cxgb4: Enhance driver to update FW, when FW is too old
[cascardo/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5 Network Driver"
87
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95         /* Administrative fields for filter.
96          */
97         u32 valid:1;            /* filter allocated and valid */
98         u32 locked:1;           /* filter is administratively locked */
99
100         u32 pending:1;          /* filter action is pending firmware reply */
101         u32 smtidx:8;           /* Source MAC Table index for smac */
102         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103
104         /* The filter itself.  Most of this is a straight copy of information
105          * provided by the extended ioctl().  Some fields are translated to
106          * internal forms -- for instance the Ingress Queue ID passed in from
107          * the ioctl() is translated into the Absolute Ingress Queue ID.
108          */
109         struct ch_filter_specification fs;
110 };
111
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119         static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131                 { 0, } \
132         }
133
134 #include "t4_pci_id_tbl.h"
135
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW6_FNAME "cxgb4/t6fw.bin"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 MODULE_FIRMWARE(FW4_FNAME);
153 MODULE_FIRMWARE(FW5_FNAME);
154
155 /*
156  * Normally we're willing to become the firmware's Master PF but will be happy
157  * if another PF has already become the Master and initialized the adapter.
158  * Setting "force_init" will cause this driver to forcibly establish itself as
159  * the Master PF and initialize the adapter.
160  */
161 static uint force_init;
162
163 module_param(force_init, uint, 0644);
164 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
165
166 /*
167  * Normally if the firmware we connect to has Configuration File support, we
168  * use that and only fall back to the old Driver-based initialization if the
169  * Configuration File fails for some reason.  If force_old_init is set, then
170  * we'll always use the old Driver-based initialization sequence.
171  */
172 static uint force_old_init;
173
174 module_param(force_old_init, uint, 0644);
175 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
176                  " parameter");
177
178 static int dflt_msg_enable = DFLT_MSG_ENABLE;
179
180 module_param(dflt_msg_enable, int, 0644);
181 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
182
183 /*
184  * The driver uses the best interrupt scheme available on a platform in the
185  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
186  * of these schemes the driver may consider as follows:
187  *
188  * msi = 2: choose from among all three options
189  * msi = 1: only consider MSI and INTx interrupts
190  * msi = 0: force INTx interrupts
191  */
192 static int msi = 2;
193
194 module_param(msi, int, 0644);
195 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
196
197 /*
198  * Queue interrupt hold-off timer values.  Queues default to the first of these
199  * upon creation.
200  */
201 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
202
203 module_param_array(intr_holdoff, uint, NULL, 0644);
204 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
205                  "0..4 in microseconds, deprecated parameter");
206
207 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
208
209 module_param_array(intr_cnt, uint, NULL, 0644);
210 MODULE_PARM_DESC(intr_cnt,
211                  "thresholds 1..3 for queue interrupt packet counters, "
212                  "deprecated parameter");
213
214 /*
215  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
216  * offset by 2 bytes in order to have the IP headers line up on 4-byte
217  * boundaries.  This is a requirement for many architectures which will throw
218  * a machine check fault if an attempt is made to access one of the 4-byte IP
219  * header fields on a non-4-byte boundary.  And it's a major performance issue
220  * even on some architectures which allow it like some implementations of the
221  * x86 ISA.  However, some architectures don't mind this and for some very
222  * edge-case performance sensitive applications (like forwarding large volumes
223  * of small packets), setting this DMA offset to 0 will decrease the number of
224  * PCI-E Bus transfers enough to measurably affect performance.
225  */
226 static int rx_dma_offset = 2;
227
228 static bool vf_acls;
229
230 #ifdef CONFIG_PCI_IOV
231 module_param(vf_acls, bool, 0644);
232 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
233                  "deprecated parameter");
234
235 /* Configure the number of PCI-E Virtual Function which are to be instantiated
236  * on SR-IOV Capable Physical Functions.
237  */
238 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
239
240 module_param_array(num_vf, uint, NULL, 0644);
241 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
242 #endif
243
244 /* TX Queue select used to determine what algorithm to use for selecting TX
245  * queue. Select between the kernel provided function (select_queue=0) or user
246  * cxgb_select_queue function (select_queue=1)
247  *
248  * Default: select_queue=0
249  */
250 static int select_queue;
251 module_param(select_queue, int, 0644);
252 MODULE_PARM_DESC(select_queue,
253                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
254
255 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
256
257 module_param(tp_vlan_pri_map, uint, 0644);
258 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
259                  "deprecated parameter");
260
261 static struct dentry *cxgb4_debugfs_root;
262
263 static LIST_HEAD(adapter_list);
264 static DEFINE_MUTEX(uld_mutex);
265 /* Adapter list to be accessed from atomic context */
266 static LIST_HEAD(adap_rcu_list);
267 static DEFINE_SPINLOCK(adap_rcu_lock);
268 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
269 static const char *uld_str[] = { "RDMA", "iSCSI" };
270
271 static void link_report(struct net_device *dev)
272 {
273         if (!netif_carrier_ok(dev))
274                 netdev_info(dev, "link down\n");
275         else {
276                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
277
278                 const char *s;
279                 const struct port_info *p = netdev_priv(dev);
280
281                 switch (p->link_cfg.speed) {
282                 case 10000:
283                         s = "10Gbps";
284                         break;
285                 case 1000:
286                         s = "1000Mbps";
287                         break;
288                 case 100:
289                         s = "100Mbps";
290                         break;
291                 case 40000:
292                         s = "40Gbps";
293                         break;
294                 default:
295                         pr_info("%s: unsupported speed: %d\n",
296                                 dev->name, p->link_cfg.speed);
297                         return;
298                 }
299
300                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
301                             fc[p->link_cfg.fc]);
302         }
303 }
304
305 #ifdef CONFIG_CHELSIO_T4_DCB
306 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
307 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
308 {
309         struct port_info *pi = netdev_priv(dev);
310         struct adapter *adap = pi->adapter;
311         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
312         int i;
313
314         /* We use a simple mapping of Port TX Queue Index to DCB
315          * Priority when we're enabling DCB.
316          */
317         for (i = 0; i < pi->nqsets; i++, txq++) {
318                 u32 name, value;
319                 int err;
320
321                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
322                         FW_PARAMS_PARAM_X_V(
323                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
324                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
325                 value = enable ? i : 0xffffffff;
326
327                 /* Since we can be called while atomic (from "interrupt
328                  * level") we need to issue the Set Parameters Commannd
329                  * without sleeping (timeout < 0).
330                  */
331                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
332                                             &name, &value,
333                                             -FW_CMD_MAX_TIMEOUT);
334
335                 if (err)
336                         dev_err(adap->pdev_dev,
337                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
338                                 enable ? "set" : "unset", pi->port_id, i, -err);
339                 else
340                         txq->dcb_prio = value;
341         }
342 }
343 #endif /* CONFIG_CHELSIO_T4_DCB */
344
345 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
346 {
347         struct net_device *dev = adapter->port[port_id];
348
349         /* Skip changes from disabled ports. */
350         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
351                 if (link_stat)
352                         netif_carrier_on(dev);
353                 else {
354 #ifdef CONFIG_CHELSIO_T4_DCB
355                         cxgb4_dcb_state_init(dev);
356                         dcb_tx_queue_prio_enable(dev, false);
357 #endif /* CONFIG_CHELSIO_T4_DCB */
358                         netif_carrier_off(dev);
359                 }
360
361                 link_report(dev);
362         }
363 }
364
365 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
366 {
367         static const char *mod_str[] = {
368                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
369         };
370
371         const struct net_device *dev = adap->port[port_id];
372         const struct port_info *pi = netdev_priv(dev);
373
374         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
375                 netdev_info(dev, "port module unplugged\n");
376         else if (pi->mod_type < ARRAY_SIZE(mod_str))
377                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
378 }
379
380 /*
381  * Configure the exact and hash address filters to handle a port's multicast
382  * and secondary unicast MAC addresses.
383  */
384 static int set_addr_filters(const struct net_device *dev, bool sleep)
385 {
386         u64 mhash = 0;
387         u64 uhash = 0;
388         bool free = true;
389         u16 filt_idx[7];
390         const u8 *addr[7];
391         int ret, naddr = 0;
392         const struct netdev_hw_addr *ha;
393         int uc_cnt = netdev_uc_count(dev);
394         int mc_cnt = netdev_mc_count(dev);
395         const struct port_info *pi = netdev_priv(dev);
396         unsigned int mb = pi->adapter->pf;
397
398         /* first do the secondary unicast addresses */
399         netdev_for_each_uc_addr(ha, dev) {
400                 addr[naddr++] = ha->addr;
401                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
402                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
403                                         naddr, addr, filt_idx, &uhash, sleep);
404                         if (ret < 0)
405                                 return ret;
406
407                         free = false;
408                         naddr = 0;
409                 }
410         }
411
412         /* next set up the multicast addresses */
413         netdev_for_each_mc_addr(ha, dev) {
414                 addr[naddr++] = ha->addr;
415                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
416                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
417                                         naddr, addr, filt_idx, &mhash, sleep);
418                         if (ret < 0)
419                                 return ret;
420
421                         free = false;
422                         naddr = 0;
423                 }
424         }
425
426         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
427                                 uhash | mhash, sleep);
428 }
429
430 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
431 module_param(dbfifo_int_thresh, int, 0644);
432 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
433
434 /*
435  * usecs to sleep while draining the dbfifo
436  */
437 static int dbfifo_drain_delay = 1000;
438 module_param(dbfifo_drain_delay, int, 0644);
439 MODULE_PARM_DESC(dbfifo_drain_delay,
440                  "usecs to sleep while draining the dbfifo");
441
442 /*
443  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
444  * If @mtu is -1 it is left unchanged.
445  */
446 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
447 {
448         int ret;
449         struct port_info *pi = netdev_priv(dev);
450
451         ret = set_addr_filters(dev, sleep_ok);
452         if (ret == 0)
453                 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
454                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
455                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
456                                     sleep_ok);
457         return ret;
458 }
459
460 /**
461  *      link_start - enable a port
462  *      @dev: the port to enable
463  *
464  *      Performs the MAC and PHY actions needed to enable a port.
465  */
466 static int link_start(struct net_device *dev)
467 {
468         int ret;
469         struct port_info *pi = netdev_priv(dev);
470         unsigned int mb = pi->adapter->pf;
471
472         /*
473          * We do not set address filters and promiscuity here, the stack does
474          * that step explicitly.
475          */
476         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
477                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
478         if (ret == 0) {
479                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
480                                     pi->xact_addr_filt, dev->dev_addr, true,
481                                     true);
482                 if (ret >= 0) {
483                         pi->xact_addr_filt = ret;
484                         ret = 0;
485                 }
486         }
487         if (ret == 0)
488                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
489                                     &pi->link_cfg);
490         if (ret == 0) {
491                 local_bh_disable();
492                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
493                                           true, CXGB4_DCB_ENABLED);
494                 local_bh_enable();
495         }
496
497         return ret;
498 }
499
500 int cxgb4_dcb_enabled(const struct net_device *dev)
501 {
502 #ifdef CONFIG_CHELSIO_T4_DCB
503         struct port_info *pi = netdev_priv(dev);
504
505         if (!pi->dcb.enabled)
506                 return 0;
507
508         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
509                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
510 #else
511         return 0;
512 #endif
513 }
514 EXPORT_SYMBOL(cxgb4_dcb_enabled);
515
516 #ifdef CONFIG_CHELSIO_T4_DCB
517 /* Handle a Data Center Bridging update message from the firmware. */
518 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
519 {
520         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
521         struct net_device *dev = adap->port[port];
522         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
523         int new_dcb_enabled;
524
525         cxgb4_dcb_handle_fw_update(adap, pcmd);
526         new_dcb_enabled = cxgb4_dcb_enabled(dev);
527
528         /* If the DCB has become enabled or disabled on the port then we're
529          * going to need to set up/tear down DCB Priority parameters for the
530          * TX Queues associated with the port.
531          */
532         if (new_dcb_enabled != old_dcb_enabled)
533                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
534 }
535 #endif /* CONFIG_CHELSIO_T4_DCB */
536
537 /* Clear a filter and release any of its resources that we own.  This also
538  * clears the filter's "pending" status.
539  */
540 static void clear_filter(struct adapter *adap, struct filter_entry *f)
541 {
542         /* If the new or old filter have loopback rewriteing rules then we'll
543          * need to free any existing Layer Two Table (L2T) entries of the old
544          * filter rule.  The firmware will handle freeing up any Source MAC
545          * Table (SMT) entries used for rewriting Source MAC Addresses in
546          * loopback rules.
547          */
548         if (f->l2t)
549                 cxgb4_l2t_release(f->l2t);
550
551         /* The zeroing of the filter rule below clears the filter valid,
552          * pending, locked flags, l2t pointer, etc. so it's all we need for
553          * this operation.
554          */
555         memset(f, 0, sizeof(*f));
556 }
557
558 /* Handle a filter write/deletion reply.
559  */
560 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
561 {
562         unsigned int idx = GET_TID(rpl);
563         unsigned int nidx = idx - adap->tids.ftid_base;
564         unsigned int ret;
565         struct filter_entry *f;
566
567         if (idx >= adap->tids.ftid_base && nidx <
568            (adap->tids.nftids + adap->tids.nsftids)) {
569                 idx = nidx;
570                 ret = TCB_COOKIE_G(rpl->cookie);
571                 f = &adap->tids.ftid_tab[idx];
572
573                 if (ret == FW_FILTER_WR_FLT_DELETED) {
574                         /* Clear the filter when we get confirmation from the
575                          * hardware that the filter has been deleted.
576                          */
577                         clear_filter(adap, f);
578                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
579                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
580                                 idx);
581                         clear_filter(adap, f);
582                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
583                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
584                         f->pending = 0;  /* asynchronous setup completed */
585                         f->valid = 1;
586                 } else {
587                         /* Something went wrong.  Issue a warning about the
588                          * problem and clear everything out.
589                          */
590                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
591                                 idx, ret);
592                         clear_filter(adap, f);
593                 }
594         }
595 }
596
597 /* Response queue handler for the FW event queue.
598  */
599 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
600                           const struct pkt_gl *gl)
601 {
602         u8 opcode = ((const struct rss_header *)rsp)->opcode;
603
604         rsp++;                                          /* skip RSS header */
605
606         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
607          */
608         if (unlikely(opcode == CPL_FW4_MSG &&
609            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
610                 rsp++;
611                 opcode = ((const struct rss_header *)rsp)->opcode;
612                 rsp++;
613                 if (opcode != CPL_SGE_EGR_UPDATE) {
614                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
615                                 , opcode);
616                         goto out;
617                 }
618         }
619
620         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
621                 const struct cpl_sge_egr_update *p = (void *)rsp;
622                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
623                 struct sge_txq *txq;
624
625                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
626                 txq->restarts++;
627                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
628                         struct sge_eth_txq *eq;
629
630                         eq = container_of(txq, struct sge_eth_txq, q);
631                         netif_tx_wake_queue(eq->txq);
632                 } else {
633                         struct sge_ofld_txq *oq;
634
635                         oq = container_of(txq, struct sge_ofld_txq, q);
636                         tasklet_schedule(&oq->qresume_tsk);
637                 }
638         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
639                 const struct cpl_fw6_msg *p = (void *)rsp;
640
641 #ifdef CONFIG_CHELSIO_T4_DCB
642                 const struct fw_port_cmd *pcmd = (const void *)p->data;
643                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
644                 unsigned int action =
645                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
646
647                 if (cmd == FW_PORT_CMD &&
648                     action == FW_PORT_ACTION_GET_PORT_INFO) {
649                         int port = FW_PORT_CMD_PORTID_G(
650                                         be32_to_cpu(pcmd->op_to_portid));
651                         struct net_device *dev = q->adap->port[port];
652                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
653                                             FW_PORT_CMD_DCBXDIS_F)
654                                            ? CXGB4_DCB_INPUT_FW_DISABLED
655                                            : CXGB4_DCB_INPUT_FW_ENABLED);
656
657                         cxgb4_dcb_state_fsm(dev, state_input);
658                 }
659
660                 if (cmd == FW_PORT_CMD &&
661                     action == FW_PORT_ACTION_L2_DCB_CFG)
662                         dcb_rpl(q->adap, pcmd);
663                 else
664 #endif
665                         if (p->type == 0)
666                                 t4_handle_fw_rpl(q->adap, p->data);
667         } else if (opcode == CPL_L2T_WRITE_RPL) {
668                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
669
670                 do_l2t_write_rpl(q->adap, p);
671         } else if (opcode == CPL_SET_TCB_RPL) {
672                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
673
674                 filter_rpl(q->adap, p);
675         } else
676                 dev_err(q->adap->pdev_dev,
677                         "unexpected CPL %#x on FW event queue\n", opcode);
678 out:
679         return 0;
680 }
681
682 /**
683  *      uldrx_handler - response queue handler for ULD queues
684  *      @q: the response queue that received the packet
685  *      @rsp: the response queue descriptor holding the offload message
686  *      @gl: the gather list of packet fragments
687  *
688  *      Deliver an ingress offload packet to a ULD.  All processing is done by
689  *      the ULD, we just maintain statistics.
690  */
691 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
692                          const struct pkt_gl *gl)
693 {
694         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
695
696         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
697          */
698         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
699             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
700                 rsp += 2;
701
702         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
703                 rxq->stats.nomem++;
704                 return -1;
705         }
706         if (gl == NULL)
707                 rxq->stats.imm++;
708         else if (gl == CXGB4_MSG_AN)
709                 rxq->stats.an++;
710         else
711                 rxq->stats.pkts++;
712         return 0;
713 }
714
715 static void disable_msi(struct adapter *adapter)
716 {
717         if (adapter->flags & USING_MSIX) {
718                 pci_disable_msix(adapter->pdev);
719                 adapter->flags &= ~USING_MSIX;
720         } else if (adapter->flags & USING_MSI) {
721                 pci_disable_msi(adapter->pdev);
722                 adapter->flags &= ~USING_MSI;
723         }
724 }
725
726 /*
727  * Interrupt handler for non-data events used with MSI-X.
728  */
729 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
730 {
731         struct adapter *adap = cookie;
732         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
733
734         if (v & PFSW_F) {
735                 adap->swintr = 1;
736                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
737         }
738         if (adap->flags & MASTER_PF)
739                 t4_slow_intr_handler(adap);
740         return IRQ_HANDLED;
741 }
742
743 /*
744  * Name the MSI-X interrupts.
