Merge tag 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford...
[cascardo/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 #include <linux/crash_dump.h>
68
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82
83 char cxgb4_driver_name[] = KBUILD_MODNAME;
84
85 #ifdef DRV_VERSION
86 #undef DRV_VERSION
87 #endif
88 #define DRV_VERSION "2.0.0-ko"
89 const char cxgb4_driver_version[] = DRV_VERSION;
90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
91
92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
93                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
94                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
95
96 /* Macros needed to support the PCI Device ID Table ...
97  */
98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
99         static const struct pci_device_id cxgb4_pci_tbl[] = {
100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
101
102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
103  * called for both.
104  */
105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
106
107 #define CH_PCI_ID_TABLE_ENTRY(devid) \
108                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
109
110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
111                 { 0, } \
112         }
113
114 #include "t4_pci_id_tbl.h"
115
116 #define FW4_FNAME "cxgb4/t4fw.bin"
117 #define FW5_FNAME "cxgb4/t5fw.bin"
118 #define FW6_FNAME "cxgb4/t6fw.bin"
119 #define FW4_CFNAME "cxgb4/t4-config.txt"
120 #define FW5_CFNAME "cxgb4/t5-config.txt"
121 #define FW6_CFNAME "cxgb4/t6-config.txt"
122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
124 #define PHY_AQ1202_DEVICEID 0x4409
125 #define PHY_BCM84834_DEVICEID 0x4486
126
127 MODULE_DESCRIPTION(DRV_DESC);
128 MODULE_AUTHOR("Chelsio Communications");
129 MODULE_LICENSE("Dual BSD/GPL");
130 MODULE_VERSION(DRV_VERSION);
131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
132 MODULE_FIRMWARE(FW4_FNAME);
133 MODULE_FIRMWARE(FW5_FNAME);
134 MODULE_FIRMWARE(FW6_FNAME);
135
136 /*
137  * Normally we're willing to become the firmware's Master PF but will be happy
138  * if another PF has already become the Master and initialized the adapter.
139  * Setting "force_init" will cause this driver to forcibly establish itself as
140  * the Master PF and initialize the adapter.
141  */
142 static uint force_init;
143
144 module_param(force_init, uint, 0644);
145 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
146                  "deprecated parameter");
147
148 static int dflt_msg_enable = DFLT_MSG_ENABLE;
149
150 module_param(dflt_msg_enable, int, 0644);
151 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, "
152                  "deprecated parameter");
153
154 /*
155  * The driver uses the best interrupt scheme available on a platform in the
156  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
157  * of these schemes the driver may consider as follows:
158  *
159  * msi = 2: choose from among all three options
160  * msi = 1: only consider MSI and INTx interrupts
161  * msi = 0: force INTx interrupts
162  */
163 static int msi = 2;
164
165 module_param(msi, int, 0644);
166 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
167
168 /*
169  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
170  * offset by 2 bytes in order to have the IP headers line up on 4-byte
171  * boundaries.  This is a requirement for many architectures which will throw
172  * a machine check fault if an attempt is made to access one of the 4-byte IP
173  * header fields on a non-4-byte boundary.  And it's a major performance issue
174  * even on some architectures which allow it like some implementations of the
175  * x86 ISA.  However, some architectures don't mind this and for some very
176  * edge-case performance sensitive applications (like forwarding large volumes
177  * of small packets), setting this DMA offset to 0 will decrease the number of
178  * PCI-E Bus transfers enough to measurably affect performance.
179  */
180 static int rx_dma_offset = 2;
181
182 #ifdef CONFIG_PCI_IOV
183 /* Configure the number of PCI-E Virtual Function which are to be instantiated
184  * on SR-IOV Capable Physical Functions.
185  */
186 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
187
188 module_param_array(num_vf, uint, NULL, 0644);
189 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3, deprecated parameter - please use the pci sysfs interface.");
190 #endif
191
192 /* TX Queue select used to determine what algorithm to use for selecting TX
193  * queue. Select between the kernel provided function (select_queue=0) or user
194  * cxgb_select_queue function (select_queue=1)
195  *
196  * Default: select_queue=0
197  */
198 static int select_queue;
199 module_param(select_queue, int, 0644);
200 MODULE_PARM_DESC(select_queue,
201                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
202
203 static struct dentry *cxgb4_debugfs_root;
204
205 LIST_HEAD(adapter_list);
206 DEFINE_MUTEX(uld_mutex);
207
208 static void link_report(struct net_device *dev)
209 {
210         if (!netif_carrier_ok(dev))
211                 netdev_info(dev, "link down\n");
212         else {
213                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
214
215                 const char *s;
216                 const struct port_info *p = netdev_priv(dev);
217
218                 switch (p->link_cfg.speed) {
219                 case 10000:
220                         s = "10Gbps";
221                         break;
222                 case 1000:
223                         s = "1000Mbps";
224                         break;
225                 case 100:
226                         s = "100Mbps";
227                         break;
228                 case 40000:
229                         s = "40Gbps";
230                         break;
231                 default:
232                         pr_info("%s: unsupported speed: %d\n",
233                                 dev->name, p->link_cfg.speed);
234                         return;
235                 }
236
237                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
238                             fc[p->link_cfg.fc]);
239         }
240 }
241
242 #ifdef CONFIG_CHELSIO_T4_DCB
243 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
244 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
245 {
246         struct port_info *pi = netdev_priv(dev);
247         struct adapter *adap = pi->adapter;
248         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
249         int i;
250
251         /* We use a simple mapping of Port TX Queue Index to DCB
252          * Priority when we're enabling DCB.
253          */
254         for (i = 0; i < pi->nqsets; i++, txq++) {
255                 u32 name, value;
256                 int err;
257
258                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
259                         FW_PARAMS_PARAM_X_V(
260                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
261                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
262                 value = enable ? i : 0xffffffff;
263
264                 /* Since we can be called while atomic (from "interrupt
265                  * level") we need to issue the Set Parameters Commannd
266                  * without sleeping (timeout < 0).
267                  */
268                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
269                                             &name, &value,
270                                             -FW_CMD_MAX_TIMEOUT);
271
272                 if (err)
273                         dev_err(adap->pdev_dev,
274                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
275                                 enable ? "set" : "unset", pi->port_id, i, -err);
276                 else
277                         txq->dcb_prio = value;
278         }
279 }
280
281 static int cxgb4_dcb_enabled(const struct net_device *dev)
282 {
283         struct port_info *pi = netdev_priv(dev);
284
285         if (!pi->dcb.enabled)
286                 return 0;
287
288         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
289                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
290 }
291 #endif /* CONFIG_CHELSIO_T4_DCB */
292
293 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
294 {
295         struct net_device *dev = adapter->port[port_id];
296
297         /* Skip changes from disabled ports. */
298         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
299                 if (link_stat)
300                         netif_carrier_on(dev);
301                 else {
302 #ifdef CONFIG_CHELSIO_T4_DCB
303                         if (cxgb4_dcb_enabled(dev)) {
304                                 cxgb4_dcb_state_init(dev);
305                                 dcb_tx_queue_prio_enable(dev, false);
306                         }
307 #endif /* CONFIG_CHELSIO_T4_DCB */
308                         netif_carrier_off(dev);
309                 }
310
311                 link_report(dev);
312         }
313 }
314
315 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
316 {
317         static const char *mod_str[] = {
318                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
319         };
320
321         const struct net_device *dev = adap->port[port_id];
322         const struct port_info *pi = netdev_priv(dev);
323
324         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
325                 netdev_info(dev, "port module unplugged\n");
326         else if (pi->mod_type < ARRAY_SIZE(mod_str))
327                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
328         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
329                 netdev_info(dev, "%s: unsupported port module inserted\n",
330                             dev->name);
331         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
332                 netdev_info(dev, "%s: unknown port module inserted\n",
333                             dev->name);
334         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
335                 netdev_info(dev, "%s: transceiver module error\n", dev->name);
336         else
337                 netdev_info(dev, "%s: unknown module type %d inserted\n",
338                             dev->name, pi->mod_type);
339 }
340
341 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
342 module_param(dbfifo_int_thresh, int, 0644);
343 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
344
345 /*
346  * usecs to sleep while draining the dbfifo
347  */
348 static int dbfifo_drain_delay = 1000;
349 module_param(dbfifo_drain_delay, int, 0644);
350 MODULE_PARM_DESC(dbfifo_drain_delay,
351                  "usecs to sleep while draining the dbfifo");
352
353 static inline int cxgb4_set_addr_hash(struct port_info *pi)
354 {
355         struct adapter *adap = pi->adapter;
356         u64 vec = 0;
357         bool ucast = false;
358         struct hash_mac_addr *entry;
359
360         /* Calculate the hash vector for the updated list and program it */
361         list_for_each_entry(entry, &adap->mac_hlist, list) {
362                 ucast |= is_unicast_ether_addr(entry->addr);
363                 vec |= (1ULL << hash_mac_addr(entry->addr));
364         }
365         return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
366                                 vec, false);
367 }
368
369 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
370 {
371         struct port_info *pi = netdev_priv(netdev);
372         struct adapter *adap = pi->adapter;
373         int ret;
374         u64 mhash = 0;
375         u64 uhash = 0;
376         bool free = false;
377         bool ucast = is_unicast_ether_addr(mac_addr);
378         const u8 *maclist[1] = {mac_addr};
379         struct hash_mac_addr *new_entry;
380
381         ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
382                                 NULL, ucast ? &uhash : &mhash, false);
383         if (ret < 0)
384                 goto out;
385         /* if hash != 0, then add the addr to hash addr list
386          * so on the end we will calculate the hash for the
387          * list and program it
388          */
389         if (uhash || mhash) {
390                 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
391                 if (!new_entry)
392                         return -ENOMEM;
393                 ether_addr_copy(new_entry->addr, mac_addr);
394                 list_add_tail(&new_entry->list, &adap->mac_hlist);
395                 ret = cxgb4_set_addr_hash(pi);
396         }
397 out:
398         return ret < 0 ? ret : 0;
399 }
400
401 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
402 {
403         struct port_info *pi = netdev_priv(netdev);
404         struct adapter *adap = pi->adapter;
405         int ret;
406         const u8 *maclist[1] = {mac_addr};
407         struct hash_mac_addr *entry, *tmp;
408
409         /* If the MAC address to be removed is in the hash addr
410          * list, delete it from the list and update hash vector
411          */
412         list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
413                 if (ether_addr_equal(entry->addr, mac_addr)) {
414                         list_del(&entry->list);
415                         kfree(entry);
416                         return cxgb4_set_addr_hash(pi);
417                 }
418         }
419
420         ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
421         return ret < 0 ? -EINVAL : 0;
422 }
423
424 /*
425  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
426  * If @mtu is -1 it is left unchanged.
427  */
428 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
429 {
430         struct port_info *pi = netdev_priv(dev);
431         struct adapter *adapter = pi->adapter;
432
433         __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
434         __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
435
436         return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
437                              (dev->flags & IFF_PROMISC) ? 1 : 0,
438                              (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
439                              sleep_ok);
440 }
441
442 /**
443  *      link_start - enable a port
444  *      @dev: the port to enable
445  *
446  *      Performs the MAC and PHY actions needed to enable a port.
447  */
448 static int link_start(struct net_device *dev)
449 {
450         int ret;
451         struct port_info *pi = netdev_priv(dev);
452         unsigned int mb = pi->adapter->pf;
453
454         /*
455          * We do not set address filters and promiscuity here, the stack does
456          * that step explicitly.
457          */
458         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
459                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
460         if (ret == 0) {
461                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
462                                     pi->xact_addr_filt, dev->dev_addr, true,
463                                     true);
464                 if (ret >= 0) {
465                         pi->xact_addr_filt = ret;
466                         ret = 0;
467                 }
468         }
469         if (ret == 0)
470                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
471                                     &pi->link_cfg);
472         if (ret == 0) {
473                 local_bh_disable();
474                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
475                                           true, CXGB4_DCB_ENABLED);
476                 local_bh_enable();
477         }
478
479         return ret;
480 }
481
482 #ifdef CONFIG_CHELSIO_T4_DCB
483 /* Handle a Data Center Bridging update message from the firmware. */
484 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
485 {
486         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
487         struct net_device *dev = adap->port[adap->chan_map[port]];
488         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
489         int new_dcb_enabled;
490
491         cxgb4_dcb_handle_fw_update(adap, pcmd);
492         new_dcb_enabled = cxgb4_dcb_enabled(dev);
493
494         /* If the DCB has become enabled or disabled on the port then we're
495          * going to need to set up/tear down DCB Priority parameters for the
496          * TX Queues associated with the port.
497          */
498         if (new_dcb_enabled != old_dcb_enabled)
499                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
500 }
501 #endif /* CONFIG_CHELSIO_T4_DCB */
502
503 /* Response queue handler for the FW event queue.
504  */
505 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
506                           const struct pkt_gl *gl)
507 {
508         u8 opcode = ((const struct rss_header *)rsp)->opcode;
509
510         rsp++;                                          /* skip RSS header */
511
512         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
513          */
514         if (unlikely(opcode == CPL_FW4_MSG &&
515            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
516                 rsp++;
517                 opcode = ((const struct rss_header *)rsp)->opcode;
518                 rsp++;
519                 if (opcode != CPL_SGE_EGR_UPDATE) {
520                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
521                                 , opcode);
522                         goto out;
523                 }
524         }
525
526         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
527                 const struct cpl_sge_egr_update *p = (void *)rsp;
528                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
529                 struct sge_txq *txq;
530
531                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
532                 txq->restarts++;
533                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
534                         struct sge_eth_txq *eq;
535
536                         eq = container_of(txq, struct sge_eth_txq, q);
537                         netif_tx_wake_queue(eq->txq);
538                 } else {
539                         struct sge_ofld_txq *oq;
540
541                         oq = container_of(txq, struct sge_ofld_txq, q);
542                         tasklet_schedule(&oq->qresume_tsk);
543                 }
544         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
545                 const struct cpl_fw6_msg *p = (void *)rsp;
546
547 #ifdef CONFIG_CHELSIO_T4_DCB
548                 const struct fw_port_cmd *pcmd = (const void *)p->data;
549                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
550                 unsigned int action =
551                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
552
553                 if (cmd == FW_PORT_CMD &&
554                     action == FW_PORT_ACTION_GET_PORT_INFO) {
555                         int port = FW_PORT_CMD_PORTID_G(
556                                         be32_to_cpu(pcmd->op_to_portid));
557                         struct net_device *dev =
558                                 q->adap->port[q->adap->chan_map[port]];
559                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
560                                             FW_PORT_CMD_DCBXDIS_F)
561                                            ? CXGB4_DCB_INPUT_FW_DISABLED
562                                            : CXGB4_DCB_INPUT_FW_ENABLED);
563
564                         cxgb4_dcb_state_fsm(dev, state_input);
565                 }
566
567                 if (cmd == FW_PORT_CMD &&
568                     action == FW_PORT_ACTION_L2_DCB_CFG)
569                         dcb_rpl(q->adap, pcmd);
570                 else
571 #endif
572                         if (p->type == 0)
573                                 t4_handle_fw_rpl(q->adap, p->data);
574         } else if (opcode == CPL_L2T_WRITE_RPL) {
575                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
576
577                 do_l2t_write_rpl(q->adap, p);
578         } else if (opcode == CPL_SET_TCB_RPL) {
579                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
580
581                 filter_rpl(q->adap, p);
582         } else
583                 dev_err(q->adap->pdev_dev,
584                         "unexpected CPL %#x on FW event queue\n", opcode);
585 out:
586         return 0;
587 }
588
589 static void disable_msi(struct adapter *adapter)
590 {
591         if (adapter->flags & USING_MSIX) {
592                 pci_disable_msix(adapter->pdev);
593                 adapter->flags &= ~USING_MSIX;
594         } else if (adapter->flags & USING_MSI) {
595                 pci_disable_msi(adapter->pdev);
596                 adapter->flags &= ~USING_MSI;
597         }
598 }
599
600 /*
601  * Interrupt handler for non-data events used with MSI-X.
602  */
603 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
604 {
605         struct adapter *adap = cookie;
606         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
607
608         if (v & PFSW_F) {
609                 adap->swintr = 1;
610                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
611         }
612         if (adap->flags & MASTER_PF)
613                 t4_slow_intr_handler(adap);
614         return IRQ_HANDLED;
615 }
616
617 /*
618  * Name the MSI-X interrupts.
619  */
620 static void name_msix_vecs(struct adapter *adap)
621 {
622         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
623
624         /* non-data interrupts */
625         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
626
627         /* FW events */
628         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
629                  adap->port[0]->name);
630
631         /* Ethernet queues */
632         for_each_port(adap, j) {
633                 struct net_device *d = adap->port[j];
634                 const struct port_info *pi = netdev_priv(d);
635
636                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
637                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
638                                  d->name, i);
639         }
640 }
641
642 static int request_msix_queue_irqs(struct adapter *adap)
643 {
644         struct sge *s = &adap->sge;
645         int err, ethqidx;
646         int msi_index = 2;
647
648         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
649                           adap->msix_info[1].desc, &s->fw_evtq);
650         if (err)
651                 return err;
652
653         for_each_ethrxq(s, ethqidx) {
654                 err = request_irq(adap->msix_info[msi_index].vec,
655                                   t4_sge_intr_msix, 0,
656                                   adap->msix_info[msi_index].desc,
657                                   &s->ethrxq[ethqidx].rspq);
658                 if (err)
659                         goto unwind;
660                 msi_index++;
661         }
662         return 0;
663
664 unwind:
665         while (--ethqidx >= 0)
666                 free_irq(adap->msix_info[--msi_index].vec,
667                          &s->ethrxq[ethqidx].rspq);
668         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
669         return err;
670 }
671
672 static void free_msix_queue_irqs(struct adapter *adap)
673 {
674         int i, msi_index = 2;
675         struct sge *s = &adap->sge;
676
677         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
678         for_each_ethrxq(s, i)
679                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
680 }
681
682 /**
683  *      cxgb4_write_rss - write the RSS table for a given port
684  *      @pi: the port
685  *      @queues: array of queue indices for RSS
686  *
687  *      Sets up the portion of the HW RSS table for the port's VI to distribute
688  *      packets to the Rx queues in @queues.
689  *      Should never be called before setting up sge eth rx queues
690  */
691 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
692 {
693         u16 *rss;
694         int i, err;
695         struct adapter *adapter = pi->adapter;
696         const struct sge_eth_rxq *rxq;
697
698         rxq = &adapter->sge.ethrxq[pi->first_qset];
699         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
700         if (!rss)
701                 return -ENOMEM;
702
703         /* map the queue indices to queue ids */
704         for (i = 0; i < pi->rss_size; i++, queues++)
705                 rss[i] = rxq[*queues].rspq.abs_id;
706
707         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
708                                   pi->rss_size, rss, pi->rss_size);
709         /* If Tunnel All Lookup isn't specified in the global RSS
710          * Configuration, then we need to specify a default Ingress
711          * Queue for any ingress packets which aren't hashed.  We'll
712          * use our first ingress queue ...
713          */
714         if (!err)
715                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
716                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
717                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
718                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
719                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
720                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
721                                        rss[0]);
722         kfree(rss);
723         return err;
724 }
725
726 /**
727  *      setup_rss - configure RSS
728  *      @adap: the adapter
729  *
730  *      Sets up RSS for each port.
731  */
732 static int setup_rss(struct adapter *adap)
733 {
734         int i, j, err;
735
736         for_each_port(adap, i) {
737                 const struct port_info *pi = adap2pinfo(adap, i);
738
739                 /* Fill default values with equal distribution */
740                 for (j = 0; j < pi->rss_size; j++)
741                         pi->rss[j] = j % pi->nqsets;
742
743                 err = cxgb4_write_rss(pi, pi->rss);
744                 if (err)
745                         return err;
746         }
747         return 0;
748 }
749
750 /*
751  * Return the channel of the ingress queue with the given qid.
