136
3137         if (leading) {
3138                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3139                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3140         }
3141
3142         /* Always set HW VLAN stripping */
3143         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3144
3145         /* configure silent vlan removal */
3146         if (IS_MF_AFEX(bp))
3147                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3148
3149         return flags | bnx2x_get_common_flags(bp, fp, true);
3150 }
3151
3152 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3153         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3154         u8 cos)
3155 {
3156         gen_init->stat_id = bnx2x_stats_id(fp);
3157         gen_init->spcl_id = fp->cl_id;
3158
3159         /* Always use mini-jumbo MTU for FCoE L2 ring */
3160         if (IS_FCOE_FP(fp))
3161                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3162         else
3163                 gen_init->mtu = bp->dev->mtu;
3164
3165         gen_init->cos = cos;
3166 }
3167
3168 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3169         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3170         struct bnx2x_rxq_setup_params *rxq_init)
3171 {
3172         u8 max_sge = 0;
3173         u16 sge_sz = 0;
3174         u16 tpa_agg_size = 0;
3175
3176         if (!fp->disable_tpa) {
3177                 pause->sge_th_lo = SGE_TH_LO(bp);
3178                 pause->sge_th_hi = SGE_TH_HI(bp);
3179
3180                 /* validate SGE ring has enough to cross high threshold */
3181                 WARN_ON(bp->dropless_fc &&
3182                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3183                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3184
3185                 tpa_agg_size = TPA_AGG_SIZE;
3186                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3187                         SGE_PAGE_SHIFT;
3188                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3189                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3190                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3191         }
3192
3193         /* pause - not for e1 */
3194         if (!CHIP_IS_E1(bp)) {
3195                 pause->bd_th_lo = BD_TH_LO(bp);
3196                 pause->bd_th_hi = BD_TH_HI(bp);
3197
3198                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3199                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3200                 /*
3201                  * validate that rings have enough entries to cross
3202                  * high thresholds
3203                  */
3204                 WARN_ON(bp->dropless_fc &&
3205                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3206                                 bp->rx_ring_size);
3207                 WARN_ON(bp->dropless_fc &&
3208                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3209                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3210
3211                 pause->pri_map = 1;
3212         }
3213
3214         /* rxq setup */
3215         rxq_init->dscr_map = fp->rx_desc_mapping;
3216         rxq_init->sge_map = fp->rx_sge_mapping;
3217         rxq_init->rcq_map = fp->rx_comp_mapping;
3218         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3219
3220         /* This should be a maximum number of data bytes that may be
3221          * placed on the BD (not including paddings).
3222          */
3223         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3224                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3225
3226         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3227         rxq_init->tpa_agg_sz = tpa_agg_size;
3228         rxq_init->sge_buf_sz = sge_sz;
3229         rxq_init->max_sges_pkt = max_sge;
3230         rxq_init->rss_engine_id = BP_FUNC(bp);
3231         rxq_init->mcast_engine_id = BP_FUNC(bp);
3232
3233         /* Maximum number or simultaneous TPA aggregation for this Queue.
3234          *
3235          * For PF Clients it should be the maximum available number.
3236          * VF driver(s) may want to define it to a smaller value.
3237          */
3238         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3239
3240         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3241         rxq_init->fw_sb_id = fp->fw_sb_id;
3242
3243         if (IS_FCOE_FP(fp))
3244                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3245         else
3246                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3247         /* configure silent vlan removal
3248          * if multi function mode is afex, then mask default vlan
3249          */
3250         if (IS_MF_AFEX(bp)) {
3251                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3252                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3253         }
3254 }
3255
3256 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3257         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3258         u8 cos)
3259 {
3260         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3261         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3262         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3263         txq_init->fw_sb_id = fp->fw_sb_id;
3264
3265         /*
3266          * set the tss leading client id for TX classification ==
3267          * leading RSS client id
3268          */
3269         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3270
3271         if (IS_FCOE_FP(fp)) {
3272                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3273                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3274         }
3275 }
3276
3277 static void bnx2x_pf_init(struct bnx2x *bp)
3278 {
3279         struct bnx2x_func_init_params func_init = {0};
3280         struct event_ring_data eq_data = { {0} };
3281         u16 flags;
3282
3283         if (!CHIP_IS_E1x(bp)) {
3284                 /* reset IGU PF statistics: MSIX + ATTN */
3285                 /* PF */
3286                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3287                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3288                            (CHIP_MODE_IS_4_PORT(bp) ?
3289                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3290                 /* ATTN */
3291                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3292                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3293                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3294                            (CHIP_MODE_IS_4_PORT(bp) ?
3295                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3296         }
3297
3298         /* function setup flags */
3299         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3300
3301         /* This flag is relevant for E1x only.
3302          * E2 doesn't have a TPA configuration in a function level.
3303          */
3304         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3305
3306         func_init.func_flgs = flags;
3307         func_init.pf_id = BP_FUNC(bp);
3308         func_init.func_id = BP_FUNC(bp);
3309         func_init.spq_map = bp->spq_mapping;
3310         func_init.spq_prod = bp->spq_prod_idx;
3311
3312         bnx2x_func_init(bp, &func_init);
3313
3314         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3315
3316         /*
3317          * Congestion management values depend on the link rate
3318          * There is no active link so initial link rate is set to 10 Gbps.
3319          * When the link comes up The congestion management values are
3320          * re-calculated according to the actual link rate.
3321          */
3322         bp->link_vars.line_speed = SPEED_10000;
3323         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3324
3325         /* Only the PMF sets the HW */
3326         if (bp->port.pmf)
3327                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3328
3329         /* init Event Queue - PCI bus guarantees correct endianity*/
3330         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3331         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3332         eq_data.producer = bp->eq_prod;
3333         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3334         eq_data.sb_id = DEF_SB_ID;
3335         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3336 }
3337
3338 static void bnx2x_e1h_disable(struct bnx2x *bp)
3339 {
3340         int port = BP_PORT(bp);
3341
3342         bnx2x_tx_disable(bp);
3343
3344         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3345 }
3346
3347 static void bnx2x_e1h_enable(struct bnx2x *bp)
3348 {
3349         int port = BP_PORT(bp);
3350
3351         if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3352                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3353
3354         /* Tx queue should be only re-enabled */
3355         netif_tx_wake_all_queues(bp->dev);
3356
3357         /*
3358          * Should not call netif_carrier_on since it will be called if the link
3359          * is up when checking for link state
3360          */
3361 }
3362
3363 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3364
3365 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3366 {
3367         struct eth_stats_info *ether_stat =
3368                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3369         struct bnx2x_vlan_mac_obj *mac_obj =
3370                 &bp->sp_objs->mac_obj;
3371         int i;
3372
3373         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3374                 ETH_STAT_INFO_VERSION_LEN);
3375
3376         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3377          * mac_local field in ether_stat struct. The base address is offset by 2
3378          * bytes to account for the field being 8 bytes but a mac address is
3379          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3380          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3381          * allocated by the ether_stat struct, so the macs will land in their
3382          * proper positions.
3383          */
3384         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3385                 memset(ether_stat->mac_local + i, 0,
3386                        sizeof(ether_stat->mac_local[0]));
3387         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3388                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3389                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3390                                 ETH_ALEN);
3391         ether_stat->mtu_size = bp->dev->mtu;
3392         if (bp->dev->features & NETIF_F_RXCSUM)
3393                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3394         if (bp->dev->features & NETIF_F_TSO)
3395                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3396         ether_stat->feature_flags |= bp->common.boot_mode;
3397
3398         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3399
3400         ether_stat->txq_size = bp->tx_ring_size;
3401         ether_stat->rxq_size = bp->rx_ring_size;
3402
3403 #ifdef CONFIG_BNX2X_SRIOV
3404         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3405 #endif
3406 }
3407
3408 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3409 {
3410         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3411         struct fcoe_stats_info *fcoe_stat =
3412                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3413
3414         if (!CNIC_LOADED(bp))
3415                 return;
3416
3417         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3418
3419         fcoe_stat->qos_priority =
3420                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3421
3422         /* insert FCoE stats from ramrod response */
3423         if (!NO_FCOE(bp)) {
3424                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3425                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3426                         tstorm_queue_statistics;
3427
3428                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3429                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3430                         xstorm_queue_statistics;
3431
3432                 struct fcoe_statistics_params *fw_fcoe_stat =
3433                         &bp->fw_stats_data->fcoe;
3434
3435                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3436                           fcoe_stat->rx_bytes_lo,
3437                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3438
3439                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3440                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3441                           fcoe_stat->rx_bytes_lo,
3442                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3443
3444                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3445                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3446                           fcoe_stat->rx_bytes_lo,
3447                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3448
3449                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3450                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3451                           fcoe_stat->rx_bytes_lo,
3452                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3453
3454                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3455                           fcoe_stat->rx_frames_lo,
3456                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3457
3458                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3459                           fcoe_stat->rx_frames_lo,
3460                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3461
3462                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3463                           fcoe_stat->rx_frames_lo,
3464                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3465
3466                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3467                           fcoe_stat->rx_frames_lo,
3468                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3469
3470                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3471                           fcoe_stat->tx_bytes_lo,
3472                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3473
3474                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3475                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3476                           fcoe_stat->tx_bytes_lo,
3477                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3478
3479                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3480                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3481                           fcoe_stat->tx_bytes_lo,
3482                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3483
3484                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3485                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3486                           fcoe_stat->tx_bytes_lo,
3487                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3488
3489                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3490                           fcoe_stat->tx_frames_lo,
3491                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3492
3493                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3494                           fcoe_stat->tx_frames_lo,
3495                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3496
3497                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3498                           fcoe_stat->tx_frames_lo,
3499                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3500
3501                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3502                           fcoe_stat->tx_frames_lo,
3503                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3504         }
3505
3506         /* ask L5 driver to add data to the struct */
3507         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3508 }
3509
3510 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3511 {
3512         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3513         struct iscsi_stats_info *iscsi_stat =
3514                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3515
3516         if (!CNIC_LOADED(bp))
3517                 return;
3518
3519         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3520                ETH_ALEN);
3521
3522         iscsi_stat->qos_priority =
3523                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3524
3525         /* ask L5 driver to add data to the struct */
3526         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3527 }
3528
3529 /* called due to MCP event (on pmf):
3530  *      reread new bandwidth configuration
3531  *      configure FW
3532  *      notify others function about the change
3533  */
3534 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3535 {
3536         if (bp->link_vars.link_up) {
3537                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3538                 bnx2x_link_sync_notify(bp);
3539         }
3540         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3541 }
3542
3543 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3544 {
3545         bnx2x_config_mf_bw(bp);
3546         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3547 }
3548
3549 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3550 {
3551         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3552         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3553 }
3554
3555 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3556 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3557
3558 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3559 {
3560         enum drv_info_opcode op_code;
3561         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3562         bool release = false;
3563         int wait;
3564
3565         /* if drv_info version supported by MFW doesn't match - send NACK */
3566         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3567                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3568                 return;
3569         }
3570
3571         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3572                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3573
3574         /* Must prevent other flows from accessing drv_info_to_mcp */
3575         mutex_lock(&bp->drv_info_mutex);
3576
3577         memset(&bp->slowpath->drv_info_to_mcp, 0,
3578                sizeof(union drv_info_to_mcp));
3579
3580         switch (op_code) {
3581         case ETH_STATS_OPCODE:
3582                 bnx2x_drv_info_ether_stat(bp);
3583                 break;
3584         case FCOE_STATS_OPCODE:
3585                 bnx2x_drv_info_fcoe_stat(bp);
3586                 break;
3587         case ISCSI_STATS_OPCODE:
3588                 bnx2x_drv_info_iscsi_stat(bp);
3589                 break;
3590         default:
3591                 /* if op code isn't supported - send NACK */
3592                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3593                 goto out;
3594         }
3595
3596         /* if we got drv_info attn from MFW then these fields are defined in
3597          * shmem2 for sure
3598          */
3599         SHMEM2_WR(bp, drv_info_host_addr_lo,
3600                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3601         SHMEM2_WR(bp, drv_info_host_addr_hi,
3602                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3603
3604         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3605
3606         /* Since possible management wants both this and get_driver_version
3607          * need to wait until management notifies us it finished utilizing
3608          * the buffer.
3609          */
3610         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3611                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3612         } else if (!bp->drv_info_mng_owner) {
3613                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3614
3615                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3616                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3617
3618                         /* Management is done; need to clear indication */
3619                         if (indication & bit) {
3620                                 SHMEM2_WR(bp, mfw_drv_indication,
3621                                           indication & ~bit);
3622                                 release = true;
3623                                 break;
3624                         }
3625
3626                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3627                 }
3628         }
3629         if (!release) {
3630                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3631                 bp->drv_info_mng_owner = true;
3632         }
3633
3634 out:
3635         mutex_unlock(&bp->drv_info_mutex);
3636 }
3637
3638 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3639 {
3640         u8 vals[4];
3641         int i = 0;
3642
3643         if (bnx2x_format) {
3644                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3645                            &vals[0], &vals[1], &vals[2], &vals[3]);
3646                 if (i > 0)
3647                         vals[0] -= '0';
3648         } else {
3649                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3650                            &vals[0], &vals[1], &vals[2], &vals[3]);
3651         }
3652
3653         while (i < 4)
3654                 vals[i++] = 0;
3655
3656         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3657 }
3658
3659 void bnx2x_update_mng_version(struct bnx2x *bp)
3660 {
3661         u32 iscsiver = DRV_VER_NOT_LOADED;
3662         u32 fcoever = DRV_VER_NOT_LOADED;
3663         u32 ethver = DRV_VER_NOT_LOADED;
3664         int idx = BP_FW_MB_IDX(bp);
3665         u8 *version;
3666
3667         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3668                 return;
3669
3670         mutex_lock(&bp->drv_info_mutex);
3671         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3672         if (bp->drv_info_mng_owner)
3673                 goto out;
3674
3675         if (bp->state != BNX2X_STATE_OPEN)
3676                 goto out;
3677
3678         /* Parse ethernet driver version */
3679         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3680         if (!CNIC_LOADED(bp))
3681                 goto out;
3682
3683         /* Try getting storage driver version via cnic */
3684         memset(&bp->slowpath->drv_info_to_mcp, 0,
3685                sizeof(union drv_info_to_mcp));
3686         bnx2x_drv_info_iscsi_stat(bp);
3687         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3688         iscsiver = bnx2x_update_mng_version_utility(version, false);
3689
3690         memset(&bp->slowpath->drv_info_to_mcp, 0,
3691                sizeof(union drv_info_to_mcp));
3692         bnx2x_drv_info_fcoe_stat(bp);
3693         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3694         fcoever = bnx2x_update_mng_version_utility(version, false);
3695
3696 out:
3697         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3698         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3699         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3700
3701         mutex_unlock(&bp->drv_info_mutex);
3702
3703         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3704            ethver, iscsiver, fcoever);
3705 }
3706
3707 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3708 {
3709         u32 cmd_ok, cmd_fail;
3710
3711         /* sanity */
3712         if (event & DRV_STATUS_DCC_EVENT_MASK &&
3713             event & DRV_STATUS_OEM_EVENT_MASK) {
3714                 BNX2X_ERR("Received simultaneous events %08x\n", event);
3715                 return;
3716         }
3717
3718         if (event & DRV_STATUS_DCC_EVENT_MASK) {
3719                 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3720                 cmd_ok = DRV_MSG_CODE_DCC_OK;
3721         } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3722                 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3723                 cmd_ok = DRV_MSG_CODE_OEM_OK;
3724         }
3725
3726         DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3727
3728         if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3729                      DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3730                 /* This is the only place besides the function initialization
3731                  * where the bp->flags can change so it is done without any
3732                  * locks
3733                  */
3734                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3735                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3736                         bp->flags |= MF_FUNC_DIS;
3737
3738                         bnx2x_e1h_disable(bp);
3739                 } else {
3740                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3741                         bp->flags &= ~MF_FUNC_DIS;
3742
3743                         bnx2x_e1h_enable(bp);
3744                 }
3745                 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3746                            DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3747         }
3748
3749         if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3750                      DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3751                 bnx2x_config_mf_bw(bp);
3752                 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3753                            DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3754         }
3755
3756         /* Report results to MCP */
3757         if (event)
3758                 bnx2x_fw_command(bp, cmd_fail, 0);
3759         else
3760                 bnx2x_fw_command(bp, cmd_ok, 0);
3761 }
3762
3763 /* must be called under the spq lock */
3764 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3765 {
3766         struct eth_spe *next_spe = bp->spq_prod_bd;
3767
3768         if (bp->spq_prod_bd == bp->spq_last_bd) {
3769                 bp->spq_prod_bd = bp->spq;
3770                 bp->spq_prod_idx = 0;
3771                 DP(BNX2X_MSG_SP, "end of spq\n");
3772         } else {
3773                 bp->spq_prod_bd++;
3774                 bp->spq_prod_idx++;
3775         }
3776         return next_spe;
3777 }
3778
3779 /* must be called under the spq lock */
3780 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3781 {
3782         int func = BP_FUNC(bp);
3783
3784         /*
3785          * Make sure that BD data is updated before writing the producer:
3786          * BD data is written to the memory, the producer is read from the
3787          * memory, thus we need a full memory barrier to ensure the ordering.
3788          */
3789         mb();
3790
3791         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3792                  bp->spq_prod_idx);
3793         mmiowb();
3794 }
3795
3796 /**
3797  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3798  *
3799  * @cmd:        command to check
3800  * @cmd_type:   command type
3801  */
3802 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3803 {
3804         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3805             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3806             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3807             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3808             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3809             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3810             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3811                 return true;
3812         else
3813                 return false;
3814 }
3815
3816 /**
3817  * bnx2x_sp_post - place a single command on an SP ring
3818  *
3819  * @bp:         driver handle
3820  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3821  * @cid:        SW CID the command is related to
3822  * @data_hi:    command private data address (high 32 bits)
3823  * @data_lo:    command private data address (low 32 bits)
3824  * @cmd_type:   command type (e.g. NONE, ETH)
3825  *
3826  * SP data is handled as if it's always an address pair, thus data fields are
3827  * not swapped to little endian in upper functions. Instead this function swaps
3828  * data as if it's two u32 fields.
3829  */
3830 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3831                   u32 data_hi, u32 data_lo, int cmd_type)
3832 {
3833         struct eth_spe *spe;
3834         u16 type;
3835         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3836
3837 #ifdef BNX2X_STOP_ON_ERROR
3838         if (unlikely(bp->panic)) {
3839                 BNX2X_ERR("Can't post SP when there is panic\n");
3840                 return -EIO;
3841         }
3842 #endif
3843
3844         spin_lock_bh(&bp->spq_lock);
3845
3846         if (common) {
3847                 if (!atomic_read(&bp->eq_spq_left)) {
3848                         BNX2X_ERR("BUG! EQ ring full!\n");
3849                         spin_unlock_bh(&bp->spq_lock);
3850                         bnx2x_panic();
3851                         return -EBUSY;
3852                 }
3853         } else if (!atomic_read(&bp->cq_spq_left)) {
3854                         BNX2X_ERR("BUG! SPQ ring full!\n");
3855                         spin_unlock_bh(&bp->spq_lock);
3856                         bnx2x_panic();
3857                         return -EBUSY;
3858         }
3859
3860         spe = bnx2x_sp_get_next(bp);
3861
3862         /* CID needs port number to be encoded int it */
3863         spe->hdr.conn_and_cmd_data =
3864                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3865                                     HW_CID(bp, cid));
3866
3867         /* In some cases, type may already contain the func-id
3868          * mainly in SRIOV related use cases, so we add it here only
3869          * if it's not already set.
3870          */
3871         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3872                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3873                         SPE_HDR_CONN_TYPE;
3874                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3875                          SPE_HDR_FUNCTION_ID);
3876         } else {
3877                 type = cmd_type;
3878         }
3879
3880         spe->hdr.type = cpu_to_le16(type);
3881
3882         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3883         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3884
3885         /*
3886          * It's ok if the actual decrement is issued towards the memory
3887          * somewhere between the spin_lock and spin_unlock. Thus no
3888          * more explicit memory barrier is needed.
3889          */
3890         if (common)
3891                 atomic_dec(&bp->eq_spq_left);
3892         else
3893                 atomic_dec(&bp->cq_spq_left);
3894
3895         DP(BNX2X_MSG_SP,
3896            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3897            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3898            (u32)(U64_LO(bp->spq_mapping) +
3899            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3900            HW_CID(bp, cid), data_hi, data_lo, type,
3901            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3902
3903         bnx2x_sp_prod_update(bp);
3904         spin_unlock_bh(&bp->spq_lock);
3905         return 0;
3906 }
3907
3908 /* acquire split MCP access lock register */
3909 static int bnx2x_acquire_alr(struct bnx2x *bp)
3910 {
3911         u32 j, val;
3912         int rc = 0;
3913
3914         might_sleep();
3915         for (j = 0; j < 1000; j++) {
3916                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3917                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3918                 if (val & MCPR_ACCESS_LOCK_LOCK)
3919                         break;
3920
3921                 usleep_range(5000, 10000);
3922         }
3923         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3924                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3925                 rc = -EBUSY;
3926         }
3927
3928         return rc;
3929 }
3930
3931 /* release split MCP access lock register */
3932 static void bnx2x_release_alr(struct bnx2x *bp)
3933 {
3934         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3935 }
3936
3937 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3938 #define BNX2X_DEF_SB_IDX        0x0002
3939
3940 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3941 {
3942         struct host_sp_status_block *def_sb = bp->def_status_blk;
3943         u16 rc = 0;
3944
3945         barrier(); /* status block is written to by the chip */
3946         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3947                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3948                 rc |= BNX2X_DEF_SB_ATT_IDX;
3949         }
3950
3951         if (bp->def_idx != def_sb->sp_sb.running_index) {
3952                 bp->def_idx = def_sb->sp_sb.running_index;
3953                 rc |= BNX2X_DEF_SB_IDX;
3954         }
3955
3956         /* Do not reorder: indices reading should complete before handling */
3957         barrier();
3958         return rc;
3959 }
3960
3961 /*
3962  * slow path service functions
3963  */
3964
3965 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3966 {
3967         int port = BP_PORT(bp);
3968         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3969                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3970         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3971                                        NIG_REG_MASK_INTERRUPT_PORT0;
3972         u32 aeu_mask;
3973         u32 nig_mask = 0;
3974         u32 reg_addr;
3975
3976         if (bp->attn_state & asserted)
3977                 BNX2X_ERR("IGU ERROR\n");
3978
3979         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3980         aeu_mask = REG_RD(bp, aeu_addr);
3981
3982         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3983            aeu_mask, asserted);
3984         aeu_mask &= ~(asserted & 0x3ff);
3985         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3986
3987         REG_WR(bp, aeu_addr, aeu_mask);
3988         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3989
3990         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3991         bp->attn_state |= asserted;
3992         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3993
3994         if (asserted & ATTN_HARD_WIRED_MASK) {
3995                 if (asserted & ATTN_NIG_FOR_FUNC) {
3996
3997                         bnx2x_acquire_phy_lock(bp);
3998
3999                         /* save nig interrupt mask */
4000                         nig_mask = REG_RD(bp, nig_int_mask_addr);
4001
4002                         /* If nig_mask is not set, no need to call the update
4003                          * function.
4004                          */
4005                         if (nig_mask) {
4006                                 REG_WR(bp, nig_int_mask_addr, 0);
4007
4008                                 bnx2x_link_attn(bp);
4009                         }
4010
4011                         /* handle unicore attn? */
4012                 }
4013                 if (asserted & ATTN_SW_TIMER_4_FUNC)
4014                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4015
4016                 if (asserted & GPIO_2_FUNC)
4017                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4018
4019                 if (asserted & GPIO_3_FUNC)
4020                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4021
4022                 if (asserted & GPIO_4_FUNC)
4023                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4024
4025                 if (port == 0) {
4026                         if (asserted & ATTN_GENERAL_ATTN_1) {
4027                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4028                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4029                         }
4030                         if (asserted & ATTN_GENERAL_ATTN_2) {
4031                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4032                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4033                         }
4034                         if (asserted & ATTN_GENERAL_ATTN_3) {
4035                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4036                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4037                         }
4038                 } else {
4039                         if (asserted & ATTN_GENERAL_ATTN_4) {
4040                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4041                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4042                         }
4043                         if (asserted & ATTN_GENERAL_ATTN_5) {
4044                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4045                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4046                         }
4047                         if (asserted & ATTN_GENERAL_ATTN_6) {
4048                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4049                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4050                         }
4051                 }
4052
4053         } /* if hardwired */
4054
4055         if (bp->common.int_block == INT_BLOCK_HC)
4056                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4057                             COMMAND_REG_ATTN_BITS_SET);
4058         else
4059                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4060
4061         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4062            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4063         REG_WR(bp, reg_addr, asserted);
4064
4065         /* now set back the mask */
4066         if (asserted & ATTN_NIG_FOR_FUNC) {
4067                 /* Verify that IGU ack through BAR was written before restoring
4068                  * NIG mask. This loop should exit after 2-3 iterations max.
4069                  */
4070                 if (bp->common.int_block != INT_BLOCK_HC) {
4071                         u32 cnt = 0, igu_acked;
4072                         do {
4073                                 igu_acked = REG_RD(bp,
4074                                                    IGU_REG_ATTENTION_ACK_BITS);
4075                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4076                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
4077                         if (!igu_acked)
4078                                 DP(NETIF_MSG_HW,
4079                                    "Failed to verify IGU ack on time\n");
4080                         barrier();
4081                 }
4082                 REG_WR(bp, nig_int_mask_addr, nig_mask);
4083                 bnx2x_release_phy_lock(bp);
4084         }
4085 }
4086
4087 static void bnx2x_fan_failure(struct bnx2x *bp)
4088 {
4089         int port = BP_PORT(bp);
4090         u32 ext_phy_config;
4091         /* mark the failure */
4092         ext_phy_config =
4093                 SHMEM_RD(bp,
4094                          dev_info.port_hw_config[port].external_phy_config);
4095
4096         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4097         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4098         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4099                  ext_phy_config);
4100
4101         /* log the failure */
4102         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4103                             "Please contact OEM Support for assistance\n");
4104
4105         /* Schedule device reset (unload)
4106          * This is due to some boards consuming sufficient power when driver is
4107          * up to overheat if fan fails.
4108          */
4109         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4110 }
4111
4112 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4113 {
4114         int port = BP_PORT(bp);
4115         int reg_offset;
4116         u32 val;
4117
4118         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4119                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4120
4121         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4122
4123                 val = REG_RD(bp, reg_offset);
4124                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4125                 REG_WR(bp, reg_offset, val);
4126
4127                 BNX2X_ERR("SPIO5 hw attention\n");
4128
4129                 /* Fan failure attention */
4130                 bnx2x_hw_reset_phy(&bp->link_params);
4131                 bnx2x_fan_failure(bp);
4132         }
4133
4134         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4135                 bnx2x_acquire_phy_lock(bp);
4136                 bnx2x_handle_module_detect_int(&bp->link_params);
4137                 bnx2x_release_phy_lock(bp);
4138         }
4139
4140         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4141
4142                 val = REG_RD(bp, reg_offset);
4143                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4144                 REG_WR(bp, reg_offset, val);
4145
4146                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4147                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4148                 bnx2x_panic();
4149         }
4150 }
4151
4152 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4153 {
4154         u32 val;
4155
4156         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4157
4158                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4159                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4160                 /* DORQ discard attention */
4161                 if (val & 0x2)
4162                         BNX2X_ERR("FATAL error from DORQ\n");
4163         }
4164
4165         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4166
4167                 int port = BP_PORT(bp);
4168                 int reg_offset;
4169
4170                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4171                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4172
4173                 val = REG_RD(bp, reg_offset);
4174                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4175                 REG_WR(bp, reg_offset, val);
4176
4177                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4178                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4179                 bnx2x_panic();
4180         }
4181 }
4182
4183 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4184 {
4185         u32 val;
4186
4187         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4188
4189                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4190                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4191                 /* CFC error attention */
4192                 if (val & 0x2)
4193                         BNX2X_ERR("FATAL error from CFC\n");
4194         }
4195
4196         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4197                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4198                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4199                 /* RQ_USDMDP_FIFO_OVERFLOW */
4200                 if (val & 0x18000)
4201                         BNX2X_ERR("FATAL error from PXP\n");
4202
4203                 if (!CHIP_IS_E1x(bp)) {
4204                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4205                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4206                 }
4207         }
4208
4209         if (attn & HW_INTERRUT_ASSERT_SET_2) {
4210
4211                 int port = BP_PORT(bp);
4212                 int reg_offset;
4213
4214                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4215                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4216
4217                 val = REG_RD(bp, reg_offset);
4218                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4219                 REG_WR(bp, reg_offset, val);
4220
4221                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4222                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4223                 bnx2x_panic();
4224         }
4225 }
4226
4227 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4228 {
4229         u32 val;
4230
4231         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4232
4233                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4234                         int func = BP_FUNC(bp);
4235
4236                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4237                         bnx2x_read_mf_cfg(bp);
4238                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4239                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4240                         val = SHMEM_RD(bp,
4241                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4242
4243                         if (val & (DRV_STATUS_DCC_EVENT_MASK |
4244                                    DRV_STATUS_OEM_EVENT_MASK))
4245                                 bnx2x_oem_event(bp,
4246                                         (val & (DRV_STATUS_DCC_EVENT_MASK |
4247                                                 DRV_STATUS_OEM_EVENT_MASK)));
4248
4249                         if (val & DRV_STATUS_SET_MF_BW)
4250                                 bnx2x_set_mf_bw(bp);
4251
4252                         if (val & DRV_STATUS_DRV_INFO_REQ)
4253                                 bnx2x_handle_drv_info_req(bp);
4254
4255                         if (val & DRV_STATUS_VF_DISABLED)
4256                                 bnx2x_schedule_iov_task(bp,
4257                                                         BNX2X_IOV_HANDLE_FLR);
4258
4259                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4260                                 bnx2x_pmf_update(bp);
4261
4262                         if (bp->port.pmf &&
4263                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4264                                 bp->dcbx_enabled > 0)
4265                                 /* start dcbx state machine */
4266                                 bnx2x_dcbx_set_params(bp,
4267                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4268                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4269                                 bnx2x_handle_afex_cmd(bp,
4270                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4271                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4272                                 bnx2x_handle_eee_event(bp);
4273
4274                         if (val & DRV_STATUS_OEM_UPDATE_SVID)
4275                                 bnx2x_handle_update_svid_cmd(bp);
4276
4277                         if (bp->link_vars.periodic_flags &
4278                             PERIODIC_FLAGS_LINK_EVENT) {
4279                                 /*  sync with link */
4280                                 bnx2x_acquire_phy_lock(bp);
4281                                 bp->link_vars.periodic_flags &=
4282                                         ~PERIODIC_FLAGS_LINK_EVENT;
4283                                 bnx2x_release_phy_lock(bp);
4284                                 if (IS_MF(bp))
4285                                         bnx2x_link_sync_notify(bp);
4286                                 bnx2x_link_report(bp);
4287                         }
4288                         /* Always call it here: bnx2x_link_report() will
4289                          * prevent the link indication duplication.
4290                          */
4291                         bnx2x__link_status_update(bp);
4292                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4293
4294                         BNX2X_ERR("MC assert!\n");
4295                         bnx2x_mc_assert(bp);
4296                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4297                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4298                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4299                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4300                         bnx2x_panic();
4301
4302                 } else if (attn & BNX2X_MCP_ASSERT) {
4303
4304                         BNX2X_ERR("MCP assert!\n");
4305                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4306                         bnx2x_fw_dump(bp);
4307
4308                 } else
4309                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4310         }
4311
4312         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4313                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4314                 if (attn & BNX2X_GRC_TIMEOUT) {
4315                         val = CHIP_IS_E1(bp) ? 0 :
4316                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4317                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4318                 }
4319                 if (attn & BNX2X_GRC_RSV) {
4320                         val = CHIP_IS_E1(bp) ? 0 :
4321                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4322                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4323                 }
4324                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4325         }
4326 }
4327
4328 /*
4329  * Bits map:
4330  * 0-7   - Engine0 load counter.
4331  * 8-15  - Engine1 load counter.
4332  * 16    - Engine0 RESET_IN_PROGRESS bit.
4333  * 17    - Engine1 RESET_IN_PROGRESS bit.
4334  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4335  *         on the engine
4336  * 19    - Engine1 ONE_IS_LOADED.
4337  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4338  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4339  *         just the one belonging to its engine).
4340  *
4341  */
4342 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4343
4344 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4345 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4346 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4347 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4348 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4349 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4350 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4351
4352 /*
4353  * Set the GLOBAL_RESET bit.
4354  *
4355  * Should be run under rtnl lock
4356  */
4357 void bnx2x_set_reset_global(struct bnx2x *bp)
4358 {
4359         u32 val;
4360         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4361         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4362         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4363         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4364 }
4365
4366 /*
4367  * Clear the GLOBAL_RESET bit.
4368  *
4369  * Should be run under rtnl lock
4370  */
4371 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4372 {
4373         u32 val;
4374         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4375         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4376         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4377         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4378 }
4379
4380 /*
4381  * Checks the GLOBAL_RESET bit.
4382  *
4383  * should be run under rtnl lock
4384  */
4385 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4386 {
4387         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4388
4389         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4390         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4391 }
4392
4393 /*
4394  * Clear RESET_IN_PROGRESS bit for the current engine.
4395  *
4396  * Should be run under rtnl lock
4397  */
4398 static void bnx2x_set_reset_done(struct bnx2x *bp)
4399 {
4400         u32 val;
4401         u32 bit = BP_PATH(bp) ?
4402                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4403         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4404         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4405
4406         /* Clear the bit */
4407         val &= ~bit;
4408         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4409
4410         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4411 }
4412
4413 /*
4414  * Set RESET_IN_PROGRESS for the current engine.
4415  *
4416  * should be run under rtnl lock
4417  */
4418 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4419 {
4420         u32 val;
4421         u32 bit = BP_PATH(bp) ?
4422                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4423         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4424         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4425
4426         /* Set the bit */
4427         val |= bit;
4428         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4429         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4430 }
4431
4432 /*
4433  * Checks the RESET_IN_PROGRESS bit for the given engine.
4434  * should be run under rtnl lock
4435  */
4436 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4437 {
4438         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4439         u32 bit = engine ?
4440                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4441
4442         /* return false if bit is set */
4443         return (val & bit) ? false : true;
4444 }
4445
4446 /*
4447  * set pf load for the current pf.
4448  *
4449  * should be run under rtnl lock
4450  */
4451 void bnx2x_set_pf_load(struct bnx2x *bp)
4452 {
4453         u32 val1, val;
4454         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4455                              BNX2X_PATH0_LOAD_CNT_MASK;
4456         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4457                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4458
4459         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4460         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4461
4462         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4463
4464         /* get the current counter value */
4465         val1 = (val & mask) >> shift;
4466
4467         /* set bit of that PF */
4468         val1 |= (1 << bp->pf_num);
4469
4470         /* clear the old value */
4471         val &= ~mask;
4472
4473         /* set the new one */
4474         val |= ((val1 << shift) & mask);
4475
4476         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4477         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4478 }
4479
4480 /**
4481  * bnx2x_clear_pf_load - clear pf load mark
4482  *
4483  * @bp:         driver handle
4484  *
4485  * Should be run under rtnl lock.
4486  * Decrements the load counter for the current engine. Returns
4487  * whether other functions are still loaded
4488  */
4489 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4490 {
4491         u32 val1, val;
4492         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4493                              BNX2X_PATH0_LOAD_CNT_MASK;
4494         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4495                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4496
4497         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4498         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4499         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4500
4501         /* get the current counter value */
4502         val1 = (val & mask) >> shift;
4503
4504         /* clear bit of that PF */
4505         val1 &= ~(1 << bp->pf_num);
4506
4507         /* clear the old value */
4508         val &= ~mask;
4509
4510         /* set the new one */
4511         val |= ((val1 << shift) & mask);
4512
4513         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4514         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4515         return val1 != 0;
4516 }
4517
4518 /*
4519  * Read the load status for the current engine.
