Merge branch 'parisc-4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[cascardo/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F)
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207                          u32 mbox_addr)
208 {
209         for ( ; nflit; nflit--, mbox_addr += 8)
210                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218         struct fw_debug_cmd asrt;
219
220         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221         dev_alert(adap->pdev_dev,
222                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226
227 /**
228  *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229  *      @adapter: the adapter
230  *      @cmd: the Firmware Mailbox Command or Reply
231  *      @size: command length in bytes
232  *      @access: the time (ms) needed to access the Firmware Mailbox
233  *      @execute: the time (ms) the command spent being executed
234  */
235 static void t4_record_mbox(struct adapter *adapter,
236                            const __be64 *cmd, unsigned int size,
237                            int access, int execute)
238 {
239         struct mbox_cmd_log *log = adapter->mbox_log;
240         struct mbox_cmd *entry;
241         int i;
242
243         entry = mbox_cmd_log_entry(log, log->cursor++);
244         if (log->cursor == log->size)
245                 log->cursor = 0;
246
247         for (i = 0; i < size / 8; i++)
248                 entry->cmd[i] = be64_to_cpu(cmd[i]);
249         while (i < MBOX_LEN / 8)
250                 entry->cmd[i++] = 0;
251         entry->timestamp = jiffies;
252         entry->seqno = log->seqno++;
253         entry->access = access;
254         entry->execute = execute;
255 }
256
257 /**
258  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
259  *      @adap: the adapter
260  *      @mbox: index of the mailbox to use
261  *      @cmd: the command to write
262  *      @size: command length in bytes
263  *      @rpl: where to optionally store the reply
264  *      @sleep_ok: if true we may sleep while awaiting command completion
265  *      @timeout: time to wait for command to finish before timing out
266  *
267  *      Sends the given command to FW through the selected mailbox and waits
268  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
269  *      store the FW's reply to the command.  The command and its optional
270  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
271  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
272  *      the response.  If sleeping is allowed we use progressive backoff
273  *      otherwise we spin.
274  *
275  *      The return value is 0 on success or a negative errno on failure.  A
276  *      failure can happen either because we are not able to execute the
277  *      command or FW executes it but signals an error.  In the latter case
278  *      the return value is the error code indicated by FW (negated).
279  */
280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281                             int size, void *rpl, bool sleep_ok, int timeout)
282 {
283         static const int delay[] = {
284                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285         };
286
287         u16 access = 0;
288         u16 execute = 0;
289         u32 v;
290         u64 res;
291         int i, ms, delay_idx, ret;
292         const __be64 *p = cmd;
293         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
294         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
295         __be64 cmd_rpl[MBOX_LEN / 8];
296         u32 pcie_fw;
297
298         if ((size & 15) || size > MBOX_LEN)
299                 return -EINVAL;
300
301         /*
302          * If the device is off-line, as in EEH, commands will time out.
303          * Fail them early so we don't waste time waiting.
304          */
305         if (adap->pdev->error_state != pci_channel_io_normal)
306                 return -EIO;
307
308         /* If we have a negative timeout, that implies that we can't sleep. */
309         if (timeout < 0) {
310                 sleep_ok = false;
311                 timeout = -timeout;
312         }
313
314         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
315         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
316                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
317
318         if (v != MBOX_OWNER_DRV) {
319                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
320                 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
321                 return ret;
322         }
323
324         /* Copy in the new mailbox command and send it on its way ... */
325         t4_record_mbox(adap, cmd, MBOX_LEN, access, 0);
326         for (i = 0; i < size; i += 8)
327                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
328
329         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
330         t4_read_reg(adap, ctl_reg);          /* flush write */
331
332         delay_idx = 0;
333         ms = delay[0];
334
335         for (i = 0;
336              !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
337              i < timeout;
338              i += ms) {
339                 if (sleep_ok) {
340                         ms = delay[delay_idx];  /* last element may repeat */
341                         if (delay_idx < ARRAY_SIZE(delay) - 1)
342                                 delay_idx++;
343                         msleep(ms);
344                 } else
345                         mdelay(ms);
346
347                 v = t4_read_reg(adap, ctl_reg);
348                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
349                         if (!(v & MBMSGVALID_F)) {
350                                 t4_write_reg(adap, ctl_reg, 0);
351                                 continue;
352                         }
353
354                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
355                         res = be64_to_cpu(cmd_rpl[0]);
356
357                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
358                                 fw_asrt(adap, data_reg);
359                                 res = FW_CMD_RETVAL_V(EIO);
360                         } else if (rpl) {
361                                 memcpy(rpl, cmd_rpl, size);
362                         }
363
364                         t4_write_reg(adap, ctl_reg, 0);
365
366                         execute = i + ms;
367                         t4_record_mbox(adap, cmd_rpl,
368                                        MBOX_LEN, access, execute);
369                         return -FW_CMD_RETVAL_G((int)res);
370                 }
371         }
372
373         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
374         t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
375         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
376                 *(const u8 *)cmd, mbox);
377         t4_report_fw_error(adap);
378         return ret;
379 }
380
381 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
382                     void *rpl, bool sleep_ok)
383 {
384         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
385                                        FW_CMD_MAX_TIMEOUT);
386 }
387
388 static int t4_edc_err_read(struct adapter *adap, int idx)
389 {
390         u32 edc_ecc_err_addr_reg;
391         u32 rdata_reg;
392
393         if (is_t4(adap->params.chip)) {
394                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
395                 return 0;
396         }
397         if (idx != 0 && idx != 1) {
398                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
399                 return 0;
400         }
401
402         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
403         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
404
405         CH_WARN(adap,
406                 "edc%d err addr 0x%x: 0x%x.\n",
407                 idx, edc_ecc_err_addr_reg,
408                 t4_read_reg(adap, edc_ecc_err_addr_reg));
409         CH_WARN(adap,
410                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
411                 rdata_reg,
412                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
413                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
414                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
415                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
416                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
417                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
418                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
419                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
420                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
421
422         return 0;
423 }
424
425 /**
426  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
427  *      @adap: the adapter
428  *      @win: PCI-E Memory Window to use
429  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
430  *      @addr: address within indicated memory type
431  *      @len: amount of memory to transfer
432  *      @hbuf: host memory buffer
433  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
434  *
435  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
436  *      firmware memory address and host buffer must be aligned on 32-bit
437  *      boudaries; the length may be arbitrary.  The memory is transferred as
438  *      a raw byte sequence from/to the firmware's memory.  If this memory
439  *      contains data structures which contain multi-byte integers, it's the
440  *      caller's responsibility to perform appropriate byte order conversions.
441  */
442 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
443                  u32 len, void *hbuf, int dir)
444 {
445         u32 pos, offset, resid, memoffset;
446         u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
447         u32 *buf;
448
449         /* Argument sanity checks ...
450          */
451         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
452                 return -EINVAL;
453         buf = (u32 *)hbuf;
454
455         /* It's convenient to be able to handle lengths which aren't a
456          * multiple of 32-bits because we often end up transferring files to
457          * the firmware.  So we'll handle that by normalizing the length here
458          * and then handling any residual transfer at the end.
459          */
460         resid = len & 0x3;
461         len -= resid;
462
463         /* Offset into the region of memory which is being accessed
464          * MEM_EDC0 = 0
465          * MEM_EDC1 = 1
466          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
467          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
468          */
469         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
470         if (mtype != MEM_MC1)
471                 memoffset = (mtype * (edc_size * 1024 * 1024));
472         else {
473                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
474                                                       MA_EXT_MEMORY0_BAR_A));
475                 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
476         }
477
478         /* Determine the PCIE_MEM_ACCESS_OFFSET */
479         addr = addr + memoffset;
480
481         /* Each PCI-E Memory Window is programmed with a window size -- or
482          * "aperture" -- which controls the granularity of its mapping onto
483          * adapter memory.  We need to grab that aperture in order to know
484          * how to use the specified window.  The window is also programmed
485          * with the base address of the Memory Window in BAR0's address
486          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
487          * the address is relative to BAR0.
488          */
489         mem_reg = t4_read_reg(adap,
490                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
491                                                   win));
492         mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
493         mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
494         if (is_t4(adap->params.chip))
495                 mem_base -= adap->t4_bar0;
496         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
497
498         /* Calculate our initial PCI-E Memory Window Position and Offset into
499          * that Window.
500          */
501         pos = addr & ~(mem_aperture-1);
502         offset = addr - pos;
503
504         /* Set up initial PCI-E Memory Window to cover the start of our
505          * transfer.  (Read it back to ensure that changes propagate before we
506          * attempt to use the new value.)
507          */
508         t4_write_reg(adap,
509                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
510                      pos | win_pf);
511         t4_read_reg(adap,
512                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
513
514         /* Transfer data to/from the adapter as long as there's an integral
515          * number of 32-bit transfers to complete.
516          *
517          * A note on Endianness issues:
518          *
519          * The "register" reads and writes below from/to the PCI-E Memory
520          * Window invoke the standard adapter Big-Endian to PCI-E Link
521          * Little-Endian "swizzel."  As a result, if we have the following
522          * data in adapter memory:
523          *
524          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
525          *     Address:      i+0  i+1  i+2  i+3
526          *
527          * Then a read of the adapter memory via the PCI-E Memory Window
528          * will yield:
529          *
530          *     x = readl(i)
531          *         31                  0
532          *         [ b3 | b2 | b1 | b0 ]
533          *
534          * If this value is stored into local memory on a Little-Endian system
535          * it will show up correctly in local memory as:
536          *
537          *     ( ..., b0, b1, b2, b3, ... )
538          *
539          * But on a Big-Endian system, the store will show up in memory
540          * incorrectly swizzled as:
541          *
542          *     ( ..., b3, b2, b1, b0, ... )
543          *
544          * So we need to account for this in the reads and writes to the
545          * PCI-E Memory Window below by undoing the register read/write
546          * swizzels.
547          */
548         while (len > 0) {
549                 if (dir == T4_MEMORY_READ)
550                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
551                                                 mem_base + offset));
552                 else
553                         t4_write_reg(adap, mem_base + offset,
554                                      (__force u32)cpu_to_le32(*buf++));
555                 offset += sizeof(__be32);
556                 len -= sizeof(__be32);
557
558                 /* If we've reached the end of our current window aperture,
559                  * move the PCI-E Memory Window on to the next.  Note that
560                  * doing this here after "len" may be 0 allows us to set up
561                  * the PCI-E Memory Window for a possible final residual
562                  * transfer below ...
563                  */
564                 if (offset == mem_aperture) {
565                         pos += mem_aperture;
566                         offset = 0;
567                         t4_write_reg(adap,
568                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
569                                                     win), pos | win_pf);
570                         t4_read_reg(adap,
571                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
572                                                     win));
573                 }
574         }
575
576         /* If the original transfer had a length which wasn't a multiple of
577          * 32-bits, now's where we need to finish off the transfer of the
578          * residual amount.  The PCI-E Memory Window has already been moved
579          * above (if necessary) to cover this final transfer.
580          */
581         if (resid) {
582                 union {
583                         u32 word;
584                         char byte[4];
585                 } last;
586                 unsigned char *bp;
587                 int i;
588
589                 if (dir == T4_MEMORY_READ) {
590                         last.word = le32_to_cpu(
591                                         (__force __le32)t4_read_reg(adap,
592                                                 mem_base + offset));
593                         for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
594                                 bp[i] = last.byte[i];
595                 } else {
596                         last.word = *buf;
597                         for (i = resid; i < 4; i++)
598                                 last.byte[i] = 0;
599                         t4_write_reg(adap, mem_base + offset,
600                                      (__force u32)cpu_to_le32(last.word));
601                 }
602         }
603
604         return 0;
605 }
606
607 /* Return the specified PCI-E Configuration Space register from our Physical
608  * Function.  We try first via a Firmware LDST Command since we prefer to let
609  * the firmware own all of these registers, but if that fails we go for it
610  * directly ourselves.
611  */
612 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
613 {
614         u32 val, ldst_addrspace;
615
616         /* If fw_attach != 0, construct and send the Firmware LDST Command to
617          * retrieve the specified PCI-E Configuration Space register.
618          */
619         struct fw_ldst_cmd ldst_cmd;
620         int ret;
621
622         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
623         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
624         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
625                                                FW_CMD_REQUEST_F |
626                                                FW_CMD_READ_F |
627                                                ldst_addrspace);
628         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
629         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
630         ldst_cmd.u.pcie.ctrl_to_fn =
631                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
632         ldst_cmd.u.pcie.r = reg;
633
634         /* If the LDST Command succeeds, return the result, otherwise
635          * fall through to reading it directly ourselves ...
636          */
637         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
638                          &ldst_cmd);
639         if (ret == 0)
640                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
641         else
642                 /* Read the desired Configuration Space register via the PCI-E
643                  * Backdoor mechanism.
644                  */
645                 t4_hw_pci_read_cfg4(adap, reg, &val);
646         return val;
647 }
648
649 /* Get the window based on base passed to it.
650  * Window aperture is currently unhandled, but there is no use case for it
651  * right now
652  */
653 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
654                          u32 memwin_base)
655 {
656         u32 ret;
657
658         if (is_t4(adap->params.chip)) {
659                 u32 bar0;
660
661                 /* Truncation intentional: we only read the bottom 32-bits of
662                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
663                  * mechanism to read BAR0 instead of using
664                  * pci_resource_start() because we could be operating from
665                  * within a Virtual Machine which is trapping our accesses to
666                  * our Configuration Space and we need to set up the PCI-E
667                  * Memory Window decoders with the actual addresses which will
668                  * be coming across the PCI-E link.
669                  */
670                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
671                 bar0 &= pci_mask;
672                 adap->t4_bar0 = bar0;
673
674                 ret = bar0 + memwin_base;
675         } else {
676                 /* For T5, only relative offset inside the PCIe BAR is passed */
677                 ret = memwin_base;
678         }
679         return ret;
680 }
681
682 /* Get the default utility window (win0) used by everyone */
683 u32 t4_get_util_window(struct adapter *adap)
684 {
685         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
686                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
687 }
688
689 /* Set up memory window for accessing adapter memory ranges.  (Read
690  * back MA register to ensure that changes propagate before we attempt
691  * to use the new values.)
692  */
693 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
694 {
695         t4_write_reg(adap,
696                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
697                      memwin_base | BIR_V(0) |
698                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
699         t4_read_reg(adap,
700                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
701 }
702
703 /**
704  *      t4_get_regs_len - return the size of the chips register set
705  *      @adapter: the adapter
706  *
707  *      Returns the size of the chip's BAR0 register space.
708  */
709 unsigned int t4_get_regs_len(struct adapter *adapter)
710 {
711         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
712
713         switch (chip_version) {
714         case CHELSIO_T4:
715                 return T4_REGMAP_SIZE;
716
717         case CHELSIO_T5:
718         case CHELSIO_T6:
719                 return T5_REGMAP_SIZE;
720         }
721
722         dev_err(adapter->pdev_dev,
723                 "Unsupported chip version %d\n", chip_version);
724         return 0;
725 }
726
727 /**
728  *      t4_get_regs - read chip registers into provided buffer
729  *      @adap: the adapter
730  *      @buf: register buffer
731  *      @buf_size: size (in bytes) of register buffer
732  *
733  *      If the provided register buffer isn't large enough for the chip's
734  *      full register range, the register dump will be truncated to the
735  *      register buffer's size.