745  */
746 static void name_msix_vecs(struct adapter *adap)
747 {
748         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
749
750         /* non-data interrupts */
751         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
752
753         /* FW events */
754         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
755                  adap->port[0]->name);
756
757         /* Ethernet queues */
758         for_each_port(adap, j) {
759                 struct net_device *d = adap->port[j];
760                 const struct port_info *pi = netdev_priv(d);
761
762                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
763                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
764                                  d->name, i);
765         }
766
767         /* offload queues */
768         for_each_ofldrxq(&adap->sge, i)
769                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
770                          adap->port[0]->name, i);
771
772         for_each_rdmarxq(&adap->sge, i)
773                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
774                          adap->port[0]->name, i);
775
776         for_each_rdmaciq(&adap->sge, i)
777                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
778                          adap->port[0]->name, i);
779 }
780
781 static int request_msix_queue_irqs(struct adapter *adap)
782 {
783         struct sge *s = &adap->sge;
784         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
785         int msi_index = 2;
786
787         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
788                           adap->msix_info[1].desc, &s->fw_evtq);
789         if (err)
790                 return err;
791
792         for_each_ethrxq(s, ethqidx) {
793                 err = request_irq(adap->msix_info[msi_index].vec,
794                                   t4_sge_intr_msix, 0,
795                                   adap->msix_info[msi_index].desc,
796                                   &s->ethrxq[ethqidx].rspq);
797                 if (err)
798                         goto unwind;
799                 msi_index++;
800         }
801         for_each_ofldrxq(s, ofldqidx) {
802                 err = request_irq(adap->msix_info[msi_index].vec,
803                                   t4_sge_intr_msix, 0,
804                                   adap->msix_info[msi_index].desc,
805                                   &s->ofldrxq[ofldqidx].rspq);
806                 if (err)
807                         goto unwind;
808                 msi_index++;
809         }
810         for_each_rdmarxq(s, rdmaqidx) {
811                 err = request_irq(adap->msix_info[msi_index].vec,
812                                   t4_sge_intr_msix, 0,
813                                   adap->msix_info[msi_index].desc,
814                                   &s->rdmarxq[rdmaqidx].rspq);
815                 if (err)
816                         goto unwind;
817                 msi_index++;
818         }
819         for_each_rdmaciq(s, rdmaciqqidx) {
820                 err = request_irq(adap->msix_info[msi_index].vec,
821                                   t4_sge_intr_msix, 0,
822                                   adap->msix_info[msi_index].desc,
823                                   &s->rdmaciq[rdmaciqqidx].rspq);
824                 if (err)
825                         goto unwind;
826                 msi_index++;
827         }
828         return 0;
829
830 unwind:
831         while (--rdmaciqqidx >= 0)
832                 free_irq(adap->msix_info[--msi_index].vec,
833                          &s->rdmaciq[rdmaciqqidx].rspq);
834         while (--rdmaqidx >= 0)
835                 free_irq(adap->msix_info[--msi_index].vec,
836                          &s->rdmarxq[rdmaqidx].rspq);
837         while (--ofldqidx >= 0)
838                 free_irq(adap->msix_info[--msi_index].vec,
839                          &s->ofldrxq[ofldqidx].rspq);
840         while (--ethqidx >= 0)
841                 free_irq(adap->msix_info[--msi_index].vec,
842                          &s->ethrxq[ethqidx].rspq);
843         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
844         return err;
845 }
846
847 static void free_msix_queue_irqs(struct adapter *adap)
848 {
849         int i, msi_index = 2;
850         struct sge *s = &adap->sge;
851
852         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
853         for_each_ethrxq(s, i)
854                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
855         for_each_ofldrxq(s, i)
856                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
857         for_each_rdmarxq(s, i)
858                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
859         for_each_rdmaciq(s, i)
860                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
861 }
862
863 /**
864  *      cxgb4_write_rss - write the RSS table for a given port
865  *      @pi: the port
866  *      @queues: array of queue indices for RSS
867  *
868  *      Sets up the portion of the HW RSS table for the port's VI to distribute
869  *      packets to the Rx queues in @queues.
870  *      Should never be called before setting up sge eth rx queues
871  */
872 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
873 {
874         u16 *rss;
875         int i, err;
876         struct adapter *adapter = pi->adapter;
877         const struct sge_eth_rxq *rxq;
878
879         rxq = &adapter->sge.ethrxq[pi->first_qset];
880         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
881         if (!rss)
882                 return -ENOMEM;
883
884         /* map the queue indices to queue ids */
885         for (i = 0; i < pi->rss_size; i++, queues++)
886                 rss[i] = rxq[*queues].rspq.abs_id;
887
888         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
889                                   pi->rss_size, rss, pi->rss_size);
890         /* If Tunnel All Lookup isn't specified in the global RSS
891          * Configuration, then we need to specify a default Ingress
892          * Queue for any ingress packets which aren't hashed.  We'll
893          * use our first ingress queue ...
894          */
895         if (!err)
896                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
897                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
898                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
899                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
900                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
901                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
902                                        rss[0]);
903         kfree(rss);
904         return err;
905 }
906
907 /**
908  *      setup_rss - configure RSS
909  *      @adap: the adapter
910  *
911  *      Sets up RSS for each port.
912  */
913 static int setup_rss(struct adapter *adap)
914 {
915         int i, j, err;
916
917         for_each_port(adap, i) {
918                 const struct port_info *pi = adap2pinfo(adap, i);
919
920                 /* Fill default values with equal distribution */
921                 for (j = 0; j < pi->rss_size; j++)
922                         pi->rss[j] = j % pi->nqsets;
923
924                 err = cxgb4_write_rss(pi, pi->rss);
925                 if (err)
926                         return err;
927         }
928         return 0;
929 }
930
931 /*
932  * Return the channel of the ingress queue with the given qid.
933  */
934 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
935 {
936         qid -= p->ingr_start;
937         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
938 }
939
940 /*
941  * Wait until all NAPI handlers are descheduled.
942  */
943 static void quiesce_rx(struct adapter *adap)
944 {
945         int i;
946
947         for (i = 0; i < adap->sge.ingr_sz; i++) {
948                 struct sge_rspq *q = adap->sge.ingr_map[i];
949
950                 if (q && q->handler) {
951                         napi_disable(&q->napi);
952                         local_bh_disable();
953                         while (!cxgb_poll_lock_napi(q))
954                                 mdelay(1);
955                         local_bh_enable();
956                 }
957
958         }
959 }
960
961 /* Disable interrupt and napi handler */
962 static void disable_interrupts(struct adapter *adap)
963 {
964         if (adap->flags & FULL_INIT_DONE) {
965                 t4_intr_disable(adap);
966                 if (adap->flags & USING_MSIX) {
967                         free_msix_queue_irqs(adap);
968                         free_irq(adap->msix_info[0].vec, adap);
969                 } else {
970                         free_irq(adap->pdev->irq, adap);
971                 }
972                 quiesce_rx(adap);
973         }
974 }
975
976 /*
977  * Enable NAPI scheduling and interrupt generation for all Rx queues.
978  */
979 static void enable_rx(struct adapter *adap)
980 {
981         int i;
982
983         for (i = 0; i < adap->sge.ingr_sz; i++) {
984                 struct sge_rspq *q = adap->sge.ingr_map[i];
985
986                 if (!q)
987                         continue;
988                 if (q->handler) {
989                         cxgb_busy_poll_init_lock(q);
990                         napi_enable(&q->napi);
991                 }
992                 /* 0-increment GTS to start the timer and enable interrupts */
993                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
994                              SEINTARM_V(q->intr_params) |
995                              INGRESSQID_V(q->cntxt_id));
996         }
997 }
998
999 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1000                            unsigned int nq, unsigned int per_chan, int msi_idx,
1001                            u16 *ids)
1002 {
1003         int i, err;
1004
1005         for (i = 0; i < nq; i++, q++) {
1006                 if (msi_idx > 0)
1007                         msi_idx++;
1008                 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1009                                        adap->port[i / per_chan],
1010                                        msi_idx, q->fl.size ? &q->fl : NULL,
1011                                        uldrx_handler, 0);
1012                 if (err)
1013                         return err;
1014                 memset(&q->stats, 0, sizeof(q->stats));
1015                 if (ids)
1016                         ids[i] = q->rspq.abs_id;
1017         }
1018         return 0;
1019 }
1020
1021 /**
1022  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1023  *      @adap: the adapter
1024  *
1025  *      Determines how many sets of SGE queues to use and initializes them.
1026  *      We support multiple queue sets per port if we have MSI-X, otherwise
1027  *      just one queue set per port.
1028  */
1029 static int setup_sge_queues(struct adapter *adap)
1030 {
1031         int err, msi_idx, i, j;
1032         struct sge *s = &adap->sge;
1033
1034         bitmap_zero(s->starving_fl, s->egr_sz);
1035         bitmap_zero(s->txq_maperr, s->egr_sz);
1036
1037         if (adap->flags & USING_MSIX)
1038                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1039         else {
1040                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1041                                        NULL, NULL, -1);
1042                 if (err)
1043                         return err;
1044                 msi_idx = -((int)s->intrq.abs_id + 1);
1045         }
1046
1047         /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1048          * don't forget to update the following which need to be
1049          * synchronized to and changes here.
1050          *
1051          * 1. The calculations of MAX_INGQ in cxgb4.h.
1052          *
1053          * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1054          *    to accommodate any new/deleted Ingress Queues
1055          *    which need MSI-X Vectors.
1056          *
1057          * 3. Update sge_qinfo_show() to include information on the
1058          *    new/deleted queues.
1059          */
1060         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1061                                msi_idx, NULL, fwevtq_handler, -1);
1062         if (err) {
1063 freeout:        t4_free_sge_resources(adap);
1064                 return err;
1065         }
1066
1067         for_each_port(adap, i) {
1068                 struct net_device *dev = adap->port[i];
1069                 struct port_info *pi = netdev_priv(dev);
1070                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1071                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1072
1073                 for (j = 0; j < pi->nqsets; j++, q++) {
1074                         if (msi_idx > 0)
1075                                 msi_idx++;
1076                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1077                                                msi_idx, &q->fl,
1078                                                t4_ethrx_handler,
1079                                                t4_get_mps_bg_map(adap,
1080                                                                  pi->tx_chan));
1081                         if (err)
1082                                 goto freeout;
1083                         q->rspq.idx = j;
1084                         memset(&q->stats, 0, sizeof(q->stats));
1085                 }
1086                 for (j = 0; j < pi->nqsets; j++, t++) {
1087                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1088                                         netdev_get_tx_queue(dev, j),
1089                                         s->fw_evtq.cntxt_id);
1090                         if (err)
1091                                 goto freeout;
1092                 }
1093         }
1094
1095         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1096         for_each_ofldrxq(s, i) {
1097                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1098                                             adap->port[i / j],
1099                                             s->fw_evtq.cntxt_id);
1100                 if (err)
1101                         goto freeout;
1102         }
1103
1104 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1105         err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1106         if (err) \
1107                 goto freeout; \
1108         if (msi_idx > 0) \
1109                 msi_idx += nq; \
1110 } while (0)
1111
1112         ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1113         ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1114         j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1115         ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1116
1117 #undef ALLOC_OFLD_RXQS
1118
1119         for_each_port(adap, i) {
1120                 /*
1121                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1122                  * have RDMA queues, and that's the right value.
1123                  */
1124                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1125                                             s->fw_evtq.cntxt_id,
1126                                             s->rdmarxq[i].rspq.cntxt_id);
1127                 if (err)
1128                         goto freeout;
1129         }
1130
1131         t4_write_reg(adap, is_t4(adap->params.chip) ?
1132                                 MPS_TRC_RSS_CONTROL_A :
1133                                 MPS_T5_TRC_RSS_CONTROL_A,
1134                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1135                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1136         return 0;
1137 }
1138
1139 /*
1140  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1141  * The allocated memory is cleared.
1142  */
1143 void *t4_alloc_mem(size_t size)
1144 {
1145         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1146
1147         if (!p)
1148                 p = vzalloc(size);
1149         return p;
1150 }
1151
1152 /*
1153  * Free memory allocated through alloc_mem().
1154  */
1155 void t4_free_mem(void *addr)
1156 {
1157         kvfree(addr);
1158 }
1159
1160 /* Send a Work Request to write the filter at a specified index.  We construct
1161  * a Firmware Filter Work Request to have the work done and put the indicated
1162  * filter into "pending" mode which will prevent any further actions against
1163  * it till we get a reply from the firmware on the completion status of the
1164  * request.
1165  */
1166 static int set_filter_wr(struct adapter *adapter, int fidx)
1167 {
1168         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1169         struct sk_buff *skb;
1170         struct fw_filter_wr *fwr;
1171         unsigned int ftid;
1172
1173         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1174         if (!skb)
1175                 return -ENOMEM;
1176
1177         /* If the new filter requires loopback Destination MAC and/or VLAN
1178          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1179          * the filter.
1180          */
1181         if (f->fs.newdmac || f->fs.newvlan) {
1182                 /* allocate L2T entry for new filter */
1183                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1184                 if (f->l2t == NULL) {
1185                         kfree_skb(skb);
1186                         return -EAGAIN;
1187                 }
1188                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1189                                         f->fs.eport, f->fs.dmac)) {
1190                         cxgb4_l2t_release(f->l2t);
1191                         f->l2t = NULL;
1192                         kfree_skb(skb);
1193                         return -ENOMEM;
1194                 }
1195         }
1196
1197         ftid = adapter->tids.ftid_base + fidx;
1198
1199         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1200         memset(fwr, 0, sizeof(*fwr));
1201
1202         /* It would be nice to put most of the following in t4_hw.c but most
1203          * of the work is translating the cxgbtool ch_filter_specification
1204          * into the Work Request and the definition of that structure is
1205          * currently in cxgbtool.h which isn't appropriate to pull into the
1206          * common code.  We may eventually try to come up with a more neutral
1207          * filter specification structure but for now it's easiest to simply
1208          * put this fairly direct code in line ...
1209          */
1210         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1211         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1212         fwr->tid_to_iq =
1213                 htonl(FW_FILTER_WR_TID_V(ftid) |
1214                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1215                       FW_FILTER_WR_NOREPLY_V(0) |
1216                       FW_FILTER_WR_IQ_V(f->fs.iq));
1217         fwr->del_filter_to_l2tix =
1218                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1219                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1220                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1221                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1222                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1223                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1224                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1225                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1226                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1227                                              f->fs.newvlan == VLAN_REWRITE) |
1228                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1229                                             f->fs.newvlan == VLAN_REWRITE) |
1230                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1231                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1232                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1233                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1234         fwr->ethtype = htons(f->fs.val.ethtype);
1235         fwr->ethtypem = htons(f->fs.mask.ethtype);
1236         fwr->frag_to_ovlan_vldm =
1237                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1238                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1239                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1240                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1241                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1242                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1243         fwr->smac_sel = 0;
1244         fwr->rx_chan_rx_rpl_iq =
1245                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1246                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1247         fwr->maci_to_matchtypem =
1248                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1249                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1250                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1251                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1252                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1253                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1254                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1255                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1256         fwr->ptcl = f->fs.val.proto;
1257         fwr->ptclm = f->fs.mask.proto;
1258         fwr->ttyp = f->fs.val.tos;
1259         fwr->ttypm = f->fs.mask.tos;
1260         fwr->ivlan = htons(f->fs.val.ivlan);
1261         fwr->ivlanm = htons(f->fs.mask.ivlan);
1262         fwr->ovlan = htons(f->fs.val.ovlan);
1263         fwr->ovlanm = htons(f->fs.mask.ovlan);
1264         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1265         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1266         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1267         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1268         fwr->lp = htons(f->fs.val.lport);
1269         fwr->lpm = htons(f->fs.mask.lport);
1270         fwr->fp = htons(f->fs.val.fport);
1271         fwr->fpm = htons(f->fs.mask.fport);
1272         if (f->fs.newsmac)
1273                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1274
1275         /* Mark the filter as "pending" and ship off the Filter Work Request.
1276          * When we get the Work Request Reply we'll clear the pending status.
1277          */
1278         f->pending = 1;
1279         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1280         t4_ofld_send(adapter, skb);
1281         return 0;
1282 }
1283
1284 /* Delete the filter at a specified index.
1285  */
1286 static int del_filter_wr(struct adapter *adapter, int fidx)
1287 {
1288         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1289         struct sk_buff *skb;
1290         struct fw_filter_wr *fwr;
1291         unsigned int len, ftid;
1292
1293         len = sizeof(*fwr);
1294         ftid = adapter->tids.ftid_base + fidx;
1295
1296         skb = alloc_skb(len, GFP_KERNEL);
1297         if (!skb)
1298                 return -ENOMEM;
1299
1300         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1301         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1302
1303         /* Mark the filter as "pending" and ship off the Filter Work Request.
1304          * When we get the Work Request Reply we'll clear the pending status.
1305          */
1306         f->pending = 1;
1307         t4_mgmt_tx(adapter, skb);
1308         return 0;
1309 }
1310
1311 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1312                              void *accel_priv, select_queue_fallback_t fallback)
1313 {
1314         int txq;
1315
1316 #ifdef CONFIG_CHELSIO_T4_DCB
1317         /* If a Data Center Bridging has been successfully negotiated on this
1318          * link then we'll use the skb's priority to map it to a TX Queue.
1319          * The skb's priority is determined via the VLAN Tag Priority Code
1320          * Point field.
1321          */
1322         if (cxgb4_dcb_enabled(dev)) {
1323                 u16 vlan_tci;
1324                 int err;
1325
1326                 err = vlan_get_tag(skb, &vlan_tci);
1327                 if (unlikely(err)) {
1328                         if (net_ratelimit())
1329                                 netdev_warn(dev,
1330                                             "TX Packet without VLAN Tag on DCB Link\n");
1331                         txq = 0;
1332                 } else {
1333                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1334 #ifdef CONFIG_CHELSIO_T4_FCOE
1335                         if (skb->protocol == htons(ETH_P_FCOE))
1336                                 txq = skb->priority & 0x7;
1337 #endif /* CONFIG_CHELSIO_T4_FCOE */
1338                 }
1339                 return txq;
1340         }
1341 #endif /* CONFIG_CHELSIO_T4_DCB */
1342
1343         if (select_queue) {
1344                 txq = (skb_rx_queue_recorded(skb)
1345                         ? skb_get_rx_queue(skb)
1346                         : smp_processor_id());
1347
1348                 while (unlikely(txq >= dev->real_num_tx_queues))
1349                         txq -= dev->real_num_tx_queues;
1350
1351                 return txq;
1352         }
1353
1354         return fallback(dev, skb) % dev->real_num_tx_queues;
1355 }
1356
1357 static int closest_timer(const struct sge *s, int time)
1358 {
1359         int i, delta, match = 0, min_delta = INT_MAX;
1360
1361         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1362                 delta = time - s->timer_val[i];
1363                 if (delta < 0)
1364                         delta = -delta;
1365                 if (delta < min_delta) {
1366                         min_delta = delta;
1367                         match = i;
1368                 }
1369         }
1370         return match;
1371 }
1372
1373 static int closest_thres(const struct sge *s, int thres)
1374 {
1375         int i, delta, match = 0, min_delta = INT_MAX;
1376
1377         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1378                 delta = thres - s->counter_val[i];
1379                 if (delta < 0)
1380                         delta = -delta;
1381                 if (delta < min_delta) {
1382                         min_delta = delta;
1383                         match = i;
1384                 }
1385         }
1386         return match;
1387 }
1388
1389 /**
1390  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1391  *      @q: the Rx queue
1392  *      @us: the hold-off time in us, or 0 to disable timer
1393  *      @cnt: the hold-off packet count, or 0 to disable counter
1394  *
1395  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1396  *      one of the two needs to be enabled for the queue to generate interrupts.