4520  *
4521  * should be run under rtnl lock
4522  */
4523 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4524 {
4525         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4526                              BNX2X_PATH0_LOAD_CNT_MASK);
4527         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4528                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4529         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4530
4531         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4532
4533         val = (val & mask) >> shift;
4534
4535         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4536            engine, val);
4537
4538         return val != 0;
4539 }
4540
4541 static void _print_parity(struct bnx2x *bp, u32 reg)
4542 {
4543         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4544 }
4545
4546 static void _print_next_block(int idx, const char *blk)
4547 {
4548         pr_cont("%s%s", idx ? ", " : "", blk);
4549 }
4550
4551 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4552                                             int *par_num, bool print)
4553 {
4554         u32 cur_bit;
4555         bool res;
4556         int i;
4557
4558         res = false;
4559
4560         for (i = 0; sig; i++) {
4561                 cur_bit = (0x1UL << i);
4562                 if (sig & cur_bit) {
4563                         res |= true; /* Each bit is real error! */
4564
4565                         if (print) {
4566                                 switch (cur_bit) {
4567                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4568                                         _print_next_block((*par_num)++, "BRB");
4569                                         _print_parity(bp,
4570                                                       BRB1_REG_BRB1_PRTY_STS);
4571                                         break;
4572                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4573                                         _print_next_block((*par_num)++,
4574                                                           "PARSER");
4575                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4576                                         break;
4577                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4578                                         _print_next_block((*par_num)++, "TSDM");
4579                                         _print_parity(bp,
4580                                                       TSDM_REG_TSDM_PRTY_STS);
4581                                         break;
4582                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4583                                         _print_next_block((*par_num)++,
4584                                                           "SEARCHER");
4585                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4586                                         break;
4587                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4588                                         _print_next_block((*par_num)++, "TCM");
4589                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4590                                         break;
4591                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4592                                         _print_next_block((*par_num)++,
4593                                                           "TSEMI");
4594                                         _print_parity(bp,
4595                                                       TSEM_REG_TSEM_PRTY_STS_0);
4596                                         _print_parity(bp,
4597                                                       TSEM_REG_TSEM_PRTY_STS_1);
4598                                         break;
4599                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4600                                         _print_next_block((*par_num)++, "XPB");
4601                                         _print_parity(bp, GRCBASE_XPB +
4602                                                           PB_REG_PB_PRTY_STS);
4603                                         break;
4604                                 }
4605                         }
4606
4607                         /* Clear the bit */
4608                         sig &= ~cur_bit;
4609                 }
4610         }
4611
4612         return res;
4613 }
4614
4615 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4616                                             int *par_num, bool *global,
4617                                             bool print)
4618 {
4619         u32 cur_bit;
4620         bool res;
4621         int i;
4622
4623         res = false;
4624
4625         for (i = 0; sig; i++) {
4626                 cur_bit = (0x1UL << i);
4627                 if (sig & cur_bit) {
4628                         res |= true; /* Each bit is real error! */
4629                         switch (cur_bit) {
4630                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4631                                 if (print) {
4632                                         _print_next_block((*par_num)++, "PBF");
4633                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4634                                 }
4635                                 break;
4636                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4637                                 if (print) {
4638                                         _print_next_block((*par_num)++, "QM");
4639                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4640                                 }
4641                                 break;
4642                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4643                                 if (print) {
4644                                         _print_next_block((*par_num)++, "TM");
4645                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4646                                 }
4647                                 break;
4648                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4649                                 if (print) {
4650                                         _print_next_block((*par_num)++, "XSDM");
4651                                         _print_parity(bp,
4652                                                       XSDM_REG_XSDM_PRTY_STS);
4653                                 }
4654                                 break;
4655                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4656                                 if (print) {
4657                                         _print_next_block((*par_num)++, "XCM");
4658                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4659                                 }
4660                                 break;
4661                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4662                                 if (print) {
4663                                         _print_next_block((*par_num)++,
4664                                                           "XSEMI");
4665                                         _print_parity(bp,
4666                                                       XSEM_REG_XSEM_PRTY_STS_0);
4667                                         _print_parity(bp,
4668                                                       XSEM_REG_XSEM_PRTY_STS_1);
4669                                 }
4670                                 break;
4671                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4672                                 if (print) {
4673                                         _print_next_block((*par_num)++,
4674                                                           "DOORBELLQ");
4675                                         _print_parity(bp,
4676                                                       DORQ_REG_DORQ_PRTY_STS);
4677                                 }
4678                                 break;
4679                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4680                                 if (print) {
4681                                         _print_next_block((*par_num)++, "NIG");
4682                                         if (CHIP_IS_E1x(bp)) {
4683                                                 _print_parity(bp,
4684                                                         NIG_REG_NIG_PRTY_STS);
4685                                         } else {
4686                                                 _print_parity(bp,
4687                                                         NIG_REG_NIG_PRTY_STS_0);
4688                                                 _print_parity(bp,
4689                                                         NIG_REG_NIG_PRTY_STS_1);
4690                                         }
4691                                 }
4692                                 break;
4693                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4694                                 if (print)
4695                                         _print_next_block((*par_num)++,
4696                                                           "VAUX PCI CORE");
4697                                 *global = true;
4698                                 break;
4699                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4700                                 if (print) {
4701                                         _print_next_block((*par_num)++,
4702                                                           "DEBUG");
4703                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4704                                 }
4705                                 break;
4706                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4707                                 if (print) {
4708                                         _print_next_block((*par_num)++, "USDM");
4709                                         _print_parity(bp,
4710                                                       USDM_REG_USDM_PRTY_STS);
4711                                 }
4712                                 break;
4713                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4714                                 if (print) {
4715                                         _print_next_block((*par_num)++, "UCM");
4716                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4717                                 }
4718                                 break;
4719                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4720                                 if (print) {
4721                                         _print_next_block((*par_num)++,
4722                                                           "USEMI");
4723                                         _print_parity(bp,
4724                                                       USEM_REG_USEM_PRTY_STS_0);
4725                                         _print_parity(bp,
4726                                                       USEM_REG_USEM_PRTY_STS_1);
4727                                 }
4728                                 break;
4729                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4730                                 if (print) {
4731                                         _print_next_block((*par_num)++, "UPB");
4732                                         _print_parity(bp, GRCBASE_UPB +
4733                                                           PB_REG_PB_PRTY_STS);
4734                                 }
4735                                 break;
4736                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4737                                 if (print) {
4738                                         _print_next_block((*par_num)++, "CSDM");
4739                                         _print_parity(bp,
4740                                                       CSDM_REG_CSDM_PRTY_STS);
4741                                 }
4742                                 break;
4743                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4744                                 if (print) {
4745                                         _print_next_block((*par_num)++, "CCM");
4746                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4747                                 }
4748                                 break;
4749                         }
4750
4751                         /* Clear the bit */
4752                         sig &= ~cur_bit;
4753                 }
4754         }
4755
4756         return res;
4757 }
4758
4759 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4760                                             int *par_num, bool print)
4761 {
4762         u32 cur_bit;
4763         bool res;
4764         int i;
4765
4766         res = false;
4767
4768         for (i = 0; sig; i++) {
4769                 cur_bit = (0x1UL << i);
4770                 if (sig & cur_bit) {
4771                         res = true; /* Each bit is real error! */
4772                         if (print) {
4773                                 switch (cur_bit) {
4774                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4775                                         _print_next_block((*par_num)++,
4776                                                           "CSEMI");
4777                                         _print_parity(bp,
4778                                                       CSEM_REG_CSEM_PRTY_STS_0);
4779                                         _print_parity(bp,
4780                                                       CSEM_REG_CSEM_PRTY_STS_1);
4781                                         break;
4782                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4783                                         _print_next_block((*par_num)++, "PXP");
4784                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4785                                         _print_parity(bp,
4786                                                       PXP2_REG_PXP2_PRTY_STS_0);
4787                                         _print_parity(bp,
4788                                                       PXP2_REG_PXP2_PRTY_STS_1);
4789                                         break;
4790                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4791                                         _print_next_block((*par_num)++,
4792                                                           "PXPPCICLOCKCLIENT");
4793                                         break;
4794                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4795                                         _print_next_block((*par_num)++, "CFC");
4796                                         _print_parity(bp,
4797                                                       CFC_REG_CFC_PRTY_STS);
4798                                         break;
4799                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4800                                         _print_next_block((*par_num)++, "CDU");
4801                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4802                                         break;
4803                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4804                                         _print_next_block((*par_num)++, "DMAE");
4805                                         _print_parity(bp,
4806                                                       DMAE_REG_DMAE_PRTY_STS);
4807                                         break;
4808                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4809                                         _print_next_block((*par_num)++, "IGU");
4810                                         if (CHIP_IS_E1x(bp))
4811                                                 _print_parity(bp,
4812                                                         HC_REG_HC_PRTY_STS);
4813                                         else
4814                                                 _print_parity(bp,
4815                                                         IGU_REG_IGU_PRTY_STS);
4816                                         break;
4817                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4818                                         _print_next_block((*par_num)++, "MISC");
4819                                         _print_parity(bp,
4820                                                       MISC_REG_MISC_PRTY_STS);
4821                                         break;
4822                                 }
4823                         }
4824
4825                         /* Clear the bit */
4826                         sig &= ~cur_bit;
4827                 }
4828         }
4829
4830         return res;
4831 }
4832
4833 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4834                                             int *par_num, bool *global,
4835                                             bool print)
4836 {
4837         bool res = false;
4838         u32 cur_bit;
4839         int i;
4840
4841         for (i = 0; sig; i++) {
4842                 cur_bit = (0x1UL << i);
4843                 if (sig & cur_bit) {
4844                         switch (cur_bit) {
4845                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4846                                 if (print)
4847                                         _print_next_block((*par_num)++,
4848                                                           "MCP ROM");
4849                                 *global = true;
4850                                 res = true;
4851                                 break;
4852                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4853                                 if (print)
4854                                         _print_next_block((*par_num)++,
4855                                                           "MCP UMP RX");
4856                                 *global = true;
4857                                 res = true;
4858                                 break;
4859                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4860                                 if (print)
4861                                         _print_next_block((*par_num)++,
4862                                                           "MCP UMP TX");
4863                                 *global = true;
4864                                 res = true;
4865                                 break;
4866                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4867                                 if (print)
4868                                         _print_next_block((*par_num)++,
4869                                                           "MCP SCPAD");
4870                                 /* clear latched SCPAD PATIRY from MCP */
4871                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4872                                        1UL << 10);
4873                                 break;
4874                         }
4875
4876                         /* Clear the bit */
4877                         sig &= ~cur_bit;
4878                 }
4879         }
4880
4881         return res;
4882 }
4883
4884 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4885                                             int *par_num, bool print)
4886 {
4887         u32 cur_bit;
4888         bool res;
4889         int i;
4890
4891         res = false;
4892
4893         for (i = 0; sig; i++) {
4894                 cur_bit = (0x1UL << i);
4895                 if (sig & cur_bit) {
4896                         res = true; /* Each bit is real error! */
4897                         if (print) {
4898                                 switch (cur_bit) {
4899                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4900                                         _print_next_block((*par_num)++,
4901                                                           "PGLUE_B");
4902                                         _print_parity(bp,
4903                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4904                                         break;
4905                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4906                                         _print_next_block((*par_num)++, "ATC");
4907                                         _print_parity(bp,
4908                                                       ATC_REG_ATC_PRTY_STS);
4909                                         break;
4910                                 }
4911                         }
4912                         /* Clear the bit */
4913                         sig &= ~cur_bit;
4914                 }
4915         }
4916
4917         return res;
4918 }
4919
4920 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4921                               u32 *sig)
4922 {
4923         bool res = false;
4924
4925         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4926             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4927             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4928             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4929             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4930                 int par_num = 0;
4931                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4932                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4933                           sig[0] & HW_PRTY_ASSERT_SET_0,
4934                           sig[1] & HW_PRTY_ASSERT_SET_1,
4935                           sig[2] & HW_PRTY_ASSERT_SET_2,
4936                           sig[3] & HW_PRTY_ASSERT_SET_3,
4937                           sig[4] & HW_PRTY_ASSERT_SET_4);
4938                 if (print)
4939                         netdev_err(bp->dev,
4940                                    "Parity errors detected in blocks: ");
4941                 res |= bnx2x_check_blocks_with_parity0(bp,
4942                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4943                 res |= bnx2x_check_blocks_with_parity1(bp,
4944                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4945                 res |= bnx2x_check_blocks_with_parity2(bp,
4946                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4947                 res |= bnx2x_check_blocks_with_parity3(bp,
4948                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4949                 res |= bnx2x_check_blocks_with_parity4(bp,
4950                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4951
4952                 if (print)
4953                         pr_cont("\n");
4954         }
4955
4956         return res;
4957 }
4958
4959 /**
4960  * bnx2x_chk_parity_attn - checks for parity attentions.
4961  *
4962  * @bp:         driver handle
4963  * @global:     true if there was a global attention
4964  * @print:      show parity attention in syslog
4965  */
4966 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4967 {
4968         struct attn_route attn = { {0} };
4969         int port = BP_PORT(bp);
4970
4971         attn.sig[0] = REG_RD(bp,
4972                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4973                              port*4);
4974         attn.sig[1] = REG_RD(bp,
4975                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4976                              port*4);
4977         attn.sig[2] = REG_RD(bp,
4978                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4979                              port*4);
4980         attn.sig[3] = REG_RD(bp,
4981                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4982                              port*4);
4983         /* Since MCP attentions can't be disabled inside the block, we need to
4984          * read AEU registers to see whether they're currently disabled
4985          */
4986         attn.sig[3] &= ((REG_RD(bp,
4987                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4988                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4989                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4990                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4991
4992         if (!CHIP_IS_E1x(bp))
4993                 attn.sig[4] = REG_RD(bp,
4994                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4995                                      port*4);
4996
4997         return bnx2x_parity_attn(bp, global, print, attn.sig);
4998 }
4999
5000 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5001 {
5002         u32 val;
5003         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5004
5005                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5006                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5007                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5008                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5009                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5010                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5011                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5012                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5013                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5014                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5015                 if (val &
5016                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5017                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5018                 if (val &
5019                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5020                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5021                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5022                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5023                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5024                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5025                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5026                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5027         }
5028         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5029                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5030                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5031                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5032                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5033                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5034                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5035                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5036                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5037                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5038                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5039                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5040                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5041                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5042                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5043         }
5044
5045         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5046                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5047                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5048                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5049                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5050         }
5051 }
5052
5053 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5054 {
5055         struct attn_route attn, *group_mask;
5056         int port = BP_PORT(bp);
5057         int index;
5058         u32 reg_addr;
5059         u32 val;
5060         u32 aeu_mask;
5061         bool global = false;
5062
5063         /* need to take HW lock because MCP or other port might also
5064            try to handle this event */
5065         bnx2x_acquire_alr(bp);
5066
5067         if (bnx2x_chk_parity_attn(bp, &global, true)) {
5068 #ifndef BNX2X_STOP_ON_ERROR
5069                 bp->recovery_state = BNX2X_RECOVERY_INIT;
5070                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5071                 /* Disable HW interrupts */
5072                 bnx2x_int_disable(bp);
5073                 /* In case of parity errors don't handle attentions so that
5074                  * other function would "see" parity errors.
5075                  */
5076 #else
5077                 bnx2x_panic();
5078 #endif
5079                 bnx2x_release_alr(bp);
5080                 return;
5081         }
5082
5083         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5084         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5085         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5086         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5087         if (!CHIP_IS_E1x(bp))
5088                 attn.sig[4] =
5089                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5090         else
5091                 attn.sig[4] = 0;
5092
5093         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5094            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5095
5096         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5097                 if (deasserted & (1 << index)) {
5098                         group_mask = &bp->attn_group[index];
5099
5100                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5101                            index,
5102                            group_mask->sig[0], group_mask->sig[1],
5103                            group_mask->sig[2], group_mask->sig[3],
5104                            group_mask->sig[4]);
5105
5106                         bnx2x_attn_int_deasserted4(bp,
5107                                         attn.sig[4] & group_mask->sig[4]);
5108                         bnx2x_attn_int_deasserted3(bp,
5109                                         attn.sig[3] & group_mask->sig[3]);
5110                         bnx2x_attn_int_deasserted1(bp,
5111                                         attn.sig[1] & group_mask->sig[1]);
5112                         bnx2x_attn_int_deasserted2(bp,
5113                                         attn.sig[2] & group_mask->sig[2]);
5114                         bnx2x_attn_int_deasserted0(bp,
5115                                         attn.sig[0] & group_mask->sig[0]);
5116                 }
5117         }
5118
5119         bnx2x_release_alr(bp);
5120
5121         if (bp->common.int_block == INT_BLOCK_HC)
5122                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5123                             COMMAND_REG_ATTN_BITS_CLR);
5124         else
5125                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5126
5127         val = ~deasserted;
5128         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5129            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5130         REG_WR(bp, reg_addr, val);
5131
5132         if (~bp->attn_state & deasserted)
5133                 BNX2X_ERR("IGU ERROR\n");
5134
5135         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5136                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5137
5138         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5139         aeu_mask = REG_RD(bp, reg_addr);
5140
5141         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5142            aeu_mask, deasserted);
5143         aeu_mask |= (deasserted & 0x3ff);
5144         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5145
5146         REG_WR(bp, reg_addr, aeu_mask);
5147         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5148
5149         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5150         bp->attn_state &= ~deasserted;
5151         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5152 }
5153
5154 static void bnx2x_attn_int(struct bnx2x *bp)
5155 {
5156         /* read local copy of bits */
5157         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5158                                                                 attn_bits);
5159         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5160                                                                 attn_bits_ack);
5161         u32 attn_state = bp->attn_state;
5162
5163         /* look for changed bits */
5164         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5165         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5166
5167         DP(NETIF_MSG_HW,
5168            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5169            attn_bits, attn_ack, asserted, deasserted);
5170
5171         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5172                 BNX2X_ERR("BAD attention state\n");
5173
5174         /* handle bits that were raised */
5175         if (asserted)
5176                 bnx2x_attn_int_asserted(bp, asserted);
5177
5178         if (deasserted)
5179                 bnx2x_attn_int_deasserted(bp, deasserted);
5180 }
5181
5182 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5183                       u16 index, u8 op, u8 update)
5184 {
5185         u32 igu_addr = bp->igu_base_addr;
5186         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5187         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5188                              igu_addr);
5189 }
5190
5191 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5192 {
5193         /* No memory barriers */
5194         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5195         mmiowb(); /* keep prod updates ordered */
5196 }
5197
5198 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5199                                       union event_ring_elem *elem)
5200 {
5201         u8 err = elem->message.error;
5202
5203         if (!bp->cnic_eth_dev.starting_cid  ||
5204             (cid < bp->cnic_eth_dev.starting_cid &&
5205             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5206                 return 1;
5207
5208         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5209
5210         if (unlikely(err)) {
5211
5212                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5213                           cid);
5214                 bnx2x_panic_dump(bp, false);
5215         }
5216         bnx2x_cnic_cfc_comp(bp, cid, err);
5217         return 0;
5218 }
5219
5220 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5221 {
5222         struct bnx2x_mcast_ramrod_params rparam;
5223         int rc;
5224
5225         memset(&rparam, 0, sizeof(rparam));
5226
5227         rparam.mcast_obj = &bp->mcast_obj;
5228
5229         netif_addr_lock_bh(bp->dev);
5230
5231         /* Clear pending state for the last command */
5232         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5233
5234         /* If there are pending mcast commands - send them */
5235         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5236                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5237                 if (rc < 0)
5238                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5239                                   rc);
5240         }
5241
5242         netif_addr_unlock_bh(bp->dev);
5243 }
5244
5245 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5246                                             union event_ring_elem *elem)
5247 {
5248         unsigned long ramrod_flags = 0;
5249         int rc = 0;
5250         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5251         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5252
5253         /* Always push next commands out, don't wait here */
5254         __set_bit(RAMROD_CONT, &ramrod_flags);
5255
5256         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5257                             >> BNX2X_SWCID_SHIFT) {
5258         case BNX2X_FILTER_MAC_PENDING:
5259                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5260                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5261                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5262                 else
5263                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5264
5265                 break;
5266         case BNX2X_FILTER_MCAST_PENDING:
5267                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5268                 /* This is only relevant for 57710 where multicast MACs are
5269                  * configured as unicast MACs using the same ramrod.
5270                  */
5271                 bnx2x_handle_mcast_eqe(bp);
5272                 return;
5273         default:
5274                 BNX2X_ERR("Unsupported classification command: %d\n",
5275                           elem->message.data.eth_event.echo);
5276                 return;
5277         }
5278
5279         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5280
5281         if (rc < 0)
5282                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5283         else if (rc > 0)
5284                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5285 }
5286
5287 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5288
5289 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5290 {
5291         netif_addr_lock_bh(bp->dev);
5292
5293         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5294
5295         /* Send rx_mode command again if was requested */
5296         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5297                 bnx2x_set_storm_rx_mode(bp);
5298         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5299                                     &bp->sp_state))
5300                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5301         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5302                                     &bp->sp_state))
5303                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5304
5305         netif_addr_unlock_bh(bp->dev);
5306 }
5307
5308 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5309                                               union event_ring_elem *elem)
5310 {
5311         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5312                 DP(BNX2X_MSG_SP,
5313                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5314                    elem->message.data.vif_list_event.func_bit_map);
5315                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5316                         elem->message.data.vif_list_event.func_bit_map);
5317         } else if (elem->message.data.vif_list_event.echo ==
5318                    VIF_LIST_RULE_SET) {
5319                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5320                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5321         }
5322 }
5323
5324 /* called with rtnl_lock */
5325 static void bnx2x_after_function_update(struct bnx2x *bp)
5326 {
5327         int q, rc;
5328         struct bnx2x_fastpath *fp;
5329         struct bnx2x_queue_state_params queue_params = {NULL};
5330         struct bnx2x_queue_update_params *q_update_params =
5331                 &queue_params.params.update;
5332
5333         /* Send Q update command with afex vlan removal values for all Qs */
5334         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5335
5336         /* set silent vlan removal values according to vlan mode */
5337         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5338                   &q_update_params->update_flags);
5339         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5340                   &q_update_params->update_flags);
5341         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5342
5343         /* in access mode mark mask and value are 0 to strip all vlans */
5344         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5345                 q_update_params->silent_removal_value = 0;
5346                 q_update_params->silent_removal_mask = 0;
5347         } else {
5348                 q_update_params->silent_removal_value =
5349                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5350                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5351         }
5352
5353         for_each_eth_queue(bp, q) {
5354                 /* Set the appropriate Queue object */
5355                 fp = &bp->fp[q];
5356                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5357
5358                 /* send the ramrod */
5359                 rc = bnx2x_queue_state_change(bp, &queue_params);
5360                 if (rc < 0)
5361                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5362                                   q);
5363         }
5364
5365         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5366                 fp = &bp->fp[FCOE_IDX(bp)];
5367                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5368
5369                 /* clear pending completion bit */
5370                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5371
5372                 /* mark latest Q bit */
5373                 smp_mb__before_atomic();
5374                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5375                 smp_mb__after_atomic();
5376
5377                 /* send Q update ramrod for FCoE Q */
5378                 rc = bnx2x_queue_state_change(bp, &queue_params);
5379                 if (rc < 0)
5380                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5381                                   q);
5382         } else {
5383                 /* If no FCoE ring - ACK MCP now */
5384                 bnx2x_link_report(bp);
5385                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5386         }
5387 }
5388
5389 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5390         struct bnx2x *bp, u32 cid)
5391 {
5392         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5393
5394         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5395                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5396         else
5397                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5398 }
5399
5400 static void bnx2x_eq_int(struct bnx2x *bp)
5401 {
5402         u16 hw_cons, sw_cons, sw_prod;
5403         union event_ring_elem *elem;
5404         u8 echo;
5405         u32 cid;
5406         u8 opcode;
5407         int rc, spqe_cnt = 0;
5408         struct bnx2x_queue_sp_obj *q_obj;
5409         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5410         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5411
5412         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5413
5414         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5415          * when we get the next-page we need to adjust so the loop
5416          * condition below will be met. The next element is the size of a
5417          * regular element and hence incrementing by 1
5418          */
5419         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5420                 hw_cons++;
5421
5422         /* This function may never run in parallel with itself for a
5423          * specific bp, thus there is no need in "paired" read memory
5424          * barrier here.
5425          */
5426         sw_cons = bp->eq_cons;
5427         sw_prod = bp->eq_prod;
5428
5429         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5430                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5431
5432         for (; sw_cons != hw_cons;
5433               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5434
5435                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5436
5437                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5438                 if (!rc) {
5439                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5440                            rc);
5441                         goto next_spqe;
5442                 }
5443
5444                 /* elem CID originates from FW; actually LE */
5445                 cid = SW_CID((__force __le32)
5446                              elem->message.data.cfc_del_event.cid);
5447                 opcode = elem->message.opcode;
5448
5449                 /* handle eq element */
5450                 switch (opcode) {
5451                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5452                         bnx2x_vf_mbx_schedule(bp,
5453                                               &elem->message.data.vf_pf_event);
5454                         continue;
5455
5456                 case EVENT_RING_OPCODE_STAT_QUERY:
5457                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5458                                "got statistics comp event %d\n",
5459                                bp->stats_comp++);
5460                         /* nothing to do with stats comp */
5461                         goto next_spqe;
5462
5463                 case EVENT_RING_OPCODE_CFC_DEL:
5464                         /* handle according to cid range */
5465                         /*
5466                          * we may want to verify here that the bp state is
5467                          * HALTING
5468                          */
5469                         DP(BNX2X_MSG_SP,
5470                            "got delete ramrod for MULTI[%d]\n", cid);
5471
5472                         if (CNIC_LOADED(bp) &&
5473                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5474                                 goto next_spqe;
5475
5476                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5477
5478                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5479                                 break;
5480
5481                         goto next_spqe;
5482
5483                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5484                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5485                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5486                         if (f_obj->complete_cmd(bp, f_obj,
5487                                                 BNX2X_F_CMD_TX_STOP))
5488                                 break;
5489                         goto next_spqe;
5490
5491                 case EVENT_RING_OPCODE_START_TRAFFIC:
5492                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5493                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5494                         if (f_obj->complete_cmd(bp, f_obj,
5495                                                 BNX2X_F_CMD_TX_START))
5496                                 break;
5497                         goto next_spqe;
5498
5499                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5500                         echo = elem->message.data.function_update_event.echo;
5501                         if (echo == SWITCH_UPDATE) {
5502                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5503                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5504                                 if (f_obj->complete_cmd(
5505                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5506                                         break;
5507
5508                         } else {
5509                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5510
5511                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5512                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5513                                 f_obj->complete_cmd(bp, f_obj,
5514                                                     BNX2X_F_CMD_AFEX_UPDATE);
5515
5516                                 /* We will perform the Queues update from
5517                                  * sp_rtnl task as all Queue SP operations
5518                                  * should run under rtnl_lock.
5519                                  */
5520                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5521                         }
5522
5523                         goto next_spqe;
5524
5525                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5526                         f_obj->complete_cmd(bp, f_obj,
5527                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5528                         bnx2x_after_afex_vif_lists(bp, elem);
5529                         goto next_spqe;
5530                 case EVENT_RING_OPCODE_FUNCTION_START:
5531                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5532                            "got FUNC_START ramrod\n");
5533                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5534                                 break;
5535
5536                         goto next_spqe;
5537
5538                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5539                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5540                            "got FUNC_STOP ramrod\n");
5541                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5542                                 break;
5543
5544                         goto next_spqe;
5545
5546                 case EVENT_RING_OPCODE_SET_TIMESYNC:
5547                         DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5548                            "got set_timesync ramrod completion\n");
5549                         if (f_obj->complete_cmd(bp, f_obj,
5550                                                 BNX2X_F_CMD_SET_TIMESYNC))
5551                                 break;
5552                         goto next_spqe;
5553                 }
5554
5555                 switch (opcode | bp->state) {
5556                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5557                       BNX2X_STATE_OPEN):
5558                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5559                       BNX2X_STATE_OPENING_WAIT4_PORT):
5560                         cid = elem->message.data.eth_event.echo &
5561                                 BNX2X_SWCID_MASK;
5562                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5563                            cid);
5564                         rss_raw->clear_pending(rss_raw);
5565                         break;
5566
5567                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5568                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5569                 case (EVENT_RING_OPCODE_SET_MAC |
5570                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5571                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5572                       BNX2X_STATE_OPEN):
5573                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5574                       BNX2X_STATE_DIAG):
5575                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5576                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5577                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5578                         bnx2x_handle_classification_eqe(bp, elem);
5579                         break;
5580
5581                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5582                       BNX2X_STATE_OPEN):
5583                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5584                       BNX2X_STATE_DIAG):
5585                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5586                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5587                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5588                         bnx2x_handle_mcast_eqe(bp);
5589                         break;
5590
5591                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5592                       BNX2X_STATE_OPEN):
5593                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5594                       BNX2X_STATE_DIAG):
5595                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5596                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5597                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5598                         bnx2x_handle_rx_mode_eqe(bp);
5599                         break;
5600                 default:
5601                         /* unknown event log error and continue */
5602                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5603                                   elem->message.opcode, bp->state);
5604                 }
5605 next_spqe:
5606                 spqe_cnt++;
5607         } /* for */
5608
5609         smp_mb__before_atomic();
5610         atomic_add(spqe_cnt, &bp->eq_spq_left);
5611
5612         bp->eq_cons = sw_cons;
5613         bp->eq_prod = sw_prod;
5614         /* Make sure that above mem writes were issued towards the memory */
5615         smp_wmb();
5616
5617         /* update producer */
5618         bnx2x_update_eq_prod(bp, bp->eq_prod);
5619 }
5620
5621 static void bnx2x_sp_task(struct work_struct *work)
5622 {
5623         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5624
5625         DP(BNX2X_MSG_SP, "sp task invoked\n");
5626
5627         /* make sure the atomic interrupt_occurred has been written */
5628         smp_rmb();
5629         if (atomic_read(&bp->interrupt_occurred)) {
5630
5631                 /* what work needs to be performed? */
5632                 u16 status = bnx2x_update_dsb_idx(bp);
5633
5634                 DP(BNX2X_MSG_SP, "status %x\n", status);
5635                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5636                 atomic_set(&bp->interrupt_occurred, 0);
5637
5638                 /* HW attentions */
5639                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5640                         bnx2x_attn_int(bp);
5641                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5642                 }
5643
5644                 /* SP events: STAT_QUERY and others */
5645                 if (status & BNX2X_DEF_SB_IDX) {
5646                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5647
5648                 if (FCOE_INIT(bp) &&
5649                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5650                                 /* Prevent local bottom-halves from running as
5651                                  * we are going to change the local NAPI list.
5652                                  */
5653                                 local_bh_disable();
5654                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5655                                 local_bh_enable();
5656                         }
5657
5658                         /* Handle EQ completions */
5659                         bnx2x_eq_int(bp);
5660                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5661                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5662
5663                         status &= ~BNX2X_DEF_SB_IDX;
5664                 }
5665
5666                 /* if status is non zero then perhaps something went wrong */
5667                 if (unlikely(status))
5668                         DP(BNX2X_MSG_SP,
5669                            "got an unknown interrupt! (status 0x%x)\n", status);
5670
5671                 /* ack status block only if something was actually handled */
5672                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5673                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5674         }
5675
5676         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5677         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5678                                &bp->sp_state)) {
5679                 bnx2x_link_report(bp);
5680                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5681         }
5682 }
5683
5684 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5685 {
5686         struct net_device *dev = dev_instance;
5687         struct bnx2x *bp = netdev_priv(dev);
5688
5689         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5690                      IGU_INT_DISABLE, 0);
5691
5692 #ifdef BNX2X_STOP_ON_ERROR
5693         if (unlikely(bp->panic))
5694                 return IRQ_HANDLED;
5695 #endif
5696
5697         if (CNIC_LOADED(bp)) {
5698                 struct cnic_ops *c_ops;
5699
5700                 rcu_read_lock();
5701                 c_ops = rcu_dereference(bp->cnic_ops);
5702                 if (c_ops)
5703                         c_ops->cnic_handler(bp->cnic_data, NULL);
5704                 rcu_read_unlock();
5705         }
5706
5707         /* schedule sp task to perform default status block work, ack
5708          * attentions and enable interrupts.
5709          */
5710         bnx2x_schedule_sp_task(bp);
5711
5712         return IRQ_HANDLED;
5713 }
5714
5715 /* end of slow path */
5716
5717 void bnx2x_drv_pulse(struct bnx2x *bp)
5718 {
5719         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5720                  bp->fw_drv_pulse_wr_seq);
5721 }
5722
5723 static void bnx2x_timer(unsigned long data)
5724 {
5725         struct bnx2x *bp = (struct bnx2x *) data;
5726
5727         if (!netif_running(bp->dev))
5728                 return;
5729
5730         if (IS_PF(bp) &&
5731             !BP_NOMCP(bp)) {
5732                 int mb_idx = BP_FW_MB_IDX(bp);
5733                 u16 drv_pulse;
5734                 u16 mcp_pulse;
5735
5736                 ++bp->fw_drv_pulse_wr_seq;
5737                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5738                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5739                 bnx2x_drv_pulse(bp);
5740
5741                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5742                              MCP_PULSE_SEQ_MASK);
5743                 /* The delta between driver pulse and mcp response
5744                  * should not get too big. If the MFW is more than 5 pulses
5745                  * behind, we should worry about it enough to generate an error
5746                  * log.
5747                  */
5748                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5749                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5750                                   drv_pulse, mcp_pulse);
5751         }
5752
5753         if (bp->state == BNX2X_STATE_OPEN)
5754                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5755
5756         /* sample pf vf bulletin board for new posts from pf */
5757         if (IS_VF(bp))
5758                 bnx2x_timer_sriov(bp);
5759
5760         mod_timer(&bp->timer, jiffies + bp->current_interval);
5761 }
5762
5763 /* end of Statistics */
5764
5765 /* nic init */
5766
5767 /*
5768  * nic init service functions
5769  */
5770
5771 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5772 {
5773         u32 i;
5774         if (!(len%4) && !(addr%4))
5775                 for (i = 0; i < len; i += 4)
5776                         REG_WR(bp, addr + i, fill);
5777         else
5778                 for (i = 0; i < len; i++)
5779                         REG_WR8(bp, addr + i, fill);
5780 }
5781
5782 /* helper: writes FP SP data to FW - data_size in dwords */
5783 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5784                                 int fw_sb_id,
5785                                 u32 *sb_data_p,
5786                                 u32 data_size)
5787 {
5788         int index;
5789         for (index = 0; index < data_size; index++)
5790                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5791                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5792                         sizeof(u32)*index,
5793                         *(sb_data_p + index));
5794 }
5795
5796 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5797 {
5798         u32 *sb_data_p;
5799         u32 data_size = 0;
5800         struct hc_status_block_data_e2 sb_data_e2;
5801         struct hc_status_block_data_e1x sb_data_e1x;
5802
5803         /* disable the function first */
5804         if (!CHIP_IS_E1x(bp)) {
5805                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5806                 sb_data_e2.common.state = SB_DISABLED;
5807                 sb_data_e2.common.p_func.vf_valid = false;
5808                 sb_data_p = (u32 *)&sb_data_e2;
5809                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5810         } else {
5811                 memset(&sb_data_e1x, 0,
5812                        sizeof(struct hc_status_block_data_e1x));
5813                 sb_data_e1x.common.state = SB_DISABLED;
5814                 sb_data_e1x.common.p_func.vf_valid = false;
5815                 sb_data_p = (u32 *)&sb_data_e1x;
5816                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5817         }
5818         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5819
5820         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5821                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5822                         CSTORM_STATUS_BLOCK_SIZE);
5823         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5824                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5825                         CSTORM_SYNC_BLOCK_SIZE);
5826 }
5827
5828 /* helper:  writes SP SB data to FW */
5829 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5830                 struct hc_sp_status_block_data *sp_sb_data)
5831 {
5832         int func = BP_FUNC(bp);
5833         int i;
5834         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5835                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5836                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5837                         i*sizeof(u32),
5838                         *((u32 *)sp_sb_data + i));
5839 }
5840
5841 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5842 {
5843         int func = BP_FUNC(bp);
5844         struct hc_sp_status_block_data sp_sb_data;
5845         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5846
5847         sp_sb_data.state = SB_DISABLED;
5848         sp_sb_data.p_func.vf_valid = false;
5849
5850         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5851
5852         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5853                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5854                         CSTORM_SP_STATUS_BLOCK_SIZE);
5855         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5856                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5857                         CSTORM_SP_SYNC_BLOCK_SIZE);
5858 }
5859
5860 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5861                                            int igu_sb_id, int igu_seg_id)
5862 {
5863         hc_sm->igu_sb_id = igu_sb_id;
5864         hc_sm->igu_seg_id = igu_seg_id;
5865         hc_sm->timer_value = 0xFF;
5866         hc_sm->time_to_expire = 0xFFFFFFFF;
5867 }
5868
5869 /* allocates state machine ids. */
5870 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5871 {
5872         /* zero out state machine indices */
5873         /* rx indices */
5874         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5875
5876         /* tx indices */
5877         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5878         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5879         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5880         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5881
5882         /* map indices */
5883         /* rx indices */
5884         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5885                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5886
5887         /* tx indices */
5888         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5889                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5890         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5891                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5892         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5893                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5894         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5895                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5896 }
5897
5898 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5899                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5900 {
5901         int igu_seg_id;
5902
5903         struct hc_status_block_data_e2 sb_data_e2;
5904         struct hc_status_block_data_e1x sb_data_e1x;
5905         struct hc_status_block_sm  *hc_sm_p;
5906         int data_size;
5907         u32 *sb_data_p;
5908
5909         if (CHIP_INT_MODE_IS_BC(bp))
5910                 igu_seg_id = HC_SEG_ACCESS_NORM;
5911         else
5912                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5913
5914         bnx2x_zero_fp_sb(bp, fw_sb_id);
5915
5916         if (!CHIP_IS_E1x(bp)) {
5917                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5918                 sb_data_e2.common.state = SB_ENABLED;
5919                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5920                 sb_data_e2.common.p_func.vf_id = vfid;
5921                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5922                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5923                 sb_data_e2.common.same_igu_sb_1b = true;
5924                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5925                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5926                 hc_sm_p = sb_data_e2.common.state_machine;
5927                 sb_data_p = (u32 *)&sb_data_e2;
5928                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5929                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5930         } else {
5931                 memset(&sb_data_e1x, 0,
5932                        sizeof(struct hc_status_block_data_e1x));
5933                 sb_data_e1x.common.state = SB_ENABLED;
5934                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5935                 sb_data_e1x.common.p_func.vf_id = 0xff;
5936                 sb_data_e1x.common.p_func.vf_valid = false;
5937                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5938                 sb_data_e1x.common.same_igu_sb_1b = true;
5939                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5940                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5941                 hc_sm_p = sb_data_e1x.common.state_machine;
5942                 sb_data_p = (u32 *)&sb_data_e1x;
5943                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5944                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5945         }
5946
5947         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5948                                        igu_sb_id, igu_seg_id);
5949         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5950                                        igu_sb_id, igu_seg_id);
5951
5952         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5953
5954         /* write indices to HW - PCI guarantees endianity of regpairs */
5955         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5956 }
5957
5958 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5959                                      u16 tx_usec, u16 rx_usec)
5960 {
5961         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5962                                     false, rx_usec);
5963         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5964                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5965                                        tx_usec);
5966         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5967                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5968                                        tx_usec);
5969         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5970                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5971                                        tx_usec);
5972 }
5973
5974 static void bnx2x_init_def_sb(struct bnx2x *bp)
5975 {
5976         struct host_sp_status_block *def_sb = bp->def_status_blk;
5977         dma_addr_t mapping = bp->def_status_blk_mapping;
5978         int igu_sp_sb_index;
5979         int igu_seg_id;
5980         int port = BP_PORT(bp);
5981         int func = BP_FUNC(bp);
5982         int reg_offset, reg_offset_en5;
5983         u64 section;
5984         int index;
5985         struct hc_sp_status_block_data sp_sb_data;
5986         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5987
5988         if (CHIP_INT_MODE_IS_BC(bp)) {
5989                 igu_sp_sb_index = DEF_SB_IGU_ID;
5990                 igu_seg_id = HC_SEG_ACCESS_DEF;
5991         } else {
5992                 igu_sp_sb_index = bp->igu_dsb_id;
5993                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5994         }
5995
5996         /* ATTN */
5997         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5998                                             atten_status_block);
5999         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6000
6001         bp->attn_state = 0;
6002
6003         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6004                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6005         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6006                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6007         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6008                 int sindex;
6009                 /* take care of sig[0]..sig[4] */
6010                 for (sindex = 0; sindex < 4; sindex++)
6011                         bp->attn_group[index].sig[sindex] =
6012                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6013
6014                 if (!CHIP_IS_E1x(bp))
6015                         /*
6016                          * enable5 is separate from the rest of the registers,
6017                          * and therefore the address skip is 4
6018                          * and not 16 between the different groups
6019                          */
6020                         bp->attn_group[index].sig[4] = REG_RD(bp,
6021                                         reg_offset_en5 + 0x4*index);
6022                 else
6023                         bp->attn_group[index].sig[4] = 0;
6024         }
6025
6026         if (bp->common.int_block == INT_BLOCK_HC) {
6027                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6028                                      HC_REG_ATTN_MSG0_ADDR_L);
6029
6030                 REG_WR(bp, reg_offset, U64_LO(section));
6031                 REG_WR(bp, reg_offset + 4, U64_HI(section));
6032         } else if (!CHIP_IS_E1x(bp)) {
6033                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6034                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6035         }
6036
6037         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6038                                             sp_sb);
6039
6040         bnx2x_zero_sp_sb(bp);
6041
6042         /* PCI guarantees endianity of regpairs */
6043         sp_sb_data.state                = SB_ENABLED;
6044         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6045         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6046         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6047         sp_sb_data.igu_seg_id           = igu_seg_id;
6048         sp_sb_data.p_func.pf_id         = func;
6049         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6050         sp_sb_data.p_func.vf_id         = 0xff;
6051
6052         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6053
6054         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6055 }
6056
6057 void bnx2x_update_coalesce(struct bnx2x *bp)
6058 {
6059         int i;
6060
6061         for_each_eth_queue(bp, i)
6062                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6063                                          bp->tx_ticks, bp->rx_ticks);
6064 }
6065
6066 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6067 {
6068         spin_lock_init(&bp->spq_lock);
6069         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6070
6071         bp->spq_prod_idx = 0;
6072         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6073         bp->spq_prod_bd = bp->spq;
6074         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6075 }
6076
6077 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6078 {
6079         int i;
6080         for (i = 1; i <= NUM_EQ_PAGES; i++) {
6081                 union event_ring_elem *elem =
6082                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6083
6084                 elem->next_page.addr.hi =
6085                         cpu_to_le32(U64_HI(bp->eq_mapping +
6086                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6087                 elem->next_page.addr.lo =
6088                         cpu_to_le32(U64_LO(bp->eq_mapping +
6089                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6090         }
6091         bp->eq_cons = 0;
6092         bp->eq_prod = NUM_EQ_DESC;
6093         bp->eq_cons_sb = BNX2X_EQ_INDEX;
6094         /* we want a warning message before it gets wrought... */
6095         atomic_set(&bp->eq_spq_left,
6096                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6097 }
6098
6099 /* called with netif_addr_lock_bh() */
6100 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6101                                unsigned long rx_mode_flags,
6102                                unsigned long rx_accept_flags,
6103                                unsigned long tx_accept_flags,
6104                                unsigned long ramrod_flags)
6105 {
6106         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6107         int rc;
6108
6109         memset(&ramrod_param, 0, sizeof(ramrod_param));
6110
6111         /* Prepare ramrod parameters */
6112         ramrod_param.cid = 0;
6113         ramrod_param.cl_id = cl_id;
6114         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6115         ramrod_param.func_id = BP_FUNC(bp);
6116
6117         ramrod_param.pstate = &bp->sp_state;
6118         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6119
6120         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6121         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6122
6123         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6124
6125         ramrod_param.ramrod_flags = ramrod_flags;
6126         ramrod_param.rx_mode_flags = rx_mode_flags;
6127
6128         ramrod_param.rx_accept_flags = rx_accept_flags;
6129         ramrod_param.tx_accept_flags = tx_accept_flags;
6130
6131         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6132         if (rc < 0) {
6133                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6134                 return rc;
6135         }
6136
6137         return 0;
6138 }
6139
6140 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6141                                    unsigned long *rx_accept_flags,
6142                                    unsigned long *tx_accept_flags)
6143 {
6144         /* Clear the flags first */
6145         *rx_accept_flags = 0;
6146         *tx_accept_flags = 0;
6147
6148         switch (rx_mode) {
6149         case BNX2X_RX_MODE_NONE:
6150                 /*
6151                  * 'drop all' supersedes any accept flags that may have been
6152                  * passed to the function.