736  */
737 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
738 {
739         static const unsigned int t4_reg_ranges[] = {
740                 0x1008, 0x1108,
741                 0x1180, 0x1184,
742                 0x1190, 0x1194,
743                 0x11a0, 0x11a4,
744                 0x11b0, 0x11b4,
745                 0x11fc, 0x123c,
746                 0x1300, 0x173c,
747                 0x1800, 0x18fc,
748                 0x3000, 0x30d8,
749                 0x30e0, 0x30e4,
750                 0x30ec, 0x5910,
751                 0x5920, 0x5924,
752                 0x5960, 0x5960,
753                 0x5968, 0x5968,
754                 0x5970, 0x5970,
755                 0x5978, 0x5978,
756                 0x5980, 0x5980,
757                 0x5988, 0x5988,
758                 0x5990, 0x5990,
759                 0x5998, 0x5998,
760                 0x59a0, 0x59d4,
761                 0x5a00, 0x5ae0,
762                 0x5ae8, 0x5ae8,
763                 0x5af0, 0x5af0,
764                 0x5af8, 0x5af8,
765                 0x6000, 0x6098,
766                 0x6100, 0x6150,
767                 0x6200, 0x6208,
768                 0x6240, 0x6248,
769                 0x6280, 0x62b0,
770                 0x62c0, 0x6338,
771                 0x6370, 0x638c,
772                 0x6400, 0x643c,
773                 0x6500, 0x6524,
774                 0x6a00, 0x6a04,
775                 0x6a14, 0x6a38,
776                 0x6a60, 0x6a70,
777                 0x6a78, 0x6a78,
778                 0x6b00, 0x6b0c,
779                 0x6b1c, 0x6b84,
780                 0x6bf0, 0x6bf8,
781                 0x6c00, 0x6c0c,
782                 0x6c1c, 0x6c84,
783                 0x6cf0, 0x6cf8,
784                 0x6d00, 0x6d0c,
785                 0x6d1c, 0x6d84,
786                 0x6df0, 0x6df8,
787                 0x6e00, 0x6e0c,
788                 0x6e1c, 0x6e84,
789                 0x6ef0, 0x6ef8,
790                 0x6f00, 0x6f0c,
791                 0x6f1c, 0x6f84,
792                 0x6ff0, 0x6ff8,
793                 0x7000, 0x700c,
794                 0x701c, 0x7084,
795                 0x70f0, 0x70f8,
796                 0x7100, 0x710c,
797                 0x711c, 0x7184,
798                 0x71f0, 0x71f8,
799                 0x7200, 0x720c,
800                 0x721c, 0x7284,
801                 0x72f0, 0x72f8,
802                 0x7300, 0x730c,
803                 0x731c, 0x7384,
804                 0x73f0, 0x73f8,
805                 0x7400, 0x7450,
806                 0x7500, 0x7530,
807                 0x7600, 0x760c,
808                 0x7614, 0x761c,
809                 0x7680, 0x76cc,
810                 0x7700, 0x7798,
811                 0x77c0, 0x77fc,
812                 0x7900, 0x79fc,
813                 0x7b00, 0x7b58,
814                 0x7b60, 0x7b84,
815                 0x7b8c, 0x7c38,
816                 0x7d00, 0x7d38,
817                 0x7d40, 0x7d80,
818                 0x7d8c, 0x7ddc,
819                 0x7de4, 0x7e04,
820                 0x7e10, 0x7e1c,
821                 0x7e24, 0x7e38,
822                 0x7e40, 0x7e44,
823                 0x7e4c, 0x7e78,
824                 0x7e80, 0x7ea4,
825                 0x7eac, 0x7edc,
826                 0x7ee8, 0x7efc,
827                 0x8dc0, 0x8e04,
828                 0x8e10, 0x8e1c,
829                 0x8e30, 0x8e78,
830                 0x8ea0, 0x8eb8,
831                 0x8ec0, 0x8f6c,
832                 0x8fc0, 0x9008,
833                 0x9010, 0x9058,
834                 0x9060, 0x9060,
835                 0x9068, 0x9074,
836                 0x90fc, 0x90fc,
837                 0x9400, 0x9408,
838                 0x9410, 0x9458,
839                 0x9600, 0x9600,
840                 0x9608, 0x9638,
841                 0x9640, 0x96bc,
842                 0x9800, 0x9808,
843                 0x9820, 0x983c,
844                 0x9850, 0x9864,
845                 0x9c00, 0x9c6c,
846                 0x9c80, 0x9cec,
847                 0x9d00, 0x9d6c,
848                 0x9d80, 0x9dec,
849                 0x9e00, 0x9e6c,
850                 0x9e80, 0x9eec,
851                 0x9f00, 0x9f6c,
852                 0x9f80, 0x9fec,
853                 0xd004, 0xd004,
854                 0xd010, 0xd03c,
855                 0xdfc0, 0xdfe0,
856                 0xe000, 0xea7c,
857                 0xf000, 0x11190,
858                 0x19040, 0x1906c,
859                 0x19078, 0x19080,
860                 0x1908c, 0x190e4,
861                 0x190f0, 0x190f8,
862                 0x19100, 0x19110,
863                 0x19120, 0x19124,
864                 0x19150, 0x19194,
865                 0x1919c, 0x191b0,
866                 0x191d0, 0x191e8,
867                 0x19238, 0x1924c,
868                 0x193f8, 0x1943c,
869                 0x1944c, 0x19474,
870                 0x19490, 0x194e0,
871                 0x194f0, 0x194f8,
872                 0x19800, 0x19c08,
873                 0x19c10, 0x19c90,
874                 0x19ca0, 0x19ce4,
875                 0x19cf0, 0x19d40,
876                 0x19d50, 0x19d94,
877                 0x19da0, 0x19de8,
878                 0x19df0, 0x19e40,
879                 0x19e50, 0x19e90,
880                 0x19ea0, 0x19f4c,
881                 0x1a000, 0x1a004,
882                 0x1a010, 0x1a06c,
883                 0x1a0b0, 0x1a0e4,
884                 0x1a0ec, 0x1a0f4,
885                 0x1a100, 0x1a108,
886                 0x1a114, 0x1a120,
887                 0x1a128, 0x1a130,
888                 0x1a138, 0x1a138,
889                 0x1a190, 0x1a1c4,
890                 0x1a1fc, 0x1a1fc,
891                 0x1e040, 0x1e04c,
892                 0x1e284, 0x1e28c,
893                 0x1e2c0, 0x1e2c0,
894                 0x1e2e0, 0x1e2e0,
895                 0x1e300, 0x1e384,
896                 0x1e3c0, 0x1e3c8,
897                 0x1e440, 0x1e44c,
898                 0x1e684, 0x1e68c,
899                 0x1e6c0, 0x1e6c0,
900                 0x1e6e0, 0x1e6e0,
901                 0x1e700, 0x1e784,
902                 0x1e7c0, 0x1e7c8,
903                 0x1e840, 0x1e84c,
904                 0x1ea84, 0x1ea8c,
905                 0x1eac0, 0x1eac0,
906                 0x1eae0, 0x1eae0,
907                 0x1eb00, 0x1eb84,
908                 0x1ebc0, 0x1ebc8,
909                 0x1ec40, 0x1ec4c,
910                 0x1ee84, 0x1ee8c,
911                 0x1eec0, 0x1eec0,
912                 0x1eee0, 0x1eee0,
913                 0x1ef00, 0x1ef84,
914                 0x1efc0, 0x1efc8,
915                 0x1f040, 0x1f04c,
916                 0x1f284, 0x1f28c,
917                 0x1f2c0, 0x1f2c0,
918                 0x1f2e0, 0x1f2e0,
919                 0x1f300, 0x1f384,
920                 0x1f3c0, 0x1f3c8,
921                 0x1f440, 0x1f44c,
922                 0x1f684, 0x1f68c,
923                 0x1f6c0, 0x1f6c0,
924                 0x1f6e0, 0x1f6e0,
925                 0x1f700, 0x1f784,
926                 0x1f7c0, 0x1f7c8,
927                 0x1f840, 0x1f84c,
928                 0x1fa84, 0x1fa8c,
929                 0x1fac0, 0x1fac0,
930                 0x1fae0, 0x1fae0,
931                 0x1fb00, 0x1fb84,
932                 0x1fbc0, 0x1fbc8,
933                 0x1fc40, 0x1fc4c,
934                 0x1fe84, 0x1fe8c,
935                 0x1fec0, 0x1fec0,
936                 0x1fee0, 0x1fee0,
937                 0x1ff00, 0x1ff84,
938                 0x1ffc0, 0x1ffc8,
939                 0x20000, 0x2002c,
940                 0x20100, 0x2013c,
941                 0x20190, 0x201a0,
942                 0x201a8, 0x201b8,
943                 0x201c4, 0x201c8,
944                 0x20200, 0x20318,
945                 0x20400, 0x204b4,
946                 0x204c0, 0x20528,
947                 0x20540, 0x20614,
948                 0x21000, 0x21040,
949                 0x2104c, 0x21060,
950                 0x210c0, 0x210ec,
951                 0x21200, 0x21268,
952                 0x21270, 0x21284,
953                 0x212fc, 0x21388,
954                 0x21400, 0x21404,
955                 0x21500, 0x21500,
956                 0x21510, 0x21518,
957                 0x2152c, 0x21530,
958                 0x2153c, 0x2153c,
959                 0x21550, 0x21554,
960                 0x21600, 0x21600,
961                 0x21608, 0x2161c,
962                 0x21624, 0x21628,
963                 0x21630, 0x21634,
964                 0x2163c, 0x2163c,
965                 0x21700, 0x2171c,
966                 0x21780, 0x2178c,
967                 0x21800, 0x21818,
968                 0x21820, 0x21828,
969                 0x21830, 0x21848,
970                 0x21850, 0x21854,
971                 0x21860, 0x21868,
972                 0x21870, 0x21870,
973                 0x21878, 0x21898,
974                 0x218a0, 0x218a8,
975                 0x218b0, 0x218c8,
976                 0x218d0, 0x218d4,
977                 0x218e0, 0x218e8,
978                 0x218f0, 0x218f0,
979                 0x218f8, 0x21a18,
980                 0x21a20, 0x21a28,
981                 0x21a30, 0x21a48,
982                 0x21a50, 0x21a54,
983                 0x21a60, 0x21a68,
984                 0x21a70, 0x21a70,
985                 0x21a78, 0x21a98,
986                 0x21aa0, 0x21aa8,
987                 0x21ab0, 0x21ac8,
988                 0x21ad0, 0x21ad4,
989                 0x21ae0, 0x21ae8,
990                 0x21af0, 0x21af0,
991                 0x21af8, 0x21c18,
992                 0x21c20, 0x21c20,
993                 0x21c28, 0x21c30,
994                 0x21c38, 0x21c38,
995                 0x21c80, 0x21c98,
996                 0x21ca0, 0x21ca8,
997                 0x21cb0, 0x21cc8,
998                 0x21cd0, 0x21cd4,
999                 0x21ce0, 0x21ce8,
1000                 0x21cf0, 0x21cf0,
1001                 0x21cf8, 0x21d7c,
1002                 0x21e00, 0x21e04,
1003                 0x22000, 0x2202c,
1004                 0x22100, 0x2213c,
1005                 0x22190, 0x221a0,
1006                 0x221a8, 0x221b8,
1007                 0x221c4, 0x221c8,
1008                 0x22200, 0x22318,
1009                 0x22400, 0x224b4,
1010                 0x224c0, 0x22528,
1011                 0x22540, 0x22614,
1012                 0x23000, 0x23040,
1013                 0x2304c, 0x23060,
1014                 0x230c0, 0x230ec,
1015                 0x23200, 0x23268,
1016                 0x23270, 0x23284,
1017                 0x232fc, 0x23388,
1018                 0x23400, 0x23404,
1019                 0x23500, 0x23500,
1020                 0x23510, 0x23518,
1021                 0x2352c, 0x23530,
1022                 0x2353c, 0x2353c,
1023                 0x23550, 0x23554,
1024                 0x23600, 0x23600,
1025                 0x23608, 0x2361c,
1026                 0x23624, 0x23628,
1027                 0x23630, 0x23634,
1028                 0x2363c, 0x2363c,
1029                 0x23700, 0x2371c,
1030                 0x23780, 0x2378c,
1031                 0x23800, 0x23818,
1032                 0x23820, 0x23828,
1033                 0x23830, 0x23848,
1034                 0x23850, 0x23854,
1035                 0x23860, 0x23868,
1036                 0x23870, 0x23870,
1037                 0x23878, 0x23898,
1038                 0x238a0, 0x238a8,
1039                 0x238b0, 0x238c8,
1040                 0x238d0, 0x238d4,
1041                 0x238e0, 0x238e8,
1042                 0x238f0, 0x238f0,
1043                 0x238f8, 0x23a18,
1044                 0x23a20, 0x23a28,
1045                 0x23a30, 0x23a48,
1046                 0x23a50, 0x23a54,
1047                 0x23a60, 0x23a68,
1048                 0x23a70, 0x23a70,
1049                 0x23a78, 0x23a98,
1050                 0x23aa0, 0x23aa8,
1051                 0x23ab0, 0x23ac8,
1052                 0x23ad0, 0x23ad4,
1053                 0x23ae0, 0x23ae8,
1054                 0x23af0, 0x23af0,
1055                 0x23af8, 0x23c18,
1056                 0x23c20, 0x23c20,
1057                 0x23c28, 0x23c30,
1058                 0x23c38, 0x23c38,
1059                 0x23c80, 0x23c98,
1060                 0x23ca0, 0x23ca8,
1061                 0x23cb0, 0x23cc8,
1062                 0x23cd0, 0x23cd4,
1063                 0x23ce0, 0x23ce8,
1064                 0x23cf0, 0x23cf0,
1065                 0x23cf8, 0x23d7c,
1066                 0x23e00, 0x23e04,
1067                 0x24000, 0x2402c,
1068                 0x24100, 0x2413c,
1069                 0x24190, 0x241a0,
1070                 0x241a8, 0x241b8,
1071                 0x241c4, 0x241c8,
1072                 0x24200, 0x24318,
1073                 0x24400, 0x244b4,
1074                 0x244c0, 0x24528,
1075                 0x24540, 0x24614,
1076                 0x25000, 0x25040,
1077                 0x2504c, 0x25060,
1078                 0x250c0, 0x250ec,
1079                 0x25200, 0x25268,
1080                 0x25270, 0x25284,
1081                 0x252fc, 0x25388,
1082                 0x25400, 0x25404,
1083                 0x25500, 0x25500,
1084                 0x25510, 0x25518,
1085                 0x2552c, 0x25530,
1086                 0x2553c, 0x2553c,
1087                 0x25550, 0x25554,
1088                 0x25600, 0x25600,
1089                 0x25608, 0x2561c,
1090                 0x25624, 0x25628,
1091                 0x25630, 0x25634,
1092                 0x2563c, 0x2563c,
1093                 0x25700, 0x2571c,
1094                 0x25780, 0x2578c,
1095                 0x25800, 0x25818,
1096                 0x25820, 0x25828,
1097                 0x25830, 0x25848,
1098                 0x25850, 0x25854,
1099                 0x25860, 0x25868,
1100                 0x25870, 0x25870,
1101                 0x25878, 0x25898,
1102                 0x258a0, 0x258a8,
1103                 0x258b0, 0x258c8,
1104                 0x258d0, 0x258d4,
1105                 0x258e0, 0x258e8,
1106                 0x258f0, 0x258f0,
1107                 0x258f8, 0x25a18,
1108                 0x25a20, 0x25a28,
1109                 0x25a30, 0x25a48,
1110                 0x25a50, 0x25a54,
1111                 0x25a60, 0x25a68,
1112                 0x25a70, 0x25a70,
1113                 0x25a78, 0x25a98,
1114                 0x25aa0, 0x25aa8,
1115                 0x25ab0, 0x25ac8,
1116                 0x25ad0, 0x25ad4,
1117                 0x25ae0, 0x25ae8,
1118                 0x25af0, 0x25af0,
1119                 0x25af8, 0x25c18,
1120                 0x25c20, 0x25c20,
1121                 0x25c28, 0x25c30,
1122                 0x25c38, 0x25c38,
1123                 0x25c80, 0x25c98,
1124                 0x25ca0, 0x25ca8,
1125                 0x25cb0, 0x25cc8,
1126                 0x25cd0, 0x25cd4,
1127                 0x25ce0, 0x25ce8,
1128                 0x25cf0, 0x25cf0,
1129                 0x25cf8, 0x25d7c,
1130                 0x25e00, 0x25e04,
1131                 0x26000, 0x2602c,
1132                 0x26100, 0x2613c,
1133                 0x26190, 0x261a0,
1134                 0x261a8, 0x261b8,
1135                 0x261c4, 0x261c8,
1136                 0x26200, 0x26318,
1137                 0x26400, 0x264b4,
1138                 0x264c0, 0x26528,
1139                 0x26540, 0x26614,
1140                 0x27000, 0x27040,
1141                 0x2704c, 0x27060,
1142                 0x270c0, 0x270ec,
1143                 0x27200, 0x27268,
1144                 0x27270, 0x27284,
1145                 0x272fc, 0x27388,
1146                 0x27400, 0x27404,
1147                 0x27500, 0x27500,
1148                 0x27510, 0x27518,
1149                 0x2752c, 0x27530,
1150                 0x2753c, 0x2753c,
1151                 0x27550, 0x27554,
1152                 0x27600, 0x27600,
1153                 0x27608, 0x2761c,
1154                 0x27624, 0x27628,
1155                 0x27630, 0x27634,
1156                 0x2763c, 0x2763c,
1157                 0x27700, 0x2771c,
1158                 0x27780, 0x2778c,
1159                 0x27800, 0x27818,
1160                 0x27820, 0x27828,
1161                 0x27830, 0x27848,
1162                 0x27850, 0x27854,
1163                 0x27860, 0x27868,
1164                 0x27870, 0x27870,
1165                 0x27878, 0x27898,
1166                 0x278a0, 0x278a8,
1167                 0x278b0, 0x278c8,
1168                 0x278d0, 0x278d4,
1169                 0x278e0, 0x278e8,
1170                 0x278f0, 0x278f0,
1171                 0x278f8, 0x27a18,
1172                 0x27a20, 0x27a28,
1173                 0x27a30, 0x27a48,
1174                 0x27a50, 0x27a54,
1175                 0x27a60, 0x27a68,
1176                 0x27a70, 0x27a70,
1177                 0x27a78, 0x27a98,
1178                 0x27aa0, 0x27aa8,
1179                 0x27ab0, 0x27ac8,
1180                 0x27ad0, 0x27ad4,
1181                 0x27ae0, 0x27ae8,
1182                 0x27af0, 0x27af0,
1183                 0x27af8, 0x27c18,
1184                 0x27c20, 0x27c20,
1185                 0x27c28, 0x27c30,
1186                 0x27c38, 0x27c38,
1187                 0x27c80, 0x27c98,
1188                 0x27ca0, 0x27ca8,
1189                 0x27cb0, 0x27cc8,
1190                 0x27cd0, 0x27cd4,
1191                 0x27ce0, 0x27ce8,
1192                 0x27cf0, 0x27cf0,
1193                 0x27cf8, 0x27d7c,
1194                 0x27e00, 0x27e04,
1195         };
1196
1197         static const unsigned int t5_reg_ranges[] = {
1198                 0x1008, 0x10c0,
1199                 0x10cc, 0x10f8,
1200                 0x1100, 0x1100,
1201                 0x110c, 0x1148,
1202                 0x1180, 0x1184,
1203                 0x1190, 0x1194,
1204                 0x11a0, 0x11a4,
1205                 0x11b0, 0x11b4,
1206                 0x11fc, 0x123c,
1207                 0x1280, 0x173c,
1208                 0x1800, 0x18fc,
1209                 0x3000, 0x3028,
1210                 0x3060, 0x30b0,
1211                 0x30b8, 0x30d8,
1212                 0x30e0, 0x30fc,
1213                 0x3140, 0x357c,
1214                 0x35a8, 0x35cc,
1215                 0x35ec, 0x35ec,
1216                 0x3600, 0x5624,
1217                 0x56cc, 0x56ec,
1218                 0x56f4, 0x5720,
1219                 0x5728, 0x575c,
1220                 0x580c, 0x5814,
1221                 0x5890, 0x589c,
1222                 0x58a4, 0x58ac,
1223                 0x58b8, 0x58bc,
1224                 0x5940, 0x59c8,
1225                 0x59d0, 0x59dc,
1226                 0x59fc, 0x5a18,
1227                 0x5a60, 0x5a70,
1228                 0x5a80, 0x5a9c,
1229                 0x5b94, 0x5bfc,
1230                 0x6000, 0x6020,
1231                 0x6028, 0x6040,
1232                 0x6058, 0x609c,
1233                 0x60a8, 0x614c,
1234                 0x7700, 0x7798,
1235                 0x77c0, 0x78fc,
1236                 0x7b00, 0x7b58,
1237                 0x7b60, 0x7b84,
1238                 0x7b8c, 0x7c54,
1239                 0x7d00, 0x7d38,
1240                 0x7d40, 0x7d80,
1241                 0x7d8c, 0x7ddc,
1242                 0x7de4, 0x7e04,
1243                 0x7e10, 0x7e1c,
1244                 0x7e24, 0x7e38,
1245                 0x7e40, 0x7e44,
1246                 0x7e4c, 0x7e78,
1247                 0x7e80, 0x7edc,
1248                 0x7ee8, 0x7efc,
1249                 0x8dc0, 0x8de0,
1250                 0x8df8, 0x8e04,
1251                 0x8e10, 0x8e84,
1252                 0x8ea0, 0x8f84,
1253                 0x8fc0, 0x9058,
1254                 0x9060, 0x9060,
1255                 0x9068, 0x90f8,
1256                 0x9400, 0x9408,
1257                 0x9410, 0x9470,
1258                 0x9600, 0x9600,
1259                 0x9608, 0x9638,
1260                 0x9640, 0x96f4,
1261                 0x9800, 0x9808,
1262                 0x9820, 0x983c,
1263                 0x9850, 0x9864,
1264                 0x9c00, 0x9c6c,
1265                 0x9c80, 0x9cec,
1266                 0x9d00, 0x9d6c,
1267                 0x9d80, 0x9dec,
1268                 0x9e00, 0x9e6c,
1269                 0x9e80, 0x9eec,
1270                 0x9f00, 0x9f6c,
1271                 0x9f80, 0xa020,
1272                 0xd004, 0xd004,
1273                 0xd010, 0xd03c,
1274                 0xdfc0, 0xdfe0,
1275                 0xe000, 0x1106c,
1276                 0x11074, 0x11088,
1277                 0x1109c, 0x1117c,
1278                 0x11190, 0x11204,
1279                 0x19040, 0x1906c,
1280                 0x19078, 0x19080,
1281                 0x1908c, 0x190e8,
1282                 0x190f0, 0x190f8,
1283                 0x19100, 0x19110,
1284                 0x19120, 0x19124,
1285                 0x19150, 0x19194,
1286                 0x1919c, 0x191b0,
1287                 0x191d0, 0x191e8,
1288                 0x19238, 0x19290,
1289                 0x193f8, 0x19428,
1290                 0x19430, 0x19444,
1291                 0x1944c, 0x1946c,
1292                 0x19474, 0x19474,
1293                 0x19490, 0x194cc,
1294                 0x194f0, 0x194f8,
1295                 0x19c00, 0x19c08,
1296                 0x19c10, 0x19c60,
1297                 0x19c94, 0x19ce4,
1298                 0x19cf0, 0x19d40,
1299                 0x19d50, 0x19d94,
1300                 0x19da0, 0x19de8,
1301                 0x19df0, 0x19e10,
1302                 0x19e50, 0x19e90,
1303                 0x19ea0, 0x19f24,
1304                 0x19f34, 0x19f34,
1305                 0x19f40, 0x19f50,
1306                 0x19f90, 0x19fb4,
1307                 0x19fc4, 0x19fe4,
1308                 0x1a000, 0x1a004,
1309                 0x1a010, 0x1a06c,
1310                 0x1a0b0, 0x1a0e4,
1311                 0x1a0ec, 0x1a0f8,
1312                 0x1a100, 0x1a108,
1313                 0x1a114, 0x1a120,
1314                 0x1a128, 0x1a130,