752  */
753 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
754 {
755         qid -= p->ingr_start;
756         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
757 }
758
759 /*
760  * Wait until all NAPI handlers are descheduled.
761  */
762 static void quiesce_rx(struct adapter *adap)
763 {
764         int i;
765
766         for (i = 0; i < adap->sge.ingr_sz; i++) {
767                 struct sge_rspq *q = adap->sge.ingr_map[i];
768
769                 if (q && q->handler) {
770                         napi_disable(&q->napi);
771                         local_bh_disable();
772                         while (!cxgb_poll_lock_napi(q))
773                                 mdelay(1);
774                         local_bh_enable();
775                 }
776
777         }
778 }
779
780 /* Disable interrupt and napi handler */
781 static void disable_interrupts(struct adapter *adap)
782 {
783         if (adap->flags & FULL_INIT_DONE) {
784                 t4_intr_disable(adap);
785                 if (adap->flags & USING_MSIX) {
786                         free_msix_queue_irqs(adap);
787                         free_irq(adap->msix_info[0].vec, adap);
788                 } else {
789                         free_irq(adap->pdev->irq, adap);
790                 }
791                 quiesce_rx(adap);
792         }
793 }
794
795 /*
796  * Enable NAPI scheduling and interrupt generation for all Rx queues.
797  */
798 static void enable_rx(struct adapter *adap)
799 {
800         int i;
801
802         for (i = 0; i < adap->sge.ingr_sz; i++) {
803                 struct sge_rspq *q = adap->sge.ingr_map[i];
804
805                 if (!q)
806                         continue;
807                 if (q->handler) {
808                         cxgb_busy_poll_init_lock(q);
809                         napi_enable(&q->napi);
810                 }
811                 /* 0-increment GTS to start the timer and enable interrupts */
812                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
813                              SEINTARM_V(q->intr_params) |
814                              INGRESSQID_V(q->cntxt_id));
815         }
816 }
817
818
819 static int setup_fw_sge_queues(struct adapter *adap)
820 {
821         struct sge *s = &adap->sge;
822         int err = 0;
823
824         bitmap_zero(s->starving_fl, s->egr_sz);
825         bitmap_zero(s->txq_maperr, s->egr_sz);
826
827         if (adap->flags & USING_MSIX)
828                 adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
829         else {
830                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
831                                        NULL, NULL, NULL, -1);
832                 if (err)
833                         return err;
834                 adap->msi_idx = -((int)s->intrq.abs_id + 1);
835         }
836
837         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
838                                adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
839         if (err)
840                 t4_free_sge_resources(adap);
841         return err;
842 }
843
844 /**
845  *      setup_sge_queues - configure SGE Tx/Rx/response queues
846  *      @adap: the adapter
847  *
848  *      Determines how many sets of SGE queues to use and initializes them.
849  *      We support multiple queue sets per port if we have MSI-X, otherwise
850  *      just one queue set per port.
851  */
852 static int setup_sge_queues(struct adapter *adap)
853 {
854         int err, i, j;
855         struct sge *s = &adap->sge;
856         struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
857         unsigned int cmplqid = 0;
858
859         for_each_port(adap, i) {
860                 struct net_device *dev = adap->port[i];
861                 struct port_info *pi = netdev_priv(dev);
862                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
863                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
864
865                 for (j = 0; j < pi->nqsets; j++, q++) {
866                         if (adap->msi_idx > 0)
867                                 adap->msi_idx++;
868                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
869                                                adap->msi_idx, &q->fl,
870                                                t4_ethrx_handler,
871                                                NULL,
872                                                t4_get_mps_bg_map(adap,
873                                                                  pi->tx_chan));
874                         if (err)
875                                 goto freeout;
876                         q->rspq.idx = j;
877                         memset(&q->stats, 0, sizeof(q->stats));
878                 }
879                 for (j = 0; j < pi->nqsets; j++, t++) {
880                         err = t4_sge_alloc_eth_txq(adap, t, dev,
881                                         netdev_get_tx_queue(dev, j),
882                                         s->fw_evtq.cntxt_id);
883                         if (err)
884                                 goto freeout;
885                 }
886         }
887
888         j = s->ofldqsets / adap->params.nports; /* iscsi queues per channel */
889         for_each_ofldtxq(s, i) {
890                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
891                                             adap->port[i / j],
892                                             s->fw_evtq.cntxt_id);
893                 if (err)
894                         goto freeout;
895         }
896
897         for_each_port(adap, i) {
898                 /* Note that cmplqid below is 0 if we don't
899                  * have RDMA queues, and that's the right value.
900                  */
901                 if (rxq_info)
902                         cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
903
904                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
905                                             s->fw_evtq.cntxt_id, cmplqid);
906                 if (err)
907                         goto freeout;
908         }
909
910         t4_write_reg(adap, is_t4(adap->params.chip) ?
911                                 MPS_TRC_RSS_CONTROL_A :
912                                 MPS_T5_TRC_RSS_CONTROL_A,
913                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
914                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
915         return 0;
916 freeout:
917         t4_free_sge_resources(adap);
918         return err;
919 }
920
921 /*
922  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
923  * The allocated memory is cleared.
924  */
925 void *t4_alloc_mem(size_t size)
926 {
927         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
928
929         if (!p)
930                 p = vzalloc(size);
931         return p;
932 }
933
934 /*
935  * Free memory allocated through alloc_mem().
936  */
937 void t4_free_mem(void *addr)
938 {
939         kvfree(addr);
940 }
941
942 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
943                              void *accel_priv, select_queue_fallback_t fallback)
944 {
945         int txq;
946
947 #ifdef CONFIG_CHELSIO_T4_DCB
948         /* If a Data Center Bridging has been successfully negotiated on this
949          * link then we'll use the skb's priority to map it to a TX Queue.
950          * The skb's priority is determined via the VLAN Tag Priority Code
951          * Point field.
952          */
953         if (cxgb4_dcb_enabled(dev)) {
954                 u16 vlan_tci;
955                 int err;
956
957                 err = vlan_get_tag(skb, &vlan_tci);
958                 if (unlikely(err)) {
959                         if (net_ratelimit())
960                                 netdev_warn(dev,
961                                             "TX Packet without VLAN Tag on DCB Link\n");
962                         txq = 0;
963                 } else {
964                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
965 #ifdef CONFIG_CHELSIO_T4_FCOE
966                         if (skb->protocol == htons(ETH_P_FCOE))
967                                 txq = skb->priority & 0x7;
968 #endif /* CONFIG_CHELSIO_T4_FCOE */
969                 }
970                 return txq;
971         }
972 #endif /* CONFIG_CHELSIO_T4_DCB */
973
974         if (select_queue) {
975                 txq = (skb_rx_queue_recorded(skb)
976                         ? skb_get_rx_queue(skb)
977                         : smp_processor_id());
978
979                 while (unlikely(txq >= dev->real_num_tx_queues))
980                         txq -= dev->real_num_tx_queues;
981
982                 return txq;
983         }
984
985         return fallback(dev, skb) % dev->real_num_tx_queues;
986 }
987
988 static int closest_timer(const struct sge *s, int time)
989 {
990         int i, delta, match = 0, min_delta = INT_MAX;
991
992         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
993                 delta = time - s->timer_val[i];
994                 if (delta < 0)
995                         delta = -delta;
996                 if (delta < min_delta) {
997                         min_delta = delta;
998                         match = i;
999                 }
1000         }
1001         return match;
1002 }
1003
1004 static int closest_thres(const struct sge *s, int thres)
1005 {
1006         int i, delta, match = 0, min_delta = INT_MAX;
1007
1008         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1009                 delta = thres - s->counter_val[i];
1010                 if (delta < 0)
1011                         delta = -delta;
1012                 if (delta < min_delta) {
1013                         min_delta = delta;
1014                         match = i;
1015                 }
1016         }
1017         return match;
1018 }
1019
1020 /**
1021  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1022  *      @q: the Rx queue
1023  *      @us: the hold-off time in us, or 0 to disable timer
1024  *      @cnt: the hold-off packet count, or 0 to disable counter
1025  *
1026  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1027  *      one of the two needs to be enabled for the queue to generate interrupts.
1028  */
1029 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1030                                unsigned int us, unsigned int cnt)
1031 {
1032         struct adapter *adap = q->adap;
1033
1034         if ((us | cnt) == 0)
1035                 cnt = 1;
1036
1037         if (cnt) {
1038                 int err;
1039                 u32 v, new_idx;
1040
1041                 new_idx = closest_thres(&adap->sge, cnt);
1042                 if (q->desc && q->pktcnt_idx != new_idx) {
1043                         /* the queue has already been created, update it */
1044                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1045                             FW_PARAMS_PARAM_X_V(
1046                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1047                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1048                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1049                                             &v, &new_idx);
1050                         if (err)
1051                                 return err;
1052                 }
1053                 q->pktcnt_idx = new_idx;
1054         }
1055
1056         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1057         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1058         return 0;
1059 }
1060
1061 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1062 {
1063         const struct port_info *pi = netdev_priv(dev);
1064         netdev_features_t changed = dev->features ^ features;
1065         int err;
1066
1067         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1068                 return 0;
1069
1070         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1071                             -1, -1, -1,
1072                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1073         if (unlikely(err))
1074                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1075         return err;
1076 }
1077
1078 static int setup_debugfs(struct adapter *adap)
1079 {
1080         if (IS_ERR_OR_NULL(adap->debugfs_root))
1081                 return -1;
1082
1083 #ifdef CONFIG_DEBUG_FS
1084         t4_setup_debugfs(adap);
1085 #endif
1086         return 0;
1087 }
1088
1089 /*
1090  * upper-layer driver support
1091  */
1092
1093 /*
1094  * Allocate an active-open TID and set it to the supplied value.
1095  */
1096 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1097 {
1098         int atid = -1;
1099
1100         spin_lock_bh(&t->atid_lock);
1101         if (t->afree) {
1102                 union aopen_entry *p = t->afree;
1103
1104                 atid = (p - t->atid_tab) + t->atid_base;
1105                 t->afree = p->next;
1106                 p->data = data;
1107                 t->atids_in_use++;
1108         }
1109         spin_unlock_bh(&t->atid_lock);
1110         return atid;
1111 }
1112 EXPORT_SYMBOL(cxgb4_alloc_atid);
1113
1114 /*
1115  * Release an active-open TID.
1116  */
1117 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1118 {
1119         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1120
1121         spin_lock_bh(&t->atid_lock);
1122         p->next = t->afree;
1123         t->afree = p;
1124         t->atids_in_use--;
1125         spin_unlock_bh(&t->atid_lock);
1126 }
1127 EXPORT_SYMBOL(cxgb4_free_atid);
1128
1129 /*
1130  * Allocate a server TID and set it to the supplied value.
1131  */
1132 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1133 {
1134         int stid;
1135
1136         spin_lock_bh(&t->stid_lock);
1137         if (family == PF_INET) {
1138                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1139                 if (stid < t->nstids)
1140                         __set_bit(stid, t->stid_bmap);
1141                 else
1142                         stid = -1;
1143         } else {
1144                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1145                 if (stid < 0)
1146                         stid = -1;
1147         }
1148         if (stid >= 0) {
1149                 t->stid_tab[stid].data = data;
1150                 stid += t->stid_base;
1151                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1152                  * This is equivalent to 4 TIDs. With CLIP enabled it
1153                  * needs 2 TIDs.
1154                  */
1155                 if (family == PF_INET)
1156                         t->stids_in_use++;
1157                 else
1158                         t->stids_in_use += 2;
1159         }
1160         spin_unlock_bh(&t->stid_lock);
1161         return stid;
1162 }
1163 EXPORT_SYMBOL(cxgb4_alloc_stid);
1164
1165 /* Allocate a server filter TID and set it to the supplied value.
1166  */
1167 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1168 {
1169         int stid;
1170
1171         spin_lock_bh(&t->stid_lock);
1172         if (family == PF_INET) {
1173                 stid = find_next_zero_bit(t->stid_bmap,
1174                                 t->nstids + t->nsftids, t->nstids);
1175                 if (stid < (t->nstids + t->nsftids))
1176                         __set_bit(stid, t->stid_bmap);
1177                 else
1178                         stid = -1;
1179         } else {
1180                 stid = -1;
1181         }
1182         if (stid >= 0) {
1183                 t->stid_tab[stid].data = data;
1184                 stid -= t->nstids;
1185                 stid += t->sftid_base;
1186                 t->sftids_in_use++;
1187         }
1188         spin_unlock_bh(&t->stid_lock);
1189         return stid;
1190 }
1191 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1192
1193 /* Release a server TID.
1194  */
1195 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1196 {
1197         /* Is it a server filter TID? */
1198         if (t->nsftids && (stid >= t->sftid_base)) {
1199                 stid -= t->sftid_base;
1200                 stid += t->nstids;
1201         } else {
1202                 stid -= t->stid_base;
1203         }
1204
1205         spin_lock_bh(&t->stid_lock);
1206         if (family == PF_INET)
1207                 __clear_bit(stid, t->stid_bmap);
1208         else
1209                 bitmap_release_region(t->stid_bmap, stid, 1);
1210         t->stid_tab[stid].data = NULL;
1211         if (stid < t->nstids) {
1212                 if (family == PF_INET)
1213                         t->stids_in_use--;
1214                 else
1215                         t->stids_in_use -= 2;
1216         } else {
1217                 t->sftids_in_use--;
1218         }
1219         spin_unlock_bh(&t->stid_lock);
1220 }
1221 EXPORT_SYMBOL(cxgb4_free_stid);
1222
1223 /*
1224  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1225  */
1226 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1227                            unsigned int tid)
1228 {
1229         struct cpl_tid_release *req;
1230
1231         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1232         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1233         INIT_TP_WR(req, tid);
1234         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1235 }
1236
1237 /*
1238  * Queue a TID release request and if necessary schedule a work queue to
1239  * process it.
1240  */
1241 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1242                                     unsigned int tid)
1243 {
1244         void **p = &t->tid_tab[tid];
1245         struct adapter *adap = container_of(t, struct adapter, tids);
1246
1247         spin_lock_bh(&adap->tid_release_lock);
1248         *p = adap->tid_release_head;
1249         /* Low 2 bits encode the Tx channel number */
1250         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1251         if (!adap->tid_release_task_busy) {
1252                 adap->tid_release_task_busy = true;
1253                 queue_work(adap->workq, &adap->tid_release_task);
1254         }
1255         spin_unlock_bh(&adap->tid_release_lock);
1256 }
1257
1258 /*
1259  * Process the list of pending TID release requests.
1260  */
1261 static void process_tid_release_list(struct work_struct *work)
1262 {
1263         struct sk_buff *skb;
1264         struct adapter *adap;
1265
1266         adap = container_of(work, struct adapter, tid_release_task);
1267
1268         spin_lock_bh(&adap->tid_release_lock);
1269         while (adap->tid_release_head) {
1270                 void **p = adap->tid_release_head;
1271                 unsigned int chan = (uintptr_t)p & 3;
1272                 p = (void *)p - chan;
1273
1274                 adap->tid_release_head = *p;
1275                 *p = NULL;
1276                 spin_unlock_bh(&adap->tid_release_lock);
1277
1278                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1279                                          GFP_KERNEL)))
1280                         schedule_timeout_uninterruptible(1);
1281
1282                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1283                 t4_ofld_send(adap, skb);
1284                 spin_lock_bh(&adap->tid_release_lock);
1285         }
1286         adap->tid_release_task_busy = false;
1287         spin_unlock_bh(&adap->tid_release_lock);
1288 }
1289
1290 /*
1291  * Release a TID and inform HW.  If we are unable to allocate the release
1292  * message we defer to a work queue.
1293  */
1294 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1295 {
1296         struct sk_buff *skb;
1297         struct adapter *adap = container_of(t, struct adapter, tids);
1298
1299         WARN_ON(tid >= t->ntids);
1300
1301         if (t->tid_tab[tid]) {
1302                 t->tid_tab[tid] = NULL;
1303                 if (t->hash_base && (tid >= t->hash_base))
1304                         atomic_dec(&t->hash_tids_in_use);
1305                 else
1306                         atomic_dec(&t->tids_in_use);
1307         }
1308
1309         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1310         if (likely(skb)) {
1311                 mk_tid_release(skb, chan, tid);
1312                 t4_ofld_send(adap, skb);
1313         } else
1314                 cxgb4_queue_tid_release(t, chan, tid);
1315 }
1316 EXPORT_SYMBOL(cxgb4_remove_tid);
1317
1318 /*
1319  * Allocate and initialize the TID tables.  Returns 0 on success.
1320  */
1321 static int tid_init(struct tid_info *t)
1322 {
1323         struct adapter *adap = container_of(t, struct adapter, tids);
1324         unsigned int max_ftids = t->nftids + t->nsftids;
1325         unsigned int natids = t->natids;
1326         unsigned int stid_bmap_size;
1327         unsigned int ftid_bmap_size;
1328         size_t size;
1329
1330         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1331         ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1332         size = t->ntids * sizeof(*t->tid_tab) +
1333                natids * sizeof(*t->atid_tab) +
1334                t->nstids * sizeof(*t->stid_tab) +
1335                t->nsftids * sizeof(*t->stid_tab) +
1336                stid_bmap_size * sizeof(long) +
1337                max_ftids * sizeof(*t->ftid_tab) +
1338                ftid_bmap_size * sizeof(long);
1339
1340         t->tid_tab = t4_alloc_mem(size);
1341         if (!t->tid_tab)
1342                 return -ENOMEM;
1343
1344         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1345         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1346         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1347         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1348         t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1349         spin_lock_init(&t->stid_lock);
1350         spin_lock_init(&t->atid_lock);
1351         spin_lock_init(&t->ftid_lock);
1352
1353         t->stids_in_use = 0;
1354         t->sftids_in_use = 0;
1355         t->afree = NULL;
1356         t->atids_in_use = 0;
1357         atomic_set(&t->tids_in_use, 0);
1358         atomic_set(&t->hash_tids_in_use, 0);
1359
1360         /* Setup the free list for atid_tab and clear the stid bitmap. */
1361         if (natids) {
1362                 while (--natids)
1363                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1364                 t->afree = t->atid_tab;
1365         }
1366
1367         if (is_offload(adap)) {
1368                 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1369                 /* Reserve stid 0 for T4/T5 adapters */
1370                 if (!t->stid_base &&
1371                     CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1372                         __set_bit(0, t->stid_bmap);
1373         }
1374
1375         bitmap_zero(t->ftid_bmap, t->nftids);
1376         return 0;
1377 }
1378
1379 /**
1380  *      cxgb4_create_server - create an IP server
1381  *      @dev: the device
1382  *      @stid: the server TID
1383  *      @sip: local IP address to bind server to
1384  *      @sport: the server's TCP port
1385  *      @queue: queue to direct messages from this server to
1386  *
1387  *      Create an IP server for the given port and address.
1388  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1389  */
1390 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1391                         __be32 sip, __be16 sport, __be16 vlan,
1392                         unsigned int queue)
1393 {
1394         unsigned int chan;
1395         struct sk_buff *skb;
1396         struct adapter *adap;
1397         struct cpl_pass_open_req *req;
1398         int ret;
1399
1400         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1401         if (!skb)
1402                 return -ENOMEM;
1403
1404         adap = netdev2adap(dev);
1405         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1406         INIT_TP_WR(req, 0);
1407         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1408         req->local_port = sport;
1409         req->peer_port = htons(0);
1410         req->local_ip = sip;
1411         req->peer_ip = htonl(0);
1412         chan = rxq_to_chan(&adap->sge, queue);
1413         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1414         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1415                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1416         ret = t4_mgmt_tx(adap, skb);
1417         return net_xmit_eval(ret);
1418 }
1419 EXPORT_SYMBOL(cxgb4_create_server);
1420
1421 /*      cxgb4_create_server6 - create an IPv6 server
1422  *      @dev: the device
1423  *      @stid: the server TID
1424  *      @sip: local IPv6 address to bind server to
1425  *      @sport: the server's TCP port
1426  *      @queue: queue to direct messages from this server to
1427  *
1428  *      Create an IPv6 server for the given port and address.