6153                  */
6154                 break;
6155         case BNX2X_RX_MODE_NORMAL:
6156                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6157                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6158                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6159
6160                 /* internal switching mode */
6161                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6162                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6163                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6164
6165                 break;
6166         case BNX2X_RX_MODE_ALLMULTI:
6167                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6168                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6169                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6170
6171                 /* internal switching mode */
6172                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6173                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6174                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6175
6176                 break;
6177         case BNX2X_RX_MODE_PROMISC:
6178                 /* According to definition of SI mode, iface in promisc mode
6179                  * should receive matched and unmatched (in resolution of port)
6180                  * unicast packets.
6181                  */
6182                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6183                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6184                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6185                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6186
6187                 /* internal switching mode */
6188                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6189                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6190
6191                 if (IS_MF_SI(bp))
6192                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6193                 else
6194                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6195
6196                 break;
6197         default:
6198                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6199                 return -EINVAL;
6200         }
6201
6202         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6203         if (rx_mode != BNX2X_RX_MODE_NONE) {
6204                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6205                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6206         }
6207
6208         return 0;
6209 }
6210
6211 /* called with netif_addr_lock_bh() */
6212 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6213 {
6214         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6215         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6216         int rc;
6217
6218         if (!NO_FCOE(bp))
6219                 /* Configure rx_mode of FCoE Queue */
6220                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6221
6222         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6223                                      &tx_accept_flags);
6224         if (rc)
6225                 return rc;
6226
6227         __set_bit(RAMROD_RX, &ramrod_flags);
6228         __set_bit(RAMROD_TX, &ramrod_flags);
6229
6230         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6231                                    rx_accept_flags, tx_accept_flags,
6232                                    ramrod_flags);
6233 }
6234
6235 static void bnx2x_init_internal_common(struct bnx2x *bp)
6236 {
6237         int i;
6238
6239         /* Zero this manually as its initialization is
6240            currently missing in the initTool */
6241         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6242                 REG_WR(bp, BAR_USTRORM_INTMEM +
6243                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6244         if (!CHIP_IS_E1x(bp)) {
6245                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6246                         CHIP_INT_MODE_IS_BC(bp) ?
6247                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6248         }
6249 }
6250
6251 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6252 {
6253         switch (load_code) {
6254         case FW_MSG_CODE_DRV_LOAD_COMMON:
6255         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6256                 bnx2x_init_internal_common(bp);
6257                 /* no break */
6258
6259         case FW_MSG_CODE_DRV_LOAD_PORT:
6260                 /* nothing to do */
6261                 /* no break */
6262
6263         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6264                 /* internal memory per function is
6265                    initialized inside bnx2x_pf_init */
6266                 break;
6267
6268         default:
6269                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6270                 break;
6271         }
6272 }
6273
6274 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6275 {
6276         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6277 }
6278
6279 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6280 {
6281         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6282 }
6283
6284 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6285 {
6286         if (CHIP_IS_E1x(fp->bp))
6287                 return BP_L_ID(fp->bp) + fp->index;
6288         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6289                 return bnx2x_fp_igu_sb_id(fp);
6290 }
6291
6292 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6293 {
6294         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6295         u8 cos;
6296         unsigned long q_type = 0;
6297         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6298         fp->rx_queue = fp_idx;
6299         fp->cid = fp_idx;
6300         fp->cl_id = bnx2x_fp_cl_id(fp);
6301         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6302         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6303         /* qZone id equals to FW (per path) client id */
6304         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6305
6306         /* init shortcut */
6307         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6308
6309         /* Setup SB indices */
6310         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6311
6312         /* Configure Queue State object */
6313         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6314         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6315
6316         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6317
6318         /* init tx data */
6319         for_each_cos_in_tx_queue(fp, cos) {
6320                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6321                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6322                                   FP_COS_TO_TXQ(fp, cos, bp),
6323                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6324                 cids[cos] = fp->txdata_ptr[cos]->cid;
6325         }
6326
6327         /* nothing more for vf to do here */
6328         if (IS_VF(bp))
6329                 return;
6330
6331         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6332                       fp->fw_sb_id, fp->igu_sb_id);
6333         bnx2x_update_fpsb_idx(fp);
6334         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6335                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6336                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6337
6338         /**
6339          * Configure classification DBs: Always enable Tx switching
6340          */
6341         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6342
6343         DP(NETIF_MSG_IFUP,
6344            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6345            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6346            fp->igu_sb_id);
6347 }
6348
6349 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6350 {
6351         int i;
6352
6353         for (i = 1; i <= NUM_TX_RINGS; i++) {
6354                 struct eth_tx_next_bd *tx_next_bd =
6355                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6356
6357                 tx_next_bd->addr_hi =
6358                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6359                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6360                 tx_next_bd->addr_lo =
6361                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6362                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6363         }
6364
6365         *txdata->tx_cons_sb = cpu_to_le16(0);
6366
6367         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6368         txdata->tx_db.data.zero_fill1 = 0;
6369         txdata->tx_db.data.prod = 0;
6370
6371         txdata->tx_pkt_prod = 0;
6372         txdata->tx_pkt_cons = 0;
6373         txdata->tx_bd_prod = 0;
6374         txdata->tx_bd_cons = 0;
6375         txdata->tx_pkt = 0;
6376 }
6377
6378 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6379 {
6380         int i;
6381
6382         for_each_tx_queue_cnic(bp, i)
6383                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6384 }
6385
6386 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6387 {
6388         int i;
6389         u8 cos;
6390
6391         for_each_eth_queue(bp, i)
6392                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6393                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6394 }
6395
6396 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6397 {
6398         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6399         unsigned long q_type = 0;
6400
6401         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6402         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6403                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6404         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6405         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6406         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6407         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6408         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6409                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6410                           fp);
6411
6412         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6413
6414         /* qZone id equals to FW (per path) client id */
6415         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6416         /* init shortcut */
6417         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6418                 bnx2x_rx_ustorm_prods_offset(fp);
6419
6420         /* Configure Queue State object */
6421         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6422         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6423
6424         /* No multi-CoS for FCoE L2 client */
6425         BUG_ON(fp->max_cos != 1);
6426
6427         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6428                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6429                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6430
6431         DP(NETIF_MSG_IFUP,
6432            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6433            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6434            fp->igu_sb_id);
6435 }
6436
6437 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6438 {
6439         if (!NO_FCOE(bp))
6440                 bnx2x_init_fcoe_fp(bp);
6441
6442         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6443                       BNX2X_VF_ID_INVALID, false,
6444                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6445
6446         /* ensure status block indices were read */
6447         rmb();
6448         bnx2x_init_rx_rings_cnic(bp);
6449         bnx2x_init_tx_rings_cnic(bp);
6450
6451         /* flush all */
6452         mb();
6453         mmiowb();
6454 }
6455
6456 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6457 {
6458         int i;
6459
6460         /* Setup NIC internals and enable interrupts */
6461         for_each_eth_queue(bp, i)
6462                 bnx2x_init_eth_fp(bp, i);
6463
6464         /* ensure status block indices were read */
6465         rmb();
6466         bnx2x_init_rx_rings(bp);
6467         bnx2x_init_tx_rings(bp);
6468
6469         if (IS_PF(bp)) {
6470                 /* Initialize MOD_ABS interrupts */
6471                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6472                                        bp->common.shmem_base,
6473                                        bp->common.shmem2_base, BP_PORT(bp));
6474
6475                 /* initialize the default status block and sp ring */
6476                 bnx2x_init_def_sb(bp);
6477                 bnx2x_update_dsb_idx(bp);
6478                 bnx2x_init_sp_ring(bp);
6479         } else {
6480                 bnx2x_memset_stats(bp);
6481         }
6482 }
6483
6484 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6485 {
6486         bnx2x_init_eq_ring(bp);
6487         bnx2x_init_internal(bp, load_code);
6488         bnx2x_pf_init(bp);
6489         bnx2x_stats_init(bp);
6490
6491         /* flush all before enabling interrupts */
6492         mb();
6493         mmiowb();
6494
6495         bnx2x_int_enable(bp);
6496
6497         /* Check for SPIO5 */
6498         bnx2x_attn_int_deasserted0(bp,
6499                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6500                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6501 }
6502
6503 /* gzip service functions */
6504 static int bnx2x_gunzip_init(struct bnx2x *bp)
6505 {
6506         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6507                                             &bp->gunzip_mapping, GFP_KERNEL);
6508         if (bp->gunzip_buf  == NULL)
6509                 goto gunzip_nomem1;
6510
6511         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6512         if (bp->strm  == NULL)
6513                 goto gunzip_nomem2;
6514
6515         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6516         if (bp->strm->workspace == NULL)
6517                 goto gunzip_nomem3;
6518
6519         return 0;
6520
6521 gunzip_nomem3:
6522         kfree(bp->strm);
6523         bp->strm = NULL;
6524
6525 gunzip_nomem2:
6526         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6527                           bp->gunzip_mapping);
6528         bp->gunzip_buf = NULL;
6529
6530 gunzip_nomem1:
6531         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6532         return -ENOMEM;
6533 }
6534
6535 static void bnx2x_gunzip_end(struct bnx2x *bp)
6536 {
6537         if (bp->strm) {
6538                 vfree(bp->strm->workspace);
6539                 kfree(bp->strm);
6540                 bp->strm = NULL;
6541         }
6542
6543         if (bp->gunzip_buf) {
6544                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6545                                   bp->gunzip_mapping);
6546                 bp->gunzip_buf = NULL;
6547         }
6548 }
6549
6550 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6551 {
6552         int n, rc;
6553
6554         /* check gzip header */
6555         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6556                 BNX2X_ERR("Bad gzip header\n");
6557                 return -EINVAL;
6558         }
6559
6560         n = 10;
6561
6562 #define FNAME                           0x8
6563
6564         if (zbuf[3] & FNAME)
6565                 while ((zbuf[n++] != 0) && (n < len));
6566
6567         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6568         bp->strm->avail_in = len - n;
6569         bp->strm->next_out = bp->gunzip_buf;
6570         bp->strm->avail_out = FW_BUF_SIZE;
6571
6572         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6573         if (rc != Z_OK)
6574                 return rc;
6575
6576         rc = zlib_inflate(bp->strm, Z_FINISH);
6577         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6578                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6579                            bp->strm->msg);
6580
6581         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6582         if (bp->gunzip_outlen & 0x3)
6583                 netdev_err(bp->dev,
6584                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6585                                 bp->gunzip_outlen);
6586         bp->gunzip_outlen >>= 2;
6587
6588         zlib_inflateEnd(bp->strm);
6589
6590         if (rc == Z_STREAM_END)
6591                 return 0;
6592
6593         return rc;
6594 }
6595
6596 /* nic load/unload */
6597
6598 /*
6599  * General service functions
6600  */
6601
6602 /* send a NIG loopback debug packet */
6603 static void bnx2x_lb_pckt(struct bnx2x *bp)
6604 {
6605         u32 wb_write[3];
6606
6607         /* Ethernet source and destination addresses */
6608         wb_write[0] = 0x55555555;
6609         wb_write[1] = 0x55555555;
6610         wb_write[2] = 0x20;             /* SOP */
6611         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6612
6613         /* NON-IP protocol */
6614         wb_write[0] = 0x09000000;
6615         wb_write[1] = 0x55555555;
6616         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6617         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6618 }
6619
6620 /* some of the internal memories
6621  * are not directly readable from the driver
6622  * to test them we send debug packets
6623  */
6624 static int bnx2x_int_mem_test(struct bnx2x *bp)
6625 {
6626         int factor;
6627         int count, i;
6628         u32 val = 0;
6629
6630         if (CHIP_REV_IS_FPGA(bp))
6631                 factor = 120;
6632         else if (CHIP_REV_IS_EMUL(bp))
6633                 factor = 200;
6634         else
6635                 factor = 1;
6636
6637         /* Disable inputs of parser neighbor blocks */
6638         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6639         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6640         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6641         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6642
6643         /*  Write 0 to parser credits for CFC search request */
6644         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6645
6646         /* send Ethernet packet */
6647         bnx2x_lb_pckt(bp);
6648
6649         /* TODO do i reset NIG statistic? */
6650         /* Wait until NIG register shows 1 packet of size 0x10 */
6651         count = 1000 * factor;
6652         while (count) {
6653
6654                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6655                 val = *bnx2x_sp(bp, wb_data[0]);
6656                 if (val == 0x10)
6657                         break;
6658
6659                 usleep_range(10000, 20000);
6660                 count--;
6661         }
6662         if (val != 0x10) {
6663                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6664                 return -1;
6665         }
6666
6667         /* Wait until PRS register shows 1 packet */
6668         count = 1000 * factor;
6669         while (count) {
6670                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6671                 if (val == 1)
6672                         break;
6673
6674                 usleep_range(10000, 20000);
6675                 count--;
6676         }
6677         if (val != 0x1) {
6678                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6679                 return -2;
6680         }
6681
6682         /* Reset and init BRB, PRS */
6683         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6684         msleep(50);
6685         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6686         msleep(50);
6687         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6688         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6689
6690         DP(NETIF_MSG_HW, "part2\n");
6691
6692         /* Disable inputs of parser neighbor blocks */
6693         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6694         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6695         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6696         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6697
6698         /* Write 0 to parser credits for CFC search request */
6699         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6700
6701         /* send 10 Ethernet packets */
6702         for (i = 0; i < 10; i++)
6703                 bnx2x_lb_pckt(bp);
6704
6705         /* Wait until NIG register shows 10 + 1
6706            packets of size 11*0x10 = 0xb0 */
6707         count = 1000 * factor;
6708         while (count) {
6709
6710                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6711                 val = *bnx2x_sp(bp, wb_data[0]);
6712                 if (val == 0xb0)
6713                         break;
6714
6715                 usleep_range(10000, 20000);
6716                 count--;
6717         }
6718         if (val != 0xb0) {
6719                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6720                 return -3;
6721         }
6722
6723         /* Wait until PRS register shows 2 packets */
6724         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6725         if (val != 2)
6726                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6727
6728         /* Write 1 to parser credits for CFC search request */
6729         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6730
6731         /* Wait until PRS register shows 3 packets */
6732         msleep(10 * factor);
6733         /* Wait until NIG register shows 1 packet of size 0x10 */
6734         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6735         if (val != 3)
6736                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6737
6738         /* clear NIG EOP FIFO */
6739         for (i = 0; i < 11; i++)
6740                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6741         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6742         if (val != 1) {
6743                 BNX2X_ERR("clear of NIG failed\n");
6744                 return -4;
6745         }
6746
6747         /* Reset and init BRB, PRS, NIG */
6748         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6749         msleep(50);
6750         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6751         msleep(50);
6752         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6753         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6754         if (!CNIC_SUPPORT(bp))
6755                 /* set NIC mode */
6756                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6757
6758         /* Enable inputs of parser neighbor blocks */
6759         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6760         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6761         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6762         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6763
6764         DP(NETIF_MSG_HW, "done\n");
6765
6766         return 0; /* OK */
6767 }
6768
6769 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6770 {
6771         u32 val;
6772
6773         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6774         if (!CHIP_IS_E1x(bp))
6775                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6776         else
6777                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6778         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6779         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6780         /*
6781          * mask read length error interrupts in brb for parser
6782          * (parsing unit and 'checksum and crc' unit)
6783          * these errors are legal (PU reads fixed length and CAC can cause
6784          * read length error on truncated packets)
6785          */
6786         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6787         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6788         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6789         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6790         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6791         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6792 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6793 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6794         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6795         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6796         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6797 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6798 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6799         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6800         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6801         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6802         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6803 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6804 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6805
6806         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6807                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6808                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6809         if (!CHIP_IS_E1x(bp))
6810                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6811                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6812         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6813
6814         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6815         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6816         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6817 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6818
6819         if (!CHIP_IS_E1x(bp))
6820                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6821                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6822
6823         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6824         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6825 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6826         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6827 }
6828
6829 static void bnx2x_reset_common(struct bnx2x *bp)
6830 {
6831         u32 val = 0x1400;
6832
6833         /* reset_common */
6834         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6835                0xd3ffff7f);
6836
6837         if (CHIP_IS_E3(bp)) {
6838                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6839                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6840         }
6841
6842         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6843 }
6844
6845 static void bnx2x_setup_dmae(struct bnx2x *bp)
6846 {
6847         bp->dmae_ready = 0;
6848         spin_lock_init(&bp->dmae_lock);
6849 }
6850
6851 static void bnx2x_init_pxp(struct bnx2x *bp)
6852 {
6853         u16 devctl;
6854         int r_order, w_order;
6855
6856         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6857         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6858         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6859         if (bp->mrrs == -1)
6860                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6861         else {
6862                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6863                 r_order = bp->mrrs;
6864         }
6865
6866         bnx2x_init_pxp_arb(bp, r_order, w_order);
6867 }
6868
6869 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6870 {
6871         int is_required;
6872         u32 val;
6873         int port;
6874
6875         if (BP_NOMCP(bp))
6876                 return;
6877
6878         is_required = 0;
6879         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6880               SHARED_HW_CFG_FAN_FAILURE_MASK;
6881
6882         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6883                 is_required = 1;
6884
6885         /*
6886          * The fan failure mechanism is usually related to the PHY type since
6887          * the power consumption of the board is affected by the PHY. Currently,
6888          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6889          */
6890         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6891                 for (port = PORT_0; port < PORT_MAX; port++) {
6892                         is_required |=
6893                                 bnx2x_fan_failure_det_req(
6894                                         bp,
6895                                         bp->common.shmem_base,
6896                                         bp->common.shmem2_base,
6897                                         port);
6898                 }
6899
6900         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6901
6902         if (is_required == 0)
6903                 return;
6904
6905         /* Fan failure is indicated by SPIO 5 */
6906         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6907
6908         /* set to active low mode */
6909         val = REG_RD(bp, MISC_REG_SPIO_INT);
6910         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6911         REG_WR(bp, MISC_REG_SPIO_INT, val);
6912
6913         /* enable interrupt to signal the IGU */
6914         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6915         val |= MISC_SPIO_SPIO5;
6916         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6917 }
6918
6919 void bnx2x_pf_disable(struct bnx2x *bp)
6920 {
6921         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6922         val &= ~IGU_PF_CONF_FUNC_EN;
6923
6924         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6925         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6926         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6927 }
6928
6929 static void bnx2x__common_init_phy(struct bnx2x *bp)
6930 {
6931         u32 shmem_base[2], shmem2_base[2];
6932         /* Avoid common init in case MFW supports LFA */
6933         if (SHMEM2_RD(bp, size) >
6934             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6935                 return;
6936         shmem_base[0] =  bp->common.shmem_base;
6937         shmem2_base[0] = bp->common.shmem2_base;
6938         if (!CHIP_IS_E1x(bp)) {
6939                 shmem_base[1] =
6940                         SHMEM2_RD(bp, other_shmem_base_addr);
6941                 shmem2_base[1] =
6942                         SHMEM2_RD(bp, other_shmem2_base_addr);
6943         }
6944         bnx2x_acquire_phy_lock(bp);
6945         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6946                               bp->common.chip_id);
6947         bnx2x_release_phy_lock(bp);
6948 }
6949
6950 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6951 {
6952         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6953         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
6954         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
6955         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
6956         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
6957
6958         /* make sure this value is 0 */
6959         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6960
6961         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
6962         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
6963         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
6964         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
6965 }
6966
6967 static void bnx2x_set_endianity(struct bnx2x *bp)
6968 {
6969 #ifdef __BIG_ENDIAN
6970         bnx2x_config_endianity(bp, 1);
6971 #else
6972         bnx2x_config_endianity(bp, 0);
6973 #endif
6974 }
6975
6976 static void bnx2x_reset_endianity(struct bnx2x *bp)
6977 {
6978         bnx2x_config_endianity(bp, 0);
6979 }
6980
6981 /**
6982  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6983  *
6984  * @bp:         driver handle
6985  */
6986 static int bnx2x_init_hw_common(struct bnx2x *bp)
6987 {
6988         u32 val;
6989
6990         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6991
6992         /*
6993          * take the RESET lock to protect undi_unload flow from accessing
6994          * registers while we're resetting the chip
6995          */
6996         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6997
6998         bnx2x_reset_common(bp);
6999         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7000
7001         val = 0xfffc;
7002         if (CHIP_IS_E3(bp)) {
7003                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7004                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7005         }
7006         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7007
7008         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7009
7010         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7011
7012         if (!CHIP_IS_E1x(bp)) {
7013                 u8 abs_func_id;
7014
7015                 /**
7016                  * 4-port mode or 2-port mode we need to turn of master-enable
7017                  * for everyone, after that, turn it back on for self.
7018                  * so, we disregard multi-function or not, and always disable
7019                  * for all functions on the given path, this means 0,2,4,6 for
7020                  * path 0 and 1,3,5,7 for path 1
7021                  */
7022                 for (abs_func_id = BP_PATH(bp);
7023                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7024                         if (abs_func_id == BP_ABS_FUNC(bp)) {
7025                                 REG_WR(bp,
7026                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7027                                     1);
7028                                 continue;
7029                         }
7030
7031                         bnx2x_pretend_func(bp, abs_func_id);
7032                         /* clear pf enable */
7033                         bnx2x_pf_disable(bp);
7034                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7035                 }
7036         }
7037
7038         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7039         if (CHIP_IS_E1(bp)) {
7040                 /* enable HW interrupt from PXP on USDM overflow
7041                    bit 16 on INT_MASK_0 */
7042                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7043         }
7044
7045         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7046         bnx2x_init_pxp(bp);
7047         bnx2x_set_endianity(bp);
7048         bnx2x_ilt_init_page_size(bp, INITOP_SET);
7049
7050         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7051                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7052
7053         /* let the HW do it's magic ... */
7054         msleep(100);
7055         /* finish PXP init */
7056         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7057         if (val != 1) {
7058                 BNX2X_ERR("PXP2 CFG failed\n");
7059                 return -EBUSY;
7060         }
7061         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7062         if (val != 1) {
7063                 BNX2X_ERR("PXP2 RD_INIT failed\n");
7064                 return -EBUSY;
7065         }
7066
7067         /* Timers bug workaround E2 only. We need to set the entire ILT to
7068          * have entries with value "0" and valid bit on.
7069          * This needs to be done by the first PF that is loaded in a path
7070          * (i.e. common phase)
7071          */
7072         if (!CHIP_IS_E1x(bp)) {
7073 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7074  * (i.e. vnic3) to start even if it is marked as "scan-off".
7075  * This occurs when a different function (func2,3) is being marked
7076  * as "scan-off". Real-life scenario for example: if a driver is being
7077  * load-unloaded while func6,7 are down. This will cause the timer to access
7078  * the ilt, translate to a logical address and send a request to read/write.
7079  * Since the ilt for the function that is down is not valid, this will cause
7080  * a translation error which is unrecoverable.
7081  * The Workaround is intended to make sure that when this happens nothing fatal
7082  * will occur. The workaround:
7083  *      1.  First PF driver which loads on a path will:
7084  *              a.  After taking the chip out of reset, by using pretend,
7085  *                  it will write "0" to the following registers of
7086  *                  the other vnics.
7087  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7088  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7089  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7090  *                  And for itself it will write '1' to
7091  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7092  *                  dmae-operations (writing to pram for example.)
7093  *                  note: can be done for only function 6,7 but cleaner this
7094  *                        way.
7095  *              b.  Write zero+valid to the entire ILT.
7096  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7097  *                  VNIC3 (of that port). The range allocated will be the
7098  *                  entire ILT. This is needed to prevent  ILT range error.
7099  *      2.  Any PF driver load flow:
7100  *              a.  ILT update with the physical addresses of the allocated
7101  *                  logical pages.
7102  *              b.  Wait 20msec. - note that this timeout is needed to make
7103  *                  sure there are no requests in one of the PXP internal
7104  *                  queues with "old" ILT addresses.
7105  *              c.  PF enable in the PGLC.
7106  *              d.  Clear the was_error of the PF in the PGLC. (could have
7107  *                  occurred while driver was down)
7108  *              e.  PF enable in the CFC (WEAK + STRONG)
7109  *              f.  Timers scan enable
7110  *      3.  PF driver unload flow:
7111  *              a.  Clear the Timers scan_en.
7112  *              b.  Polling for scan_on=0 for that PF.
7113  *              c.  Clear the PF enable bit in the PXP.
7114  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7115  *              e.  Write zero+valid to all ILT entries (The valid bit must
7116  *                  stay set)
7117  *              f.  If this is VNIC 3 of a port then also init
7118  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7119  *                  to the last entry in the ILT.
7120  *
7121  *      Notes:
7122  *      Currently the PF error in the PGLC is non recoverable.
7123  *      In the future the there will be a recovery routine for this error.
7124  *      Currently attention is masked.
7125  *      Having an MCP lock on the load/unload process does not guarantee that
7126  *      there is no Timer disable during Func6/7 enable. This is because the
7127  *      Timers scan is currently being cleared by the MCP on FLR.
7128  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7129  *      there is error before clearing it. But the flow above is simpler and
7130  *      more general.
7131  *      All ILT entries are written by zero+valid and not just PF6/7
7132  *      ILT entries since in the future the ILT entries allocation for
7133  *      PF-s might be dynamic.
7134  */
7135                 struct ilt_client_info ilt_cli;
7136                 struct bnx2x_ilt ilt;
7137                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7138                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7139
7140                 /* initialize dummy TM client */
7141                 ilt_cli.start = 0;
7142                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7143                 ilt_cli.client_num = ILT_CLIENT_TM;
7144
7145                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7146                  * Step 2: set the timers first/last ilt entry to point
7147                  * to the entire range to prevent ILT range error for 3rd/4th
7148                  * vnic (this code assumes existence of the vnic)
7149                  *
7150                  * both steps performed by call to bnx2x_ilt_client_init_op()
7151                  * with dummy TM client
7152                  *
7153                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7154                  * and his brother are split registers
7155                  */
7156                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7157                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7158                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7159
7160                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7161                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7162                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7163         }
7164
7165         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7166         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7167
7168         if (!CHIP_IS_E1x(bp)) {
7169                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7170                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7171                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7172
7173                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7174
7175                 /* let the HW do it's magic ... */
7176                 do {
7177                         msleep(200);
7178                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7179                 } while (factor-- && (val != 1));
7180
7181                 if (val != 1) {
7182                         BNX2X_ERR("ATC_INIT failed\n");
7183                         return -EBUSY;
7184                 }
7185         }
7186
7187         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7188
7189         bnx2x_iov_init_dmae(bp);
7190
7191         /* clean the DMAE memory */
7192         bp->dmae_ready = 1;
7193         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7194
7195         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7196
7197         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7198
7199         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7200
7201         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7202
7203         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7204         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7205         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7206         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7207
7208         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7209
7210         /* QM queues pointers table */
7211         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7212
7213         /* soft reset pulse */
7214         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7215         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7216
7217         if (CNIC_SUPPORT(bp))
7218                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7219
7220         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7221
7222         if (!CHIP_REV_IS_SLOW(bp))
7223                 /* enable hw interrupt from doorbell Q */
7224                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7225
7226         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7227
7228         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7229         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7230
7231         if (!CHIP_IS_E1(bp))
7232                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7233
7234         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7235                 if (IS_MF_AFEX(bp)) {
7236                         /* configure that VNTag and VLAN headers must be
7237                          * received in afex mode
7238                          */
7239                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7240                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7241                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7242                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7243                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7244                 } else {
7245                         /* Bit-map indicating which L2 hdrs may appear
7246                          * after the basic Ethernet header
7247                          */
7248                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7249                                bp->path_has_ovlan ? 7 : 6);
7250                 }
7251         }
7252
7253         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7254         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7255         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7256         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7257
7258         if (!CHIP_IS_E1x(bp)) {
7259                 /* reset VFC memories */
7260                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7261                            VFC_MEMORIES_RST_REG_CAM_RST |
7262                            VFC_MEMORIES_RST_REG_RAM_RST);
7263                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7264                            VFC_MEMORIES_RST_REG_CAM_RST |
7265                            VFC_MEMORIES_RST_REG_RAM_RST);
7266
7267                 msleep(20);
7268         }
7269
7270         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7271         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7272         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7273         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7274
7275         /* sync semi rtc */
7276         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7277                0x80000000);
7278         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7279                0x80000000);
7280
7281         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7282         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7283         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7284
7285         if (!CHIP_IS_E1x(bp)) {
7286                 if (IS_MF_AFEX(bp)) {
7287                         /* configure that VNTag and VLAN headers must be
7288                          * sent in afex mode
7289                          */
7290                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7291                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7292                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7293                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7294                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7295                 } else {
7296                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7297                                bp->path_has_ovlan ? 7 : 6);
7298                 }
7299         }
7300
7301         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7302
7303         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7304
7305         if (CNIC_SUPPORT(bp)) {
7306                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7307                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7308                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7309                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7310                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7311                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7312                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7313                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7314                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7315                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7316         }
7317         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7318
7319         if (sizeof(union cdu_context) != 1024)
7320                 /* we currently assume that a context is 1024 bytes */
7321                 dev_alert(&bp->pdev->dev,
7322                           "please adjust the size of cdu_context(%ld)\n",
7323                           (long)sizeof(union cdu_context));
7324
7325         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7326         val = (4 << 24) + (0 << 12) + 1024;
7327         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7328
7329         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7330         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7331         /* enable context validation interrupt from CFC */
7332         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7333
7334         /* set the thresholds to prevent CFC/CDU race */
7335         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7336
7337         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7338
7339         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7340                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7341
7342         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7343         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7344
7345         /* Reset PCIE errors for debug */
7346         REG_WR(bp, 0x2814, 0xffffffff);
7347         REG_WR(bp, 0x3820, 0xffffffff);
7348
7349         if (!CHIP_IS_E1x(bp)) {
7350                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7351                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7352                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7353                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7354                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7355                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7356                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7357                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7358                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7359                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7360                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7361         }
7362
7363         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7364         if (!CHIP_IS_E1(bp)) {
7365                 /* in E3 this done in per-port section */
7366                 if (!CHIP_IS_E3(bp))
7367                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7368         }
7369         if (CHIP_IS_E1H(bp))
7370                 /* not applicable for E2 (and above ...) */
7371                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7372
7373         if (CHIP_REV_IS_SLOW(bp))
7374                 msleep(200);
7375
7376         /* finish CFC init */
7377         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7378         if (val != 1) {
7379                 BNX2X_ERR("CFC LL_INIT failed\n");
7380                 return -EBUSY;
7381         }
7382         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7383         if (val != 1) {
7384                 BNX2X_ERR("CFC AC_INIT failed\n");
7385                 return -EBUSY;
7386         }
7387         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7388         if (val != 1) {
7389                 BNX2X_ERR("CFC CAM_INIT failed\n");
7390                 return -EBUSY;
7391         }
7392         REG_WR(bp, CFC_REG_DEBUG0, 0);
7393
7394         if (CHIP_IS_E1(bp)) {
7395                 /* read NIG statistic
7396                    to see if this is our first up since powerup */
7397                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7398                 val = *bnx2x_sp(bp, wb_data[0]);
7399
7400                 /* do internal memory self test */
7401                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7402                         BNX2X_ERR("internal mem self test failed\n");
7403                         return -EBUSY;
7404                 }
7405         }
7406
7407         bnx2x_setup_fan_failure_detection(bp);
7408
7409         /* clear PXP2 attentions */
7410         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7411
7412         bnx2x_enable_blocks_attention(bp);
7413         bnx2x_enable_blocks_parity(bp);
7414
7415         if (!BP_NOMCP(bp)) {
7416                 if (CHIP_IS_E1x(bp))
7417                         bnx2x__common_init_phy(bp);
7418         } else
7419                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7420
7421         return 0;
7422 }
7423
7424 /**
7425  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7426  *
7427  * @bp:         driver handle
7428  */
7429 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7430 {
7431         int rc = bnx2x_init_hw_common(bp);
7432
7433         if (rc)
7434                 return rc;
7435
7436         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7437         if (!BP_NOMCP(bp))
7438                 bnx2x__common_init_phy(bp);
7439
7440         return 0;
7441 }
7442
7443 static int bnx2x_init_hw_port(struct bnx2x *bp)
7444 {
7445         int port = BP_PORT(bp);
7446         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7447         u32 low, high;
7448         u32 val, reg;
7449
7450         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7451
7452         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7453
7454         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7455         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7456         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7457
7458         /* Timers bug workaround: disables the pf_master bit in pglue at
7459          * common phase, we need to enable it here before any dmae access are
7460          * attempted. Therefore we manually added the enable-master to the
7461          * port phase (it also happens in the function phase)
7462          */
7463         if (!CHIP_IS_E1x(bp))
7464                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7465
7466         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7467         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7468         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7469         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7470
7471         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7472         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7473         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7474         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7475
7476         /* QM cid (connection) count */
7477         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7478
7479         if (CNIC_SUPPORT(bp)) {
7480                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7481                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7482                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7483         }
7484
7485         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7486
7487         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7488
7489         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7490
7491                 if (IS_MF(bp))
7492                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7493                 else if (bp->dev->mtu > 4096) {
7494                         if (bp->flags & ONE_PORT_FLAG)
7495                                 low = 160;
7496                         else {
7497                                 val = bp->dev->mtu;
7498                                 /* (24*1024 + val*4)/256 */
7499                                 low = 96 + (val/64) +
7500                                                 ((val % 64) ? 1 : 0);
7501                         }
7502                 } else
7503                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7504                 high = low + 56;        /* 14*1024/256 */
7505                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7506                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7507         }
7508
7509         if (CHIP_MODE_IS_4_PORT(bp))
7510                 REG_WR(bp, (BP_PORT(bp) ?
7511                             BRB1_REG_MAC_GUARANTIED_1 :
7512                             BRB1_REG_MAC_GUARANTIED_0), 40);
7513
7514         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7515         if (CHIP_IS_E3B0(bp)) {
7516                 if (IS_MF_AFEX(bp)) {
7517                         /* configure headers for AFEX mode */
7518                         REG_WR(bp, BP_PORT(bp) ?
7519                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7520                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7521                         REG_WR(bp, BP_PORT(bp) ?
7522                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7523                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7524                         REG_WR(bp, BP_PORT(bp) ?
7525                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7526                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7527                 } else {
7528                         /* Ovlan exists only if we are in multi-function +
7529                          * switch-dependent mode, in switch-independent there
7530                          * is no ovlan headers
7531                          */
7532                         REG_WR(bp, BP_PORT(bp) ?
7533                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7534                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7535                                (bp->path_has_ovlan ? 7 : 6));
7536                 }
7537         }
7538
7539         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7540         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7541         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7542         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7543
7544         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7545         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7546         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7547         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7548
7549         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7550         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7551
7552         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7553
7554         if (CHIP_IS_E1x(bp)) {
7555                 /* configure PBF to work without PAUSE mtu 9000 */
7556                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7557
7558                 /* update threshold */
7559                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7560                 /* update init credit */
7561                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7562
7563                 /* probe changes */
7564                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7565                 udelay(50);
7566                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7567         }
7568
7569         if (CNIC_SUPPORT(bp))
7570                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7571
7572         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7573         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7574
7575         if (CHIP_IS_E1(bp)) {
7576                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7577                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7578         }
7579         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7580
7581         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7582
7583         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7584         /* init aeu_mask_attn_func_0/1:
7585          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7586          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7587          *             bits 4-7 are used for "per vn group attention" */
7588         val = IS_MF(bp) ? 0xF7 : 0x7;
7589         /* Enable DCBX attention for all but E1 */
7590         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7591         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7592
7593         /* SCPAD_PARITY should NOT trigger close the gates */
7594         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7595         REG_WR(bp, reg,
7596                REG_RD(bp, reg) &
7597                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7598
7599         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7600         REG_WR(bp, reg,
7601                REG_RD(bp, reg) &
7602                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7603
7604         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7605
7606         if (!CHIP_IS_E1x(bp)) {
7607                 /* Bit-map indicating which L2 hdrs may appear after the
7608                  * basic Ethernet header
7609                  */
7610                 if (IS_MF_AFEX(bp))
7611                         REG_WR(bp, BP_PORT(bp) ?
7612                                NIG_REG_P1_HDRS_AFTER_BASIC :
7613                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7614                 else
7615                         REG_WR(bp, BP_PORT(bp) ?
7616                                NIG_REG_P1_HDRS_AFTER_BASIC :
7617                                NIG_REG_P0_HDRS_AFTER_BASIC,
7618                                IS_MF_SD(bp) ? 7 : 6);
7619
7620                 if (CHIP_IS_E3(bp))
7621                         REG_WR(bp, BP_PORT(bp) ?
7622                                    NIG_REG_LLH1_MF_MODE :
7623                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7624         }
7625         if (!CHIP_IS_E3(bp))
7626                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7627
7628         if (!CHIP_IS_E1(bp)) {
7629                 /* 0x2 disable mf_ov, 0x1 enable */
7630                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7631                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7632
7633                 if (!CHIP_IS_E1x(bp)) {
7634                         val = 0;
7635                         switch (bp->mf_mode) {
7636                         case MULTI_FUNCTION_SD:
7637                                 val = 1;
7638                                 break;
7639                         case MULTI_FUNCTION_SI:
7640                         case MULTI_FUNCTION_AFEX:
7641                                 val = 2;
7642                                 break;
7643                         }
7644
7645                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7646                                                   NIG_REG_LLH0_CLS_TYPE), val);
7647                 }
7648                 {
7649                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7650                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7651                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7652                 }
7653         }
7654
7655         /* If SPIO5 is set to generate interrupts, enable it for this port */
7656         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7657         if (val & MISC_SPIO_SPIO5) {
7658                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7659                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7660                 val = REG_RD(bp, reg_addr);
7661                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7662                 REG_WR(bp, reg_addr, val);
7663         }
7664
7665         return 0;
7666 }
7667
7668 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7669 {
7670         int reg;
7671         u32 wb_write[2];
7672
7673         if (CHIP_IS_E1(bp))
7674                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7675         else
7676                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7677
7678         wb_write[0] = ONCHIP_ADDR1(addr);
7679         wb_write[1] = ONCHIP_ADDR2(addr);
7680         REG_WR_DMAE(bp, reg, wb_write, 2);
7681 }
7682
7683 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7684 {
7685         u32 data, ctl, cnt = 100;
7686         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7687         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7688         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7689         u32 sb_bit =  1 << (idu_sb_id%32);
7690         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7691         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7692
7693         /* Not supported in BC mode */
7694         if (CHIP_INT_MODE_IS_BC(bp))
7695                 return;
7696
7697         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7698                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7699                 IGU_REGULAR_CLEANUP_SET                         |
7700                 IGU_REGULAR_BCLEANUP;
7701
7702         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7703               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7704               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7705
7706         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7707                          data, igu_addr_data);
7708         REG_WR(bp, igu_addr_data, data);
7709         mmiowb();
7710         barrier();
7711         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7712                           ctl, igu_addr_ctl);
7713         REG_WR(bp, igu_addr_ctl, ctl);
7714         mmiowb();
7715         barrier();
7716
7717         /* wait for clean up to finish */
7718         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7719                 msleep(20);
7720
7721         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7722                 DP(NETIF_MSG_HW,
7723                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7724                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7725         }
7726 }
7727
7728 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7729 {
7730         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7731 }
7732
7733 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7734 {
7735         u32 i, base = FUNC_ILT_BASE(func);
7736         for (i = base; i < base + ILT_PER_FUNC; i++)
7737                 bnx2x_ilt_wr(bp, i, 0);
7738 }
7739
7740 static void bnx2x_init_searcher(struct bnx2x *bp)
7741 {
7742         int port = BP_PORT(bp);
7743         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7744         /* T1 hash bits value determines the T1 number of entries */
7745         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7746 }
7747
7748 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7749 {
7750         int rc;
7751         struct bnx2x_func_state_params func_params = {NULL};
7752         struct bnx2x_func_switch_update_params *switch_update_params =
7753                 &func_params.params.switch_update;
7754
7755         /* Prepare parameters for function state transitions */
7756         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7757         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7758
7759         func_params.f_obj = &bp->func_obj;
7760         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7761
7762         /* Function parameters */
7763         __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7764                   &switch_update_params->changes);
7765         if (suspend)
7766                 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7767                           &switch_update_params->changes);
7768
7769         rc = bnx2x_func_state_change(bp, &func_params);
7770
7771         return rc;
7772 }
7773
7774 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7775 {
7776         int rc, i, port = BP_PORT(bp);
7777         int vlan_en = 0, mac_en[NUM_MACS];
7778
7779         /* Close input from network */
7780         if (bp->mf_mode == SINGLE_FUNCTION) {
7781                 bnx2x_set_rx_filter(&bp->link_params, 0);
7782         } else {
7783                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7784                                    NIG_REG_LLH0_FUNC_EN);
7785                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7786                           NIG_REG_LLH0_FUNC_EN, 0);
7787                 for (i = 0; i < NUM_MACS; i++) {
7788                         mac_en[i] = REG_RD(bp, port ?