1315                 0x1a138, 0x1a138,
1316                 0x1a190, 0x1a1c4,
1317                 0x1a1fc, 0x1a1fc,
1318                 0x1e008, 0x1e00c,
1319                 0x1e040, 0x1e044,
1320                 0x1e04c, 0x1e04c,
1321                 0x1e284, 0x1e290,
1322                 0x1e2c0, 0x1e2c0,
1323                 0x1e2e0, 0x1e2e0,
1324                 0x1e300, 0x1e384,
1325                 0x1e3c0, 0x1e3c8,
1326                 0x1e408, 0x1e40c,
1327                 0x1e440, 0x1e444,
1328                 0x1e44c, 0x1e44c,
1329                 0x1e684, 0x1e690,
1330                 0x1e6c0, 0x1e6c0,
1331                 0x1e6e0, 0x1e6e0,
1332                 0x1e700, 0x1e784,
1333                 0x1e7c0, 0x1e7c8,
1334                 0x1e808, 0x1e80c,
1335                 0x1e840, 0x1e844,
1336                 0x1e84c, 0x1e84c,
1337                 0x1ea84, 0x1ea90,
1338                 0x1eac0, 0x1eac0,
1339                 0x1eae0, 0x1eae0,
1340                 0x1eb00, 0x1eb84,
1341                 0x1ebc0, 0x1ebc8,
1342                 0x1ec08, 0x1ec0c,
1343                 0x1ec40, 0x1ec44,
1344                 0x1ec4c, 0x1ec4c,
1345                 0x1ee84, 0x1ee90,
1346                 0x1eec0, 0x1eec0,
1347                 0x1eee0, 0x1eee0,
1348                 0x1ef00, 0x1ef84,
1349                 0x1efc0, 0x1efc8,
1350                 0x1f008, 0x1f00c,
1351                 0x1f040, 0x1f044,
1352                 0x1f04c, 0x1f04c,
1353                 0x1f284, 0x1f290,
1354                 0x1f2c0, 0x1f2c0,
1355                 0x1f2e0, 0x1f2e0,
1356                 0x1f300, 0x1f384,
1357                 0x1f3c0, 0x1f3c8,
1358                 0x1f408, 0x1f40c,
1359                 0x1f440, 0x1f444,
1360                 0x1f44c, 0x1f44c,
1361                 0x1f684, 0x1f690,
1362                 0x1f6c0, 0x1f6c0,
1363                 0x1f6e0, 0x1f6e0,
1364                 0x1f700, 0x1f784,
1365                 0x1f7c0, 0x1f7c8,
1366                 0x1f808, 0x1f80c,
1367                 0x1f840, 0x1f844,
1368                 0x1f84c, 0x1f84c,
1369                 0x1fa84, 0x1fa90,
1370                 0x1fac0, 0x1fac0,
1371                 0x1fae0, 0x1fae0,
1372                 0x1fb00, 0x1fb84,
1373                 0x1fbc0, 0x1fbc8,
1374                 0x1fc08, 0x1fc0c,
1375                 0x1fc40, 0x1fc44,
1376                 0x1fc4c, 0x1fc4c,
1377                 0x1fe84, 0x1fe90,
1378                 0x1fec0, 0x1fec0,
1379                 0x1fee0, 0x1fee0,
1380                 0x1ff00, 0x1ff84,
1381                 0x1ffc0, 0x1ffc8,
1382                 0x30000, 0x30030,
1383                 0x30038, 0x30038,
1384                 0x30040, 0x30040,
1385                 0x30100, 0x30144,
1386                 0x30190, 0x301a0,
1387                 0x301a8, 0x301b8,
1388                 0x301c4, 0x301c8,
1389                 0x301d0, 0x301d0,
1390                 0x30200, 0x30318,
1391                 0x30400, 0x304b4,
1392                 0x304c0, 0x3052c,
1393                 0x30540, 0x3061c,
1394                 0x30800, 0x30828,
1395                 0x30834, 0x30834,
1396                 0x308c0, 0x30908,
1397                 0x30910, 0x309ac,
1398                 0x30a00, 0x30a14,
1399                 0x30a1c, 0x30a2c,
1400                 0x30a44, 0x30a50,
1401                 0x30a74, 0x30a74,
1402                 0x30a7c, 0x30afc,
1403                 0x30b08, 0x30c24,
1404                 0x30d00, 0x30d00,
1405                 0x30d08, 0x30d14,
1406                 0x30d1c, 0x30d20,
1407                 0x30d3c, 0x30d3c,
1408                 0x30d48, 0x30d50,
1409                 0x31200, 0x3120c,
1410                 0x31220, 0x31220,
1411                 0x31240, 0x31240,
1412                 0x31600, 0x3160c,
1413                 0x31a00, 0x31a1c,
1414                 0x31e00, 0x31e20,
1415                 0x31e38, 0x31e3c,
1416                 0x31e80, 0x31e80,
1417                 0x31e88, 0x31ea8,
1418                 0x31eb0, 0x31eb4,
1419                 0x31ec8, 0x31ed4,
1420                 0x31fb8, 0x32004,
1421                 0x32200, 0x32200,
1422                 0x32208, 0x32240,
1423                 0x32248, 0x32280,
1424                 0x32288, 0x322c0,
1425                 0x322c8, 0x322fc,
1426                 0x32600, 0x32630,
1427                 0x32a00, 0x32abc,
1428                 0x32b00, 0x32b10,
1429                 0x32b20, 0x32b30,
1430                 0x32b40, 0x32b50,
1431                 0x32b60, 0x32b70,
1432                 0x33000, 0x33028,
1433                 0x33030, 0x33048,
1434                 0x33060, 0x33068,
1435                 0x33070, 0x3309c,
1436                 0x330f0, 0x33128,
1437                 0x33130, 0x33148,
1438                 0x33160, 0x33168,
1439                 0x33170, 0x3319c,
1440                 0x331f0, 0x33238,
1441                 0x33240, 0x33240,
1442                 0x33248, 0x33250,
1443                 0x3325c, 0x33264,
1444                 0x33270, 0x332b8,
1445                 0x332c0, 0x332e4,
1446                 0x332f8, 0x33338,
1447                 0x33340, 0x33340,
1448                 0x33348, 0x33350,
1449                 0x3335c, 0x33364,
1450                 0x33370, 0x333b8,
1451                 0x333c0, 0x333e4,
1452                 0x333f8, 0x33428,
1453                 0x33430, 0x33448,
1454                 0x33460, 0x33468,
1455                 0x33470, 0x3349c,
1456                 0x334f0, 0x33528,
1457                 0x33530, 0x33548,
1458                 0x33560, 0x33568,
1459                 0x33570, 0x3359c,
1460                 0x335f0, 0x33638,
1461                 0x33640, 0x33640,
1462                 0x33648, 0x33650,
1463                 0x3365c, 0x33664,
1464                 0x33670, 0x336b8,
1465                 0x336c0, 0x336e4,
1466                 0x336f8, 0x33738,
1467                 0x33740, 0x33740,
1468                 0x33748, 0x33750,
1469                 0x3375c, 0x33764,
1470                 0x33770, 0x337b8,
1471                 0x337c0, 0x337e4,
1472                 0x337f8, 0x337fc,
1473                 0x33814, 0x33814,
1474                 0x3382c, 0x3382c,
1475                 0x33880, 0x3388c,
1476                 0x338e8, 0x338ec,
1477                 0x33900, 0x33928,
1478                 0x33930, 0x33948,
1479                 0x33960, 0x33968,
1480                 0x33970, 0x3399c,
1481                 0x339f0, 0x33a38,
1482                 0x33a40, 0x33a40,
1483                 0x33a48, 0x33a50,
1484                 0x33a5c, 0x33a64,
1485                 0x33a70, 0x33ab8,
1486                 0x33ac0, 0x33ae4,
1487                 0x33af8, 0x33b10,
1488                 0x33b28, 0x33b28,
1489                 0x33b3c, 0x33b50,
1490                 0x33bf0, 0x33c10,
1491                 0x33c28, 0x33c28,
1492                 0x33c3c, 0x33c50,
1493                 0x33cf0, 0x33cfc,
1494                 0x34000, 0x34030,
1495                 0x34038, 0x34038,
1496                 0x34040, 0x34040,
1497                 0x34100, 0x34144,
1498                 0x34190, 0x341a0,
1499                 0x341a8, 0x341b8,
1500                 0x341c4, 0x341c8,
1501                 0x341d0, 0x341d0,
1502                 0x34200, 0x34318,
1503                 0x34400, 0x344b4,
1504                 0x344c0, 0x3452c,
1505                 0x34540, 0x3461c,
1506                 0x34800, 0x34828,
1507                 0x34834, 0x34834,
1508                 0x348c0, 0x34908,
1509                 0x34910, 0x349ac,
1510                 0x34a00, 0x34a14,
1511                 0x34a1c, 0x34a2c,
1512                 0x34a44, 0x34a50,
1513                 0x34a74, 0x34a74,
1514                 0x34a7c, 0x34afc,
1515                 0x34b08, 0x34c24,
1516                 0x34d00, 0x34d00,
1517                 0x34d08, 0x34d14,
1518                 0x34d1c, 0x34d20,
1519                 0x34d3c, 0x34d3c,
1520                 0x34d48, 0x34d50,
1521                 0x35200, 0x3520c,
1522                 0x35220, 0x35220,
1523                 0x35240, 0x35240,
1524                 0x35600, 0x3560c,
1525                 0x35a00, 0x35a1c,
1526                 0x35e00, 0x35e20,
1527                 0x35e38, 0x35e3c,
1528                 0x35e80, 0x35e80,
1529                 0x35e88, 0x35ea8,
1530                 0x35eb0, 0x35eb4,
1531                 0x35ec8, 0x35ed4,
1532                 0x35fb8, 0x36004,
1533                 0x36200, 0x36200,
1534                 0x36208, 0x36240,
1535                 0x36248, 0x36280,
1536                 0x36288, 0x362c0,
1537                 0x362c8, 0x362fc,
1538                 0x36600, 0x36630,
1539                 0x36a00, 0x36abc,
1540                 0x36b00, 0x36b10,
1541                 0x36b20, 0x36b30,
1542                 0x36b40, 0x36b50,
1543                 0x36b60, 0x36b70,
1544                 0x37000, 0x37028,
1545                 0x37030, 0x37048,
1546                 0x37060, 0x37068,
1547                 0x37070, 0x3709c,
1548                 0x370f0, 0x37128,
1549                 0x37130, 0x37148,
1550                 0x37160, 0x37168,
1551                 0x37170, 0x3719c,
1552                 0x371f0, 0x37238,
1553                 0x37240, 0x37240,
1554                 0x37248, 0x37250,
1555                 0x3725c, 0x37264,
1556                 0x37270, 0x372b8,
1557                 0x372c0, 0x372e4,
1558                 0x372f8, 0x37338,
1559                 0x37340, 0x37340,
1560                 0x37348, 0x37350,
1561                 0x3735c, 0x37364,
1562                 0x37370, 0x373b8,
1563                 0x373c0, 0x373e4,
1564                 0x373f8, 0x37428,
1565                 0x37430, 0x37448,
1566                 0x37460, 0x37468,
1567                 0x37470, 0x3749c,
1568                 0x374f0, 0x37528,
1569                 0x37530, 0x37548,
1570                 0x37560, 0x37568,
1571                 0x37570, 0x3759c,
1572                 0x375f0, 0x37638,
1573                 0x37640, 0x37640,
1574                 0x37648, 0x37650,
1575                 0x3765c, 0x37664,
1576                 0x37670, 0x376b8,
1577                 0x376c0, 0x376e4,
1578                 0x376f8, 0x37738,
1579                 0x37740, 0x37740,
1580                 0x37748, 0x37750,
1581                 0x3775c, 0x37764,
1582                 0x37770, 0x377b8,
1583                 0x377c0, 0x377e4,
1584                 0x377f8, 0x377fc,
1585                 0x37814, 0x37814,
1586                 0x3782c, 0x3782c,
1587                 0x37880, 0x3788c,
1588                 0x378e8, 0x378ec,
1589                 0x37900, 0x37928,
1590                 0x37930, 0x37948,
1591                 0x37960, 0x37968,
1592                 0x37970, 0x3799c,
1593                 0x379f0, 0x37a38,
1594                 0x37a40, 0x37a40,
1595                 0x37a48, 0x37a50,
1596                 0x37a5c, 0x37a64,
1597                 0x37a70, 0x37ab8,
1598                 0x37ac0, 0x37ae4,
1599                 0x37af8, 0x37b10,
1600                 0x37b28, 0x37b28,
1601                 0x37b3c, 0x37b50,
1602                 0x37bf0, 0x37c10,
1603                 0x37c28, 0x37c28,
1604                 0x37c3c, 0x37c50,
1605                 0x37cf0, 0x37cfc,
1606                 0x38000, 0x38030,
1607                 0x38038, 0x38038,
1608                 0x38040, 0x38040,
1609                 0x38100, 0x38144,
1610                 0x38190, 0x381a0,
1611                 0x381a8, 0x381b8,
1612                 0x381c4, 0x381c8,
1613                 0x381d0, 0x381d0,
1614                 0x38200, 0x38318,
1615                 0x38400, 0x384b4,
1616                 0x384c0, 0x3852c,
1617                 0x38540, 0x3861c,
1618                 0x38800, 0x38828,
1619                 0x38834, 0x38834,
1620                 0x388c0, 0x38908,
1621                 0x38910, 0x389ac,
1622                 0x38a00, 0x38a14,
1623                 0x38a1c, 0x38a2c,
1624                 0x38a44, 0x38a50,
1625                 0x38a74, 0x38a74,
1626                 0x38a7c, 0x38afc,
1627                 0x38b08, 0x38c24,
1628                 0x38d00, 0x38d00,
1629                 0x38d08, 0x38d14,
1630                 0x38d1c, 0x38d20,
1631                 0x38d3c, 0x38d3c,
1632                 0x38d48, 0x38d50,
1633                 0x39200, 0x3920c,
1634                 0x39220, 0x39220,
1635                 0x39240, 0x39240,
1636                 0x39600, 0x3960c,
1637                 0x39a00, 0x39a1c,
1638                 0x39e00, 0x39e20,
1639                 0x39e38, 0x39e3c,
1640                 0x39e80, 0x39e80,
1641                 0x39e88, 0x39ea8,
1642                 0x39eb0, 0x39eb4,
1643                 0x39ec8, 0x39ed4,
1644                 0x39fb8, 0x3a004,
1645                 0x3a200, 0x3a200,
1646                 0x3a208, 0x3a240,
1647                 0x3a248, 0x3a280,
1648                 0x3a288, 0x3a2c0,
1649                 0x3a2c8, 0x3a2fc,
1650                 0x3a600, 0x3a630,
1651                 0x3aa00, 0x3aabc,
1652                 0x3ab00, 0x3ab10,
1653                 0x3ab20, 0x3ab30,
1654                 0x3ab40, 0x3ab50,
1655                 0x3ab60, 0x3ab70,
1656                 0x3b000, 0x3b028,
1657                 0x3b030, 0x3b048,
1658                 0x3b060, 0x3b068,
1659                 0x3b070, 0x3b09c,
1660                 0x3b0f0, 0x3b128,
1661                 0x3b130, 0x3b148,
1662                 0x3b160, 0x3b168,
1663                 0x3b170, 0x3b19c,
1664                 0x3b1f0, 0x3b238,
1665                 0x3b240, 0x3b240,
1666                 0x3b248, 0x3b250,
1667                 0x3b25c, 0x3b264,
1668                 0x3b270, 0x3b2b8,
1669                 0x3b2c0, 0x3b2e4,
1670                 0x3b2f8, 0x3b338,
1671                 0x3b340, 0x3b340,
1672                 0x3b348, 0x3b350,
1673                 0x3b35c, 0x3b364,
1674                 0x3b370, 0x3b3b8,
1675                 0x3b3c0, 0x3b3e4,
1676                 0x3b3f8, 0x3b428,
1677                 0x3b430, 0x3b448,
1678                 0x3b460, 0x3b468,
1679                 0x3b470, 0x3b49c,
1680                 0x3b4f0, 0x3b528,
1681                 0x3b530, 0x3b548,
1682                 0x3b560, 0x3b568,
1683                 0x3b570, 0x3b59c,
1684                 0x3b5f0, 0x3b638,
1685                 0x3b640, 0x3b640,
1686                 0x3b648, 0x3b650,
1687                 0x3b65c, 0x3b664,
1688                 0x3b670, 0x3b6b8,
1689                 0x3b6c0, 0x3b6e4,
1690                 0x3b6f8, 0x3b738,
1691                 0x3b740, 0x3b740,
1692                 0x3b748, 0x3b750,
1693                 0x3b75c, 0x3b764,
1694                 0x3b770, 0x3b7b8,
1695                 0x3b7c0, 0x3b7e4,
1696                 0x3b7f8, 0x3b7fc,
1697                 0x3b814, 0x3b814,
1698                 0x3b82c, 0x3b82c,
1699                 0x3b880, 0x3b88c,
1700                 0x3b8e8, 0x3b8ec,
1701                 0x3b900, 0x3b928,
1702                 0x3b930, 0x3b948,
1703                 0x3b960, 0x3b968,
1704                 0x3b970, 0x3b99c,
1705                 0x3b9f0, 0x3ba38,
1706                 0x3ba40, 0x3ba40,
1707                 0x3ba48, 0x3ba50,
1708                 0x3ba5c, 0x3ba64,
1709                 0x3ba70, 0x3bab8,
1710                 0x3bac0, 0x3bae4,
1711                 0x3baf8, 0x3bb10,
1712                 0x3bb28, 0x3bb28,
1713                 0x3bb3c, 0x3bb50,
1714                 0x3bbf0, 0x3bc10,
1715                 0x3bc28, 0x3bc28,
1716                 0x3bc3c, 0x3bc50,
1717                 0x3bcf0, 0x3bcfc,
1718                 0x3c000, 0x3c030,
1719                 0x3c038, 0x3c038,
1720                 0x3c040, 0x3c040,
1721                 0x3c100, 0x3c144,
1722                 0x3c190, 0x3c1a0,
1723                 0x3c1a8, 0x3c1b8,
1724                 0x3c1c4, 0x3c1c8,
1725                 0x3c1d0, 0x3c1d0,
1726                 0x3c200, 0x3c318,
1727                 0x3c400, 0x3c4b4,
1728                 0x3c4c0, 0x3c52c,
1729                 0x3c540, 0x3c61c,
1730                 0x3c800, 0x3c828,
1731                 0x3c834, 0x3c834,
1732                 0x3c8c0, 0x3c908,
1733                 0x3c910, 0x3c9ac,
1734                 0x3ca00, 0x3ca14,
1735                 0x3ca1c, 0x3ca2c,
1736                 0x3ca44, 0x3ca50,
1737                 0x3ca74, 0x3ca74,
1738                 0x3ca7c, 0x3cafc,
1739                 0x3cb08, 0x3cc24,
1740                 0x3cd00, 0x3cd00,
1741                 0x3cd08, 0x3cd14,
1742                 0x3cd1c, 0x3cd20,
1743                 0x3cd3c, 0x3cd3c,
1744                 0x3cd48, 0x3cd50,
1745                 0x3d200, 0x3d20c,
1746                 0x3d220, 0x3d220,
1747                 0x3d240, 0x3d240,
1748                 0x3d600, 0x3d60c,
1749                 0x3da00, 0x3da1c,
1750                 0x3de00, 0x3de20,
1751                 0x3de38, 0x3de3c,
1752                 0x3de80, 0x3de80,
1753                 0x3de88, 0x3dea8,
1754                 0x3deb0, 0x3deb4,
1755                 0x3dec8, 0x3ded4,
1756                 0x3dfb8, 0x3e004,
1757                 0x3e200, 0x3e200,
1758                 0x3e208, 0x3e240,
1759                 0x3e248, 0x3e280,
1760                 0x3e288, 0x3e2c0,
1761                 0x3e2c8, 0x3e2fc,
1762                 0x3e600, 0x3e630,
1763                 0x3ea00, 0x3eabc,
1764                 0x3eb00, 0x3eb10,
1765                 0x3eb20, 0x3eb30,
1766                 0x3eb40, 0x3eb50,
1767                 0x3eb60, 0x3eb70,
1768                 0x3f000, 0x3f028,
1769                 0x3f030, 0x3f048,
1770                 0x3f060, 0x3f068,
1771                 0x3f070, 0x3f09c,
1772                 0x3f0f0, 0x3f128,
1773                 0x3f130, 0x3f148,
1774                 0x3f160, 0x3f168,
1775                 0x3f170, 0x3f19c,
1776                 0x3f1f0, 0x3f238,
1777                 0x3f240, 0x3f240,
1778                 0x3f248, 0x3f250,
1779                 0x3f25c, 0x3f264,
1780                 0x3f270, 0x3f2b8,
1781                 0x3f2c0, 0x3f2e4,
1782                 0x3f2f8, 0x3f338,
1783                 0x3f340, 0x3f340,
1784                 0x3f348, 0x3f350,
1785                 0x3f35c, 0x3f364,
1786                 0x3f370, 0x3f3b8,
1787                 0x3f3c0, 0x3f3e4,
1788                 0x3f3f8, 0x3f428,
1789                 0x3f430, 0x3f448,
1790                 0x3f460, 0x3f468,
1791                 0x3f470, 0x3f49c,
1792                 0x3f4f0, 0x3f528,
1793                 0x3f530, 0x3f548,
1794                 0x3f560, 0x3f568,
1795                 0x3f570, 0x3f59c,
1796                 0x3f5f0, 0x3f638,
1797                 0x3f640, 0x3f640,
1798                 0x3f648, 0x3f650,
1799                 0x3f65c, 0x3f664,
1800                 0x3f670, 0x3f6b8,
1801                 0x3f6c0, 0x3f6e4,
1802                 0x3f6f8, 0x3f738,
1803                 0x3f740, 0x3f740,
1804                 0x3f748, 0x3f750,
1805                 0x3f75c, 0x3f764,
1806                 0x3f770, 0x3f7b8,
1807                 0x3f7c0, 0x3f7e4,
1808                 0x3f7f8, 0x3f7fc,
1809                 0x3f814, 0x3f814,
1810                 0x3f82c, 0x3f82c,
1811                 0x3f880, 0x3f88c,
1812                 0x3f8e8, 0x3f8ec,
1813                 0x3f900, 0x3f928,
1814                 0x3f930, 0x3f948,
1815                 0x3f960, 0x3f968,
1816                 0x3f970, 0x3f99c,
1817                 0x3f9f0, 0x3fa38,
1818                 0x3fa40, 0x3fa40,
1819                 0x3fa48, 0x3fa50,
1820                 0x3fa5c, 0x3fa64,
1821                 0x3fa70, 0x3fab8,
1822                 0x3fac0, 0x3fae4,
1823                 0x3faf8, 0x3fb10,
1824                 0x3fb28, 0x3fb28,
1825                 0x3fb3c, 0x3fb50,
1826                 0x3fbf0, 0x3fc10,
1827                 0x3fc28, 0x3fc28,
1828                 0x3fc3c, 0x3fc50,
1829                 0x3fcf0, 0x3fcfc,
1830                 0x40000, 0x4000c,
1831                 0x40040, 0x40050,
1832                 0x40060, 0x40068,
1833                 0x4007c, 0x4008c,
1834                 0x40094, 0x400b0,
1835                 0x400c0, 0x40144,
1836                 0x40180, 0x4018c,
1837                 0x40200, 0x40254,
1838                 0x40260, 0x40264,
1839                 0x40270, 0x40288,
1840                 0x40290, 0x40298,
1841                 0x402ac, 0x402c8,
1842                 0x402d0, 0x402e0,
1843                 0x402f0, 0x402f0,
1844                 0x40300, 0x4033c,
1845                 0x403f8, 0x403fc,
1846                 0x41304, 0x413c4,
1847                 0x41400, 0x4140c,
1848                 0x41414, 0x4141c,
1849                 0x41480, 0x414d0,
1850                 0x44000, 0x44054,
1851                 0x4405c, 0x44078,
1852                 0x440c0, 0x44174,
1853                 0x44180, 0x441ac,
1854                 0x441b4, 0x441b8,
1855                 0x441c0, 0x44254,
1856                 0x4425c, 0x44278,
1857                 0x442c0, 0x44374,
1858                 0x44380, 0x443ac,
1859                 0x443b4, 0x443b8,
1860                 0x443c0, 0x44454,
1861                 0x4445c, 0x44478,
1862                 0x444c0, 0x44574,
1863                 0x44580, 0x445ac,
1864                 0x445b4, 0x445b8,
1865                 0x445c0, 0x44654,
1866                 0x4465c, 0x44678,
1867                 0x446c0, 0x44774,
1868                 0x44780, 0x447ac,
1869                 0x447b4, 0x447b8,
1870                 0x447c0, 0x44854,
1871                 0x4485c, 0x44878,
1872                 0x448c0, 0x44974,
1873                 0x44980, 0x449ac,
1874                 0x449b4, 0x449b8,
1875                 0x449c0, 0x449fc,