1429  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1430  */
1431 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1432                          const struct in6_addr *sip, __be16 sport,
1433                          unsigned int queue)
1434 {
1435         unsigned int chan;
1436         struct sk_buff *skb;
1437         struct adapter *adap;
1438         struct cpl_pass_open_req6 *req;
1439         int ret;
1440
1441         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1442         if (!skb)
1443                 return -ENOMEM;
1444
1445         adap = netdev2adap(dev);
1446         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1447         INIT_TP_WR(req, 0);
1448         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1449         req->local_port = sport;
1450         req->peer_port = htons(0);
1451         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1452         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1453         req->peer_ip_hi = cpu_to_be64(0);
1454         req->peer_ip_lo = cpu_to_be64(0);
1455         chan = rxq_to_chan(&adap->sge, queue);
1456         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1457         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1458                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1459         ret = t4_mgmt_tx(adap, skb);
1460         return net_xmit_eval(ret);
1461 }
1462 EXPORT_SYMBOL(cxgb4_create_server6);
1463
1464 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1465                         unsigned int queue, bool ipv6)
1466 {
1467         struct sk_buff *skb;
1468         struct adapter *adap;
1469         struct cpl_close_listsvr_req *req;
1470         int ret;
1471
1472         adap = netdev2adap(dev);
1473
1474         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1475         if (!skb)
1476                 return -ENOMEM;
1477
1478         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1479         INIT_TP_WR(req, 0);
1480         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1481         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1482                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1483         ret = t4_mgmt_tx(adap, skb);
1484         return net_xmit_eval(ret);
1485 }
1486 EXPORT_SYMBOL(cxgb4_remove_server);
1487
1488 /**
1489  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1490  *      @mtus: the HW MTU table
1491  *      @mtu: the target MTU
1492  *      @idx: index of selected entry in the MTU table
1493  *
1494  *      Returns the index and the value in the HW MTU table that is closest to
1495  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1496  *      table, in which case that smallest available value is selected.
1497  */
1498 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1499                             unsigned int *idx)
1500 {
1501         unsigned int i = 0;
1502
1503         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1504                 ++i;
1505         if (idx)
1506                 *idx = i;
1507         return mtus[i];
1508 }
1509 EXPORT_SYMBOL(cxgb4_best_mtu);
1510
1511 /**
1512  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1513  *     @mtus: the HW MTU table
1514  *     @header_size: Header Size
1515  *     @data_size_max: maximum Data Segment Size
1516  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1517  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1518  *
1519  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1520  *     MTU Table based solely on a Maximum MTU parameter, we break that
1521  *     parameter up into a Header Size and Maximum Data Segment Size, and
1522  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1523  *     the Hardware MTU Table which will result in a Data Segment Size with
1524  *     the requested alignment _and_ that MTU isn't "too far" from the
1525  *     closest MTU, then we'll return that rather than the closest MTU.
1526  */
1527 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1528                                     unsigned short header_size,
1529                                     unsigned short data_size_max,
1530                                     unsigned short data_size_align,
1531                                     unsigned int *mtu_idxp)
1532 {
1533         unsigned short max_mtu = header_size + data_size_max;
1534         unsigned short data_size_align_mask = data_size_align - 1;
1535         int mtu_idx, aligned_mtu_idx;
1536
1537         /* Scan the MTU Table till we find an MTU which is larger than our
1538          * Maximum MTU or we reach the end of the table.  Along the way,
1539          * record the last MTU found, if any, which will result in a Data
1540          * Segment Length matching the requested alignment.
1541          */
1542         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1543                 unsigned short data_size = mtus[mtu_idx] - header_size;
1544
1545                 /* If this MTU minus the Header Size would result in a
1546                  * Data Segment Size of the desired alignment, remember it.
1547                  */
1548                 if ((data_size & data_size_align_mask) == 0)
1549                         aligned_mtu_idx = mtu_idx;
1550
1551                 /* If we're not at the end of the Hardware MTU Table and the
1552                  * next element is larger than our Maximum MTU, drop out of
1553                  * the loop.
1554                  */
1555                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1556                         break;
1557         }
1558
1559         /* If we fell out of the loop because we ran to the end of the table,
1560          * then we just have to use the last [largest] entry.
1561          */
1562         if (mtu_idx == NMTUS)
1563                 mtu_idx--;
1564
1565         /* If we found an MTU which resulted in the requested Data Segment
1566          * Length alignment and that's "not far" from the largest MTU which is
1567          * less than or equal to the maximum MTU, then use that.
1568          */
1569         if (aligned_mtu_idx >= 0 &&
1570             mtu_idx - aligned_mtu_idx <= 1)
1571                 mtu_idx = aligned_mtu_idx;
1572
1573         /* If the caller has passed in an MTU Index pointer, pass the
1574          * MTU Index back.  Return the MTU value.
1575          */
1576         if (mtu_idxp)
1577                 *mtu_idxp = mtu_idx;
1578         return mtus[mtu_idx];
1579 }
1580 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1581
1582 /**
1583  *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1584  *      @chip: chip type
1585  *      @viid: VI id of the given port
1586  *
1587  *      Return the SMT index for this VI.
1588  */
1589 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1590 {
1591         /* In T4/T5, SMT contains 256 SMAC entries organized in
1592          * 128 rows of 2 entries each.
1593          * In T6, SMT contains 256 SMAC entries in 256 rows.
1594          * TODO: The below code needs to be updated when we add support
1595          * for 256 VFs.
1596          */
1597         if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1598                 return ((viid & 0x7f) << 1);
1599         else
1600                 return (viid & 0x7f);
1601 }
1602 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1603
1604 /**
1605  *      cxgb4_port_chan - get the HW channel of a port
1606  *      @dev: the net device for the port
1607  *
1608  *      Return the HW Tx channel of the given port.
1609  */
1610 unsigned int cxgb4_port_chan(const struct net_device *dev)
1611 {
1612         return netdev2pinfo(dev)->tx_chan;
1613 }
1614 EXPORT_SYMBOL(cxgb4_port_chan);
1615
1616 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1617 {
1618         struct adapter *adap = netdev2adap(dev);
1619         u32 v1, v2, lp_count, hp_count;
1620
1621         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1622         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1623         if (is_t4(adap->params.chip)) {
1624                 lp_count = LP_COUNT_G(v1);
1625                 hp_count = HP_COUNT_G(v1);
1626         } else {
1627                 lp_count = LP_COUNT_T5_G(v1);
1628                 hp_count = HP_COUNT_T5_G(v2);
1629         }
1630         return lpfifo ? lp_count : hp_count;
1631 }
1632 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1633
1634 /**
1635  *      cxgb4_port_viid - get the VI id of a port
1636  *      @dev: the net device for the port
1637  *
1638  *      Return the VI id of the given port.
1639  */
1640 unsigned int cxgb4_port_viid(const struct net_device *dev)
1641 {
1642         return netdev2pinfo(dev)->viid;
1643 }
1644 EXPORT_SYMBOL(cxgb4_port_viid);
1645
1646 /**
1647  *      cxgb4_port_idx - get the index of a port
1648  *      @dev: the net device for the port
1649  *
1650  *      Return the index of the given port.
1651  */
1652 unsigned int cxgb4_port_idx(const struct net_device *dev)
1653 {
1654         return netdev2pinfo(dev)->port_id;
1655 }
1656 EXPORT_SYMBOL(cxgb4_port_idx);
1657
1658 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1659                          struct tp_tcp_stats *v6)
1660 {
1661         struct adapter *adap = pci_get_drvdata(pdev);
1662
1663         spin_lock(&adap->stats_lock);
1664         t4_tp_get_tcp_stats(adap, v4, v6);
1665         spin_unlock(&adap->stats_lock);
1666 }
1667 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1668
1669 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1670                       const unsigned int *pgsz_order)
1671 {
1672         struct adapter *adap = netdev2adap(dev);
1673
1674         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1675         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1676                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1677                      HPZ3_V(pgsz_order[3]));
1678 }
1679 EXPORT_SYMBOL(cxgb4_iscsi_init);
1680
1681 int cxgb4_flush_eq_cache(struct net_device *dev)
1682 {
1683         struct adapter *adap = netdev2adap(dev);
1684
1685         return t4_sge_ctxt_flush(adap, adap->mbox);
1686 }
1687 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1688
1689 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1690 {
1691         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1692         __be64 indices;
1693         int ret;
1694
1695         spin_lock(&adap->win0_lock);
1696         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1697                            sizeof(indices), (__be32 *)&indices,
1698                            T4_MEMORY_READ);
1699         spin_unlock(&adap->win0_lock);
1700         if (!ret) {
1701                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1702                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1703         }
1704         return ret;
1705 }
1706
1707 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1708                         u16 size)
1709 {
1710         struct adapter *adap = netdev2adap(dev);
1711         u16 hw_pidx, hw_cidx;
1712         int ret;
1713
1714         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1715         if (ret)
1716                 goto out;
1717
1718         if (pidx != hw_pidx) {
1719                 u16 delta;
1720                 u32 val;
1721
1722                 if (pidx >= hw_pidx)
1723                         delta = pidx - hw_pidx;
1724                 else
1725                         delta = size - hw_pidx + pidx;
1726
1727                 if (is_t4(adap->params.chip))
1728                         val = PIDX_V(delta);
1729                 else
1730                         val = PIDX_T5_V(delta);
1731                 wmb();
1732                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1733                              QID_V(qid) | val);
1734         }
1735 out:
1736         return ret;
1737 }
1738 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1739
1740 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1741 {
1742         struct adapter *adap;
1743         u32 offset, memtype, memaddr;
1744         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1745         u32 edc0_end, edc1_end, mc0_end, mc1_end;
1746         int ret;
1747
1748         adap = netdev2adap(dev);
1749
1750         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1751
1752         /* Figure out where the offset lands in the Memory Type/Address scheme.
1753          * This code assumes that the memory is laid out starting at offset 0
1754          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1755          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1756          * MC0, and some have both MC0 and MC1.
1757          */
1758         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1759         edc0_size = EDRAM0_SIZE_G(size) << 20;
1760         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1761         edc1_size = EDRAM1_SIZE_G(size) << 20;
1762         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1763         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1764
1765         edc0_end = edc0_size;
1766         edc1_end = edc0_end + edc1_size;
1767         mc0_end = edc1_end + mc0_size;
1768
1769         if (offset < edc0_end) {
1770                 memtype = MEM_EDC0;
1771                 memaddr = offset;
1772         } else if (offset < edc1_end) {
1773                 memtype = MEM_EDC1;
1774                 memaddr = offset - edc0_end;
1775         } else {
1776                 if (offset < mc0_end) {
1777                         memtype = MEM_MC0;
1778                         memaddr = offset - edc1_end;
1779                 } else if (is_t5(adap->params.chip)) {
1780                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1781                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1782                         mc1_end = mc0_end + mc1_size;
1783                         if (offset < mc1_end) {
1784                                 memtype = MEM_MC1;
1785                                 memaddr = offset - mc0_end;
1786                         } else {
1787                                 /* offset beyond the end of any memory */
1788                                 goto err;
1789                         }
1790                 } else {
1791                         /* T4/T6 only has a single memory channel */
1792                         goto err;
1793                 }
1794         }
1795
1796         spin_lock(&adap->win0_lock);
1797         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1798         spin_unlock(&adap->win0_lock);
1799         return ret;
1800
1801 err:
1802         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1803                 stag, offset);
1804         return -EINVAL;
1805 }
1806 EXPORT_SYMBOL(cxgb4_read_tpte);
1807
1808 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1809 {
1810         u32 hi, lo;
1811         struct adapter *adap;
1812
1813         adap = netdev2adap(dev);
1814         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1815         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1816
1817         return ((u64)hi << 32) | (u64)lo;
1818 }
1819 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1820
1821 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1822                          unsigned int qid,
1823                          enum cxgb4_bar2_qtype qtype,
1824                          int user,
1825                          u64 *pbar2_qoffset,
1826                          unsigned int *pbar2_qid)
1827 {
1828         return t4_bar2_sge_qregs(netdev2adap(dev),
1829                                  qid,
1830                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
1831                                   ? T4_BAR2_QTYPE_EGRESS
1832                                   : T4_BAR2_QTYPE_INGRESS),
1833                                  user,
1834                                  pbar2_qoffset,
1835                                  pbar2_qid);
1836 }
1837 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1838
1839 static struct pci_driver cxgb4_driver;
1840
1841 static void check_neigh_update(struct neighbour *neigh)
1842 {
1843         const struct device *parent;
1844         const struct net_device *netdev = neigh->dev;
1845
1846         if (netdev->priv_flags & IFF_802_1Q_VLAN)
1847                 netdev = vlan_dev_real_dev(netdev);
1848         parent = netdev->dev.parent;
1849         if (parent && parent->driver == &cxgb4_driver.driver)
1850                 t4_l2t_update(dev_get_drvdata(parent), neigh);
1851 }
1852
1853 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1854                        void *data)
1855 {
1856         switch (event) {
1857         case NETEVENT_NEIGH_UPDATE:
1858                 check_neigh_update(data);
1859                 break;
1860         case NETEVENT_REDIRECT:
1861         default:
1862                 break;
1863         }
1864         return 0;
1865 }
1866
1867 static bool netevent_registered;
1868 static struct notifier_block cxgb4_netevent_nb = {
1869         .notifier_call = netevent_cb
1870 };
1871
1872 static void drain_db_fifo(struct adapter *adap, int usecs)
1873 {
1874         u32 v1, v2, lp_count, hp_count;
1875
1876         do {
1877                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1878                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1879                 if (is_t4(adap->params.chip)) {
1880                         lp_count = LP_COUNT_G(v1);
1881                         hp_count = HP_COUNT_G(v1);
1882                 } else {
1883                         lp_count = LP_COUNT_T5_G(v1);
1884                         hp_count = HP_COUNT_T5_G(v2);
1885                 }
1886
1887                 if (lp_count == 0 && hp_count == 0)
1888                         break;
1889                 set_current_state(TASK_UNINTERRUPTIBLE);
1890                 schedule_timeout(usecs_to_jiffies(usecs));
1891         } while (1);
1892 }
1893
1894 static void disable_txq_db(struct sge_txq *q)
1895 {
1896         unsigned long flags;
1897
1898         spin_lock_irqsave(&q->db_lock, flags);
1899         q->db_disabled = 1;
1900         spin_unlock_irqrestore(&q->db_lock, flags);
1901 }
1902
1903 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1904 {
1905         spin_lock_irq(&q->db_lock);
1906         if (q->db_pidx_inc) {
1907                 /* Make sure that all writes to the TX descriptors
1908                  * are committed before we tell HW about them.
1909                  */
1910                 wmb();
1911                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1912                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1913                 q->db_pidx_inc = 0;
1914         }
1915         q->db_disabled = 0;
1916         spin_unlock_irq(&q->db_lock);
1917 }
1918
1919 static void disable_dbs(struct adapter *adap)
1920 {
1921         int i;
1922
1923         for_each_ethrxq(&adap->sge, i)
1924                 disable_txq_db(&adap->sge.ethtxq[i].q);
1925         for_each_ofldtxq(&adap->sge, i)
1926                 disable_txq_db(&adap->sge.ofldtxq[i].q);
1927         for_each_port(adap, i)
1928                 disable_txq_db(&adap->sge.ctrlq[i].q);
1929 }
1930
1931 static void enable_dbs(struct adapter *adap)
1932 {
1933         int i;
1934
1935         for_each_ethrxq(&adap->sge, i)
1936                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1937         for_each_ofldtxq(&adap->sge, i)
1938                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
1939         for_each_port(adap, i)
1940                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1941 }
1942
1943 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1944 {
1945         enum cxgb4_uld type = CXGB4_ULD_RDMA;
1946
1947         if (adap->uld && adap->uld[type].handle)
1948                 adap->uld[type].control(adap->uld[type].handle, cmd);
1949 }
1950
1951 static void process_db_full(struct work_struct *work)
1952 {
1953         struct adapter *adap;
1954
1955         adap = container_of(work, struct adapter, db_full_task);
1956
1957         drain_db_fifo(adap, dbfifo_drain_delay);
1958         enable_dbs(adap);
1959         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1960         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1961                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1962                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1963                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1964         else
1965                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1966                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1967 }
1968
1969 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1970 {
1971         u16 hw_pidx, hw_cidx;
1972         int ret;
1973
1974         spin_lock_irq(&q->db_lock);
1975         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1976         if (ret)
1977                 goto out;
1978         if (q->db_pidx != hw_pidx) {
1979                 u16 delta;
1980                 u32 val;
1981
1982                 if (q->db_pidx >= hw_pidx)
1983                         delta = q->db_pidx - hw_pidx;
1984                 else
1985                         delta = q->size - hw_pidx + q->db_pidx;
1986
1987                 if (is_t4(adap->params.chip))
1988                         val = PIDX_V(delta);
1989                 else
1990                         val = PIDX_T5_V(delta);
1991                 wmb();
1992                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1993                              QID_V(q->cntxt_id) | val);
1994         }
1995 out:
1996         q->db_disabled = 0;
1997         q->db_pidx_inc = 0;
1998         spin_unlock_irq(&q->db_lock);
1999         if (ret)
2000                 CH_WARN(adap, "DB drop recovery failed.\n");
2001 }
2002
2003 static void recover_all_queues(struct adapter *adap)
2004 {
2005         int i;
2006
2007         for_each_ethrxq(&adap->sge, i)
2008                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2009         for_each_ofldtxq(&adap->sge, i)
2010                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2011         for_each_port(adap, i)
2012                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2013 }
2014
2015 static void process_db_drop(struct work_struct *work)
2016 {
2017         struct adapter *adap;
2018
2019         adap = container_of(work, struct adapter, db_drop_task);
2020
2021         if (is_t4(adap->params.chip)) {
2022                 drain_db_fifo(adap, dbfifo_drain_delay);
2023                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2024                 drain_db_fifo(adap, dbfifo_drain_delay);
2025                 recover_all_queues(adap);
2026                 drain_db_fifo(adap, dbfifo_drain_delay);
2027                 enable_dbs(adap);
2028                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2029         } else if (is_t5(adap->params.chip)) {
2030                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2031                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2032                 u16 pidx_inc = dropped_db & 0x1fff;
2033                 u64 bar2_qoffset;
2034                 unsigned int bar2_qid;
2035                 int ret;
2036
2037                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2038                                         0, &bar2_qoffset, &bar2_qid);
2039                 if (ret)
2040                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2041                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2042                 else
2043                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2044                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2045
2046                 /* Re-enable BAR2 WC */
2047                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2048         }
2049
2050         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2051                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2052 }
2053
2054 void t4_db_full(struct adapter *adap)
2055 {
2056         if (is_t4(adap->params.chip)) {
2057                 disable_dbs(adap);
2058                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2059                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2060                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2061                 queue_work(adap->workq, &adap->db_full_task);
2062         }
2063 }
2064
2065 void t4_db_dropped(struct adapter *adap)
2066 {
2067         if (is_t4(adap->params.chip)) {
2068                 disable_dbs(adap);
2069                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2070         }
2071         queue_work(adap->workq, &adap->db_drop_task);
2072 }
2073
2074 void t4_register_netevent_notifier(void)
2075 {
2076         if (!netevent_registered) {
2077                 register_netevent_notifier(&cxgb4_netevent_nb);
2078                 netevent_registered = true;
2079         }
2080 }
2081
2082 static void detach_ulds(struct adapter *adap)
2083 {
2084         unsigned int i;
2085
2086         mutex_lock(&uld_mutex);
2087         list_del(&adap->list_node);
2088         for (i = 0; i < CXGB4_ULD_MAX; i++)
2089                 if (adap->uld && adap->uld[i].handle) {
2090                         adap->uld[i].state_change(adap->uld[i].handle,
2091                                              CXGB4_STATE_DETACH);
2092                         adap->uld[i].handle = NULL;
2093                 }
2094         if (netevent_registered && list_empty(&adapter_list)) {
2095                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2096                 netevent_registered = false;
2097         }
2098         mutex_unlock(&uld_mutex);
2099 }
2100
2101 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2102 {
2103         unsigned int i;
2104
2105         mutex_lock(&uld_mutex);
2106         for (i = 0; i < CXGB4_ULD_MAX; i++)
2107                 if (adap->uld && adap->uld[i].handle)
2108                         adap->uld[i].state_change(adap->uld[i].handle,
2109                                                   new_state);
2110         mutex_unlock(&uld_mutex);
2111 }
2112
2113 #if IS_ENABLED(CONFIG_IPV6)
2114 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2115                                    unsigned long event, void *data)
2116 {
2117         struct inet6_ifaddr *ifa = data;
2118         struct net_device *event_dev = ifa->idev->dev;
2119         const struct device *parent = NULL;
2120 #if IS_ENABLED(CONFIG_BONDING)
2121         struct adapter *adap;
2122 #endif
2123         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2124                 event_dev = vlan_dev_real_dev(event_dev);
2125 #if IS_ENABLED(CONFIG_BONDING)
2126         if (event_dev->flags & IFF_MASTER) {
2127                 list_for_each_entry(adap, &adapter_list, list_node) {
2128                         switch (event) {
2129                         case NETDEV_UP:
2130                                 cxgb4_clip_get(adap->port[0],
2131                                                (const u32 *)ifa, 1);
2132                                 break;
2133                         case NETDEV_DOWN:
2134                                 cxgb4_clip_release(adap->port[0],
2135                                                    (const u32 *)ifa, 1);
2136                                 break;
2137                         default:
2138                                 break;
2139                         }
2140                 }
2141                 return NOTIFY_OK;
2142         }
2143 #endif
2144
2145         if (event_dev)
2146                 parent = event_dev->dev.parent;
2147
2148         if (parent && parent->driver == &cxgb4_driver.driver) {
2149                 switch (event) {
2150                 case NETDEV_UP:
2151                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2152                         break;
2153                 case NETDEV_DOWN:
2154                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2155                         break;
2156                 default:
2157                         break;
2158                 }
2159         }
2160         return NOTIFY_OK;
2161 }
2162
2163 static bool inet6addr_registered;
2164 static struct notifier_block cxgb4_inet6addr_notifier = {
2165         .notifier_call = cxgb4_inet6addr_handler
2166 };
2167
2168 static void update_clip(const struct adapter *adap)
2169 {
2170         int i;
2171         struct net_device *dev;
2172         int ret;
2173
2174         rcu_read_lock();
2175
2176         for (i = 0; i < MAX_NPORTS; i++) {
2177                 dev = adap->port[i];
2178                 ret = 0;
2179
2180                 if (dev)
2181                         ret = cxgb4_update_root_dev_clip(dev);
2182
2183                 if (ret < 0)
2184                         break;
2185         }
2186         rcu_read_unlock();
2187 }
2188 #endif /* IS_ENABLED(CONFIG_IPV6) */
2189
2190 /**
2191  *      cxgb_up - enable the adapter
2192  *      @adap: adapter being enabled
2193  *
2194  *      Called when the first port is enabled, this function performs the
2195  *      actions necessary to make an adapter operational, such as completing
2196  *      the initialization of HW modules, and enabling interrupts.