1397  */
1398 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1399                                unsigned int us, unsigned int cnt)
1400 {
1401         struct adapter *adap = q->adap;
1402
1403         if ((us | cnt) == 0)
1404                 cnt = 1;
1405
1406         if (cnt) {
1407                 int err;
1408                 u32 v, new_idx;
1409
1410                 new_idx = closest_thres(&adap->sge, cnt);
1411                 if (q->desc && q->pktcnt_idx != new_idx) {
1412                         /* the queue has already been created, update it */
1413                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1414                             FW_PARAMS_PARAM_X_V(
1415                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1416                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1417                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1418                                             &v, &new_idx);
1419                         if (err)
1420                                 return err;
1421                 }
1422                 q->pktcnt_idx = new_idx;
1423         }
1424
1425         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1426         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1427         return 0;
1428 }
1429
1430 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1431 {
1432         const struct port_info *pi = netdev_priv(dev);
1433         netdev_features_t changed = dev->features ^ features;
1434         int err;
1435
1436         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1437                 return 0;
1438
1439         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1440                             -1, -1, -1,
1441                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1442         if (unlikely(err))
1443                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1444         return err;
1445 }
1446
1447 static int setup_debugfs(struct adapter *adap)
1448 {
1449         if (IS_ERR_OR_NULL(adap->debugfs_root))
1450                 return -1;
1451
1452 #ifdef CONFIG_DEBUG_FS
1453         t4_setup_debugfs(adap);
1454 #endif
1455         return 0;
1456 }
1457
1458 /*
1459  * upper-layer driver support
1460  */
1461
1462 /*
1463  * Allocate an active-open TID and set it to the supplied value.
1464  */
1465 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1466 {
1467         int atid = -1;
1468
1469         spin_lock_bh(&t->atid_lock);
1470         if (t->afree) {
1471                 union aopen_entry *p = t->afree;
1472
1473                 atid = (p - t->atid_tab) + t->atid_base;
1474                 t->afree = p->next;
1475                 p->data = data;
1476                 t->atids_in_use++;
1477         }
1478         spin_unlock_bh(&t->atid_lock);
1479         return atid;
1480 }
1481 EXPORT_SYMBOL(cxgb4_alloc_atid);
1482
1483 /*
1484  * Release an active-open TID.
1485  */
1486 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1487 {
1488         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1489
1490         spin_lock_bh(&t->atid_lock);
1491         p->next = t->afree;
1492         t->afree = p;
1493         t->atids_in_use--;
1494         spin_unlock_bh(&t->atid_lock);
1495 }
1496 EXPORT_SYMBOL(cxgb4_free_atid);
1497
1498 /*
1499  * Allocate a server TID and set it to the supplied value.
1500  */
1501 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1502 {
1503         int stid;
1504
1505         spin_lock_bh(&t->stid_lock);
1506         if (family == PF_INET) {
1507                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1508                 if (stid < t->nstids)
1509                         __set_bit(stid, t->stid_bmap);
1510                 else
1511                         stid = -1;
1512         } else {
1513                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1514                 if (stid < 0)
1515                         stid = -1;
1516         }
1517         if (stid >= 0) {
1518                 t->stid_tab[stid].data = data;
1519                 stid += t->stid_base;
1520                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1521                  * This is equivalent to 4 TIDs. With CLIP enabled it
1522                  * needs 2 TIDs.
1523                  */
1524                 if (family == PF_INET)
1525                         t->stids_in_use++;
1526                 else
1527                         t->stids_in_use += 4;
1528         }
1529         spin_unlock_bh(&t->stid_lock);
1530         return stid;
1531 }
1532 EXPORT_SYMBOL(cxgb4_alloc_stid);
1533
1534 /* Allocate a server filter TID and set it to the supplied value.
1535  */
1536 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1537 {
1538         int stid;
1539
1540         spin_lock_bh(&t->stid_lock);
1541         if (family == PF_INET) {
1542                 stid = find_next_zero_bit(t->stid_bmap,
1543                                 t->nstids + t->nsftids, t->nstids);
1544                 if (stid < (t->nstids + t->nsftids))
1545                         __set_bit(stid, t->stid_bmap);
1546                 else
1547                         stid = -1;
1548         } else {
1549                 stid = -1;
1550         }
1551         if (stid >= 0) {
1552                 t->stid_tab[stid].data = data;
1553                 stid -= t->nstids;
1554                 stid += t->sftid_base;
1555                 t->sftids_in_use++;
1556         }
1557         spin_unlock_bh(&t->stid_lock);
1558         return stid;
1559 }
1560 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1561
1562 /* Release a server TID.
1563  */
1564 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1565 {
1566         /* Is it a server filter TID? */
1567         if (t->nsftids && (stid >= t->sftid_base)) {
1568                 stid -= t->sftid_base;
1569                 stid += t->nstids;
1570         } else {
1571                 stid -= t->stid_base;
1572         }
1573
1574         spin_lock_bh(&t->stid_lock);
1575         if (family == PF_INET)
1576                 __clear_bit(stid, t->stid_bmap);
1577         else
1578                 bitmap_release_region(t->stid_bmap, stid, 2);
1579         t->stid_tab[stid].data = NULL;
1580         if (stid < t->nstids) {
1581                 if (family == PF_INET)
1582                         t->stids_in_use--;
1583                 else
1584                         t->stids_in_use -= 4;
1585         } else {
1586                 t->sftids_in_use--;
1587         }
1588         spin_unlock_bh(&t->stid_lock);
1589 }
1590 EXPORT_SYMBOL(cxgb4_free_stid);
1591
1592 /*
1593  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1594  */
1595 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1596                            unsigned int tid)
1597 {
1598         struct cpl_tid_release *req;
1599
1600         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1601         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1602         INIT_TP_WR(req, tid);
1603         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1604 }
1605
1606 /*
1607  * Queue a TID release request and if necessary schedule a work queue to
1608  * process it.
1609  */
1610 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1611                                     unsigned int tid)
1612 {
1613         void **p = &t->tid_tab[tid];
1614         struct adapter *adap = container_of(t, struct adapter, tids);
1615
1616         spin_lock_bh(&adap->tid_release_lock);
1617         *p = adap->tid_release_head;
1618         /* Low 2 bits encode the Tx channel number */
1619         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1620         if (!adap->tid_release_task_busy) {
1621                 adap->tid_release_task_busy = true;
1622                 queue_work(adap->workq, &adap->tid_release_task);
1623         }
1624         spin_unlock_bh(&adap->tid_release_lock);
1625 }
1626
1627 /*
1628  * Process the list of pending TID release requests.
1629  */
1630 static void process_tid_release_list(struct work_struct *work)
1631 {
1632         struct sk_buff *skb;
1633         struct adapter *adap;
1634
1635         adap = container_of(work, struct adapter, tid_release_task);
1636
1637         spin_lock_bh(&adap->tid_release_lock);
1638         while (adap->tid_release_head) {
1639                 void **p = adap->tid_release_head;
1640                 unsigned int chan = (uintptr_t)p & 3;
1641                 p = (void *)p - chan;
1642
1643                 adap->tid_release_head = *p;
1644                 *p = NULL;
1645                 spin_unlock_bh(&adap->tid_release_lock);
1646
1647                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1648                                          GFP_KERNEL)))
1649                         schedule_timeout_uninterruptible(1);
1650
1651                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1652                 t4_ofld_send(adap, skb);
1653                 spin_lock_bh(&adap->tid_release_lock);
1654         }
1655         adap->tid_release_task_busy = false;
1656         spin_unlock_bh(&adap->tid_release_lock);
1657 }
1658
1659 /*
1660  * Release a TID and inform HW.  If we are unable to allocate the release
1661  * message we defer to a work queue.
1662  */
1663 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1664 {
1665         struct sk_buff *skb;
1666         struct adapter *adap = container_of(t, struct adapter, tids);
1667
1668         WARN_ON(tid >= t->ntids);
1669
1670         if (t->tid_tab[tid]) {
1671                 t->tid_tab[tid] = NULL;
1672                 if (t->hash_base && (tid >= t->hash_base))
1673                         atomic_dec(&t->hash_tids_in_use);
1674                 else
1675                         atomic_dec(&t->tids_in_use);
1676         }
1677
1678         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1679         if (likely(skb)) {
1680                 mk_tid_release(skb, chan, tid);
1681                 t4_ofld_send(adap, skb);
1682         } else
1683                 cxgb4_queue_tid_release(t, chan, tid);
1684 }
1685 EXPORT_SYMBOL(cxgb4_remove_tid);
1686
1687 /*
1688  * Allocate and initialize the TID tables.  Returns 0 on success.
1689  */
1690 static int tid_init(struct tid_info *t)
1691 {
1692         size_t size;
1693         unsigned int stid_bmap_size;
1694         unsigned int natids = t->natids;
1695         struct adapter *adap = container_of(t, struct adapter, tids);
1696
1697         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1698         size = t->ntids * sizeof(*t->tid_tab) +
1699                natids * sizeof(*t->atid_tab) +
1700                t->nstids * sizeof(*t->stid_tab) +
1701                t->nsftids * sizeof(*t->stid_tab) +
1702                stid_bmap_size * sizeof(long) +
1703                t->nftids * sizeof(*t->ftid_tab) +
1704                t->nsftids * sizeof(*t->ftid_tab);
1705
1706         t->tid_tab = t4_alloc_mem(size);
1707         if (!t->tid_tab)
1708                 return -ENOMEM;
1709
1710         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1711         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1712         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1713         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1714         spin_lock_init(&t->stid_lock);
1715         spin_lock_init(&t->atid_lock);
1716
1717         t->stids_in_use = 0;
1718         t->sftids_in_use = 0;
1719         t->afree = NULL;
1720         t->atids_in_use = 0;
1721         atomic_set(&t->tids_in_use, 0);
1722         atomic_set(&t->hash_tids_in_use, 0);
1723
1724         /* Setup the free list for atid_tab and clear the stid bitmap. */
1725         if (natids) {
1726                 while (--natids)
1727                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1728                 t->afree = t->atid_tab;
1729         }
1730         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1731         /* Reserve stid 0 for T4/T5 adapters */
1732         if (!t->stid_base &&
1733             (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1734                 __set_bit(0, t->stid_bmap);
1735
1736         return 0;
1737 }
1738
1739 /**
1740  *      cxgb4_create_server - create an IP server
1741  *      @dev: the device
1742  *      @stid: the server TID
1743  *      @sip: local IP address to bind server to
1744  *      @sport: the server's TCP port
1745  *      @queue: queue to direct messages from this server to
1746  *
1747  *      Create an IP server for the given port and address.
1748  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1749  */
1750 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1751                         __be32 sip, __be16 sport, __be16 vlan,
1752                         unsigned int queue)
1753 {
1754         unsigned int chan;
1755         struct sk_buff *skb;
1756         struct adapter *adap;
1757         struct cpl_pass_open_req *req;
1758         int ret;
1759
1760         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1761         if (!skb)
1762                 return -ENOMEM;
1763
1764         adap = netdev2adap(dev);
1765         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1766         INIT_TP_WR(req, 0);
1767         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1768         req->local_port = sport;
1769         req->peer_port = htons(0);
1770         req->local_ip = sip;
1771         req->peer_ip = htonl(0);
1772         chan = rxq_to_chan(&adap->sge, queue);
1773         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1774         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1775                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1776         ret = t4_mgmt_tx(adap, skb);
1777         return net_xmit_eval(ret);
1778 }
1779 EXPORT_SYMBOL(cxgb4_create_server);
1780
1781 /*      cxgb4_create_server6 - create an IPv6 server
1782  *      @dev: the device
1783  *      @stid: the server TID
1784  *      @sip: local IPv6 address to bind server to
1785  *      @sport: the server's TCP port
1786  *      @queue: queue to direct messages from this server to
1787  *
1788  *      Create an IPv6 server for the given port and address.
1789  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1790  */
1791 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1792                          const struct in6_addr *sip, __be16 sport,
1793                          unsigned int queue)
1794 {
1795         unsigned int chan;
1796         struct sk_buff *skb;
1797         struct adapter *adap;
1798         struct cpl_pass_open_req6 *req;
1799         int ret;
1800
1801         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1802         if (!skb)
1803                 return -ENOMEM;
1804
1805         adap = netdev2adap(dev);
1806         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1807         INIT_TP_WR(req, 0);
1808         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1809         req->local_port = sport;
1810         req->peer_port = htons(0);
1811         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1812         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1813         req->peer_ip_hi = cpu_to_be64(0);
1814         req->peer_ip_lo = cpu_to_be64(0);
1815         chan = rxq_to_chan(&adap->sge, queue);
1816         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1817         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1818                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1819         ret = t4_mgmt_tx(adap, skb);
1820         return net_xmit_eval(ret);
1821 }
1822 EXPORT_SYMBOL(cxgb4_create_server6);
1823
1824 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1825                         unsigned int queue, bool ipv6)
1826 {
1827         struct sk_buff *skb;
1828         struct adapter *adap;
1829         struct cpl_close_listsvr_req *req;
1830         int ret;
1831
1832         adap = netdev2adap(dev);
1833
1834         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1835         if (!skb)
1836                 return -ENOMEM;
1837
1838         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1839         INIT_TP_WR(req, 0);
1840         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1841         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1842                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1843         ret = t4_mgmt_tx(adap, skb);
1844         return net_xmit_eval(ret);
1845 }
1846 EXPORT_SYMBOL(cxgb4_remove_server);
1847
1848 /**
1849  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1850  *      @mtus: the HW MTU table
1851  *      @mtu: the target MTU
1852  *      @idx: index of selected entry in the MTU table
1853  *
1854  *      Returns the index and the value in the HW MTU table that is closest to
1855  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1856  *      table, in which case that smallest available value is selected.
1857  */
1858 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1859                             unsigned int *idx)
1860 {
1861         unsigned int i = 0;
1862
1863         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1864                 ++i;
1865         if (idx)
1866                 *idx = i;
1867         return mtus[i];
1868 }
1869 EXPORT_SYMBOL(cxgb4_best_mtu);
1870
1871 /**
1872  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1873  *     @mtus: the HW MTU table
1874  *     @header_size: Header Size
1875  *     @data_size_max: maximum Data Segment Size
1876  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1877  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1878  *
1879  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1880  *     MTU Table based solely on a Maximum MTU parameter, we break that
1881  *     parameter up into a Header Size and Maximum Data Segment Size, and
1882  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1883  *     the Hardware MTU Table which will result in a Data Segment Size with
1884  *     the requested alignment _and_ that MTU isn't "too far" from the
1885  *     closest MTU, then we'll return that rather than the closest MTU.
1886  */
1887 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1888                                     unsigned short header_size,
1889                                     unsigned short data_size_max,
1890                                     unsigned short data_size_align,
1891                                     unsigned int *mtu_idxp)
1892 {
1893         unsigned short max_mtu = header_size + data_size_max;
1894         unsigned short data_size_align_mask = data_size_align - 1;
1895         int mtu_idx, aligned_mtu_idx;
1896
1897         /* Scan the MTU Table till we find an MTU which is larger than our
1898          * Maximum MTU or we reach the end of the table.  Along the way,
1899          * record the last MTU found, if any, which will result in a Data
1900          * Segment Length matching the requested alignment.
1901          */
1902         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1903                 unsigned short data_size = mtus[mtu_idx] - header_size;
1904
1905                 /* If this MTU minus the Header Size would result in a
1906                  * Data Segment Size of the desired alignment, remember it.
1907                  */
1908                 if ((data_size & data_size_align_mask) == 0)
1909                         aligned_mtu_idx = mtu_idx;
1910
1911                 /* If we're not at the end of the Hardware MTU Table and the
1912                  * next element is larger than our Maximum MTU, drop out of
1913                  * the loop.
1914                  */
1915                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1916                         break;
1917         }
1918
1919         /* If we fell out of the loop because we ran to the end of the table,
1920          * then we just have to use the last [largest] entry.
1921          */
1922         if (mtu_idx == NMTUS)
1923                 mtu_idx--;
1924
1925         /* If we found an MTU which resulted in the requested Data Segment
1926          * Length alignment and that's "not far" from the largest MTU which is
1927          * less than or equal to the maximum MTU, then use that.
1928          */
1929         if (aligned_mtu_idx >= 0 &&
1930             mtu_idx - aligned_mtu_idx <= 1)
1931                 mtu_idx = aligned_mtu_idx;
1932
1933         /* If the caller has passed in an MTU Index pointer, pass the
1934          * MTU Index back.  Return the MTU value.
1935          */
1936         if (mtu_idxp)
1937                 *mtu_idxp = mtu_idx;
1938         return mtus[mtu_idx];
1939 }
1940 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1941
1942 /**
1943  *      cxgb4_port_chan - get the HW channel of a port
1944  *      @dev: the net device for the port
1945  *
1946  *      Return the HW Tx channel of the given port.
1947  */
1948 unsigned int cxgb4_port_chan(const struct net_device *dev)
1949 {
1950         return netdev2pinfo(dev)->tx_chan;
1951 }
1952 EXPORT_SYMBOL(cxgb4_port_chan);
1953
1954 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1955 {
1956         struct adapter *adap = netdev2adap(dev);
1957         u32 v1, v2, lp_count, hp_count;
1958
1959         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1960         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1961         if (is_t4(adap->params.chip)) {
1962                 lp_count = LP_COUNT_G(v1);
1963                 hp_count = HP_COUNT_G(v1);
1964         } else {
1965                 lp_count = LP_COUNT_T5_G(v1);
1966                 hp_count = HP_COUNT_T5_G(v2);
1967         }
1968         return lpfifo ? lp_count : hp_count;
1969 }
1970 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1971
1972 /**
1973  *      cxgb4_port_viid - get the VI id of a port
1974  *      @dev: the net device for the port
1975  *
1976  *      Return the VI id of the given port.
1977  */
1978 unsigned int cxgb4_port_viid(const struct net_device *dev)
1979 {
1980         return netdev2pinfo(dev)->viid;
1981 }
1982 EXPORT_SYMBOL(cxgb4_port_viid);
1983
1984 /**
1985  *      cxgb4_port_idx - get the index of a port
1986  *      @dev: the net device for the port
1987  *
1988  *      Return the index of the given port.