1876                 0x45000, 0x45004,
1877                 0x45010, 0x45030,
1878                 0x45040, 0x45060,
1879                 0x45068, 0x45068,
1880                 0x45080, 0x45084,
1881                 0x450a0, 0x450b0,
1882                 0x45200, 0x45204,
1883                 0x45210, 0x45230,
1884                 0x45240, 0x45260,
1885                 0x45268, 0x45268,
1886                 0x45280, 0x45284,
1887                 0x452a0, 0x452b0,
1888                 0x460c0, 0x460e4,
1889                 0x47000, 0x4703c,
1890                 0x47044, 0x4708c,
1891                 0x47200, 0x47250,
1892                 0x47400, 0x47408,
1893                 0x47414, 0x47420,
1894                 0x47600, 0x47618,
1895                 0x47800, 0x47814,
1896                 0x48000, 0x4800c,
1897                 0x48040, 0x48050,
1898                 0x48060, 0x48068,
1899                 0x4807c, 0x4808c,
1900                 0x48094, 0x480b0,
1901                 0x480c0, 0x48144,
1902                 0x48180, 0x4818c,
1903                 0x48200, 0x48254,
1904                 0x48260, 0x48264,
1905                 0x48270, 0x48288,
1906                 0x48290, 0x48298,
1907                 0x482ac, 0x482c8,
1908                 0x482d0, 0x482e0,
1909                 0x482f0, 0x482f0,
1910                 0x48300, 0x4833c,
1911                 0x483f8, 0x483fc,
1912                 0x49304, 0x493c4,
1913                 0x49400, 0x4940c,
1914                 0x49414, 0x4941c,
1915                 0x49480, 0x494d0,
1916                 0x4c000, 0x4c054,
1917                 0x4c05c, 0x4c078,
1918                 0x4c0c0, 0x4c174,
1919                 0x4c180, 0x4c1ac,
1920                 0x4c1b4, 0x4c1b8,
1921                 0x4c1c0, 0x4c254,
1922                 0x4c25c, 0x4c278,
1923                 0x4c2c0, 0x4c374,
1924                 0x4c380, 0x4c3ac,
1925                 0x4c3b4, 0x4c3b8,
1926                 0x4c3c0, 0x4c454,
1927                 0x4c45c, 0x4c478,
1928                 0x4c4c0, 0x4c574,
1929                 0x4c580, 0x4c5ac,
1930                 0x4c5b4, 0x4c5b8,
1931                 0x4c5c0, 0x4c654,
1932                 0x4c65c, 0x4c678,
1933                 0x4c6c0, 0x4c774,
1934                 0x4c780, 0x4c7ac,
1935                 0x4c7b4, 0x4c7b8,
1936                 0x4c7c0, 0x4c854,
1937                 0x4c85c, 0x4c878,
1938                 0x4c8c0, 0x4c974,
1939                 0x4c980, 0x4c9ac,
1940                 0x4c9b4, 0x4c9b8,
1941                 0x4c9c0, 0x4c9fc,
1942                 0x4d000, 0x4d004,
1943                 0x4d010, 0x4d030,
1944                 0x4d040, 0x4d060,
1945                 0x4d068, 0x4d068,
1946                 0x4d080, 0x4d084,
1947                 0x4d0a0, 0x4d0b0,
1948                 0x4d200, 0x4d204,
1949                 0x4d210, 0x4d230,
1950                 0x4d240, 0x4d260,
1951                 0x4d268, 0x4d268,
1952                 0x4d280, 0x4d284,
1953                 0x4d2a0, 0x4d2b0,
1954                 0x4e0c0, 0x4e0e4,
1955                 0x4f000, 0x4f03c,
1956                 0x4f044, 0x4f08c,
1957                 0x4f200, 0x4f250,
1958                 0x4f400, 0x4f408,
1959                 0x4f414, 0x4f420,
1960                 0x4f600, 0x4f618,
1961                 0x4f800, 0x4f814,
1962                 0x50000, 0x50084,
1963                 0x50090, 0x500cc,
1964                 0x50400, 0x50400,
1965                 0x50800, 0x50884,
1966                 0x50890, 0x508cc,
1967                 0x50c00, 0x50c00,
1968                 0x51000, 0x5101c,
1969                 0x51300, 0x51308,
1970         };
1971
1972         static const unsigned int t6_reg_ranges[] = {
1973                 0x1008, 0x101c,
1974                 0x1024, 0x10a8,
1975                 0x10b4, 0x10f8,
1976                 0x1100, 0x1114,
1977                 0x111c, 0x112c,
1978                 0x1138, 0x113c,
1979                 0x1144, 0x114c,
1980                 0x1180, 0x1184,
1981                 0x1190, 0x1194,
1982                 0x11a0, 0x11a4,
1983                 0x11b0, 0x11b4,
1984                 0x11fc, 0x1258,
1985                 0x1280, 0x12d4,
1986                 0x12d9, 0x12d9,
1987                 0x12de, 0x12de,
1988                 0x12e3, 0x12e3,
1989                 0x12e8, 0x133c,
1990                 0x1800, 0x18fc,
1991                 0x3000, 0x302c,
1992                 0x3060, 0x30b0,
1993                 0x30b8, 0x30d8,
1994                 0x30e0, 0x30fc,
1995                 0x3140, 0x357c,
1996                 0x35a8, 0x35cc,
1997                 0x35ec, 0x35ec,
1998                 0x3600, 0x5624,
1999                 0x56cc, 0x56ec,
2000                 0x56f4, 0x5720,
2001                 0x5728, 0x575c,
2002                 0x580c, 0x5814,
2003                 0x5890, 0x589c,
2004                 0x58a4, 0x58ac,
2005                 0x58b8, 0x58bc,
2006                 0x5940, 0x595c,
2007                 0x5980, 0x598c,
2008                 0x59b0, 0x59c8,
2009                 0x59d0, 0x59dc,
2010                 0x59fc, 0x5a18,
2011                 0x5a60, 0x5a6c,
2012                 0x5a80, 0x5a8c,
2013                 0x5a94, 0x5a9c,
2014                 0x5b94, 0x5bfc,
2015                 0x5c10, 0x5e48,
2016                 0x5e50, 0x5e94,
2017                 0x5ea0, 0x5eb0,
2018                 0x5ec0, 0x5ec0,
2019                 0x5ec8, 0x5ed0,
2020                 0x6000, 0x6020,
2021                 0x6028, 0x6040,
2022                 0x6058, 0x609c,
2023                 0x60a8, 0x619c,
2024                 0x7700, 0x7798,
2025                 0x77c0, 0x7880,
2026                 0x78cc, 0x78fc,
2027                 0x7b00, 0x7b58,
2028                 0x7b60, 0x7b84,
2029                 0x7b8c, 0x7c54,
2030                 0x7d00, 0x7d38,
2031                 0x7d40, 0x7d84,
2032                 0x7d8c, 0x7ddc,
2033                 0x7de4, 0x7e04,
2034                 0x7e10, 0x7e1c,
2035                 0x7e24, 0x7e38,
2036                 0x7e40, 0x7e44,
2037                 0x7e4c, 0x7e78,
2038                 0x7e80, 0x7edc,
2039                 0x7ee8, 0x7efc,
2040                 0x8dc0, 0x8de4,
2041                 0x8df8, 0x8e04,
2042                 0x8e10, 0x8e84,
2043                 0x8ea0, 0x8f88,
2044                 0x8fb8, 0x9058,
2045                 0x9060, 0x9060,
2046                 0x9068, 0x90f8,
2047                 0x9100, 0x9124,
2048                 0x9400, 0x9470,
2049                 0x9600, 0x9600,
2050                 0x9608, 0x9638,
2051                 0x9640, 0x9704,
2052                 0x9710, 0x971c,
2053                 0x9800, 0x9808,
2054                 0x9820, 0x983c,
2055                 0x9850, 0x9864,
2056                 0x9c00, 0x9c6c,
2057                 0x9c80, 0x9cec,
2058                 0x9d00, 0x9d6c,
2059                 0x9d80, 0x9dec,
2060                 0x9e00, 0x9e6c,
2061                 0x9e80, 0x9eec,
2062                 0x9f00, 0x9f6c,
2063                 0x9f80, 0xa020,
2064                 0xd004, 0xd03c,
2065                 0xd100, 0xd118,
2066                 0xd200, 0xd214,
2067                 0xd220, 0xd234,
2068                 0xd240, 0xd254,
2069                 0xd260, 0xd274,
2070                 0xd280, 0xd294,
2071                 0xd2a0, 0xd2b4,
2072                 0xd2c0, 0xd2d4,
2073                 0xd2e0, 0xd2f4,
2074                 0xd300, 0xd31c,
2075                 0xdfc0, 0xdfe0,
2076                 0xe000, 0xf008,
2077                 0x11000, 0x11014,
2078                 0x11048, 0x1106c,
2079                 0x11074, 0x11088,
2080                 0x11098, 0x11120,
2081                 0x1112c, 0x1117c,
2082                 0x11190, 0x112e0,
2083                 0x11300, 0x1130c,
2084                 0x12000, 0x1206c,
2085                 0x19040, 0x1906c,
2086                 0x19078, 0x19080,
2087                 0x1908c, 0x190e8,
2088                 0x190f0, 0x190f8,
2089                 0x19100, 0x19110,
2090                 0x19120, 0x19124,
2091                 0x19150, 0x19194,
2092                 0x1919c, 0x191b0,
2093                 0x191d0, 0x191e8,
2094                 0x19238, 0x19290,
2095                 0x192a4, 0x192b0,
2096                 0x192bc, 0x192bc,
2097                 0x19348, 0x1934c,
2098                 0x193f8, 0x19418,
2099                 0x19420, 0x19428,
2100                 0x19430, 0x19444,
2101                 0x1944c, 0x1946c,
2102                 0x19474, 0x19474,
2103                 0x19490, 0x194cc,
2104                 0x194f0, 0x194f8,
2105                 0x19c00, 0x19c48,
2106                 0x19c50, 0x19c80,
2107                 0x19c94, 0x19c98,
2108                 0x19ca0, 0x19cbc,
2109                 0x19ce4, 0x19ce4,
2110                 0x19cf0, 0x19cf8,
2111                 0x19d00, 0x19d28,
2112                 0x19d50, 0x19d78,
2113                 0x19d94, 0x19d98,
2114                 0x19da0, 0x19dc8,
2115                 0x19df0, 0x19e10,
2116                 0x19e50, 0x19e6c,
2117                 0x19ea0, 0x19ebc,
2118                 0x19ec4, 0x19ef4,
2119                 0x19f04, 0x19f2c,
2120                 0x19f34, 0x19f34,
2121                 0x19f40, 0x19f50,
2122                 0x19f90, 0x19fac,
2123                 0x19fc4, 0x19fc8,
2124                 0x19fd0, 0x19fe4,
2125                 0x1a000, 0x1a004,
2126                 0x1a010, 0x1a06c,
2127                 0x1a0b0, 0x1a0e4,
2128                 0x1a0ec, 0x1a0f8,
2129                 0x1a100, 0x1a108,
2130                 0x1a114, 0x1a120,
2131                 0x1a128, 0x1a130,
2132                 0x1a138, 0x1a138,
2133                 0x1a190, 0x1a1c4,
2134                 0x1a1fc, 0x1a1fc,
2135                 0x1e008, 0x1e00c,
2136                 0x1e040, 0x1e044,
2137                 0x1e04c, 0x1e04c,
2138                 0x1e284, 0x1e290,
2139                 0x1e2c0, 0x1e2c0,
2140                 0x1e2e0, 0x1e2e0,
2141                 0x1e300, 0x1e384,
2142                 0x1e3c0, 0x1e3c8,
2143                 0x1e408, 0x1e40c,
2144                 0x1e440, 0x1e444,
2145                 0x1e44c, 0x1e44c,
2146                 0x1e684, 0x1e690,
2147                 0x1e6c0, 0x1e6c0,
2148                 0x1e6e0, 0x1e6e0,
2149                 0x1e700, 0x1e784,
2150                 0x1e7c0, 0x1e7c8,
2151                 0x1e808, 0x1e80c,
2152                 0x1e840, 0x1e844,
2153                 0x1e84c, 0x1e84c,
2154                 0x1ea84, 0x1ea90,
2155                 0x1eac0, 0x1eac0,
2156                 0x1eae0, 0x1eae0,
2157                 0x1eb00, 0x1eb84,
2158                 0x1ebc0, 0x1ebc8,
2159                 0x1ec08, 0x1ec0c,
2160                 0x1ec40, 0x1ec44,
2161                 0x1ec4c, 0x1ec4c,
2162                 0x1ee84, 0x1ee90,
2163                 0x1eec0, 0x1eec0,
2164                 0x1eee0, 0x1eee0,
2165                 0x1ef00, 0x1ef84,
2166                 0x1efc0, 0x1efc8,
2167                 0x1f008, 0x1f00c,
2168                 0x1f040, 0x1f044,
2169                 0x1f04c, 0x1f04c,
2170                 0x1f284, 0x1f290,
2171                 0x1f2c0, 0x1f2c0,
2172                 0x1f2e0, 0x1f2e0,
2173                 0x1f300, 0x1f384,
2174                 0x1f3c0, 0x1f3c8,
2175                 0x1f408, 0x1f40c,
2176                 0x1f440, 0x1f444,
2177                 0x1f44c, 0x1f44c,
2178                 0x1f684, 0x1f690,
2179                 0x1f6c0, 0x1f6c0,
2180                 0x1f6e0, 0x1f6e0,
2181                 0x1f700, 0x1f784,
2182                 0x1f7c0, 0x1f7c8,
2183                 0x1f808, 0x1f80c,
2184                 0x1f840, 0x1f844,
2185                 0x1f84c, 0x1f84c,
2186                 0x1fa84, 0x1fa90,
2187                 0x1fac0, 0x1fac0,
2188                 0x1fae0, 0x1fae0,
2189                 0x1fb00, 0x1fb84,
2190                 0x1fbc0, 0x1fbc8,
2191                 0x1fc08, 0x1fc0c,
2192                 0x1fc40, 0x1fc44,
2193                 0x1fc4c, 0x1fc4c,
2194                 0x1fe84, 0x1fe90,
2195                 0x1fec0, 0x1fec0,
2196                 0x1fee0, 0x1fee0,
2197                 0x1ff00, 0x1ff84,
2198                 0x1ffc0, 0x1ffc8,
2199                 0x30000, 0x30030,
2200                 0x30038, 0x30038,
2201                 0x30040, 0x30040,
2202                 0x30048, 0x30048,
2203                 0x30050, 0x30050,
2204                 0x3005c, 0x30060,
2205                 0x30068, 0x30068,
2206                 0x30070, 0x30070,
2207                 0x30100, 0x30168,
2208                 0x30190, 0x301a0,
2209                 0x301a8, 0x301b8,
2210                 0x301c4, 0x301c8,
2211                 0x301d0, 0x301d0,
2212                 0x30200, 0x30320,
2213                 0x30400, 0x304b4,
2214                 0x304c0, 0x3052c,
2215                 0x30540, 0x3061c,
2216                 0x30800, 0x308a0,
2217                 0x308c0, 0x30908,
2218                 0x30910, 0x309b8,
2219                 0x30a00, 0x30a04,
2220                 0x30a0c, 0x30a14,
2221                 0x30a1c, 0x30a2c,
2222                 0x30a44, 0x30a50,
2223                 0x30a74, 0x30a74,
2224                 0x30a7c, 0x30afc,
2225                 0x30b08, 0x30c24,
2226                 0x30d00, 0x30d14,
2227                 0x30d1c, 0x30d3c,
2228                 0x30d44, 0x30d4c,
2229                 0x30d54, 0x30d74,
2230                 0x30d7c, 0x30d7c,
2231                 0x30de0, 0x30de0,
2232                 0x30e00, 0x30ed4,
2233                 0x30f00, 0x30fa4,
2234                 0x30fc0, 0x30fc4,
2235                 0x31000, 0x31004,
2236                 0x31080, 0x310fc,
2237                 0x31208, 0x31220,
2238                 0x3123c, 0x31254,
2239                 0x31300, 0x31300,
2240                 0x31308, 0x3131c,
2241                 0x31338, 0x3133c,
2242                 0x31380, 0x31380,
2243                 0x31388, 0x313a8,
2244                 0x313b4, 0x313b4,
2245                 0x31400, 0x31420,
2246                 0x31438, 0x3143c,
2247                 0x31480, 0x31480,
2248                 0x314a8, 0x314a8,
2249                 0x314b0, 0x314b4,
2250                 0x314c8, 0x314d4,
2251                 0x31a40, 0x31a4c,
2252                 0x31af0, 0x31b20,
2253                 0x31b38, 0x31b3c,
2254                 0x31b80, 0x31b80,
2255                 0x31ba8, 0x31ba8,
2256                 0x31bb0, 0x31bb4,
2257                 0x31bc8, 0x31bd4,
2258                 0x32140, 0x3218c,
2259                 0x321f0, 0x321f4,
2260                 0x32200, 0x32200,
2261                 0x32218, 0x32218,
2262                 0x32400, 0x32400,
2263                 0x32408, 0x3241c,
2264                 0x32618, 0x32620,
2265                 0x32664, 0x32664,
2266                 0x326a8, 0x326a8,
2267                 0x326ec, 0x326ec,
2268                 0x32a00, 0x32abc,
2269                 0x32b00, 0x32b38,
2270                 0x32b40, 0x32b58,
2271                 0x32b60, 0x32b78,
2272                 0x32c00, 0x32c00,
2273                 0x32c08, 0x32c3c,
2274                 0x32e00, 0x32e2c,
2275                 0x32f00, 0x32f2c,
2276                 0x33000, 0x3302c,
2277                 0x33034, 0x33050,
2278                 0x33058, 0x33058,
2279                 0x33060, 0x3308c,
2280                 0x3309c, 0x330ac,
2281                 0x330c0, 0x330c0,
2282                 0x330c8, 0x330d0,
2283                 0x330d8, 0x330e0,
2284                 0x330ec, 0x3312c,
2285                 0x33134, 0x33150,
2286                 0x33158, 0x33158,
2287                 0x33160, 0x3318c,
2288                 0x3319c, 0x331ac,
2289                 0x331c0, 0x331c0,
2290                 0x331c8, 0x331d0,
2291                 0x331d8, 0x331e0,
2292                 0x331ec, 0x33290,
2293                 0x33298, 0x332c4,
2294                 0x332e4, 0x33390,
2295                 0x33398, 0x333c4,
2296                 0x333e4, 0x3342c,
2297                 0x33434, 0x33450,
2298                 0x33458, 0x33458,
2299                 0x33460, 0x3348c,
2300                 0x3349c, 0x334ac,
2301                 0x334c0, 0x334c0,
2302                 0x334c8, 0x334d0,
2303                 0x334d8, 0x334e0,
2304                 0x334ec, 0x3352c,
2305                 0x33534, 0x33550,
2306                 0x33558, 0x33558,
2307                 0x33560, 0x3358c,
2308                 0x3359c, 0x335ac,
2309                 0x335c0, 0x335c0,
2310                 0x335c8, 0x335d0,
2311                 0x335d8, 0x335e0,
2312                 0x335ec, 0x33690,
2313                 0x33698, 0x336c4,
2314                 0x336e4, 0x33790,
2315                 0x33798, 0x337c4,
2316                 0x337e4, 0x337fc,
2317                 0x33814, 0x33814,
2318                 0x33854, 0x33868,
2319                 0x33880, 0x3388c,
2320                 0x338c0, 0x338d0,
2321                 0x338e8, 0x338ec,
2322                 0x33900, 0x3392c,
2323                 0x33934, 0x33950,
2324                 0x33958, 0x33958,
2325                 0x33960, 0x3398c,
2326                 0x3399c, 0x339ac,
2327                 0x339c0, 0x339c0,
2328                 0x339c8, 0x339d0,
2329                 0x339d8, 0x339e0,
2330                 0x339ec, 0x33a90,
2331                 0x33a98, 0x33ac4,
2332                 0x33ae4, 0x33b10,
2333                 0x33b24, 0x33b28,
2334                 0x33b38, 0x33b50,
2335                 0x33bf0, 0x33c10,
2336                 0x33c24, 0x33c28,
2337                 0x33c38, 0x33c50,
2338                 0x33cf0, 0x33cfc,
2339                 0x34000, 0x34030,
2340                 0x34038, 0x34038,
2341                 0x34040, 0x34040,
2342                 0x34048, 0x34048,
2343                 0x34050, 0x34050,
2344                 0x3405c, 0x34060,
2345                 0x34068, 0x34068,
2346                 0x34070, 0x34070,
2347                 0x34100, 0x34168,
2348                 0x34190, 0x341a0,
2349                 0x341a8, 0x341b8,
2350                 0x341c4, 0x341c8,
2351                 0x341d0, 0x341d0,
2352                 0x34200, 0x34320,
2353                 0x34400, 0x344b4,
2354                 0x344c0, 0x3452c,
2355                 0x34540, 0x3461c,
2356                 0x34800, 0x348a0,
2357                 0x348c0, 0x34908,
2358                 0x34910, 0x349b8,
2359                 0x34a00, 0x34a04,
2360                 0x34a0c, 0x34a14,
2361                 0x34a1c, 0x34a2c,
2362                 0x34a44, 0x34a50,
2363                 0x34a74, 0x34a74,
2364                 0x34a7c, 0x34afc,
2365                 0x34b08, 0x34c24,
2366                 0x34d00, 0x34d14,
2367                 0x34d1c, 0x34d3c,
2368                 0x34d44, 0x34d4c,
2369                 0x34d54, 0x34d74,
2370                 0x34d7c, 0x34d7c,
2371                 0x34de0, 0x34de0,
2372                 0x34e00, 0x34ed4,
2373                 0x34f00, 0x34fa4,
2374                 0x34fc0, 0x34fc4,
2375                 0x35000, 0x35004,
2376                 0x35080, 0x350fc,
2377                 0x35208, 0x35220,
2378                 0x3523c, 0x35254,
2379                 0x35300, 0x35300,
2380                 0x35308, 0x3531c,
2381                 0x35338, 0x3533c,
2382                 0x35380, 0x35380,
2383                 0x35388, 0x353a8,
2384                 0x353b4, 0x353b4,
2385                 0x35400, 0x35420,
2386                 0x35438, 0x3543c,
2387                 0x35480, 0x35480,
2388                 0x354a8, 0x354a8,
2389                 0x354b0, 0x354b4,
2390                 0x354c8, 0x354d4,
2391                 0x35a40, 0x35a4c,
2392                 0x35af0, 0x35b20,
2393                 0x35b38, 0x35b3c,
2394                 0x35b80, 0x35b80,
2395                 0x35ba8, 0x35ba8,
2396                 0x35bb0, 0x35bb4,
2397                 0x35bc8, 0x35bd4,
2398                 0x36140, 0x3618c,
2399                 0x361f0, 0x361f4,
2400                 0x36200, 0x36200,
2401                 0x36218, 0x36218,
2402                 0x36400, 0x36400,
2403                 0x36408, 0x3641c,
2404                 0x36618, 0x36620,
2405                 0x36664, 0x36664,
2406                 0x366a8, 0x366a8,
2407                 0x366ec, 0x366ec,
2408                 0x36a00, 0x36abc,
2409                 0x36b00, 0x36b38,
2410                 0x36b40, 0x36b58,
2411                 0x36b60, 0x36b78,
2412                 0x36c00, 0x36c00,
2413                 0x36c08, 0x36c3c,
2414                 0x36e00, 0x36e2c,
2415                 0x36f00, 0x36f2c,
2416                 0x37000, 0x3702c,
2417                 0x37034, 0x37050,
2418                 0x37058, 0x37058,
2419                 0x37060, 0x3708c,
2420                 0x3709c, 0x370ac,
2421                 0x370c0, 0x370c0,
2422                 0x370c8, 0x370d0,
2423                 0x370d8, 0x370e0,
2424                 0x370ec, 0x3712c,
2425                 0x37134, 0x37150,
2426                 0x37158, 0x37158,
2427                 0x37160, 0x3718c,
2428                 0x3719c, 0x371ac,
2429                 0x371c0, 0x371c0,
2430                 0x371c8, 0x371d0,
2431                 0x371d8, 0x371e0,
2432                 0x371ec, 0x37290,
2433                 0x37298, 0x372c4,
2434                 0x372e4, 0x37390,
2435                 0x37398, 0x373c4,
2436                 0x373e4, 0x3742c,
2437                 0x37434, 0x37450,
2438                 0x37458, 0x37458,
2439                 0x37460, 0x3748c,
2440                 0x3749c, 0x374ac,
2441                 0x374c0, 0x374c0,
2442                 0x374c8, 0x374d0,