2197  *
2198  *      Must be called with the rtnl lock held.
2199  */
2200 static int cxgb_up(struct adapter *adap)
2201 {
2202         int err;
2203
2204         err = setup_sge_queues(adap);
2205         if (err)
2206                 goto out;
2207         err = setup_rss(adap);
2208         if (err)
2209                 goto freeq;
2210
2211         if (adap->flags & USING_MSIX) {
2212                 name_msix_vecs(adap);
2213                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2214                                   adap->msix_info[0].desc, adap);
2215                 if (err)
2216                         goto irq_err;
2217                 err = request_msix_queue_irqs(adap);
2218                 if (err) {
2219                         free_irq(adap->msix_info[0].vec, adap);
2220                         goto irq_err;
2221                 }
2222         } else {
2223                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2224                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2225                                   adap->port[0]->name, adap);
2226                 if (err)
2227                         goto irq_err;
2228         }
2229         enable_rx(adap);
2230         t4_sge_start(adap);
2231         t4_intr_enable(adap);
2232         adap->flags |= FULL_INIT_DONE;
2233         notify_ulds(adap, CXGB4_STATE_UP);
2234 #if IS_ENABLED(CONFIG_IPV6)
2235         update_clip(adap);
2236 #endif
2237         /* Initialize hash mac addr list*/
2238         INIT_LIST_HEAD(&adap->mac_hlist);
2239  out:
2240         return err;
2241  irq_err:
2242         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2243  freeq:
2244         t4_free_sge_resources(adap);
2245         goto out;
2246 }
2247
2248 static void cxgb_down(struct adapter *adapter)
2249 {
2250         cancel_work_sync(&adapter->tid_release_task);
2251         cancel_work_sync(&adapter->db_full_task);
2252         cancel_work_sync(&adapter->db_drop_task);
2253         adapter->tid_release_task_busy = false;
2254         adapter->tid_release_head = NULL;
2255
2256         t4_sge_stop(adapter);
2257         t4_free_sge_resources(adapter);
2258         adapter->flags &= ~FULL_INIT_DONE;
2259 }
2260
2261 /*
2262  * net_device operations
2263  */
2264 static int cxgb_open(struct net_device *dev)
2265 {
2266         int err;
2267         struct port_info *pi = netdev_priv(dev);
2268         struct adapter *adapter = pi->adapter;
2269
2270         netif_carrier_off(dev);
2271
2272         if (!(adapter->flags & FULL_INIT_DONE)) {
2273                 err = cxgb_up(adapter);
2274                 if (err < 0)
2275                         return err;
2276         }
2277
2278         err = link_start(dev);
2279         if (!err)
2280                 netif_tx_start_all_queues(dev);
2281         return err;
2282 }
2283
2284 static int cxgb_close(struct net_device *dev)
2285 {
2286         struct port_info *pi = netdev_priv(dev);
2287         struct adapter *adapter = pi->adapter;
2288
2289         netif_tx_stop_all_queues(dev);
2290         netif_carrier_off(dev);
2291         return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2292 }
2293
2294 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2295                 __be32 sip, __be16 sport, __be16 vlan,
2296                 unsigned int queue, unsigned char port, unsigned char mask)
2297 {
2298         int ret;
2299         struct filter_entry *f;
2300         struct adapter *adap;
2301         int i;
2302         u8 *val;
2303
2304         adap = netdev2adap(dev);
2305
2306         /* Adjust stid to correct filter index */
2307         stid -= adap->tids.sftid_base;
2308         stid += adap->tids.nftids;
2309
2310         /* Check to make sure the filter requested is writable ...
2311          */
2312         f = &adap->tids.ftid_tab[stid];
2313         ret = writable_filter(f);
2314         if (ret)
2315                 return ret;
2316
2317         /* Clear out any old resources being used by the filter before
2318          * we start constructing the new filter.
2319          */
2320         if (f->valid)
2321                 clear_filter(adap, f);
2322
2323         /* Clear out filter specifications */
2324         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2325         f->fs.val.lport = cpu_to_be16(sport);
2326         f->fs.mask.lport  = ~0;
2327         val = (u8 *)&sip;
2328         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2329                 for (i = 0; i < 4; i++) {
2330                         f->fs.val.lip[i] = val[i];
2331                         f->fs.mask.lip[i] = ~0;
2332                 }
2333                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2334                         f->fs.val.iport = port;
2335                         f->fs.mask.iport = mask;
2336                 }
2337         }
2338
2339         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2340                 f->fs.val.proto = IPPROTO_TCP;
2341                 f->fs.mask.proto = ~0;
2342         }
2343
2344         f->fs.dirsteer = 1;
2345         f->fs.iq = queue;
2346         /* Mark filter as locked */
2347         f->locked = 1;
2348         f->fs.rpttid = 1;
2349
2350         ret = set_filter_wr(adap, stid);
2351         if (ret) {
2352                 clear_filter(adap, f);
2353                 return ret;
2354         }
2355
2356         return 0;
2357 }
2358 EXPORT_SYMBOL(cxgb4_create_server_filter);
2359
2360 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2361                 unsigned int queue, bool ipv6)
2362 {
2363         struct filter_entry *f;
2364         struct adapter *adap;
2365
2366         adap = netdev2adap(dev);
2367
2368         /* Adjust stid to correct filter index */
2369         stid -= adap->tids.sftid_base;
2370         stid += adap->tids.nftids;
2371
2372         f = &adap->tids.ftid_tab[stid];
2373         /* Unlock the filter */
2374         f->locked = 0;
2375
2376         return delete_filter(adap, stid);
2377 }
2378 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2379
2380 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2381                                                 struct rtnl_link_stats64 *ns)
2382 {
2383         struct port_stats stats;
2384         struct port_info *p = netdev_priv(dev);
2385         struct adapter *adapter = p->adapter;
2386
2387         /* Block retrieving statistics during EEH error
2388          * recovery. Otherwise, the recovery might fail
2389          * and the PCI device will be removed permanently
2390          */
2391         spin_lock(&adapter->stats_lock);
2392         if (!netif_device_present(dev)) {
2393                 spin_unlock(&adapter->stats_lock);
2394                 return ns;
2395         }
2396         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2397                                  &p->stats_base);
2398         spin_unlock(&adapter->stats_lock);
2399
2400         ns->tx_bytes   = stats.tx_octets;
2401         ns->tx_packets = stats.tx_frames;
2402         ns->rx_bytes   = stats.rx_octets;
2403         ns->rx_packets = stats.rx_frames;
2404         ns->multicast  = stats.rx_mcast_frames;
2405
2406         /* detailed rx_errors */
2407         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2408                                stats.rx_runt;
2409         ns->rx_over_errors   = 0;
2410         ns->rx_crc_errors    = stats.rx_fcs_err;
2411         ns->rx_frame_errors  = stats.rx_symbol_err;
2412         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2413                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2414                                stats.rx_trunc0 + stats.rx_trunc1 +
2415                                stats.rx_trunc2 + stats.rx_trunc3;
2416         ns->rx_missed_errors = 0;
2417
2418         /* detailed tx_errors */
2419         ns->tx_aborted_errors   = 0;
2420         ns->tx_carrier_errors   = 0;
2421         ns->tx_fifo_errors      = 0;
2422         ns->tx_heartbeat_errors = 0;
2423         ns->tx_window_errors    = 0;
2424
2425         ns->tx_errors = stats.tx_error_frames;
2426         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2427                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2428         return ns;
2429 }
2430
2431 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2432 {
2433         unsigned int mbox;
2434         int ret = 0, prtad, devad;
2435         struct port_info *pi = netdev_priv(dev);
2436         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2437
2438         switch (cmd) {
2439         case SIOCGMIIPHY:
2440                 if (pi->mdio_addr < 0)
2441                         return -EOPNOTSUPP;
2442                 data->phy_id = pi->mdio_addr;
2443                 break;
2444         case SIOCGMIIREG:
2445         case SIOCSMIIREG:
2446                 if (mdio_phy_id_is_c45(data->phy_id)) {
2447                         prtad = mdio_phy_id_prtad(data->phy_id);
2448                         devad = mdio_phy_id_devad(data->phy_id);
2449                 } else if (data->phy_id < 32) {
2450                         prtad = data->phy_id;
2451                         devad = 0;
2452                         data->reg_num &= 0x1f;
2453                 } else
2454                         return -EINVAL;
2455
2456                 mbox = pi->adapter->pf;
2457                 if (cmd == SIOCGMIIREG)
2458                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2459                                          data->reg_num, &data->val_out);
2460                 else
2461                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2462                                          data->reg_num, data->val_in);
2463                 break;
2464         case SIOCGHWTSTAMP:
2465                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2466                                     sizeof(pi->tstamp_config)) ?
2467                         -EFAULT : 0;
2468         case SIOCSHWTSTAMP:
2469                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2470                                    sizeof(pi->tstamp_config)))
2471                         return -EFAULT;
2472
2473                 switch (pi->tstamp_config.rx_filter) {
2474                 case HWTSTAMP_FILTER_NONE:
2475                         pi->rxtstamp = false;
2476                         break;
2477                 case HWTSTAMP_FILTER_ALL:
2478                         pi->rxtstamp = true;
2479                         break;
2480                 default:
2481                         pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2482                         return -ERANGE;
2483                 }
2484
2485                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2486                                     sizeof(pi->tstamp_config)) ?
2487                         -EFAULT : 0;
2488         default:
2489                 return -EOPNOTSUPP;
2490         }
2491         return ret;
2492 }
2493
2494 static void cxgb_set_rxmode(struct net_device *dev)
2495 {
2496         /* unfortunately we can't return errors to the stack */
2497         set_rxmode(dev, -1, false);
2498 }
2499
2500 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2501 {
2502         int ret;
2503         struct port_info *pi = netdev_priv(dev);
2504
2505         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2506                 return -EINVAL;
2507         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2508                             -1, -1, -1, true);
2509         if (!ret)
2510                 dev->mtu = new_mtu;
2511         return ret;
2512 }
2513
2514 #ifdef CONFIG_PCI_IOV
2515 static int dummy_open(struct net_device *dev)
2516 {
2517         /* Turn carrier off since we don't have to transmit anything on this
2518          * interface.
2519          */
2520         netif_carrier_off(dev);
2521         return 0;
2522 }
2523
2524 /* Fill MAC address that will be assigned by the FW */
2525 static void fill_vf_station_mac_addr(struct adapter *adap)
2526 {
2527         unsigned int i;
2528         u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2529         int err;
2530         u8 *na;
2531         u16 a, b;
2532
2533         err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2534         if (!err) {
2535                 na = adap->params.vpd.na;
2536                 for (i = 0; i < ETH_ALEN; i++)
2537                         hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2538                                       hex2val(na[2 * i + 1]));
2539                 a = (hw_addr[0] << 8) | hw_addr[1];
2540                 b = (hw_addr[1] << 8) | hw_addr[2];
2541                 a ^= b;
2542                 a |= 0x0200;    /* locally assigned Ethernet MAC address */
2543                 a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2544                 macaddr[0] = a >> 8;
2545                 macaddr[1] = a & 0xff;
2546
2547                 for (i = 2; i < 5; i++)
2548                         macaddr[i] = hw_addr[i + 1];
2549
2550                 for (i = 0; i < adap->num_vfs; i++) {
2551                         macaddr[5] = adap->pf * 16 + i;
2552                         ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2553                 }
2554         }
2555 }
2556
2557 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2558 {
2559         struct port_info *pi = netdev_priv(dev);
2560         struct adapter *adap = pi->adapter;
2561         int ret;
2562
2563         /* verify MAC addr is valid */
2564         if (!is_valid_ether_addr(mac)) {
2565                 dev_err(pi->adapter->pdev_dev,
2566                         "Invalid Ethernet address %pM for VF %d\n",
2567                         mac, vf);
2568                 return -EINVAL;
2569         }
2570
2571         dev_info(pi->adapter->pdev_dev,
2572                  "Setting MAC %pM on VF %d\n", mac, vf);
2573         ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2574         if (!ret)
2575                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2576         return ret;
2577 }
2578
2579 static int cxgb_get_vf_config(struct net_device *dev,
2580                               int vf, struct ifla_vf_info *ivi)
2581 {
2582         struct port_info *pi = netdev_priv(dev);
2583         struct adapter *adap = pi->adapter;
2584
2585         if (vf >= adap->num_vfs)
2586                 return -EINVAL;
2587         ivi->vf = vf;
2588         ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2589         return 0;
2590 }
2591 #endif
2592
2593 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2594 {
2595         int ret;
2596         struct sockaddr *addr = p;
2597         struct port_info *pi = netdev_priv(dev);
2598
2599         if (!is_valid_ether_addr(addr->sa_data))
2600                 return -EADDRNOTAVAIL;
2601
2602         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2603                             pi->xact_addr_filt, addr->sa_data, true, true);
2604         if (ret < 0)
2605                 return ret;
2606
2607         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2608         pi->xact_addr_filt = ret;
2609         return 0;
2610 }
2611
2612 #ifdef CONFIG_NET_POLL_CONTROLLER
2613 static void cxgb_netpoll(struct net_device *dev)
2614 {
2615         struct port_info *pi = netdev_priv(dev);
2616         struct adapter *adap = pi->adapter;
2617
2618         if (adap->flags & USING_MSIX) {
2619                 int i;
2620                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2621
2622                 for (i = pi->nqsets; i; i--, rx++)
2623                         t4_sge_intr_msix(0, &rx->rspq);
2624         } else
2625                 t4_intr_handler(adap)(0, adap);
2626 }
2627 #endif
2628
2629 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2630 {
2631         struct port_info *pi = netdev_priv(dev);
2632         struct adapter *adap = pi->adapter;
2633         struct sched_class *e;
2634         struct ch_sched_params p;
2635         struct ch_sched_queue qe;
2636         u32 req_rate;
2637         int err = 0;
2638
2639         if (!can_sched(dev))
2640                 return -ENOTSUPP;
2641
2642         if (index < 0 || index > pi->nqsets - 1)
2643                 return -EINVAL;
2644
2645         if (!(adap->flags & FULL_INIT_DONE)) {
2646                 dev_err(adap->pdev_dev,
2647                         "Failed to rate limit on queue %d. Link Down?\n",
2648                         index);
2649                 return -EINVAL;
2650         }
2651
2652         /* Convert from Mbps to Kbps */
2653         req_rate = rate << 10;
2654
2655         /* Max rate is 10 Gbps */
2656         if (req_rate >= SCHED_MAX_RATE_KBPS) {
2657                 dev_err(adap->pdev_dev,
2658                         "Invalid rate %u Mbps, Max rate is %u Gbps\n",
2659                         rate, SCHED_MAX_RATE_KBPS);
2660                 return -ERANGE;
2661         }
2662
2663         /* First unbind the queue from any existing class */
2664         memset(&qe, 0, sizeof(qe));
2665         qe.queue = index;
2666         qe.class = SCHED_CLS_NONE;
2667
2668         err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2669         if (err) {
2670                 dev_err(adap->pdev_dev,
2671                         "Unbinding Queue %d on port %d fail. Err: %d\n",
2672                         index, pi->port_id, err);
2673                 return err;
2674         }
2675
2676         /* Queue already unbound */
2677         if (!req_rate)
2678                 return 0;
2679
2680         /* Fetch any available unused or matching scheduling class */
2681         memset(&p, 0, sizeof(p));
2682         p.type = SCHED_CLASS_TYPE_PACKET;
2683         p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2684         p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2685         p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2686         p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2687         p.u.params.channel  = pi->tx_chan;
2688         p.u.params.class    = SCHED_CLS_NONE;
2689         p.u.params.minrate  = 0;
2690         p.u.params.maxrate  = req_rate;
2691         p.u.params.weight   = 0;
2692         p.u.params.pktsize  = dev->mtu;
2693
2694         e = cxgb4_sched_class_alloc(dev, &p);
2695         if (!e)
2696                 return -ENOMEM;
2697
2698         /* Bind the queue to a scheduling class */
2699         memset(&qe, 0, sizeof(qe));
2700         qe.queue = index;
2701         qe.class = e->idx;
2702
2703         err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2704         if (err)
2705                 dev_err(adap->pdev_dev,
2706                         "Queue rate limiting failed. Err: %d\n", err);
2707         return err;
2708 }
2709
2710 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
2711                          struct tc_to_netdev *tc)
2712 {
2713         struct port_info *pi = netdev2pinfo(dev);
2714         struct adapter *adap = netdev2adap(dev);
2715
2716         if (!(adap->flags & FULL_INIT_DONE)) {
2717                 dev_err(adap->pdev_dev,
2718                         "Failed to setup tc on port %d. Link Down?\n",
2719                         pi->port_id);
2720                 return -EINVAL;
2721         }
2722
2723         if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2724             tc->type == TC_SETUP_CLSU32) {
2725                 switch (tc->cls_u32->command) {
2726                 case TC_CLSU32_NEW_KNODE:
2727                 case TC_CLSU32_REPLACE_KNODE:
2728                         return cxgb4_config_knode(dev, proto, tc->cls_u32);
2729                 case TC_CLSU32_DELETE_KNODE:
2730                         return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2731                 default:
2732                         return -EOPNOTSUPP;
2733                 }
2734         }
2735
2736         return -EOPNOTSUPP;
2737 }
2738
2739 static const struct net_device_ops cxgb4_netdev_ops = {
2740         .ndo_open             = cxgb_open,
2741         .ndo_stop             = cxgb_close,
2742         .ndo_start_xmit       = t4_eth_xmit,
2743         .ndo_select_queue     = cxgb_select_queue,
2744         .ndo_get_stats64      = cxgb_get_stats,
2745         .ndo_set_rx_mode      = cxgb_set_rxmode,
2746         .ndo_set_mac_address  = cxgb_set_mac_addr,
2747         .ndo_set_features     = cxgb_set_features,
2748         .ndo_validate_addr    = eth_validate_addr,
2749         .ndo_do_ioctl         = cxgb_ioctl,
2750         .ndo_change_mtu       = cxgb_change_mtu,
2751 #ifdef CONFIG_NET_POLL_CONTROLLER
2752         .ndo_poll_controller  = cxgb_netpoll,
2753 #endif
2754 #ifdef CONFIG_CHELSIO_T4_FCOE
2755         .ndo_fcoe_enable      = cxgb_fcoe_enable,
2756         .ndo_fcoe_disable     = cxgb_fcoe_disable,
2757 #endif /* CONFIG_CHELSIO_T4_FCOE */
2758 #ifdef CONFIG_NET_RX_BUSY_POLL
2759         .ndo_busy_poll        = cxgb_busy_poll,
2760 #endif
2761         .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2762         .ndo_setup_tc         = cxgb_setup_tc,
2763 };
2764
2765 #ifdef CONFIG_PCI_IOV
2766 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2767         .ndo_open             = dummy_open,
2768         .ndo_set_vf_mac       = cxgb_set_vf_mac,
2769         .ndo_get_vf_config    = cxgb_get_vf_config,
2770 };
2771 #endif
2772
2773 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2774 {
2775         struct adapter *adapter = netdev2adap(dev);
2776
2777         strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2778         strlcpy(info->version, cxgb4_driver_version,
2779                 sizeof(info->version));
2780         strlcpy(info->bus_info, pci_name(adapter->pdev),
2781                 sizeof(info->bus_info));
2782 }
2783
2784 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2785         .get_drvinfo       = get_drvinfo,
2786 };
2787
2788 void t4_fatal_err(struct adapter *adap)
2789 {
2790         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2791         t4_intr_disable(adap);
2792         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2793 }
2794
2795 static void setup_memwin(struct adapter *adap)
2796 {
2797         u32 nic_win_base = t4_get_util_window(adap);
2798
2799         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
2800 }
2801
2802 static void setup_memwin_rdma(struct adapter *adap)
2803 {
2804         if (adap->vres.ocq.size) {
2805                 u32 start;
2806                 unsigned int sz_kb;
2807
2808                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
2809                 start &= PCI_BASE_ADDRESS_MEM_MASK;
2810                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2811                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2812                 t4_write_reg(adap,
2813                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
2814                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
2815                 t4_write_reg(adap,
2816                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
2817                              adap->vres.ocq.start);
2818                 t4_read_reg(adap,
2819                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
2820         }
2821 }
2822
2823 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2824 {
2825         u32 v;
2826         int ret;
2827
2828         /* get device capabilities */
2829         memset(c, 0, sizeof(*c));
2830         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2831                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
2832         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
2833         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