1989  */
1990 unsigned int cxgb4_port_idx(const struct net_device *dev)
1991 {
1992         return netdev2pinfo(dev)->port_id;
1993 }
1994 EXPORT_SYMBOL(cxgb4_port_idx);
1995
1996 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1997                          struct tp_tcp_stats *v6)
1998 {
1999         struct adapter *adap = pci_get_drvdata(pdev);
2000
2001         spin_lock(&adap->stats_lock);
2002         t4_tp_get_tcp_stats(adap, v4, v6);
2003         spin_unlock(&adap->stats_lock);
2004 }
2005 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2006
2007 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2008                       const unsigned int *pgsz_order)
2009 {
2010         struct adapter *adap = netdev2adap(dev);
2011
2012         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2013         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2014                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2015                      HPZ3_V(pgsz_order[3]));
2016 }
2017 EXPORT_SYMBOL(cxgb4_iscsi_init);
2018
2019 int cxgb4_flush_eq_cache(struct net_device *dev)
2020 {
2021         struct adapter *adap = netdev2adap(dev);
2022
2023         return t4_sge_ctxt_flush(adap, adap->mbox);
2024 }
2025 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2026
2027 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2028 {
2029         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2030         __be64 indices;
2031         int ret;
2032
2033         spin_lock(&adap->win0_lock);
2034         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2035                            sizeof(indices), (__be32 *)&indices,
2036                            T4_MEMORY_READ);
2037         spin_unlock(&adap->win0_lock);
2038         if (!ret) {
2039                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2040                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2041         }
2042         return ret;
2043 }
2044
2045 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2046                         u16 size)
2047 {
2048         struct adapter *adap = netdev2adap(dev);
2049         u16 hw_pidx, hw_cidx;
2050         int ret;
2051
2052         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2053         if (ret)
2054                 goto out;
2055
2056         if (pidx != hw_pidx) {
2057                 u16 delta;
2058                 u32 val;
2059
2060                 if (pidx >= hw_pidx)
2061                         delta = pidx - hw_pidx;
2062                 else
2063                         delta = size - hw_pidx + pidx;
2064
2065                 if (is_t4(adap->params.chip))
2066                         val = PIDX_V(delta);
2067                 else
2068                         val = PIDX_T5_V(delta);
2069                 wmb();
2070                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2071                              QID_V(qid) | val);
2072         }
2073 out:
2074         return ret;
2075 }
2076 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2077
2078 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2079 {
2080         struct adapter *adap;
2081         u32 offset, memtype, memaddr;
2082         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2083         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2084         int ret;
2085
2086         adap = netdev2adap(dev);
2087
2088         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2089
2090         /* Figure out where the offset lands in the Memory Type/Address scheme.
2091          * This code assumes that the memory is laid out starting at offset 0
2092          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2093          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2094          * MC0, and some have both MC0 and MC1.
2095          */
2096         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2097         edc0_size = EDRAM0_SIZE_G(size) << 20;
2098         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2099         edc1_size = EDRAM1_SIZE_G(size) << 20;
2100         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2101         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2102
2103         edc0_end = edc0_size;
2104         edc1_end = edc0_end + edc1_size;
2105         mc0_end = edc1_end + mc0_size;
2106
2107         if (offset < edc0_end) {
2108                 memtype = MEM_EDC0;
2109                 memaddr = offset;
2110         } else if (offset < edc1_end) {
2111                 memtype = MEM_EDC1;
2112                 memaddr = offset - edc0_end;
2113         } else {
2114                 if (offset < mc0_end) {
2115                         memtype = MEM_MC0;
2116                         memaddr = offset - edc1_end;
2117                 } else if (is_t5(adap->params.chip)) {
2118                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2119                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2120                         mc1_end = mc0_end + mc1_size;
2121                         if (offset < mc1_end) {
2122                                 memtype = MEM_MC1;
2123                                 memaddr = offset - mc0_end;
2124                         } else {
2125                                 /* offset beyond the end of any memory */
2126                                 goto err;
2127                         }
2128                 } else {
2129                         /* T4/T6 only has a single memory channel */
2130                         goto err;
2131                 }
2132         }
2133
2134         spin_lock(&adap->win0_lock);
2135         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2136         spin_unlock(&adap->win0_lock);
2137         return ret;
2138
2139 err:
2140         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2141                 stag, offset);
2142         return -EINVAL;
2143 }
2144 EXPORT_SYMBOL(cxgb4_read_tpte);
2145
2146 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2147 {
2148         u32 hi, lo;
2149         struct adapter *adap;
2150
2151         adap = netdev2adap(dev);
2152         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2153         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2154
2155         return ((u64)hi << 32) | (u64)lo;
2156 }
2157 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2158
2159 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2160                          unsigned int qid,
2161                          enum cxgb4_bar2_qtype qtype,
2162                          int user,
2163                          u64 *pbar2_qoffset,
2164                          unsigned int *pbar2_qid)
2165 {
2166         return t4_bar2_sge_qregs(netdev2adap(dev),
2167                                  qid,
2168                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2169                                   ? T4_BAR2_QTYPE_EGRESS
2170                                   : T4_BAR2_QTYPE_INGRESS),
2171                                  user,
2172                                  pbar2_qoffset,
2173                                  pbar2_qid);
2174 }
2175 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2176
2177 static struct pci_driver cxgb4_driver;
2178
2179 static void check_neigh_update(struct neighbour *neigh)
2180 {
2181         const struct device *parent;
2182         const struct net_device *netdev = neigh->dev;
2183
2184         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2185                 netdev = vlan_dev_real_dev(netdev);
2186         parent = netdev->dev.parent;
2187         if (parent && parent->driver == &cxgb4_driver.driver)
2188                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2189 }
2190
2191 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2192                        void *data)
2193 {
2194         switch (event) {
2195         case NETEVENT_NEIGH_UPDATE:
2196                 check_neigh_update(data);
2197                 break;
2198         case NETEVENT_REDIRECT:
2199         default:
2200                 break;
2201         }
2202         return 0;
2203 }
2204
2205 static bool netevent_registered;
2206 static struct notifier_block cxgb4_netevent_nb = {
2207         .notifier_call = netevent_cb
2208 };
2209
2210 static void drain_db_fifo(struct adapter *adap, int usecs)
2211 {
2212         u32 v1, v2, lp_count, hp_count;
2213
2214         do {
2215                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2216                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2217                 if (is_t4(adap->params.chip)) {
2218                         lp_count = LP_COUNT_G(v1);
2219                         hp_count = HP_COUNT_G(v1);
2220                 } else {
2221                         lp_count = LP_COUNT_T5_G(v1);
2222                         hp_count = HP_COUNT_T5_G(v2);
2223                 }
2224
2225                 if (lp_count == 0 && hp_count == 0)
2226                         break;
2227                 set_current_state(TASK_UNINTERRUPTIBLE);
2228                 schedule_timeout(usecs_to_jiffies(usecs));
2229         } while (1);
2230 }
2231
2232 static void disable_txq_db(struct sge_txq *q)
2233 {
2234         unsigned long flags;
2235
2236         spin_lock_irqsave(&q->db_lock, flags);
2237         q->db_disabled = 1;
2238         spin_unlock_irqrestore(&q->db_lock, flags);
2239 }
2240
2241 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2242 {
2243         spin_lock_irq(&q->db_lock);
2244         if (q->db_pidx_inc) {
2245                 /* Make sure that all writes to the TX descriptors
2246                  * are committed before we tell HW about them.
2247                  */
2248                 wmb();
2249                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2250                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2251                 q->db_pidx_inc = 0;
2252         }
2253         q->db_disabled = 0;
2254         spin_unlock_irq(&q->db_lock);
2255 }
2256
2257 static void disable_dbs(struct adapter *adap)
2258 {
2259         int i;
2260
2261         for_each_ethrxq(&adap->sge, i)
2262                 disable_txq_db(&adap->sge.ethtxq[i].q);
2263         for_each_ofldrxq(&adap->sge, i)
2264                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2265         for_each_port(adap, i)
2266                 disable_txq_db(&adap->sge.ctrlq[i].q);
2267 }
2268
2269 static void enable_dbs(struct adapter *adap)
2270 {
2271         int i;
2272
2273         for_each_ethrxq(&adap->sge, i)
2274                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2275         for_each_ofldrxq(&adap->sge, i)
2276                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2277         for_each_port(adap, i)
2278                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2279 }
2280
2281 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2282 {
2283         if (adap->uld_handle[CXGB4_ULD_RDMA])
2284                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2285                                 cmd);
2286 }
2287
2288 static void process_db_full(struct work_struct *work)
2289 {
2290         struct adapter *adap;
2291
2292         adap = container_of(work, struct adapter, db_full_task);
2293
2294         drain_db_fifo(adap, dbfifo_drain_delay);
2295         enable_dbs(adap);
2296         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2297         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2298                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2299                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2300                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2301         else
2302                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2303                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2304 }
2305
2306 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2307 {
2308         u16 hw_pidx, hw_cidx;
2309         int ret;
2310
2311         spin_lock_irq(&q->db_lock);
2312         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2313         if (ret)
2314                 goto out;
2315         if (q->db_pidx != hw_pidx) {
2316                 u16 delta;
2317                 u32 val;
2318
2319                 if (q->db_pidx >= hw_pidx)
2320                         delta = q->db_pidx - hw_pidx;
2321                 else
2322                         delta = q->size - hw_pidx + q->db_pidx;
2323
2324                 if (is_t4(adap->params.chip))
2325                         val = PIDX_V(delta);
2326                 else
2327                         val = PIDX_T5_V(delta);
2328                 wmb();
2329                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2330                              QID_V(q->cntxt_id) | val);
2331         }
2332 out:
2333         q->db_disabled = 0;
2334         q->db_pidx_inc = 0;
2335         spin_unlock_irq(&q->db_lock);
2336         if (ret)
2337                 CH_WARN(adap, "DB drop recovery failed.\n");
2338 }
2339 static void recover_all_queues(struct adapter *adap)
2340 {
2341         int i;
2342
2343         for_each_ethrxq(&adap->sge, i)
2344                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2345         for_each_ofldrxq(&adap->sge, i)
2346                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2347         for_each_port(adap, i)
2348                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2349 }
2350
2351 static void process_db_drop(struct work_struct *work)
2352 {
2353         struct adapter *adap;
2354
2355         adap = container_of(work, struct adapter, db_drop_task);
2356
2357         if (is_t4(adap->params.chip)) {
2358                 drain_db_fifo(adap, dbfifo_drain_delay);
2359                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2360                 drain_db_fifo(adap, dbfifo_drain_delay);
2361                 recover_all_queues(adap);
2362                 drain_db_fifo(adap, dbfifo_drain_delay);
2363                 enable_dbs(adap);
2364                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2365         } else if (is_t5(adap->params.chip)) {
2366                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2367                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2368                 u16 pidx_inc = dropped_db & 0x1fff;
2369                 u64 bar2_qoffset;
2370                 unsigned int bar2_qid;
2371                 int ret;
2372
2373                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2374                                         0, &bar2_qoffset, &bar2_qid);
2375                 if (ret)
2376                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2377                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2378                 else
2379                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2380                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2381
2382                 /* Re-enable BAR2 WC */
2383                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2384         }
2385
2386         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2387                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2388 }
2389
2390 void t4_db_full(struct adapter *adap)
2391 {
2392         if (is_t4(adap->params.chip)) {
2393                 disable_dbs(adap);
2394                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2395                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2396                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2397                 queue_work(adap->workq, &adap->db_full_task);
2398         }
2399 }
2400
2401 void t4_db_dropped(struct adapter *adap)
2402 {
2403         if (is_t4(adap->params.chip)) {
2404                 disable_dbs(adap);
2405                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2406         }
2407         queue_work(adap->workq, &adap->db_drop_task);
2408 }
2409
2410 static void uld_attach(struct adapter *adap, unsigned int uld)
2411 {
2412         void *handle;
2413         struct cxgb4_lld_info lli;
2414         unsigned short i;
2415
2416         lli.pdev = adap->pdev;
2417         lli.pf = adap->pf;
2418         lli.l2t = adap->l2t;
2419         lli.tids = &adap->tids;
2420         lli.ports = adap->port;
2421         lli.vr = &adap->vres;
2422         lli.mtus = adap->params.mtus;
2423         if (uld == CXGB4_ULD_RDMA) {
2424                 lli.rxq_ids = adap->sge.rdma_rxq;
2425                 lli.ciq_ids = adap->sge.rdma_ciq;
2426                 lli.nrxq = adap->sge.rdmaqs;
2427                 lli.nciq = adap->sge.rdmaciqs;
2428         } else if (uld == CXGB4_ULD_ISCSI) {
2429                 lli.rxq_ids = adap->sge.ofld_rxq;
2430                 lli.nrxq = adap->sge.ofldqsets;
2431         }
2432         lli.ntxq = adap->sge.ofldqsets;
2433         lli.nchan = adap->params.nports;
2434         lli.nports = adap->params.nports;
2435         lli.wr_cred = adap->params.ofldq_wr_cred;
2436         lli.adapter_type = adap->params.chip;
2437         lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2438         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2439         lli.udb_density = 1 << adap->params.sge.eq_qpp;
2440         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2441         lli.filt_mode = adap->params.tp.vlan_pri_map;
2442         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2443         for (i = 0; i < NCHAN; i++)
2444                 lli.tx_modq[i] = i;
2445         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2446         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2447         lli.fw_vers = adap->params.fw_vers;
2448         lli.dbfifo_int_thresh = dbfifo_int_thresh;
2449         lli.sge_ingpadboundary = adap->sge.fl_align;
2450         lli.sge_egrstatuspagesize = adap->sge.stat_len;
2451         lli.sge_pktshift = adap->sge.pktshift;
2452         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2453         lli.max_ordird_qp = adap->params.max_ordird_qp;
2454         lli.max_ird_adapter = adap->params.max_ird_adapter;
2455         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2456         lli.nodeid = dev_to_node(adap->pdev_dev);
2457
2458         handle = ulds[uld].add(&lli);
2459         if (IS_ERR(handle)) {
2460                 dev_warn(adap->pdev_dev,
2461                          "could not attach to the %s driver, error %ld\n",
2462                          uld_str[uld], PTR_ERR(handle));
2463                 return;
2464         }
2465
2466         adap->uld_handle[uld] = handle;
2467
2468         if (!netevent_registered) {
2469                 register_netevent_notifier(&cxgb4_netevent_nb);
2470                 netevent_registered = true;
2471         }
2472
2473         if (adap->flags & FULL_INIT_DONE)
2474                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2475 }
2476
2477 static void attach_ulds(struct adapter *adap)
2478 {
2479         unsigned int i;
2480
2481         spin_lock(&adap_rcu_lock);
2482         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2483         spin_unlock(&adap_rcu_lock);
2484
2485         mutex_lock(&uld_mutex);
2486         list_add_tail(&adap->list_node, &adapter_list);
2487         for (i = 0; i < CXGB4_ULD_MAX; i++)
2488                 if (ulds[i].add)
2489                         uld_attach(adap, i);
2490         mutex_unlock(&uld_mutex);
2491 }
2492
2493 static void detach_ulds(struct adapter *adap)
2494 {
2495         unsigned int i;
2496
2497         mutex_lock(&uld_mutex);
2498         list_del(&adap->list_node);
2499         for (i = 0; i < CXGB4_ULD_MAX; i++)
2500                 if (adap->uld_handle[i]) {
2501                         ulds[i].state_change(adap->uld_handle[i],
2502                                              CXGB4_STATE_DETACH);
2503                         adap->uld_handle[i] = NULL;
2504                 }
2505         if (netevent_registered && list_empty(&adapter_list)) {
2506                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2507                 netevent_registered = false;
2508         }
2509         mutex_unlock(&uld_mutex);
2510
2511         spin_lock(&adap_rcu_lock);
2512         list_del_rcu(&adap->rcu_node);
2513         spin_unlock(&adap_rcu_lock);
2514 }
2515
2516 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2517 {
2518         unsigned int i;
2519
2520         mutex_lock(&uld_mutex);
2521         for (i = 0; i < CXGB4_ULD_MAX; i++)
2522                 if (adap->uld_handle[i])
2523                         ulds[i].state_change(adap->uld_handle[i], new_state);
2524         mutex_unlock(&uld_mutex);
2525 }
2526
2527 /**
2528  *      cxgb4_register_uld - register an upper-layer driver
2529  *      @type: the ULD type
2530  *      @p: the ULD methods
2531  *
2532  *      Registers an upper-layer driver with this driver and notifies the ULD
2533  *      about any presently available devices that support its type.  Returns
2534  *      %-EBUSY if a ULD of the same type is already registered.
2535  */
2536 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2537 {
2538         int ret = 0;
2539         struct adapter *adap;
2540
2541         if (type >= CXGB4_ULD_MAX)
2542                 return -EINVAL;
2543         mutex_lock(&uld_mutex);
2544         if (ulds[type].add) {
2545                 ret = -EBUSY;
2546                 goto out;
2547         }
2548         ulds[type] = *p;
2549         list_for_each_entry(adap, &adapter_list, list_node)
2550                 uld_attach(adap, type);
2551 out:    mutex_unlock(&uld_mutex);
2552         return ret;
2553 }
2554 EXPORT_SYMBOL(cxgb4_register_uld);
2555
2556 /**
2557  *      cxgb4_unregister_uld - unregister an upper-layer driver
2558  *      @type: the ULD type
2559  *
2560  *      Unregisters an existing upper-layer driver.
2561  */
2562 int cxgb4_unregister_uld(enum cxgb4_uld type)
2563 {
2564         struct adapter *adap;
2565
2566         if (type >= CXGB4_ULD_MAX)
2567                 return -EINVAL;
2568         mutex_lock(&uld_mutex);
2569         list_for_each_entry(adap, &adapter_list, list_node)
2570                 adap->uld_handle[type] = NULL;
2571         ulds[type].add = NULL;
2572         mutex_unlock(&uld_mutex);
2573         return 0;
2574 }
2575 EXPORT_SYMBOL(cxgb4_unregister_uld);
2576
2577 #if IS_ENABLED(CONFIG_IPV6)
2578 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2579                                    unsigned long event, void *data)
2580 {
2581         struct inet6_ifaddr *ifa = data;
2582         struct net_device *event_dev = ifa->idev->dev;
2583         const struct device *parent = NULL;
2584 #if IS_ENABLED(CONFIG_BONDING)
2585         struct adapter *adap;
2586 #endif
2587         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2588                 event_dev = vlan_dev_real_dev(event_dev);
2589 #if IS_ENABLED(CONFIG_BONDING)
2590         if (event_dev->flags & IFF_MASTER) {
2591                 list_for_each_entry(adap, &adapter_list, list_node) {
2592                         switch (event) {
2593                         case NETDEV_UP:
2594                                 cxgb4_clip_get(adap->port[0],
2595                                                (const u32 *)ifa, 1);
2596                                 break;
2597                         case NETDEV_DOWN:
2598                                 cxgb4_clip_release(adap->port[0],
2599                                                    (const u32 *)ifa, 1);
2600                                 break;
2601                         default:
2602                                 break;
2603                         }
2604                 }
2605                 return NOTIFY_OK;
2606         }
2607 #endif
2608
2609         if (event_dev)
2610                 parent = event_dev->dev.parent;
2611
2612         if (parent && parent->driver == &cxgb4_driver.driver) {
2613                 switch (event) {
2614                 case NETDEV_UP:
2615                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2616                         break;
2617                 case NETDEV_DOWN:
2618                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2619                         break;
2620                 default:
2621                         break;
2622                 }
2623         }
2624         return NOTIFY_OK;
2625 }
2626
2627 static bool inet6addr_registered;
2628 static struct notifier_block cxgb4_inet6addr_notifier = {
2629         .notifier_call = cxgb4_inet6addr_handler
2630 };
2631
2632 static void update_clip(const struct adapter *adap)
2633 {
2634         int i;
2635         struct net_device *dev;
2636         int ret;
2637
2638         rcu_read_lock();
2639
2640         for (i = 0; i < MAX_NPORTS; i++) {
2641                 dev = adap->port[i];
2642                 ret = 0;
2643
2644                 if (dev)
2645                         ret = cxgb4_update_root_dev_clip(dev);
2646
2647                 if (ret < 0)
2648                         break;
2649         }
2650         rcu_read_unlock();
2651 }
2652 #endif /* IS_ENABLED(CONFIG_IPV6) */
2653
2654 /**
2655  *      cxgb_up - enable the adapter
2656  *      @adap: adapter being enabled
2657  *
2658  *      Called when the first port is enabled, this function performs the
2659  *      actions necessary to make an adapter operational, such as completing
2660  *      the initialization of HW modules, and enabling interrupts.