2443                 0x374d8, 0x374e0,
2444                 0x374ec, 0x3752c,
2445                 0x37534, 0x37550,
2446                 0x37558, 0x37558,
2447                 0x37560, 0x3758c,
2448                 0x3759c, 0x375ac,
2449                 0x375c0, 0x375c0,
2450                 0x375c8, 0x375d0,
2451                 0x375d8, 0x375e0,
2452                 0x375ec, 0x37690,
2453                 0x37698, 0x376c4,
2454                 0x376e4, 0x37790,
2455                 0x37798, 0x377c4,
2456                 0x377e4, 0x377fc,
2457                 0x37814, 0x37814,
2458                 0x37854, 0x37868,
2459                 0x37880, 0x3788c,
2460                 0x378c0, 0x378d0,
2461                 0x378e8, 0x378ec,
2462                 0x37900, 0x3792c,
2463                 0x37934, 0x37950,
2464                 0x37958, 0x37958,
2465                 0x37960, 0x3798c,
2466                 0x3799c, 0x379ac,
2467                 0x379c0, 0x379c0,
2468                 0x379c8, 0x379d0,
2469                 0x379d8, 0x379e0,
2470                 0x379ec, 0x37a90,
2471                 0x37a98, 0x37ac4,
2472                 0x37ae4, 0x37b10,
2473                 0x37b24, 0x37b28,
2474                 0x37b38, 0x37b50,
2475                 0x37bf0, 0x37c10,
2476                 0x37c24, 0x37c28,
2477                 0x37c38, 0x37c50,
2478                 0x37cf0, 0x37cfc,
2479                 0x40040, 0x40040,
2480                 0x40080, 0x40084,
2481                 0x40100, 0x40100,
2482                 0x40140, 0x401bc,
2483                 0x40200, 0x40214,
2484                 0x40228, 0x40228,
2485                 0x40240, 0x40258,
2486                 0x40280, 0x40280,
2487                 0x40304, 0x40304,
2488                 0x40330, 0x4033c,
2489                 0x41304, 0x413b8,
2490                 0x413c0, 0x413c8,
2491                 0x413d0, 0x413dc,
2492                 0x413f0, 0x413f0,
2493                 0x41400, 0x4140c,
2494                 0x41414, 0x4141c,
2495                 0x41480, 0x414d0,
2496                 0x44000, 0x4407c,
2497                 0x440c0, 0x441ac,
2498                 0x441b4, 0x4427c,
2499                 0x442c0, 0x443ac,
2500                 0x443b4, 0x4447c,
2501                 0x444c0, 0x445ac,
2502                 0x445b4, 0x4467c,
2503                 0x446c0, 0x447ac,
2504                 0x447b4, 0x4487c,
2505                 0x448c0, 0x449ac,
2506                 0x449b4, 0x44a7c,
2507                 0x44ac0, 0x44bac,
2508                 0x44bb4, 0x44c7c,
2509                 0x44cc0, 0x44dac,
2510                 0x44db4, 0x44e7c,
2511                 0x44ec0, 0x44fac,
2512                 0x44fb4, 0x4507c,
2513                 0x450c0, 0x451ac,
2514                 0x451b4, 0x451fc,
2515                 0x45800, 0x45804,
2516                 0x45810, 0x45830,
2517                 0x45840, 0x45860,
2518                 0x45868, 0x45868,
2519                 0x45880, 0x45884,
2520                 0x458a0, 0x458b0,
2521                 0x45a00, 0x45a04,
2522                 0x45a10, 0x45a30,
2523                 0x45a40, 0x45a60,
2524                 0x45a68, 0x45a68,
2525                 0x45a80, 0x45a84,
2526                 0x45aa0, 0x45ab0,
2527                 0x460c0, 0x460e4,
2528                 0x47000, 0x4703c,
2529                 0x47044, 0x4708c,
2530                 0x47200, 0x47250,
2531                 0x47400, 0x47408,
2532                 0x47414, 0x47420,
2533                 0x47600, 0x47618,
2534                 0x47800, 0x47814,
2535                 0x47820, 0x4782c,
2536                 0x50000, 0x50084,
2537                 0x50090, 0x500cc,
2538                 0x50300, 0x50384,
2539                 0x50400, 0x50400,
2540                 0x50800, 0x50884,
2541                 0x50890, 0x508cc,
2542                 0x50b00, 0x50b84,
2543                 0x50c00, 0x50c00,
2544                 0x51000, 0x51020,
2545                 0x51028, 0x510b0,
2546                 0x51300, 0x51324,
2547         };
2548
2549         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2550         const unsigned int *reg_ranges;
2551         int reg_ranges_size, range;
2552         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2553
2554         /* Select the right set of register ranges to dump depending on the
2555          * adapter chip type.
2556          */
2557         switch (chip_version) {
2558         case CHELSIO_T4:
2559                 reg_ranges = t4_reg_ranges;
2560                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2561                 break;
2562
2563         case CHELSIO_T5:
2564                 reg_ranges = t5_reg_ranges;
2565                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2566                 break;
2567
2568         case CHELSIO_T6:
2569                 reg_ranges = t6_reg_ranges;
2570                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2571                 break;
2572
2573         default:
2574                 dev_err(adap->pdev_dev,
2575                         "Unsupported chip version %d\n", chip_version);
2576                 return;
2577         }
2578
2579         /* Clear the register buffer and insert the appropriate register
2580          * values selected by the above register ranges.
2581          */
2582         memset(buf, 0, buf_size);
2583         for (range = 0; range < reg_ranges_size; range += 2) {
2584                 unsigned int reg = reg_ranges[range];
2585                 unsigned int last_reg = reg_ranges[range + 1];
2586                 u32 *bufp = (u32 *)((char *)buf + reg);
2587
2588                 /* Iterate across the register range filling in the register
2589                  * buffer but don't write past the end of the register buffer.
2590                  */
2591                 while (reg <= last_reg && bufp < buf_end) {
2592                         *bufp++ = t4_read_reg(adap, reg);
2593                         reg += sizeof(u32);
2594                 }
2595         }
2596 }
2597
2598 #define EEPROM_STAT_ADDR   0x7bfc
2599 #define VPD_SIZE           0x800
2600 #define VPD_BASE           0x400
2601 #define VPD_BASE_OLD       0
2602 #define VPD_LEN            1024
2603 #define CHELSIO_VPD_UNIQUE_ID 0x82
2604
2605 /**
2606  *      t4_seeprom_wp - enable/disable EEPROM write protection
2607  *      @adapter: the adapter
2608  *      @enable: whether to enable or disable write protection
2609  *
2610  *      Enables or disables write protection on the serial EEPROM.
2611  */
2612 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2613 {
2614         unsigned int v = enable ? 0xc : 0;
2615         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2616         return ret < 0 ? ret : 0;
2617 }
2618
2619 /**
2620  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2621  *      @adapter: adapter to read
2622  *      @p: where to store the parameters
2623  *
2624  *      Reads card parameters stored in VPD EEPROM.
2625  */
2626 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2627 {
2628         int i, ret = 0, addr;
2629         int ec, sn, pn, na;
2630         u8 *vpd, csum;
2631         unsigned int vpdr_len, kw_offset, id_len;
2632
2633         vpd = vmalloc(VPD_LEN);
2634         if (!vpd)
2635                 return -ENOMEM;
2636
2637         /* We have two VPD data structures stored in the adapter VPD area.
2638          * By default, Linux calculates the size of the VPD area by traversing
2639          * the first VPD area at offset 0x0, so we need to tell the OS what
2640          * our real VPD size is.
2641          */
2642         ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2643         if (ret < 0)
2644                 goto out;
2645
2646         /* Card information normally starts at VPD_BASE but early cards had
2647          * it at 0.
2648          */
2649         ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2650         if (ret < 0)
2651                 goto out;
2652
2653         /* The VPD shall have a unique identifier specified by the PCI SIG.
2654          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2655          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2656          * is expected to automatically put this entry at the
2657          * beginning of the VPD.
2658          */
2659         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2660
2661         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2662         if (ret < 0)
2663                 goto out;
2664
2665         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2666                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2667                 ret = -EINVAL;
2668                 goto out;
2669         }
2670
2671         id_len = pci_vpd_lrdt_size(vpd);
2672         if (id_len > ID_LEN)
2673                 id_len = ID_LEN;
2674
2675         i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2676         if (i < 0) {
2677                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2678                 ret = -EINVAL;
2679                 goto out;
2680         }
2681
2682         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2683         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2684         if (vpdr_len + kw_offset > VPD_LEN) {
2685                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2686                 ret = -EINVAL;
2687                 goto out;
2688         }
2689
2690 #define FIND_VPD_KW(var, name) do { \
2691         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2692         if (var < 0) { \
2693                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2694                 ret = -EINVAL; \
2695                 goto out; \
2696         } \
2697         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2698 } while (0)
2699
2700         FIND_VPD_KW(i, "RV");
2701         for (csum = 0; i >= 0; i--)
2702                 csum += vpd[i];
2703
2704         if (csum) {
2705                 dev_err(adapter->pdev_dev,
2706                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2707                 ret = -EINVAL;
2708                 goto out;
2709         }
2710
2711         FIND_VPD_KW(ec, "EC");
2712         FIND_VPD_KW(sn, "SN");
2713         FIND_VPD_KW(pn, "PN");
2714         FIND_VPD_KW(na, "NA");
2715 #undef FIND_VPD_KW
2716
2717         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2718         strim(p->id);
2719         memcpy(p->ec, vpd + ec, EC_LEN);
2720         strim(p->ec);
2721         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2722         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2723         strim(p->sn);
2724         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2725         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2726         strim(p->pn);
2727         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2728         strim((char *)p->na);
2729
2730 out:
2731         vfree(vpd);
2732         return ret;
2733 }
2734
2735 /**
2736  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2737  *      @adapter: adapter to read
2738  *      @p: where to store the parameters
2739  *
2740  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2741  *      Clock.  This can only be called after a connection to the firmware
2742  *      is established.
2743  */
2744 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746         u32 cclk_param, cclk_val;
2747         int ret;
2748
2749         /* Grab the raw VPD parameters.
2750          */
2751         ret = t4_get_raw_vpd_params(adapter, p);
2752         if (ret)
2753                 return ret;
2754
2755         /* Ask firmware for the Core Clock since it knows how to translate the
2756          * Reference Clock ('V2') VPD field into a Core Clock value ...
2757          */
2758         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2759                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2760         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2761                               1, &cclk_param, &cclk_val);
2762
2763         if (ret)
2764                 return ret;
2765         p->cclk = cclk_val;
2766
2767         return 0;
2768 }
2769
2770 /* serial flash and firmware constants */
2771 enum {
2772         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2773
2774         /* flash command opcodes */
2775         SF_PROG_PAGE    = 2,          /* program page */
2776         SF_WR_DISABLE   = 4,          /* disable writes */
2777         SF_RD_STATUS    = 5,          /* read status register */
2778         SF_WR_ENABLE    = 6,          /* enable writes */
2779         SF_RD_DATA_FAST = 0xb,        /* read flash */
2780         SF_RD_ID        = 0x9f,       /* read ID */
2781         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2782
2783         FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2784 };
2785
2786 /**
2787  *      sf1_read - read data from the serial flash
2788  *      @adapter: the adapter
2789  *      @byte_cnt: number of bytes to read
2790  *      @cont: whether another operation will be chained
2791  *      @lock: whether to lock SF for PL access only
2792  *      @valp: where to store the read data
2793  *
2794  *      Reads up to 4 bytes of data from the serial flash.  The location of
2795  *      the read needs to be specified prior to calling this by issuing the
2796  *      appropriate commands to the serial flash.
2797  */
2798 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2799                     int lock, u32 *valp)
2800 {
2801         int ret;
2802
2803         if (!byte_cnt || byte_cnt > 4)
2804                 return -EINVAL;
2805         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2806                 return -EBUSY;
2807         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2808                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2809         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2810         if (!ret)
2811                 *valp = t4_read_reg(adapter, SF_DATA_A);
2812         return ret;
2813 }
2814
2815 /**
2816  *      sf1_write - write data to the serial flash
2817  *      @adapter: the adapter
2818  *      @byte_cnt: number of bytes to write
2819  *      @cont: whether another operation will be chained
2820  *      @lock: whether to lock SF for PL access only
2821  *      @val: value to write
2822  *
2823  *      Writes up to 4 bytes of data to the serial flash.  The location of
2824  *      the write needs to be specified prior to calling this by issuing the
2825  *      appropriate commands to the serial flash.
2826  */
2827 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2828                      int lock, u32 val)
2829 {
2830         if (!byte_cnt || byte_cnt > 4)
2831                 return -EINVAL;
2832         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2833                 return -EBUSY;
2834         t4_write_reg(adapter, SF_DATA_A, val);
2835         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2836                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2837         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2838 }
2839
2840 /**
2841  *      flash_wait_op - wait for a flash operation to complete
2842  *      @adapter: the adapter
2843  *      @attempts: max number of polls of the status register
2844  *      @delay: delay between polls in ms
2845  *
2846  *      Wait for a flash operation to complete by polling the status register.
2847  */
2848 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2849 {
2850         int ret;
2851         u32 status;
2852
2853         while (1) {
2854                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2855                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2856                         return ret;
2857                 if (!(status & 1))
2858                         return 0;
2859                 if (--attempts == 0)
2860                         return -EAGAIN;
2861                 if (delay)
2862                         msleep(delay);
2863         }
2864 }
2865
2866 /**
2867  *      t4_read_flash - read words from serial flash
2868  *      @adapter: the adapter
2869  *      @addr: the start address for the read
2870  *      @nwords: how many 32-bit words to read
2871  *      @data: where to store the read data
2872  *      @byte_oriented: whether to store data as bytes or as words
2873  *
2874  *      Read the specified number of 32-bit words from the serial flash.
2875  *      If @byte_oriented is set the read data is stored as a byte array
2876  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
2877  *      natural endianness.
2878  */
2879 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2880                   unsigned int nwords, u32 *data, int byte_oriented)
2881 {
2882         int ret;
2883
2884         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2885                 return -EINVAL;
2886
2887         addr = swab32(addr) | SF_RD_DATA_FAST;
2888
2889         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2890             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2891                 return ret;
2892
2893         for ( ; nwords; nwords--, data++) {
2894                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2895                 if (nwords == 1)
2896                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2897                 if (ret)
2898                         return ret;
2899                 if (byte_oriented)
2900                         *data = (__force __u32)(cpu_to_be32(*data));
2901         }
2902         return 0;
2903 }
2904
2905 /**
2906  *      t4_write_flash - write up to a page of data to the serial flash
2907  *      @adapter: the adapter
2908  *      @addr: the start address to write
2909  *      @n: length of data to write in bytes
2910  *      @data: the data to write
2911  *
2912  *      Writes up to a page of data (256 bytes) to the serial flash starting
2913  *      at the given address.  All the data must be written to the same page.
2914  */
2915 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2916                           unsigned int n, const u8 *data)
2917 {
2918         int ret;
2919         u32 buf[64];
2920         unsigned int i, c, left, val, offset = addr & 0xff;
2921
2922         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2923                 return -EINVAL;
2924
2925         val = swab32(addr) | SF_PROG_PAGE;
2926
2927         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2928             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2929                 goto unlock;
2930
2931         for (left = n; left; left -= c) {
2932                 c = min(left, 4U);
2933                 for (val = 0, i = 0; i < c; ++i)
2934                         val = (val << 8) + *data++;
2935
2936                 ret = sf1_write(adapter, c, c != left, 1, val);
2937                 if (ret)
2938                         goto unlock;
2939         }
2940         ret = flash_wait_op(adapter, 8, 1);
2941         if (ret)
2942                 goto unlock;
2943
2944         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2945
2946         /* Read the page to verify the write succeeded */
2947         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2948         if (ret)
2949                 return ret;
2950
2951         if (memcmp(data - n, (u8 *)buf + offset, n)) {
2952                 dev_err(adapter->pdev_dev,
2953                         "failed to correctly write the flash page at %#x\n",
2954                         addr);
2955                 return -EIO;
2956         }
2957         return 0;
2958
2959 unlock:
2960         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2961         return ret;
2962 }
2963
2964 /**
2965  *      t4_get_fw_version - read the firmware version
2966  *      @adapter: the adapter
2967  *      @vers: where to place the version
2968  *
2969  *      Reads the FW version from flash.
2970  */
2971 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2972 {
2973         return t4_read_flash(adapter, FLASH_FW_START +
2974                              offsetof(struct fw_hdr, fw_ver), 1,
2975                              vers, 0);
2976 }
2977
2978 /**
2979  *      t4_get_bs_version - read the firmware bootstrap version
2980  *      @adapter: the adapter
2981  *      @vers: where to place the version
2982  *
2983  *      Reads the FW Bootstrap version from flash.
2984  */
2985 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2986 {
2987         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2988                              offsetof(struct fw_hdr, fw_ver), 1,
2989                              vers, 0);
2990 }
2991
2992 /**
2993  *      t4_get_tp_version - read the TP microcode version
2994  *      @adapter: the adapter
2995  *      @vers: where to place the version
2996  *
2997  *      Reads the TP microcode version from flash.
2998  */
2999 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3000 {
3001         return t4_read_flash(adapter, FLASH_FW_START +
3002                              offsetof(struct fw_hdr, tp_microcode_ver),
3003                              1, vers, 0);
3004 }
3005
3006 /**
3007  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3008  *      @adapter: the adapter
3009  *      @vers: where to place the version
3010  *
3011  *      Reads the Expansion ROM header from FLASH and returns the version
3012  *      number (if present) through the @vers return value pointer.  We return
3013  *      this in the Firmware Version Format since it's convenient.  Return
3014  *      0 on success, -ENOENT if no Expansion ROM is present.