2834         if (ret < 0)
2835                 return ret;
2836
2837         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2838                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2839         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
2840         if (ret < 0)
2841                 return ret;
2842
2843         ret = t4_config_glbl_rss(adap, adap->pf,
2844                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2845                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
2846                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
2847         if (ret < 0)
2848                 return ret;
2849
2850         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
2851                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
2852                           FW_CMD_CAP_PF);
2853         if (ret < 0)
2854                 return ret;
2855
2856         t4_sge_init(adap);
2857
2858         /* tweak some settings */
2859         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
2860         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
2861         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
2862         v = t4_read_reg(adap, TP_PIO_DATA_A);
2863         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
2864
2865         /* first 4 Tx modulation queues point to consecutive Tx channels */
2866         adap->params.tp.tx_modq_map = 0xE4;
2867         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
2868                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
2869
2870         /* associate each Tx modulation queue with consecutive Tx channels */
2871         v = 0x84218421;
2872         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2873                           &v, 1, TP_TX_SCHED_HDR_A);
2874         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2875                           &v, 1, TP_TX_SCHED_FIFO_A);
2876         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2877                           &v, 1, TP_TX_SCHED_PCMD_A);
2878
2879 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
2880         if (is_offload(adap)) {
2881                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
2882                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2883                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2884                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2885                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2886                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
2887                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2888                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2889                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2890                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2891         }
2892
2893         /* get basic stuff going */
2894         return t4_early_init(adap, adap->pf);
2895 }
2896
2897 /*
2898  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
2899  */
2900 #define MAX_ATIDS 8192U
2901
2902 /*
2903  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2904  *
2905  * If the firmware we're dealing with has Configuration File support, then
2906  * we use that to perform all configuration
2907  */
2908
2909 /*
2910  * Tweak configuration based on module parameters, etc.  Most of these have
2911  * defaults assigned to them by Firmware Configuration Files (if we're using
2912  * them) but need to be explicitly set if we're using hard-coded
2913  * initialization.  But even in the case of using Firmware Configuration
2914  * Files, we'd like to expose the ability to change these via module
2915  * parameters so these are essentially common tweaks/settings for
2916  * Configuration Files and hard-coded initialization ...
2917  */
2918 static int adap_init0_tweaks(struct adapter *adapter)
2919 {
2920         /*
2921          * Fix up various Host-Dependent Parameters like Page Size, Cache
2922          * Line Size, etc.  The firmware default is for a 4KB Page Size and
2923          * 64B Cache Line Size ...
2924          */
2925         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
2926
2927         /*
2928          * Process module parameters which affect early initialization.
2929          */
2930         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
2931                 dev_err(&adapter->pdev->dev,
2932                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
2933                         rx_dma_offset);
2934                 rx_dma_offset = 2;
2935         }
2936         t4_set_reg_field(adapter, SGE_CONTROL_A,
2937                          PKTSHIFT_V(PKTSHIFT_M),
2938                          PKTSHIFT_V(rx_dma_offset));
2939
2940         /*
2941          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
2942          * adds the pseudo header itself.
2943          */
2944         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
2945                                CSUM_HAS_PSEUDO_HDR_F, 0);
2946
2947         return 0;
2948 }
2949
2950 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
2951  * unto themselves and they contain their own firmware to perform their
2952  * tasks ...
2953  */
2954 static int phy_aq1202_version(const u8 *phy_fw_data,
2955                               size_t phy_fw_size)
2956 {
2957         int offset;
2958
2959         /* At offset 0x8 you're looking for the primary image's
2960          * starting offset which is 3 Bytes wide
2961          *
2962          * At offset 0xa of the primary image, you look for the offset
2963          * of the DRAM segment which is 3 Bytes wide.
2964          *
2965          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
2966          * wide
2967          */
2968         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
2969         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
2970         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
2971
2972         offset = le24(phy_fw_data + 0x8) << 12;
2973         offset = le24(phy_fw_data + offset + 0xa);
2974         return be16(phy_fw_data + offset + 0x27e);
2975
2976         #undef be16
2977         #undef le16
2978         #undef le24
2979 }
2980
2981 static struct info_10gbt_phy_fw {
2982         unsigned int phy_fw_id;         /* PCI Device ID */
2983         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
2984         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
2985         int phy_flash;                  /* Has FLASH for PHY Firmware */
2986 } phy_info_array[] = {
2987         {
2988                 PHY_AQ1202_DEVICEID,
2989                 PHY_AQ1202_FIRMWARE,
2990                 phy_aq1202_version,
2991                 1,
2992         },
2993         {
2994                 PHY_BCM84834_DEVICEID,
2995                 PHY_BCM84834_FIRMWARE,
2996                 NULL,
2997                 0,
2998         },
2999         { 0, NULL, NULL },
3000 };
3001
3002 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3003 {
3004         int i;
3005
3006         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3007                 if (phy_info_array[i].phy_fw_id == devid)
3008                         return &phy_info_array[i];
3009         }
3010         return NULL;
3011 }
3012
3013 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3014  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3015  * we return a negative error number.  If we transfer new firmware we return 1
3016  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3017  */
3018 static int adap_init0_phy(struct adapter *adap)
3019 {
3020         const struct firmware *phyf;
3021         int ret;
3022         struct info_10gbt_phy_fw *phy_info;
3023
3024         /* Use the device ID to determine which PHY file to flash.
3025          */
3026         phy_info = find_phy_info(adap->pdev->device);
3027         if (!phy_info) {
3028                 dev_warn(adap->pdev_dev,
3029                          "No PHY Firmware file found for this PHY\n");
3030                 return -EOPNOTSUPP;
3031         }
3032
3033         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3034          * use that. The adapter firmware provides us with a memory buffer
3035          * where we can load a PHY firmware file from the host if we want to
3036          * override the PHY firmware File in flash.
3037          */
3038         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3039                                       adap->pdev_dev);
3040         if (ret < 0) {
3041                 /* For adapters without FLASH attached to PHY for their
3042                  * firmware, it's obviously a fatal error if we can't get the
3043                  * firmware to the adapter.  For adapters with PHY firmware
3044                  * FLASH storage, it's worth a warning if we can't find the
3045                  * PHY Firmware but we'll neuter the error ...
3046                  */
3047                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3048                         "/lib/firmware/%s, error %d\n",
3049                         phy_info->phy_fw_file, -ret);
3050                 if (phy_info->phy_flash) {
3051                         int cur_phy_fw_ver = 0;
3052
3053                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3054                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3055                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3056                         ret = 0;
3057                 }
3058
3059                 return ret;
3060         }
3061
3062         /* Load PHY Firmware onto adapter.
3063          */
3064         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3065                              phy_info->phy_fw_version,
3066                              (u8 *)phyf->data, phyf->size);
3067         if (ret < 0)
3068                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3069                         -ret);
3070         else if (ret > 0) {
3071                 int new_phy_fw_ver = 0;
3072
3073                 if (phy_info->phy_fw_version)
3074                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3075                                                                   phyf->size);
3076                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3077                          "Firmware /lib/firmware/%s, version %#x\n",
3078                          phy_info->phy_fw_file, new_phy_fw_ver);
3079         }
3080
3081         release_firmware(phyf);
3082
3083         return ret;
3084 }
3085
3086 /*
3087  * Attempt to initialize the adapter via a Firmware Configuration File.
3088  */
3089 static int adap_init0_config(struct adapter *adapter, int reset)
3090 {
3091         struct fw_caps_config_cmd caps_cmd;
3092         const struct firmware *cf;
3093         unsigned long mtype = 0, maddr = 0;
3094         u32 finiver, finicsum, cfcsum;
3095         int ret;
3096         int config_issued = 0;
3097         char *fw_config_file, fw_config_file_path[256];
3098         char *config_name = NULL;
3099
3100         /*
3101          * Reset device if necessary.
3102          */
3103         if (reset) {
3104                 ret = t4_fw_reset(adapter, adapter->mbox,
3105                                   PIORSTMODE_F | PIORST_F);
3106                 if (ret < 0)
3107                         goto bye;
3108         }
3109
3110         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3111          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3112          * to be performed after any global adapter RESET above since some
3113          * PHYs only have local RAM copies of the PHY firmware.
3114          */
3115         if (is_10gbt_device(adapter->pdev->device)) {
3116                 ret = adap_init0_phy(adapter);
3117                 if (ret < 0)
3118                         goto bye;
3119         }
3120         /*
3121          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3122          * then use that.  Otherwise, use the configuration file stored
3123          * in the adapter flash ...
3124          */
3125         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3126         case CHELSIO_T4:
3127                 fw_config_file = FW4_CFNAME;
3128                 break;
3129         case CHELSIO_T5:
3130                 fw_config_file = FW5_CFNAME;
3131                 break;
3132         case CHELSIO_T6:
3133                 fw_config_file = FW6_CFNAME;
3134                 break;
3135         default:
3136                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3137                        adapter->pdev->device);
3138                 ret = -EINVAL;
3139                 goto bye;
3140         }
3141
3142         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3143         if (ret < 0) {
3144                 config_name = "On FLASH";
3145                 mtype = FW_MEMTYPE_CF_FLASH;
3146                 maddr = t4_flash_cfg_addr(adapter);
3147         } else {
3148                 u32 params[7], val[7];
3149
3150                 sprintf(fw_config_file_path,
3151                         "/lib/firmware/%s", fw_config_file);
3152                 config_name = fw_config_file_path;
3153
3154                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3155                         ret = -ENOMEM;
3156                 else {
3157                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3158                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3159                         ret = t4_query_params(adapter, adapter->mbox,
3160                                               adapter->pf, 0, 1, params, val);
3161                         if (ret == 0) {
3162                                 /*
3163                                  * For t4_memory_rw() below addresses and
3164                                  * sizes have to be in terms of multiples of 4
3165                                  * bytes.  So, if the Configuration File isn't
3166                                  * a multiple of 4 bytes in length we'll have
3167                                  * to write that out separately since we can't
3168                                  * guarantee that the bytes following the
3169                                  * residual byte in the buffer returned by
3170                                  * request_firmware() are zeroed out ...
3171                                  */
3172                                 size_t resid = cf->size & 0x3;
3173                                 size_t size = cf->size & ~0x3;
3174                                 __be32 *data = (__be32 *)cf->data;
3175
3176                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3177                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3178
3179                                 spin_lock(&adapter->win0_lock);
3180                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3181                                                    size, data, T4_MEMORY_WRITE);
3182                                 if (ret == 0 && resid != 0) {
3183                                         union {
3184                                                 __be32 word;
3185                                                 char buf[4];
3186                                         } last;
3187                                         int i;
3188
3189                                         last.word = data[size >> 2];
3190                                         for (i = resid; i < 4; i++)
3191                                                 last.buf[i] = 0;
3192                                         ret = t4_memory_rw(adapter, 0, mtype,
3193                                                            maddr + size,
3194                                                            4, &last.word,
3195                                                            T4_MEMORY_WRITE);
3196                                 }
3197                                 spin_unlock(&adapter->win0_lock);
3198                         }
3199                 }
3200
3201                 release_firmware(cf);
3202                 if (ret)
3203                         goto bye;
3204         }
3205
3206         /*
3207          * Issue a Capability Configuration command to the firmware to get it
3208          * to parse the Configuration File.  We don't use t4_fw_config_file()
3209          * because we want the ability to modify various features after we've
3210          * processed the configuration file ...
3211          */
3212         memset(&caps_cmd, 0, sizeof(caps_cmd));
3213         caps_cmd.op_to_write =
3214                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3215                       FW_CMD_REQUEST_F |
3216                       FW_CMD_READ_F);
3217         caps_cmd.cfvalid_to_len16 =
3218                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3219                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3220                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3221                       FW_LEN16(caps_cmd));
3222         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3223                          &caps_cmd);
3224
3225         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3226          * Configuration File in FLASH), our last gasp effort is to use the
3227          * Firmware Configuration File which is embedded in the firmware.  A
3228          * very few early versions of the firmware didn't have one embedded
3229          * but we can ignore those.
3230          */
3231         if (ret == -ENOENT) {
3232                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3233                 caps_cmd.op_to_write =
3234                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3235                                         FW_CMD_REQUEST_F |
3236                                         FW_CMD_READ_F);
3237                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3238                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3239                                 sizeof(caps_cmd), &caps_cmd);
3240                 config_name = "Firmware Default";
3241         }
3242
3243         config_issued = 1;
3244         if (ret < 0)
3245                 goto bye;
3246
3247         finiver = ntohl(caps_cmd.finiver);
3248         finicsum = ntohl(caps_cmd.finicsum);
3249         cfcsum = ntohl(caps_cmd.cfcsum);
3250         if (finicsum != cfcsum)
3251                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3252                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3253                          finicsum, cfcsum);
3254
3255         /*
3256          * And now tell the firmware to use the configuration we just loaded.
3257          */
3258         caps_cmd.op_to_write =
3259                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3260                       FW_CMD_REQUEST_F |
3261                       FW_CMD_WRITE_F);
3262         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3263         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3264                          NULL);
3265         if (ret < 0)
3266                 goto bye;
3267
3268         /*
3269          * Tweak configuration based on system architecture, module
3270          * parameters, etc.
3271          */
3272         ret = adap_init0_tweaks(adapter);
3273         if (ret < 0)
3274                 goto bye;
3275
3276         /*
3277          * And finally tell the firmware to initialize itself using the
3278          * parameters from the Configuration File.
3279          */
3280         ret = t4_fw_initialize(adapter, adapter->mbox);
3281         if (ret < 0)
3282                 goto bye;
3283
3284         /* Emit Firmware Configuration File information and return
3285          * successfully.
3286          */
3287         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3288                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3289                  config_name, finiver, cfcsum);
3290         return 0;
3291
3292         /*
3293          * Something bad happened.  Return the error ...  (If the "error"
3294          * is that there's no Configuration File on the adapter we don't
3295          * want to issue a warning since this is fairly common.)
3296          */
3297 bye:
3298         if (config_issued && ret != -ENOENT)
3299                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3300                          config_name, -ret);
3301         return ret;
3302 }
3303
3304 static struct fw_info fw_info_array[] = {
3305         {
3306                 .chip = CHELSIO_T4,
3307                 .fs_name = FW4_CFNAME,
3308                 .fw_mod_name = FW4_FNAME,
3309                 .fw_hdr = {
3310                         .chip = FW_HDR_CHIP_T4,
3311                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3312                         .intfver_nic = FW_INTFVER(T4, NIC),
3313                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3314                         .intfver_ri = FW_INTFVER(T4, RI),
3315                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3316                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3317                 },
3318         }, {
3319                 .chip = CHELSIO_T5,
3320                 .fs_name = FW5_CFNAME,
3321                 .fw_mod_name = FW5_FNAME,
3322                 .fw_hdr = {
3323                         .chip = FW_HDR_CHIP_T5,
3324                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3325                         .intfver_nic = FW_INTFVER(T5, NIC),
3326                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3327                         .intfver_ri = FW_INTFVER(T5, RI),
3328                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3329                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3330                 },
3331         }, {
3332                 .chip = CHELSIO_T6,
3333                 .fs_name = FW6_CFNAME,
3334                 .fw_mod_name = FW6_FNAME,
3335                 .fw_hdr = {
3336                         .chip = FW_HDR_CHIP_T6,
3337                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3338                         .intfver_nic = FW_INTFVER(T6, NIC),
3339                         .intfver_vnic = FW_INTFVER(T6, VNIC),
3340                         .intfver_ofld = FW_INTFVER(T6, OFLD),
3341                         .intfver_ri = FW_INTFVER(T6, RI),
3342                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3343                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3344                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3345                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
3346                 },
3347         }
3348
3349 };
3350
3351 static struct fw_info *find_fw_info(int chip)
3352 {
3353         int i;
3354
3355         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3356                 if (fw_info_array[i].chip == chip)
3357                         return &fw_info_array[i];
3358         }
3359         return NULL;
3360 }
3361
3362 /*
3363  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3364  */
3365 static int adap_init0(struct adapter *adap)
3366 {
3367         int ret;
3368         u32 v, port_vec;
3369         enum dev_state state;
3370         u32 params[7], val[7];
3371         struct fw_caps_config_cmd caps_cmd;
3372         int reset = 1;
3373
3374         /* Grab Firmware Device Log parameters as early as possible so we have
3375          * access to it for debugging, etc.