2661  *
2662  *      Must be called with the rtnl lock held.
2663  */
2664 static int cxgb_up(struct adapter *adap)
2665 {
2666         int err;
2667
2668         err = setup_sge_queues(adap);
2669         if (err)
2670                 goto out;
2671         err = setup_rss(adap);
2672         if (err)
2673                 goto freeq;
2674
2675         if (adap->flags & USING_MSIX) {
2676                 name_msix_vecs(adap);
2677                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2678                                   adap->msix_info[0].desc, adap);
2679                 if (err)
2680                         goto irq_err;
2681
2682                 err = request_msix_queue_irqs(adap);
2683                 if (err) {
2684                         free_irq(adap->msix_info[0].vec, adap);
2685                         goto irq_err;
2686                 }
2687         } else {
2688                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2689                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2690                                   adap->port[0]->name, adap);
2691                 if (err)
2692                         goto irq_err;
2693         }
2694         enable_rx(adap);
2695         t4_sge_start(adap);
2696         t4_intr_enable(adap);
2697         adap->flags |= FULL_INIT_DONE;
2698         notify_ulds(adap, CXGB4_STATE_UP);
2699 #if IS_ENABLED(CONFIG_IPV6)
2700         update_clip(adap);
2701 #endif
2702  out:
2703         return err;
2704  irq_err:
2705         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2706  freeq:
2707         t4_free_sge_resources(adap);
2708         goto out;
2709 }
2710
2711 static void cxgb_down(struct adapter *adapter)
2712 {
2713         cancel_work_sync(&adapter->tid_release_task);
2714         cancel_work_sync(&adapter->db_full_task);
2715         cancel_work_sync(&adapter->db_drop_task);
2716         adapter->tid_release_task_busy = false;
2717         adapter->tid_release_head = NULL;
2718
2719         t4_sge_stop(adapter);
2720         t4_free_sge_resources(adapter);
2721         adapter->flags &= ~FULL_INIT_DONE;
2722 }
2723
2724 /*
2725  * net_device operations
2726  */
2727 static int cxgb_open(struct net_device *dev)
2728 {
2729         int err;
2730         struct port_info *pi = netdev_priv(dev);
2731         struct adapter *adapter = pi->adapter;
2732
2733         netif_carrier_off(dev);
2734
2735         if (!(adapter->flags & FULL_INIT_DONE)) {
2736                 err = cxgb_up(adapter);
2737                 if (err < 0)
2738                         return err;
2739         }
2740
2741         err = link_start(dev);
2742         if (!err)
2743                 netif_tx_start_all_queues(dev);
2744         return err;
2745 }
2746
2747 static int cxgb_close(struct net_device *dev)
2748 {
2749         struct port_info *pi = netdev_priv(dev);
2750         struct adapter *adapter = pi->adapter;
2751
2752         netif_tx_stop_all_queues(dev);
2753         netif_carrier_off(dev);
2754         return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2755 }
2756
2757 /* Return an error number if the indicated filter isn't writable ...
2758  */
2759 static int writable_filter(struct filter_entry *f)
2760 {
2761         if (f->locked)
2762                 return -EPERM;
2763         if (f->pending)
2764                 return -EBUSY;
2765
2766         return 0;
2767 }
2768
2769 /* Delete the filter at the specified index (if valid).  The checks for all
2770  * the common problems with doing this like the filter being locked, currently
2771  * pending in another operation, etc.
2772  */
2773 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2774 {
2775         struct filter_entry *f;
2776         int ret;
2777
2778         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2779                 return -EINVAL;
2780
2781         f = &adapter->tids.ftid_tab[fidx];
2782         ret = writable_filter(f);
2783         if (ret)
2784                 return ret;
2785         if (f->valid)
2786                 return del_filter_wr(adapter, fidx);
2787
2788         return 0;
2789 }
2790
2791 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2792                 __be32 sip, __be16 sport, __be16 vlan,
2793                 unsigned int queue, unsigned char port, unsigned char mask)
2794 {
2795         int ret;
2796         struct filter_entry *f;
2797         struct adapter *adap;
2798         int i;
2799         u8 *val;
2800
2801         adap = netdev2adap(dev);
2802
2803         /* Adjust stid to correct filter index */
2804         stid -= adap->tids.sftid_base;
2805         stid += adap->tids.nftids;
2806
2807         /* Check to make sure the filter requested is writable ...
2808          */
2809         f = &adap->tids.ftid_tab[stid];
2810         ret = writable_filter(f);
2811         if (ret)
2812                 return ret;
2813
2814         /* Clear out any old resources being used by the filter before
2815          * we start constructing the new filter.
2816          */
2817         if (f->valid)
2818                 clear_filter(adap, f);
2819
2820         /* Clear out filter specifications */
2821         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2822         f->fs.val.lport = cpu_to_be16(sport);
2823         f->fs.mask.lport  = ~0;
2824         val = (u8 *)&sip;
2825         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2826                 for (i = 0; i < 4; i++) {
2827                         f->fs.val.lip[i] = val[i];
2828                         f->fs.mask.lip[i] = ~0;
2829                 }
2830                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2831                         f->fs.val.iport = port;
2832                         f->fs.mask.iport = mask;
2833                 }
2834         }
2835
2836         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2837                 f->fs.val.proto = IPPROTO_TCP;
2838                 f->fs.mask.proto = ~0;
2839         }
2840
2841         f->fs.dirsteer = 1;
2842         f->fs.iq = queue;
2843         /* Mark filter as locked */
2844         f->locked = 1;
2845         f->fs.rpttid = 1;
2846
2847         ret = set_filter_wr(adap, stid);
2848         if (ret) {
2849                 clear_filter(adap, f);
2850                 return ret;
2851         }
2852
2853         return 0;
2854 }
2855 EXPORT_SYMBOL(cxgb4_create_server_filter);
2856
2857 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2858                 unsigned int queue, bool ipv6)
2859 {
2860         int ret;
2861         struct filter_entry *f;
2862         struct adapter *adap;
2863
2864         adap = netdev2adap(dev);
2865
2866         /* Adjust stid to correct filter index */
2867         stid -= adap->tids.sftid_base;
2868         stid += adap->tids.nftids;
2869
2870         f = &adap->tids.ftid_tab[stid];
2871         /* Unlock the filter */
2872         f->locked = 0;
2873
2874         ret = delete_filter(adap, stid);
2875         if (ret)
2876                 return ret;
2877
2878         return 0;
2879 }
2880 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2881
2882 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2883                                                 struct rtnl_link_stats64 *ns)
2884 {
2885         struct port_stats stats;
2886         struct port_info *p = netdev_priv(dev);
2887         struct adapter *adapter = p->adapter;
2888
2889         /* Block retrieving statistics during EEH error
2890          * recovery. Otherwise, the recovery might fail
2891          * and the PCI device will be removed permanently
2892          */
2893         spin_lock(&adapter->stats_lock);
2894         if (!netif_device_present(dev)) {
2895                 spin_unlock(&adapter->stats_lock);
2896                 return ns;
2897         }
2898         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2899                                  &p->stats_base);
2900         spin_unlock(&adapter->stats_lock);
2901
2902         ns->tx_bytes   = stats.tx_octets;
2903         ns->tx_packets = stats.tx_frames;
2904         ns->rx_bytes   = stats.rx_octets;
2905         ns->rx_packets = stats.rx_frames;
2906         ns->multicast  = stats.rx_mcast_frames;
2907
2908         /* detailed rx_errors */
2909         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2910                                stats.rx_runt;
2911         ns->rx_over_errors   = 0;
2912         ns->rx_crc_errors    = stats.rx_fcs_err;
2913         ns->rx_frame_errors  = stats.rx_symbol_err;
2914         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2915                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2916                                stats.rx_trunc0 + stats.rx_trunc1 +
2917                                stats.rx_trunc2 + stats.rx_trunc3;
2918         ns->rx_missed_errors = 0;
2919
2920         /* detailed tx_errors */
2921         ns->tx_aborted_errors   = 0;
2922         ns->tx_carrier_errors   = 0;
2923         ns->tx_fifo_errors      = 0;
2924         ns->tx_heartbeat_errors = 0;
2925         ns->tx_window_errors    = 0;
2926
2927         ns->tx_errors = stats.tx_error_frames;
2928         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2929                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2930         return ns;
2931 }
2932
2933 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2934 {
2935         unsigned int mbox;
2936         int ret = 0, prtad, devad;
2937         struct port_info *pi = netdev_priv(dev);
2938         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2939
2940         switch (cmd) {
2941         case SIOCGMIIPHY:
2942                 if (pi->mdio_addr < 0)
2943                         return -EOPNOTSUPP;
2944                 data->phy_id = pi->mdio_addr;
2945                 break;
2946         case SIOCGMIIREG:
2947         case SIOCSMIIREG:
2948                 if (mdio_phy_id_is_c45(data->phy_id)) {
2949                         prtad = mdio_phy_id_prtad(data->phy_id);
2950                         devad = mdio_phy_id_devad(data->phy_id);
2951                 } else if (data->phy_id < 32) {
2952                         prtad = data->phy_id;
2953                         devad = 0;
2954                         data->reg_num &= 0x1f;
2955                 } else
2956                         return -EINVAL;
2957
2958                 mbox = pi->adapter->pf;
2959                 if (cmd == SIOCGMIIREG)
2960                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2961                                          data->reg_num, &data->val_out);
2962                 else
2963                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2964                                          data->reg_num, data->val_in);
2965                 break;
2966         case SIOCGHWTSTAMP:
2967                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2968                                     sizeof(pi->tstamp_config)) ?
2969                         -EFAULT : 0;
2970         case SIOCSHWTSTAMP:
2971                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2972                                    sizeof(pi->tstamp_config)))
2973                         return -EFAULT;
2974
2975                 switch (pi->tstamp_config.rx_filter) {
2976                 case HWTSTAMP_FILTER_NONE:
2977                         pi->rxtstamp = false;
2978                         break;
2979                 case HWTSTAMP_FILTER_ALL:
2980                         pi->rxtstamp = true;
2981                         break;
2982                 default:
2983                         pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2984                         return -ERANGE;
2985                 }
2986
2987                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2988                                     sizeof(pi->tstamp_config)) ?
2989                         -EFAULT : 0;
2990         default:
2991                 return -EOPNOTSUPP;
2992         }
2993         return ret;
2994 }
2995
2996 static void cxgb_set_rxmode(struct net_device *dev)
2997 {
2998         /* unfortunately we can't return errors to the stack */
2999         set_rxmode(dev, -1, false);
3000 }
3001
3002 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3003 {
3004         int ret;
3005         struct port_info *pi = netdev_priv(dev);
3006
3007         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3008                 return -EINVAL;
3009         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3010                             -1, -1, -1, true);
3011         if (!ret)
3012                 dev->mtu = new_mtu;
3013         return ret;
3014 }
3015
3016 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3017 {
3018         int ret;
3019         struct sockaddr *addr = p;
3020         struct port_info *pi = netdev_priv(dev);
3021
3022         if (!is_valid_ether_addr(addr->sa_data))
3023                 return -EADDRNOTAVAIL;
3024
3025         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3026                             pi->xact_addr_filt, addr->sa_data, true, true);
3027         if (ret < 0)
3028                 return ret;
3029
3030         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3031         pi->xact_addr_filt = ret;
3032         return 0;
3033 }
3034
3035 #ifdef CONFIG_NET_POLL_CONTROLLER
3036 static void cxgb_netpoll(struct net_device *dev)
3037 {
3038         struct port_info *pi = netdev_priv(dev);
3039         struct adapter *adap = pi->adapter;
3040
3041         if (adap->flags & USING_MSIX) {
3042                 int i;
3043                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3044
3045                 for (i = pi->nqsets; i; i--, rx++)
3046                         t4_sge_intr_msix(0, &rx->rspq);
3047         } else
3048                 t4_intr_handler(adap)(0, adap);
3049 }
3050 #endif
3051
3052 static const struct net_device_ops cxgb4_netdev_ops = {
3053         .ndo_open             = cxgb_open,
3054         .ndo_stop             = cxgb_close,
3055         .ndo_start_xmit       = t4_eth_xmit,
3056         .ndo_select_queue     = cxgb_select_queue,
3057         .ndo_get_stats64      = cxgb_get_stats,
3058         .ndo_set_rx_mode      = cxgb_set_rxmode,
3059         .ndo_set_mac_address  = cxgb_set_mac_addr,
3060         .ndo_set_features     = cxgb_set_features,
3061         .ndo_validate_addr    = eth_validate_addr,
3062         .ndo_do_ioctl         = cxgb_ioctl,
3063         .ndo_change_mtu       = cxgb_change_mtu,
3064 #ifdef CONFIG_NET_POLL_CONTROLLER
3065         .ndo_poll_controller  = cxgb_netpoll,
3066 #endif
3067 #ifdef CONFIG_CHELSIO_T4_FCOE
3068         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3069         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3070 #endif /* CONFIG_CHELSIO_T4_FCOE */
3071 #ifdef CONFIG_NET_RX_BUSY_POLL
3072         .ndo_busy_poll        = cxgb_busy_poll,
3073 #endif
3074
3075 };
3076
3077 void t4_fatal_err(struct adapter *adap)
3078 {
3079         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3080         t4_intr_disable(adap);
3081         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3082 }
3083
3084 static void setup_memwin(struct adapter *adap)
3085 {
3086         u32 nic_win_base = t4_get_util_window(adap);
3087
3088         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3089 }
3090
3091 static void setup_memwin_rdma(struct adapter *adap)
3092 {
3093         if (adap->vres.ocq.size) {
3094                 u32 start;
3095                 unsigned int sz_kb;
3096
3097                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3098                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3099                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3100                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3101                 t4_write_reg(adap,
3102                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3103                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3104                 t4_write_reg(adap,
3105                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3106                              adap->vres.ocq.start);
3107                 t4_read_reg(adap,
3108                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3109         }
3110 }
3111
3112 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3113 {
3114         u32 v;
3115         int ret;
3116
3117         /* get device capabilities */
3118         memset(c, 0, sizeof(*c));
3119         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3120                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3121         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3122         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3123         if (ret < 0)
3124                 return ret;
3125
3126         /* select capabilities we'll be using */
3127         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3128                 if (!vf_acls)
3129                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3130                 else
3131                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3132         } else if (vf_acls) {
3133                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3134                 return ret;
3135         }
3136         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3137                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3138         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3139         if (ret < 0)
3140                 return ret;
3141
3142         ret = t4_config_glbl_rss(adap, adap->pf,
3143                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3144                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3145                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3146         if (ret < 0)
3147                 return ret;
3148
3149         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3150                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3151                           FW_CMD_CAP_PF);
3152         if (ret < 0)
3153                 return ret;
3154
3155         t4_sge_init(adap);
3156
3157         /* tweak some settings */
3158         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3159         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3160         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3161         v = t4_read_reg(adap, TP_PIO_DATA_A);
3162         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3163
3164         /* first 4 Tx modulation queues point to consecutive Tx channels */
3165         adap->params.tp.tx_modq_map = 0xE4;
3166         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3167                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3168
3169         /* associate each Tx modulation queue with consecutive Tx channels */
3170         v = 0x84218421;
3171         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3172                           &v, 1, TP_TX_SCHED_HDR_A);
3173         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3174                           &v, 1, TP_TX_SCHED_FIFO_A);
3175         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3176                           &v, 1, TP_TX_SCHED_PCMD_A);
3177
3178 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3179         if (is_offload(adap)) {
3180                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3181                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3182                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3183                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3184                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3185                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3186                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3187                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3188                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3189                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3190         }
3191
3192         /* get basic stuff going */
3193         return t4_early_init(adap, adap->pf);
3194 }
3195
3196 /*
3197  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3198  */
3199 #define MAX_ATIDS 8192U
3200
3201 /*
3202  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3203  *
3204  * If the firmware we're dealing with has Configuration File support, then
3205  * we use that to perform all configuration
3206  */
3207
3208 /*
3209  * Tweak configuration based on module parameters, etc.  Most of these have
3210  * defaults assigned to them by Firmware Configuration Files (if we're using
3211  * them) but need to be explicitly set if we're using hard-coded
3212  * initialization.  But even in the case of using Firmware Configuration
3213  * Files, we'd like to expose the ability to change these via module
3214  * parameters so these are essentially common tweaks/settings for
3215  * Configuration Files and hard-coded initialization ...
3216  */
3217 static int adap_init0_tweaks(struct adapter *adapter)
3218 {
3219         /*
3220          * Fix up various Host-Dependent Parameters like Page Size, Cache
3221          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3222          * 64B Cache Line Size ...
3223          */
3224         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3225
3226         /*
3227          * Process module parameters which affect early initialization.
3228          */
3229         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3230                 dev_err(&adapter->pdev->dev,
3231                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3232                         rx_dma_offset);
3233                 rx_dma_offset = 2;
3234         }
3235         t4_set_reg_field(adapter, SGE_CONTROL_A,
3236                          PKTSHIFT_V(PKTSHIFT_M),
3237                          PKTSHIFT_V(rx_dma_offset));
3238
3239         /*
3240          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3241          * adds the pseudo header itself.
3242          */
3243         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3244                                CSUM_HAS_PSEUDO_HDR_F, 0);
3245
3246         return 0;
3247 }
3248
3249 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3250  * unto themselves and they contain their own firmware to perform their
3251  * tasks ...
3252  */
3253 static int phy_aq1202_version(const u8 *phy_fw_data,
3254                               size_t phy_fw_size)
3255 {
3256         int offset;
3257
3258         /* At offset 0x8 you're looking for the primary image's
3259          * starting offset which is 3 Bytes wide
3260          *
3261          * At offset 0xa of the primary image, you look for the offset
3262          * of the DRAM segment which is 3 Bytes wide.