7789                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7790                                               4 * i) :
7791                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7792                                               4 * i));
7793                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7794                                               4 * i) :
7795                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7796                 }
7797         }
7798
7799         /* Close BMC to host */
7800         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7801                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7802
7803         /* Suspend Tx switching to the PF. Completion of this ramrod
7804          * further guarantees that all the packets of that PF / child
7805          * VFs in BRB were processed by the Parser, so it is safe to
7806          * change the NIC_MODE register.
7807          */
7808         rc = bnx2x_func_switch_update(bp, 1);
7809         if (rc) {
7810                 BNX2X_ERR("Can't suspend tx-switching!\n");
7811                 return rc;
7812         }
7813
7814         /* Change NIC_MODE register */
7815         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7816
7817         /* Open input from network */
7818         if (bp->mf_mode == SINGLE_FUNCTION) {
7819                 bnx2x_set_rx_filter(&bp->link_params, 1);
7820         } else {
7821                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7822                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7823                 for (i = 0; i < NUM_MACS; i++) {
7824                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7825                                               4 * i) :
7826                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7827                                   mac_en[i]);
7828                 }
7829         }
7830
7831         /* Enable BMC to host */
7832         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7833                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7834
7835         /* Resume Tx switching to the PF */
7836         rc = bnx2x_func_switch_update(bp, 0);
7837         if (rc) {
7838                 BNX2X_ERR("Can't resume tx-switching!\n");
7839                 return rc;
7840         }
7841
7842         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7843         return 0;
7844 }
7845
7846 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7847 {
7848         int rc;
7849
7850         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7851
7852         if (CONFIGURE_NIC_MODE(bp)) {
7853                 /* Configure searcher as part of function hw init */
7854                 bnx2x_init_searcher(bp);
7855
7856                 /* Reset NIC mode */
7857                 rc = bnx2x_reset_nic_mode(bp);
7858                 if (rc)
7859                         BNX2X_ERR("Can't change NIC mode!\n");
7860                 return rc;
7861         }
7862
7863         return 0;
7864 }
7865
7866 static int bnx2x_init_hw_func(struct bnx2x *bp)
7867 {
7868         int port = BP_PORT(bp);
7869         int func = BP_FUNC(bp);
7870         int init_phase = PHASE_PF0 + func;
7871         struct bnx2x_ilt *ilt = BP_ILT(bp);
7872         u16 cdu_ilt_start;
7873         u32 addr, val;
7874         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7875         int i, main_mem_width, rc;
7876
7877         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7878
7879         /* FLR cleanup - hmmm */
7880         if (!CHIP_IS_E1x(bp)) {
7881                 rc = bnx2x_pf_flr_clnup(bp);
7882                 if (rc) {
7883                         bnx2x_fw_dump(bp);
7884                         return rc;
7885                 }
7886         }
7887
7888         /* set MSI reconfigure capability */
7889         if (bp->common.int_block == INT_BLOCK_HC) {
7890                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7891                 val = REG_RD(bp, addr);
7892                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7893                 REG_WR(bp, addr, val);
7894         }
7895
7896         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7897         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7898
7899         ilt = BP_ILT(bp);
7900         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7901
7902         if (IS_SRIOV(bp))
7903                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7904         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7905
7906         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7907          * those of the VFs, so start line should be reset
7908          */
7909         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7910         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7911                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7912                 ilt->lines[cdu_ilt_start + i].page_mapping =
7913                         bp->context[i].cxt_mapping;
7914                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7915         }
7916
7917         bnx2x_ilt_init_op(bp, INITOP_SET);
7918
7919         if (!CONFIGURE_NIC_MODE(bp)) {
7920                 bnx2x_init_searcher(bp);
7921                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7922                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7923         } else {
7924                 /* Set NIC mode */
7925                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7926                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7927         }
7928
7929         if (!CHIP_IS_E1x(bp)) {
7930                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7931
7932                 /* Turn on a single ISR mode in IGU if driver is going to use
7933                  * INT#x or MSI
7934                  */
7935                 if (!(bp->flags & USING_MSIX_FLAG))
7936                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7937                 /*
7938                  * Timers workaround bug: function init part.
7939                  * Need to wait 20msec after initializing ILT,
7940                  * needed to make sure there are no requests in
7941                  * one of the PXP internal queues with "old" ILT addresses
7942                  */
7943                 msleep(20);
7944                 /*
7945                  * Master enable - Due to WB DMAE writes performed before this
7946                  * register is re-initialized as part of the regular function
7947                  * init
7948                  */
7949                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7950                 /* Enable the function in IGU */
7951                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7952         }
7953
7954         bp->dmae_ready = 1;
7955
7956         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7957
7958         if (!CHIP_IS_E1x(bp))
7959                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7960
7961         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7962         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7963         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7964         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7965         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7966         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7967         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7968         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7969         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7970         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7971         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7972         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7973         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7974
7975         if (!CHIP_IS_E1x(bp))
7976                 REG_WR(bp, QM_REG_PF_EN, 1);
7977
7978         if (!CHIP_IS_E1x(bp)) {
7979                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7980                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7981                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7982                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7983         }
7984         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7985
7986         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7987         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7988         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7989
7990         bnx2x_iov_init_dq(bp);
7991
7992         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7993         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7994         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7995         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7996         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7997         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7998         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7999         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8000         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8001         if (!CHIP_IS_E1x(bp))
8002                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8003
8004         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8005
8006         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8007
8008         if (!CHIP_IS_E1x(bp))
8009                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8010
8011         if (IS_MF(bp)) {
8012                 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8013                         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8014                         REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8015                                bp->mf_ov);
8016                 }
8017         }
8018
8019         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8020
8021         /* HC init per function */
8022         if (bp->common.int_block == INT_BLOCK_HC) {
8023                 if (CHIP_IS_E1H(bp)) {
8024                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8025
8026                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8027                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8028                 }
8029                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8030
8031         } else {
8032                 int num_segs, sb_idx, prod_offset;
8033
8034                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8035
8036                 if (!CHIP_IS_E1x(bp)) {
8037                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8038                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8039                 }
8040
8041                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8042
8043                 if (!CHIP_IS_E1x(bp)) {
8044                         int dsb_idx = 0;
8045                         /**
8046                          * Producer memory:
8047                          * E2 mode: address 0-135 match to the mapping memory;
8048                          * 136 - PF0 default prod; 137 - PF1 default prod;
8049                          * 138 - PF2 default prod; 139 - PF3 default prod;
8050                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
8051                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
8052                          * 144-147 reserved.
8053                          *
8054                          * E1.5 mode - In backward compatible mode;
8055                          * for non default SB; each even line in the memory
8056                          * holds the U producer and each odd line hold
8057                          * the C producer. The first 128 producers are for
8058                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8059                          * producers are for the DSB for each PF.
8060                          * Each PF has five segments: (the order inside each
8061                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8062                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8063                          * 144-147 attn prods;
8064                          */
8065                         /* non-default-status-blocks */
8066                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8067                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8068                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8069                                 prod_offset = (bp->igu_base_sb + sb_idx) *
8070                                         num_segs;
8071
8072                                 for (i = 0; i < num_segs; i++) {
8073                                         addr = IGU_REG_PROD_CONS_MEMORY +
8074                                                         (prod_offset + i) * 4;
8075                                         REG_WR(bp, addr, 0);
8076                                 }
8077                                 /* send consumer update with value 0 */
8078                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8079                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8080                                 bnx2x_igu_clear_sb(bp,
8081                                                    bp->igu_base_sb + sb_idx);
8082                         }
8083
8084                         /* default-status-blocks */
8085                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8086                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8087
8088                         if (CHIP_MODE_IS_4_PORT(bp))
8089                                 dsb_idx = BP_FUNC(bp);
8090                         else
8091                                 dsb_idx = BP_VN(bp);
8092
8093                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8094                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
8095                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
8096
8097                         /*
8098                          * igu prods come in chunks of E1HVN_MAX (4) -
8099                          * does not matters what is the current chip mode
8100                          */
8101                         for (i = 0; i < (num_segs * E1HVN_MAX);
8102                              i += E1HVN_MAX) {
8103                                 addr = IGU_REG_PROD_CONS_MEMORY +
8104                                                         (prod_offset + i)*4;
8105                                 REG_WR(bp, addr, 0);
8106                         }
8107                         /* send consumer update with 0 */
8108                         if (CHIP_INT_MODE_IS_BC(bp)) {
8109                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8110                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8111                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8112                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
8113                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8114                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
8115                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8116                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
8117                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8118                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8119                         } else {
8120                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8121                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8122                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8123                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8124                         }
8125                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8126
8127                         /* !!! These should become driver const once
8128                            rf-tool supports split-68 const */
8129                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8130                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8131                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8132                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8133                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8134                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8135                 }
8136         }
8137
8138         /* Reset PCIE errors for debug */
8139         REG_WR(bp, 0x2114, 0xffffffff);
8140         REG_WR(bp, 0x2120, 0xffffffff);
8141
8142         if (CHIP_IS_E1x(bp)) {
8143                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8144                 main_mem_base = HC_REG_MAIN_MEMORY +
8145                                 BP_PORT(bp) * (main_mem_size * 4);
8146                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8147                 main_mem_width = 8;
8148
8149                 val = REG_RD(bp, main_mem_prty_clr);
8150                 if (val)
8151                         DP(NETIF_MSG_HW,
8152                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8153                            val);
8154
8155                 /* Clear "false" parity errors in MSI-X table */
8156                 for (i = main_mem_base;
8157                      i < main_mem_base + main_mem_size * 4;
8158                      i += main_mem_width) {
8159                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8160                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8161                                          i, main_mem_width / 4);
8162                 }
8163                 /* Clear HC parity attention */
8164                 REG_RD(bp, main_mem_prty_clr);
8165         }
8166
8167 #ifdef BNX2X_STOP_ON_ERROR
8168         /* Enable STORMs SP logging */
8169         REG_WR8(bp, BAR_USTRORM_INTMEM +
8170                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8171         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8172                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8173         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8174                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8175         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8176                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8177 #endif
8178
8179         bnx2x_phy_probe(&bp->link_params);
8180
8181         return 0;
8182 }
8183
8184 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8185 {
8186         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8187
8188         if (!CHIP_IS_E1x(bp))
8189                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8190                                sizeof(struct host_hc_status_block_e2));
8191         else
8192                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8193                                sizeof(struct host_hc_status_block_e1x));
8194
8195         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8196 }
8197
8198 void bnx2x_free_mem(struct bnx2x *bp)
8199 {
8200         int i;
8201
8202         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8203                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8204
8205         if (IS_VF(bp))
8206                 return;
8207
8208         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8209                        sizeof(struct host_sp_status_block));
8210
8211         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8212                        sizeof(struct bnx2x_slowpath));
8213
8214         for (i = 0; i < L2_ILT_LINES(bp); i++)
8215                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8216                                bp->context[i].size);
8217         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8218
8219         BNX2X_FREE(bp->ilt->lines);
8220
8221         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8222
8223         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8224                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8225
8226         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8227
8228         bnx2x_iov_free_mem(bp);
8229 }
8230
8231 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8232 {
8233         if (!CHIP_IS_E1x(bp)) {
8234                 /* size = the status block + ramrod buffers */
8235                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8236                                                     sizeof(struct host_hc_status_block_e2));
8237                 if (!bp->cnic_sb.e2_sb)
8238                         goto alloc_mem_err;
8239         } else {
8240                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8241                                                      sizeof(struct host_hc_status_block_e1x));
8242                 if (!bp->cnic_sb.e1x_sb)
8243                         goto alloc_mem_err;
8244         }
8245
8246         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8247                 /* allocate searcher T2 table, as it wasn't allocated before */
8248                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8249                 if (!bp->t2)
8250                         goto alloc_mem_err;
8251         }
8252
8253         /* write address to which L5 should insert its values */
8254         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8255                 &bp->slowpath->drv_info_to_mcp;
8256
8257         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8258                 goto alloc_mem_err;
8259
8260         return 0;
8261
8262 alloc_mem_err:
8263         bnx2x_free_mem_cnic(bp);
8264         BNX2X_ERR("Can't allocate memory\n");
8265         return -ENOMEM;
8266 }
8267
8268 int bnx2x_alloc_mem(struct bnx2x *bp)
8269 {
8270         int i, allocated, context_size;
8271
8272         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8273                 /* allocate searcher T2 table */
8274                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8275                 if (!bp->t2)
8276                         goto alloc_mem_err;
8277         }
8278
8279         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8280                                              sizeof(struct host_sp_status_block));
8281         if (!bp->def_status_blk)
8282                 goto alloc_mem_err;
8283
8284         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8285                                        sizeof(struct bnx2x_slowpath));
8286         if (!bp->slowpath)
8287                 goto alloc_mem_err;
8288
8289         /* Allocate memory for CDU context:
8290          * This memory is allocated separately and not in the generic ILT
8291          * functions because CDU differs in few aspects:
8292          * 1. There are multiple entities allocating memory for context -
8293          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8294          * its own ILT lines.
8295          * 2. Since CDU page-size is not a single 4KB page (which is the case
8296          * for the other ILT clients), to be efficient we want to support
8297          * allocation of sub-page-size in the last entry.
8298          * 3. Context pointers are used by the driver to pass to FW / update
8299          * the context (for the other ILT clients the pointers are used just to
8300          * free the memory during unload).
8301          */
8302         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8303
8304         for (i = 0, allocated = 0; allocated < context_size; i++) {
8305                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8306                                           (context_size - allocated));
8307                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8308                                                       bp->context[i].size);
8309                 if (!bp->context[i].vcxt)
8310                         goto alloc_mem_err;
8311                 allocated += bp->context[i].size;
8312         }
8313         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8314                                  GFP_KERNEL);
8315         if (!bp->ilt->lines)
8316                 goto alloc_mem_err;
8317
8318         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8319                 goto alloc_mem_err;
8320
8321         if (bnx2x_iov_alloc_mem(bp))
8322                 goto alloc_mem_err;
8323
8324         /* Slow path ring */
8325         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8326         if (!bp->spq)
8327                 goto alloc_mem_err;
8328
8329         /* EQ */
8330         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8331                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8332         if (!bp->eq_ring)
8333                 goto alloc_mem_err;
8334
8335         return 0;
8336
8337 alloc_mem_err:
8338         bnx2x_free_mem(bp);
8339         BNX2X_ERR("Can't allocate memory\n");
8340         return -ENOMEM;
8341 }
8342
8343 /*
8344  * Init service functions
8345  */
8346
8347 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8348                       struct bnx2x_vlan_mac_obj *obj, bool set,
8349                       int mac_type, unsigned long *ramrod_flags)
8350 {
8351         int rc;
8352         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8353
8354         memset(&ramrod_param, 0, sizeof(ramrod_param));
8355
8356         /* Fill general parameters */
8357         ramrod_param.vlan_mac_obj = obj;
8358         ramrod_param.ramrod_flags = *ramrod_flags;
8359
8360         /* Fill a user request section if needed */
8361         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8362                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8363
8364                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8365
8366                 /* Set the command: ADD or DEL */
8367                 if (set)
8368                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8369                 else
8370                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8371         }
8372
8373         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8374
8375         if (rc == -EEXIST) {
8376                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8377                 /* do not treat adding same MAC as error */
8378                 rc = 0;
8379         } else if (rc < 0)
8380                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8381
8382         return rc;
8383 }
8384
8385 int bnx2x_del_all_macs(struct bnx2x *bp,
8386                        struct bnx2x_vlan_mac_obj *mac_obj,
8387                        int mac_type, bool wait_for_comp)
8388 {
8389         int rc;
8390         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8391
8392         /* Wait for completion of requested */
8393         if (wait_for_comp)
8394                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8395
8396         /* Set the mac type of addresses we want to clear */
8397         __set_bit(mac_type, &vlan_mac_flags);
8398
8399         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8400         if (rc < 0)
8401                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8402
8403         return rc;
8404 }
8405
8406 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8407 {
8408         if (IS_PF(bp)) {
8409                 unsigned long ramrod_flags = 0;
8410
8411                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8412                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8413                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8414                                          &bp->sp_objs->mac_obj, set,
8415                                          BNX2X_ETH_MAC, &ramrod_flags);
8416         } else { /* vf */
8417                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8418                                              bp->fp->index, true);
8419         }
8420 }
8421
8422 int bnx2x_setup_leading(struct bnx2x *bp)
8423 {
8424         if (IS_PF(bp))
8425                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8426         else /* VF */
8427                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8428 }
8429
8430 /**
8431  * bnx2x_set_int_mode - configure interrupt mode
8432  *
8433  * @bp:         driver handle
8434  *
8435  * In case of MSI-X it will also try to enable MSI-X.
8436  */
8437 int bnx2x_set_int_mode(struct bnx2x *bp)
8438 {
8439         int rc = 0;
8440
8441         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8442                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8443                 return -EINVAL;
8444         }
8445
8446         switch (int_mode) {
8447         case BNX2X_INT_MODE_MSIX:
8448                 /* attempt to enable msix */
8449                 rc = bnx2x_enable_msix(bp);
8450
8451                 /* msix attained */
8452                 if (!rc)
8453                         return 0;
8454
8455                 /* vfs use only msix */
8456                 if (rc && IS_VF(bp))
8457                         return rc;
8458
8459                 /* failed to enable multiple MSI-X */
8460                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8461                                bp->num_queues,
8462                                1 + bp->num_cnic_queues);
8463
8464                 /* falling through... */
8465         case BNX2X_INT_MODE_MSI:
8466                 bnx2x_enable_msi(bp);
8467
8468                 /* falling through... */
8469         case BNX2X_INT_MODE_INTX:
8470                 bp->num_ethernet_queues = 1;
8471                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8472                 BNX2X_DEV_INFO("set number of queues to 1\n");
8473                 break;
8474         default:
8475                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8476                 return -EINVAL;
8477         }
8478         return 0;
8479 }
8480
8481 /* must be called prior to any HW initializations */
8482 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8483 {
8484         if (IS_SRIOV(bp))
8485                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8486         return L2_ILT_LINES(bp);
8487 }
8488
8489 void bnx2x_ilt_set_info(struct bnx2x *bp)
8490 {
8491         struct ilt_client_info *ilt_client;
8492         struct bnx2x_ilt *ilt = BP_ILT(bp);
8493         u16 line = 0;
8494
8495         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8496         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8497
8498         /* CDU */
8499         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8500         ilt_client->client_num = ILT_CLIENT_CDU;
8501         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8502         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8503         ilt_client->start = line;
8504         line += bnx2x_cid_ilt_lines(bp);
8505
8506         if (CNIC_SUPPORT(bp))
8507                 line += CNIC_ILT_LINES;
8508         ilt_client->end = line - 1;
8509
8510         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8511            ilt_client->start,
8512            ilt_client->end,
8513            ilt_client->page_size,
8514            ilt_client->flags,
8515            ilog2(ilt_client->page_size >> 12));
8516
8517         /* QM */
8518         if (QM_INIT(bp->qm_cid_count)) {
8519                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8520                 ilt_client->client_num = ILT_CLIENT_QM;
8521                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8522                 ilt_client->flags = 0;
8523                 ilt_client->start = line;
8524
8525                 /* 4 bytes for each cid */
8526                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8527                                                          QM_ILT_PAGE_SZ);
8528
8529                 ilt_client->end = line - 1;
8530
8531                 DP(NETIF_MSG_IFUP,
8532                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8533                    ilt_client->start,
8534                    ilt_client->end,
8535                    ilt_client->page_size,
8536                    ilt_client->flags,
8537                    ilog2(ilt_client->page_size >> 12));
8538         }
8539
8540         if (CNIC_SUPPORT(bp)) {
8541                 /* SRC */
8542                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8543                 ilt_client->client_num = ILT_CLIENT_SRC;
8544                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8545                 ilt_client->flags = 0;
8546                 ilt_client->start = line;
8547                 line += SRC_ILT_LINES;
8548                 ilt_client->end = line - 1;
8549
8550                 DP(NETIF_MSG_IFUP,
8551                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8552                    ilt_client->start,
8553                    ilt_client->end,
8554                    ilt_client->page_size,
8555                    ilt_client->flags,
8556                    ilog2(ilt_client->page_size >> 12));
8557
8558                 /* TM */
8559                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8560                 ilt_client->client_num = ILT_CLIENT_TM;
8561                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8562                 ilt_client->flags = 0;
8563                 ilt_client->start = line;
8564                 line += TM_ILT_LINES;
8565                 ilt_client->end = line - 1;
8566
8567                 DP(NETIF_MSG_IFUP,
8568                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8569                    ilt_client->start,
8570                    ilt_client->end,
8571                    ilt_client->page_size,
8572                    ilt_client->flags,
8573                    ilog2(ilt_client->page_size >> 12));
8574         }
8575
8576         BUG_ON(line > ILT_MAX_LINES);
8577 }
8578
8579 /**
8580  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8581  *
8582  * @bp:                 driver handle
8583  * @fp:                 pointer to fastpath
8584  * @init_params:        pointer to parameters structure
8585  *
8586  * parameters configured:
8587  *      - HC configuration
8588  *      - Queue's CDU context
8589  */
8590 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8591         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8592 {
8593         u8 cos;
8594         int cxt_index, cxt_offset;
8595
8596         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8597         if (!IS_FCOE_FP(fp)) {
8598                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8599                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8600
8601                 /* If HC is supported, enable host coalescing in the transition
8602                  * to INIT state.
8603                  */
8604                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8605                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8606
8607                 /* HC rate */
8608                 init_params->rx.hc_rate = bp->rx_ticks ?
8609                         (1000000 / bp->rx_ticks) : 0;
8610                 init_params->tx.hc_rate = bp->tx_ticks ?
8611                         (1000000 / bp->tx_ticks) : 0;
8612
8613                 /* FW SB ID */
8614                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8615                         fp->fw_sb_id;
8616
8617                 /*
8618                  * CQ index among the SB indices: FCoE clients uses the default
8619                  * SB, therefore it's different.
8620                  */
8621                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8622                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8623         }
8624
8625         /* set maximum number of COSs supported by this queue */
8626         init_params->max_cos = fp->max_cos;
8627
8628         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8629             fp->index, init_params->max_cos);
8630
8631         /* set the context pointers queue object */
8632         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8633                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8634                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8635                                 ILT_PAGE_CIDS);
8636                 init_params->cxts[cos] =
8637                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8638         }
8639 }
8640
8641 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8642                         struct bnx2x_queue_state_params *q_params,
8643                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8644                         int tx_index, bool leading)
8645 {
8646         memset(tx_only_params, 0, sizeof(*tx_only_params));
8647
8648         /* Set the command */
8649         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8650
8651         /* Set tx-only QUEUE flags: don't zero statistics */
8652         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8653
8654         /* choose the index of the cid to send the slow path on */
8655         tx_only_params->cid_index = tx_index;
8656
8657         /* Set general TX_ONLY_SETUP parameters */
8658         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8659
8660         /* Set Tx TX_ONLY_SETUP parameters */
8661         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8662
8663         DP(NETIF_MSG_IFUP,
8664            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8665            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8666            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8667            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8668
8669         /* send the ramrod */
8670         return bnx2x_queue_state_change(bp, q_params);
8671 }
8672
8673 /**
8674  * bnx2x_setup_queue - setup queue
8675  *
8676  * @bp:         driver handle
8677  * @fp:         pointer to fastpath
8678  * @leading:    is leading
8679  *
8680  * This function performs 2 steps in a Queue state machine
8681  *      actually: 1) RESET->INIT 2) INIT->SETUP
8682  */
8683
8684 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8685                        bool leading)
8686 {
8687         struct bnx2x_queue_state_params q_params = {NULL};
8688         struct bnx2x_queue_setup_params *setup_params =
8689                                                 &q_params.params.setup;
8690         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8691                                                 &q_params.params.tx_only;
8692         int rc;
8693         u8 tx_index;
8694
8695         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8696
8697         /* reset IGU state skip FCoE L2 queue */
8698         if (!IS_FCOE_FP(fp))
8699                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8700                              IGU_INT_ENABLE, 0);
8701
8702         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8703         /* We want to wait for completion in this context */
8704         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8705
8706         /* Prepare the INIT parameters */
8707         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8708
8709         /* Set the command */
8710         q_params.cmd = BNX2X_Q_CMD_INIT;
8711
8712         /* Change the state to INIT */
8713         rc = bnx2x_queue_state_change(bp, &q_params);
8714         if (rc) {
8715                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8716                 return rc;
8717         }
8718
8719         DP(NETIF_MSG_IFUP, "init complete\n");
8720
8721         /* Now move the Queue to the SETUP state... */
8722         memset(setup_params, 0, sizeof(*setup_params));
8723
8724         /* Set QUEUE flags */
8725         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8726
8727         /* Set general SETUP parameters */
8728         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8729                                 FIRST_TX_COS_INDEX);
8730
8731         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8732                             &setup_params->rxq_params);
8733
8734         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8735                            FIRST_TX_COS_INDEX);
8736
8737         /* Set the command */
8738         q_params.cmd = BNX2X_Q_CMD_SETUP;
8739
8740         if (IS_FCOE_FP(fp))
8741                 bp->fcoe_init = true;
8742
8743         /* Change the state to SETUP */
8744         rc = bnx2x_queue_state_change(bp, &q_params);
8745         if (rc) {
8746                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8747                 return rc;
8748         }
8749
8750         /* loop through the relevant tx-only indices */
8751         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8752               tx_index < fp->max_cos;
8753               tx_index++) {
8754
8755                 /* prepare and send tx-only ramrod*/
8756                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8757                                           tx_only_params, tx_index, leading);
8758                 if (rc) {
8759                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8760                                   fp->index, tx_index);
8761                         return rc;
8762                 }
8763         }
8764
8765         return rc;
8766 }
8767
8768 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8769 {
8770         struct bnx2x_fastpath *fp = &bp->fp[index];
8771         struct bnx2x_fp_txdata *txdata;
8772         struct bnx2x_queue_state_params q_params = {NULL};
8773         int rc, tx_index;
8774
8775         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8776
8777         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8778         /* We want to wait for completion in this context */
8779         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8780
8781         /* close tx-only connections */
8782         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8783              tx_index < fp->max_cos;
8784              tx_index++){
8785
8786                 /* ascertain this is a normal queue*/
8787                 txdata = fp->txdata_ptr[tx_index];
8788
8789                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8790                                                         txdata->txq_index);
8791
8792                 /* send halt terminate on tx-only connection */
8793                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8794                 memset(&q_params.params.terminate, 0,
8795                        sizeof(q_params.params.terminate));
8796                 q_params.params.terminate.cid_index = tx_index;
8797
8798                 rc = bnx2x_queue_state_change(bp, &q_params);
8799                 if (rc)
8800                         return rc;
8801
8802                 /* send halt terminate on tx-only connection */
8803                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8804                 memset(&q_params.params.cfc_del, 0,
8805                        sizeof(q_params.params.cfc_del));
8806                 q_params.params.cfc_del.cid_index = tx_index;
8807                 rc = bnx2x_queue_state_change(bp, &q_params);
8808                 if (rc)
8809                         return rc;
8810         }
8811         /* Stop the primary connection: */
8812         /* ...halt the connection */
8813         q_params.cmd = BNX2X_Q_CMD_HALT;
8814         rc = bnx2x_queue_state_change(bp, &q_params);
8815         if (rc)
8816                 return rc;
8817
8818         /* ...terminate the connection */
8819         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8820         memset(&q_params.params.terminate, 0,
8821                sizeof(q_params.params.terminate));
8822         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8823         rc = bnx2x_queue_state_change(bp, &q_params);
8824         if (rc)
8825                 return rc;
8826         /* ...delete cfc entry */
8827         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8828         memset(&q_params.params.cfc_del, 0,
8829                sizeof(q_params.params.cfc_del));
8830         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8831         return bnx2x_queue_state_change(bp, &q_params);
8832 }
8833
8834 static void bnx2x_reset_func(struct bnx2x *bp)
8835 {
8836         int port = BP_PORT(bp);
8837         int func = BP_FUNC(bp);
8838         int i;
8839
8840         /* Disable the function in the FW */
8841         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8842         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8843         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8844         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8845
8846         /* FP SBs */
8847         for_each_eth_queue(bp, i) {
8848                 struct bnx2x_fastpath *fp = &bp->fp[i];
8849                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8850                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8851                            SB_DISABLED);
8852         }
8853
8854         if (CNIC_LOADED(bp))
8855                 /* CNIC SB */
8856                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8857                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8858                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8859
8860         /* SP SB */
8861         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8862                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8863                 SB_DISABLED);
8864
8865         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8866                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8867                        0);
8868
8869         /* Configure IGU */
8870         if (bp->common.int_block == INT_BLOCK_HC) {
8871                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8872                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8873         } else {
8874                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8875                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8876         }
8877
8878         if (CNIC_LOADED(bp)) {
8879                 /* Disable Timer scan */
8880                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8881                 /*
8882                  * Wait for at least 10ms and up to 2 second for the timers
8883                  * scan to complete
8884                  */
8885                 for (i = 0; i < 200; i++) {
8886                         usleep_range(10000, 20000);
8887                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8888                                 break;
8889                 }
8890         }
8891         /* Clear ILT */
8892         bnx2x_clear_func_ilt(bp, func);
8893
8894         /* Timers workaround bug for E2: if this is vnic-3,
8895          * we need to set the entire ilt range for this timers.
8896          */
8897         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8898                 struct ilt_client_info ilt_cli;
8899                 /* use dummy TM client */
8900                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8901                 ilt_cli.start = 0;
8902                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8903                 ilt_cli.client_num = ILT_CLIENT_TM;
8904
8905                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8906         }
8907
8908         /* this assumes that reset_port() called before reset_func()*/
8909         if (!CHIP_IS_E1x(bp))
8910                 bnx2x_pf_disable(bp);
8911
8912         bp->dmae_ready = 0;
8913 }
8914
8915 static void bnx2x_reset_port(struct bnx2x *bp)
8916 {
8917         int port = BP_PORT(bp);
8918         u32 val;
8919
8920         /* Reset physical Link */
8921         bnx2x__link_reset(bp);
8922
8923         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8924
8925         /* Do not rcv packets to BRB */
8926         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8927         /* Do not direct rcv packets that are not for MCP to the BRB */
8928         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8929                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8930
8931         /* Configure AEU */
8932         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8933
8934         msleep(100);
8935         /* Check for BRB port occupancy */
8936         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8937         if (val)
8938                 DP(NETIF_MSG_IFDOWN,
8939                    "BRB1 is not empty  %d blocks are occupied\n", val);
8940
8941         /* TODO: Close Doorbell port? */
8942 }
8943
8944 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8945 {
8946         struct bnx2x_func_state_params func_params = {NULL};
8947
8948         /* Prepare parameters for function state transitions */
8949         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8950
8951         func_params.f_obj = &bp->func_obj;
8952         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8953
8954         func_params.params.hw_init.load_phase = load_code;
8955
8956         return bnx2x_func_state_change(bp, &func_params);
8957 }
8958
8959 static int bnx2x_func_stop(struct bnx2x *bp)
8960 {
8961         struct bnx2x_func_state_params func_params = {NULL};
8962         int rc;
8963
8964         /* Prepare parameters for function state transitions */
8965         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8966         func_params.f_obj = &bp->func_obj;
8967         func_params.cmd = BNX2X_F_CMD_STOP;
8968
8969         /*
8970          * Try to stop the function the 'good way'. If fails (in case
8971          * of a parity error during bnx2x_chip_cleanup()) and we are
8972          * not in a debug mode, perform a state transaction in order to
8973          * enable further HW_RESET transaction.
8974          */
8975         rc = bnx2x_func_state_change(bp, &func_params);
8976         if (rc) {
8977 #ifdef BNX2X_STOP_ON_ERROR
8978                 return rc;
8979 #else
8980                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8981                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8982                 return bnx2x_func_state_change(bp, &func_params);
8983 #endif
8984         }
8985
8986         return 0;
8987 }
8988
8989 /**
8990  * bnx2x_send_unload_req - request unload mode from the MCP.
8991  *
8992  * @bp:                 driver handle
8993  * @unload_mode:        requested function's unload mode
8994  *
8995  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8996  */
8997 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8998 {
8999         u32 reset_code = 0;
9000         int port = BP_PORT(bp);
9001
9002         /* Select the UNLOAD request mode */
9003         if (unload_mode == UNLOAD_NORMAL)
9004                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9005
9006         else if (bp->flags & NO_WOL_FLAG)
9007                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9008
9009         else if (bp->wol) {
9010                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9011                 u8 *mac_addr = bp->dev->dev_addr;
9012                 struct pci_dev *pdev = bp->pdev;
9013                 u32 val;
9014                 u16 pmc;
9015
9016                 /* The mac address is written to entries 1-4 to
9017                  * preserve entry 0 which is used by the PMF
9018                  */
9019                 u8 entry = (BP_VN(bp) + 1)*8;
9020
9021                 val = (mac_addr[0] << 8) | mac_addr[1];
9022                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9023
9024                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9025                       (mac_addr[4] << 8) | mac_addr[5];
9026                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9027
9028                 /* Enable the PME and clear the status */
9029                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9030                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9031                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9032
9033                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9034
9035         } else
9036                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9037
9038         /* Send the request to the MCP */
9039         if (!BP_NOMCP(bp))
9040                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9041         else {
9042                 int path = BP_PATH(bp);
9043
9044                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9045                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9046                    bnx2x_load_count[path][2]);
9047                 bnx2x_load_count[path][0]--;
9048                 bnx2x_load_count[path][1 + port]--;
9049                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9050                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9051                    bnx2x_load_count[path][2]);
9052                 if (bnx2x_load_count[path][0] == 0)
9053                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9054                 else if (bnx2x_load_count[path][1 + port] == 0)
9055                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9056                 else
9057                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9058         }
9059
9060         return reset_code;
9061 }
9062
9063 /**
9064  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9065  *
9066  * @bp:         driver handle
9067  * @keep_link:          true iff link should be kept up
9068  */
9069 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9070 {
9071         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9072
9073         /* Report UNLOAD_DONE to MCP */
9074         if (!BP_NOMCP(bp))
9075                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9076 }
9077
9078 static int bnx2x_func_wait_started(struct bnx2x *bp)
9079 {
9080         int tout = 50;
9081         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9082
9083         if (!bp->port.pmf)
9084                 return 0;
9085
9086         /*
9087          * (assumption: No Attention from MCP at this stage)
9088          * PMF probably in the middle of TX disable/enable transaction
9089          * 1. Sync IRS for default SB
9090          * 2. Sync SP queue - this guarantees us that attention handling started
9091          * 3. Wait, that TX disable/enable transaction completes
9092          *
9093          * 1+2 guarantee that if DCBx attention was scheduled it already changed
9094          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9095          * received completion for the transaction the state is TX_STOPPED.
9096          * State will return to STARTED after completion of TX_STOPPED-->STARTED
9097          * transaction.
9098          */
9099
9100         /* make sure default SB ISR is done */
9101         if (msix)
9102                 synchronize_irq(bp->msix_table[0].vector);
9103         else
9104                 synchronize_irq(bp->pdev->irq);
9105
9106         flush_workqueue(bnx2x_wq);
9107         flush_workqueue(bnx2x_iov_wq);
9108
9109         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9110                                 BNX2X_F_STATE_STARTED && tout--)
9111                 msleep(20);
9112
9113         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9114                                                 BNX2X_F_STATE_STARTED) {
9115 #ifdef BNX2X_STOP_ON_ERROR
9116                 BNX2X_ERR("Wrong function state\n");
9117                 return -EBUSY;
9118 #else
9119                 /*
9120                  * Failed to complete the transaction in a "good way"
9121                  * Force both transactions with CLR bit
9122                  */
9123                 struct bnx2x_func_state_params func_params = {NULL};
9124
9125                 DP(NETIF_MSG_IFDOWN,
9126                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9127
9128                 func_params.f_obj = &bp->func_obj;
9129                 __set_bit(RAMROD_DRV_CLR_ONLY,
9130                                         &func_params.ramrod_flags);
9131
9132                 /* STARTED-->TX_ST0PPED */
9133                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9134                 bnx2x_func_state_change(bp, &func_params);
9135
9136                 /* TX_ST0PPED-->STARTED */
9137                 func_params.cmd = BNX2X_F_CMD_TX_START;
9138                 return bnx2x_func_state_change(bp, &func_params);
9139 #endif
9140         }
9141
9142         return 0;
9143 }
9144
9145 static void bnx2x_disable_ptp(struct bnx2x *bp)
9146 {
9147         int port = BP_PORT(bp);
9148
9149         /* Disable sending PTP packets to host */
9150         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9151                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9152
9153         /* Reset PTP event detection rules */
9154         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9155                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9156         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9157                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9158         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9159                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9160         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9161                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9162
9163         /* Disable the PTP feature */
9164         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9165                NIG_REG_P0_PTP_EN, 0x0);
9166 }
9167
9168 /* Called during unload, to stop PTP-related stuff */
9169 void bnx2x_stop_ptp(struct bnx2x *bp)
9170 {
9171         /* Cancel PTP work queue. Should be done after the Tx queues are
9172          * drained to prevent additional scheduling.
9173          */
9174         cancel_work_sync(&bp->ptp_task);
9175
9176         if (bp->ptp_tx_skb) {
9177                 dev_kfree_skb_any(bp->ptp_tx_skb);
9178                 bp->ptp_tx_skb = NULL;
9179         }
9180
9181         /* Disable PTP in HW */
9182         bnx2x_disable_ptp(bp);
9183
9184         DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9185 }
9186
9187 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9188 {
9189         int port = BP_PORT(bp);
9190         int i, rc = 0;
9191         u8 cos;
9192         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9193         u32 reset_code;
9194
9195         /* Wait until tx fastpath tasks complete */
9196         for_each_tx_queue(bp, i) {
9197                 struct bnx2x_fastpath *fp = &bp->fp[i];
9198
9199                 for_each_cos_in_tx_queue(fp, cos)
9200                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9201 #ifdef BNX2X_STOP_ON_ERROR
9202                 if (rc)
9203                         return;
9204 #endif
9205         }
9206
9207         /* Give HW time to discard old tx messages */
9208         usleep_range(1000, 2000);
9209
9210         /* Clean all ETH MACs */
9211         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9212                                 false);
9213         if (rc < 0)
9214                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9215
9216         /* Clean up UC list  */
9217         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9218                                 true);
9219         if (rc < 0)
9220                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9221                           rc);
9222
9223         /* Disable LLH */
9224         if (!CHIP_IS_E1(bp))
9225                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9226
9227         /* Set "drop all" (stop Rx).
9228          * We need to take a netif_addr_lock() here in order to prevent
9229          * a race between the completion code and this code.