3015  */
3016 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3017 {
3018         struct exprom_header {
3019                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3020                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3021         } *hdr;
3022         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3023                                            sizeof(u32))];
3024         int ret;
3025
3026         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3027                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3028                             0);
3029         if (ret)
3030                 return ret;
3031
3032         hdr = (struct exprom_header *)exprom_header_buf;
3033         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3034                 return -ENOENT;
3035
3036         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3037                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3038                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3039                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3040         return 0;
3041 }
3042
3043 /**
3044  *      t4_check_fw_version - check if the FW is supported with this driver
3045  *      @adap: the adapter
3046  *
3047  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3048  *      if there's exact match, a negative error if the version could not be
3049  *      read or there's a major version mismatch
3050  */
3051 int t4_check_fw_version(struct adapter *adap)
3052 {
3053         int i, ret, major, minor, micro;
3054         int exp_major, exp_minor, exp_micro;
3055         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3056
3057         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3058         /* Try multiple times before returning error */
3059         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3060                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3061
3062         if (ret)
3063                 return ret;
3064
3065         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3066         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3067         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3068
3069         switch (chip_version) {
3070         case CHELSIO_T4:
3071                 exp_major = T4FW_MIN_VERSION_MAJOR;
3072                 exp_minor = T4FW_MIN_VERSION_MINOR;
3073                 exp_micro = T4FW_MIN_VERSION_MICRO;
3074                 break;
3075         case CHELSIO_T5:
3076                 exp_major = T5FW_MIN_VERSION_MAJOR;
3077                 exp_minor = T5FW_MIN_VERSION_MINOR;
3078                 exp_micro = T5FW_MIN_VERSION_MICRO;
3079                 break;
3080         case CHELSIO_T6:
3081                 exp_major = T6FW_MIN_VERSION_MAJOR;
3082                 exp_minor = T6FW_MIN_VERSION_MINOR;
3083                 exp_micro = T6FW_MIN_VERSION_MICRO;
3084                 break;
3085         default:
3086                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3087                         adap->chip);
3088                 return -EINVAL;
3089         }
3090
3091         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3092             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3093                 dev_err(adap->pdev_dev,
3094                         "Card has firmware version %u.%u.%u, minimum "
3095                         "supported firmware is %u.%u.%u.\n", major, minor,
3096                         micro, exp_major, exp_minor, exp_micro);
3097                 return -EFAULT;
3098         }
3099         return 0;
3100 }
3101
3102 /* Is the given firmware API compatible with the one the driver was compiled
3103  * with?
3104  */
3105 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3106 {
3107
3108         /* short circuit if it's the exact same firmware version */
3109         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3110                 return 1;
3111
3112 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3113         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3114             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3115                 return 1;
3116 #undef SAME_INTF
3117
3118         return 0;
3119 }
3120
3121 /* The firmware in the filesystem is usable, but should it be installed?
3122  * This routine explains itself in detail if it indicates the filesystem
3123  * firmware should be installed.
3124  */
3125 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3126                                 int k, int c)
3127 {
3128         const char *reason;
3129
3130         if (!card_fw_usable) {
3131                 reason = "incompatible or unusable";
3132                 goto install;
3133         }
3134
3135         if (k > c) {
3136                 reason = "older than the version supported with this driver";
3137                 goto install;
3138         }
3139
3140         return 0;
3141
3142 install:
3143         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3144                 "installing firmware %u.%u.%u.%u on card.\n",
3145                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3146                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3147                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3148                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3149
3150         return 1;
3151 }
3152
3153 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3154                const u8 *fw_data, unsigned int fw_size,
3155                struct fw_hdr *card_fw, enum dev_state state,
3156                int *reset)
3157 {
3158         int ret, card_fw_usable, fs_fw_usable;
3159         const struct fw_hdr *fs_fw;
3160         const struct fw_hdr *drv_fw;
3161
3162         drv_fw = &fw_info->fw_hdr;
3163
3164         /* Read the header of the firmware on the card */
3165         ret = -t4_read_flash(adap, FLASH_FW_START,
3166                             sizeof(*card_fw) / sizeof(uint32_t),
3167                             (uint32_t *)card_fw, 1);
3168         if (ret == 0) {
3169                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3170         } else {
3171                 dev_err(adap->pdev_dev,
3172                         "Unable to read card's firmware header: %d\n", ret);
3173                 card_fw_usable = 0;
3174         }
3175
3176         if (fw_data != NULL) {
3177                 fs_fw = (const void *)fw_data;
3178                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3179         } else {
3180                 fs_fw = NULL;
3181                 fs_fw_usable = 0;
3182         }
3183
3184         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3185             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3186                 /* Common case: the firmware on the card is an exact match and
3187                  * the filesystem one is an exact match too, or the filesystem
3188                  * one is absent/incompatible.
3189                  */
3190         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3191                    should_install_fs_fw(adap, card_fw_usable,
3192                                         be32_to_cpu(fs_fw->fw_ver),
3193                                         be32_to_cpu(card_fw->fw_ver))) {
3194                 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3195                                      fw_size, 0);
3196                 if (ret != 0) {
3197                         dev_err(adap->pdev_dev,
3198                                 "failed to install firmware: %d\n", ret);
3199                         goto bye;
3200                 }
3201
3202                 /* Installed successfully, update the cached header too. */
3203                 *card_fw = *fs_fw;
3204                 card_fw_usable = 1;
3205                 *reset = 0;     /* already reset as part of load_fw */
3206         }
3207
3208         if (!card_fw_usable) {
3209                 uint32_t d, c, k;
3210
3211                 d = be32_to_cpu(drv_fw->fw_ver);
3212                 c = be32_to_cpu(card_fw->fw_ver);
3213                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3214
3215                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3216                         "chip state %d, "
3217                         "driver compiled with %d.%d.%d.%d, "
3218                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3219                         state,
3220                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3221                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3222                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3223                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3224                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3225                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3226                 ret = EINVAL;
3227                 goto bye;
3228         }
3229
3230         /* We're using whatever's on the card and it's known to be good. */
3231         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3232         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3233
3234 bye:
3235         return ret;
3236 }
3237
3238 /**
3239  *      t4_flash_erase_sectors - erase a range of flash sectors
3240  *      @adapter: the adapter
3241  *      @start: the first sector to erase
3242  *      @end: the last sector to erase
3243  *
3244  *      Erases the sectors in the given inclusive range.
3245  */
3246 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3247 {
3248         int ret = 0;
3249
3250         if (end >= adapter->params.sf_nsec)
3251                 return -EINVAL;
3252
3253         while (start <= end) {
3254                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3255                     (ret = sf1_write(adapter, 4, 0, 1,
3256                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3257                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3258                         dev_err(adapter->pdev_dev,
3259                                 "erase of flash sector %d failed, error %d\n",
3260                                 start, ret);
3261                         break;
3262                 }
3263                 start++;
3264         }
3265         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3266         return ret;
3267 }
3268
3269 /**
3270  *      t4_flash_cfg_addr - return the address of the flash configuration file
3271  *      @adapter: the adapter
3272  *
3273  *      Return the address within the flash where the Firmware Configuration
3274  *      File is stored.
3275  */
3276 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3277 {
3278         if (adapter->params.sf_size == 0x100000)
3279                 return FLASH_FPGA_CFG_START;
3280         else
3281                 return FLASH_CFG_START;
3282 }
3283
3284 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3285  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3286  * and emit an error message for mismatched firmware to save our caller the
3287  * effort ...
3288  */
3289 static bool t4_fw_matches_chip(const struct adapter *adap,
3290                                const struct fw_hdr *hdr)
3291 {
3292         /* The expression below will return FALSE for any unsupported adapter
3293          * which will keep us "honest" in the future ...
3294          */
3295         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3296             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3297             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3298                 return true;
3299
3300         dev_err(adap->pdev_dev,
3301                 "FW image (%d) is not suitable for this adapter (%d)\n",
3302                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3303         return false;
3304 }
3305
3306 /**
3307  *      t4_load_fw - download firmware
3308  *      @adap: the adapter
3309  *      @fw_data: the firmware image to write
3310  *      @size: image size
3311  *
3312  *      Write the supplied firmware image to the card's serial flash.
3313  */
3314 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3315 {
3316         u32 csum;
3317         int ret, addr;
3318         unsigned int i;
3319         u8 first_page[SF_PAGE_SIZE];
3320         const __be32 *p = (const __be32 *)fw_data;
3321         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3322         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3323         unsigned int fw_img_start = adap->params.sf_fw_start;
3324         unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3325
3326         if (!size) {
3327                 dev_err(adap->pdev_dev, "FW image has no data\n");
3328                 return -EINVAL;
3329         }
3330         if (size & 511) {
3331                 dev_err(adap->pdev_dev,
3332                         "FW image size not multiple of 512 bytes\n");
3333                 return -EINVAL;
3334         }
3335         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3336                 dev_err(adap->pdev_dev,
3337                         "FW image size differs from size in FW header\n");
3338                 return -EINVAL;
3339         }
3340         if (size > FW_MAX_SIZE) {
3341                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3342                         FW_MAX_SIZE);
3343                 return -EFBIG;
3344         }
3345         if (!t4_fw_matches_chip(adap, hdr))
3346                 return -EINVAL;
3347
3348         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3349                 csum += be32_to_cpu(p[i]);
3350
3351         if (csum != 0xffffffff) {
3352                 dev_err(adap->pdev_dev,
3353                         "corrupted firmware image, checksum %#x\n", csum);
3354                 return -EINVAL;
3355         }
3356
3357         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3358         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3359         if (ret)
3360                 goto out;
3361
3362         /*
3363          * We write the correct version at the end so the driver can see a bad
3364          * version if the FW write fails.  Start by writing a copy of the
3365          * first page with a bad version.
3366          */
3367         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3368         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3369         ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3370         if (ret)
3371                 goto out;
3372
3373         addr = fw_img_start;
3374         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3375                 addr += SF_PAGE_SIZE;
3376                 fw_data += SF_PAGE_SIZE;
3377                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3378                 if (ret)
3379                         goto out;
3380         }
3381
3382         ret = t4_write_flash(adap,
3383                              fw_img_start + offsetof(struct fw_hdr, fw_ver),
3384                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3385 out:
3386         if (ret)
3387                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3388                         ret);
3389         else
3390                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3391         return ret;
3392 }
3393
3394 /**
3395  *      t4_phy_fw_ver - return current PHY firmware version
3396  *      @adap: the adapter
3397  *      @phy_fw_ver: return value buffer for PHY firmware version
3398  *
3399  *      Returns the current version of external PHY firmware on the
3400  *      adapter.
3401  */
3402 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3403 {
3404         u32 param, val;
3405         int ret;
3406
3407         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3408                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3409                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3410                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3411         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3412                               &param, &val);
3413         if (ret < 0)
3414                 return ret;
3415         *phy_fw_ver = val;
3416         return 0;
3417 }
3418
3419 /**
3420  *      t4_load_phy_fw - download port PHY firmware
3421  *      @adap: the adapter
3422  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3423  *      @win_lock: the lock to use to guard the memory copy
3424  *      @phy_fw_version: function to check PHY firmware versions
3425  *      @phy_fw_data: the PHY firmware image to write
3426  *      @phy_fw_size: image size
3427  *
3428  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3429  *      @phy_fw_version is supplied, then it will be used to determine if
3430  *      it's necessary to perform the transfer by comparing the version
3431  *      of any existing adapter PHY firmware with that of the passed in
3432  *      PHY firmware image.  If @win_lock is non-NULL then it will be used
3433  *      around the call to t4_memory_rw() which transfers the PHY firmware
3434  *      to the adapter.
3435  *
3436  *      A negative error number will be returned if an error occurs.  If
3437  *      version number support is available and there's no need to upgrade
3438  *      the firmware, 0 will be returned.  If firmware is successfully
3439  *      transferred to the adapter, 1 will be retured.
3440  *
3441  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3442  *      a result, a RESET of the adapter would cause that RAM to lose its
3443  *      contents.  Thus, loading PHY firmware on such adapters must happen
3444  *      after any FW_RESET_CMDs ...
3445  */
3446 int t4_load_phy_fw(struct adapter *adap,
3447                    int win, spinlock_t *win_lock,
3448                    int (*phy_fw_version)(const u8 *, size_t),
3449                    const u8 *phy_fw_data, size_t phy_fw_size)
3450 {
3451         unsigned long mtype = 0, maddr = 0;
3452         u32 param, val;
3453         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3454         int ret;
3455
3456         /* If we have version number support, then check to see if the adapter
3457          * already has up-to-date PHY firmware loaded.
3458          */
3459          if (phy_fw_version) {
3460                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3461                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3462                 if (ret < 0)
3463                         return ret;
3464
3465                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3466                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3467                                 "version %#x\n", cur_phy_fw_ver);
3468                         return 0;
3469                 }
3470         }
3471
3472         /* Ask the firmware where it wants us to copy the PHY firmware image.
3473          * The size of the file requires a special version of the READ coommand
3474          * which will pass the file size via the values field in PARAMS_CMD and
3475          * retrieve the return value from firmware and place it in the same
3476          * buffer values
3477          */
3478         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3479                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3480                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3481                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3482         val = phy_fw_size;
3483         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3484                                  &param, &val, 1);
3485         if (ret < 0)
3486                 return ret;
3487         mtype = val >> 8;
3488         maddr = (val & 0xff) << 16;
3489
3490         /* Copy the supplied PHY Firmware image to the adapter memory location
3491          * allocated by the adapter firmware.
3492          */
3493         if (win_lock)
3494                 spin_lock_bh(win_lock);
3495         ret = t4_memory_rw(adap, win, mtype, maddr,
3496                            phy_fw_size, (__be32 *)phy_fw_data,
3497                            T4_MEMORY_WRITE);
3498         if (win_lock)
3499                 spin_unlock_bh(win_lock);
3500         if (ret)
3501                 return ret;
3502
3503         /* Tell the firmware that the PHY firmware image has been written to
3504          * RAM and it can now start copying it over to the PHYs.  The chip
3505          * firmware will RESET the affected PHYs as part of this operation
3506          * leaving them running the new PHY firmware image.
3507          */
3508         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3509                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3510                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3511                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3512         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3513                                     &param, &val, 30000);
3514
3515         /* If we have version number support, then check to see that the new
3516          * firmware got loaded properly.
3517          */
3518         if (phy_fw_version) {
3519                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3520                 if (ret < 0)
3521                         return ret;
3522
3523                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3524                         CH_WARN(adap, "PHY Firmware did not update: "
3525                                 "version on adapter %#x, "
3526                                 "version flashed %#x\n",
3527                                 cur_phy_fw_ver, new_phy_fw_vers);
3528                         return -ENXIO;
3529                 }
3530         }
3531
3532         return 1;
3533 }
3534
3535 /**
3536  *      t4_fwcache - firmware cache operation
3537  *      @adap: the adapter
3538  *      @op  : the operation (flush or flush and invalidate)
3539  */
3540 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3541 {
3542         struct fw_params_cmd c;
3543
3544         memset(&c, 0, sizeof(c));
3545         c.op_to_vfn =
3546                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3547                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3548                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3549                             FW_PARAMS_CMD_VFN_V(0));
3550         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3551         c.param[0].mnem =
3552                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3553                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3554         c.param[0].val = (__force __be32)op;
3555
3556         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3557 }
3558
3559 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3560                         unsigned int *pif_req_wrptr,
3561                         unsigned int *pif_rsp_wrptr)
3562 {
3563         int i, j;
3564         u32 cfg, val, req, rsp;
3565
3566         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3567         if (cfg & LADBGEN_F)
3568                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3569
3570         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3571         req = POLADBGWRPTR_G(val);
3572         rsp = PILADBGWRPTR_G(val);
3573         if (pif_req_wrptr)
3574                 *pif_req_wrptr = req;
3575         if (pif_rsp_wrptr)
3576                 *pif_rsp_wrptr = rsp;
3577
3578         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3579                 for (j = 0; j < 6; j++) {
3580                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3581                                      PILADBGRDPTR_V(rsp));
3582                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3583                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3584                         req++;
3585                         rsp++;
3586                 }
3587                 req = (req + 2) & POLADBGRDPTR_M;
3588                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3589         }
3590         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3591 }
3592
3593 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3594 {
3595         u32 cfg;
3596         int i, j, idx;
3597
3598         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3599         if (cfg & LADBGEN_F)
3600                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3601
3602         for (i = 0; i < CIM_MALA_SIZE; i++) {
3603                 for (j = 0; j < 5; j++) {
3604                         idx = 8 * i + j;
3605                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3606                                      PILADBGRDPTR_V(idx));
3607                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3608                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3609                 }
3610         }
3611         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3612 }
3613
3614 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3615 {
3616         unsigned int i, j;
3617
3618         for (i = 0; i < 8; i++) {
3619                 u32 *p = la_buf + i;
3620
3621                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3622                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3623                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3624                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3625                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3626         }
3627 }
3628
3629 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3630                      FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3631                      FW_PORT_CAP_ANEG)
3632
3633 /**
3634  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3635  *      @phy: the PHY to setup
3636  *      @mac: the MAC to setup
3637  *      @lc: the requested link configuration
3638  *
3639  *      Set up a port's MAC and PHY according to a desired link configuration.
3640  *      - If the PHY can auto-negotiate first decide what to advertise, then
3641  *        enable/disable auto-negotiation as desired, and reset.
3642  *      - If the PHY does not auto-negotiate just reset it.
3643  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3644  *        otherwise do it later based on the outcome of auto-negotiation.
3645  */
3646 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3647                   struct link_config *lc)
3648 {
3649         struct fw_port_cmd c;
3650         unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3651
3652         lc->link_ok = 0;
3653         if (lc->requested_fc & PAUSE_RX)
3654                 fc |= FW_PORT_CAP_FC_RX;
3655         if (lc->requested_fc & PAUSE_TX)
3656                 fc |= FW_PORT_CAP_FC_TX;
3657
3658         memset(&c, 0, sizeof(c));
3659         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3660                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3661                                      FW_PORT_CMD_PORTID_V(port));
3662         c.action_to_len16 =
3663                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3664                             FW_LEN16(c));
3665
3666         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3667                 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3668                                              fc);
3669                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3670         } else if (lc->autoneg == AUTONEG_DISABLE) {
3671                 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3672                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3673         } else
3674                 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3675
3676         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3677 }
3678
3679 /**
3680  *      t4_restart_aneg - restart autonegotiation
3681  *      @adap: the adapter
3682  *      @mbox: mbox to use for the FW command
3683  *      @port: the port id
3684  *
3685  *      Restarts autonegotiation for the selected port.
3686  */
3687 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3688 {
3689         struct fw_port_cmd c;
3690
3691         memset(&c, 0, sizeof(c));
3692         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3693                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3694                                      FW_PORT_CMD_PORTID_V(port));
3695         c.action_to_len16 =
3696                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3697                             FW_LEN16(c));
3698         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3699         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3700 }
3701
3702 typedef void (*int_handler_t)(struct adapter *adap);
3703
3704 struct intr_info {
3705         unsigned int mask;       /* bits to check in interrupt status */
3706         const char *msg;         /* message to print or NULL */
3707         short stat_idx;          /* stat counter to increment or -1 */
3708         unsigned short fatal;    /* whether the condition reported is fatal */
3709         int_handler_t int_handler; /* platform-specific int handler */
3710 };
3711
3712 /**
3713  *      t4_handle_intr_status - table driven interrupt handler
3714  *      @adapter: the adapter that generated the interrupt
3715  *      @reg: the interrupt status register to process
3716  *      @acts: table of interrupt actions
3717  *
3718  *      A table driven interrupt handler that applies a set of masks to an
3719  *      interrupt status word and performs the corresponding actions if the
3720  *      interrupts described by the mask have occurred.  The actions include
3721  *      optionally emitting a warning or alert message.  The table is terminated
3722  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
3723  *      conditions.
3724  */
3725 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3726                                  const struct intr_info *acts)
3727 {
3728         int fatal = 0;
3729         unsigned int mask = 0;
3730         unsigned int status = t4_read_reg(adapter, reg);
3731
3732         for ( ; acts->mask; ++acts) {
3733                 if (!(status & acts->mask))
3734                         continue;
3735                 if (acts->fatal) {
3736                         fatal++;
3737                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3738                                   status & acts->mask);
3739                 } else if (acts->msg && printk_ratelimit())
3740                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3741                                  status & acts->mask);
3742                 if (acts->int_handler)
3743                         acts->int_handler(adapter);
3744                 mask |= acts->mask;
3745         }
3746         status &= mask;
3747         if (status)                           /* clear processed interrupts */
3748                 t4_write_reg(adapter, reg, status);
3749         return fatal;
3750 }
3751
3752 /*
3753  * Interrupt handler for the PCIE module.