3263          *
3264          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3265          * wide
3266          */
3267         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3268         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3269         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3270
3271         offset = le24(phy_fw_data + 0x8) << 12;
3272         offset = le24(phy_fw_data + offset + 0xa);
3273         return be16(phy_fw_data + offset + 0x27e);
3274
3275         #undef be16
3276         #undef le16
3277         #undef le24
3278 }
3279
3280 static struct info_10gbt_phy_fw {
3281         unsigned int phy_fw_id;         /* PCI Device ID */
3282         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3283         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3284         int phy_flash;                  /* Has FLASH for PHY Firmware */
3285 } phy_info_array[] = {
3286         {
3287                 PHY_AQ1202_DEVICEID,
3288                 PHY_AQ1202_FIRMWARE,
3289                 phy_aq1202_version,
3290                 1,
3291         },
3292         {
3293                 PHY_BCM84834_DEVICEID,
3294                 PHY_BCM84834_FIRMWARE,
3295                 NULL,
3296                 0,
3297         },
3298         { 0, NULL, NULL },
3299 };
3300
3301 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3302 {
3303         int i;
3304
3305         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3306                 if (phy_info_array[i].phy_fw_id == devid)
3307                         return &phy_info_array[i];
3308         }
3309         return NULL;
3310 }
3311
3312 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3313  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3314  * we return a negative error number.  If we transfer new firmware we return 1
3315  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3316  */
3317 static int adap_init0_phy(struct adapter *adap)
3318 {
3319         const struct firmware *phyf;
3320         int ret;
3321         struct info_10gbt_phy_fw *phy_info;
3322
3323         /* Use the device ID to determine which PHY file to flash.
3324          */
3325         phy_info = find_phy_info(adap->pdev->device);
3326         if (!phy_info) {
3327                 dev_warn(adap->pdev_dev,
3328                          "No PHY Firmware file found for this PHY\n");
3329                 return -EOPNOTSUPP;
3330         }
3331
3332         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3333          * use that. The adapter firmware provides us with a memory buffer
3334          * where we can load a PHY firmware file from the host if we want to
3335          * override the PHY firmware File in flash.
3336          */
3337         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3338                                       adap->pdev_dev);
3339         if (ret < 0) {
3340                 /* For adapters without FLASH attached to PHY for their
3341                  * firmware, it's obviously a fatal error if we can't get the
3342                  * firmware to the adapter.  For adapters with PHY firmware
3343                  * FLASH storage, it's worth a warning if we can't find the
3344                  * PHY Firmware but we'll neuter the error ...
3345                  */
3346                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3347                         "/lib/firmware/%s, error %d\n",
3348                         phy_info->phy_fw_file, -ret);
3349                 if (phy_info->phy_flash) {
3350                         int cur_phy_fw_ver = 0;
3351
3352                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3353                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3354                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3355                         ret = 0;
3356                 }
3357
3358                 return ret;
3359         }
3360
3361         /* Load PHY Firmware onto adapter.
3362          */
3363         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3364                              phy_info->phy_fw_version,
3365                              (u8 *)phyf->data, phyf->size);
3366         if (ret < 0)
3367                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3368                         -ret);
3369         else if (ret > 0) {
3370                 int new_phy_fw_ver = 0;
3371
3372                 if (phy_info->phy_fw_version)
3373                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3374                                                                   phyf->size);
3375                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3376                          "Firmware /lib/firmware/%s, version %#x\n",
3377                          phy_info->phy_fw_file, new_phy_fw_ver);
3378         }
3379
3380         release_firmware(phyf);
3381
3382         return ret;
3383 }
3384
3385 /*
3386  * Attempt to initialize the adapter via a Firmware Configuration File.
3387  */
3388 static int adap_init0_config(struct adapter *adapter, int reset)
3389 {
3390         struct fw_caps_config_cmd caps_cmd;
3391         const struct firmware *cf;
3392         unsigned long mtype = 0, maddr = 0;
3393         u32 finiver, finicsum, cfcsum;
3394         int ret;
3395         int config_issued = 0;
3396         char *fw_config_file, fw_config_file_path[256];
3397         char *config_name = NULL;
3398
3399         /*
3400          * Reset device if necessary.
3401          */
3402         if (reset) {
3403                 ret = t4_fw_reset(adapter, adapter->mbox,
3404                                   PIORSTMODE_F | PIORST_F);
3405                 if (ret < 0)
3406                         goto bye;
3407         }
3408
3409         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3410          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3411          * to be performed after any global adapter RESET above since some
3412          * PHYs only have local RAM copies of the PHY firmware.
3413          */
3414         if (is_10gbt_device(adapter->pdev->device)) {
3415                 ret = adap_init0_phy(adapter);
3416                 if (ret < 0)
3417                         goto bye;
3418         }
3419         /*
3420          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3421          * then use that.  Otherwise, use the configuration file stored
3422          * in the adapter flash ...
3423          */
3424         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3425         case CHELSIO_T4:
3426                 fw_config_file = FW4_CFNAME;
3427                 break;
3428         case CHELSIO_T5:
3429                 fw_config_file = FW5_CFNAME;
3430                 break;
3431         case CHELSIO_T6:
3432                 fw_config_file = FW6_CFNAME;
3433                 break;
3434         default:
3435                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3436                        adapter->pdev->device);
3437                 ret = -EINVAL;
3438                 goto bye;
3439         }
3440
3441         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3442         if (ret < 0) {
3443                 config_name = "On FLASH";
3444                 mtype = FW_MEMTYPE_CF_FLASH;
3445                 maddr = t4_flash_cfg_addr(adapter);
3446         } else {
3447                 u32 params[7], val[7];
3448
3449                 sprintf(fw_config_file_path,
3450                         "/lib/firmware/%s", fw_config_file);
3451                 config_name = fw_config_file_path;
3452
3453                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3454                         ret = -ENOMEM;
3455                 else {
3456                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3457                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3458                         ret = t4_query_params(adapter, adapter->mbox,
3459                                               adapter->pf, 0, 1, params, val);
3460                         if (ret == 0) {
3461                                 /*
3462                                  * For t4_memory_rw() below addresses and
3463                                  * sizes have to be in terms of multiples of 4
3464                                  * bytes.  So, if the Configuration File isn't
3465                                  * a multiple of 4 bytes in length we'll have
3466                                  * to write that out separately since we can't
3467                                  * guarantee that the bytes following the
3468                                  * residual byte in the buffer returned by
3469                                  * request_firmware() are zeroed out ...
3470                                  */
3471                                 size_t resid = cf->size & 0x3;
3472                                 size_t size = cf->size & ~0x3;
3473                                 __be32 *data = (__be32 *)cf->data;
3474
3475                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3476                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3477
3478                                 spin_lock(&adapter->win0_lock);
3479                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3480                                                    size, data, T4_MEMORY_WRITE);
3481                                 if (ret == 0 && resid != 0) {
3482                                         union {
3483                                                 __be32 word;
3484                                                 char buf[4];
3485                                         } last;
3486                                         int i;
3487
3488                                         last.word = data[size >> 2];
3489                                         for (i = resid; i < 4; i++)
3490                                                 last.buf[i] = 0;
3491                                         ret = t4_memory_rw(adapter, 0, mtype,
3492                                                            maddr + size,
3493                                                            4, &last.word,
3494                                                            T4_MEMORY_WRITE);
3495                                 }
3496                                 spin_unlock(&adapter->win0_lock);
3497                         }
3498                 }
3499
3500                 release_firmware(cf);
3501                 if (ret)
3502                         goto bye;
3503         }
3504
3505         /*
3506          * Issue a Capability Configuration command to the firmware to get it
3507          * to parse the Configuration File.  We don't use t4_fw_config_file()
3508          * because we want the ability to modify various features after we've
3509          * processed the configuration file ...
3510          */
3511         memset(&caps_cmd, 0, sizeof(caps_cmd));
3512         caps_cmd.op_to_write =
3513                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3514                       FW_CMD_REQUEST_F |
3515                       FW_CMD_READ_F);
3516         caps_cmd.cfvalid_to_len16 =
3517                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3518                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3519                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3520                       FW_LEN16(caps_cmd));
3521         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3522                          &caps_cmd);
3523
3524         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3525          * Configuration File in FLASH), our last gasp effort is to use the
3526          * Firmware Configuration File which is embedded in the firmware.  A
3527          * very few early versions of the firmware didn't have one embedded
3528          * but we can ignore those.
3529          */
3530         if (ret == -ENOENT) {
3531                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3532                 caps_cmd.op_to_write =
3533                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3534                                         FW_CMD_REQUEST_F |
3535                                         FW_CMD_READ_F);
3536                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3537                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3538                                 sizeof(caps_cmd), &caps_cmd);
3539                 config_name = "Firmware Default";
3540         }
3541
3542         config_issued = 1;
3543         if (ret < 0)
3544                 goto bye;
3545
3546         finiver = ntohl(caps_cmd.finiver);
3547         finicsum = ntohl(caps_cmd.finicsum);
3548         cfcsum = ntohl(caps_cmd.cfcsum);
3549         if (finicsum != cfcsum)
3550                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3551                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3552                          finicsum, cfcsum);
3553
3554         /*
3555          * And now tell the firmware to use the configuration we just loaded.
3556          */
3557         caps_cmd.op_to_write =
3558                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3559                       FW_CMD_REQUEST_F |
3560                       FW_CMD_WRITE_F);
3561         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3562         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3563                          NULL);
3564         if (ret < 0)
3565                 goto bye;
3566
3567         /*
3568          * Tweak configuration based on system architecture, module
3569          * parameters, etc.
3570          */
3571         ret = adap_init0_tweaks(adapter);
3572         if (ret < 0)
3573                 goto bye;
3574
3575         /*
3576          * And finally tell the firmware to initialize itself using the
3577          * parameters from the Configuration File.
3578          */
3579         ret = t4_fw_initialize(adapter, adapter->mbox);
3580         if (ret < 0)
3581                 goto bye;
3582
3583         /* Emit Firmware Configuration File information and return
3584          * successfully.
3585          */
3586         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3587                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3588                  config_name, finiver, cfcsum);
3589         return 0;
3590
3591         /*
3592          * Something bad happened.  Return the error ...  (If the "error"
3593          * is that there's no Configuration File on the adapter we don't
3594          * want to issue a warning since this is fairly common.)
3595          */
3596 bye:
3597         if (config_issued && ret != -ENOENT)
3598                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3599                          config_name, -ret);
3600         return ret;
3601 }
3602
3603 static struct fw_info fw_info_array[] = {
3604         {
3605                 .chip = CHELSIO_T4,
3606                 .fs_name = FW4_CFNAME,
3607                 .fw_mod_name = FW4_FNAME,
3608                 .fw_hdr = {
3609                         .chip = FW_HDR_CHIP_T4,
3610                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3611                         .intfver_nic = FW_INTFVER(T4, NIC),
3612                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3613                         .intfver_ri = FW_INTFVER(T4, RI),
3614                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3615                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3616                 },
3617         }, {
3618                 .chip = CHELSIO_T5,
3619                 .fs_name = FW5_CFNAME,
3620                 .fw_mod_name = FW5_FNAME,
3621                 .fw_hdr = {
3622                         .chip = FW_HDR_CHIP_T5,
3623                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3624                         .intfver_nic = FW_INTFVER(T5, NIC),
3625                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3626                         .intfver_ri = FW_INTFVER(T5, RI),
3627                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3628                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3629                 },
3630         }, {
3631                 .chip = CHELSIO_T6,
3632                 .fs_name = FW6_CFNAME,
3633                 .fw_mod_name = FW6_FNAME,
3634                 .fw_hdr = {
3635                         .chip = FW_HDR_CHIP_T6,
3636                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3637                         .intfver_nic = FW_INTFVER(T6, NIC),
3638                         .intfver_vnic = FW_INTFVER(T6, VNIC),
3639                         .intfver_ofld = FW_INTFVER(T6, OFLD),
3640                         .intfver_ri = FW_INTFVER(T6, RI),
3641                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3642                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3643                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3644                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
3645                 },
3646         }
3647
3648 };
3649
3650 static struct fw_info *find_fw_info(int chip)
3651 {
3652         int i;
3653
3654         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3655                 if (fw_info_array[i].chip == chip)
3656                         return &fw_info_array[i];
3657         }
3658         return NULL;
3659 }
3660
3661 /*
3662  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3663  */
3664 static int adap_init0(struct adapter *adap)
3665 {
3666         int ret;
3667         u32 v, port_vec;
3668         enum dev_state state;
3669         u32 params[7], val[7];
3670         struct fw_caps_config_cmd caps_cmd;
3671         int reset = 1;
3672
3673         /* Grab Firmware Device Log parameters as early as possible so we have
3674          * access to it for debugging, etc.
3675          */
3676         ret = t4_init_devlog_params(adap);
3677         if (ret < 0)
3678                 return ret;
3679
3680         /* Contact FW, advertising Master capability */
3681         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3682         if (ret < 0) {
3683                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3684                         ret);
3685                 return ret;
3686         }
3687         if (ret == adap->mbox)
3688                 adap->flags |= MASTER_PF;
3689
3690         /*
3691          * If we're the Master PF Driver and the device is uninitialized,
3692          * then let's consider upgrading the firmware ...  (We always want
3693          * to check the firmware version number in order to A. get it for
3694          * later reporting and B. to warn if the currently loaded firmware
3695          * is excessively mismatched relative to the driver.)
3696          */
3697         t4_get_fw_version(adap, &adap->params.fw_vers);
3698         t4_get_tp_version(adap, &adap->params.tp_vers);
3699         ret = t4_check_fw_version(adap);
3700         /* If firmware is too old (not supported by driver) force an update. */
3701         if (ret)
3702                 state = DEV_STATE_UNINIT;
3703         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3704                 struct fw_info *fw_info;
3705                 struct fw_hdr *card_fw;
3706                 const struct firmware *fw;
3707                 const u8 *fw_data = NULL;
3708                 unsigned int fw_size = 0;
3709
3710                 /* This is the firmware whose headers the driver was compiled
3711                  * against
3712                  */
3713                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3714                 if (fw_info == NULL) {
3715                         dev_err(adap->pdev_dev,
3716                                 "unable to get firmware info for chip %d.\n",
3717                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3718                         return -EINVAL;
3719                 }
3720
3721                 /* allocate memory to read the header of the firmware on the
3722                  * card
3723                  */
3724                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3725
3726                 /* Get FW from from /lib/firmware/ */
3727                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3728                                        adap->pdev_dev);
3729                 if (ret < 0) {
3730                         dev_err(adap->pdev_dev,
3731                                 "unable to load firmware image %s, error %d\n",
3732                                 fw_info->fw_mod_name, ret);
3733                 } else {
3734                         fw_data = fw->data;
3735                         fw_size = fw->size;
3736                 }
3737
3738                 /* upgrade FW logic */
3739                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3740                                  state, &reset);
3741
3742                 /* Cleaning up */
3743                 release_firmware(fw);
3744                 t4_free_mem(card_fw);
3745
3746                 if (ret < 0)
3747                         goto bye;
3748         }
3749
3750         /*
3751          * Grab VPD parameters.  This should be done after we establish a
3752          * connection to the firmware since some of the VPD parameters
3753          * (notably the Core Clock frequency) are retrieved via requests to
3754          * the firmware.  On the other hand, we need these fairly early on
3755          * so we do this right after getting ahold of the firmware.
3756          */
3757         ret = t4_get_vpd_params(adap, &adap->params.vpd);
3758         if (ret < 0)
3759                 goto bye;
3760
3761         /*
3762          * Find out what ports are available to us.  Note that we need to do
3763          * this before calling adap_init0_no_config() since it needs nports
3764          * and portvec ...
3765          */
3766         v =
3767             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3768             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3769         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3770         if (ret < 0)
3771                 goto bye;
3772
3773         adap->params.nports = hweight32(port_vec);
3774         adap->params.portvec = port_vec;
3775
3776         /* If the firmware is initialized already, emit a simply note to that
3777          * effect. Otherwise, it's time to try initializing the adapter.
3778          */
3779         if (state == DEV_STATE_INIT) {
3780                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3781                          "Adapter already initialized\n",
3782                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3783         } else {
3784                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3785                          "Initializing adapter\n");
3786
3787                 /* Find out whether we're dealing with a version of the
3788                  * firmware which has configuration file support.
3789                  */
3790                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3791                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3792                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3793                                       params, val);
3794
3795                 /* If the firmware doesn't support Configuration Files,
3796                  * return an error.
3797                  */
3798                 if (ret < 0) {
3799                         dev_err(adap->pdev_dev, "firmware doesn't support "
3800                                 "Firmware Configuration Files\n");
3801                         goto bye;
3802                 }
3803
3804                 /* The firmware provides us with a memory buffer where we can
3805                  * load a Configuration File from the host if we want to
3806                  * override the Configuration File in flash.
3807                  */
3808                 ret = adap_init0_config(adap, reset);
3809                 if (ret == -ENOENT) {
3810                         dev_err(adap->pdev_dev, "no Configuration File "
3811                                 "present on adapter.\n");
3812                         goto bye;
3813                 }
3814                 if (ret < 0) {
3815                         dev_err(adap->pdev_dev, "could not initialize "
3816                                 "adapter, error %d\n", -ret);
3817                         goto bye;
3818                 }
3819         }
3820
3821         /* Give the SGE code a chance to pull in anything that it needs ...
3822          * Note that this must be called after we retrieve our VPD parameters
3823          * in order to know how to convert core ticks to seconds, etc.
3824          */
3825         ret = t4_sge_init(adap);
3826         if (ret < 0)
3827                 goto bye;
3828
3829         if (is_bypass_device(adap->pdev->device))
3830                 adap->params.bypass = 1;
3831
3832         /*
3833          * Grab some of our basic fundamental operating parameters.
3834          */
3835 #define FW_PARAM_DEV(param) \
3836         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3837         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3838
3839 #define FW_PARAM_PFVF(param) \
3840         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3841         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3842         FW_PARAMS_PARAM_Y_V(0) | \
3843         FW_PARAMS_PARAM_Z_V(0)
3844
3845         params[0] = FW_PARAM_PFVF(EQ_START);
3846         params[1] = FW_PARAM_PFVF(L2T_START);
3847         params[2] = FW_PARAM_PFVF(L2T_END);
3848         params[3] = FW_PARAM_PFVF(FILTER_START);
3849         params[4] = FW_PARAM_PFVF(FILTER_END);
3850         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3851         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3852         if (ret < 0)
3853                 goto bye;
3854         adap->sge.egr_start = val[0];
3855         adap->l2t_start = val[1];
3856         adap->l2t_end = val[2];
3857         adap->tids.ftid_base = val[3];
3858         adap->tids.nftids = val[4] - val[3] + 1;
3859         adap->sge.ingr_start = val[5];
3860
3861         /* qids (ingress/egress) returned from firmware can be anywhere
3862          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3863          * Hence driver needs to allocate memory for this range to
3864          * store the queue info. Get the highest IQFLINT/EQ index returned
3865          * in FW_EQ_*_CMD.alloc command.