9230          */
9231         netif_addr_lock_bh(bp->dev);
9232         /* Schedule the rx_mode command */
9233         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9234                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9235         else
9236                 bnx2x_set_storm_rx_mode(bp);
9237
9238         /* Cleanup multicast configuration */
9239         rparam.mcast_obj = &bp->mcast_obj;
9240         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9241         if (rc < 0)
9242                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9243
9244         netif_addr_unlock_bh(bp->dev);
9245
9246         bnx2x_iov_chip_cleanup(bp);
9247
9248         /*
9249          * Send the UNLOAD_REQUEST to the MCP. This will return if
9250          * this function should perform FUNC, PORT or COMMON HW
9251          * reset.
9252          */
9253         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9254
9255         /*
9256          * (assumption: No Attention from MCP at this stage)
9257          * PMF probably in the middle of TX disable/enable transaction
9258          */
9259         rc = bnx2x_func_wait_started(bp);
9260         if (rc) {
9261                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9262 #ifdef BNX2X_STOP_ON_ERROR
9263                 return;
9264 #endif
9265         }
9266
9267         /* Close multi and leading connections
9268          * Completions for ramrods are collected in a synchronous way
9269          */
9270         for_each_eth_queue(bp, i)
9271                 if (bnx2x_stop_queue(bp, i))
9272 #ifdef BNX2X_STOP_ON_ERROR
9273                         return;
9274 #else
9275                         goto unload_error;
9276 #endif
9277
9278         if (CNIC_LOADED(bp)) {
9279                 for_each_cnic_queue(bp, i)
9280                         if (bnx2x_stop_queue(bp, i))
9281 #ifdef BNX2X_STOP_ON_ERROR
9282                                 return;
9283 #else
9284                                 goto unload_error;
9285 #endif
9286         }
9287
9288         /* If SP settings didn't get completed so far - something
9289          * very wrong has happen.
9290          */
9291         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9292                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9293
9294 #ifndef BNX2X_STOP_ON_ERROR
9295 unload_error:
9296 #endif
9297         rc = bnx2x_func_stop(bp);
9298         if (rc) {
9299                 BNX2X_ERR("Function stop failed!\n");
9300 #ifdef BNX2X_STOP_ON_ERROR
9301                 return;
9302 #endif
9303         }
9304
9305         /* stop_ptp should be after the Tx queues are drained to prevent
9306          * scheduling to the cancelled PTP work queue. It should also be after
9307          * function stop ramrod is sent, since as part of this ramrod FW access
9308          * PTP registers.
9309          */
9310         bnx2x_stop_ptp(bp);
9311
9312         /* Disable HW interrupts, NAPI */
9313         bnx2x_netif_stop(bp, 1);
9314         /* Delete all NAPI objects */
9315         bnx2x_del_all_napi(bp);
9316         if (CNIC_LOADED(bp))
9317                 bnx2x_del_all_napi_cnic(bp);
9318
9319         /* Release IRQs */
9320         bnx2x_free_irq(bp);
9321
9322         /* Reset the chip */
9323         rc = bnx2x_reset_hw(bp, reset_code);
9324         if (rc)
9325                 BNX2X_ERR("HW_RESET failed\n");
9326
9327         /* Report UNLOAD_DONE to MCP */
9328         bnx2x_send_unload_done(bp, keep_link);
9329 }
9330
9331 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9332 {
9333         u32 val;
9334
9335         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9336
9337         if (CHIP_IS_E1(bp)) {
9338                 int port = BP_PORT(bp);
9339                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9340                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9341
9342                 val = REG_RD(bp, addr);
9343                 val &= ~(0x300);
9344                 REG_WR(bp, addr, val);
9345         } else {
9346                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9347                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9348                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9349                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9350         }
9351 }
9352
9353 /* Close gates #2, #3 and #4: */
9354 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9355 {
9356         u32 val;
9357
9358         /* Gates #2 and #4a are closed/opened for "not E1" only */
9359         if (!CHIP_IS_E1(bp)) {
9360                 /* #4 */
9361                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9362                 /* #2 */
9363                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9364         }
9365
9366         /* #3 */
9367         if (CHIP_IS_E1x(bp)) {
9368                 /* Prevent interrupts from HC on both ports */
9369                 val = REG_RD(bp, HC_REG_CONFIG_1);
9370                 REG_WR(bp, HC_REG_CONFIG_1,
9371                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9372                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9373
9374                 val = REG_RD(bp, HC_REG_CONFIG_0);
9375                 REG_WR(bp, HC_REG_CONFIG_0,
9376                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9377                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9378         } else {
9379                 /* Prevent incoming interrupts in IGU */
9380                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9381
9382                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9383                        (!close) ?
9384                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9385                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9386         }
9387
9388         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9389                 close ? "closing" : "opening");
9390         mmiowb();
9391 }
9392
9393 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9394
9395 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9396 {
9397         /* Do some magic... */
9398         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9399         *magic_val = val & SHARED_MF_CLP_MAGIC;
9400         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9401 }
9402
9403 /**
9404  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9405  *
9406  * @bp:         driver handle
9407  * @magic_val:  old value of the `magic' bit.
9408  */
9409 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9410 {
9411         /* Restore the `magic' bit value... */
9412         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9413         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9414                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9415 }
9416
9417 /**
9418  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9419  *
9420  * @bp:         driver handle
9421  * @magic_val:  old value of 'magic' bit.
9422  *
9423  * Takes care of CLP configurations.
9424  */
9425 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9426 {
9427         u32 shmem;
9428         u32 validity_offset;
9429
9430         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9431
9432         /* Set `magic' bit in order to save MF config */
9433         if (!CHIP_IS_E1(bp))
9434                 bnx2x_clp_reset_prep(bp, magic_val);
9435
9436         /* Get shmem offset */
9437         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9438         validity_offset =
9439                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9440
9441         /* Clear validity map flags */
9442         if (shmem > 0)
9443                 REG_WR(bp, shmem + validity_offset, 0);
9444 }
9445
9446 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9447 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9448
9449 /**
9450  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9451  *
9452  * @bp: driver handle
9453  */
9454 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9455 {
9456         /* special handling for emulation and FPGA,
9457            wait 10 times longer */
9458         if (CHIP_REV_IS_SLOW(bp))
9459                 msleep(MCP_ONE_TIMEOUT*10);
9460         else
9461                 msleep(MCP_ONE_TIMEOUT);
9462 }
9463
9464 /*
9465  * initializes bp->common.shmem_base and waits for validity signature to appear
9466  */
9467 static int bnx2x_init_shmem(struct bnx2x *bp)
9468 {
9469         int cnt = 0;
9470         u32 val = 0;
9471
9472         do {
9473                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9474                 if (bp->common.shmem_base) {
9475                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9476                         if (val & SHR_MEM_VALIDITY_MB)
9477                                 return 0;
9478                 }
9479
9480                 bnx2x_mcp_wait_one(bp);
9481
9482         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9483
9484         BNX2X_ERR("BAD MCP validity signature\n");
9485
9486         return -ENODEV;
9487 }
9488
9489 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9490 {
9491         int rc = bnx2x_init_shmem(bp);
9492
9493         /* Restore the `magic' bit value */
9494         if (!CHIP_IS_E1(bp))
9495                 bnx2x_clp_reset_done(bp, magic_val);
9496
9497         return rc;
9498 }
9499
9500 static void bnx2x_pxp_prep(struct bnx2x *bp)
9501 {
9502         if (!CHIP_IS_E1(bp)) {
9503                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9504                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9505                 mmiowb();
9506         }
9507 }
9508
9509 /*
9510  * Reset the whole chip except for:
9511  *      - PCIE core
9512  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9513  *              one reset bit)
9514  *      - IGU
9515  *      - MISC (including AEU)
9516  *      - GRC
9517  *      - RBCN, RBCP
9518  */
9519 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9520 {
9521         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9522         u32 global_bits2, stay_reset2;
9523
9524         /*
9525          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9526          * (per chip) blocks.
9527          */
9528         global_bits2 =
9529                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9530                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9531
9532         /* Don't reset the following blocks.
9533          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9534          *            reset, as in 4 port device they might still be owned
9535          *            by the MCP (there is only one leader per path).
9536          */
9537         not_reset_mask1 =
9538                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9539                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9540                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9541
9542         not_reset_mask2 =
9543                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9544                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9545                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9546                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9547                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9548                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9549                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9550                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9551                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9552                 MISC_REGISTERS_RESET_REG_2_PGLC |
9553                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9554                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9555                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9556                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9557                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9558                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9559
9560         /*
9561          * Keep the following blocks in reset:
9562          *  - all xxMACs are handled by the bnx2x_link code.
9563          */
9564         stay_reset2 =
9565                 MISC_REGISTERS_RESET_REG_2_XMAC |
9566                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9567
9568         /* Full reset masks according to the chip */
9569         reset_mask1 = 0xffffffff;
9570
9571         if (CHIP_IS_E1(bp))
9572                 reset_mask2 = 0xffff;
9573         else if (CHIP_IS_E1H(bp))
9574                 reset_mask2 = 0x1ffff;
9575         else if (CHIP_IS_E2(bp))
9576                 reset_mask2 = 0xfffff;
9577         else /* CHIP_IS_E3 */
9578                 reset_mask2 = 0x3ffffff;
9579
9580         /* Don't reset global blocks unless we need to */
9581         if (!global)
9582                 reset_mask2 &= ~global_bits2;
9583
9584         /*
9585          * In case of attention in the QM, we need to reset PXP
9586          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9587          * because otherwise QM reset would release 'close the gates' shortly
9588          * before resetting the PXP, then the PSWRQ would send a write
9589          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9590          * read the payload data from PSWWR, but PSWWR would not
9591          * respond. The write queue in PGLUE would stuck, dmae commands
9592          * would not return. Therefore it's important to reset the second
9593          * reset register (containing the
9594          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9595          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9596          * bit).
9597          */
9598         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9599                reset_mask2 & (~not_reset_mask2));
9600
9601         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9602                reset_mask1 & (~not_reset_mask1));
9603
9604         barrier();
9605         mmiowb();
9606
9607         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9608                reset_mask2 & (~stay_reset2));
9609
9610         barrier();
9611         mmiowb();
9612
9613         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9614         mmiowb();
9615 }
9616
9617 /**
9618  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9619  * It should get cleared in no more than 1s.
9620  *
9621  * @bp: driver handle
9622  *
9623  * It should get cleared in no more than 1s. Returns 0 if
9624  * pending writes bit gets cleared.
9625  */
9626 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9627 {
9628         u32 cnt = 1000;
9629         u32 pend_bits = 0;
9630
9631         do {
9632                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9633
9634                 if (pend_bits == 0)
9635                         break;
9636
9637                 usleep_range(1000, 2000);
9638         } while (cnt-- > 0);
9639
9640         if (cnt <= 0) {
9641                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9642                           pend_bits);
9643                 return -EBUSY;
9644         }
9645
9646         return 0;
9647 }
9648
9649 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9650 {
9651         int cnt = 1000;
9652         u32 val = 0;
9653         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9654         u32 tags_63_32 = 0;
9655
9656         /* Empty the Tetris buffer, wait for 1s */
9657         do {
9658                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9659                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9660                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9661                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9662                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9663                 if (CHIP_IS_E3(bp))
9664                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9665
9666                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9667                     ((port_is_idle_0 & 0x1) == 0x1) &&
9668                     ((port_is_idle_1 & 0x1) == 0x1) &&
9669                     (pgl_exp_rom2 == 0xffffffff) &&
9670                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9671                         break;
9672                 usleep_range(1000, 2000);
9673         } while (cnt-- > 0);
9674
9675         if (cnt <= 0) {
9676                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9677                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9678                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9679                           pgl_exp_rom2);
9680                 return -EAGAIN;
9681         }
9682
9683         barrier();
9684
9685         /* Close gates #2, #3 and #4 */
9686         bnx2x_set_234_gates(bp, true);
9687
9688         /* Poll for IGU VQs for 57712 and newer chips */
9689         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9690                 return -EAGAIN;
9691
9692         /* TBD: Indicate that "process kill" is in progress to MCP */
9693
9694         /* Clear "unprepared" bit */
9695         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9696         barrier();
9697
9698         /* Make sure all is written to the chip before the reset */
9699         mmiowb();
9700
9701         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9702          * PSWHST, GRC and PSWRD Tetris buffer.
9703          */
9704         usleep_range(1000, 2000);
9705
9706         /* Prepare to chip reset: */
9707         /* MCP */
9708         if (global)
9709                 bnx2x_reset_mcp_prep(bp, &val);
9710
9711         /* PXP */
9712         bnx2x_pxp_prep(bp);
9713         barrier();
9714
9715         /* reset the chip */
9716         bnx2x_process_kill_chip_reset(bp, global);
9717         barrier();
9718
9719         /* clear errors in PGB */
9720         if (!CHIP_IS_E1x(bp))
9721                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9722
9723         /* Recover after reset: */
9724         /* MCP */
9725         if (global && bnx2x_reset_mcp_comp(bp, val))
9726                 return -EAGAIN;
9727
9728         /* TBD: Add resetting the NO_MCP mode DB here */
9729
9730         /* Open the gates #2, #3 and #4 */
9731         bnx2x_set_234_gates(bp, false);
9732
9733         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9734          * reset state, re-enable attentions. */
9735
9736         return 0;
9737 }
9738
9739 static int bnx2x_leader_reset(struct bnx2x *bp)
9740 {
9741         int rc = 0;
9742         bool global = bnx2x_reset_is_global(bp);
9743         u32 load_code;
9744
9745         /* if not going to reset MCP - load "fake" driver to reset HW while
9746          * driver is owner of the HW
9747          */
9748         if (!global && !BP_NOMCP(bp)) {
9749                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9750                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9751                 if (!load_code) {
9752                         BNX2X_ERR("MCP response failure, aborting\n");
9753                         rc = -EAGAIN;
9754                         goto exit_leader_reset;
9755                 }
9756                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9757                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9758                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9759                         rc = -EAGAIN;
9760                         goto exit_leader_reset2;
9761                 }
9762                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9763                 if (!load_code) {
9764                         BNX2X_ERR("MCP response failure, aborting\n");
9765                         rc = -EAGAIN;
9766                         goto exit_leader_reset2;
9767                 }
9768         }
9769
9770         /* Try to recover after the failure */
9771         if (bnx2x_process_kill(bp, global)) {
9772                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9773                           BP_PATH(bp));
9774                 rc = -EAGAIN;
9775                 goto exit_leader_reset2;
9776         }
9777
9778         /*
9779          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9780          * state.
9781          */
9782         bnx2x_set_reset_done(bp);
9783         if (global)
9784                 bnx2x_clear_reset_global(bp);
9785
9786 exit_leader_reset2:
9787         /* unload "fake driver" if it was loaded */
9788         if (!global && !BP_NOMCP(bp)) {
9789                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9790                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9791         }
9792 exit_leader_reset:
9793         bp->is_leader = 0;
9794         bnx2x_release_leader_lock(bp);
9795         smp_mb();
9796         return rc;
9797 }
9798
9799 static void bnx2x_recovery_failed(struct bnx2x *bp)
9800 {
9801         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9802
9803         /* Disconnect this device */
9804         netif_device_detach(bp->dev);
9805
9806         /*
9807          * Block ifup for all function on this engine until "process kill"
9808          * or power cycle.
9809          */
9810         bnx2x_set_reset_in_progress(bp);
9811
9812         /* Shut down the power */
9813         bnx2x_set_power_state(bp, PCI_D3hot);
9814
9815         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9816
9817         smp_mb();
9818 }
9819
9820 /*
9821  * Assumption: runs under rtnl lock. This together with the fact
9822  * that it's called only from bnx2x_sp_rtnl() ensure that it
9823  * will never be called when netif_running(bp->dev) is false.
9824  */
9825 static void bnx2x_parity_recover(struct bnx2x *bp)
9826 {
9827         bool global = false;
9828         u32 error_recovered, error_unrecovered;
9829         bool is_parity;
9830
9831         DP(NETIF_MSG_HW, "Handling parity\n");
9832         while (1) {
9833                 switch (bp->recovery_state) {
9834                 case BNX2X_RECOVERY_INIT:
9835                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9836                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9837                         WARN_ON(!is_parity);
9838
9839                         /* Try to get a LEADER_LOCK HW lock */
9840                         if (bnx2x_trylock_leader_lock(bp)) {
9841                                 bnx2x_set_reset_in_progress(bp);
9842                                 /*
9843                                  * Check if there is a global attention and if
9844                                  * there was a global attention, set the global
9845                                  * reset bit.
9846                                  */
9847
9848                                 if (global)
9849                                         bnx2x_set_reset_global(bp);
9850
9851                                 bp->is_leader = 1;
9852                         }
9853
9854                         /* Stop the driver */
9855                         /* If interface has been removed - break */
9856                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9857                                 return;
9858
9859                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9860
9861                         /* Ensure "is_leader", MCP command sequence and
9862                          * "recovery_state" update values are seen on other
9863                          * CPUs.
9864                          */
9865                         smp_mb();
9866                         break;
9867
9868                 case BNX2X_RECOVERY_WAIT:
9869                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9870                         if (bp->is_leader) {
9871                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9872                                 bool other_load_status =
9873                                         bnx2x_get_load_status(bp, other_engine);
9874                                 bool load_status =
9875                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9876                                 global = bnx2x_reset_is_global(bp);
9877
9878                                 /*
9879                                  * In case of a parity in a global block, let
9880                                  * the first leader that performs a
9881                                  * leader_reset() reset the global blocks in
9882                                  * order to clear global attentions. Otherwise
9883                                  * the gates will remain closed for that
9884                                  * engine.
9885                                  */
9886                                 if (load_status ||
9887                                     (global && other_load_status)) {
9888                                         /* Wait until all other functions get
9889                                          * down.
9890                                          */
9891                                         schedule_delayed_work(&bp->sp_rtnl_task,
9892                                                                 HZ/10);
9893                                         return;
9894                                 } else {
9895                                         /* If all other functions got down -
9896                                          * try to bring the chip back to
9897                                          * normal. In any case it's an exit
9898                                          * point for a leader.
9899                                          */
9900                                         if (bnx2x_leader_reset(bp)) {
9901                                                 bnx2x_recovery_failed(bp);
9902                                                 return;
9903                                         }
9904
9905                                         /* If we are here, means that the
9906                                          * leader has succeeded and doesn't
9907                                          * want to be a leader any more. Try
9908                                          * to continue as a none-leader.
9909                                          */
9910                                         break;
9911                                 }
9912                         } else { /* non-leader */
9913                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9914                                         /* Try to get a LEADER_LOCK HW lock as
9915                                          * long as a former leader may have
9916                                          * been unloaded by the user or
9917                                          * released a leadership by another
9918                                          * reason.
9919                                          */
9920                                         if (bnx2x_trylock_leader_lock(bp)) {
9921                                                 /* I'm a leader now! Restart a
9922                                                  * switch case.
9923                                                  */
9924                                                 bp->is_leader = 1;
9925                                                 break;
9926                                         }
9927
9928                                         schedule_delayed_work(&bp->sp_rtnl_task,
9929                                                                 HZ/10);
9930                                         return;
9931
9932                                 } else {
9933                                         /*
9934                                          * If there was a global attention, wait
9935                                          * for it to be cleared.
9936                                          */
9937                                         if (bnx2x_reset_is_global(bp)) {
9938                                                 schedule_delayed_work(
9939                                                         &bp->sp_rtnl_task,
9940                                                         HZ/10);
9941                                                 return;
9942                                         }
9943
9944                                         error_recovered =
9945                                           bp->eth_stats.recoverable_error;
9946                                         error_unrecovered =
9947                                           bp->eth_stats.unrecoverable_error;
9948                                         bp->recovery_state =
9949                                                 BNX2X_RECOVERY_NIC_LOADING;
9950                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9951                                                 error_unrecovered++;
9952                                                 netdev_err(bp->dev,
9953                                                            "Recovery failed. Power cycle needed\n");
9954                                                 /* Disconnect this device */
9955                                                 netif_device_detach(bp->dev);
9956                                                 /* Shut down the power */
9957                                                 bnx2x_set_power_state(
9958                                                         bp, PCI_D3hot);
9959                                                 smp_mb();
9960                                         } else {
9961                                                 bp->recovery_state =
9962                                                         BNX2X_RECOVERY_DONE;
9963                                                 error_recovered++;
9964                                                 smp_mb();
9965                                         }
9966                                         bp->eth_stats.recoverable_error =
9967                                                 error_recovered;
9968                                         bp->eth_stats.unrecoverable_error =
9969                                                 error_unrecovered;
9970
9971                                         return;
9972                                 }
9973                         }
9974                 default:
9975                         return;
9976                 }
9977         }
9978 }
9979
9980 static int bnx2x_close(struct net_device *dev);
9981
9982 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9983  * scheduled on a general queue in order to prevent a dead lock.
9984  */
9985 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9986 {
9987         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9988
9989         rtnl_lock();
9990
9991         if (!netif_running(bp->dev)) {
9992                 rtnl_unlock();
9993                 return;
9994         }
9995
9996         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9997 #ifdef BNX2X_STOP_ON_ERROR
9998                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9999                           "you will need to reboot when done\n");
10000                 goto sp_rtnl_not_reset;
10001 #endif
10002                 /*
10003                  * Clear all pending SP commands as we are going to reset the
10004                  * function anyway.
10005                  */
10006                 bp->sp_rtnl_state = 0;
10007                 smp_mb();
10008
10009                 bnx2x_parity_recover(bp);
10010
10011                 rtnl_unlock();
10012                 return;
10013         }
10014
10015         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10016 #ifdef BNX2X_STOP_ON_ERROR
10017                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10018                           "you will need to reboot when done\n");
10019                 goto sp_rtnl_not_reset;
10020 #endif
10021
10022                 /*
10023                  * Clear all pending SP commands as we are going to reset the
10024                  * function anyway.
10025                  */
10026                 bp->sp_rtnl_state = 0;
10027                 smp_mb();
10028
10029                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10030                 bnx2x_nic_load(bp, LOAD_NORMAL);
10031
10032                 rtnl_unlock();
10033                 return;
10034         }
10035 #ifdef BNX2X_STOP_ON_ERROR
10036 sp_rtnl_not_reset:
10037 #endif
10038         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10039                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10040         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10041                 bnx2x_after_function_update(bp);
10042         /*
10043          * in case of fan failure we need to reset id if the "stop on error"
10044          * debug flag is set, since we trying to prevent permanent overheating
10045          * damage
10046          */
10047         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10048                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10049                 netif_device_detach(bp->dev);
10050                 bnx2x_close(bp->dev);
10051                 rtnl_unlock();
10052                 return;
10053         }
10054
10055         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10056                 DP(BNX2X_MSG_SP,
10057                    "sending set mcast vf pf channel message from rtnl sp-task\n");
10058                 bnx2x_vfpf_set_mcast(bp->dev);
10059         }
10060         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10061                                &bp->sp_rtnl_state)){
10062                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10063                         bnx2x_tx_disable(bp);
10064                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10065                 }
10066         }
10067
10068         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10069                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10070                 bnx2x_set_rx_mode_inner(bp);
10071         }
10072
10073         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10074                                &bp->sp_rtnl_state))
10075                 bnx2x_pf_set_vfs_vlan(bp);
10076
10077         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10078                 bnx2x_dcbx_stop_hw_tx(bp);
10079                 bnx2x_dcbx_resume_hw_tx(bp);
10080         }
10081
10082         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10083                                &bp->sp_rtnl_state))
10084                 bnx2x_update_mng_version(bp);
10085
10086         /* work which needs rtnl lock not-taken (as it takes the lock itself and
10087          * can be called from other contexts as well)
10088          */
10089         rtnl_unlock();
10090
10091         /* enable SR-IOV if applicable */
10092         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10093                                                &bp->sp_rtnl_state)) {
10094                 bnx2x_disable_sriov(bp);
10095                 bnx2x_enable_sriov(bp);
10096         }
10097 }
10098
10099 static void bnx2x_period_task(struct work_struct *work)
10100 {
10101         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10102
10103         if (!netif_running(bp->dev))
10104                 goto period_task_exit;
10105
10106         if (CHIP_REV_IS_SLOW(bp)) {
10107                 BNX2X_ERR("period task called on emulation, ignoring\n");
10108                 goto period_task_exit;
10109         }
10110
10111         bnx2x_acquire_phy_lock(bp);
10112         /*
10113          * The barrier is needed to ensure the ordering between the writing to
10114          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10115          * the reading here.
10116          */
10117         smp_mb();
10118         if (bp->port.pmf) {
10119                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10120
10121                 /* Re-queue task in 1 sec */
10122                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10123         }
10124
10125         bnx2x_release_phy_lock(bp);
10126 period_task_exit:
10127         return;
10128 }
10129
10130 /*
10131  * Init service functions
10132  */
10133
10134 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10135 {
10136         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10137         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10138         return base + (BP_ABS_FUNC(bp)) * stride;
10139 }
10140
10141 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10142                                         struct bnx2x_mac_vals *vals)
10143 {
10144         u32 val, base_addr, offset, mask, reset_reg;
10145         bool mac_stopped = false;
10146         u8 port = BP_PORT(bp);
10147
10148         /* reset addresses as they also mark which values were changed */
10149         vals->bmac_addr = 0;
10150         vals->umac_addr = 0;
10151         vals->xmac_addr = 0;
10152         vals->emac_addr = 0;
10153
10154         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10155
10156         if (!CHIP_IS_E3(bp)) {
10157                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10158                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10159                 if ((mask & reset_reg) && val) {
10160                         u32 wb_data[2];
10161                         BNX2X_DEV_INFO("Disable bmac Rx\n");
10162                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10163                                                 : NIG_REG_INGRESS_BMAC0_MEM;
10164                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10165                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
10166
10167                         /*
10168                          * use rd/wr since we cannot use dmae. This is safe
10169                          * since MCP won't access the bus due to the request
10170                          * to unload, and no function on the path can be
10171                          * loaded at this time.
10172                          */
10173                         wb_data[0] = REG_RD(bp, base_addr + offset);
10174                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10175                         vals->bmac_addr = base_addr + offset;
10176                         vals->bmac_val[0] = wb_data[0];
10177                         vals->bmac_val[1] = wb_data[1];
10178                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10179                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10180                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10181                 }
10182                 BNX2X_DEV_INFO("Disable emac Rx\n");
10183                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10184                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10185                 REG_WR(bp, vals->emac_addr, 0);
10186                 mac_stopped = true;
10187         } else {
10188                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10189                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10190                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10191                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10192                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10193                                val & ~(1 << 1));
10194                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10195                                val | (1 << 1));
10196                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10197                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10198                         REG_WR(bp, vals->xmac_addr, 0);
10199                         mac_stopped = true;
10200                 }
10201                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10202                 if (mask & reset_reg) {
10203                         BNX2X_DEV_INFO("Disable umac Rx\n");
10204                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10205                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
10206                         vals->umac_val = REG_RD(bp, vals->umac_addr);
10207                         REG_WR(bp, vals->umac_addr, 0);
10208                         mac_stopped = true;
10209                 }
10210         }
10211
10212         if (mac_stopped)
10213                 msleep(20);
10214 }
10215
10216 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10217 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10218                                         0x1848 + ((f) << 4))
10219 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10220 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10221 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10222
10223 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10224 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10225 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10226
10227 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10228 {
10229         /* UNDI marks its presence in DORQ -
10230          * it initializes CID offset for normal bell to 0x7
10231          */
10232         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10233             MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10234                 return false;
10235
10236         if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10237                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10238                 return true;
10239         }
10240
10241         return false;
10242 }
10243
10244 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10245 {
10246         u16 rcq, bd;
10247         u32 addr, tmp_reg;
10248
10249         if (BP_FUNC(bp) < 2)
10250                 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10251         else
10252                 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10253
10254         tmp_reg = REG_RD(bp, addr);
10255         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10256         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10257
10258         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10259         REG_WR(bp, addr, tmp_reg);
10260
10261         BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10262                        BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10263 }
10264
10265 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10266 {
10267         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10268                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10269         if (!rc) {
10270                 BNX2X_ERR("MCP response failure, aborting\n");
10271                 return -EBUSY;
10272         }
10273
10274         return 0;
10275 }
10276
10277 static struct bnx2x_prev_path_list *
10278                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10279 {
10280         struct bnx2x_prev_path_list *tmp_list;
10281
10282         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10283                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10284                     bp->pdev->bus->number == tmp_list->bus &&
10285                     BP_PATH(bp) == tmp_list->path)
10286                         return tmp_list;
10287
10288         return NULL;
10289 }
10290
10291 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10292 {
10293         struct bnx2x_prev_path_list *tmp_list;
10294         int rc;
10295
10296         rc = down_interruptible(&bnx2x_prev_sem);
10297         if (rc) {
10298                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10299                 return rc;
10300         }
10301
10302         tmp_list = bnx2x_prev_path_get_entry(bp);
10303         if (tmp_list) {
10304                 tmp_list->aer = 1;
10305                 rc = 0;
10306         } else {
10307                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10308                           BP_PATH(bp));
10309         }
10310
10311         up(&bnx2x_prev_sem);
10312
10313         return rc;
10314 }
10315
10316 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10317 {
10318         struct bnx2x_prev_path_list *tmp_list;
10319         bool rc = false;
10320
10321         if (down_trylock(&bnx2x_prev_sem))
10322                 return false;
10323
10324         tmp_list = bnx2x_prev_path_get_entry(bp);
10325         if (tmp_list) {
10326                 if (tmp_list->aer) {
10327                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10328                            BP_PATH(bp));
10329                 } else {
10330                         rc = true;
10331                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10332                                        BP_PATH(bp));
10333                 }
10334         }
10335
10336         up(&bnx2x_prev_sem);
10337
10338         return rc;
10339 }
10340
10341 bool bnx2x_port_after_undi(struct bnx2x *bp)
10342 {
10343         struct bnx2x_prev_path_list *entry;
10344         bool val;
10345
10346         down(&bnx2x_prev_sem);
10347
10348         entry = bnx2x_prev_path_get_entry(bp);
10349         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10350
10351         up(&bnx2x_prev_sem);
10352
10353         return val;
10354 }
10355
10356 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10357 {
10358         struct bnx2x_prev_path_list *tmp_list;
10359         int rc;
10360
10361         rc = down_interruptible(&bnx2x_prev_sem);
10362         if (rc) {
10363                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10364                 return rc;
10365         }
10366
10367         /* Check whether the entry for this path already exists */
10368         tmp_list = bnx2x_prev_path_get_entry(bp);
10369         if (tmp_list) {
10370                 if (!tmp_list->aer) {
10371                         BNX2X_ERR("Re-Marking the path.\n");
10372                 } else {
10373                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10374                            BP_PATH(bp));
10375                         tmp_list->aer = 0;
10376                 }
10377                 up(&bnx2x_prev_sem);
10378                 return 0;
10379         }
10380         up(&bnx2x_prev_sem);
10381
10382         /* Create an entry for this path and add it */
10383         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10384         if (!tmp_list) {
10385                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10386                 return -ENOMEM;
10387         }
10388
10389         tmp_list->bus = bp->pdev->bus->number;
10390         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10391         tmp_list->path = BP_PATH(bp);
10392         tmp_list->aer = 0;
10393         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10394
10395         rc = down_interruptible(&bnx2x_prev_sem);
10396         if (rc) {
10397                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10398                 kfree(tmp_list);
10399         } else {
10400                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10401                    BP_PATH(bp));
10402                 list_add(&tmp_list->list, &bnx2x_prev_list);
10403                 up(&bnx2x_prev_sem);
10404         }
10405
10406         return rc;
10407 }
10408
10409 static int bnx2x_do_flr(struct bnx2x *bp)
10410 {
10411         struct pci_dev *dev = bp->pdev;
10412
10413         if (CHIP_IS_E1x(bp)) {
10414                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10415                 return -EINVAL;
10416         }
10417
10418         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10419         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10420                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10421                           bp->common.bc_ver);
10422                 return -EINVAL;
10423         }
10424
10425         if (!pci_wait_for_pending_transaction(dev))
10426                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10427
10428         BNX2X_DEV_INFO("Initiating FLR\n");
10429         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10430
10431         return 0;
10432 }
10433
10434 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10435 {
10436         int rc;
10437
10438         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10439
10440         /* Test if previous unload process was already finished for this path */
10441         if (bnx2x_prev_is_path_marked(bp))
10442                 return bnx2x_prev_mcp_done(bp);
10443
10444         BNX2X_DEV_INFO("Path is unmarked\n");
10445
10446         /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10447         if (bnx2x_prev_is_after_undi(bp))
10448                 goto out;
10449
10450         /* If function has FLR capabilities, and existing FW version matches
10451          * the one required, then FLR will be sufficient to clean any residue
10452          * left by previous driver
10453          */
10454         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10455
10456         if (!rc) {
10457                 /* fw version is good */
10458                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10459                 rc = bnx2x_do_flr(bp);
10460         }
10461
10462         if (!rc) {
10463                 /* FLR was performed */
10464                 BNX2X_DEV_INFO("FLR successful\n");
10465                 return 0;
10466         }
10467
10468         BNX2X_DEV_INFO("Could not FLR\n");
10469
10470 out:
10471         /* Close the MCP request, return failure*/
10472         rc = bnx2x_prev_mcp_done(bp);
10473         if (!rc)
10474                 rc = BNX2X_PREV_WAIT_NEEDED;
10475
10476         return rc;
10477 }
10478
10479 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10480 {
10481         u32 reset_reg, tmp_reg = 0, rc;
10482         bool prev_undi = false;
10483         struct bnx2x_mac_vals mac_vals;
10484
10485         /* It is possible a previous function received 'common' answer,
10486          * but hasn't loaded yet, therefore creating a scenario of
10487          * multiple functions receiving 'common' on the same path.
10488          */
10489         BNX2X_DEV_INFO("Common unload Flow\n");
10490
10491         memset(&mac_vals, 0, sizeof(mac_vals));
10492
10493         if (bnx2x_prev_is_path_marked(bp))
10494                 return bnx2x_prev_mcp_done(bp);
10495
10496         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10497
10498         /* Reset should be performed after BRB is emptied */
10499         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10500                 u32 timer_count = 1000;
10501
10502                 /* Close the MAC Rx to prevent BRB from filling up */
10503                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10504
10505                 /* close LLH filters towards the BRB */
10506                 bnx2x_set_rx_filter(&bp->link_params, 0);
10507
10508                 /* Check if the UNDI driver was previously loaded */
10509                 if (bnx2x_prev_is_after_undi(bp)) {
10510                         prev_undi = true;
10511                         /* clear the UNDI indication */
10512                         REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10513                         /* clear possible idle check errors */
10514                         REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10515                 }
10516                 if (!CHIP_IS_E1x(bp))
10517                         /* block FW from writing to host */
10518                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10519
10520                 /* wait until BRB is empty */
10521                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10522                 while (timer_count) {
10523                         u32 prev_brb = tmp_reg;
10524
10525                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10526                         if (!tmp_reg)
10527                                 break;
10528
10529                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10530
10531                         /* reset timer as long as BRB actually gets emptied */
10532                         if (prev_brb > tmp_reg)
10533                                 timer_count = 1000;
10534                         else
10535                                 timer_count--;
10536
10537                         /* If UNDI resides in memory, manually increment it */
10538                         if (prev_undi)
10539                                 bnx2x_prev_unload_undi_inc(bp, 1);
10540
10541                         udelay(10);
10542                 }
10543
10544                 if (!timer_count)
10545                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10546         }
10547
10548         /* No packets are in the pipeline, path is ready for reset */
10549         bnx2x_reset_common(bp);
10550
10551         if (mac_vals.xmac_addr)
10552                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10553         if (mac_vals.umac_addr)
10554                 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10555         if (mac_vals.emac_addr)
10556                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10557         if (mac_vals.bmac_addr) {
10558                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10559                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10560         }
10561
10562         rc = bnx2x_prev_mark_path(bp, prev_undi);
10563         if (rc) {
10564                 bnx2x_prev_mcp_done(bp);
10565                 return rc;
10566         }
10567
10568         return bnx2x_prev_mcp_done(bp);
10569 }
10570
10571 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10572  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10573  * the addresses of the transaction, resulting in was-error bit set in the pci
10574  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10575  * to clear the interrupt which detected this from the pglueb and the was done
10576  * bit
10577  */
10578 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10579 {
10580         if (!CHIP_IS_E1x(bp)) {
10581                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10582                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10583                         DP(BNX2X_MSG_SP,
10584                            "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10585                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10586                                1 << BP_FUNC(bp));
10587                 }
10588         }
10589 }
10590
10591 static int bnx2x_prev_unload(struct bnx2x *bp)
10592 {
10593         int time_counter = 10;
10594         u32 rc, fw, hw_lock_reg, hw_lock_val;
10595         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10596
10597         /* clear hw from errors which may have resulted from an interrupted
10598          * dmae transaction.