3376          */
3377         ret = t4_init_devlog_params(adap);
3378         if (ret < 0)
3379                 return ret;
3380
3381         /* Contact FW, advertising Master capability */
3382         ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3383                           is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3384         if (ret < 0) {
3385                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3386                         ret);
3387                 return ret;
3388         }
3389         if (ret == adap->mbox)
3390                 adap->flags |= MASTER_PF;
3391
3392         /*
3393          * If we're the Master PF Driver and the device is uninitialized,
3394          * then let's consider upgrading the firmware ...  (We always want
3395          * to check the firmware version number in order to A. get it for
3396          * later reporting and B. to warn if the currently loaded firmware
3397          * is excessively mismatched relative to the driver.)
3398          */
3399         t4_get_fw_version(adap, &adap->params.fw_vers);
3400         t4_get_bs_version(adap, &adap->params.bs_vers);
3401         t4_get_tp_version(adap, &adap->params.tp_vers);
3402         t4_get_exprom_version(adap, &adap->params.er_vers);
3403
3404         ret = t4_check_fw_version(adap);
3405         /* If firmware is too old (not supported by driver) force an update. */
3406         if (ret)
3407                 state = DEV_STATE_UNINIT;
3408         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3409                 struct fw_info *fw_info;
3410                 struct fw_hdr *card_fw;
3411                 const struct firmware *fw;
3412                 const u8 *fw_data = NULL;
3413                 unsigned int fw_size = 0;
3414
3415                 /* This is the firmware whose headers the driver was compiled
3416                  * against
3417                  */
3418                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3419                 if (fw_info == NULL) {
3420                         dev_err(adap->pdev_dev,
3421                                 "unable to get firmware info for chip %d.\n",
3422                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3423                         return -EINVAL;
3424                 }
3425
3426                 /* allocate memory to read the header of the firmware on the
3427                  * card
3428                  */
3429                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3430
3431                 /* Get FW from from /lib/firmware/ */
3432                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3433                                        adap->pdev_dev);
3434                 if (ret < 0) {
3435                         dev_err(adap->pdev_dev,
3436                                 "unable to load firmware image %s, error %d\n",
3437                                 fw_info->fw_mod_name, ret);
3438                 } else {
3439                         fw_data = fw->data;
3440                         fw_size = fw->size;
3441                 }
3442
3443                 /* upgrade FW logic */
3444                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3445                                  state, &reset);
3446
3447                 /* Cleaning up */
3448                 release_firmware(fw);
3449                 t4_free_mem(card_fw);
3450
3451                 if (ret < 0)
3452                         goto bye;
3453         }
3454
3455         /*
3456          * Grab VPD parameters.  This should be done after we establish a
3457          * connection to the firmware since some of the VPD parameters
3458          * (notably the Core Clock frequency) are retrieved via requests to
3459          * the firmware.  On the other hand, we need these fairly early on
3460          * so we do this right after getting ahold of the firmware.
3461          */
3462         ret = t4_get_vpd_params(adap, &adap->params.vpd);
3463         if (ret < 0)
3464                 goto bye;
3465
3466         /*
3467          * Find out what ports are available to us.  Note that we need to do
3468          * this before calling adap_init0_no_config() since it needs nports
3469          * and portvec ...
3470          */
3471         v =
3472             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3473             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3474         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3475         if (ret < 0)
3476                 goto bye;
3477
3478         adap->params.nports = hweight32(port_vec);
3479         adap->params.portvec = port_vec;
3480
3481         /* If the firmware is initialized already, emit a simply note to that
3482          * effect. Otherwise, it's time to try initializing the adapter.
3483          */
3484         if (state == DEV_STATE_INIT) {
3485                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3486                          "Adapter already initialized\n",
3487                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3488         } else {
3489                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3490                          "Initializing adapter\n");
3491
3492                 /* Find out whether we're dealing with a version of the
3493                  * firmware which has configuration file support.
3494                  */
3495                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3496                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3497                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3498                                       params, val);
3499
3500                 /* If the firmware doesn't support Configuration Files,
3501                  * return an error.
3502                  */
3503                 if (ret < 0) {
3504                         dev_err(adap->pdev_dev, "firmware doesn't support "
3505                                 "Firmware Configuration Files\n");
3506                         goto bye;
3507                 }
3508
3509                 /* The firmware provides us with a memory buffer where we can
3510                  * load a Configuration File from the host if we want to
3511                  * override the Configuration File in flash.
3512                  */
3513                 ret = adap_init0_config(adap, reset);
3514                 if (ret == -ENOENT) {
3515                         dev_err(adap->pdev_dev, "no Configuration File "
3516                                 "present on adapter.\n");
3517                         goto bye;
3518                 }
3519                 if (ret < 0) {
3520                         dev_err(adap->pdev_dev, "could not initialize "
3521                                 "adapter, error %d\n", -ret);
3522                         goto bye;
3523                 }
3524         }
3525
3526         /* Give the SGE code a chance to pull in anything that it needs ...
3527          * Note that this must be called after we retrieve our VPD parameters
3528          * in order to know how to convert core ticks to seconds, etc.
3529          */
3530         ret = t4_sge_init(adap);
3531         if (ret < 0)
3532                 goto bye;
3533
3534         if (is_bypass_device(adap->pdev->device))
3535                 adap->params.bypass = 1;
3536
3537         /*
3538          * Grab some of our basic fundamental operating parameters.
3539          */
3540 #define FW_PARAM_DEV(param) \
3541         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3542         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3543
3544 #define FW_PARAM_PFVF(param) \
3545         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3546         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3547         FW_PARAMS_PARAM_Y_V(0) | \
3548         FW_PARAMS_PARAM_Z_V(0)
3549
3550         params[0] = FW_PARAM_PFVF(EQ_START);
3551         params[1] = FW_PARAM_PFVF(L2T_START);
3552         params[2] = FW_PARAM_PFVF(L2T_END);
3553         params[3] = FW_PARAM_PFVF(FILTER_START);
3554         params[4] = FW_PARAM_PFVF(FILTER_END);
3555         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3556         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3557         if (ret < 0)
3558                 goto bye;
3559         adap->sge.egr_start = val[0];
3560         adap->l2t_start = val[1];
3561         adap->l2t_end = val[2];
3562         adap->tids.ftid_base = val[3];
3563         adap->tids.nftids = val[4] - val[3] + 1;
3564         adap->sge.ingr_start = val[5];
3565
3566         /* qids (ingress/egress) returned from firmware can be anywhere
3567          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3568          * Hence driver needs to allocate memory for this range to
3569          * store the queue info. Get the highest IQFLINT/EQ index returned
3570          * in FW_EQ_*_CMD.alloc command.
3571          */
3572         params[0] = FW_PARAM_PFVF(EQ_END);
3573         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3574         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3575         if (ret < 0)
3576                 goto bye;
3577         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3578         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3579
3580         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3581                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3582         if (!adap->sge.egr_map) {
3583                 ret = -ENOMEM;
3584                 goto bye;
3585         }
3586
3587         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3588                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3589         if (!adap->sge.ingr_map) {
3590                 ret = -ENOMEM;
3591                 goto bye;
3592         }
3593
3594         /* Allocate the memory for the vaious egress queue bitmaps
3595          * ie starving_fl, txq_maperr and blocked_fl.
3596          */
3597         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3598                                         sizeof(long), GFP_KERNEL);
3599         if (!adap->sge.starving_fl) {
3600                 ret = -ENOMEM;
3601                 goto bye;
3602         }
3603
3604         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3605                                        sizeof(long), GFP_KERNEL);
3606         if (!adap->sge.txq_maperr) {
3607                 ret = -ENOMEM;
3608                 goto bye;
3609         }
3610
3611 #ifdef CONFIG_DEBUG_FS
3612         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3613                                        sizeof(long), GFP_KERNEL);
3614         if (!adap->sge.blocked_fl) {
3615                 ret = -ENOMEM;
3616                 goto bye;
3617         }
3618 #endif
3619
3620         params[0] = FW_PARAM_PFVF(CLIP_START);
3621         params[1] = FW_PARAM_PFVF(CLIP_END);
3622         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3623         if (ret < 0)
3624                 goto bye;
3625         adap->clipt_start = val[0];
3626         adap->clipt_end = val[1];
3627
3628         /* We don't yet have a PARAMs calls to retrieve the number of Traffic
3629          * Classes supported by the hardware/firmware so we hard code it here
3630          * for now.
3631          */
3632         adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3633
3634         /* query params related to active filter region */
3635         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3636         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3637         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3638         /* If Active filter size is set we enable establishing
3639          * offload connection through firmware work request
3640          */
3641         if ((val[0] != val[1]) && (ret >= 0)) {
3642                 adap->flags |= FW_OFLD_CONN;
3643                 adap->tids.aftid_base = val[0];
3644                 adap->tids.aftid_end = val[1];
3645         }
3646
3647         /* If we're running on newer firmware, let it know that we're
3648          * prepared to deal with encapsulated CPL messages.  Older
3649          * firmware won't understand this and we'll just get
3650          * unencapsulated messages ...
3651          */
3652         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3653         val[0] = 1;
3654         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3655
3656         /*
3657          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3658          * capability.  Earlier versions of the firmware didn't have the
3659          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3660          * permission to use ULPTX MEMWRITE DSGL.
3661          */
3662         if (is_t4(adap->params.chip)) {
3663                 adap->params.ulptx_memwrite_dsgl = false;
3664         } else {
3665                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3666                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3667                                       1, params, val);
3668                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3669         }
3670
3671         /*
3672          * Get device capabilities so we can determine what resources we need
3673          * to manage.
3674          */
3675         memset(&caps_cmd, 0, sizeof(caps_cmd));
3676         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3677                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
3678         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3679         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3680                          &caps_cmd);
3681         if (ret < 0)
3682                 goto bye;
3683
3684         if (caps_cmd.ofldcaps) {
3685                 /* query offload-related parameters */
3686                 params[0] = FW_PARAM_DEV(NTID);
3687                 params[1] = FW_PARAM_PFVF(SERVER_START);
3688                 params[2] = FW_PARAM_PFVF(SERVER_END);
3689                 params[3] = FW_PARAM_PFVF(TDDP_START);
3690                 params[4] = FW_PARAM_PFVF(TDDP_END);
3691                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3692                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3693                                       params, val);
3694                 if (ret < 0)
3695                         goto bye;
3696                 adap->tids.ntids = val[0];
3697                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3698                 adap->tids.stid_base = val[1];
3699                 adap->tids.nstids = val[2] - val[1] + 1;
3700                 /*
3701                  * Setup server filter region. Divide the available filter
3702                  * region into two parts. Regular filters get 1/3rd and server
3703                  * filters get 2/3rd part. This is only enabled if workarond
3704                  * path is enabled.
3705                  * 1. For regular filters.
3706                  * 2. Server filter: This are special filters which are used
3707                  * to redirect SYN packets to offload queue.
3708                  */
3709                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3710                         adap->tids.sftid_base = adap->tids.ftid_base +
3711                                         DIV_ROUND_UP(adap->tids.nftids, 3);
3712                         adap->tids.nsftids = adap->tids.nftids -
3713                                          DIV_ROUND_UP(adap->tids.nftids, 3);
3714                         adap->tids.nftids = adap->tids.sftid_base -
3715                                                 adap->tids.ftid_base;
3716                 }
3717                 adap->vres.ddp.start = val[3];
3718                 adap->vres.ddp.size = val[4] - val[3] + 1;
3719                 adap->params.ofldq_wr_cred = val[5];
3720
3721                 adap->params.offload = 1;
3722                 adap->num_ofld_uld += 1;
3723         }
3724         if (caps_cmd.rdmacaps) {
3725                 params[0] = FW_PARAM_PFVF(STAG_START);
3726                 params[1] = FW_PARAM_PFVF(STAG_END);
3727                 params[2] = FW_PARAM_PFVF(RQ_START);
3728                 params[3] = FW_PARAM_PFVF(RQ_END);
3729                 params[4] = FW_PARAM_PFVF(PBL_START);
3730                 params[5] = FW_PARAM_PFVF(PBL_END);
3731                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3732                                       params, val);
3733                 if (ret < 0)
3734                         goto bye;
3735                 adap->vres.stag.start = val[0];
3736                 adap->vres.stag.size = val[1] - val[0] + 1;
3737                 adap->vres.rq.start = val[2];
3738                 adap->vres.rq.size = val[3] - val[2] + 1;
3739                 adap->vres.pbl.start = val[4];
3740                 adap->vres.pbl.size = val[5] - val[4] + 1;
3741
3742                 params[0] = FW_PARAM_PFVF(SQRQ_START);
3743                 params[1] = FW_PARAM_PFVF(SQRQ_END);
3744                 params[2] = FW_PARAM_PFVF(CQ_START);
3745                 params[3] = FW_PARAM_PFVF(CQ_END);
3746                 params[4] = FW_PARAM_PFVF(OCQ_START);
3747                 params[5] = FW_PARAM_PFVF(OCQ_END);
3748                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3749                                       val);
3750                 if (ret < 0)
3751                         goto bye;
3752                 adap->vres.qp.start = val[0];
3753                 adap->vres.qp.size = val[1] - val[0] + 1;
3754                 adap->vres.cq.start = val[2];
3755                 adap->vres.cq.size = val[3] - val[2] + 1;
3756                 adap->vres.ocq.start = val[4];
3757                 adap->vres.ocq.size = val[5] - val[4] + 1;
3758
3759                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3760                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3761                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3762                                       val);
3763                 if (ret < 0) {
3764                         adap->params.max_ordird_qp = 8;
3765                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3766                         ret = 0;
3767                 } else {
3768                         adap->params.max_ordird_qp = val[0];
3769                         adap->params.max_ird_adapter = val[1];
3770                 }
3771                 dev_info(adap->pdev_dev,
3772                          "max_ordird_qp %d max_ird_adapter %d\n",
3773                          adap->params.max_ordird_qp,
3774                          adap->params.max_ird_adapter);
3775                 adap->num_ofld_uld += 2;
3776         }
3777         if (caps_cmd.iscsicaps) {
3778                 params[0] = FW_PARAM_PFVF(ISCSI_START);
3779                 params[1] = FW_PARAM_PFVF(ISCSI_END);
3780                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3781                                       params, val);
3782                 if (ret < 0)
3783                         goto bye;
3784                 adap->vres.iscsi.start = val[0];
3785                 adap->vres.iscsi.size = val[1] - val[0] + 1;
3786                 /* LIO target and cxgb4i initiaitor */
3787                 adap->num_ofld_uld += 2;
3788         }
3789         if (caps_cmd.cryptocaps) {
3790                 /* Should query params here...TODO */
3791                 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
3792                 adap->num_uld += 1;
3793         }
3794 #undef FW_PARAM_PFVF
3795 #undef FW_PARAM_DEV
3796
3797         /* The MTU/MSS Table is initialized by now, so load their values.  If
3798          * we're initializing the adapter, then we'll make any modifications
3799          * we want to the MTU/MSS Table and also initialize the congestion
3800          * parameters.
3801          */
3802         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3803         if (state != DEV_STATE_INIT) {
3804                 int i;
3805
3806                 /* The default MTU Table contains values 1492 and 1500.
3807                  * However, for TCP, it's better to have two values which are
3808                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3809                  * This allows us to have a TCP Data Payload which is a
3810                  * multiple of 8 regardless of what combination of TCP Options
3811                  * are in use (always a multiple of 4 bytes) which is
3812                  * important for performance reasons.  For instance, if no
3813                  * options are in use, then we have a 20-byte IP header and a
3814                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
3815                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3816                  * which is not a multiple of 8.  So using an MSS of 1488 in
3817                  * this case results in a TCP Data Payload of 1448 bytes which
3818                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3819                  * Stamps have been negotiated, then an MTU of 1500 bytes
3820                  * results in a TCP Data Payload of 1448 bytes which, as
3821                  * above, is a multiple of 8 bytes ...
3822                  */
3823                 for (i = 0; i < NMTUS; i++)
3824                         if (adap->params.mtus[i] == 1492) {
3825                                 adap->params.mtus[i] = 1488;
3826                                 break;
3827                         }
3828
3829                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3830                              adap->params.b_wnd);
3831         }
3832         t4_init_sge_params(adap);
3833         adap->flags |= FW_OK;
3834         t4_init_tp_params(adap);
3835         return 0;
3836
3837         /*
3838          * Something bad happened.  If a command timed out or failed with EIO
3839          * FW does not operate within its spec or something catastrophic
3840          * happened to HW/FW, stop issuing commands.
3841          */
3842 bye:
3843         kfree(adap->sge.egr_map);
3844         kfree(adap->sge.ingr_map);
3845         kfree(adap->sge.starving_fl);
3846         kfree(adap->sge.txq_maperr);
3847 #ifdef CONFIG_DEBUG_FS
3848         kfree(adap->sge.blocked_fl);
3849 #endif
3850         if (ret != -ETIMEDOUT && ret != -EIO)
3851                 t4_fw_bye(adap, adap->mbox);
3852         return ret;
3853 }
3854
3855 /* EEH callbacks */
3856
3857 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3858                                          pci_channel_state_t state)
3859 {
3860         int i;
3861         struct adapter *adap = pci_get_drvdata(pdev);
3862
3863         if (!adap)
3864                 goto out;
3865
3866         rtnl_lock();
3867         adap->flags &= ~FW_OK;
3868         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3869         spin_lock(&adap->stats_lock);
3870         for_each_port(adap, i) {
3871                 struct net_device *dev = adap->port[i];
3872
3873                 netif_device_detach(dev);
3874                 netif_carrier_off(dev);
3875         }
3876         spin_unlock(&adap->stats_lock);
3877         disable_interrupts(adap);
3878         if (adap->flags & FULL_INIT_DONE)
3879                 cxgb_down(adap);
3880         rtnl_unlock();
3881         if ((adap->flags & DEV_ENABLED)) {
3882                 pci_disable_device(pdev);
3883                 adap->flags &= ~DEV_ENABLED;
3884         }
3885 out:    return state == pci_channel_io_perm_failure ?
3886                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3887 }
3888
3889 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3890 {
3891         int i, ret;
3892         struct fw_caps_config_cmd c;
3893         struct adapter *adap = pci_get_drvdata(pdev);
3894
3895         if (!adap) {
3896                 pci_restore_state(pdev);
3897                 pci_save_state(pdev);
3898                 return PCI_ERS_RESULT_RECOVERED;
3899         }
3900
3901         if (!(adap->flags & DEV_ENABLED)) {
3902                 if (pci_enable_device(pdev)) {
3903                         dev_err(&pdev->dev, "Cannot reenable PCI "
3904                                             "device after reset\n");
3905                         return PCI_ERS_RESULT_DISCONNECT;
3906                 }
3907                 adap->flags |= DEV_ENABLED;
3908         }
3909
3910         pci_set_master(pdev);
3911         pci_restore_state(pdev);
3912         pci_save_state(pdev);
3913         pci_cleanup_aer_uncorrect_error_status(pdev);
3914
3915         if (t4_wait_dev_ready(adap->regs) < 0)
3916                 return PCI_ERS_RESULT_DISCONNECT;
3917         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
3918                 return PCI_ERS_RESULT_DISCONNECT;
3919         adap->flags |= FW_OK;
3920         if (adap_init1(adap, &c))
3921                 return PCI_ERS_RESULT_DISCONNECT;
3922
3923         for_each_port(adap, i) {
3924                 struct port_info *p = adap2pinfo(adap, i);
3925
3926                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
3927                                   NULL, NULL);
3928                 if (ret < 0)
3929                         return PCI_ERS_RESULT_DISCONNECT;
3930                 p->viid = ret;
3931                 p->xact_addr_filt = -1;
3932         }
3933
3934         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3935                      adap->params.b_wnd);
3936         setup_memwin(adap);
3937         if (cxgb_up(adap))
3938                 return PCI_ERS_RESULT_DISCONNECT;
3939         return PCI_ERS_RESULT_RECOVERED;
3940 }
3941
3942 static void eeh_resume(struct pci_dev *pdev)
3943 {
3944         int i;
3945         struct adapter *adap = pci_get_drvdata(pdev);
3946
3947         if (!adap)
3948                 return;
3949
3950         rtnl_lock();
3951         for_each_port(adap, i) {
3952                 struct net_device *dev = adap->port[i];
3953
3954                 if (netif_running(dev)) {
3955                         link_start(dev);
3956                         cxgb_set_rxmode(dev);
3957                 }
3958                 netif_device_attach(dev);
3959         }
3960         rtnl_unlock();
3961 }
3962
3963 static const struct pci_error_handlers cxgb4_eeh = {
3964         .error_detected = eeh_err_detected,
3965         .slot_reset     = eeh_slot_reset,
3966         .resume         = eeh_resume,
3967 };
3968
3969 /* Return true if the Link Configuration supports "High Speeds" (those greater
3970  * than 1Gb/s).