3754  */
3755 static void pcie_intr_handler(struct adapter *adapter)
3756 {
3757         static const struct intr_info sysbus_intr_info[] = {
3758                 { RNPP_F, "RXNP array parity error", -1, 1 },
3759                 { RPCP_F, "RXPC array parity error", -1, 1 },
3760                 { RCIP_F, "RXCIF array parity error", -1, 1 },
3761                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3762                 { RFTP_F, "RXFT array parity error", -1, 1 },
3763                 { 0 }
3764         };
3765         static const struct intr_info pcie_port_intr_info[] = {
3766                 { TPCP_F, "TXPC array parity error", -1, 1 },
3767                 { TNPP_F, "TXNP array parity error", -1, 1 },
3768                 { TFTP_F, "TXFT array parity error", -1, 1 },
3769                 { TCAP_F, "TXCA array parity error", -1, 1 },
3770                 { TCIP_F, "TXCIF array parity error", -1, 1 },
3771                 { RCAP_F, "RXCA array parity error", -1, 1 },
3772                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3773                 { RDPE_F, "Rx data parity error", -1, 1 },
3774                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
3775                 { 0 }
3776         };
3777         static const struct intr_info pcie_intr_info[] = {
3778                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3779                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3780                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3781                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3782                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3783                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3784                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3785                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3786                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3787                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3788                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3789                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3790                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3791                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3792                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3793                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3794                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3795                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3796                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3797                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3798                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3799                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3800                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3801                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3802                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3803                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3804                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3805                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3806                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3807                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3808                   -1, 0 },
3809                 { 0 }
3810         };
3811
3812         static struct intr_info t5_pcie_intr_info[] = {
3813                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
3814                   -1, 1 },
3815                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3816                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3817                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3818                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3819                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3820                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3821                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3822                   -1, 1 },
3823                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3824                   -1, 1 },
3825                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3826                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3827                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3828                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3829                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
3830                   -1, 1 },
3831                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3832                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3833                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3834                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3835                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3836                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3837                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3838                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3839                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3840                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3841                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3842                   -1, 1 },
3843                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3844                   -1, 1 },
3845                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3846                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3847                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3848                 { READRSPERR_F, "Outbound read error", -1, 0 },
3849                 { 0 }
3850         };
3851
3852         int fat;
3853
3854         if (is_t4(adapter->params.chip))
3855                 fat = t4_handle_intr_status(adapter,
3856                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3857                                 sysbus_intr_info) +
3858                         t4_handle_intr_status(adapter,
3859                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3860                                         pcie_port_intr_info) +
3861                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3862                                               pcie_intr_info);
3863         else
3864                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3865                                             t5_pcie_intr_info);
3866
3867         if (fat)
3868                 t4_fatal_err(adapter);
3869 }
3870
3871 /*
3872  * TP interrupt handler.
3873  */
3874 static void tp_intr_handler(struct adapter *adapter)
3875 {
3876         static const struct intr_info tp_intr_info[] = {
3877                 { 0x3fffffff, "TP parity error", -1, 1 },
3878                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3879                 { 0 }
3880         };
3881
3882         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3883                 t4_fatal_err(adapter);
3884 }
3885
3886 /*
3887  * SGE interrupt handler.
3888  */
3889 static void sge_intr_handler(struct adapter *adapter)
3890 {
3891         u64 v;
3892         u32 err;
3893
3894         static const struct intr_info sge_intr_info[] = {
3895                 { ERR_CPL_EXCEED_IQE_SIZE_F,
3896                   "SGE received CPL exceeding IQE size", -1, 1 },
3897                 { ERR_INVALID_CIDX_INC_F,
3898                   "SGE GTS CIDX increment too large", -1, 0 },
3899                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3900                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3901                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3902                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
3903                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3904                   0 },
3905                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3906                   0 },
3907                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3908                   0 },
3909                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3910                   0 },
3911                 { ERR_ING_CTXT_PRIO_F,
3912                   "SGE too many priority ingress contexts", -1, 0 },
3913                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3914                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3915                 { 0 }
3916         };
3917
3918         static struct intr_info t4t5_sge_intr_info[] = {
3919                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3920                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3921                 { ERR_EGR_CTXT_PRIO_F,
3922                   "SGE too many priority egress contexts", -1, 0 },
3923                 { 0 }
3924         };
3925
3926         v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3927                 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3928         if (v) {
3929                 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3930                                 (unsigned long long)v);
3931                 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3932                 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3933         }
3934
3935         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3936         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3937                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3938                                            t4t5_sge_intr_info);
3939
3940         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3941         if (err & ERROR_QID_VALID_F) {
3942                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3943                         ERROR_QID_G(err));
3944                 if (err & UNCAPTURED_ERROR_F)
3945                         dev_err(adapter->pdev_dev,
3946                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
3947                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3948                              UNCAPTURED_ERROR_F);
3949         }
3950
3951         if (v != 0)
3952                 t4_fatal_err(adapter);
3953 }
3954
3955 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3956                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3957 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3958                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3959
3960 /*
3961  * CIM interrupt handler.
3962  */
3963 static void cim_intr_handler(struct adapter *adapter)
3964 {
3965         static const struct intr_info cim_intr_info[] = {
3966                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3967                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3968                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3969                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3970                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3971                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3972                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3973                 { 0 }
3974         };
3975         static const struct intr_info cim_upintr_info[] = {
3976                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3977                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3978                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3979                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3980                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3981                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3982                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3983                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3984                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3985                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3986                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3987                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3988                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3989                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3990                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3991                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3992                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3993                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3994                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3995                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3996                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3997                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3998                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3999                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4000                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4001                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4002                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4003                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4004                 { 0 }
4005         };
4006
4007         int fat;
4008
4009         if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
4010                 t4_report_fw_error(adapter);
4011
4012         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4013                                     cim_intr_info) +
4014               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4015                                     cim_upintr_info);
4016         if (fat)
4017                 t4_fatal_err(adapter);
4018 }
4019
4020 /*
4021  * ULP RX interrupt handler.
4022  */
4023 static void ulprx_intr_handler(struct adapter *adapter)
4024 {
4025         static const struct intr_info ulprx_intr_info[] = {
4026                 { 0x1800000, "ULPRX context error", -1, 1 },
4027                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4028                 { 0 }
4029         };
4030
4031         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4032                 t4_fatal_err(adapter);
4033 }
4034
4035 /*
4036  * ULP TX interrupt handler.
4037  */
4038 static void ulptx_intr_handler(struct adapter *adapter)
4039 {
4040         static const struct intr_info ulptx_intr_info[] = {
4041                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4042                   0 },
4043                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4044                   0 },
4045                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4046                   0 },
4047                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4048                   0 },
4049                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4050                 { 0 }
4051         };
4052
4053         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4054                 t4_fatal_err(adapter);
4055 }
4056
4057 /*
4058  * PM TX interrupt handler.
4059  */
4060 static void pmtx_intr_handler(struct adapter *adapter)
4061 {
4062         static const struct intr_info pmtx_intr_info[] = {
4063                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4064                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4065                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4066                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4067                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4068                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4069                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4070                   -1, 1 },
4071                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4072                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4073                 { 0 }
4074         };
4075
4076         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4077                 t4_fatal_err(adapter);
4078 }
4079
4080 /*
4081  * PM RX interrupt handler.
4082  */
4083 static void pmrx_intr_handler(struct adapter *adapter)
4084 {
4085         static const struct intr_info pmrx_intr_info[] = {
4086                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4087                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4088                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4089                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4090                   -1, 1 },
4091                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4092                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4093                 { 0 }
4094         };
4095
4096         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4097                 t4_fatal_err(adapter);
4098 }
4099
4100 /*
4101  * CPL switch interrupt handler.
4102  */
4103 static void cplsw_intr_handler(struct adapter *adapter)
4104 {
4105         static const struct intr_info cplsw_intr_info[] = {
4106                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4107                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4108                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4109                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4110                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4111                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4112                 { 0 }
4113         };
4114
4115         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4116                 t4_fatal_err(adapter);
4117 }
4118
4119 /*
4120  * LE interrupt handler.
4121  */
4122 static void le_intr_handler(struct adapter *adap)
4123 {
4124         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4125         static const struct intr_info le_intr_info[] = {
4126                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4127                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4128                 { PARITYERR_F, "LE parity error", -1, 1 },
4129                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4130                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4131                 { 0 }
4132         };
4133
4134         static struct intr_info t6_le_intr_info[] = {
4135                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4136                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4137                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4138                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4139                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4140                 { 0 }
4141         };
4142
4143         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4144                                   (chip <= CHELSIO_T5) ?
4145                                   le_intr_info : t6_le_intr_info))
4146                 t4_fatal_err(adap);
4147 }
4148
4149 /*
4150  * MPS interrupt handler.
4151  */
4152 static void mps_intr_handler(struct adapter *adapter)
4153 {
4154         static const struct intr_info mps_rx_intr_info[] = {
4155                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4156                 { 0 }
4157         };
4158         static const struct intr_info mps_tx_intr_info[] = {
4159                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4160                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4161                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4162                   -1, 1 },
4163                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4164                   -1, 1 },
4165                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4166                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4167                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4168                 { 0 }
4169         };
4170         static const struct intr_info mps_trc_intr_info[] = {
4171                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4172                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4173                   -1, 1 },
4174                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4175                 { 0 }
4176         };
4177         static const struct intr_info mps_stat_sram_intr_info[] = {
4178                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4179                 { 0 }
4180         };
4181         static const struct intr_info mps_stat_tx_intr_info[] = {
4182                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4183                 { 0 }
4184         };
4185         static const struct intr_info mps_stat_rx_intr_info[] = {
4186                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4187                 { 0 }
4188         };
4189         static const struct intr_info mps_cls_intr_info[] = {
4190                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4191                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4192                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4193                 { 0 }
4194         };
4195
4196         int fat;
4197
4198         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4199                                     mps_rx_intr_info) +
4200               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4201                                     mps_tx_intr_info) +
4202               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4203                                     mps_trc_intr_info) +
4204               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4205                                     mps_stat_sram_intr_info) +
4206               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4207                                     mps_stat_tx_intr_info) +
4208               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4209                                     mps_stat_rx_intr_info) +
4210               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4211                                     mps_cls_intr_info);
4212
4213         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4214         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4215         if (fat)
4216                 t4_fatal_err(adapter);
4217 }
4218
4219 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4220                       ECC_UE_INT_CAUSE_F)
4221
4222 /*
4223  * EDC/MC interrupt handler.
4224  */
4225 static void mem_intr_handler(struct adapter *adapter, int idx)
4226 {
4227         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4228
4229         unsigned int addr, cnt_addr, v;
4230
4231         if (idx <= MEM_EDC1) {
4232                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4233                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4234         } else if (idx == MEM_MC) {
4235                 if (is_t4(adapter->params.chip)) {
4236                         addr = MC_INT_CAUSE_A;
4237                         cnt_addr = MC_ECC_STATUS_A;
4238                 } else {
4239                         addr = MC_P_INT_CAUSE_A;
4240                         cnt_addr = MC_P_ECC_STATUS_A;
4241                 }
4242         } else {
4243                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4244                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4245         }
4246
4247         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4248         if (v & PERR_INT_CAUSE_F)
4249                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4250                           name[idx]);
4251         if (v & ECC_CE_INT_CAUSE_F) {
4252                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4253
4254                 t4_edc_err_read(adapter, idx);
4255
4256                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4257                 if (printk_ratelimit())
4258                         dev_warn(adapter->pdev_dev,
4259                                  "%u %s correctable ECC data error%s\n",
4260                                  cnt, name[idx], cnt > 1 ? "s" : "");
4261         }
4262         if (v & ECC_UE_INT_CAUSE_F)
4263                 dev_alert(adapter->pdev_dev,
4264                           "%s uncorrectable ECC data error\n", name[idx]);
4265
4266         t4_write_reg(adapter, addr, v);
4267         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4268                 t4_fatal_err(adapter);
4269 }
4270
4271 /*
4272  * MA interrupt handler.
4273  */
4274 static void ma_intr_handler(struct adapter *adap)
4275 {
4276         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4277
4278         if (status & MEM_PERR_INT_CAUSE_F) {
4279                 dev_alert(adap->pdev_dev,
4280                           "MA parity error, parity status %#x\n",
4281                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4282                 if (is_t5(adap->params.chip))
4283                         dev_alert(adap->pdev_dev,
4284                                   "MA parity error, parity status %#x\n",
4285                                   t4_read_reg(adap,
4286                                               MA_PARITY_ERROR_STATUS2_A));
4287         }
4288         if (status & MEM_WRAP_INT_CAUSE_F) {
4289                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4290                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4291                           "client %u to address %#x\n",
4292                           MEM_WRAP_CLIENT_NUM_G(v),
4293                           MEM_WRAP_ADDRESS_G(v) << 4);
4294         }
4295         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4296         t4_fatal_err(adap);
4297 }
4298
4299 /*
4300  * SMB interrupt handler.
4301  */
4302 static void smb_intr_handler(struct adapter *adap)
4303 {
4304         static const struct intr_info smb_intr_info[] = {
4305                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4306                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4307                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4308                 { 0 }
4309         };
4310
4311         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4312                 t4_fatal_err(adap);
4313 }
4314
4315 /*
4316  * NC-SI interrupt handler.
4317  */
4318 static void ncsi_intr_handler(struct adapter *adap)
4319 {
4320         static const struct intr_info ncsi_intr_info[] = {
4321                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4322                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4323                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4324                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4325                 { 0 }
4326         };
4327
4328         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4329                 t4_fatal_err(adap);
4330 }
4331
4332 /*
4333  * XGMAC interrupt handler.
4334  */
4335 static void xgmac_intr_handler(struct adapter *adap, int port)
4336 {
4337         u32 v, int_cause_reg;
4338
4339         if (is_t4(adap->params.chip))
4340                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4341         else
4342                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4343
4344         v = t4_read_reg(adap, int_cause_reg);
4345
4346         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4347         if (!v)
4348                 return;
4349
4350         if (v & TXFIFO_PRTY_ERR_F)
4351                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4352                           port);
4353         if (v & RXFIFO_PRTY_ERR_F)
4354                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4355                           port);
4356         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4357         t4_fatal_err(adap);
4358 }
4359
4360 /*
4361  * PL interrupt handler.
4362  */
4363 static void pl_intr_handler(struct adapter *adap)
4364 {
4365         static const struct intr_info pl_intr_info[] = {
4366                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4367                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4368                 { 0 }
4369         };
4370
4371         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4372                 t4_fatal_err(adap);
4373 }
4374
4375 #define PF_INTR_MASK (PFSW_F)
4376 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4377                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4378                 CPL_SWITCH_F | SGE_F | ULP_TX_F)
4379
4380 /**
4381  *      t4_slow_intr_handler - control path interrupt handler
4382  *      @adapter: the adapter
4383  *
4384  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4385  *      The designation 'slow' is because it involves register reads, while
4386  *      data interrupts typically don't involve any MMIOs.
4387  */
4388 int t4_slow_intr_handler(struct adapter *adapter)
4389 {
4390         u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4391
4392         if (!(cause & GLBL_INTR_MASK))
4393                 return 0;
4394         if (cause & CIM_F)
4395                 cim_intr_handler(adapter);
4396         if (cause & MPS_F)
4397                 mps_intr_handler(adapter);
4398         if (cause & NCSI_F)
4399                 ncsi_intr_handler(adapter);
4400         if (cause & PL_F)
4401                 pl_intr_handler(adapter);
4402         if (cause & SMB_F)
4403                 smb_intr_handler(adapter);
4404         if (cause & XGMAC0_F)
4405                 xgmac_intr_handler(adapter, 0);
4406         if (cause & XGMAC1_F)
4407                 xgmac_intr_handler(adapter, 1);
4408         if (cause & XGMAC_KR0_F)
4409                 xgmac_intr_handler(adapter, 2);
4410         if (cause & XGMAC_KR1_F)
4411                 xgmac_intr_handler(adapter, 3);
4412         if (cause & PCIE_F)
4413                 pcie_intr_handler(adapter);
4414         if (cause & MC_F)
4415                 mem_intr_handler(adapter, MEM_MC);
4416         if (is_t5(adapter->params.chip) && (cause & MC1_F))
4417                 mem_intr_handler(adapter, MEM_MC1);
4418         if (cause & EDC0_F)
4419                 mem_intr_handler(adapter, MEM_EDC0);
4420         if (cause & EDC1_F)
4421                 mem_intr_handler(adapter, MEM_EDC1);
4422         if (cause & LE_F)
4423                 le_intr_handler(adapter);
4424         if (cause & TP_F)
4425                 tp_intr_handler(adapter);
4426         if (cause & MA_F)
4427                 ma_intr_handler(adapter);
4428         if (cause & PM_TX_F)
4429                 pmtx_intr_handler(adapter);
4430         if (cause & PM_RX_F)
4431                 pmrx_intr_handler(adapter);
4432         if (cause & ULP_RX_F)
4433                 ulprx_intr_handler(adapter);
4434         if (cause & CPL_SWITCH_F)
4435                 cplsw_intr_handler(adapter);
4436         if (cause & SGE_F)
4437                 sge_intr_handler(adapter);
4438         if (cause & ULP_TX_F)
4439                 ulptx_intr_handler(adapter);
4440
4441         /* Clear the interrupts just processed for which we are the master. */
4442         t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4443         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4444         return 1;
4445 }
4446
4447 /**
4448  *      t4_intr_enable - enable interrupts
4449  *      @adapter: the adapter whose interrupts should be enabled
4450  *
4451  *      Enable PF-specific interrupts for the calling function and the top-level
4452  *      interrupt concentrator for global interrupts.  Interrupts are already
4453  *      enabled at each module, here we just enable the roots of the interrupt
4454  *      hierarchies.
4455  *
4456  *      Note: this function should be called only when the driver manages
4457  *      non PF-specific interrupts from the various HW modules.  Only one PCI
4458  *      function at a time should be doing this.
4459  */
4460 void t4_intr_enable(struct adapter *adapter)
4461 {
4462         u32 val = 0;
4463         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4464         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4465                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4466
4467         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4468                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4469         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4470                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4471                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4472                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4473                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4474                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4475                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4476         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4477         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4478 }
4479
4480 /**
4481  *      t4_intr_disable - disable interrupts
4482  *      @adapter: the adapter whose interrupts should be disabled
4483  *
4484  *      Disable interrupts.  We only disable the top-level interrupt
4485  *      concentrators.  The caller must be a PCI function managing global
4486  *      interrupts.
4487  */
4488 void t4_intr_disable(struct adapter *adapter)
4489 {
4490         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4491         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4492                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4493
4494         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4495         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4496 }
4497
4498 /**
4499  *      t4_config_rss_range - configure a portion of the RSS mapping table
4500  *      @adapter: the adapter
4501  *      @mbox: mbox to use for the FW command
4502  *      @viid: virtual interface whose RSS subtable is to be written
4503  *      @start: start entry in the table to write
4504  *      @n: how many table entries to write
4505  *      @rspq: values for the response queue lookup table
4506  *      @nrspq: number of values in @rspq
4507  *
4508  *      Programs the selected part of the VI's RSS mapping table with the
4509  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
4510  *      until the full table range is populated.
4511  *
4512  *      The caller must ensure the values in @rspq are in the range allowed for
4513  *      @viid.
4514  */
4515 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4516                         int start, int n, const u16 *rspq, unsigned int nrspq)
4517 {
4518         int ret;
4519         const u16 *rsp = rspq;
4520         const u16 *rsp_end = rspq + nrspq;
4521         struct fw_rss_ind_tbl_cmd cmd;
4522
4523         memset(&cmd, 0, sizeof(cmd));
4524         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4525                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4526                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
4527         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4528
4529         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4530         while (n > 0) {
4531                 int nq = min(n, 32);
4532                 __be32 *qp = &cmd.iq0_to_iq2;
4533
4534                 cmd.niqid = cpu_to_be16(nq);
4535                 cmd.startidx = cpu_to_be16(start);
4536
4537                 start += nq;
4538                 n -= nq;
4539
4540                 while (nq > 0) {
4541                         unsigned int v;
4542
4543                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4544                         if (++rsp >= rsp_end)
4545                                 rsp = rspq;
4546                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4547                         if (++rsp >= rsp_end)
4548                                 rsp = rspq;
4549                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4550                         if (++rsp >= rsp_end)
4551                                 rsp = rspq;
4552
4553                         *qp++ = cpu_to_be32(v);
4554                         nq -= 3;
4555                 }
4556
4557                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4558                 if (ret)
4559                         return ret;
4560         }
4561         return 0;
4562 }
4563
4564 /**
4565  *      t4_config_glbl_rss - configure the global RSS mode
4566  *      @adapter: the adapter
4567  *      @mbox: mbox to use for the FW command
4568  *      @mode: global RSS mode
4569  *      @flags: mode-specific flags
4570  *
4571  *      Sets the global RSS mode.
4572  */
4573 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4574                        unsigned int flags)
4575 {
4576         struct fw_rss_glb_config_cmd c;
4577
4578         memset(&c, 0, sizeof(c));
4579         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4580                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4581         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4582         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4583                 c.u.manual.mode_pkd =
4584                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4585         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4586                 c.u.basicvirtual.mode_pkd =
4587                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4588                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4589         } else
4590                 return -EINVAL;
4591         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4592 }
4593
4594 /**
4595  *      t4_config_vi_rss - configure per VI RSS settings
4596  *      @adapter: the adapter
4597  *      @mbox: mbox to use for the FW command
4598  *      @viid: the VI id
4599  *      @flags: RSS flags
4600  *      @defq: id of the default RSS queue for the VI.
4601  *
4602  *      Configures VI-specific RSS properties.
4603  */
4604 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4605                      unsigned int flags, unsigned int defq)
4606 {
4607         struct fw_rss_vi_config_cmd c;
4608
4609         memset(&c, 0, sizeof(c));
4610         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4611                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4612                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4613         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4614         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4615                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4616         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4617 }
4618
4619 /* Read an RSS table row */
4620 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4621 {
4622         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4623         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4624                                    5, 0, val);
4625 }
4626
4627 /**
4628  *      t4_read_rss - read the contents of the RSS mapping table
4629  *      @adapter: the adapter
4630  *      @map: holds the contents of the RSS mapping table
4631  *
4632  *      Reads the contents of the RSS hash->queue mapping table.