10599          */
10600         bnx2x_prev_interrupted_dmae(bp);
10601
10602         /* Release previously held locks */
10603         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10604                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10605                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10606
10607         hw_lock_val = REG_RD(bp, hw_lock_reg);
10608         if (hw_lock_val) {
10609                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10610                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10611                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10612                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10613                 }
10614
10615                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10616                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10617         } else
10618                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10619
10620         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10621                 BNX2X_DEV_INFO("Release previously held alr\n");
10622                 bnx2x_release_alr(bp);
10623         }
10624
10625         do {
10626                 int aer = 0;
10627                 /* Lock MCP using an unload request */
10628                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10629                 if (!fw) {
10630                         BNX2X_ERR("MCP response failure, aborting\n");
10631                         rc = -EBUSY;
10632                         break;
10633                 }
10634
10635                 rc = down_interruptible(&bnx2x_prev_sem);
10636                 if (rc) {
10637                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10638                                   rc);
10639                 } else {
10640                         /* If Path is marked by EEH, ignore unload status */
10641                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10642                                  bnx2x_prev_path_get_entry(bp)->aer);
10643                         up(&bnx2x_prev_sem);
10644                 }
10645
10646                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10647                         rc = bnx2x_prev_unload_common(bp);
10648                         break;
10649                 }
10650
10651                 /* non-common reply from MCP might require looping */
10652                 rc = bnx2x_prev_unload_uncommon(bp);
10653                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10654                         break;
10655
10656                 msleep(20);
10657         } while (--time_counter);
10658
10659         if (!time_counter || rc) {
10660                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10661                 rc = -EPROBE_DEFER;
10662         }
10663
10664         /* Mark function if its port was used to boot from SAN */
10665         if (bnx2x_port_after_undi(bp))
10666                 bp->link_params.feature_config_flags |=
10667                         FEATURE_CONFIG_BOOT_FROM_SAN;
10668
10669         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10670
10671         return rc;
10672 }
10673
10674 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10675 {
10676         u32 val, val2, val3, val4, id, boot_mode;
10677         u16 pmc;
10678
10679         /* Get the chip revision id and number. */
10680         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10681         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10682         id = ((val & 0xffff) << 16);
10683         val = REG_RD(bp, MISC_REG_CHIP_REV);
10684         id |= ((val & 0xf) << 12);
10685
10686         /* Metal is read from PCI regs, but we can't access >=0x400 from
10687          * the configuration space (so we need to reg_rd)
10688          */
10689         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10690         id |= (((val >> 24) & 0xf) << 4);
10691         val = REG_RD(bp, MISC_REG_BOND_ID);
10692         id |= (val & 0xf);
10693         bp->common.chip_id = id;
10694
10695         /* force 57811 according to MISC register */
10696         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10697                 if (CHIP_IS_57810(bp))
10698                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10699                                 (bp->common.chip_id & 0x0000FFFF);
10700                 else if (CHIP_IS_57810_MF(bp))
10701                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10702                                 (bp->common.chip_id & 0x0000FFFF);
10703                 bp->common.chip_id |= 0x1;
10704         }
10705
10706         /* Set doorbell size */
10707         bp->db_size = (1 << BNX2X_DB_SHIFT);
10708
10709         if (!CHIP_IS_E1x(bp)) {
10710                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10711                 if ((val & 1) == 0)
10712                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10713                 else
10714                         val = (val >> 1) & 1;
10715                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10716                                                        "2_PORT_MODE");
10717                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10718                                                  CHIP_2_PORT_MODE;
10719
10720                 if (CHIP_MODE_IS_4_PORT(bp))
10721                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10722                 else
10723                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10724         } else {
10725                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10726                 bp->pfid = bp->pf_num;                  /* 0..7 */
10727         }
10728
10729         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10730
10731         bp->link_params.chip_id = bp->common.chip_id;
10732         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10733
10734         val = (REG_RD(bp, 0x2874) & 0x55);
10735         if ((bp->common.chip_id & 0x1) ||
10736             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10737                 bp->flags |= ONE_PORT_FLAG;
10738                 BNX2X_DEV_INFO("single port device\n");
10739         }
10740
10741         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10742         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10743                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10744         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10745                        bp->common.flash_size, bp->common.flash_size);
10746
10747         bnx2x_init_shmem(bp);
10748
10749         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10750                                         MISC_REG_GENERIC_CR_1 :
10751                                         MISC_REG_GENERIC_CR_0));
10752
10753         bp->link_params.shmem_base = bp->common.shmem_base;
10754         bp->link_params.shmem2_base = bp->common.shmem2_base;
10755         if (SHMEM2_RD(bp, size) >
10756             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10757                 bp->link_params.lfa_base =
10758                 REG_RD(bp, bp->common.shmem2_base +
10759                        (u32)offsetof(struct shmem2_region,
10760                                      lfa_host_addr[BP_PORT(bp)]));
10761         else
10762                 bp->link_params.lfa_base = 0;
10763         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10764                        bp->common.shmem_base, bp->common.shmem2_base);
10765
10766         if (!bp->common.shmem_base) {
10767                 BNX2X_DEV_INFO("MCP not active\n");
10768                 bp->flags |= NO_MCP_FLAG;
10769                 return;
10770         }
10771
10772         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10773         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10774
10775         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10776                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10777                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10778
10779         bp->link_params.feature_config_flags = 0;
10780         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10781         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10782                 bp->link_params.feature_config_flags |=
10783                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10784         else
10785                 bp->link_params.feature_config_flags &=
10786                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10787
10788         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10789         bp->common.bc_ver = val;
10790         BNX2X_DEV_INFO("bc_ver %X\n", val);
10791         if (val < BNX2X_BC_VER) {
10792                 /* for now only warn
10793                  * later we might need to enforce this */
10794                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10795                           BNX2X_BC_VER, val);
10796         }
10797         bp->link_params.feature_config_flags |=
10798                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10799                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10800
10801         bp->link_params.feature_config_flags |=
10802                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10803                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10804         bp->link_params.feature_config_flags |=
10805                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10806                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10807         bp->link_params.feature_config_flags |=
10808                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10809                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10810
10811         bp->link_params.feature_config_flags |=
10812                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10813                 FEATURE_CONFIG_MT_SUPPORT : 0;
10814
10815         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10816                         BC_SUPPORTS_PFC_STATS : 0;
10817
10818         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10819                         BC_SUPPORTS_FCOE_FEATURES : 0;
10820
10821         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10822                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10823
10824         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10825                         BC_SUPPORTS_RMMOD_CMD : 0;
10826
10827         boot_mode = SHMEM_RD(bp,
10828                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10829                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10830         switch (boot_mode) {
10831         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10832                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10833                 break;
10834         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10835                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10836                 break;
10837         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10838                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10839                 break;
10840         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10841                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10842                 break;
10843         }
10844
10845         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10846         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10847
10848         BNX2X_DEV_INFO("%sWoL capable\n",
10849                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10850
10851         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10852         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10853         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10854         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10855
10856         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10857                  val, val2, val3, val4);
10858 }
10859
10860 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10861 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10862
10863 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10864 {
10865         int pfid = BP_FUNC(bp);
10866         int igu_sb_id;
10867         u32 val;
10868         u8 fid, igu_sb_cnt = 0;
10869
10870         bp->igu_base_sb = 0xff;
10871         if (CHIP_INT_MODE_IS_BC(bp)) {
10872                 int vn = BP_VN(bp);
10873                 igu_sb_cnt = bp->igu_sb_cnt;
10874                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10875                         FP_SB_MAX_E1x;
10876
10877                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10878                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10879
10880                 return 0;
10881         }
10882
10883         /* IGU in normal mode - read CAM */
10884         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10885              igu_sb_id++) {
10886                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10887                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10888                         continue;
10889                 fid = IGU_FID(val);
10890                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10891                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10892                                 continue;
10893                         if (IGU_VEC(val) == 0)
10894                                 /* default status block */
10895                                 bp->igu_dsb_id = igu_sb_id;
10896                         else {
10897                                 if (bp->igu_base_sb == 0xff)
10898                                         bp->igu_base_sb = igu_sb_id;
10899                                 igu_sb_cnt++;
10900                         }
10901                 }
10902         }
10903
10904 #ifdef CONFIG_PCI_MSI
10905         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10906          * optional that number of CAM entries will not be equal to the value
10907          * advertised in PCI.
10908          * Driver should use the minimal value of both as the actual status
10909          * block count
10910          */
10911         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10912 #endif
10913
10914         if (igu_sb_cnt == 0) {
10915                 BNX2X_ERR("CAM configuration error\n");
10916                 return -EINVAL;
10917         }
10918
10919         return 0;
10920 }
10921
10922 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10923 {
10924         int cfg_size = 0, idx, port = BP_PORT(bp);
10925
10926         /* Aggregation of supported attributes of all external phys */
10927         bp->port.supported[0] = 0;
10928         bp->port.supported[1] = 0;
10929         switch (bp->link_params.num_phys) {
10930         case 1:
10931                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10932                 cfg_size = 1;
10933                 break;
10934         case 2:
10935                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10936                 cfg_size = 1;
10937                 break;
10938         case 3:
10939                 if (bp->link_params.multi_phy_config &
10940                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10941                         bp->port.supported[1] =
10942                                 bp->link_params.phy[EXT_PHY1].supported;
10943                         bp->port.supported[0] =
10944                                 bp->link_params.phy[EXT_PHY2].supported;
10945                 } else {
10946                         bp->port.supported[0] =
10947                                 bp->link_params.phy[EXT_PHY1].supported;
10948                         bp->port.supported[1] =
10949                                 bp->link_params.phy[EXT_PHY2].supported;
10950                 }
10951                 cfg_size = 2;
10952                 break;
10953         }
10954
10955         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10956                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10957                            SHMEM_RD(bp,
10958                            dev_info.port_hw_config[port].external_phy_config),
10959                            SHMEM_RD(bp,
10960                            dev_info.port_hw_config[port].external_phy_config2));
10961                         return;
10962         }
10963
10964         if (CHIP_IS_E3(bp))
10965                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10966         else {
10967                 switch (switch_cfg) {
10968                 case SWITCH_CFG_1G:
10969                         bp->port.phy_addr = REG_RD(
10970                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10971                         break;
10972                 case SWITCH_CFG_10G:
10973                         bp->port.phy_addr = REG_RD(
10974                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10975                         break;
10976                 default:
10977                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10978                                   bp->port.link_config[0]);
10979                         return;
10980                 }
10981         }
10982         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10983         /* mask what we support according to speed_cap_mask per configuration */
10984         for (idx = 0; idx < cfg_size; idx++) {
10985                 if (!(bp->link_params.speed_cap_mask[idx] &
10986                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10987                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10988
10989                 if (!(bp->link_params.speed_cap_mask[idx] &
10990                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10991                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10992
10993                 if (!(bp->link_params.speed_cap_mask[idx] &
10994                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10995                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10996
10997                 if (!(bp->link_params.speed_cap_mask[idx] &
10998                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10999                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11000
11001                 if (!(bp->link_params.speed_cap_mask[idx] &
11002                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11003                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11004                                                      SUPPORTED_1000baseT_Full);
11005
11006                 if (!(bp->link_params.speed_cap_mask[idx] &
11007                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11008                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11009
11010                 if (!(bp->link_params.speed_cap_mask[idx] &
11011                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11012                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11013
11014                 if (!(bp->link_params.speed_cap_mask[idx] &
11015                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11016                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11017         }
11018
11019         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11020                        bp->port.supported[1]);
11021 }
11022
11023 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11024 {
11025         u32 link_config, idx, cfg_size = 0;
11026         bp->port.advertising[0] = 0;
11027         bp->port.advertising[1] = 0;
11028         switch (bp->link_params.num_phys) {
11029         case 1:
11030         case 2:
11031                 cfg_size = 1;
11032                 break;
11033         case 3:
11034                 cfg_size = 2;
11035                 break;
11036         }
11037         for (idx = 0; idx < cfg_size; idx++) {
11038                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11039                 link_config = bp->port.link_config[idx];
11040                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11041                 case PORT_FEATURE_LINK_SPEED_AUTO:
11042                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11043                                 bp->link_params.req_line_speed[idx] =
11044                                         SPEED_AUTO_NEG;
11045                                 bp->port.advertising[idx] |=
11046                                         bp->port.supported[idx];
11047                                 if (bp->link_params.phy[EXT_PHY1].type ==
11048                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11049                                         bp->port.advertising[idx] |=
11050                                         (SUPPORTED_100baseT_Half |
11051                                          SUPPORTED_100baseT_Full);
11052                         } else {
11053                                 /* force 10G, no AN */
11054                                 bp->link_params.req_line_speed[idx] =
11055                                         SPEED_10000;
11056                                 bp->port.advertising[idx] |=
11057                                         (ADVERTISED_10000baseT_Full |
11058                                          ADVERTISED_FIBRE);
11059                                 continue;
11060                         }
11061                         break;
11062
11063                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11064                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11065                                 bp->link_params.req_line_speed[idx] =
11066                                         SPEED_10;
11067                                 bp->port.advertising[idx] |=
11068                                         (ADVERTISED_10baseT_Full |
11069                                          ADVERTISED_TP);
11070                         } else {
11071                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11072                                             link_config,
11073                                     bp->link_params.speed_cap_mask[idx]);
11074                                 return;
11075                         }
11076                         break;
11077
11078                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11079                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11080                                 bp->link_params.req_line_speed[idx] =
11081                                         SPEED_10;
11082                                 bp->link_params.req_duplex[idx] =
11083                                         DUPLEX_HALF;
11084                                 bp->port.advertising[idx] |=
11085                                         (ADVERTISED_10baseT_Half |
11086                                          ADVERTISED_TP);
11087                         } else {
11088                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11089                                             link_config,
11090                                           bp->link_params.speed_cap_mask[idx]);
11091                                 return;
11092                         }
11093                         break;
11094
11095                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11096                         if (bp->port.supported[idx] &
11097                             SUPPORTED_100baseT_Full) {
11098                                 bp->link_params.req_line_speed[idx] =
11099                                         SPEED_100;
11100                                 bp->port.advertising[idx] |=
11101                                         (ADVERTISED_100baseT_Full |
11102                                          ADVERTISED_TP);
11103                         } else {
11104                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11105                                             link_config,
11106                                           bp->link_params.speed_cap_mask[idx]);
11107                                 return;
11108                         }
11109                         break;
11110
11111                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11112                         if (bp->port.supported[idx] &
11113                             SUPPORTED_100baseT_Half) {
11114                                 bp->link_params.req_line_speed[idx] =
11115                                                                 SPEED_100;
11116                                 bp->link_params.req_duplex[idx] =
11117                                                                 DUPLEX_HALF;
11118                                 bp->port.advertising[idx] |=
11119                                         (ADVERTISED_100baseT_Half |
11120                                          ADVERTISED_TP);
11121                         } else {
11122                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11123                                     link_config,
11124                                     bp->link_params.speed_cap_mask[idx]);
11125                                 return;
11126                         }
11127                         break;
11128
11129                 case PORT_FEATURE_LINK_SPEED_1G:
11130                         if (bp->port.supported[idx] &
11131                             SUPPORTED_1000baseT_Full) {
11132                                 bp->link_params.req_line_speed[idx] =
11133                                         SPEED_1000;
11134                                 bp->port.advertising[idx] |=
11135                                         (ADVERTISED_1000baseT_Full |
11136                                          ADVERTISED_TP);
11137                         } else {
11138                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11139                                     link_config,
11140                                     bp->link_params.speed_cap_mask[idx]);
11141                                 return;
11142                         }
11143                         break;
11144
11145                 case PORT_FEATURE_LINK_SPEED_2_5G:
11146                         if (bp->port.supported[idx] &
11147                             SUPPORTED_2500baseX_Full) {
11148                                 bp->link_params.req_line_speed[idx] =
11149                                         SPEED_2500;
11150                                 bp->port.advertising[idx] |=
11151                                         (ADVERTISED_2500baseX_Full |
11152                                                 ADVERTISED_TP);
11153                         } else {
11154                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11155                                     link_config,
11156                                     bp->link_params.speed_cap_mask[idx]);
11157                                 return;
11158                         }
11159                         break;
11160
11161                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11162                         if (bp->port.supported[idx] &
11163                             SUPPORTED_10000baseT_Full) {
11164                                 bp->link_params.req_line_speed[idx] =
11165                                         SPEED_10000;
11166                                 bp->port.advertising[idx] |=
11167                                         (ADVERTISED_10000baseT_Full |
11168                                                 ADVERTISED_FIBRE);
11169                         } else {
11170                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11171                                     link_config,
11172                                     bp->link_params.speed_cap_mask[idx]);
11173                                 return;
11174                         }
11175                         break;
11176                 case PORT_FEATURE_LINK_SPEED_20G:
11177                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11178
11179                         break;
11180                 default:
11181                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11182                                   link_config);
11183                                 bp->link_params.req_line_speed[idx] =
11184                                                         SPEED_AUTO_NEG;
11185                                 bp->port.advertising[idx] =
11186                                                 bp->port.supported[idx];
11187                         break;
11188                 }
11189
11190                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11191                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11192                 if (bp->link_params.req_flow_ctrl[idx] ==
11193                     BNX2X_FLOW_CTRL_AUTO) {
11194                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11195                                 bp->link_params.req_flow_ctrl[idx] =
11196                                                         BNX2X_FLOW_CTRL_NONE;
11197                         else
11198                                 bnx2x_set_requested_fc(bp);
11199                 }
11200
11201                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11202                                bp->link_params.req_line_speed[idx],
11203                                bp->link_params.req_duplex[idx],
11204                                bp->link_params.req_flow_ctrl[idx],
11205                                bp->port.advertising[idx]);
11206         }
11207 }
11208
11209 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11210 {
11211         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11212         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11213         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11214         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11215 }
11216
11217 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11218 {
11219         int port = BP_PORT(bp);
11220         u32 config;
11221         u32 ext_phy_type, ext_phy_config, eee_mode;
11222
11223         bp->link_params.bp = bp;
11224         bp->link_params.port = port;
11225
11226         bp->link_params.lane_config =
11227                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11228
11229         bp->link_params.speed_cap_mask[0] =
11230                 SHMEM_RD(bp,
11231                          dev_info.port_hw_config[port].speed_capability_mask) &
11232                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11233         bp->link_params.speed_cap_mask[1] =
11234                 SHMEM_RD(bp,
11235                          dev_info.port_hw_config[port].speed_capability_mask2) &
11236                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11237         bp->port.link_config[0] =
11238                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11239
11240         bp->port.link_config[1] =
11241                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11242
11243         bp->link_params.multi_phy_config =
11244                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11245         /* If the device is capable of WoL, set the default state according
11246          * to the HW
11247          */
11248         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11249         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11250                    (config & PORT_FEATURE_WOL_ENABLED));
11251
11252         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11253             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11254                 bp->flags |= NO_ISCSI_FLAG;
11255         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11256             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11257                 bp->flags |= NO_FCOE_FLAG;
11258
11259         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11260                        bp->link_params.lane_config,
11261                        bp->link_params.speed_cap_mask[0],
11262                        bp->port.link_config[0]);
11263
11264         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11265                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11266         bnx2x_phy_probe(&bp->link_params);
11267         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11268
11269         bnx2x_link_settings_requested(bp);
11270
11271         /*
11272          * If connected directly, work with the internal PHY, otherwise, work
11273          * with the external PHY
11274          */
11275         ext_phy_config =
11276                 SHMEM_RD(bp,
11277                          dev_info.port_hw_config[port].external_phy_config);
11278         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11279         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11280                 bp->mdio.prtad = bp->port.phy_addr;
11281
11282         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11283                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11284                 bp->mdio.prtad =
11285                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11286
11287         /* Configure link feature according to nvram value */
11288         eee_mode = (((SHMEM_RD(bp, dev_info.
11289                       port_feature_config[port].eee_power_mode)) &
11290                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11291                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11292         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11293                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11294                                            EEE_MODE_ENABLE_LPI |
11295                                            EEE_MODE_OUTPUT_TIME;
11296         } else {
11297                 bp->link_params.eee_mode = 0;
11298         }
11299 }
11300
11301 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11302 {
11303         u32 no_flags = NO_ISCSI_FLAG;
11304         int port = BP_PORT(bp);
11305         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11306                                 drv_lic_key[port].max_iscsi_conn);
11307
11308         if (!CNIC_SUPPORT(bp)) {
11309                 bp->flags |= no_flags;
11310                 return;
11311         }
11312
11313         /* Get the number of maximum allowed iSCSI connections */
11314         bp->cnic_eth_dev.max_iscsi_conn =
11315                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11316                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11317
11318         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11319                        bp->cnic_eth_dev.max_iscsi_conn);
11320
11321         /*
11322          * If maximum allowed number of connections is zero -
11323          * disable the feature.
11324          */
11325         if (!bp->cnic_eth_dev.max_iscsi_conn)
11326                 bp->flags |= no_flags;
11327 }
11328
11329 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11330 {
11331         /* Port info */
11332         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11333                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11334         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11335                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11336
11337         /* Node info */
11338         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11339                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11340         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11341                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11342 }
11343
11344 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11345 {
11346         u8 count = 0;
11347
11348         if (IS_MF(bp)) {
11349                 u8 fid;
11350
11351                 /* iterate over absolute function ids for this path: */
11352                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11353                         if (IS_MF_SD(bp)) {
11354                                 u32 cfg = MF_CFG_RD(bp,
11355                                                     func_mf_config[fid].config);
11356
11357                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11358                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11359                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11360                                         count++;
11361                         } else {
11362                                 u32 cfg = MF_CFG_RD(bp,
11363                                                     func_ext_config[fid].
11364                                                                       func_cfg);
11365
11366                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11367                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11368                                         count++;
11369                         }
11370                 }
11371         } else { /* SF */
11372                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11373
11374                 for (port = 0; port < port_cnt; port++) {
11375                         u32 lic = SHMEM_RD(bp,
11376                                            drv_lic_key[port].max_fcoe_conn) ^
11377                                   FW_ENCODE_32BIT_PATTERN;
11378                         if (lic)
11379                                 count++;
11380                 }
11381         }
11382
11383         return count;
11384 }
11385
11386 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11387 {
11388         int port = BP_PORT(bp);
11389         int func = BP_ABS_FUNC(bp);
11390         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11391                                 drv_lic_key[port].max_fcoe_conn);
11392         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11393
11394         if (!CNIC_SUPPORT(bp)) {
11395                 bp->flags |= NO_FCOE_FLAG;
11396                 return;
11397         }
11398
11399         /* Get the number of maximum allowed FCoE connections */
11400         bp->cnic_eth_dev.max_fcoe_conn =
11401                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11402                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11403
11404         /* Calculate the number of maximum allowed FCoE tasks */
11405         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11406
11407         /* check if FCoE resources must be shared between different functions */
11408         if (num_fcoe_func)
11409                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11410
11411         /* Read the WWN: */
11412         if (!IS_MF(bp)) {
11413                 /* Port info */
11414                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11415                         SHMEM_RD(bp,
11416                                  dev_info.port_hw_config[port].
11417                                  fcoe_wwn_port_name_upper);
11418                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11419                         SHMEM_RD(bp,
11420                                  dev_info.port_hw_config[port].
11421                                  fcoe_wwn_port_name_lower);
11422
11423                 /* Node info */
11424                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11425                         SHMEM_RD(bp,
11426                                  dev_info.port_hw_config[port].
11427                                  fcoe_wwn_node_name_upper);
11428                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11429                         SHMEM_RD(bp,
11430                                  dev_info.port_hw_config[port].
11431                                  fcoe_wwn_node_name_lower);
11432         } else if (!IS_MF_SD(bp)) {
11433                 /* Read the WWN info only if the FCoE feature is enabled for
11434                  * this function.
11435                  */
11436                 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11437                         bnx2x_get_ext_wwn_info(bp, func);
11438         } else {
11439                 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11440                         bnx2x_get_ext_wwn_info(bp, func);
11441         }
11442
11443         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11444
11445         /*
11446          * If maximum allowed number of connections is zero -
11447          * disable the feature.
11448          */
11449         if (!bp->cnic_eth_dev.max_fcoe_conn)
11450                 bp->flags |= NO_FCOE_FLAG;
11451 }
11452
11453 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11454 {
11455         /*
11456          * iSCSI may be dynamically disabled but reading
11457          * info here we will decrease memory usage by driver
11458          * if the feature is disabled for good
11459          */
11460         bnx2x_get_iscsi_info(bp);
11461         bnx2x_get_fcoe_info(bp);
11462 }
11463
11464 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11465 {
11466         u32 val, val2;
11467         int func = BP_ABS_FUNC(bp);
11468         int port = BP_PORT(bp);
11469         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11470         u8 *fip_mac = bp->fip_mac;
11471
11472         if (IS_MF(bp)) {
11473                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11474                  * FCoE MAC then the appropriate feature should be disabled.
11475                  * In non SD mode features configuration comes from struct
11476                  * func_ext_config.
11477                  */
11478                 if (!IS_MF_SD(bp)) {
11479                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11480                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11481                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11482                                                  iscsi_mac_addr_upper);
11483                                 val = MF_CFG_RD(bp, func_ext_config[func].
11484                                                 iscsi_mac_addr_lower);
11485                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11486                                 BNX2X_DEV_INFO
11487                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11488                         } else {
11489                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11490                         }
11491
11492                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11493                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11494                                                  fcoe_mac_addr_upper);
11495                                 val = MF_CFG_RD(bp, func_ext_config[func].
11496                                                 fcoe_mac_addr_lower);
11497                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11498                                 BNX2X_DEV_INFO
11499                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11500                         } else {
11501                                 bp->flags |= NO_FCOE_FLAG;
11502                         }
11503
11504                         bp->mf_ext_config = cfg;
11505
11506                 } else { /* SD MODE */
11507                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11508                                 /* use primary mac as iscsi mac */
11509                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11510
11511                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11512                                 BNX2X_DEV_INFO
11513                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11514                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11515                                 /* use primary mac as fip mac */
11516                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11517                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11518                                 BNX2X_DEV_INFO
11519                                         ("Read FIP MAC: %pM\n", fip_mac);
11520                         }
11521                 }
11522
11523                 /* If this is a storage-only interface, use SAN mac as
11524                  * primary MAC. Notice that for SD this is already the case,
11525                  * as the SAN mac was copied from the primary MAC.
11526                  */
11527                 if (IS_MF_FCOE_AFEX(bp))
11528                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11529         } else {
11530                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11531                                 iscsi_mac_upper);
11532                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11533                                iscsi_mac_lower);
11534                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11535
11536                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11537                                 fcoe_fip_mac_upper);
11538                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11539                                fcoe_fip_mac_lower);
11540                 bnx2x_set_mac_buf(fip_mac, val, val2);
11541         }
11542
11543         /* Disable iSCSI OOO if MAC configuration is invalid. */
11544         if (!is_valid_ether_addr(iscsi_mac)) {
11545                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11546                 memset(iscsi_mac, 0, ETH_ALEN);
11547         }
11548
11549         /* Disable FCoE if MAC configuration is invalid. */
11550         if (!is_valid_ether_addr(fip_mac)) {
11551                 bp->flags |= NO_FCOE_FLAG;
11552                 memset(bp->fip_mac, 0, ETH_ALEN);
11553         }
11554 }
11555
11556 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11557 {
11558         u32 val, val2;
11559         int func = BP_ABS_FUNC(bp);
11560         int port = BP_PORT(bp);
11561
11562         /* Zero primary MAC configuration */
11563         memset(bp->dev->dev_addr, 0, ETH_ALEN);
11564
11565         if (BP_NOMCP(bp)) {
11566                 BNX2X_ERROR("warning: random MAC workaround active\n");
11567                 eth_hw_addr_random(bp->dev);
11568         } else if (IS_MF(bp)) {
11569                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11570                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11571                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11572                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11573                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11574
11575                 if (CNIC_SUPPORT(bp))
11576                         bnx2x_get_cnic_mac_hwinfo(bp);
11577         } else {
11578                 /* in SF read MACs from port configuration */
11579                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11580                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11581                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11582
11583                 if (CNIC_SUPPORT(bp))
11584                         bnx2x_get_cnic_mac_hwinfo(bp);
11585         }
11586
11587         if (!BP_NOMCP(bp)) {
11588                 /* Read physical port identifier from shmem */
11589                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11590                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11591                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11592                 bp->flags |= HAS_PHYS_PORT_ID;
11593         }
11594
11595         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11596
11597         if (!is_valid_ether_addr(bp->dev->dev_addr))
11598                 dev_err(&bp->pdev->dev,
11599                         "bad Ethernet MAC address configuration: %pM\n"
11600                         "change it manually before bringing up the appropriate network interface\n",
11601                         bp->dev->dev_addr);
11602 }
11603
11604 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11605 {
11606         int tmp;
11607         u32 cfg;
11608
11609         if (IS_VF(bp))
11610                 return 0;
11611
11612         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11613                 /* Take function: tmp = func */
11614                 tmp = BP_ABS_FUNC(bp);
11615                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11616                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11617         } else {
11618                 /* Take port: tmp = port */
11619                 tmp = BP_PORT(bp);
11620                 cfg = SHMEM_RD(bp,
11621                                dev_info.port_hw_config[tmp].generic_features);
11622                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11623         }
11624         return cfg;
11625 }
11626
11627 static void validate_set_si_mode(struct bnx2x *bp)
11628 {
11629         u8 func = BP_ABS_FUNC(bp);
11630         u32 val;
11631
11632         val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11633
11634         /* check for legal mac (upper bytes) */
11635         if (val != 0xffff) {
11636                 bp->mf_mode = MULTI_FUNCTION_SI;
11637                 bp->mf_config[BP_VN(bp)] =
11638                         MF_CFG_RD(bp, func_mf_config[func].config);
11639         } else
11640                 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11641 }
11642
11643 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11644 {
11645         int /*abs*/func = BP_ABS_FUNC(bp);
11646         int vn;
11647         u32 val = 0, val2 = 0;
11648         int rc = 0;
11649
11650         bnx2x_get_common_hwinfo(bp);
11651
11652         /*
11653          * initialize IGU parameters
11654          */
11655         if (CHIP_IS_E1x(bp)) {
11656                 bp->common.int_block = INT_BLOCK_HC;
11657
11658                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11659                 bp->igu_base_sb = 0;
11660         } else {
11661                 bp->common.int_block = INT_BLOCK_IGU;
11662
11663                 /* do not allow device reset during IGU info processing */
11664                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11665
11666                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11667
11668                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11669                         int tout = 5000;
11670
11671                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11672
11673                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11674                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11675                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11676
11677                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11678                                 tout--;
11679                                 usleep_range(1000, 2000);
11680                         }
11681
11682                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11683                                 dev_err(&bp->pdev->dev,
11684                                         "FORCING Normal Mode failed!!!\n");
11685                                 bnx2x_release_hw_lock(bp,
11686                                                       HW_LOCK_RESOURCE_RESET);
11687                                 return -EPERM;
11688                         }
11689                 }
11690
11691                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11692                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11693                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11694                 } else
11695                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11696
11697                 rc = bnx2x_get_igu_cam_info(bp);
11698                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11699                 if (rc)
11700                         return rc;
11701         }
11702
11703         /*
11704          * set base FW non-default (fast path) status block id, this value is
11705          * used to initialize the fw_sb_id saved on the fp/queue structure to
11706          * determine the id used by the FW.
11707          */
11708         if (CHIP_IS_E1x(bp))
11709                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11710         else /*
11711               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11712               * the same queue are indicated on the same IGU SB). So we prefer
11713               * FW and IGU SBs to be the same value.
11714               */
11715                 bp->base_fw_ndsb = bp->igu_base_sb;
11716
11717         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11718                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11719                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11720
11721         /*
11722          * Initialize MF configuration
11723          */
11724
11725         bp->mf_ov = 0;
11726         bp->mf_mode = 0;
11727         bp->mf_sub_mode = 0;
11728         vn = BP_VN(bp);
11729
11730         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11731                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11732                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11733                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11734
11735                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11736                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11737                 else
11738                         bp->common.mf_cfg_base = bp->common.shmem_base +
11739                                 offsetof(struct shmem_region, func_mb) +
11740                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11741                 /*
11742                  * get mf configuration:
11743                  * 1. Existence of MF configuration
11744                  * 2. MAC address must be legal (check only upper bytes)
11745                  *    for  Switch-Independent mode;
11746                  *    OVLAN must be legal for Switch-Dependent mode
11747                  * 3. SF_MODE configures specific MF mode
11748                  */
11749                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11750                         /* get mf configuration */
11751                         val = SHMEM_RD(bp,
11752                                        dev_info.shared_feature_config.config);
11753                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11754
11755                         switch (val) {
11756                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11757                                 validate_set_si_mode(bp);
11758                                 break;
11759                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11760                                 if ((!CHIP_IS_E1x(bp)) &&
11761                                     (MF_CFG_RD(bp, func_mf_config[func].
11762                                                mac_upper) != 0xffff) &&
11763                                     (SHMEM2_HAS(bp,
11764                                                 afex_driver_support))) {
11765                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11766                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11767                                                 func_mf_config[func].config);
11768                                 } else {
11769                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11770                                 }
11771                                 break;
11772                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11773                                 /* get OV configuration */
11774                                 val = MF_CFG_RD(bp,
11775                                         func_mf_config[FUNC_0].e1hov_tag);
11776                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11777
11778                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11779                                         bp->mf_mode = MULTI_FUNCTION_SD;
11780                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11781                                                 func_mf_config[func].config);
11782                                 } else
11783                                         BNX2X_DEV_INFO("illegal OV for SD\n");
11784                                 break;
11785                         case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
11786                                 bp->mf_mode = MULTI_FUNCTION_SD;
11787                                 bp->mf_sub_mode = SUB_MF_MODE_UFP;
11788                                 bp->mf_config[vn] =
11789                                         MF_CFG_RD(bp,
11790                                                   func_mf_config[func].config);
11791                                 break;
11792                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11793                                 bp->mf_config[vn] = 0;
11794                                 break;
11795                         case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
11796                                 val2 = SHMEM_RD(bp,
11797                                         dev_info.shared_hw_config.config_3);
11798                                 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
11799                                 switch (val2) {
11800                                 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
11801                                         validate_set_si_mode(bp);
11802                                         bp->mf_sub_mode =
11803                                                         SUB_MF_MODE_NPAR1_DOT_5;
11804                                         break;
11805                                 default:
11806                                         /* Unknown configuration */
11807                                         bp->mf_config[vn] = 0;
11808                                         BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
11809                                                        val);
11810                                 }
11811                                 break;
11812                         default:
11813                                 /* Unknown configuration: reset mf_config */
11814                                 bp->mf_config[vn] = 0;
11815                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11816                         }
11817                 }
11818
11819                 BNX2X_DEV_INFO("%s function mode\n",
11820                                IS_MF(bp) ? "multi" : "single");
11821
11822                 switch (bp->mf_mode) {
11823                 case MULTI_FUNCTION_SD:
11824                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11825                               FUNC_MF_CFG_E1HOV_TAG_MASK;
11826                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11827                                 bp->mf_ov = val;
11828                                 bp->path_has_ovlan = true;
11829
11830                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11831                                                func, bp->mf_ov, bp->mf_ov);
11832                         } else if (bp->mf_sub_mode == SUB_MF_MODE_UFP) {
11833                                 dev_err(&bp->pdev->dev,
11834                                         "Unexpected - no valid MF OV for func %d in UFP mode\n",
11835                                         func);
11836                                 bp->path_has_ovlan = true;
11837                         } else {
11838                                 dev_err(&bp->pdev->dev,
11839                                         "No valid MF OV for func %d, aborting\n",
11840                                         func);
11841                                 return -EPERM;
11842                         }
11843                         break;
11844                 case MULTI_FUNCTION_AFEX:
11845                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11846                         break;
11847                 case MULTI_FUNCTION_SI:
11848                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11849                                        func);
11850                         break;
11851                 default:
11852                         if (vn) {
11853                                 dev_err(&bp->pdev->dev,
11854                                         "VN %d is in a single function mode, aborting\n",
11855                                         vn);
11856                                 return -EPERM;
11857                         }
11858                         break;
11859                 }
11860
11861                 /* check if other port on the path needs ovlan:
11862                  * Since MF configuration is shared between ports
11863                  * Possible mixed modes are only
11864                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11865                  */
11866                 if (CHIP_MODE_IS_4_PORT(bp) &&
11867                     !bp->path_has_ovlan &&
11868                     !IS_MF(bp) &&
11869                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11870                         u8 other_port = !BP_PORT(bp);
11871                         u8 other_func = BP_PATH(bp) + 2*other_port;
11872                         val = MF_CFG_RD(bp,
11873                                         func_mf_config[other_func].e1hov_tag);
11874                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11875                                 bp->path_has_ovlan = true;
11876                 }
11877         }
11878
11879         /* adjust igu_sb_cnt to MF for E1H */
11880         if (CHIP_IS_E1H(bp) && IS_MF(bp))
11881                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11882
11883         /* port info */
11884         bnx2x_get_port_hwinfo(bp);
11885
11886         /* Get MAC addresses */
11887         bnx2x_get_mac_hwinfo(bp);
11888
11889         bnx2x_get_cnic_info(bp);
11890
11891         return rc;
11892 }
11893
11894 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11895 {
11896         int cnt, i, block_end, rodi;
11897         char vpd_start[BNX2X_VPD_LEN+1];
11898         char str_id_reg[VENDOR_ID_LEN+1];
11899         char str_id_cap[VENDOR_ID_LEN+1];
11900         char *vpd_data;
11901         char *vpd_extended_data = NULL;
11902         u8 len;
11903
11904         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11905         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11906
11907         if (cnt < BNX2X_VPD_LEN)
11908                 goto out_not_found;
11909
11910         /* VPD RO tag should be first tag after identifier string, hence
11911          * we should be able to find it in first BNX2X_VPD_LEN chars
11912          */
11913         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11914                              PCI_VPD_LRDT_RO_DATA);
11915         if (i < 0)
11916                 goto out_not_found;
11917
11918         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11919                     pci_vpd_lrdt_size(&vpd_start[i]);
11920
11921         i += PCI_VPD_LRDT_TAG_SIZE;
11922
11923         if (block_end > BNX2X_VPD_LEN) {
11924                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11925                 if (vpd_extended_data  == NULL)
11926                         goto out_not_found;
11927
11928                 /* read rest of vpd image into vpd_extended_data */
11929                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11930                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11931                                    block_end - BNX2X_VPD_LEN,
11932                                    vpd_extended_data + BNX2X_VPD_LEN);
11933                 if (cnt < (block_end - BNX2X_VPD_LEN))
11934                         goto out_not_found;
11935                 vpd_data = vpd_extended_data;
11936         } else
11937                 vpd_data = vpd_start;
11938
11939         /* now vpd_data holds full vpd content in both cases */
11940
11941         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11942                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11943         if (rodi < 0)
11944                 goto out_not_found;
11945
11946         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11947
11948         if (len != VENDOR_ID_LEN)
11949                 goto out_not_found;
11950
11951         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11952
11953         /* vendor specific info */
11954         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11955         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11956         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11957             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11958
11959                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11960                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11961                 if (rodi >= 0) {
11962                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11963
11964                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11965
11966                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11967                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11968                                 bp->fw_ver[len] = ' ';
11969                         }
11970                 }
11971                 kfree(vpd_extended_data);
11972                 return;
11973         }
11974 out_not_found:
11975         kfree(vpd_extended_data);
11976         return;
11977 }
11978
11979 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11980 {
11981         u32 flags = 0;
11982
11983         if (CHIP_REV_IS_FPGA(bp))
11984                 SET_FLAGS(flags, MODE_FPGA);
11985         else if (CHIP_REV_IS_EMUL(bp))
11986                 SET_FLAGS(flags, MODE_EMUL);
11987         else
11988                 SET_FLAGS(flags, MODE_ASIC);
11989
11990         if (CHIP_MODE_IS_4_PORT(bp))
11991                 SET_FLAGS(flags, MODE_PORT4);
11992         else
11993                 SET_FLAGS(flags, MODE_PORT2);
11994
11995         if (CHIP_IS_E2(bp))
11996                 SET_FLAGS(flags, MODE_E2);
11997         else if (CHIP_IS_E3(bp)) {
11998                 SET_FLAGS(flags, MODE_E3);
11999                 if (CHIP_REV(bp) == CHIP_REV_Ax)
12000                         SET_FLAGS(flags, MODE_E3_A0);
12001                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12002                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12003         }
12004
12005         if (IS_MF(bp)) {
12006                 SET_FLAGS(flags, MODE_MF);
12007                 switch (bp->mf_mode) {
12008                 case MULTI_FUNCTION_SD:
12009                         SET_FLAGS(flags, MODE_MF_SD);
12010                         break;
12011                 case MULTI_FUNCTION_SI:
12012                         SET_FLAGS(flags, MODE_MF_SI);
12013                         break;
12014                 case MULTI_FUNCTION_AFEX:
12015                         SET_FLAGS(flags, MODE_MF_AFEX);
12016                         break;
12017                 }
12018         } else
12019                 SET_FLAGS(flags, MODE_SF);
12020
12021 #if defined(__LITTLE_ENDIAN)
12022         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12023 #else /*(__BIG_ENDIAN)*/
12024         SET_FLAGS(flags, MODE_BIG_ENDIAN);
12025 #endif
12026         INIT_MODE_FLAGS(bp) = flags;
12027 }
12028
12029 static int bnx2x_init_bp(struct bnx2x *bp)
12030 {
12031         int func;
12032         int rc;
12033
12034         mutex_init(&bp->port.phy_mutex);
12035         mutex_init(&bp->fw_mb_mutex);
12036         mutex_init(&bp->drv_info_mutex);
12037         bp->drv_info_mng_owner = false;
12038         spin_lock_init(&bp->stats_lock);
12039         sema_init(&bp->stats_sema, 1);
12040
12041         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12042         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12043         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12044         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12045         if (IS_PF(bp)) {
12046                 rc = bnx2x_get_hwinfo(bp);
12047                 if (rc)
12048                         return rc;
12049         } else {
12050                 eth_zero_addr(bp->dev->dev_addr);
12051         }
12052
12053         bnx2x_set_modes_bitmap(bp);
12054
12055         rc = bnx2x_alloc_mem_bp(bp);
12056         if (rc)
12057                 return rc;
12058
12059         bnx2x_read_fwinfo(bp);
12060
12061         func = BP_FUNC(bp);
12062
12063         /* need to reset chip if undi was active */
12064         if (IS_PF(bp) && !BP_NOMCP(bp)) {
12065                 /* init fw_seq */
12066                 bp->fw_seq =
12067                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12068                                                         DRV_MSG_SEQ_NUMBER_MASK;
12069                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12070
12071                 rc = bnx2x_prev_unload(bp);
12072                 if (rc) {
12073                         bnx2x_free_mem_bp(bp);
12074                         return rc;
12075                 }
12076         }
12077
12078         if (CHIP_REV_IS_FPGA(bp))
12079                 dev_err(&bp->pdev->dev, "FPGA detected\n");
12080
12081         if (BP_NOMCP(bp) && (func == 0))
12082                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12083
12084         bp->disable_tpa = disable_tpa;
12085         bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12086         /* Reduce memory usage in kdump environment by disabling TPA */
12087         bp->disable_tpa |= is_kdump_kernel();
12088
12089         /* Set TPA flags */
12090         if (bp->disable_tpa) {
12091                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
12092                 bp->dev->features &= ~NETIF_F_LRO;
12093         } else {
12094                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
12095                 bp->dev->features |= NETIF_F_LRO;
12096         }
12097
12098         if (CHIP_IS_E1(bp))
12099                 bp->dropless_fc = 0;
12100         else
12101                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12102
12103         bp->mrrs = mrrs;
12104
12105         bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12106         if (IS_VF(bp))
12107                 bp->rx_ring_size = MAX_RX_AVAIL;
12108
12109         /* make sure that the numbers are in the right granularity */
12110         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12111         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12112
12113         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12114
12115         init_timer(&bp->timer);
12116         bp->timer.expires = jiffies + bp->current_interval;
12117         bp->timer.data = (unsigned long) bp;
12118         bp->timer.function = bnx2x_timer;
12119
12120         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12121             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12122             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12123             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
12124                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12125                 bnx2x_dcbx_init_params(bp);
12126         } else {
12127                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12128         }
12129
12130         if (CHIP_IS_E1x(bp))
12131                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12132         else
12133                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12134
12135         /* multiple tx priority */
12136         if (IS_VF(bp))
12137                 bp->max_cos = 1;
12138         else if (CHIP_IS_E1x(bp))
12139                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12140         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12141                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12142         else if (CHIP_IS_E3B0(bp))
12143                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12144         else
12145                 BNX2X_ERR("unknown chip %x revision %x\n",
12146                           CHIP_NUM(bp), CHIP_REV(bp));
12147         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12148
12149         /* We need at least one default status block for slow-path events,
12150          * second status block for the L2 queue, and a third status block for
12151          * CNIC if supported.