3971  */
3972 static inline bool is_x_10g_port(const struct link_config *lc)
3973 {
3974         unsigned int speeds, high_speeds;
3975
3976         speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
3977         high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
3978
3979         return high_speeds != 0;
3980 }
3981
3982 /*
3983  * Perform default configuration of DMA queues depending on the number and type
3984  * of ports we found and the number of available CPUs.  Most settings can be
3985  * modified by the admin prior to actual use.
3986  */
3987 static void cfg_queues(struct adapter *adap)
3988 {
3989         struct sge *s = &adap->sge;
3990         int i, n10g = 0, qidx = 0;
3991 #ifndef CONFIG_CHELSIO_T4_DCB
3992         int q10g = 0;
3993 #endif
3994
3995         /* Reduce memory usage in kdump environment, disable all offload.
3996          */
3997         if (is_kdump_kernel()) {
3998                 adap->params.offload = 0;
3999                 adap->params.crypto = 0;
4000         } else if (is_uld(adap) && t4_uld_mem_alloc(adap)) {
4001                 adap->params.offload = 0;
4002                 adap->params.crypto = 0;
4003         }
4004
4005         for_each_port(adap, i)
4006                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4007 #ifdef CONFIG_CHELSIO_T4_DCB
4008         /* For Data Center Bridging support we need to be able to support up
4009          * to 8 Traffic Priorities; each of which will be assigned to its
4010          * own TX Queue in order to prevent Head-Of-Line Blocking.
4011          */
4012         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4013                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4014                         MAX_ETH_QSETS, adap->params.nports * 8);
4015                 BUG_ON(1);
4016         }
4017
4018         for_each_port(adap, i) {
4019                 struct port_info *pi = adap2pinfo(adap, i);
4020
4021                 pi->first_qset = qidx;
4022                 pi->nqsets = 8;
4023                 qidx += pi->nqsets;
4024         }
4025 #else /* !CONFIG_CHELSIO_T4_DCB */
4026         /*
4027          * We default to 1 queue per non-10G port and up to # of cores queues
4028          * per 10G port.
4029          */
4030         if (n10g)
4031                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4032         if (q10g > netif_get_num_default_rss_queues())
4033                 q10g = netif_get_num_default_rss_queues();
4034
4035         for_each_port(adap, i) {
4036                 struct port_info *pi = adap2pinfo(adap, i);
4037
4038                 pi->first_qset = qidx;
4039                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4040                 qidx += pi->nqsets;
4041         }
4042 #endif /* !CONFIG_CHELSIO_T4_DCB */
4043
4044         s->ethqsets = qidx;
4045         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4046
4047         if (is_uld(adap)) {
4048                 /*
4049                  * For offload we use 1 queue/channel if all ports are up to 1G,
4050                  * otherwise we divide all available queues amongst the channels
4051                  * capped by the number of available cores.
4052                  */
4053                 if (n10g) {
4054                         i = num_online_cpus();
4055                         s->ofldqsets = roundup(i, adap->params.nports);
4056                 } else {
4057                         s->ofldqsets = adap->params.nports;
4058                 }
4059         }
4060
4061         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4062                 struct sge_eth_rxq *r = &s->ethrxq[i];
4063
4064                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4065                 r->fl.size = 72;
4066         }
4067
4068         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4069                 s->ethtxq[i].q.size = 1024;
4070
4071         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4072                 s->ctrlq[i].q.size = 512;
4073
4074         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4075                 s->ofldtxq[i].q.size = 1024;
4076
4077         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4078         init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4079 }
4080
4081 /*
4082  * Reduce the number of Ethernet queues across all ports to at most n.
4083  * n provides at least one queue per port.
4084  */
4085 static void reduce_ethqs(struct adapter *adap, int n)
4086 {
4087         int i;
4088         struct port_info *pi;
4089
4090         while (n < adap->sge.ethqsets)
4091                 for_each_port(adap, i) {
4092                         pi = adap2pinfo(adap, i);
4093                         if (pi->nqsets > 1) {
4094                                 pi->nqsets--;
4095                                 adap->sge.ethqsets--;
4096                                 if (adap->sge.ethqsets <= n)
4097                                         break;
4098                         }
4099                 }
4100
4101         n = 0;
4102         for_each_port(adap, i) {
4103                 pi = adap2pinfo(adap, i);
4104                 pi->first_qset = n;
4105                 n += pi->nqsets;
4106         }
4107 }
4108
4109 static int get_msix_info(struct adapter *adap)
4110 {
4111         struct uld_msix_info *msix_info;
4112         unsigned int max_ingq = 0;
4113
4114         if (is_offload(adap))
4115                 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4116         if (is_pci_uld(adap))
4117                 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4118
4119         if (!max_ingq)
4120                 goto out;
4121
4122         msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4123         if (!msix_info)
4124                 return -ENOMEM;
4125
4126         adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4127                                                  sizeof(long), GFP_KERNEL);
4128         if (!adap->msix_bmap_ulds.msix_bmap) {
4129                 kfree(msix_info);
4130                 return -ENOMEM;
4131         }
4132         spin_lock_init(&adap->msix_bmap_ulds.lock);
4133         adap->msix_info_ulds = msix_info;
4134 out:
4135         return 0;
4136 }
4137
4138 static void free_msix_info(struct adapter *adap)
4139 {
4140         if (!(adap->num_uld && adap->num_ofld_uld))
4141                 return;
4142
4143         kfree(adap->msix_info_ulds);
4144         kfree(adap->msix_bmap_ulds.msix_bmap);
4145 }
4146
4147 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4148 #define EXTRA_VECS 2
4149
4150 static int enable_msix(struct adapter *adap)
4151 {
4152         int ofld_need = 0, uld_need = 0;
4153         int i, j, want, need, allocated;
4154         struct sge *s = &adap->sge;
4155         unsigned int nchan = adap->params.nports;
4156         struct msix_entry *entries;
4157         int max_ingq = MAX_INGQ;
4158
4159         if (is_pci_uld(adap))
4160                 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4161         if (is_offload(adap))
4162                 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4163         entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4164                           GFP_KERNEL);
4165         if (!entries)
4166                 return -ENOMEM;
4167
4168         /* map for msix */
4169         if (get_msix_info(adap)) {
4170                 adap->params.offload = 0;
4171                 adap->params.crypto = 0;
4172         }
4173
4174         for (i = 0; i < max_ingq + 1; ++i)
4175                 entries[i].entry = i;
4176
4177         want = s->max_ethqsets + EXTRA_VECS;
4178         if (is_offload(adap)) {
4179                 want += adap->num_ofld_uld * s->ofldqsets;
4180                 ofld_need = adap->num_ofld_uld * nchan;
4181         }
4182         if (is_pci_uld(adap)) {
4183                 want += adap->num_uld * s->ofldqsets;
4184                 uld_need = adap->num_uld * nchan;
4185         }
4186 #ifdef CONFIG_CHELSIO_T4_DCB
4187         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4188          * each port.
4189          */
4190         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4191 #else
4192         need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4193 #endif
4194         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4195         if (allocated < 0) {
4196                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4197                          " not using MSI-X\n");
4198                 kfree(entries);
4199                 return allocated;
4200         }
4201
4202         /* Distribute available vectors to the various queue groups.
4203          * Every group gets its minimum requirement and NIC gets top
4204          * priority for leftovers.
4205          */
4206         i = allocated - EXTRA_VECS - ofld_need - uld_need;
4207         if (i < s->max_ethqsets) {
4208                 s->max_ethqsets = i;
4209                 if (i < s->ethqsets)
4210                         reduce_ethqs(adap, i);
4211         }
4212         if (is_uld(adap)) {
4213                 if (allocated < want)
4214                         s->nqs_per_uld = nchan;
4215                 else
4216                         s->nqs_per_uld = s->ofldqsets;
4217         }
4218
4219         for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4220                 adap->msix_info[i].vec = entries[i].vector;
4221         if (is_uld(adap)) {
4222                 for (j = 0 ; i < allocated; ++i, j++) {
4223                         adap->msix_info_ulds[j].vec = entries[i].vector;
4224                         adap->msix_info_ulds[j].idx = i;
4225                 }
4226                 adap->msix_bmap_ulds.mapsize = j;
4227         }
4228         dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4229                  "nic %d per uld %d\n",
4230                  allocated, s->max_ethqsets, s->nqs_per_uld);
4231
4232         kfree(entries);
4233         return 0;
4234 }
4235
4236 #undef EXTRA_VECS
4237
4238 static int init_rss(struct adapter *adap)
4239 {
4240         unsigned int i;
4241         int err;
4242
4243         err = t4_init_rss_mode(adap, adap->mbox);
4244         if (err)
4245                 return err;
4246
4247         for_each_port(adap, i) {
4248                 struct port_info *pi = adap2pinfo(adap, i);
4249
4250                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4251                 if (!pi->rss)
4252                         return -ENOMEM;
4253         }
4254         return 0;
4255 }
4256
4257 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4258                                         enum pci_bus_speed *speed,
4259                                         enum pcie_link_width *width)
4260 {
4261         u32 lnkcap1, lnkcap2;
4262         int err1, err2;
4263
4264 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4265
4266         *speed = PCI_SPEED_UNKNOWN;
4267         *width = PCIE_LNK_WIDTH_UNKNOWN;
4268
4269         err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4270                                           &lnkcap1);
4271         err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4272                                           &lnkcap2);
4273         if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4274                 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4275                         *speed = PCIE_SPEED_8_0GT;
4276                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4277                         *speed = PCIE_SPEED_5_0GT;
4278                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4279                         *speed = PCIE_SPEED_2_5GT;
4280         }
4281         if (!err1) {
4282                 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4283                 if (!lnkcap2) { /* pre-r3.0 */
4284                         if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4285                                 *speed = PCIE_SPEED_5_0GT;
4286                         else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4287                                 *speed = PCIE_SPEED_2_5GT;
4288                 }
4289         }
4290
4291         if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4292                 return err1 ? err1 : err2 ? err2 : -EINVAL;
4293         return 0;
4294 }
4295
4296 static void cxgb4_check_pcie_caps(struct adapter *adap)
4297 {
4298         enum pcie_link_width width, width_cap;
4299         enum pci_bus_speed speed, speed_cap;
4300
4301 #define PCIE_SPEED_STR(speed) \
4302         (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4303          speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4304          speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4305          "Unknown")
4306
4307         if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4308                 dev_warn(adap->pdev_dev,
4309                          "Unable to determine PCIe device BW capabilities\n");
4310                 return;
4311         }
4312
4313         if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4314             speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4315                 dev_warn(adap->pdev_dev,
4316                          "Unable to determine PCI Express bandwidth.\n");
4317                 return;
4318         }
4319
4320         dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4321                  PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4322         dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4323                  width, width_cap);
4324         if (speed < speed_cap || width < width_cap)
4325                 dev_info(adap->pdev_dev,
4326                          "A slot with more lanes and/or higher speed is "
4327                          "suggested for optimal performance.\n");
4328 }
4329
4330 /* Dump basic information about the adapter */
4331 static void print_adapter_info(struct adapter *adapter)
4332 {
4333         /* Device information */
4334         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4335                  adapter->params.vpd.id,
4336                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
4337         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4338                  adapter->params.vpd.sn, adapter->params.vpd.pn);
4339
4340         /* Firmware Version */
4341         if (!adapter->params.fw_vers)
4342                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4343         else
4344                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4345                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4346                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4347                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4348                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4349
4350         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4351          * Firmware, so dev_info() is more appropriate here.)
4352          */
4353         if (!adapter->params.bs_vers)
4354                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4355         else
4356                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4357                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4358                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4359                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4360                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4361
4362         /* TP Microcode Version */
4363         if (!adapter->params.tp_vers)
4364                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4365         else
4366                 dev_info(adapter->pdev_dev,
4367                          "TP Microcode version: %u.%u.%u.%u\n",
4368                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4369                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4370                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4371                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4372
4373         /* Expansion ROM version */
4374         if (!adapter->params.er_vers)
4375                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4376         else
4377                 dev_info(adapter->pdev_dev,
4378                          "Expansion ROM version: %u.%u.%u.%u\n",
4379                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4380                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4381                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4382                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4383
4384         /* Software/Hardware configuration */
4385         dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4386                  is_offload(adapter) ? "R" : "",
4387                  ((adapter->flags & USING_MSIX) ? "MSI-X" :
4388                   (adapter->flags & USING_MSI) ? "MSI" : ""),
4389                  is_offload(adapter) ? "Offload" : "non-Offload");
4390 }
4391
4392 static void print_port_info(const struct net_device *dev)
4393 {
4394         char buf[80];
4395         char *bufp = buf;
4396         const char *spd = "";
4397         const struct port_info *pi = netdev_priv(dev);
4398         const struct adapter *adap = pi->adapter;
4399
4400         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4401                 spd = " 2.5 GT/s";
4402         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4403                 spd = " 5 GT/s";
4404         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4405                 spd = " 8 GT/s";
4406
4407         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4408                 bufp += sprintf(bufp, "100/");
4409         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4410                 bufp += sprintf(bufp, "1000/");
4411         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4412                 bufp += sprintf(bufp, "10G/");
4413         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4414                 bufp += sprintf(bufp, "25G/");
4415         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4416                 bufp += sprintf(bufp, "40G/");
4417         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4418                 bufp += sprintf(bufp, "100G/");
4419         if (bufp != buf)
4420                 --bufp;
4421         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4422
4423         netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4424                     dev->name, adap->params.vpd.id, adap->name, buf);
4425 }
4426
4427 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4428 {
4429         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4430 }
4431
4432 /*
4433  * Free the following resources:
4434  * - memory used for tables
4435  * - MSI/MSI-X
4436  * - net devices
4437  * - resources FW is holding for us
4438  */
4439 static void free_some_resources(struct adapter *adapter)
4440 {
4441         unsigned int i;
4442
4443         t4_free_mem(adapter->l2t);
4444         t4_cleanup_sched(adapter);
4445         t4_free_mem(adapter->tids.tid_tab);
4446         cxgb4_cleanup_tc_u32(adapter);
4447         kfree(adapter->sge.egr_map);
4448         kfree(adapter->sge.ingr_map);
4449         kfree(adapter->sge.starving_fl);
4450         kfree(adapter->sge.txq_maperr);
4451 #ifdef CONFIG_DEBUG_FS
4452         kfree(adapter->sge.blocked_fl);
4453 #endif
4454         disable_msi(adapter);
4455
4456         for_each_port(adapter, i)
4457                 if (adapter->port[i]) {
4458                         struct port_info *pi = adap2pinfo(adapter, i);
4459
4460                         if (pi->viid != 0)
4461                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4462                                            0, pi->viid);
4463                         kfree(adap2pinfo(adapter, i)->rss);
4464                         free_netdev(adapter->port[i]);
4465                 }
4466         if (adapter->flags & FW_OK)
4467                 t4_fw_bye(adapter, adapter->pf);
4468 }
4469
4470 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4471 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4472                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4473 #define SEGMENT_SIZE 128
4474
4475 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4476 {
4477         u16 device_id;
4478
4479         /* Retrieve adapter's device ID */
4480         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4481
4482         switch (device_id >> 12) {
4483         case CHELSIO_T4:
4484                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4485         case CHELSIO_T5:
4486                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4487         case CHELSIO_T6:
4488                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4489         default:
4490                 dev_err(&pdev->dev, "Device %d is not supported\n",
4491                         device_id);
4492         }
4493         return -EINVAL;
4494 }
4495
4496 #ifdef CONFIG_PCI_IOV
4497 static void dummy_setup(struct net_device *dev)
4498 {
4499         dev->type = ARPHRD_NONE;
4500         dev->mtu = 0;
4501         dev->hard_header_len = 0;
4502         dev->addr_len = 0;
4503         dev->tx_queue_len = 0;
4504         dev->flags |= IFF_NOARP;
4505         dev->priv_flags |= IFF_NO_QUEUE;
4506
4507         /* Initialize the device structure. */
4508         dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4509         dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4510         dev->destructor = free_netdev;
4511 }
4512
4513 static int config_mgmt_dev(struct pci_dev *pdev)
4514 {
4515         struct adapter *adap = pci_get_drvdata(pdev);
4516         struct net_device *netdev;
4517         struct port_info *pi;
4518         char name[IFNAMSIZ];
4519         int err;
4520
4521         snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4522         netdev = alloc_netdev(0, name, NET_NAME_UNKNOWN, dummy_setup);
4523         if (!netdev)
4524                 return -ENOMEM;
4525
4526         pi = netdev_priv(netdev);
4527         pi->adapter = adap;
4528         SET_NETDEV_DEV(netdev, &pdev->dev);
4529
4530         adap->port[0] = netdev;
4531
4532         err = register_netdev(adap->port[0]);
4533         if (err) {
4534                 pr_info("Unable to register VF mgmt netdev %s\n", name);
4535                 free_netdev(adap->port[0]);
4536                 adap->port[0] = NULL;
4537                 return err;
4538         }
4539         return 0;
4540 }
4541
4542 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4543 {
4544         struct adapter *adap = pci_get_drvdata(pdev);
4545         int err = 0;
4546         int current_vfs = pci_num_vf(pdev);
4547         u32 pcie_fw;
4548
4549         pcie_fw = readl(adap->regs + PCIE_FW_A);
4550         /* Check if cxgb4 is the MASTER and fw is initialized */
4551         if (!(pcie_fw & PCIE_FW_INIT_F) ||
4552             !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4553             PCIE_FW_MASTER_G(pcie_fw) != 4) {
4554                 dev_warn(&pdev->dev,
4555                          "cxgb4 driver needs to be MASTER to support SRIOV\n");
4556                 return -EOPNOTSUPP;
4557         }
4558
4559         /* If any of the VF's is already assigned to Guest OS, then
4560          * SRIOV for the same cannot be modified
4561          */
4562         if (current_vfs && pci_vfs_assigned(pdev)) {
4563                 dev_err(&pdev->dev,
4564                         "Cannot modify SR-IOV while VFs are assigned\n");
4565                 num_vfs = current_vfs;
4566                 return num_vfs;
4567         }
4568
4569         /* Disable SRIOV when zero is passed.