3866          */
3867         params[0] = FW_PARAM_PFVF(EQ_END);
3868         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3869         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3870         if (ret < 0)
3871                 goto bye;
3872         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3873         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3874
3875         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3876                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3877         if (!adap->sge.egr_map) {
3878                 ret = -ENOMEM;
3879                 goto bye;
3880         }
3881
3882         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3883                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3884         if (!adap->sge.ingr_map) {
3885                 ret = -ENOMEM;
3886                 goto bye;
3887         }
3888
3889         /* Allocate the memory for the vaious egress queue bitmaps
3890          * ie starving_fl, txq_maperr and blocked_fl.
3891          */
3892         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3893                                         sizeof(long), GFP_KERNEL);
3894         if (!adap->sge.starving_fl) {
3895                 ret = -ENOMEM;
3896                 goto bye;
3897         }
3898
3899         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3900                                        sizeof(long), GFP_KERNEL);
3901         if (!adap->sge.txq_maperr) {
3902                 ret = -ENOMEM;
3903                 goto bye;
3904         }
3905
3906 #ifdef CONFIG_DEBUG_FS
3907         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3908                                        sizeof(long), GFP_KERNEL);
3909         if (!adap->sge.blocked_fl) {
3910                 ret = -ENOMEM;
3911                 goto bye;
3912         }
3913 #endif
3914
3915         params[0] = FW_PARAM_PFVF(CLIP_START);
3916         params[1] = FW_PARAM_PFVF(CLIP_END);
3917         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3918         if (ret < 0)
3919                 goto bye;
3920         adap->clipt_start = val[0];
3921         adap->clipt_end = val[1];
3922
3923         /* query params related to active filter region */
3924         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3925         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3926         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3927         /* If Active filter size is set we enable establishing
3928          * offload connection through firmware work request
3929          */
3930         if ((val[0] != val[1]) && (ret >= 0)) {
3931                 adap->flags |= FW_OFLD_CONN;
3932                 adap->tids.aftid_base = val[0];
3933                 adap->tids.aftid_end = val[1];
3934         }
3935
3936         /* If we're running on newer firmware, let it know that we're
3937          * prepared to deal with encapsulated CPL messages.  Older
3938          * firmware won't understand this and we'll just get
3939          * unencapsulated messages ...
3940          */
3941         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3942         val[0] = 1;
3943         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3944
3945         /*
3946          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3947          * capability.  Earlier versions of the firmware didn't have the
3948          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3949          * permission to use ULPTX MEMWRITE DSGL.
3950          */
3951         if (is_t4(adap->params.chip)) {
3952                 adap->params.ulptx_memwrite_dsgl = false;
3953         } else {
3954                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3955                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3956                                       1, params, val);
3957                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3958         }
3959
3960         /*
3961          * Get device capabilities so we can determine what resources we need
3962          * to manage.
3963          */
3964         memset(&caps_cmd, 0, sizeof(caps_cmd));
3965         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3966                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
3967         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3968         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3969                          &caps_cmd);
3970         if (ret < 0)
3971                 goto bye;
3972
3973         if (caps_cmd.ofldcaps) {
3974                 /* query offload-related parameters */
3975                 params[0] = FW_PARAM_DEV(NTID);
3976                 params[1] = FW_PARAM_PFVF(SERVER_START);
3977                 params[2] = FW_PARAM_PFVF(SERVER_END);
3978                 params[3] = FW_PARAM_PFVF(TDDP_START);
3979                 params[4] = FW_PARAM_PFVF(TDDP_END);
3980                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3981                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3982                                       params, val);
3983                 if (ret < 0)
3984                         goto bye;
3985                 adap->tids.ntids = val[0];
3986                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3987                 adap->tids.stid_base = val[1];
3988                 adap->tids.nstids = val[2] - val[1] + 1;
3989                 /*
3990                  * Setup server filter region. Divide the available filter
3991                  * region into two parts. Regular filters get 1/3rd and server
3992                  * filters get 2/3rd part. This is only enabled if workarond
3993                  * path is enabled.
3994                  * 1. For regular filters.
3995                  * 2. Server filter: This are special filters which are used
3996                  * to redirect SYN packets to offload queue.
3997                  */
3998                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3999                         adap->tids.sftid_base = adap->tids.ftid_base +
4000                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4001                         adap->tids.nsftids = adap->tids.nftids -
4002                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4003                         adap->tids.nftids = adap->tids.sftid_base -
4004                                                 adap->tids.ftid_base;
4005                 }
4006                 adap->vres.ddp.start = val[3];
4007                 adap->vres.ddp.size = val[4] - val[3] + 1;
4008                 adap->params.ofldq_wr_cred = val[5];
4009
4010                 adap->params.offload = 1;
4011         }
4012         if (caps_cmd.rdmacaps) {
4013                 params[0] = FW_PARAM_PFVF(STAG_START);
4014                 params[1] = FW_PARAM_PFVF(STAG_END);
4015                 params[2] = FW_PARAM_PFVF(RQ_START);
4016                 params[3] = FW_PARAM_PFVF(RQ_END);
4017                 params[4] = FW_PARAM_PFVF(PBL_START);
4018                 params[5] = FW_PARAM_PFVF(PBL_END);
4019                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4020                                       params, val);
4021                 if (ret < 0)
4022                         goto bye;
4023                 adap->vres.stag.start = val[0];
4024                 adap->vres.stag.size = val[1] - val[0] + 1;
4025                 adap->vres.rq.start = val[2];
4026                 adap->vres.rq.size = val[3] - val[2] + 1;
4027                 adap->vres.pbl.start = val[4];
4028                 adap->vres.pbl.size = val[5] - val[4] + 1;
4029
4030                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4031                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4032                 params[2] = FW_PARAM_PFVF(CQ_START);
4033                 params[3] = FW_PARAM_PFVF(CQ_END);
4034                 params[4] = FW_PARAM_PFVF(OCQ_START);
4035                 params[5] = FW_PARAM_PFVF(OCQ_END);
4036                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4037                                       val);
4038                 if (ret < 0)
4039                         goto bye;
4040                 adap->vres.qp.start = val[0];
4041                 adap->vres.qp.size = val[1] - val[0] + 1;
4042                 adap->vres.cq.start = val[2];
4043                 adap->vres.cq.size = val[3] - val[2] + 1;
4044                 adap->vres.ocq.start = val[4];
4045                 adap->vres.ocq.size = val[5] - val[4] + 1;
4046
4047                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4048                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4049                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4050                                       val);
4051                 if (ret < 0) {
4052                         adap->params.max_ordird_qp = 8;
4053                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4054                         ret = 0;
4055                 } else {
4056                         adap->params.max_ordird_qp = val[0];
4057                         adap->params.max_ird_adapter = val[1];
4058                 }
4059                 dev_info(adap->pdev_dev,
4060                          "max_ordird_qp %d max_ird_adapter %d\n",
4061                          adap->params.max_ordird_qp,
4062                          adap->params.max_ird_adapter);
4063         }
4064         if (caps_cmd.iscsicaps) {
4065                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4066                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4067                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4068                                       params, val);
4069                 if (ret < 0)
4070                         goto bye;
4071                 adap->vres.iscsi.start = val[0];
4072                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4073         }
4074 #undef FW_PARAM_PFVF
4075 #undef FW_PARAM_DEV
4076
4077         /* The MTU/MSS Table is initialized by now, so load their values.  If
4078          * we're initializing the adapter, then we'll make any modifications
4079          * we want to the MTU/MSS Table and also initialize the congestion
4080          * parameters.
4081          */
4082         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4083         if (state != DEV_STATE_INIT) {
4084                 int i;
4085
4086                 /* The default MTU Table contains values 1492 and 1500.
4087                  * However, for TCP, it's better to have two values which are
4088                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4089                  * This allows us to have a TCP Data Payload which is a
4090                  * multiple of 8 regardless of what combination of TCP Options
4091                  * are in use (always a multiple of 4 bytes) which is
4092                  * important for performance reasons.  For instance, if no
4093                  * options are in use, then we have a 20-byte IP header and a
4094                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4095                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4096                  * which is not a multiple of 8.  So using an MSS of 1488 in
4097                  * this case results in a TCP Data Payload of 1448 bytes which
4098                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4099                  * Stamps have been negotiated, then an MTU of 1500 bytes
4100                  * results in a TCP Data Payload of 1448 bytes which, as
4101                  * above, is a multiple of 8 bytes ...
4102                  */
4103                 for (i = 0; i < NMTUS; i++)
4104                         if (adap->params.mtus[i] == 1492) {
4105                                 adap->params.mtus[i] = 1488;
4106                                 break;
4107                         }
4108
4109                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4110                              adap->params.b_wnd);
4111         }
4112         t4_init_sge_params(adap);
4113         adap->flags |= FW_OK;
4114         t4_init_tp_params(adap);
4115         return 0;
4116
4117         /*
4118          * Something bad happened.  If a command timed out or failed with EIO
4119          * FW does not operate within its spec or something catastrophic
4120          * happened to HW/FW, stop issuing commands.
4121          */
4122 bye:
4123         kfree(adap->sge.egr_map);
4124         kfree(adap->sge.ingr_map);
4125         kfree(adap->sge.starving_fl);
4126         kfree(adap->sge.txq_maperr);
4127 #ifdef CONFIG_DEBUG_FS
4128         kfree(adap->sge.blocked_fl);
4129 #endif
4130         if (ret != -ETIMEDOUT && ret != -EIO)
4131                 t4_fw_bye(adap, adap->mbox);
4132         return ret;
4133 }
4134
4135 /* EEH callbacks */
4136
4137 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4138                                          pci_channel_state_t state)
4139 {
4140         int i;
4141         struct adapter *adap = pci_get_drvdata(pdev);
4142
4143         if (!adap)
4144                 goto out;
4145
4146         rtnl_lock();
4147         adap->flags &= ~FW_OK;
4148         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4149         spin_lock(&adap->stats_lock);
4150         for_each_port(adap, i) {
4151                 struct net_device *dev = adap->port[i];
4152
4153                 netif_device_detach(dev);
4154                 netif_carrier_off(dev);
4155         }
4156         spin_unlock(&adap->stats_lock);
4157         disable_interrupts(adap);
4158         if (adap->flags & FULL_INIT_DONE)
4159                 cxgb_down(adap);
4160         rtnl_unlock();
4161         if ((adap->flags & DEV_ENABLED)) {
4162                 pci_disable_device(pdev);
4163                 adap->flags &= ~DEV_ENABLED;
4164         }
4165 out:    return state == pci_channel_io_perm_failure ?
4166                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4167 }
4168
4169 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4170 {
4171         int i, ret;
4172         struct fw_caps_config_cmd c;
4173         struct adapter *adap = pci_get_drvdata(pdev);
4174
4175         if (!adap) {
4176                 pci_restore_state(pdev);
4177                 pci_save_state(pdev);
4178                 return PCI_ERS_RESULT_RECOVERED;
4179         }
4180
4181         if (!(adap->flags & DEV_ENABLED)) {
4182                 if (pci_enable_device(pdev)) {
4183                         dev_err(&pdev->dev, "Cannot reenable PCI "
4184                                             "device after reset\n");
4185                         return PCI_ERS_RESULT_DISCONNECT;
4186                 }
4187                 adap->flags |= DEV_ENABLED;
4188         }
4189
4190         pci_set_master(pdev);
4191         pci_restore_state(pdev);
4192         pci_save_state(pdev);
4193         pci_cleanup_aer_uncorrect_error_status(pdev);
4194
4195         if (t4_wait_dev_ready(adap->regs) < 0)
4196                 return PCI_ERS_RESULT_DISCONNECT;
4197         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4198                 return PCI_ERS_RESULT_DISCONNECT;
4199         adap->flags |= FW_OK;
4200         if (adap_init1(adap, &c))
4201                 return PCI_ERS_RESULT_DISCONNECT;
4202
4203         for_each_port(adap, i) {
4204                 struct port_info *p = adap2pinfo(adap, i);
4205
4206                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4207                                   NULL, NULL);
4208                 if (ret < 0)
4209                         return PCI_ERS_RESULT_DISCONNECT;
4210                 p->viid = ret;
4211                 p->xact_addr_filt = -1;
4212         }
4213
4214         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4215                      adap->params.b_wnd);
4216         setup_memwin(adap);
4217         if (cxgb_up(adap))
4218                 return PCI_ERS_RESULT_DISCONNECT;
4219         return PCI_ERS_RESULT_RECOVERED;
4220 }
4221
4222 static void eeh_resume(struct pci_dev *pdev)
4223 {
4224         int i;
4225         struct adapter *adap = pci_get_drvdata(pdev);
4226
4227         if (!adap)
4228                 return;
4229
4230         rtnl_lock();
4231         for_each_port(adap, i) {
4232                 struct net_device *dev = adap->port[i];
4233
4234                 if (netif_running(dev)) {
4235                         link_start(dev);
4236                         cxgb_set_rxmode(dev);
4237                 }
4238                 netif_device_attach(dev);
4239         }
4240         rtnl_unlock();
4241 }
4242
4243 static const struct pci_error_handlers cxgb4_eeh = {
4244         .error_detected = eeh_err_detected,
4245         .slot_reset     = eeh_slot_reset,
4246         .resume         = eeh_resume,
4247 };
4248
4249 static inline bool is_x_10g_port(const struct link_config *lc)
4250 {
4251         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4252                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4253 }
4254
4255 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4256                              unsigned int us, unsigned int cnt,
4257                              unsigned int size, unsigned int iqe_size)
4258 {
4259         q->adap = adap;
4260         cxgb4_set_rspq_intr_params(q, us, cnt);
4261         q->iqe_len = iqe_size;
4262         q->size = size;
4263 }
4264
4265 /*
4266  * Perform default configuration of DMA queues depending on the number and type
4267  * of ports we found and the number of available CPUs.  Most settings can be
4268  * modified by the admin prior to actual use.
4269  */
4270 static void cfg_queues(struct adapter *adap)
4271 {
4272         struct sge *s = &adap->sge;
4273         int i, n10g = 0, qidx = 0;
4274 #ifndef CONFIG_CHELSIO_T4_DCB
4275         int q10g = 0;
4276 #endif
4277         int ciq_size;
4278
4279         for_each_port(adap, i)
4280                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4281 #ifdef CONFIG_CHELSIO_T4_DCB
4282         /* For Data Center Bridging support we need to be able to support up
4283          * to 8 Traffic Priorities; each of which will be assigned to its
4284          * own TX Queue in order to prevent Head-Of-Line Blocking.
4285          */
4286         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4287                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4288                         MAX_ETH_QSETS, adap->params.nports * 8);
4289                 BUG_ON(1);
4290         }
4291
4292         for_each_port(adap, i) {
4293                 struct port_info *pi = adap2pinfo(adap, i);
4294
4295                 pi->first_qset = qidx;
4296                 pi->nqsets = 8;
4297                 qidx += pi->nqsets;
4298         }
4299 #else /* !CONFIG_CHELSIO_T4_DCB */
4300         /*
4301          * We default to 1 queue per non-10G port and up to # of cores queues
4302          * per 10G port.
4303          */
4304         if (n10g)
4305                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4306         if (q10g > netif_get_num_default_rss_queues())
4307                 q10g = netif_get_num_default_rss_queues();
4308
4309         for_each_port(adap, i) {
4310                 struct port_info *pi = adap2pinfo(adap, i);
4311
4312                 pi->first_qset = qidx;
4313                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4314                 qidx += pi->nqsets;
4315         }
4316 #endif /* !CONFIG_CHELSIO_T4_DCB */
4317
4318         s->ethqsets = qidx;
4319         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4320
4321         if (is_offload(adap)) {
4322                 /*
4323                  * For offload we use 1 queue/channel if all ports are up to 1G,
4324                  * otherwise we divide all available queues amongst the channels
4325                  * capped by the number of available cores.
4326                  */
4327                 if (n10g) {
4328                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4329                                   num_online_cpus());
4330                         s->ofldqsets = roundup(i, adap->params.nports);
4331                 } else
4332                         s->ofldqsets = adap->params.nports;
4333                 /* For RDMA one Rx queue per channel suffices */
4334                 s->rdmaqs = adap->params.nports;
4335                 /* Try and allow at least 1 CIQ per cpu rounding down
4336                  * to the number of ports, with a minimum of 1 per port.
4337                  * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4338                  * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4339                  * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4340                  */
4341                 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4342                 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4343                                 adap->params.nports;
4344                 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4345         }
4346
4347         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4348                 struct sge_eth_rxq *r = &s->ethrxq[i];
4349
4350                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4351                 r->fl.size = 72;
4352         }
4353
4354         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4355                 s->ethtxq[i].q.size = 1024;
4356
4357         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4358                 s->ctrlq[i].q.size = 512;
4359
4360         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4361                 s->ofldtxq[i].q.size = 1024;
4362
4363         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4364                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4365
4366                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4367                 r->rspq.uld = CXGB4_ULD_ISCSI;
4368                 r->fl.size = 72;
4369         }
4370
4371         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4372                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4373
4374                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4375                 r->rspq.uld = CXGB4_ULD_RDMA;
4376                 r->fl.size = 72;
4377         }
4378
4379         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4380         if (ciq_size > SGE_MAX_IQ_SIZE) {
4381                 CH_WARN(adap, "CIQ size too small for available IQs\n");
4382                 ciq_size = SGE_MAX_IQ_SIZE;
4383         }
4384
4385         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4386                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4387
4388                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4389                 r->rspq.uld = CXGB4_ULD_RDMA;
4390         }
4391
4392         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4393         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4394 }
4395
4396 /*
4397  * Reduce the number of Ethernet queues across all ports to at most n.
4398  * n provides at least one queue per port.
4399  */
4400 static void reduce_ethqs(struct adapter *adap, int n)
4401 {
4402         int i;
4403         struct port_info *pi;
4404
4405         while (n < adap->sge.ethqsets)
4406                 for_each_port(adap, i) {
4407                         pi = adap2pinfo(adap, i);
4408                         if (pi->nqsets > 1) {
4409                                 pi->nqsets--;
4410                                 adap->sge.ethqsets--;
4411                                 if (adap->sge.ethqsets <= n)
4412                                         break;
4413                         }
4414                 }
4415
4416         n = 0;
4417         for_each_port(adap, i) {
4418                 pi = adap2pinfo(adap, i);
4419                 pi->first_qset = n;
4420                 n += pi->nqsets;
4421         }
4422 }
4423
4424 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4425 #define EXTRA_VECS 2
4426
4427 static int enable_msix(struct adapter *adap)
4428 {
4429         int ofld_need = 0;
4430         int i, want, need, allocated;
4431         struct sge *s = &adap->sge;
4432         unsigned int nchan = adap->params.nports;
4433         struct msix_entry *entries;
4434
4435         entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4436                           GFP_KERNEL);
4437         if (!entries)
4438                 return -ENOMEM;
4439
4440         for (i = 0; i < MAX_INGQ + 1; ++i)
4441                 entries[i].entry = i;
4442
4443         want = s->max_ethqsets + EXTRA_VECS;
4444         if (is_offload(adap)) {
4445                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4446                 /* need nchan for each possible ULD */
4447                 ofld_need = 3 * nchan;
4448         }
4449 #ifdef CONFIG_CHELSIO_T4_DCB
4450         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4451          * each port.