12152          */
12153         if (IS_VF(bp))
12154                 bp->min_msix_vec_cnt = 1;
12155         else if (CNIC_SUPPORT(bp))
12156                 bp->min_msix_vec_cnt = 3;
12157         else /* PF w/o cnic */
12158                 bp->min_msix_vec_cnt = 2;
12159         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12160
12161         bp->dump_preset_idx = 1;
12162
12163         if (CHIP_IS_E3B0(bp))
12164                 bp->flags |= PTP_SUPPORTED;
12165
12166         return rc;
12167 }
12168
12169 /****************************************************************************
12170 * General service functions
12171 ****************************************************************************/
12172
12173 /*
12174  * net_device service functions
12175  */
12176
12177 /* called with rtnl_lock */
12178 static int bnx2x_open(struct net_device *dev)
12179 {
12180         struct bnx2x *bp = netdev_priv(dev);
12181         int rc;
12182
12183         bp->stats_init = true;
12184
12185         netif_carrier_off(dev);
12186
12187         bnx2x_set_power_state(bp, PCI_D0);
12188
12189         /* If parity had happen during the unload, then attentions
12190          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12191          * want the first function loaded on the current engine to
12192          * complete the recovery.
12193          * Parity recovery is only relevant for PF driver.
12194          */
12195         if (IS_PF(bp)) {
12196                 int other_engine = BP_PATH(bp) ? 0 : 1;
12197                 bool other_load_status, load_status;
12198                 bool global = false;
12199
12200                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12201                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12202                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12203                     bnx2x_chk_parity_attn(bp, &global, true)) {
12204                         do {
12205                                 /* If there are attentions and they are in a
12206                                  * global blocks, set the GLOBAL_RESET bit
12207                                  * regardless whether it will be this function
12208                                  * that will complete the recovery or not.
12209                                  */
12210                                 if (global)
12211                                         bnx2x_set_reset_global(bp);
12212
12213                                 /* Only the first function on the current
12214                                  * engine should try to recover in open. In case
12215                                  * of attentions in global blocks only the first
12216                                  * in the chip should try to recover.
12217                                  */
12218                                 if ((!load_status &&
12219                                      (!global || !other_load_status)) &&
12220                                       bnx2x_trylock_leader_lock(bp) &&
12221                                       !bnx2x_leader_reset(bp)) {
12222                                         netdev_info(bp->dev,
12223                                                     "Recovered in open\n");
12224                                         break;
12225                                 }
12226
12227                                 /* recovery has failed... */
12228                                 bnx2x_set_power_state(bp, PCI_D3hot);
12229                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12230
12231                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12232                                           "If you still see this message after a few retries then power cycle is required.\n");
12233
12234                                 return -EAGAIN;
12235                         } while (0);
12236                 }
12237         }
12238
12239         bp->recovery_state = BNX2X_RECOVERY_DONE;
12240         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12241         if (rc)
12242                 return rc;
12243         return 0;
12244 }
12245
12246 /* called with rtnl_lock */
12247 static int bnx2x_close(struct net_device *dev)
12248 {
12249         struct bnx2x *bp = netdev_priv(dev);
12250
12251         /* Unload the driver, release IRQs */
12252         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12253
12254         return 0;
12255 }
12256
12257 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12258                                       struct bnx2x_mcast_ramrod_params *p)
12259 {
12260         int mc_count = netdev_mc_count(bp->dev);
12261         struct bnx2x_mcast_list_elem *mc_mac =
12262                 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12263         struct netdev_hw_addr *ha;
12264
12265         if (!mc_mac)
12266                 return -ENOMEM;
12267
12268         INIT_LIST_HEAD(&p->mcast_list);
12269
12270         netdev_for_each_mc_addr(ha, bp->dev) {
12271                 mc_mac->mac = bnx2x_mc_addr(ha);
12272                 list_add_tail(&mc_mac->link, &p->mcast_list);
12273                 mc_mac++;
12274         }
12275
12276         p->mcast_list_len = mc_count;
12277
12278         return 0;
12279 }
12280
12281 static void bnx2x_free_mcast_macs_list(
12282         struct bnx2x_mcast_ramrod_params *p)
12283 {
12284         struct bnx2x_mcast_list_elem *mc_mac =
12285                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12286                                  link);
12287
12288         WARN_ON(!mc_mac);
12289         kfree(mc_mac);
12290 }
12291
12292 /**
12293  * bnx2x_set_uc_list - configure a new unicast MACs list.
12294  *
12295  * @bp: driver handle
12296  *
12297  * We will use zero (0) as a MAC type for these MACs.
12298  */
12299 static int bnx2x_set_uc_list(struct bnx2x *bp)
12300 {
12301         int rc;
12302         struct net_device *dev = bp->dev;
12303         struct netdev_hw_addr *ha;
12304         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12305         unsigned long ramrod_flags = 0;
12306
12307         /* First schedule a cleanup up of old configuration */
12308         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12309         if (rc < 0) {
12310                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12311                 return rc;
12312         }
12313
12314         netdev_for_each_uc_addr(ha, dev) {
12315                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12316                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12317                 if (rc == -EEXIST) {
12318                         DP(BNX2X_MSG_SP,
12319                            "Failed to schedule ADD operations: %d\n", rc);
12320                         /* do not treat adding same MAC as error */
12321                         rc = 0;
12322
12323                 } else if (rc < 0) {
12324
12325                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12326                                   rc);
12327                         return rc;
12328                 }
12329         }
12330
12331         /* Execute the pending commands */
12332         __set_bit(RAMROD_CONT, &ramrod_flags);
12333         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12334                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12335 }
12336
12337 static int bnx2x_set_mc_list(struct bnx2x *bp)
12338 {
12339         struct net_device *dev = bp->dev;
12340         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12341         int rc = 0;
12342
12343         rparam.mcast_obj = &bp->mcast_obj;
12344
12345         /* first, clear all configured multicast MACs */
12346         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12347         if (rc < 0) {
12348                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12349                 return rc;
12350         }
12351
12352         /* then, configure a new MACs list */
12353         if (netdev_mc_count(dev)) {
12354                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12355                 if (rc) {
12356                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12357                                   rc);
12358                         return rc;
12359                 }
12360
12361                 /* Now add the new MACs */
12362                 rc = bnx2x_config_mcast(bp, &rparam,
12363                                         BNX2X_MCAST_CMD_ADD);
12364                 if (rc < 0)
12365                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12366                                   rc);
12367
12368                 bnx2x_free_mcast_macs_list(&rparam);
12369         }
12370
12371         return rc;
12372 }
12373
12374 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12375 static void bnx2x_set_rx_mode(struct net_device *dev)
12376 {
12377         struct bnx2x *bp = netdev_priv(dev);
12378
12379         if (bp->state != BNX2X_STATE_OPEN) {
12380                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12381                 return;
12382         } else {
12383                 /* Schedule an SP task to handle rest of change */
12384                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12385                                        NETIF_MSG_IFUP);
12386         }
12387 }
12388
12389 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12390 {
12391         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12392
12393         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12394
12395         netif_addr_lock_bh(bp->dev);
12396
12397         if (bp->dev->flags & IFF_PROMISC) {
12398                 rx_mode = BNX2X_RX_MODE_PROMISC;
12399         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12400                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12401                     CHIP_IS_E1(bp))) {
12402                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12403         } else {
12404                 if (IS_PF(bp)) {
12405                         /* some multicasts */
12406                         if (bnx2x_set_mc_list(bp) < 0)
12407                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12408
12409                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12410                         netif_addr_unlock_bh(bp->dev);
12411                         if (bnx2x_set_uc_list(bp) < 0)
12412                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12413                         netif_addr_lock_bh(bp->dev);
12414                 } else {
12415                         /* configuring mcast to a vf involves sleeping (when we
12416                          * wait for the pf's response).
12417                          */
12418                         bnx2x_schedule_sp_rtnl(bp,
12419                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12420                 }
12421         }
12422
12423         bp->rx_mode = rx_mode;
12424         /* handle ISCSI SD mode */
12425         if (IS_MF_ISCSI_ONLY(bp))
12426                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12427
12428         /* Schedule the rx_mode command */
12429         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12430                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12431                 netif_addr_unlock_bh(bp->dev);
12432                 return;
12433         }
12434
12435         if (IS_PF(bp)) {
12436                 bnx2x_set_storm_rx_mode(bp);
12437                 netif_addr_unlock_bh(bp->dev);
12438         } else {
12439                 /* VF will need to request the PF to make this change, and so
12440                  * the VF needs to release the bottom-half lock prior to the
12441                  * request (as it will likely require sleep on the VF side)
12442                  */
12443                 netif_addr_unlock_bh(bp->dev);
12444                 bnx2x_vfpf_storm_rx_mode(bp);
12445         }
12446 }
12447
12448 /* called with rtnl_lock */
12449 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12450                            int devad, u16 addr)
12451 {
12452         struct bnx2x *bp = netdev_priv(netdev);
12453         u16 value;
12454         int rc;
12455
12456         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12457            prtad, devad, addr);
12458
12459         /* The HW expects different devad if CL22 is used */
12460         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12461
12462         bnx2x_acquire_phy_lock(bp);
12463         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12464         bnx2x_release_phy_lock(bp);
12465         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12466
12467         if (!rc)
12468                 rc = value;
12469         return rc;
12470 }
12471
12472 /* called with rtnl_lock */
12473 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12474                             u16 addr, u16 value)
12475 {
12476         struct bnx2x *bp = netdev_priv(netdev);
12477         int rc;
12478
12479         DP(NETIF_MSG_LINK,
12480            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12481            prtad, devad, addr, value);
12482
12483         /* The HW expects different devad if CL22 is used */
12484         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12485
12486         bnx2x_acquire_phy_lock(bp);
12487         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12488         bnx2x_release_phy_lock(bp);
12489         return rc;
12490 }
12491
12492 /* called with rtnl_lock */
12493 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12494 {
12495         struct bnx2x *bp = netdev_priv(dev);
12496         struct mii_ioctl_data *mdio = if_mii(ifr);
12497
12498         if (!netif_running(dev))
12499                 return -EAGAIN;
12500
12501         switch (cmd) {
12502         case SIOCSHWTSTAMP:
12503                 return bnx2x_hwtstamp_ioctl(bp, ifr);
12504         default:
12505                 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12506                    mdio->phy_id, mdio->reg_num, mdio->val_in);
12507                 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12508         }
12509 }
12510
12511 #ifdef CONFIG_NET_POLL_CONTROLLER
12512 static void poll_bnx2x(struct net_device *dev)
12513 {
12514         struct bnx2x *bp = netdev_priv(dev);
12515         int i;
12516
12517         for_each_eth_queue(bp, i) {
12518                 struct bnx2x_fastpath *fp = &bp->fp[i];
12519                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12520         }
12521 }
12522 #endif
12523
12524 static int bnx2x_validate_addr(struct net_device *dev)
12525 {
12526         struct bnx2x *bp = netdev_priv(dev);
12527
12528         /* query the bulletin board for mac address configured by the PF */
12529         if (IS_VF(bp))
12530                 bnx2x_sample_bulletin(bp);
12531
12532         if (!is_valid_ether_addr(dev->dev_addr)) {
12533                 BNX2X_ERR("Non-valid Ethernet address\n");
12534                 return -EADDRNOTAVAIL;
12535         }
12536         return 0;
12537 }
12538
12539 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12540                                   struct netdev_phys_port_id *ppid)
12541 {
12542         struct bnx2x *bp = netdev_priv(netdev);
12543
12544         if (!(bp->flags & HAS_PHYS_PORT_ID))
12545                 return -EOPNOTSUPP;
12546
12547         ppid->id_len = sizeof(bp->phys_port_id);
12548         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12549
12550         return 0;
12551 }
12552
12553 static const struct net_device_ops bnx2x_netdev_ops = {
12554         .ndo_open               = bnx2x_open,
12555         .ndo_stop               = bnx2x_close,
12556         .ndo_start_xmit         = bnx2x_start_xmit,
12557         .ndo_select_queue       = bnx2x_select_queue,
12558         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12559         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12560         .ndo_validate_addr      = bnx2x_validate_addr,
12561         .ndo_do_ioctl           = bnx2x_ioctl,
12562         .ndo_change_mtu         = bnx2x_change_mtu,
12563         .ndo_fix_features       = bnx2x_fix_features,
12564         .ndo_set_features       = bnx2x_set_features,
12565         .ndo_tx_timeout         = bnx2x_tx_timeout,
12566 #ifdef CONFIG_NET_POLL_CONTROLLER
12567         .ndo_poll_controller    = poll_bnx2x,
12568 #endif
12569         .ndo_setup_tc           = bnx2x_setup_tc,
12570 #ifdef CONFIG_BNX2X_SRIOV
12571         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12572         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12573         .ndo_get_vf_config      = bnx2x_get_vf_config,
12574 #endif
12575 #ifdef NETDEV_FCOE_WWNN
12576         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12577 #endif
12578
12579 #ifdef CONFIG_NET_RX_BUSY_POLL
12580         .ndo_busy_poll          = bnx2x_low_latency_recv,
12581 #endif
12582         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
12583         .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
12584 };
12585
12586 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12587 {
12588         struct device *dev = &bp->pdev->dev;
12589
12590         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12591             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12592                 dev_err(dev, "System does not support DMA, aborting\n");
12593                 return -EIO;
12594         }
12595
12596         return 0;
12597 }
12598
12599 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12600 {
12601         if (bp->flags & AER_ENABLED) {
12602                 pci_disable_pcie_error_reporting(bp->pdev);
12603                 bp->flags &= ~AER_ENABLED;
12604         }
12605 }
12606
12607 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12608                           struct net_device *dev, unsigned long board_type)
12609 {
12610         int rc;
12611         u32 pci_cfg_dword;
12612         bool chip_is_e1x = (board_type == BCM57710 ||
12613                             board_type == BCM57711 ||
12614                             board_type == BCM57711E);
12615
12616         SET_NETDEV_DEV(dev, &pdev->dev);
12617
12618         bp->dev = dev;
12619         bp->pdev = pdev;
12620
12621         rc = pci_enable_device(pdev);
12622         if (rc) {
12623                 dev_err(&bp->pdev->dev,
12624                         "Cannot enable PCI device, aborting\n");
12625                 goto err_out;
12626         }
12627
12628         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12629                 dev_err(&bp->pdev->dev,
12630                         "Cannot find PCI device base address, aborting\n");
12631                 rc = -ENODEV;
12632                 goto err_out_disable;
12633         }
12634
12635         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12636                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12637                 rc = -ENODEV;
12638                 goto err_out_disable;
12639         }
12640
12641         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12642         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12643             PCICFG_REVESION_ID_ERROR_VAL) {
12644                 pr_err("PCI device error, probably due to fan failure, aborting\n");
12645                 rc = -ENODEV;
12646                 goto err_out_disable;
12647         }
12648
12649         if (atomic_read(&pdev->enable_cnt) == 1) {
12650                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12651                 if (rc) {
12652                         dev_err(&bp->pdev->dev,
12653                                 "Cannot obtain PCI resources, aborting\n");
12654                         goto err_out_disable;
12655                 }
12656
12657                 pci_set_master(pdev);
12658                 pci_save_state(pdev);
12659         }
12660
12661         if (IS_PF(bp)) {
12662                 if (!pdev->pm_cap) {
12663                         dev_err(&bp->pdev->dev,
12664                                 "Cannot find power management capability, aborting\n");
12665                         rc = -EIO;
12666                         goto err_out_release;
12667                 }
12668         }
12669
12670         if (!pci_is_pcie(pdev)) {
12671                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12672                 rc = -EIO;
12673                 goto err_out_release;
12674         }
12675
12676         rc = bnx2x_set_coherency_mask(bp);
12677         if (rc)
12678                 goto err_out_release;
12679
12680         dev->mem_start = pci_resource_start(pdev, 0);
12681         dev->base_addr = dev->mem_start;
12682         dev->mem_end = pci_resource_end(pdev, 0);
12683
12684         dev->irq = pdev->irq;
12685
12686         bp->regview = pci_ioremap_bar(pdev, 0);
12687         if (!bp->regview) {
12688                 dev_err(&bp->pdev->dev,
12689                         "Cannot map register space, aborting\n");
12690                 rc = -ENOMEM;
12691                 goto err_out_release;
12692         }
12693
12694         /* In E1/E1H use pci device function given by kernel.
12695          * In E2/E3 read physical function from ME register since these chips
12696          * support Physical Device Assignment where kernel BDF maybe arbitrary
12697          * (depending on hypervisor).
12698          */
12699         if (chip_is_e1x) {
12700                 bp->pf_num = PCI_FUNC(pdev->devfn);
12701         } else {
12702                 /* chip is E2/3*/
12703                 pci_read_config_dword(bp->pdev,
12704                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
12705                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12706                                   ME_REG_ABS_PF_NUM_SHIFT);
12707         }
12708         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12709
12710         /* clean indirect addresses */
12711         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12712                                PCICFG_VENDOR_ID_OFFSET);
12713
12714         /* AER (Advanced Error reporting) configuration */
12715         rc = pci_enable_pcie_error_reporting(pdev);
12716         if (!rc)
12717                 bp->flags |= AER_ENABLED;
12718         else
12719                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12720
12721         /*
12722          * Clean the following indirect addresses for all functions since it
12723          * is not used by the driver.
12724          */
12725         if (IS_PF(bp)) {
12726                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12727                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12728                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12729                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12730
12731                 if (chip_is_e1x) {
12732                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12733                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12734                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12735                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12736                 }
12737
12738                 /* Enable internal target-read (in case we are probed after PF
12739                  * FLR). Must be done prior to any BAR read access. Only for
12740                  * 57712 and up
12741                  */
12742                 if (!chip_is_e1x)
12743                         REG_WR(bp,
12744                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12745         }
12746
12747         dev->watchdog_timeo = TX_TIMEOUT;
12748
12749         dev->netdev_ops = &bnx2x_netdev_ops;
12750         bnx2x_set_ethtool_ops(bp, dev);
12751
12752         dev->priv_flags |= IFF_UNICAST_FLT;
12753
12754         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12755                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12756                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12757                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12758         if (!CHIP_IS_E1x(bp)) {
12759                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12760                                     NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12761                 dev->hw_enc_features =
12762                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12763                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12764                         NETIF_F_GSO_IPIP |
12765                         NETIF_F_GSO_SIT |
12766                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12767         }
12768
12769         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12770                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12771
12772         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12773         dev->features |= NETIF_F_HIGHDMA;
12774
12775         /* Add Loopback capability to the device */
12776         dev->hw_features |= NETIF_F_LOOPBACK;
12777
12778 #ifdef BCM_DCBNL
12779         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12780 #endif
12781
12782         /* get_port_hwinfo() will set prtad and mmds properly */
12783         bp->mdio.prtad = MDIO_PRTAD_NONE;
12784         bp->mdio.mmds = 0;
12785         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12786         bp->mdio.dev = dev;
12787         bp->mdio.mdio_read = bnx2x_mdio_read;
12788         bp->mdio.mdio_write = bnx2x_mdio_write;
12789
12790         return 0;
12791
12792 err_out_release:
12793         if (atomic_read(&pdev->enable_cnt) == 1)
12794                 pci_release_regions(pdev);
12795
12796 err_out_disable:
12797         pci_disable_device(pdev);
12798
12799 err_out:
12800         return rc;
12801 }
12802
12803 static int bnx2x_check_firmware(struct bnx2x *bp)
12804 {
12805         const struct firmware *firmware = bp->firmware;
12806         struct bnx2x_fw_file_hdr *fw_hdr;
12807         struct bnx2x_fw_file_section *sections;
12808         u32 offset, len, num_ops;
12809         __be16 *ops_offsets;
12810         int i;
12811         const u8 *fw_ver;
12812
12813         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12814                 BNX2X_ERR("Wrong FW size\n");
12815                 return -EINVAL;
12816         }
12817
12818         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12819         sections = (struct bnx2x_fw_file_section *)fw_hdr;
12820
12821         /* Make sure none of the offsets and sizes make us read beyond
12822          * the end of the firmware data */
12823         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12824                 offset = be32_to_cpu(sections[i].offset);
12825                 len = be32_to_cpu(sections[i].len);
12826                 if (offset + len > firmware->size) {
12827                         BNX2X_ERR("Section %d length is out of bounds\n", i);
12828                         return -EINVAL;
12829                 }
12830         }
12831
12832         /* Likewise for the init_ops offsets */
12833         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12834         ops_offsets = (__force __be16 *)(firmware->data + offset);
12835         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12836
12837         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12838                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12839                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
12840                         return -EINVAL;
12841                 }
12842         }
12843
12844         /* Check FW version */
12845         offset = be32_to_cpu(fw_hdr->fw_version.offset);
12846         fw_ver = firmware->data + offset;
12847         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12848             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12849             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12850             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12851                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12852                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12853                        BCM_5710_FW_MAJOR_VERSION,
12854                        BCM_5710_FW_MINOR_VERSION,
12855                        BCM_5710_FW_REVISION_VERSION,
12856                        BCM_5710_FW_ENGINEERING_VERSION);
12857                 return -EINVAL;
12858         }
12859
12860         return 0;
12861 }
12862
12863 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12864 {
12865         const __be32 *source = (const __be32 *)_source;
12866         u32 *target = (u32 *)_target;
12867         u32 i;
12868
12869         for (i = 0; i < n/4; i++)
12870                 target[i] = be32_to_cpu(source[i]);
12871 }
12872
12873 /*
12874    Ops array is stored in the following format:
12875    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12876  */
12877 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12878 {
12879         const __be32 *source = (const __be32 *)_source;
12880         struct raw_op *target = (struct raw_op *)_target;
12881         u32 i, j, tmp;
12882
12883         for (i = 0, j = 0; i < n/8; i++, j += 2) {
12884                 tmp = be32_to_cpu(source[j]);
12885                 target[i].op = (tmp >> 24) & 0xff;
12886                 target[i].offset = tmp & 0xffffff;
12887                 target[i].raw_data = be32_to_cpu(source[j + 1]);
12888         }
12889 }
12890
12891 /* IRO array is stored in the following format:
12892  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12893  */
12894 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12895 {
12896         const __be32 *source = (const __be32 *)_source;
12897         struct iro *target = (struct iro *)_target;
12898         u32 i, j, tmp;
12899
12900         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12901                 target[i].base = be32_to_cpu(source[j]);
12902                 j++;
12903                 tmp = be32_to_cpu(source[j]);
12904                 target[i].m1 = (tmp >> 16) & 0xffff;
12905                 target[i].m2 = tmp & 0xffff;
12906                 j++;
12907                 tmp = be32_to_cpu(source[j]);
12908                 target[i].m3 = (tmp >> 16) & 0xffff;
12909                 target[i].size = tmp & 0xffff;
12910                 j++;
12911         }
12912 }
12913
12914 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12915 {
12916         const __be16 *source = (const __be16 *)_source;
12917         u16 *target = (u16 *)_target;
12918         u32 i;
12919
12920         for (i = 0; i < n/2; i++)
12921                 target[i] = be16_to_cpu(source[i]);
12922 }
12923
12924 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12925 do {                                                                    \
12926         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12927         bp->arr = kmalloc(len, GFP_KERNEL);                             \
12928         if (!bp->arr)                                                   \
12929                 goto lbl;                                               \
12930         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12931              (u8 *)bp->arr, len);                                       \
12932 } while (0)
12933
12934 static int bnx2x_init_firmware(struct bnx2x *bp)
12935 {
12936         const char *fw_file_name;
12937         struct bnx2x_fw_file_hdr *fw_hdr;
12938         int rc;
12939
12940         if (bp->firmware)
12941                 return 0;
12942
12943         if (CHIP_IS_E1(bp))
12944                 fw_file_name = FW_FILE_NAME_E1;
12945         else if (CHIP_IS_E1H(bp))
12946                 fw_file_name = FW_FILE_NAME_E1H;
12947         else if (!CHIP_IS_E1x(bp))
12948                 fw_file_name = FW_FILE_NAME_E2;
12949         else {
12950                 BNX2X_ERR("Unsupported chip revision\n");
12951                 return -EINVAL;
12952         }
12953         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12954
12955         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12956         if (rc) {
12957                 BNX2X_ERR("Can't load firmware file %s\n",
12958                           fw_file_name);
12959                 goto request_firmware_exit;
12960         }
12961
12962         rc = bnx2x_check_firmware(bp);
12963         if (rc) {
12964                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12965                 goto request_firmware_exit;
12966         }
12967
12968         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12969
12970         /* Initialize the pointers to the init arrays */
12971         /* Blob */
12972         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12973
12974         /* Opcodes */
12975         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12976
12977         /* Offsets */
12978         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12979                             be16_to_cpu_n);
12980
12981         /* STORMs firmware */
12982         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12983                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12984         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12985                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12986         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12987                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12988         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12989                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
12990         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12991                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12992         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12993                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12994         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12995                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12996         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12997                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
12998         /* IRO */
12999         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13000
13001         return 0;
13002
13003 iro_alloc_err:
13004         kfree(bp->init_ops_offsets);
13005 init_offsets_alloc_err:
13006         kfree(bp->init_ops);
13007 init_ops_alloc_err:
13008         kfree(bp->init_data);
13009 request_firmware_exit:
13010         release_firmware(bp->firmware);
13011         bp->firmware = NULL;
13012
13013         return rc;
13014 }
13015
13016 static void bnx2x_release_firmware(struct bnx2x *bp)
13017 {
13018         kfree(bp->init_ops_offsets);
13019         kfree(bp->init_ops);
13020         kfree(bp->init_data);
13021         release_firmware(bp->firmware);
13022         bp->firmware = NULL;
13023 }
13024
13025 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13026         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13027         .init_hw_cmn      = bnx2x_init_hw_common,
13028         .init_hw_port     = bnx2x_init_hw_port,
13029         .init_hw_func     = bnx2x_init_hw_func,
13030
13031         .reset_hw_cmn     = bnx2x_reset_common,
13032         .reset_hw_port    = bnx2x_reset_port,
13033         .reset_hw_func    = bnx2x_reset_func,
13034
13035         .gunzip_init      = bnx2x_gunzip_init,
13036         .gunzip_end       = bnx2x_gunzip_end,
13037
13038         .init_fw          = bnx2x_init_firmware,
13039         .release_fw       = bnx2x_release_firmware,
13040 };
13041
13042 void bnx2x__init_func_obj(struct bnx2x *bp)
13043 {
13044         /* Prepare DMAE related driver resources */
13045         bnx2x_setup_dmae(bp);
13046
13047         bnx2x_init_func_obj(bp, &bp->func_obj,
13048                             bnx2x_sp(bp, func_rdata),
13049                             bnx2x_sp_mapping(bp, func_rdata),
13050                             bnx2x_sp(bp, func_afex_rdata),
13051                             bnx2x_sp_mapping(bp, func_afex_rdata),
13052                             &bnx2x_func_sp_drv);
13053 }
13054
13055 /* must be called after sriov-enable */
13056 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13057 {
13058         int cid_count = BNX2X_L2_MAX_CID(bp);
13059
13060         if (IS_SRIOV(bp))
13061                 cid_count += BNX2X_VF_CIDS;
13062
13063         if (CNIC_SUPPORT(bp))
13064                 cid_count += CNIC_CID_MAX;
13065
13066         return roundup(cid_count, QM_CID_ROUND);
13067 }
13068
13069 /**
13070  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13071  *
13072  * @dev:        pci device
13073  *
13074  */
13075 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13076 {
13077         int index;
13078         u16 control = 0;
13079
13080         /*
13081          * If MSI-X is not supported - return number of SBs needed to support
13082          * one fast path queue: one FP queue + SB for CNIC
13083          */
13084         if (!pdev->msix_cap) {
13085                 dev_info(&pdev->dev, "no msix capability found\n");
13086                 return 1 + cnic_cnt;
13087         }
13088         dev_info(&pdev->dev, "msix capability found\n");
13089
13090         /*
13091          * The value in the PCI configuration space is the index of the last
13092          * entry, namely one less than the actual size of the table, which is
13093          * exactly what we want to return from this function: number of all SBs
13094          * without the default SB.
13095          * For VFs there is no default SB, then we return (index+1).
13096          */
13097         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13098
13099         index = control & PCI_MSIX_FLAGS_QSIZE;
13100
13101         return index;
13102 }
13103
13104 static int set_max_cos_est(int chip_id)
13105 {
13106         switch (chip_id) {
13107         case BCM57710:
13108         case BCM57711:
13109         case BCM57711E:
13110                 return BNX2X_MULTI_TX_COS_E1X;
13111         case BCM57712:
13112         case BCM57712_MF:
13113                 return BNX2X_MULTI_TX_COS_E2_E3A0;
13114         case BCM57800:
13115         case BCM57800_MF:
13116         case BCM57810:
13117         case BCM57810_MF:
13118         case BCM57840_4_10:
13119         case BCM57840_2_20:
13120         case BCM57840_O:
13121         case BCM57840_MFO:
13122         case BCM57840_MF:
13123         case BCM57811:
13124         case BCM57811_MF:
13125                 return BNX2X_MULTI_TX_COS_E3B0;
13126         case BCM57712_VF:
13127         case BCM57800_VF:
13128         case BCM57810_VF:
13129         case BCM57840_VF:
13130         case BCM57811_VF:
13131                 return 1;
13132         default:
13133                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13134                 return -ENODEV;
13135         }
13136 }
13137
13138 static int set_is_vf(int chip_id)
13139 {
13140         switch (chip_id) {
13141         case BCM57712_VF:
13142         case BCM57800_VF:
13143         case BCM57810_VF:
13144         case BCM57840_VF:
13145         case BCM57811_VF:
13146                 return true;
13147         default:
13148                 return false;
13149         }
13150 }
13151
13152 /* nig_tsgen registers relative address */
13153 #define tsgen_ctrl 0x0
13154 #define tsgen_freecount 0x10
13155 #define tsgen_synctime_t0 0x20
13156 #define tsgen_offset_t0 0x28
13157 #define tsgen_drift_t0 0x30
13158 #define tsgen_synctime_t1 0x58
13159 #define tsgen_offset_t1 0x60
13160 #define tsgen_drift_t1 0x68
13161
13162 /* FW workaround for setting drift */
13163 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13164                                           int best_val, int best_period)
13165 {
13166         struct bnx2x_func_state_params func_params = {NULL};
13167         struct bnx2x_func_set_timesync_params *set_timesync_params =
13168                 &func_params.params.set_timesync;
13169
13170         /* Prepare parameters for function state transitions */
13171         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13172         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13173
13174         func_params.f_obj = &bp->func_obj;
13175         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13176
13177         /* Function parameters */
13178         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13179         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13180         set_timesync_params->add_sub_drift_adjust_value =
13181                 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13182         set_timesync_params->drift_adjust_value = best_val;
13183         set_timesync_params->drift_adjust_period = best_period;
13184
13185         return bnx2x_func_state_change(bp, &func_params);
13186 }
13187
13188 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13189 {
13190         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13191         int rc;
13192         int drift_dir = 1;
13193         int val, period, period1, period2, dif, dif1, dif2;
13194         int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13195
13196         DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13197
13198         if (!netif_running(bp->dev)) {
13199                 DP(BNX2X_MSG_PTP,
13200                    "PTP adjfreq called while the interface is down\n");
13201                 return -EFAULT;
13202         }
13203
13204         if (ppb < 0) {
13205                 ppb = -ppb;
13206                 drift_dir = 0;
13207         }
13208
13209         if (ppb == 0) {
13210                 best_val = 1;
13211                 best_period = 0x1FFFFFF;
13212         } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13213                 best_val = 31;
13214                 best_period = 1;
13215         } else {
13216                 /* Changed not to allow val = 8, 16, 24 as these values
13217                  * are not supported in workaround.
13218                  */
13219                 for (val = 0; val <= 31; val++) {
13220                         if ((val & 0x7) == 0)
13221                                 continue;
13222                         period1 = val * 1000000 / ppb;
13223                         period2 = period1 + 1;
13224                         if (period1 != 0)
13225                                 dif1 = ppb - (val * 1000000 / period1);
13226                         else
13227                                 dif1 = BNX2X_MAX_PHC_DRIFT;
13228                         if (dif1 < 0)
13229                                 dif1 = -dif1;
13230                         dif2 = ppb - (val * 1000000 / period2);
13231                         if (dif2 < 0)
13232                                 dif2 = -dif2;
13233                         dif = (dif1 < dif2) ? dif1 : dif2;
13234                         period = (dif1 < dif2) ? period1 : period2;
13235                         if (dif < best_dif) {
13236                                 best_dif = dif;
13237                                 best_val = val;
13238                                 best_period = period;
13239                         }
13240                 }
13241         }
13242
13243         rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13244                                             best_period);
13245         if (rc) {
13246                 BNX2X_ERR("Failed to set drift\n");
13247                 return -EFAULT;
13248         }
13249
13250         DP(BNX2X_MSG_PTP, "Configrued val = %d, period = %d\n", best_val,
13251            best_period);
13252
13253         return 0;
13254 }
13255
13256 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13257 {
13258         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13259         u64 now;
13260
13261         DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13262
13263         now = timecounter_read(&bp->timecounter);
13264         now += delta;
13265         /* Re-init the timecounter */
13266         timecounter_init(&bp->timecounter, &bp->cyclecounter, now);
13267
13268         return 0;
13269 }
13270
13271 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
13272 {
13273         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13274         u64 ns;
13275         u32 remainder;
13276
13277         ns = timecounter_read(&bp->timecounter);
13278
13279         DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13280
13281         ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
13282         ts->tv_nsec = remainder;
13283
13284         return 0;
13285 }
13286
13287 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13288                              const struct timespec *ts)
13289 {
13290         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13291         u64 ns;
13292
13293         ns = ts->tv_sec * 1000000000ULL;
13294         ns += ts->tv_nsec;
13295
13296         DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13297
13298         /* Re-init the timecounter */
13299         timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13300
13301         return 0;
13302 }
13303
13304 /* Enable (or disable) ancillary features of the phc subsystem */
13305 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13306                             struct ptp_clock_request *rq, int on)
13307 {
13308         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13309
13310         BNX2X_ERR("PHC ancillary features are not supported\n");
13311         return -ENOTSUPP;
13312 }
13313
13314 void bnx2x_register_phc(struct bnx2x *bp)
13315 {
13316         /* Fill the ptp_clock_info struct and register PTP clock*/
13317         bp->ptp_clock_info.owner = THIS_MODULE;
13318         snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13319         bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13320         bp->ptp_clock_info.n_alarm = 0;
13321         bp->ptp_clock_info.n_ext_ts = 0;
13322         bp->ptp_clock_info.n_per_out = 0;
13323         bp->ptp_clock_info.pps = 0;
13324         bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13325         bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13326         bp->ptp_clock_info.gettime = bnx2x_ptp_gettime;
13327         bp->ptp_clock_info.settime = bnx2x_ptp_settime;
13328         bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13329
13330         bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13331         if (IS_ERR(bp->ptp_clock)) {
13332                 bp->ptp_clock = NULL;
13333                 BNX2X_ERR("PTP clock registeration failed\n");
13334         }
13335 }
13336
13337 static int bnx2x_init_one(struct pci_dev *pdev,
13338                                     const struct pci_device_id *ent)
13339 {
13340         struct net_device *dev = NULL;
13341         struct bnx2x *bp;
13342         enum pcie_link_width pcie_width;
13343         enum pci_bus_speed pcie_speed;
13344         int rc, max_non_def_sbs;
13345         int rx_count, tx_count, rss_count, doorbell_size;
13346         int max_cos_est;
13347         bool is_vf;
13348         int cnic_cnt;
13349
13350         /* An estimated maximum supported CoS number according to the chip
13351          * version.
13352          * We will try to roughly estimate the maximum number of CoSes this chip
13353          * may support in order to minimize the memory allocated for Tx
13354          * netdev_queue's. This number will be accurately calculated during the
13355          * initialization of bp->max_cos based on the chip versions AND chip
13356          * revision in the bnx2x_init_bp().
13357          */
13358         max_cos_est = set_max_cos_est(ent->driver_data);
13359         if (max_cos_est < 0)
13360                 return max_cos_est;
13361         is_vf = set_is_vf(ent->driver_data);
13362         cnic_cnt = is_vf ? 0 : 1;
13363
13364         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13365
13366         /* add another SB for VF as it has no default SB */
13367         max_non_def_sbs += is_vf ? 1 : 0;
13368
13369         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13370         rss_count = max_non_def_sbs - cnic_cnt;
13371
13372         if (rss_count < 1)
13373                 return -EINVAL;
13374
13375         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13376         rx_count = rss_count + cnic_cnt;
13377
13378         /* Maximum number of netdev Tx queues:
13379          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13380          */
13381         tx_count = rss_count * max_cos_est + cnic_cnt;
13382
13383         /* dev zeroed in init_etherdev */
13384         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13385         if (!dev)
13386                 return -ENOMEM;
13387
13388         bp = netdev_priv(dev);
13389
13390         bp->flags = 0;
13391         if (is_vf)
13392                 bp->flags |= IS_VF_FLAG;
13393
13394         bp->igu_sb_cnt = max_non_def_sbs;
13395         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13396         bp->msg_enable = debug;
13397         bp->cnic_support = cnic_cnt;
13398         bp->cnic_probe = bnx2x_cnic_probe;
13399
13400         pci_set_drvdata(pdev, dev);
13401
13402         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13403         if (rc < 0) {
13404                 free_netdev(dev);
13405                 return rc;
13406         }
13407
13408         BNX2X_DEV_INFO("This is a %s function\n",
13409                        IS_PF(bp) ? "physical" : "virtual");
13410         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13411         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13412         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13413                        tx_count, rx_count);
13414
13415         rc = bnx2x_init_bp(bp);
13416         if (rc)
13417                 goto init_one_exit;
13418
13419         /* Map doorbells here as we need the real value of bp->max_cos which
13420          * is initialized in bnx2x_init_bp() to determine the number of
13421          * l2 connections.
13422          */
13423         if (IS_VF(bp)) {
13424                 bp->doorbells = bnx2x_vf_doorbells(bp);
13425                 rc = bnx2x_vf_pci_alloc(bp);
13426                 if (rc)
13427                         goto init_one_exit;
13428         } else {
13429                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13430                 if (doorbell_size > pci_resource_len(pdev, 2)) {
13431                         dev_err(&bp->pdev->dev,
13432                                 "Cannot map doorbells, bar size too small, aborting\n");
13433                         rc = -ENOMEM;
13434                         goto init_one_exit;
13435                 }
13436                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13437                                                 doorbell_size);
13438         }
13439         if (!bp->doorbells) {
13440                 dev_err(&bp->pdev->dev,
13441                         "Cannot map doorbell space, aborting\n");
13442                 rc = -ENOMEM;
13443                 goto init_one_exit;
13444         }
13445
13446         if (IS_VF(bp)) {
13447                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13448                 if (rc)
13449                         goto init_one_exit;
13450         }
13451
13452         /* Enable SRIOV if capability found in configuration space */
13453         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13454         if (rc)
13455                 goto init_one_exit;
13456
13457         /* calc qm_cid_count */
13458         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13459         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13460
13461         /* disable FCOE L2 queue for E1x*/
13462         if (CHIP_IS_E1x(bp))
13463                 bp->flags |= NO_FCOE_FLAG;
13464
13465         /* Set bp->num_queues for MSI-X mode*/
13466         bnx2x_set_num_queues(bp);
13467
13468         /* Configure interrupt mode: try to enable MSI-X/MSI if
13469          * needed.