4570          * One needs to disable SRIOV before modifying it, else
4571          * stack throws the below warning:
4572          * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4573          */
4574         if (!num_vfs) {
4575                 pci_disable_sriov(pdev);
4576                 if (adap->port[0]) {
4577                         unregister_netdev(adap->port[0]);
4578                         adap->port[0] = NULL;
4579                 }
4580                 /* free VF resources */
4581                 kfree(adap->vfinfo);
4582                 adap->vfinfo = NULL;
4583                 adap->num_vfs = 0;
4584                 return num_vfs;
4585         }
4586
4587         if (num_vfs != current_vfs) {
4588                 err = pci_enable_sriov(pdev, num_vfs);
4589                 if (err)
4590                         return err;
4591
4592                 adap->num_vfs = num_vfs;
4593                 err = config_mgmt_dev(pdev);
4594                 if (err)
4595                         return err;
4596         }
4597
4598         adap->vfinfo = kcalloc(adap->num_vfs,
4599                                sizeof(struct vf_info), GFP_KERNEL);
4600         if (adap->vfinfo)
4601                 fill_vf_station_mac_addr(adap);
4602         return num_vfs;
4603 }
4604 #endif
4605
4606 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4607 {
4608         int func, i, err, s_qpp, qpp, num_seg;
4609         struct port_info *pi;
4610         bool highdma = false;
4611         struct adapter *adapter = NULL;
4612         struct net_device *netdev;
4613         void __iomem *regs;
4614         u32 whoami, pl_rev;
4615         enum chip_type chip;
4616         static int adap_idx = 1;
4617
4618         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4619
4620         err = pci_request_regions(pdev, KBUILD_MODNAME);
4621         if (err) {
4622                 /* Just info, some other driver may have claimed the device. */
4623                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4624                 return err;
4625         }
4626
4627         err = pci_enable_device(pdev);
4628         if (err) {
4629                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4630                 goto out_release_regions;
4631         }
4632
4633         regs = pci_ioremap_bar(pdev, 0);
4634         if (!regs) {
4635                 dev_err(&pdev->dev, "cannot map device registers\n");
4636                 err = -ENOMEM;
4637                 goto out_disable_device;
4638         }
4639
4640         err = t4_wait_dev_ready(regs);
4641         if (err < 0)
4642                 goto out_unmap_bar0;
4643
4644         /* We control everything through one PF */
4645         whoami = readl(regs + PL_WHOAMI_A);
4646         pl_rev = REV_G(readl(regs + PL_REV_A));
4647         chip = get_chip_type(pdev, pl_rev);
4648         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4649                 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4650         if (func != ent->driver_data) {
4651 #ifndef CONFIG_PCI_IOV
4652                 iounmap(regs);
4653 #endif
4654                 pci_disable_device(pdev);
4655                 pci_save_state(pdev);        /* to restore SR-IOV later */
4656                 goto sriov;
4657         }
4658
4659         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4660                 highdma = true;
4661                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4662                 if (err) {
4663                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4664                                 "coherent allocations\n");
4665                         goto out_unmap_bar0;
4666                 }
4667         } else {
4668                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4669                 if (err) {
4670                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4671                         goto out_unmap_bar0;
4672                 }
4673         }
4674
4675         pci_enable_pcie_error_reporting(pdev);
4676         enable_pcie_relaxed_ordering(pdev);
4677         pci_set_master(pdev);
4678         pci_save_state(pdev);
4679
4680         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4681         if (!adapter) {
4682                 err = -ENOMEM;
4683                 goto out_unmap_bar0;
4684         }
4685         adap_idx++;
4686
4687         adapter->workq = create_singlethread_workqueue("cxgb4");
4688         if (!adapter->workq) {
4689                 err = -ENOMEM;
4690                 goto out_free_adapter;
4691         }
4692
4693         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4694                                     (sizeof(struct mbox_cmd) *
4695                                      T4_OS_LOG_MBOX_CMDS),
4696                                     GFP_KERNEL);
4697         if (!adapter->mbox_log) {
4698                 err = -ENOMEM;
4699                 goto out_free_adapter;
4700         }
4701         adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4702
4703         /* PCI device has been enabled */
4704         adapter->flags |= DEV_ENABLED;
4705
4706         adapter->regs = regs;
4707         adapter->pdev = pdev;
4708         adapter->pdev_dev = &pdev->dev;
4709         adapter->name = pci_name(pdev);
4710         adapter->mbox = func;
4711         adapter->pf = func;
4712         adapter->msg_enable = dflt_msg_enable;
4713         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4714
4715         spin_lock_init(&adapter->stats_lock);
4716         spin_lock_init(&adapter->tid_release_lock);
4717         spin_lock_init(&adapter->win0_lock);
4718
4719         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4720         INIT_WORK(&adapter->db_full_task, process_db_full);
4721         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4722
4723         err = t4_prep_adapter(adapter);
4724         if (err)
4725                 goto out_free_adapter;
4726
4727
4728         if (!is_t4(adapter->params.chip)) {
4729                 s_qpp = (QUEUESPERPAGEPF0_S +
4730                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4731                         adapter->pf);
4732                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4733                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4734                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4735
4736                 /* Each segment size is 128B. Write coalescing is enabled only
4737                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4738                  * queue is less no of segments that can be accommodated in
4739                  * a page size.
4740                  */
4741                 if (qpp > num_seg) {
4742                         dev_err(&pdev->dev,
4743                                 "Incorrect number of egress queues per page\n");
4744                         err = -EINVAL;
4745                         goto out_free_adapter;
4746                 }
4747                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4748                 pci_resource_len(pdev, 2));
4749                 if (!adapter->bar2) {
4750                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4751                         err = -ENOMEM;
4752                         goto out_free_adapter;
4753                 }
4754         }
4755
4756         setup_memwin(adapter);
4757         err = adap_init0(adapter);
4758 #ifdef CONFIG_DEBUG_FS
4759         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4760 #endif
4761         setup_memwin_rdma(adapter);
4762         if (err)
4763                 goto out_unmap_bar;
4764
4765         /* configure SGE_STAT_CFG_A to read WC stats */
4766         if (!is_t4(adapter->params.chip))
4767                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4768                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4769                               T6_STATMODE_V(0)));
4770
4771         for_each_port(adapter, i) {
4772                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4773                                            MAX_ETH_QSETS);
4774                 if (!netdev) {
4775                         err = -ENOMEM;
4776                         goto out_free_dev;
4777                 }
4778
4779                 SET_NETDEV_DEV(netdev, &pdev->dev);
4780
4781                 adapter->port[i] = netdev;
4782                 pi = netdev_priv(netdev);
4783                 pi->adapter = adapter;
4784                 pi->xact_addr_filt = -1;
4785                 pi->port_id = i;
4786                 netdev->irq = pdev->irq;
4787
4788                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4789                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4790                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4791                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
4792                         NETIF_F_HW_TC;
4793                 if (highdma)
4794                         netdev->hw_features |= NETIF_F_HIGHDMA;
4795                 netdev->features |= netdev->hw_features;
4796                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4797
4798                 netdev->priv_flags |= IFF_UNICAST_FLT;
4799
4800                 netdev->netdev_ops = &cxgb4_netdev_ops;
4801 #ifdef CONFIG_CHELSIO_T4_DCB
4802                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4803                 cxgb4_dcb_state_init(netdev);
4804 #endif
4805                 cxgb4_set_ethtool_ops(netdev);
4806         }
4807
4808         pci_set_drvdata(pdev, adapter);
4809
4810         if (adapter->flags & FW_OK) {
4811                 err = t4_port_init(adapter, func, func, 0);
4812                 if (err)
4813                         goto out_free_dev;
4814         } else if (adapter->params.nports == 1) {
4815                 /* If we don't have a connection to the firmware -- possibly
4816                  * because of an error -- grab the raw VPD parameters so we
4817                  * can set the proper MAC Address on the debug network
4818                  * interface that we've created.
4819                  */
4820                 u8 hw_addr[ETH_ALEN];
4821                 u8 *na = adapter->params.vpd.na;
4822
4823                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4824                 if (!err) {
4825                         for (i = 0; i < ETH_ALEN; i++)
4826                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4827                                               hex2val(na[2 * i + 1]));
4828                         t4_set_hw_addr(adapter, 0, hw_addr);
4829                 }
4830         }
4831
4832         /* Configure queues and allocate tables now, they can be needed as
4833          * soon as the first register_netdev completes.
4834          */
4835         cfg_queues(adapter);
4836
4837         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4838         if (!adapter->l2t) {
4839                 /* We tolerate a lack of L2T, giving up some functionality */
4840                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4841                 adapter->params.offload = 0;
4842         }
4843
4844 #if IS_ENABLED(CONFIG_IPV6)
4845         if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4846             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4847                 /* CLIP functionality is not present in hardware,
4848                  * hence disable all offload features
4849                  */
4850                 dev_warn(&pdev->dev,
4851                          "CLIP not enabled in hardware, continuing\n");
4852                 adapter->params.offload = 0;
4853         } else {
4854                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4855                                                   adapter->clipt_end);
4856                 if (!adapter->clipt) {
4857                         /* We tolerate a lack of clip_table, giving up
4858                          * some functionality
4859                          */
4860                         dev_warn(&pdev->dev,
4861                                  "could not allocate Clip table, continuing\n");
4862                         adapter->params.offload = 0;
4863                 }
4864         }
4865 #endif
4866
4867         for_each_port(adapter, i) {
4868                 pi = adap2pinfo(adapter, i);
4869                 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
4870                 if (!pi->sched_tbl)
4871                         dev_warn(&pdev->dev,
4872                                  "could not activate scheduling on port %d\n",
4873                                  i);
4874         }
4875
4876         if (tid_init(&adapter->tids) < 0) {
4877                 dev_warn(&pdev->dev, "could not allocate TID table, "
4878                          "continuing\n");
4879                 adapter->params.offload = 0;
4880         } else {
4881                 adapter->tc_u32 = cxgb4_init_tc_u32(adapter,
4882                                                     CXGB4_MAX_LINK_HANDLE);
4883                 if (!adapter->tc_u32)
4884                         dev_warn(&pdev->dev,
4885                                  "could not offload tc u32, continuing\n");
4886         }
4887
4888         if (is_offload(adapter)) {
4889                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4890                         u32 hash_base, hash_reg;
4891
4892                         if (chip <= CHELSIO_T5) {
4893                                 hash_reg = LE_DB_TID_HASHBASE_A;
4894                                 hash_base = t4_read_reg(adapter, hash_reg);
4895                                 adapter->tids.hash_base = hash_base / 4;
4896                         } else {
4897                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4898                                 hash_base = t4_read_reg(adapter, hash_reg);
4899                                 adapter->tids.hash_base = hash_base;
4900                         }
4901                 }
4902         }
4903
4904         /* See what interrupts we'll be using */
4905         if (msi > 1 && enable_msix(adapter) == 0)
4906                 adapter->flags |= USING_MSIX;
4907         else if (msi > 0 && pci_enable_msi(pdev) == 0) {
4908                 adapter->flags |= USING_MSI;
4909                 if (msi > 1)
4910                         free_msix_info(adapter);
4911         }
4912
4913         /* check for PCI Express bandwidth capabiltites */
4914         cxgb4_check_pcie_caps(adapter);
4915
4916         err = init_rss(adapter);
4917         if (err)
4918                 goto out_free_dev;
4919
4920         /*
4921          * The card is now ready to go.  If any errors occur during device
4922          * registration we do not fail the whole card but rather proceed only
4923          * with the ports we manage to register successfully.  However we must
4924          * register at least one net device.
4925          */
4926         for_each_port(adapter, i) {
4927                 pi = adap2pinfo(adapter, i);
4928                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4929                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4930
4931                 err = register_netdev(adapter->port[i]);
4932                 if (err)
4933                         break;
4934                 adapter->chan_map[pi->tx_chan] = i;
4935                 print_port_info(adapter->port[i]);
4936         }
4937         if (i == 0) {
4938                 dev_err(&pdev->dev, "could not register any net devices\n");
4939                 goto out_free_dev;
4940         }
4941         if (err) {
4942                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4943                 err = 0;
4944         }
4945
4946         if (cxgb4_debugfs_root) {
4947                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4948                                                            cxgb4_debugfs_root);
4949                 setup_debugfs(adapter);
4950         }
4951
4952         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4953         pdev->needs_freset = 1;
4954
4955         if (is_uld(adapter)) {
4956                 mutex_lock(&uld_mutex);
4957                 list_add_tail(&adapter->list_node, &adapter_list);
4958                 mutex_unlock(&uld_mutex);
4959         }
4960
4961         print_adapter_info(adapter);
4962         setup_fw_sge_queues(adapter);
4963         return 0;
4964
4965 sriov:
4966 #ifdef CONFIG_PCI_IOV
4967         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) {
4968                 dev_warn(&pdev->dev,
4969                          "Enabling SR-IOV VFs using the num_vf module "
4970                          "parameter is deprecated - please use the pci sysfs "
4971                          "interface instead.\n");
4972                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4973                         dev_info(&pdev->dev,
4974                                  "instantiated %u virtual functions\n",
4975                                  num_vf[func]);
4976         }
4977
4978         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4979         if (!adapter) {
4980                 err = -ENOMEM;
4981                 goto free_pci_region;
4982         }
4983
4984         adapter->pdev = pdev;
4985         adapter->pdev_dev = &pdev->dev;
4986         adapter->name = pci_name(pdev);
4987         adapter->mbox = func;
4988         adapter->pf = func;
4989         adapter->regs = regs;
4990         adapter->adap_idx = adap_idx;
4991         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4992                                     (sizeof(struct mbox_cmd) *
4993                                      T4_OS_LOG_MBOX_CMDS),
4994                                     GFP_KERNEL);
4995         if (!adapter->mbox_log) {
4996                 err = -ENOMEM;
4997                 goto free_adapter;
4998         }
4999         pci_set_drvdata(pdev, adapter);
5000         return 0;
5001
5002  free_adapter:
5003         kfree(adapter);
5004  free_pci_region:
5005         iounmap(regs);
5006         pci_disable_sriov(pdev);
5007         pci_release_regions(pdev);
5008         return err;
5009 #else
5010         return 0;
5011 #endif
5012
5013  out_free_dev:
5014         free_some_resources(adapter);
5015         if (adapter->flags & USING_MSIX)
5016                 free_msix_info(adapter);
5017         if (adapter->num_uld || adapter->num_ofld_uld)
5018                 t4_uld_mem_free(adapter);
5019  out_unmap_bar:
5020         if (!is_t4(adapter->params.chip))
5021                 iounmap(adapter->bar2);
5022  out_free_adapter:
5023         if (adapter->workq)
5024                 destroy_workqueue(adapter->workq);
5025
5026         kfree(adapter->mbox_log);
5027         kfree(adapter);
5028  out_unmap_bar0:
5029         iounmap(regs);
5030  out_disable_device:
5031         pci_disable_pcie_error_reporting(pdev);
5032         pci_disable_device(pdev);
5033  out_release_regions:
5034         pci_release_regions(pdev);
5035         return err;
5036 }
5037
5038 static void remove_one(struct pci_dev *pdev)
5039 {
5040         struct adapter *adapter = pci_get_drvdata(pdev);
5041
5042         if (!adapter) {
5043                 pci_release_regions(pdev);
5044                 return;
5045         }
5046
5047         if (adapter->pf == 4) {
5048                 int i;
5049
5050                 /* Tear down per-adapter Work Queue first since it can contain
5051                  * references to our adapter data structure.
5052                  */
5053                 destroy_workqueue(adapter->workq);
5054
5055                 if (is_uld(adapter))
5056                         detach_ulds(adapter);
5057
5058                 disable_interrupts(adapter);
5059
5060                 for_each_port(adapter, i)
5061                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5062                                 unregister_netdev(adapter->port[i]);
5063
5064                 debugfs_remove_recursive(adapter->debugfs_root);
5065
5066                 /* If we allocated filters, free up state associated with any
5067                  * valid filters ...
5068                  */
5069                 clear_all_filters(adapter);
5070
5071                 if (adapter->flags & FULL_INIT_DONE)
5072                         cxgb_down(adapter);
5073
5074                 if (adapter->flags & USING_MSIX)
5075                         free_msix_info(adapter);
5076                 if (adapter->num_uld || adapter->num_ofld_uld)
5077                         t4_uld_mem_free(adapter);
5078                 free_some_resources(adapter);
5079 #if IS_ENABLED(CONFIG_IPV6)
5080                 t4_cleanup_clip_tbl(adapter);
5081 #endif
5082                 iounmap(adapter->regs);
5083                 if (!is_t4(adapter->params.chip))
5084                         iounmap(adapter->bar2);
5085                 pci_disable_pcie_error_reporting(pdev);
5086                 if ((adapter->flags & DEV_ENABLED)) {
5087                         pci_disable_device(pdev);
5088                         adapter->flags &= ~DEV_ENABLED;
5089                 }
5090                 pci_release_regions(pdev);
5091                 kfree(adapter->mbox_log);
5092                 synchronize_rcu();
5093                 kfree(adapter);
5094         }
5095 #ifdef CONFIG_PCI_IOV
5096         else {
5097                 if (adapter->port[0])
5098                         unregister_netdev(adapter->port[0]);
5099                 iounmap(adapter->regs);
5100                 kfree(adapter->vfinfo);
5101                 kfree(adapter);
5102                 pci_disable_sriov(pdev);
5103                 pci_release_regions(pdev);
5104         }
5105 #endif
5106 }
5107
5108 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5109  * delivery.  This is essentially a stripped down version of the PCI remove()
5110  * function where we do the minimal amount of work necessary to shutdown any
5111  * further activity.
5112  */
5113 static void shutdown_one(struct pci_dev *pdev)
5114 {
5115         struct adapter *adapter = pci_get_drvdata(pdev);
5116
5117         /* As with remove_one() above (see extended comment), we only want do
5118          * do cleanup on PCI Devices which went all the way through init_one()
5119          * ...
5120          */
5121         if (!adapter) {
5122                 pci_release_regions(pdev);
5123                 return;
5124         }
5125
5126         if (adapter->pf == 4) {
5127                 int i;
5128
5129                 for_each_port(adapter, i)
5130                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5131                                 cxgb_close(adapter->port[i]);
5132
5133                 t4_uld_clean_up(adapter);
5134                 disable_interrupts(adapter);
5135                 disable_msi(adapter);
5136
5137                 t4_sge_stop(adapter);
5138                 if (adapter->flags & FW_OK)
5139                         t4_fw_bye(adapter, adapter->mbox);
5140         }
5141 #ifdef CONFIG_PCI_IOV
5142         else {
5143                 if (adapter->port[0])
5144                         unregister_netdev(adapter->port[0]);
5145                 iounmap(adapter->regs);
5146                 kfree(adapter->vfinfo);
5147                 kfree(adapter);
5148                 pci_disable_sriov(pdev);
5149                 pci_release_regions(pdev);
5150         }
5151 #endif
5152 }
5153
5154 static struct pci_driver cxgb4_driver = {
5155         .name     = KBUILD_MODNAME,
5156         .id_table = cxgb4_pci_tbl,
5157         .probe    = init_one,
5158         .remove   = remove_one,
5159         .shutdown = shutdown_one,
5160 #ifdef CONFIG_PCI_IOV
5161         .sriov_configure = cxgb4_iov_configure,
5162 #endif
5163         .err_handler = &cxgb4_eeh,
5164 };
5165
5166 static int __init cxgb4_init_module(void)
5167 {
5168         int ret;
5169
5170         /* Debugfs support is optional, just warn if this fails */
5171         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5172         if (!cxgb4_debugfs_root)
5173                 pr_warn("could not create debugfs entry, continuing\n");
5174
5175         ret = pci_register_driver(&cxgb4_driver);
5176         if (ret < 0)
5177                 debugfs_remove(cxgb4_debugfs_root);
5178
5179 #if IS_ENABLED(CONFIG_IPV6)
5180         if (!inet6addr_registered) {
5181                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5182                 inet6addr_registered = true;
5183         }
5184 #endif
5185
5186         return ret;
5187 }
5188
5189 static void __exit cxgb4_cleanup_module(void)
5190 {
5191 #if IS_ENABLED(CONFIG_IPV6)
5192         if (inet6addr_registered) {
5193                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5194                 inet6addr_registered = false;
5195         }
5196 #endif
5197         pci_unregister_driver(&cxgb4_driver);
5198         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5199 }
5200
5201 module_init(cxgb4_init_module);
5202 module_exit(cxgb4_cleanup_module);