4452          */
4453         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4454 #else
4455         need = adap->params.nports + EXTRA_VECS + ofld_need;
4456 #endif
4457         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4458         if (allocated < 0) {
4459                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4460                          " not using MSI-X\n");
4461                 kfree(entries);
4462                 return allocated;
4463         }
4464
4465         /* Distribute available vectors to the various queue groups.
4466          * Every group gets its minimum requirement and NIC gets top
4467          * priority for leftovers.
4468          */
4469         i = allocated - EXTRA_VECS - ofld_need;
4470         if (i < s->max_ethqsets) {
4471                 s->max_ethqsets = i;
4472                 if (i < s->ethqsets)
4473                         reduce_ethqs(adap, i);
4474         }
4475         if (is_offload(adap)) {
4476                 if (allocated < want) {
4477                         s->rdmaqs = nchan;
4478                         s->rdmaciqs = nchan;
4479                 }
4480
4481                 /* leftovers go to OFLD */
4482                 i = allocated - EXTRA_VECS - s->max_ethqsets -
4483                     s->rdmaqs - s->rdmaciqs;
4484                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
4485         }
4486         for (i = 0; i < allocated; ++i)
4487                 adap->msix_info[i].vec = entries[i].vector;
4488
4489         kfree(entries);
4490         return 0;
4491 }
4492
4493 #undef EXTRA_VECS
4494
4495 static int init_rss(struct adapter *adap)
4496 {
4497         unsigned int i;
4498         int err;
4499
4500         err = t4_init_rss_mode(adap, adap->mbox);
4501         if (err)
4502                 return err;
4503
4504         for_each_port(adap, i) {
4505                 struct port_info *pi = adap2pinfo(adap, i);
4506
4507                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4508                 if (!pi->rss)
4509                         return -ENOMEM;
4510         }
4511         return 0;
4512 }
4513
4514 static void print_port_info(const struct net_device *dev)
4515 {
4516         char buf[80];
4517         char *bufp = buf;
4518         const char *spd = "";
4519         const struct port_info *pi = netdev_priv(dev);
4520         const struct adapter *adap = pi->adapter;
4521
4522         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4523                 spd = " 2.5 GT/s";
4524         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4525                 spd = " 5 GT/s";
4526         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4527                 spd = " 8 GT/s";
4528
4529         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4530                 bufp += sprintf(bufp, "100/");
4531         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4532                 bufp += sprintf(bufp, "1000/");
4533         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4534                 bufp += sprintf(bufp, "10G/");
4535         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4536                 bufp += sprintf(bufp, "40G/");
4537         if (bufp != buf)
4538                 --bufp;
4539         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4540
4541         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4542                     adap->params.vpd.id,
4543                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4544                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4545                     (adap->flags & USING_MSIX) ? " MSI-X" :
4546                     (adap->flags & USING_MSI) ? " MSI" : "");
4547         netdev_info(dev, "S/N: %s, P/N: %s\n",
4548                     adap->params.vpd.sn, adap->params.vpd.pn);
4549 }
4550
4551 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4552 {
4553         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4554 }
4555
4556 /*
4557  * Free the following resources:
4558  * - memory used for tables
4559  * - MSI/MSI-X
4560  * - net devices
4561  * - resources FW is holding for us
4562  */
4563 static void free_some_resources(struct adapter *adapter)
4564 {
4565         unsigned int i;
4566
4567         t4_free_mem(adapter->l2t);
4568         t4_free_mem(adapter->tids.tid_tab);
4569         kfree(adapter->sge.egr_map);
4570         kfree(adapter->sge.ingr_map);
4571         kfree(adapter->sge.starving_fl);
4572         kfree(adapter->sge.txq_maperr);
4573 #ifdef CONFIG_DEBUG_FS
4574         kfree(adapter->sge.blocked_fl);
4575 #endif
4576         disable_msi(adapter);
4577
4578         for_each_port(adapter, i)
4579                 if (adapter->port[i]) {
4580                         struct port_info *pi = adap2pinfo(adapter, i);
4581
4582                         if (pi->viid != 0)
4583                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4584                                            0, pi->viid);
4585                         kfree(adap2pinfo(adapter, i)->rss);
4586                         free_netdev(adapter->port[i]);
4587                 }
4588         if (adapter->flags & FW_OK)
4589                 t4_fw_bye(adapter, adapter->pf);
4590 }
4591
4592 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4593 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4594                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4595 #define SEGMENT_SIZE 128
4596
4597 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4598 {
4599         u16 device_id;
4600
4601         /* Retrieve adapter's device ID */
4602         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4603
4604         switch (device_id >> 12) {
4605         case CHELSIO_T4:
4606                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4607         case CHELSIO_T5:
4608                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4609         case CHELSIO_T6:
4610                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4611         default:
4612                 dev_err(&pdev->dev, "Device %d is not supported\n",
4613                         device_id);
4614         }
4615         return -EINVAL;
4616 }
4617
4618 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4619 {
4620         int func, i, err, s_qpp, qpp, num_seg;
4621         struct port_info *pi;
4622         bool highdma = false;
4623         struct adapter *adapter = NULL;
4624         void __iomem *regs;
4625         u32 whoami, pl_rev;
4626         enum chip_type chip;
4627
4628         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4629
4630         err = pci_request_regions(pdev, KBUILD_MODNAME);
4631         if (err) {
4632                 /* Just info, some other driver may have claimed the device. */
4633                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4634                 return err;
4635         }
4636
4637         err = pci_enable_device(pdev);
4638         if (err) {
4639                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4640                 goto out_release_regions;
4641         }
4642
4643         regs = pci_ioremap_bar(pdev, 0);
4644         if (!regs) {
4645                 dev_err(&pdev->dev, "cannot map device registers\n");
4646                 err = -ENOMEM;
4647                 goto out_disable_device;
4648         }
4649
4650         err = t4_wait_dev_ready(regs);
4651         if (err < 0)
4652                 goto out_unmap_bar0;
4653
4654         /* We control everything through one PF */
4655         whoami = readl(regs + PL_WHOAMI_A);
4656         pl_rev = REV_G(readl(regs + PL_REV_A));
4657         chip = get_chip_type(pdev, pl_rev);
4658         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4659                 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4660         if (func != ent->driver_data) {
4661                 iounmap(regs);
4662                 pci_disable_device(pdev);
4663                 pci_save_state(pdev);        /* to restore SR-IOV later */
4664                 goto sriov;
4665         }
4666
4667         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4668                 highdma = true;
4669                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4670                 if (err) {
4671                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4672                                 "coherent allocations\n");
4673                         goto out_unmap_bar0;
4674                 }
4675         } else {
4676                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4677                 if (err) {
4678                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4679                         goto out_unmap_bar0;
4680                 }
4681         }
4682
4683         pci_enable_pcie_error_reporting(pdev);
4684         enable_pcie_relaxed_ordering(pdev);
4685         pci_set_master(pdev);
4686         pci_save_state(pdev);
4687
4688         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4689         if (!adapter) {
4690                 err = -ENOMEM;
4691                 goto out_unmap_bar0;
4692         }
4693
4694         adapter->workq = create_singlethread_workqueue("cxgb4");
4695         if (!adapter->workq) {
4696                 err = -ENOMEM;
4697                 goto out_free_adapter;
4698         }
4699
4700         /* PCI device has been enabled */
4701         adapter->flags |= DEV_ENABLED;
4702
4703         adapter->regs = regs;
4704         adapter->pdev = pdev;
4705         adapter->pdev_dev = &pdev->dev;
4706         adapter->mbox = func;
4707         adapter->pf = func;
4708         adapter->msg_enable = dflt_msg_enable;
4709         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4710
4711         spin_lock_init(&adapter->stats_lock);
4712         spin_lock_init(&adapter->tid_release_lock);
4713         spin_lock_init(&adapter->win0_lock);
4714
4715         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4716         INIT_WORK(&adapter->db_full_task, process_db_full);
4717         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4718
4719         err = t4_prep_adapter(adapter);
4720         if (err)
4721                 goto out_free_adapter;
4722
4723
4724         if (!is_t4(adapter->params.chip)) {
4725                 s_qpp = (QUEUESPERPAGEPF0_S +
4726                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4727                         adapter->pf);
4728                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4729                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4730                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4731
4732                 /* Each segment size is 128B. Write coalescing is enabled only
4733                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4734                  * queue is less no of segments that can be accommodated in
4735                  * a page size.
4736                  */
4737                 if (qpp > num_seg) {
4738                         dev_err(&pdev->dev,
4739                                 "Incorrect number of egress queues per page\n");
4740                         err = -EINVAL;
4741                         goto out_free_adapter;
4742                 }
4743                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4744                 pci_resource_len(pdev, 2));
4745                 if (!adapter->bar2) {
4746                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4747                         err = -ENOMEM;
4748                         goto out_free_adapter;
4749                 }
4750         }
4751
4752         setup_memwin(adapter);
4753         err = adap_init0(adapter);
4754 #ifdef CONFIG_DEBUG_FS
4755         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4756 #endif
4757         setup_memwin_rdma(adapter);
4758         if (err)
4759                 goto out_unmap_bar;
4760
4761         /* configure SGE_STAT_CFG_A to read WC stats */
4762         if (!is_t4(adapter->params.chip))
4763                 t4_write_reg(adapter, SGE_STAT_CFG_A,
4764                              STATSOURCE_T5_V(7) | STATMODE_V(0));
4765
4766         for_each_port(adapter, i) {
4767                 struct net_device *netdev;
4768
4769                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4770                                            MAX_ETH_QSETS);
4771                 if (!netdev) {
4772                         err = -ENOMEM;
4773                         goto out_free_dev;
4774                 }
4775
4776                 SET_NETDEV_DEV(netdev, &pdev->dev);
4777
4778                 adapter->port[i] = netdev;
4779                 pi = netdev_priv(netdev);
4780                 pi->adapter = adapter;
4781                 pi->xact_addr_filt = -1;
4782                 pi->port_id = i;
4783                 netdev->irq = pdev->irq;
4784
4785                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4786                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4787                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4788                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4789                 if (highdma)
4790                         netdev->hw_features |= NETIF_F_HIGHDMA;
4791                 netdev->features |= netdev->hw_features;
4792                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4793
4794                 netdev->priv_flags |= IFF_UNICAST_FLT;
4795
4796                 netdev->netdev_ops = &cxgb4_netdev_ops;
4797 #ifdef CONFIG_CHELSIO_T4_DCB
4798                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4799                 cxgb4_dcb_state_init(netdev);
4800 #endif
4801                 cxgb4_set_ethtool_ops(netdev);
4802         }
4803
4804         pci_set_drvdata(pdev, adapter);
4805
4806         if (adapter->flags & FW_OK) {
4807                 err = t4_port_init(adapter, func, func, 0);
4808                 if (err)
4809                         goto out_free_dev;
4810         } else if (adapter->params.nports == 1) {
4811                 /* If we don't have a connection to the firmware -- possibly
4812                  * because of an error -- grab the raw VPD parameters so we
4813                  * can set the proper MAC Address on the debug network
4814                  * interface that we've created.
4815                  */
4816                 u8 hw_addr[ETH_ALEN];
4817                 u8 *na = adapter->params.vpd.na;
4818
4819                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4820                 if (!err) {
4821                         for (i = 0; i < ETH_ALEN; i++)
4822                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4823                                               hex2val(na[2 * i + 1]));
4824                         t4_set_hw_addr(adapter, 0, hw_addr);
4825                 }
4826         }
4827
4828         /* Configure queues and allocate tables now, they can be needed as
4829          * soon as the first register_netdev completes.
4830          */
4831         cfg_queues(adapter);
4832
4833         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4834         if (!adapter->l2t) {
4835                 /* We tolerate a lack of L2T, giving up some functionality */
4836                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4837                 adapter->params.offload = 0;
4838         }
4839
4840 #if IS_ENABLED(CONFIG_IPV6)
4841         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4842                                           adapter->clipt_end);
4843         if (!adapter->clipt) {
4844                 /* We tolerate a lack of clip_table, giving up
4845                  * some functionality
4846                  */
4847                 dev_warn(&pdev->dev,
4848                          "could not allocate Clip table, continuing\n");
4849                 adapter->params.offload = 0;
4850         }
4851 #endif
4852         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4853                 dev_warn(&pdev->dev, "could not allocate TID table, "
4854                          "continuing\n");
4855                 adapter->params.offload = 0;
4856         }
4857
4858         if (is_offload(adapter)) {
4859                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4860                         u32 hash_base, hash_reg;
4861
4862                         if (chip <= CHELSIO_T5) {
4863                                 hash_reg = LE_DB_TID_HASHBASE_A;
4864                                 hash_base = t4_read_reg(adapter, hash_reg);
4865                                 adapter->tids.hash_base = hash_base / 4;
4866                         } else {
4867                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4868                                 hash_base = t4_read_reg(adapter, hash_reg);
4869                                 adapter->tids.hash_base = hash_base;
4870                         }
4871                 }
4872         }
4873
4874         /* See what interrupts we'll be using */
4875         if (msi > 1 && enable_msix(adapter) == 0)
4876                 adapter->flags |= USING_MSIX;
4877         else if (msi > 0 && pci_enable_msi(pdev) == 0)
4878                 adapter->flags |= USING_MSI;
4879
4880         err = init_rss(adapter);
4881         if (err)
4882                 goto out_free_dev;
4883
4884         /*
4885          * The card is now ready to go.  If any errors occur during device
4886          * registration we do not fail the whole card but rather proceed only
4887          * with the ports we manage to register successfully.  However we must
4888          * register at least one net device.
4889          */
4890         for_each_port(adapter, i) {
4891                 pi = adap2pinfo(adapter, i);
4892                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4893                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4894
4895                 err = register_netdev(adapter->port[i]);
4896                 if (err)
4897                         break;
4898                 adapter->chan_map[pi->tx_chan] = i;
4899                 print_port_info(adapter->port[i]);
4900         }
4901         if (i == 0) {
4902                 dev_err(&pdev->dev, "could not register any net devices\n");
4903                 goto out_free_dev;
4904         }
4905         if (err) {
4906                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4907                 err = 0;
4908         }
4909
4910         if (cxgb4_debugfs_root) {
4911                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4912                                                            cxgb4_debugfs_root);
4913                 setup_debugfs(adapter);
4914         }
4915
4916         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4917         pdev->needs_freset = 1;
4918
4919         if (is_offload(adapter))
4920                 attach_ulds(adapter);
4921
4922 sriov:
4923 #ifdef CONFIG_PCI_IOV
4924         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4925                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4926                         dev_info(&pdev->dev,
4927                                  "instantiated %u virtual functions\n",
4928                                  num_vf[func]);
4929 #endif
4930         return 0;
4931
4932  out_free_dev:
4933         free_some_resources(adapter);
4934  out_unmap_bar:
4935         if (!is_t4(adapter->params.chip))
4936                 iounmap(adapter->bar2);
4937  out_free_adapter:
4938         if (adapter->workq)
4939                 destroy_workqueue(adapter->workq);
4940
4941         kfree(adapter);
4942  out_unmap_bar0:
4943         iounmap(regs);
4944  out_disable_device:
4945         pci_disable_pcie_error_reporting(pdev);
4946         pci_disable_device(pdev);
4947  out_release_regions:
4948         pci_release_regions(pdev);
4949         return err;
4950 }
4951
4952 static void remove_one(struct pci_dev *pdev)
4953 {
4954         struct adapter *adapter = pci_get_drvdata(pdev);
4955
4956 #ifdef CONFIG_PCI_IOV
4957         pci_disable_sriov(pdev);
4958
4959 #endif
4960
4961         if (adapter) {
4962                 int i;
4963
4964                 /* Tear down per-adapter Work Queue first since it can contain
4965                  * references to our adapter data structure.
4966                  */
4967                 destroy_workqueue(adapter->workq);
4968
4969                 if (is_offload(adapter))
4970                         detach_ulds(adapter);
4971
4972                 disable_interrupts(adapter);
4973
4974                 for_each_port(adapter, i)
4975                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4976                                 unregister_netdev(adapter->port[i]);
4977
4978                 debugfs_remove_recursive(adapter->debugfs_root);
4979
4980                 /* If we allocated filters, free up state associated with any
4981                  * valid filters ...
4982                  */
4983                 if (adapter->tids.ftid_tab) {
4984                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
4985                         for (i = 0; i < (adapter->tids.nftids +
4986                                         adapter->tids.nsftids); i++, f++)
4987                                 if (f->valid)
4988                                         clear_filter(adapter, f);
4989                 }
4990
4991                 if (adapter->flags & FULL_INIT_DONE)
4992                         cxgb_down(adapter);
4993
4994                 free_some_resources(adapter);
4995 #if IS_ENABLED(CONFIG_IPV6)
4996                 t4_cleanup_clip_tbl(adapter);
4997 #endif
4998                 iounmap(adapter->regs);
4999                 if (!is_t4(adapter->params.chip))
5000                         iounmap(adapter->bar2);
5001                 pci_disable_pcie_error_reporting(pdev);
5002                 if ((adapter->flags & DEV_ENABLED)) {
5003                         pci_disable_device(pdev);
5004                         adapter->flags &= ~DEV_ENABLED;
5005                 }
5006                 pci_release_regions(pdev);
5007                 synchronize_rcu();
5008                 kfree(adapter);
5009         } else
5010                 pci_release_regions(pdev);
5011 }
5012
5013 static struct pci_driver cxgb4_driver = {
5014         .name     = KBUILD_MODNAME,
5015         .id_table = cxgb4_pci_tbl,
5016         .probe    = init_one,
5017         .remove   = remove_one,
5018         .shutdown = remove_one,
5019         .err_handler = &cxgb4_eeh,
5020 };
5021
5022 static int __init cxgb4_init_module(void)
5023 {
5024         int ret;
5025
5026         /* Debugfs support is optional, just warn if this fails */
5027         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5028         if (!cxgb4_debugfs_root)
5029                 pr_warn("could not create debugfs entry, continuing\n");
5030
5031         ret = pci_register_driver(&cxgb4_driver);
5032         if (ret < 0)
5033                 debugfs_remove(cxgb4_debugfs_root);
5034
5035 #if IS_ENABLED(CONFIG_IPV6)
5036         if (!inet6addr_registered) {
5037                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5038                 inet6addr_registered = true;
5039         }
5040 #endif
5041
5042         return ret;
5043 }
5044
5045 static void __exit cxgb4_cleanup_module(void)
5046 {
5047 #if IS_ENABLED(CONFIG_IPV6)
5048         if (inet6addr_registered) {
5049                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5050                 inet6addr_registered = false;
5051         }
5052 #endif
5053         pci_unregister_driver(&cxgb4_driver);
5054         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5055 }
5056
5057 module_init(cxgb4_init_module);
5058 module_exit(cxgb4_cleanup_module);