13470          */
13471         rc = bnx2x_set_int_mode(bp);
13472         if (rc) {
13473                 dev_err(&pdev->dev, "Cannot set interrupts\n");
13474                 goto init_one_exit;
13475         }
13476         BNX2X_DEV_INFO("set interrupts successfully\n");
13477
13478         /* register the net device */
13479         rc = register_netdev(dev);
13480         if (rc) {
13481                 dev_err(&pdev->dev, "Cannot register net device\n");
13482                 goto init_one_exit;
13483         }
13484         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13485
13486         if (!NO_FCOE(bp)) {
13487                 /* Add storage MAC address */
13488                 rtnl_lock();
13489                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13490                 rtnl_unlock();
13491         }
13492         if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13493             pcie_speed == PCI_SPEED_UNKNOWN ||
13494             pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13495                 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13496         else
13497                 BNX2X_DEV_INFO(
13498                        "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13499                        board_info[ent->driver_data].name,
13500                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13501                        pcie_width,
13502                        pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13503                        pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13504                        pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13505                        "Unknown",
13506                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
13507
13508         bnx2x_register_phc(bp);
13509
13510         return 0;
13511
13512 init_one_exit:
13513         bnx2x_disable_pcie_error_reporting(bp);
13514
13515         if (bp->regview)
13516                 iounmap(bp->regview);
13517
13518         if (IS_PF(bp) && bp->doorbells)
13519                 iounmap(bp->doorbells);
13520
13521         free_netdev(dev);
13522
13523         if (atomic_read(&pdev->enable_cnt) == 1)
13524                 pci_release_regions(pdev);
13525
13526         pci_disable_device(pdev);
13527
13528         return rc;
13529 }
13530
13531 static void __bnx2x_remove(struct pci_dev *pdev,
13532                            struct net_device *dev,
13533                            struct bnx2x *bp,
13534                            bool remove_netdev)
13535 {
13536         if (bp->ptp_clock) {
13537                 ptp_clock_unregister(bp->ptp_clock);
13538                 bp->ptp_clock = NULL;
13539         }
13540
13541         /* Delete storage MAC address */
13542         if (!NO_FCOE(bp)) {
13543                 rtnl_lock();
13544                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13545                 rtnl_unlock();
13546         }
13547
13548 #ifdef BCM_DCBNL
13549         /* Delete app tlvs from dcbnl */
13550         bnx2x_dcbnl_update_applist(bp, true);
13551 #endif
13552
13553         if (IS_PF(bp) &&
13554             !BP_NOMCP(bp) &&
13555             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13556                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13557
13558         /* Close the interface - either directly or implicitly */
13559         if (remove_netdev) {
13560                 unregister_netdev(dev);
13561         } else {
13562                 rtnl_lock();
13563                 dev_close(dev);
13564                 rtnl_unlock();
13565         }
13566
13567         bnx2x_iov_remove_one(bp);
13568
13569         /* Power on: we can't let PCI layer write to us while we are in D3 */
13570         if (IS_PF(bp)) {
13571                 bnx2x_set_power_state(bp, PCI_D0);
13572
13573                 /* Set endianity registers to reset values in case next driver
13574                  * boots in different endianty environment.
13575                  */
13576                 bnx2x_reset_endianity(bp);
13577         }
13578
13579         /* Disable MSI/MSI-X */
13580         bnx2x_disable_msi(bp);
13581
13582         /* Power off */
13583         if (IS_PF(bp))
13584                 bnx2x_set_power_state(bp, PCI_D3hot);
13585
13586         /* Make sure RESET task is not scheduled before continuing */
13587         cancel_delayed_work_sync(&bp->sp_rtnl_task);
13588
13589         /* send message via vfpf channel to release the resources of this vf */
13590         if (IS_VF(bp))
13591                 bnx2x_vfpf_release(bp);
13592
13593         /* Assumes no further PCIe PM changes will occur */
13594         if (system_state == SYSTEM_POWER_OFF) {
13595                 pci_wake_from_d3(pdev, bp->wol);
13596                 pci_set_power_state(pdev, PCI_D3hot);
13597         }
13598
13599         bnx2x_disable_pcie_error_reporting(bp);
13600         if (remove_netdev) {
13601                 if (bp->regview)
13602                         iounmap(bp->regview);
13603
13604                 /* For vfs, doorbells are part of the regview and were unmapped
13605                  * along with it. FW is only loaded by PF.
13606                  */
13607                 if (IS_PF(bp)) {
13608                         if (bp->doorbells)
13609                                 iounmap(bp->doorbells);
13610
13611                         bnx2x_release_firmware(bp);
13612                 } else {
13613                         bnx2x_vf_pci_dealloc(bp);
13614                 }
13615                 bnx2x_free_mem_bp(bp);
13616
13617                 free_netdev(dev);
13618
13619                 if (atomic_read(&pdev->enable_cnt) == 1)
13620                         pci_release_regions(pdev);
13621
13622                 pci_disable_device(pdev);
13623         }
13624 }
13625
13626 static void bnx2x_remove_one(struct pci_dev *pdev)
13627 {
13628         struct net_device *dev = pci_get_drvdata(pdev);
13629         struct bnx2x *bp;
13630
13631         if (!dev) {
13632                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13633                 return;
13634         }
13635         bp = netdev_priv(dev);
13636
13637         __bnx2x_remove(pdev, dev, bp, true);
13638 }
13639
13640 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13641 {
13642         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13643
13644         bp->rx_mode = BNX2X_RX_MODE_NONE;
13645
13646         if (CNIC_LOADED(bp))
13647                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13648
13649         /* Stop Tx */
13650         bnx2x_tx_disable(bp);
13651         /* Delete all NAPI objects */
13652         bnx2x_del_all_napi(bp);
13653         if (CNIC_LOADED(bp))
13654                 bnx2x_del_all_napi_cnic(bp);
13655         netdev_reset_tc(bp->dev);
13656
13657         del_timer_sync(&bp->timer);
13658         cancel_delayed_work_sync(&bp->sp_task);
13659         cancel_delayed_work_sync(&bp->period_task);
13660
13661         spin_lock_bh(&bp->stats_lock);
13662         bp->stats_state = STATS_STATE_DISABLED;
13663         spin_unlock_bh(&bp->stats_lock);
13664
13665         bnx2x_save_statistics(bp);
13666
13667         netif_carrier_off(bp->dev);
13668
13669         return 0;
13670 }
13671
13672 /**
13673  * bnx2x_io_error_detected - called when PCI error is detected
13674  * @pdev: Pointer to PCI device
13675  * @state: The current pci connection state
13676  *
13677  * This function is called after a PCI bus error affecting
13678  * this device has been detected.
13679  */
13680 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13681                                                 pci_channel_state_t state)
13682 {
13683         struct net_device *dev = pci_get_drvdata(pdev);
13684         struct bnx2x *bp = netdev_priv(dev);
13685
13686         rtnl_lock();
13687
13688         BNX2X_ERR("IO error detected\n");
13689
13690         netif_device_detach(dev);
13691
13692         if (state == pci_channel_io_perm_failure) {
13693                 rtnl_unlock();
13694                 return PCI_ERS_RESULT_DISCONNECT;
13695         }
13696
13697         if (netif_running(dev))
13698                 bnx2x_eeh_nic_unload(bp);
13699
13700         bnx2x_prev_path_mark_eeh(bp);
13701
13702         pci_disable_device(pdev);
13703
13704         rtnl_unlock();
13705
13706         /* Request a slot reset */
13707         return PCI_ERS_RESULT_NEED_RESET;
13708 }
13709
13710 /**
13711  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13712  * @pdev: Pointer to PCI device
13713  *
13714  * Restart the card from scratch, as if from a cold-boot.
13715  */
13716 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13717 {
13718         struct net_device *dev = pci_get_drvdata(pdev);
13719         struct bnx2x *bp = netdev_priv(dev);
13720         int i;
13721
13722         rtnl_lock();
13723         BNX2X_ERR("IO slot reset initializing...\n");
13724         if (pci_enable_device(pdev)) {
13725                 dev_err(&pdev->dev,
13726                         "Cannot re-enable PCI device after reset\n");
13727                 rtnl_unlock();
13728                 return PCI_ERS_RESULT_DISCONNECT;
13729         }
13730
13731         pci_set_master(pdev);
13732         pci_restore_state(pdev);
13733         pci_save_state(pdev);
13734
13735         if (netif_running(dev))
13736                 bnx2x_set_power_state(bp, PCI_D0);
13737
13738         if (netif_running(dev)) {
13739                 BNX2X_ERR("IO slot reset --> driver unload\n");
13740
13741                 /* MCP should have been reset; Need to wait for validity */
13742                 bnx2x_init_shmem(bp);
13743
13744                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13745                         u32 v;
13746
13747                         v = SHMEM2_RD(bp,
13748                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13749                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13750                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13751                 }
13752                 bnx2x_drain_tx_queues(bp);
13753                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13754                 bnx2x_netif_stop(bp, 1);
13755                 bnx2x_free_irq(bp);
13756
13757                 /* Report UNLOAD_DONE to MCP */
13758                 bnx2x_send_unload_done(bp, true);
13759
13760                 bp->sp_state = 0;
13761                 bp->port.pmf = 0;
13762
13763                 bnx2x_prev_unload(bp);
13764
13765                 /* We should have reseted the engine, so It's fair to
13766                  * assume the FW will no longer write to the bnx2x driver.
13767                  */
13768                 bnx2x_squeeze_objects(bp);
13769                 bnx2x_free_skbs(bp);
13770                 for_each_rx_queue(bp, i)
13771                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13772                 bnx2x_free_fp_mem(bp);
13773                 bnx2x_free_mem(bp);
13774
13775                 bp->state = BNX2X_STATE_CLOSED;
13776         }
13777
13778         rtnl_unlock();
13779
13780         /* If AER, perform cleanup of the PCIe registers */
13781         if (bp->flags & AER_ENABLED) {
13782                 if (pci_cleanup_aer_uncorrect_error_status(pdev))
13783                         BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13784                 else
13785                         DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13786         }
13787
13788         return PCI_ERS_RESULT_RECOVERED;
13789 }
13790
13791 /**
13792  * bnx2x_io_resume - called when traffic can start flowing again
13793  * @pdev: Pointer to PCI device
13794  *
13795  * This callback is called when the error recovery driver tells us that
13796  * its OK to resume normal operation.
13797  */
13798 static void bnx2x_io_resume(struct pci_dev *pdev)
13799 {
13800         struct net_device *dev = pci_get_drvdata(pdev);
13801         struct bnx2x *bp = netdev_priv(dev);
13802
13803         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13804                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13805                 return;
13806         }
13807
13808         rtnl_lock();
13809
13810         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13811                                                         DRV_MSG_SEQ_NUMBER_MASK;
13812
13813         if (netif_running(dev))
13814                 bnx2x_nic_load(bp, LOAD_NORMAL);
13815
13816         netif_device_attach(dev);
13817
13818         rtnl_unlock();
13819 }
13820
13821 static const struct pci_error_handlers bnx2x_err_handler = {
13822         .error_detected = bnx2x_io_error_detected,
13823         .slot_reset     = bnx2x_io_slot_reset,
13824         .resume         = bnx2x_io_resume,
13825 };
13826
13827 static void bnx2x_shutdown(struct pci_dev *pdev)
13828 {
13829         struct net_device *dev = pci_get_drvdata(pdev);
13830         struct bnx2x *bp;
13831
13832         if (!dev)
13833                 return;
13834
13835         bp = netdev_priv(dev);
13836         if (!bp)
13837                 return;
13838
13839         rtnl_lock();
13840         netif_device_detach(dev);
13841         rtnl_unlock();
13842
13843         /* Don't remove the netdevice, as there are scenarios which will cause
13844          * the kernel to hang, e.g., when trying to remove bnx2i while the
13845          * rootfs is mounted from SAN.
13846          */
13847         __bnx2x_remove(pdev, dev, bp, false);
13848 }
13849
13850 static struct pci_driver bnx2x_pci_driver = {
13851         .name        = DRV_MODULE_NAME,
13852         .id_table    = bnx2x_pci_tbl,
13853         .probe       = bnx2x_init_one,
13854         .remove      = bnx2x_remove_one,
13855         .suspend     = bnx2x_suspend,
13856         .resume      = bnx2x_resume,
13857         .err_handler = &bnx2x_err_handler,
13858 #ifdef CONFIG_BNX2X_SRIOV
13859         .sriov_configure = bnx2x_sriov_configure,
13860 #endif
13861         .shutdown    = bnx2x_shutdown,
13862 };
13863
13864 static int __init bnx2x_init(void)
13865 {
13866         int ret;
13867
13868         pr_info("%s", version);
13869
13870         bnx2x_wq = create_singlethread_workqueue("bnx2x");
13871         if (bnx2x_wq == NULL) {
13872                 pr_err("Cannot create workqueue\n");
13873                 return -ENOMEM;
13874         }
13875         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13876         if (!bnx2x_iov_wq) {
13877                 pr_err("Cannot create iov workqueue\n");
13878                 destroy_workqueue(bnx2x_wq);
13879                 return -ENOMEM;
13880         }
13881
13882         ret = pci_register_driver(&bnx2x_pci_driver);
13883         if (ret) {
13884                 pr_err("Cannot register driver\n");
13885                 destroy_workqueue(bnx2x_wq);
13886                 destroy_workqueue(bnx2x_iov_wq);
13887         }
13888         return ret;
13889 }
13890
13891 static void __exit bnx2x_cleanup(void)
13892 {
13893         struct list_head *pos, *q;
13894
13895         pci_unregister_driver(&bnx2x_pci_driver);
13896
13897         destroy_workqueue(bnx2x_wq);
13898         destroy_workqueue(bnx2x_iov_wq);
13899
13900         /* Free globally allocated resources */
13901         list_for_each_safe(pos, q, &bnx2x_prev_list) {
13902                 struct bnx2x_prev_path_list *tmp =
13903                         list_entry(pos, struct bnx2x_prev_path_list, list);
13904                 list_del(pos);
13905                 kfree(tmp);
13906         }
13907 }
13908
13909 void bnx2x_notify_link_changed(struct bnx2x *bp)
13910 {
13911         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13912 }
13913
13914 module_init(bnx2x_init);
13915 module_exit(bnx2x_cleanup);
13916
13917 /**
13918  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13919  *
13920  * @bp:         driver handle
13921  * @set:        set or clear the CAM entry
13922  *
13923  * This function will wait until the ramrod completion returns.
13924  * Return 0 if success, -ENODEV if ramrod doesn't return.
13925  */
13926 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13927 {
13928         unsigned long ramrod_flags = 0;
13929
13930         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13931         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13932                                  &bp->iscsi_l2_mac_obj, true,
13933                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13934 }
13935
13936 /* count denotes the number of new completions we have seen */
13937 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13938 {
13939         struct eth_spe *spe;
13940         int cxt_index, cxt_offset;
13941
13942 #ifdef BNX2X_STOP_ON_ERROR
13943         if (unlikely(bp->panic))
13944                 return;
13945 #endif
13946
13947         spin_lock_bh(&bp->spq_lock);
13948         BUG_ON(bp->cnic_spq_pending < count);
13949         bp->cnic_spq_pending -= count;
13950
13951         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13952                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13953                                 & SPE_HDR_CONN_TYPE) >>
13954                                 SPE_HDR_CONN_TYPE_SHIFT;
13955                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13956                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13957
13958                 /* Set validation for iSCSI L2 client before sending SETUP
13959                  *  ramrod
13960                  */
13961                 if (type == ETH_CONNECTION_TYPE) {
13962                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13963                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13964                                         ILT_PAGE_CIDS;
13965                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13966                                         (cxt_index * ILT_PAGE_CIDS);
13967                                 bnx2x_set_ctx_validation(bp,
13968                                         &bp->context[cxt_index].
13969                                                          vcxt[cxt_offset].eth,
13970                                         BNX2X_ISCSI_ETH_CID(bp));
13971                         }
13972                 }
13973
13974                 /*
13975                  * There may be not more than 8 L2, not more than 8 L5 SPEs
13976                  * and in the air. We also check that number of outstanding
13977                  * COMMON ramrods is not more than the EQ and SPQ can
13978                  * accommodate.
13979                  */
13980                 if (type == ETH_CONNECTION_TYPE) {
13981                         if (!atomic_read(&bp->cq_spq_left))
13982                                 break;
13983                         else
13984                                 atomic_dec(&bp->cq_spq_left);
13985                 } else if (type == NONE_CONNECTION_TYPE) {
13986                         if (!atomic_read(&bp->eq_spq_left))
13987                                 break;
13988                         else
13989                                 atomic_dec(&bp->eq_spq_left);
13990                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13991                            (type == FCOE_CONNECTION_TYPE)) {
13992                         if (bp->cnic_spq_pending >=
13993                             bp->cnic_eth_dev.max_kwqe_pending)
13994                                 break;
13995                         else
13996                                 bp->cnic_spq_pending++;
13997                 } else {
13998                         BNX2X_ERR("Unknown SPE type: %d\n", type);
13999                         bnx2x_panic();
14000                         break;
14001                 }
14002
14003                 spe = bnx2x_sp_get_next(bp);
14004                 *spe = *bp->cnic_kwq_cons;
14005
14006                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14007                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14008
14009                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14010                         bp->cnic_kwq_cons = bp->cnic_kwq;
14011                 else
14012                         bp->cnic_kwq_cons++;
14013         }
14014         bnx2x_sp_prod_update(bp);
14015         spin_unlock_bh(&bp->spq_lock);
14016 }
14017
14018 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14019                                struct kwqe_16 *kwqes[], u32 count)
14020 {
14021         struct bnx2x *bp = netdev_priv(dev);
14022         int i;
14023
14024 #ifdef BNX2X_STOP_ON_ERROR
14025         if (unlikely(bp->panic)) {
14026                 BNX2X_ERR("Can't post to SP queue while panic\n");
14027                 return -EIO;
14028         }
14029 #endif
14030
14031         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14032             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14033                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14034                 return -EAGAIN;
14035         }
14036
14037         spin_lock_bh(&bp->spq_lock);
14038
14039         for (i = 0; i < count; i++) {
14040                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14041
14042                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14043                         break;
14044
14045                 *bp->cnic_kwq_prod = *spe;
14046
14047                 bp->cnic_kwq_pending++;
14048
14049                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14050                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
14051                    spe->data.update_data_addr.hi,
14052                    spe->data.update_data_addr.lo,
14053                    bp->cnic_kwq_pending);
14054
14055                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14056                         bp->cnic_kwq_prod = bp->cnic_kwq;
14057                 else
14058                         bp->cnic_kwq_prod++;
14059         }
14060
14061         spin_unlock_bh(&bp->spq_lock);
14062
14063         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14064                 bnx2x_cnic_sp_post(bp, 0);
14065
14066         return i;
14067 }
14068
14069 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14070 {
14071         struct cnic_ops *c_ops;
14072         int rc = 0;
14073
14074         mutex_lock(&bp->cnic_mutex);
14075         c_ops = rcu_dereference_protected(bp->cnic_ops,
14076                                           lockdep_is_held(&bp->cnic_mutex));
14077         if (c_ops)
14078                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14079         mutex_unlock(&bp->cnic_mutex);
14080
14081         return rc;
14082 }
14083
14084 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14085 {
14086         struct cnic_ops *c_ops;
14087         int rc = 0;
14088
14089         rcu_read_lock();
14090         c_ops = rcu_dereference(bp->cnic_ops);
14091         if (c_ops)
14092                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14093         rcu_read_unlock();
14094
14095         return rc;
14096 }
14097
14098 /*
14099  * for commands that have no data
14100  */
14101 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14102 {
14103         struct cnic_ctl_info ctl = {0};
14104
14105         ctl.cmd = cmd;
14106
14107         return bnx2x_cnic_ctl_send(bp, &ctl);
14108 }
14109
14110 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14111 {
14112         struct cnic_ctl_info ctl = {0};
14113
14114         /* first we tell CNIC and only then we count this as a completion */
14115         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14116         ctl.data.comp.cid = cid;
14117         ctl.data.comp.error = err;
14118
14119         bnx2x_cnic_ctl_send_bh(bp, &ctl);
14120         bnx2x_cnic_sp_post(bp, 0);
14121 }
14122
14123 /* Called with netif_addr_lock_bh() taken.
14124  * Sets an rx_mode config for an iSCSI ETH client.
14125  * Doesn't block.
14126  * Completion should be checked outside.
14127  */
14128 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14129 {
14130         unsigned long accept_flags = 0, ramrod_flags = 0;
14131         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14132         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14133
14134         if (start) {
14135                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14136                  * because it's the only way for UIO Queue to accept
14137                  * multicasts (in non-promiscuous mode only one Queue per
14138                  * function will receive multicast packets (leading in our
14139                  * case).
14140                  */
14141                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14142                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14143                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14144                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14145
14146                 /* Clear STOP_PENDING bit if START is requested */
14147                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14148
14149                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14150         } else
14151                 /* Clear START_PENDING bit if STOP is requested */
14152                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14153
14154         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14155                 set_bit(sched_state, &bp->sp_state);
14156         else {
14157                 __set_bit(RAMROD_RX, &ramrod_flags);
14158                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14159                                     ramrod_flags);
14160         }
14161 }
14162
14163 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14164 {
14165         struct bnx2x *bp = netdev_priv(dev);
14166         int rc = 0;
14167
14168         switch (ctl->cmd) {
14169         case DRV_CTL_CTXTBL_WR_CMD: {
14170                 u32 index = ctl->data.io.offset;
14171                 dma_addr_t addr = ctl->data.io.dma_addr;
14172
14173                 bnx2x_ilt_wr(bp, index, addr);
14174                 break;
14175         }
14176
14177         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14178                 int count = ctl->data.credit.credit_count;
14179
14180                 bnx2x_cnic_sp_post(bp, count);
14181                 break;
14182         }
14183
14184         /* rtnl_lock is held.  */
14185         case DRV_CTL_START_L2_CMD: {
14186                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14187                 unsigned long sp_bits = 0;
14188
14189                 /* Configure the iSCSI classification object */
14190                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14191                                    cp->iscsi_l2_client_id,
14192                                    cp->iscsi_l2_cid, BP_FUNC(bp),
14193                                    bnx2x_sp(bp, mac_rdata),
14194                                    bnx2x_sp_mapping(bp, mac_rdata),
14195                                    BNX2X_FILTER_MAC_PENDING,
14196                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14197                                    &bp->macs_pool);
14198
14199                 /* Set iSCSI MAC address */
14200                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14201                 if (rc)
14202                         break;
14203
14204                 mmiowb();
14205                 barrier();
14206
14207                 /* Start accepting on iSCSI L2 ring */
14208
14209                 netif_addr_lock_bh(dev);
14210                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14211                 netif_addr_unlock_bh(dev);
14212
14213                 /* bits to wait on */
14214                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14215                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14216
14217                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14218                         BNX2X_ERR("rx_mode completion timed out!\n");
14219
14220                 break;
14221         }
14222
14223         /* rtnl_lock is held.  */
14224         case DRV_CTL_STOP_L2_CMD: {
14225                 unsigned long sp_bits = 0;
14226
14227                 /* Stop accepting on iSCSI L2 ring */
14228                 netif_addr_lock_bh(dev);
14229                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14230                 netif_addr_unlock_bh(dev);
14231
14232                 /* bits to wait on */
14233                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14234                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14235
14236                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14237                         BNX2X_ERR("rx_mode completion timed out!\n");
14238
14239                 mmiowb();
14240                 barrier();
14241
14242                 /* Unset iSCSI L2 MAC */
14243                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14244                                         BNX2X_ISCSI_ETH_MAC, true);
14245                 break;
14246         }
14247         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14248                 int count = ctl->data.credit.credit_count;
14249
14250                 smp_mb__before_atomic();
14251                 atomic_add(count, &bp->cq_spq_left);
14252                 smp_mb__after_atomic();
14253                 break;
14254         }
14255         case DRV_CTL_ULP_REGISTER_CMD: {
14256                 int ulp_type = ctl->data.register_data.ulp_type;
14257
14258                 if (CHIP_IS_E3(bp)) {
14259                         int idx = BP_FW_MB_IDX(bp);
14260                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14261                         int path = BP_PATH(bp);
14262                         int port = BP_PORT(bp);
14263                         int i;
14264                         u32 scratch_offset;
14265                         u32 *host_addr;
14266
14267                         /* first write capability to shmem2 */
14268                         if (ulp_type == CNIC_ULP_ISCSI)
14269                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14270                         else if (ulp_type == CNIC_ULP_FCOE)
14271                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14272                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14273
14274                         if ((ulp_type != CNIC_ULP_FCOE) ||
14275                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14276                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14277                                 break;
14278
14279                         /* if reached here - should write fcoe capabilities */
14280                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14281                         if (!scratch_offset)
14282                                 break;
14283                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
14284                                                    fcoe_features[path][port]);
14285                         host_addr = (u32 *) &(ctl->data.register_data.
14286                                               fcoe_features);
14287                         for (i = 0; i < sizeof(struct fcoe_capabilities);
14288                              i += 4)
14289                                 REG_WR(bp, scratch_offset + i,
14290                                        *(host_addr + i/4));
14291                 }
14292                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14293                 break;
14294         }
14295
14296         case DRV_CTL_ULP_UNREGISTER_CMD: {
14297                 int ulp_type = ctl->data.ulp_type;
14298
14299                 if (CHIP_IS_E3(bp)) {
14300                         int idx = BP_FW_MB_IDX(bp);
14301                         u32 cap;
14302
14303                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14304                         if (ulp_type == CNIC_ULP_ISCSI)
14305                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14306                         else if (ulp_type == CNIC_ULP_FCOE)
14307                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14308                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14309                 }
14310                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14311                 break;
14312         }
14313
14314         default:
14315                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14316                 rc = -EINVAL;
14317         }
14318
14319         return rc;
14320 }
14321
14322 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14323 {
14324         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14325
14326         if (bp->flags & USING_MSIX_FLAG) {
14327                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14328                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14329                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14330         } else {
14331                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14332                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14333         }
14334         if (!CHIP_IS_E1x(bp))
14335                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14336         else
14337                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14338
14339         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14340         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14341         cp->irq_arr[1].status_blk = bp->def_status_blk;
14342         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14343         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14344
14345         cp->num_irq = 2;
14346 }
14347
14348 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14349 {
14350         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14351
14352         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14353                              bnx2x_cid_ilt_lines(bp);
14354         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14355         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14356         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14357
14358         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14359            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14360            cp->iscsi_l2_cid);
14361
14362         if (NO_ISCSI_OOO(bp))
14363                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14364 }
14365
14366 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14367                                void *data)
14368 {
14369         struct bnx2x *bp = netdev_priv(dev);
14370         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14371         int rc;
14372
14373         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14374
14375         if (ops == NULL) {
14376                 BNX2X_ERR("NULL ops received\n");
14377                 return -EINVAL;
14378         }
14379
14380         if (!CNIC_SUPPORT(bp)) {
14381                 BNX2X_ERR("Can't register CNIC when not supported\n");
14382                 return -EOPNOTSUPP;
14383         }
14384
14385         if (!CNIC_LOADED(bp)) {
14386                 rc = bnx2x_load_cnic(bp);
14387                 if (rc) {
14388                         BNX2X_ERR("CNIC-related load failed\n");
14389                         return rc;
14390                 }
14391         }
14392
14393         bp->cnic_enabled = true;
14394
14395         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14396         if (!bp->cnic_kwq)
14397                 return -ENOMEM;
14398
14399         bp->cnic_kwq_cons = bp->cnic_kwq;
14400         bp->cnic_kwq_prod = bp->cnic_kwq;
14401         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14402
14403         bp->cnic_spq_pending = 0;
14404         bp->cnic_kwq_pending = 0;
14405
14406         bp->cnic_data = data;
14407
14408         cp->num_irq = 0;
14409         cp->drv_state |= CNIC_DRV_STATE_REGD;
14410         cp->iro_arr = bp->iro_arr;
14411
14412         bnx2x_setup_cnic_irq_info(bp);
14413
14414         rcu_assign_pointer(bp->cnic_ops, ops);
14415
14416         /* Schedule driver to read CNIC driver versions */
14417         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14418
14419         return 0;
14420 }
14421
14422 static int bnx2x_unregister_cnic(struct net_device *dev)
14423 {
14424         struct bnx2x *bp = netdev_priv(dev);
14425         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14426
14427         mutex_lock(&bp->cnic_mutex);
14428         cp->drv_state = 0;
14429         RCU_INIT_POINTER(bp->cnic_ops, NULL);
14430         mutex_unlock(&bp->cnic_mutex);
14431         synchronize_rcu();
14432         bp->cnic_enabled = false;
14433         kfree(bp->cnic_kwq);
14434         bp->cnic_kwq = NULL;
14435
14436         return 0;
14437 }
14438
14439 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14440 {
14441         struct bnx2x *bp = netdev_priv(dev);
14442         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14443
14444         /* If both iSCSI and FCoE are disabled - return NULL in
14445          * order to indicate CNIC that it should not try to work
14446          * with this device.
14447          */
14448         if (NO_ISCSI(bp) && NO_FCOE(bp))
14449                 return NULL;
14450
14451         cp->drv_owner = THIS_MODULE;
14452         cp->chip_id = CHIP_ID(bp);
14453         cp->pdev = bp->pdev;
14454         cp->io_base = bp->regview;
14455         cp->io_base2 = bp->doorbells;
14456         cp->max_kwqe_pending = 8;
14457         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14458         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14459                              bnx2x_cid_ilt_lines(bp);
14460         cp->ctx_tbl_len = CNIC_ILT_LINES;
14461         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14462         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14463         cp->drv_ctl = bnx2x_drv_ctl;
14464         cp->drv_register_cnic = bnx2x_register_cnic;
14465         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14466         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14467         cp->iscsi_l2_client_id =
14468                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14469         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14470
14471         if (NO_ISCSI_OOO(bp))
14472                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14473
14474         if (NO_ISCSI(bp))
14475                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14476
14477         if (NO_FCOE(bp))
14478                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14479
14480         BNX2X_DEV_INFO(
14481                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14482            cp->ctx_blk_size,
14483            cp->ctx_tbl_offset,
14484            cp->ctx_tbl_len,
14485            cp->starting_cid);
14486         return cp;
14487 }
14488
14489 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14490 {
14491         struct bnx2x *bp = fp->bp;
14492         u32 offset = BAR_USTRORM_INTMEM;
14493
14494         if (IS_VF(bp))
14495                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
14496         else if (!CHIP_IS_E1x(bp))
14497                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14498         else
14499                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14500
14501         return offset;
14502 }
14503
14504 /* called only on E1H or E2.
14505  * When pretending to be PF, the pretend value is the function number 0...7
14506  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14507  * combination
14508  */
14509 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14510 {
14511         u32 pretend_reg;
14512
14513         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14514                 return -1;
14515
14516         /* get my own pretend register */
14517         pretend_reg = bnx2x_get_pretend_reg(bp);
14518         REG_WR(bp, pretend_reg, pretend_func_val);
14519         REG_RD(bp, pretend_reg);
14520         return 0;
14521 }
14522
14523 static void bnx2x_ptp_task(struct work_struct *work)
14524 {
14525         struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
14526         int port = BP_PORT(bp);
14527         u32 val_seq;
14528         u64 timestamp, ns;
14529         struct skb_shared_hwtstamps shhwtstamps;
14530
14531         /* Read Tx timestamp registers */
14532         val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14533                          NIG_REG_P0_TLLH_PTP_BUF_SEQID);
14534         if (val_seq & 0x10000) {
14535                 /* There is a valid timestamp value */
14536                 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
14537                                    NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
14538                 timestamp <<= 32;
14539                 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
14540                                     NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
14541                 /* Reset timestamp register to allow new timestamp */
14542                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14543                        NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14544                 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14545
14546                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
14547                 shhwtstamps.hwtstamp = ns_to_ktime(ns);
14548                 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
14549                 dev_kfree_skb_any(bp->ptp_tx_skb);
14550                 bp->ptp_tx_skb = NULL;
14551
14552                 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
14553                    timestamp, ns);
14554         } else {
14555                 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
14556                 /* Reschedule to keep checking for a valid timestamp value */
14557                 schedule_work(&bp->ptp_task);
14558         }
14559 }
14560
14561 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
14562 {
14563         int port = BP_PORT(bp);
14564         u64 timestamp, ns;
14565
14566         timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
14567                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
14568         timestamp <<= 32;
14569         timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
14570                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
14571
14572         /* Reset timestamp register to allow new timestamp */
14573         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14574                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14575
14576         ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14577
14578         skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
14579
14580         DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
14581            timestamp, ns);
14582 }
14583
14584 /* Read the PHC */
14585 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
14586 {
14587         struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
14588         int port = BP_PORT(bp);
14589         u32 wb_data[2];
14590         u64 phc_cycles;
14591
14592         REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
14593                     NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
14594         phc_cycles = wb_data[1];
14595         phc_cycles = (phc_cycles << 32) + wb_data[0];
14596
14597         DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
14598
14599         return phc_cycles;
14600 }
14601
14602 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
14603 {
14604         memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
14605         bp->cyclecounter.read = bnx2x_cyclecounter_read;
14606         bp->cyclecounter.mask = CLOCKSOURCE_MASK(64);
14607         bp->cyclecounter.shift = 1;
14608         bp->cyclecounter.mult = 1;
14609 }
14610
14611 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
14612 {
14613         struct bnx2x_func_state_params func_params = {NULL};
14614         struct bnx2x_func_set_timesync_params *set_timesync_params =
14615                 &func_params.params.set_timesync;
14616
14617         /* Prepare parameters for function state transitions */
14618         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
14619         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
14620
14621         func_params.f_obj = &bp->func_obj;
14622         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
14623
14624         /* Function parameters */
14625         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
14626         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
14627
14628         return bnx2x_func_state_change(bp, &func_params);
14629 }
14630
14631 int bnx2x_enable_ptp_packets(struct bnx2x *bp)
14632 {
14633         struct bnx2x_queue_state_params q_params;
14634         int rc, i;
14635
14636         /* send queue update ramrod to enable PTP packets */
14637         memset(&q_params, 0, sizeof(q_params));
14638         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
14639         q_params.cmd = BNX2X_Q_CMD_UPDATE;
14640         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
14641                   &q_params.params.update.update_flags);
14642         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
14643                   &q_params.params.update.update_flags);
14644
14645         /* send the ramrod on all the queues of the PF */
14646         for_each_eth_queue(bp, i) {
14647                 struct bnx2x_fastpath *fp = &bp->fp[i];
14648
14649                 /* Set the appropriate Queue object */
14650                 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
14651
14652                 /* Update the Queue state */
14653                 rc = bnx2x_queue_state_change(bp, &q_params);
14654                 if (rc) {
14655                         BNX2X_ERR("Failed to enable PTP packets\n");
14656                         return rc;
14657                 }
14658         }
14659
14660         return 0;
14661 }
14662
14663 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
14664 {
14665         int port = BP_PORT(bp);
14666         int rc;
14667
14668         if (!bp->hwtstamp_ioctl_called)
14669                 return 0;
14670
14671         switch (bp->tx_type) {
14672         case HWTSTAMP_TX_ON:
14673                 bp->flags |= TX_TIMESTAMPING_EN;
14674                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14675                        NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
14676                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14677                        NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
14678                 break;
14679         case HWTSTAMP_TX_ONESTEP_SYNC:
14680                 BNX2X_ERR("One-step timestamping is not supported\n");
14681                 return -ERANGE;
14682         }
14683
14684         switch (bp->rx_filter) {
14685         case HWTSTAMP_FILTER_NONE:
14686                 break;
14687         case HWTSTAMP_FILTER_ALL:
14688         case HWTSTAMP_FILTER_SOME:
14689                 bp->rx_filter = HWTSTAMP_FILTER_NONE;
14690                 break;
14691         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
14692         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
14693         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
14694                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
14695                 /* Initialize PTP detection for UDP/IPv4 events */
14696                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14697                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
14698                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14699                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
14700                 break;
14701         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
14702         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
14703         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
14704                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
14705                 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
14706                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14707                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
14708                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14709                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
14710                 break;
14711         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
14712         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
14713         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
14714                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
14715                 /* Initialize PTP detection L2 events */
14716                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14717                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
14718                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14719                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
14720
14721                 break;
14722         case HWTSTAMP_FILTER_PTP_V2_EVENT:
14723         case HWTSTAMP_FILTER_PTP_V2_SYNC:
14724         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
14725                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
14726                 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
14727                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14728                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
14729                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14730                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
14731                 break;
14732         }
14733
14734         /* Indicate to FW that this PF expects recorded PTP packets */
14735         rc = bnx2x_enable_ptp_packets(bp);
14736         if (rc)
14737                 return rc;
14738
14739         /* Enable sending PTP packets to host */
14740         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14741                NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
14742
14743         return 0;
14744 }
14745
14746 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
14747 {
14748         struct hwtstamp_config config;
14749         int rc;
14750
14751         DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
14752
14753         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
14754                 return -EFAULT;
14755
14756         DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
14757            config.tx_type, config.rx_filter);
14758
14759         if (config.flags) {
14760                 BNX2X_ERR("config.flags is reserved for future use\n");
14761                 return -EINVAL;
14762         }
14763
14764         bp->hwtstamp_ioctl_called = 1;
14765         bp->tx_type = config.tx_type;
14766         bp->rx_filter = config.rx_filter;
14767
14768         rc = bnx2x_configure_ptp_filters(bp);
14769         if (rc)
14770                 return rc;
14771
14772         config.rx_filter = bp->rx_filter;
14773
14774         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
14775                 -EFAULT : 0;
14776 }
14777
14778 /* Configrues HW for PTP */
14779 static int bnx2x_configure_ptp(struct bnx2x *bp)
14780 {
14781         int rc, port = BP_PORT(bp);
14782         u32 wb_data[2];
14783
14784         /* Reset PTP event detection rules - will be configured in the IOCTL */
14785         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14786                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
14787         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14788                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
14789         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14790                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
14791         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14792                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
14793
14794         /* Disable PTP packets to host - will be configured in the IOCTL*/
14795         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14796                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
14797
14798         /* Enable the PTP feature */
14799         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
14800                NIG_REG_P0_PTP_EN, 0x3F);
14801
14802         /* Enable the free-running counter */
14803         wb_data[0] = 0;
14804         wb_data[1] = 0;
14805         REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
14806
14807         /* Reset drift register (offset register is not reset) */
14808         rc = bnx2x_send_reset_timesync_ramrod(bp);
14809         if (rc) {
14810                 BNX2X_ERR("Failed to reset PHC drift register\n");
14811                 return -EFAULT;
14812         }
14813
14814         /* Reset possibly old timestamps */
14815         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14816                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14817         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14818                NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14819
14820         return 0;
14821 }
14822
14823 /* Called during load, to initialize PTP-related stuff */
14824 void bnx2x_init_ptp(struct bnx2x *bp)
14825 {
14826         int rc;
14827
14828         /* Configure PTP in HW */
14829         rc = bnx2x_configure_ptp(bp);
14830         if (rc) {
14831                 BNX2X_ERR("Stopping PTP initialization\n");
14832                 return;
14833         }
14834
14835         /* Init work queue for Tx timestamping */
14836         INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
14837
14838         /* Init cyclecounter and timecounter. This is done only in the first
14839          * load. If done in every load, PTP application will fail when doing
14840          * unload / load (e.g. MTU change) while it is running.
14841          */
14842         if (!bp->timecounter_init_done) {
14843                 bnx2x_init_cyclecounter(bp);
14844                 timecounter_init(&bp->timecounter, &bp->cyclecounter,
14845                                  ktime_to_ns(ktime_get_real()));
14846                 bp->timecounter_init_done = 1;
14847         }
14848
14849         DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
14850 }