4633  */
4634 int t4_read_rss(struct adapter *adapter, u16 *map)
4635 {
4636         u32 val;
4637         int i, ret;
4638
4639         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4640                 ret = rd_rss_row(adapter, i, &val);
4641                 if (ret)
4642                         return ret;
4643                 *map++ = LKPTBLQUEUE0_G(val);
4644                 *map++ = LKPTBLQUEUE1_G(val);
4645         }
4646         return 0;
4647 }
4648
4649 static unsigned int t4_use_ldst(struct adapter *adap)
4650 {
4651         return (adap->flags & FW_OK) || !adap->use_bd;
4652 }
4653
4654 /**
4655  *      t4_fw_tp_pio_rw - Access TP PIO through LDST
4656  *      @adap: the adapter
4657  *      @vals: where the indirect register values are stored/written
4658  *      @nregs: how many indirect registers to read/write
4659  *      @start_idx: index of first indirect register to read/write
4660  *      @rw: Read (1) or Write (0)
4661  *
4662  *      Access TP PIO registers through LDST
4663  */
4664 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4665                             unsigned int start_index, unsigned int rw)
4666 {
4667         int ret, i;
4668         int cmd = FW_LDST_ADDRSPC_TP_PIO;
4669         struct fw_ldst_cmd c;
4670
4671         for (i = 0 ; i < nregs; i++) {
4672                 memset(&c, 0, sizeof(c));
4673                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4674                                                 FW_CMD_REQUEST_F |
4675                                                 (rw ? FW_CMD_READ_F :
4676                                                       FW_CMD_WRITE_F) |
4677                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
4678                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4679
4680                 c.u.addrval.addr = cpu_to_be32(start_index + i);
4681                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4682                 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4683                 if (!ret && rw)
4684                         vals[i] = be32_to_cpu(c.u.addrval.val);
4685         }
4686 }
4687
4688 /**
4689  *      t4_read_rss_key - read the global RSS key
4690  *      @adap: the adapter
4691  *      @key: 10-entry array holding the 320-bit RSS key
4692  *
4693  *      Reads the global 320-bit RSS key.
4694  */
4695 void t4_read_rss_key(struct adapter *adap, u32 *key)
4696 {
4697         if (t4_use_ldst(adap))
4698                 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4699         else
4700                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4701                                  TP_RSS_SECRET_KEY0_A);
4702 }
4703
4704 /**
4705  *      t4_write_rss_key - program one of the RSS keys
4706  *      @adap: the adapter
4707  *      @key: 10-entry array holding the 320-bit RSS key
4708  *      @idx: which RSS key to write
4709  *
4710  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
4711  *      0..15 the corresponding entry in the RSS key table is written,
4712  *      otherwise the global RSS key is written.
4713  */
4714 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4715 {
4716         u8 rss_key_addr_cnt = 16;
4717         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4718
4719         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4720          * allows access to key addresses 16-63 by using KeyWrAddrX
4721          * as index[5:4](upper 2) into key table
4722          */
4723         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4724             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4725                 rss_key_addr_cnt = 32;
4726
4727         if (t4_use_ldst(adap))
4728                 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4729         else
4730                 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4731                                   TP_RSS_SECRET_KEY0_A);
4732
4733         if (idx >= 0 && idx < rss_key_addr_cnt) {
4734                 if (rss_key_addr_cnt > 16)
4735                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4736                                      KEYWRADDRX_V(idx >> 4) |
4737                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
4738                 else
4739                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4740                                      KEYWRADDR_V(idx) | KEYWREN_F);
4741         }
4742 }
4743
4744 /**
4745  *      t4_read_rss_pf_config - read PF RSS Configuration Table
4746  *      @adapter: the adapter
4747  *      @index: the entry in the PF RSS table to read
4748  *      @valp: where to store the returned value
4749  *
4750  *      Reads the PF RSS Configuration Table at the specified index and returns
4751  *      the value found there.
4752  */
4753 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4754                            u32 *valp)
4755 {
4756         if (t4_use_ldst(adapter))
4757                 t4_fw_tp_pio_rw(adapter, valp, 1,
4758                                 TP_RSS_PF0_CONFIG_A + index, 1);
4759         else
4760                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4761                                  valp, 1, TP_RSS_PF0_CONFIG_A + index);
4762 }
4763
4764 /**
4765  *      t4_read_rss_vf_config - read VF RSS Configuration Table
4766  *      @adapter: the adapter
4767  *      @index: the entry in the VF RSS table to read
4768  *      @vfl: where to store the returned VFL
4769  *      @vfh: where to store the returned VFH
4770  *
4771  *      Reads the VF RSS Configuration Table at the specified index and returns
4772  *      the (VFL, VFH) values found there.
4773  */
4774 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4775                            u32 *vfl, u32 *vfh)
4776 {
4777         u32 vrt, mask, data;
4778
4779         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4780                 mask = VFWRADDR_V(VFWRADDR_M);
4781                 data = VFWRADDR_V(index);
4782         } else {
4783                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4784                  data = T6_VFWRADDR_V(index);
4785         }
4786
4787         /* Request that the index'th VF Table values be read into VFL/VFH.
4788          */
4789         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4790         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4791         vrt |= data | VFRDEN_F;
4792         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4793
4794         /* Grab the VFL/VFH values ...
4795          */
4796         if (t4_use_ldst(adapter)) {
4797                 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4798                 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4799         } else {
4800                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4801                                  vfl, 1, TP_RSS_VFL_CONFIG_A);
4802                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4803                                  vfh, 1, TP_RSS_VFH_CONFIG_A);
4804         }
4805 }
4806
4807 /**
4808  *      t4_read_rss_pf_map - read PF RSS Map
4809  *      @adapter: the adapter
4810  *
4811  *      Reads the PF RSS Map register and returns its value.
4812  */
4813 u32 t4_read_rss_pf_map(struct adapter *adapter)
4814 {
4815         u32 pfmap;
4816
4817         if (t4_use_ldst(adapter))
4818                 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4819         else
4820                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4821                                  &pfmap, 1, TP_RSS_PF_MAP_A);
4822         return pfmap;
4823 }
4824
4825 /**
4826  *      t4_read_rss_pf_mask - read PF RSS Mask
4827  *      @adapter: the adapter
4828  *
4829  *      Reads the PF RSS Mask register and returns its value.
4830  */
4831 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4832 {
4833         u32 pfmask;
4834
4835         if (t4_use_ldst(adapter))
4836                 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4837         else
4838                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4839                                  &pfmask, 1, TP_RSS_PF_MSK_A);
4840         return pfmask;
4841 }
4842
4843 /**
4844  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
4845  *      @adap: the adapter
4846  *      @v4: holds the TCP/IP counter values
4847  *      @v6: holds the TCP/IPv6 counter values
4848  *
4849  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4850  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4851  */
4852 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4853                          struct tp_tcp_stats *v6)
4854 {
4855         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4856
4857 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4858 #define STAT(x)     val[STAT_IDX(x)]
4859 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4860
4861         if (v4) {
4862                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4863                                  ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4864                 v4->tcp_out_rsts = STAT(OUT_RST);
4865                 v4->tcp_in_segs  = STAT64(IN_SEG);
4866                 v4->tcp_out_segs = STAT64(OUT_SEG);
4867                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
4868         }
4869         if (v6) {
4870                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4871                                  ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4872                 v6->tcp_out_rsts = STAT(OUT_RST);
4873                 v6->tcp_in_segs  = STAT64(IN_SEG);
4874                 v6->tcp_out_segs = STAT64(OUT_SEG);
4875                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
4876         }
4877 #undef STAT64
4878 #undef STAT
4879 #undef STAT_IDX
4880 }
4881
4882 /**
4883  *      t4_tp_get_err_stats - read TP's error MIB counters
4884  *      @adap: the adapter
4885  *      @st: holds the counter values
4886  *
4887  *      Returns the values of TP's error counters.
4888  */
4889 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4890 {
4891         int nchan = adap->params.arch.nchan;
4892
4893         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4894                          st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4895         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4896                          st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4897         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4898                          st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4899         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4900                          st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4901         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4902                          st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4903         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4904                          st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4905         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4906                          st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4907         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4908                          st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4909
4910         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4911                          &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4912 }
4913
4914 /**
4915  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
4916  *      @adap: the adapter
4917  *      @st: holds the counter values
4918  *
4919  *      Returns the values of TP's CPL counters.
4920  */
4921 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4922 {
4923         int nchan = adap->params.arch.nchan;
4924
4925         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4926                          nchan, TP_MIB_CPL_IN_REQ_0_A);
4927         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4928                          nchan, TP_MIB_CPL_OUT_RSP_0_A);
4929
4930 }
4931
4932 /**
4933  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4934  *      @adap: the adapter
4935  *      @st: holds the counter values
4936  *
4937  *      Returns the values of TP's RDMA counters.
4938  */
4939 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4940 {
4941         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4942                          2, TP_MIB_RQE_DFR_PKT_A);
4943 }
4944
4945 /**
4946  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4947  *      @adap: the adapter
4948  *      @idx: the port index
4949  *      @st: holds the counter values
4950  *
4951  *      Returns the values of TP's FCoE counters for the selected port.
4952  */
4953 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4954                        struct tp_fcoe_stats *st)
4955 {
4956         u32 val[2];
4957
4958         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4959                          1, TP_MIB_FCOE_DDP_0_A + idx);
4960         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4961                          1, TP_MIB_FCOE_DROP_0_A + idx);
4962         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4963                          2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4964         st->octets_ddp = ((u64)val[0] << 32) | val[1];
4965 }
4966
4967 /**
4968  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4969  *      @adap: the adapter
4970  *      @st: holds the counter values
4971  *
4972  *      Returns the values of TP's counters for non-TCP directly-placed packets.
4973  */
4974 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4975 {
4976         u32 val[4];
4977
4978         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4979                          TP_MIB_USM_PKTS_A);
4980         st->frames = val[0];
4981         st->drops = val[1];
4982         st->octets = ((u64)val[2] << 32) | val[3];
4983 }
4984
4985 /**
4986  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
4987  *      @adap: the adapter
4988  *      @mtus: where to store the MTU values
4989  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
4990  *
4991  *      Reads the HW path MTU table.
4992  */
4993 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4994 {
4995         u32 v;
4996         int i;
4997
4998         for (i = 0; i < NMTUS; ++i) {
4999                 t4_write_reg(adap, TP_MTU_TABLE_A,
5000                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
5001                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5002                 mtus[i] = MTUVALUE_G(v);
5003                 if (mtu_log)
5004                         mtu_log[i] = MTUWIDTH_G(v);
5005         }
5006 }
5007
5008 /**
5009  *      t4_read_cong_tbl - reads the congestion control table
5010  *      @adap: the adapter
5011  *      @incr: where to store the alpha values
5012  *
5013  *      Reads the additive increments programmed into the HW congestion
5014  *      control table.
5015  */
5016 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5017 {
5018         unsigned int mtu, w;
5019
5020         for (mtu = 0; mtu < NMTUS; ++mtu)
5021                 for (w = 0; w < NCCTRL_WIN; ++w) {
5022                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
5023                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
5024                         incr[mtu][w] = (u16)t4_read_reg(adap,
5025                                                 TP_CCTRL_TABLE_A) & 0x1fff;
5026                 }
5027 }
5028
5029 /**
5030  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5031  *      @adap: the adapter
5032  *      @addr: the indirect TP register address
5033  *      @mask: specifies the field within the register to modify
5034  *      @val: new value for the field
5035  *
5036  *      Sets a field of an indirect TP register to the given value.
5037  */
5038 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5039                             unsigned int mask, unsigned int val)
5040 {
5041         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5042         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5043         t4_write_reg(adap, TP_PIO_DATA_A, val);
5044 }
5045
5046 /**
5047  *      init_cong_ctrl - initialize congestion control parameters
5048  *      @a: the alpha values for congestion control
5049  *      @b: the beta values for congestion control
5050  *
5051  *      Initialize the congestion control parameters.
5052  */
5053 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5054 {
5055         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5056         a[9] = 2;
5057         a[10] = 3;
5058         a[11] = 4;
5059         a[12] = 5;
5060         a[13] = 6;
5061         a[14] = 7;
5062         a[15] = 8;
5063         a[16] = 9;
5064         a[17] = 10;
5065         a[18] = 14;
5066         a[19] = 17;
5067         a[20] = 21;
5068         a[21] = 25;
5069         a[22] = 30;
5070         a[23] = 35;
5071         a[24] = 45;
5072         a[25] = 60;
5073         a[26] = 80;
5074         a[27] = 100;
5075         a[28] = 200;
5076         a[29] = 300;
5077         a[30] = 400;
5078         a[31] = 500;
5079
5080         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5081         b[9] = b[10] = 1;
5082         b[11] = b[12] = 2;
5083         b[13] = b[14] = b[15] = b[16] = 3;
5084         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5085         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5086         b[28] = b[29] = 6;
5087         b[30] = b[31] = 7;
5088 }
5089
5090 /* The minimum additive increment value for the congestion control table */
5091 #define CC_MIN_INCR 2U
5092
5093 /**
5094  *      t4_load_mtus - write the MTU and congestion control HW tables
5095  *      @adap: the adapter
5096  *      @mtus: the values for the MTU table
5097  *      @alpha: the values for the congestion control alpha parameter
5098  *      @beta: the values for the congestion control beta parameter
5099  *
5100  *      Write the HW MTU table with the supplied MTUs and the high-speed
5101  *      congestion control table with the supplied alpha, beta, and MTUs.
5102  *      We write the two tables together because the additive increments
5103  *      depend on the MTUs.
5104  */
5105 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5106                   const unsigned short *alpha, const unsigned short *beta)
5107 {
5108         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5109                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5110                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5111                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5112         };
5113
5114         unsigned int i, w;
5115
5116         for (i = 0; i < NMTUS; ++i) {
5117                 unsigned int mtu = mtus[i];
5118                 unsigned int log2 = fls(mtu);
5119
5120                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5121                         log2--;
5122                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5123                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5124
5125                 for (w = 0; w < NCCTRL_WIN; ++w) {
5126                         unsigned int inc;
5127
5128                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5129                                   CC_MIN_INCR);
5130
5131                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5132                                      (w << 16) | (beta[w] << 13) | inc);
5133                 }
5134         }
5135 }
5136
5137 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5138  * clocks.  The formula is
5139  *
5140  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5141  *
5142  * which is equivalent to
5143  *
5144  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5145  */
5146 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5147 {
5148         u64 v = bytes256 * adap->params.vpd.cclk;
5149
5150         return v * 62 + v / 2;
5151 }
5152
5153 /**
5154  *      t4_get_chan_txrate - get the current per channel Tx rates
5155  *      @adap: the adapter
5156  *      @nic_rate: rates for NIC traffic
5157  *      @ofld_rate: rates for offloaded traffic
5158  *
5159  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5160  *      for each channel.
5161  */
5162 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5163 {
5164         u32 v;
5165
5166         v = t4_read_reg(adap, TP_TX_TRATE_A);
5167         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5168         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5169         if (adap->params.arch.nchan == NCHAN) {
5170                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5171                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5172         }
5173
5174         v = t4_read_reg(adap, TP_TX_ORATE_A);
5175         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5176         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5177         if (adap->params.arch.nchan == NCHAN) {
5178                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5179                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5180         }
5181 }
5182
5183 /**
5184  *      t4_set_trace_filter - configure one of the tracing filters
5185  *      @adap: the adapter
5186  *      @tp: the desired trace filter parameters
5187  *      @idx: which filter to configure
5188  *      @enable: whether to enable or disable the filter
5189  *
5190  *      Configures one of the tracing filters available in HW.  If @enable is
5191  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5192  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5193  */
5194 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5195                         int idx, int enable)
5196 {
5197         int i, ofst = idx * 4;
5198         u32 data_reg, mask_reg, cfg;
5199         u32 multitrc = TRCMULTIFILTER_F;
5200
5201         if (!enable) {
5202                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5203                 return 0;
5204         }
5205
5206         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5207         if (cfg & TRCMULTIFILTER_F) {
5208                 /* If multiple tracers are enabled, then maximum
5209                  * capture size is 2.5KB (FIFO size of a single channel)
5210                  * minus 2 flits for CPL_TRACE_PKT header.
5211                  */
5212                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5213                         return -EINVAL;
5214         } else {
5215                 /* If multiple tracers are disabled, to avoid deadlocks
5216                  * maximum packet capture size of 9600 bytes is recommended.
5217                  * Also in this mode, only trace0 can be enabled and running.
5218                  */
5219                 multitrc = 0;
5220                 if (tp->snap_len > 9600 || idx)
5221                         return -EINVAL;
5222         }
5223
5224         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5225             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5226             tp->min_len > TFMINPKTSIZE_M)
5227                 return -EINVAL;
5228
5229         /* stop the tracer we'll be changing */
5230         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5231
5232         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5233         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5234         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5235
5236         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5237                 t4_write_reg(adap, data_reg, tp->data[i]);
5238                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5239         }
5240         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5241                      TFCAPTUREMAX_V(tp->snap_len) |
5242                      TFMINPKTSIZE_V(tp->min_len));
5243         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5244                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5245                      (is_t4(adap->params.chip) ?
5246                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5247                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
5248                      T5_TFINVERTMATCH_V(tp->invert)));
5249
5250         return 0;
5251 }
5252
5253 /**
5254  *      t4_get_trace_filter - query one of the tracing filters
5255  *      @adap: the adapter
5256  *      @tp: the current trace filter parameters
5257  *      @idx: which trace filter to query
5258  *      @enabled: non-zero if the filter is enabled
5259  *
5260  *      Returns the current settings of one of the HW tracing filters.
5261  */
5262 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5263                          int *enabled)
5264 {
5265         u32 ctla, ctlb;
5266         int i, ofst = idx * 4;
5267         u32 data_reg, mask_reg;
5268
5269         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5270         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5271
5272         if (is_t4(adap->params.chip)) {
5273                 *enabled = !!(ctla & TFEN_F);
5274                 tp->port =  TFPORT_G(ctla);
5275                 tp->invert = !!(ctla & TFINVERTMATCH_F);
5276         } else {
5277                 *enabled = !!(ctla & T5_TFEN_F);
5278                 tp->port = T5_TFPORT_G(ctla);
5279                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5280         }
5281         tp->snap_len = TFCAPTUREMAX_G(ctlb);
5282         tp->min_len = TFMINPKTSIZE_G(ctlb);
5283         tp->skip_ofst = TFOFFSET_G(ctla);
5284         tp->skip_len = TFLENGTH_G(ctla);
5285
5286         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5287         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5288         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5289
5290         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5291                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5292                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5293         }
5294 }
5295
5296 /**
5297  *      t4_pmtx_get_stats - returns the HW stats from PMTX
5298  *      @adap: the adapter
5299  *      @cnt: where to store the count statistics
5300  *      @cycles: where to store the cycle statistics
5301  *
5302  *      Returns performance statistics from PMTX.
5303  */
5304 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5305 {
5306         int i;
5307         u32 data[2];
5308
5309         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5310                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5311                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5312                 if (is_t4(adap->params.chip)) {
5313                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5314                 } else {
5315                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5316                                          PM_TX_DBG_DATA_A, data, 2,
5317                                          PM_TX_DBG_STAT_MSB_A);
5318                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5319                 }
5320         }
5321 }
5322
5323 /**
5324  *      t4_pmrx_get_stats - returns the HW stats from PMRX
5325  *      @adap: the adapter
5326  *      @cnt: where to store the count statistics
5327  *      @cycles: where to store the cycle statistics
5328  *
5329  *      Returns performance statistics from PMRX.
5330  */
5331 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5332 {
5333         int i;
5334         u32 data[2];
5335
5336         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5337                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5338                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5339                 if (is_t4(adap->params.chip)) {
5340                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5341                 } else {
5342                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5343                                          PM_RX_DBG_DATA_A, data, 2,
5344                                          PM_RX_DBG_STAT_MSB_A);
5345                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5346                 }
5347         }
5348 }
5349
5350 /**
5351  *      t4_get_mps_bg_map - return the buffer groups associated with a port
5352  *      @adap: the adapter
5353  *      @idx: the port index
5354  *
5355  *      Returns a bitmap indicating which MPS buffer groups are associated
5356  *      with the given port.  Bit i is set if buffer group i is used by the
5357  *      port.
5358  */
5359 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5360 {
5361         u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5362
5363         if (n == 0)
5364                 return idx == 0 ? 0xf : 0;
5365         /* In T6 (which is a 2 port card),
5366          * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5367          * For 2 port T4/T5 adapter,
5368          * port 0 is mapped to channel 0 and 1,
5369          * port 1 is mapped to channel 2 and 3.
5370          */
5371         if ((n == 1) &&
5372             (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
5373                 return idx < 2 ? (3 << (2 * idx)) : 0;
5374         return 1 << idx;
5375 }
5376
5377 /**
5378  *      t4_get_port_type_description - return Port Type string description
5379  *      @port_type: firmware Port Type enumeration
5380  */
5381 const char *t4_get_port_type_description(enum fw_port_type port_type)
5382 {
5383         static const char *const port_type_description[] = {
5384                 "R XFI",
5385                 "R XAUI",
5386                 "T SGMII",
5387                 "T XFI",
5388                 "T XAUI",
5389                 "KX4",
5390                 "CX4",
5391                 "KX",
5392                 "KR",
5393                 "R SFP+",
5394                 "KR/KX",
5395                 "KR/KX/KX4",
5396                 "R QSFP_10G",
5397                 "R QSA",
5398                 "R QSFP",
5399                 "R BP40_BA",
5400         };
5401
5402         if (port_type < ARRAY_SIZE(port_type_description))
5403                 return port_type_description[port_type];
5404         return "UNKNOWN";
5405 }
5406
5407 /**
5408  *      t4_get_port_stats_offset - collect port stats relative to a previous
5409  *                                 snapshot
5410  *      @adap: The adapter
5411  *      @idx: The port
5412  *      @stats: Current stats to fill
5413  *      @offset: Previous stats snapshot
5414  */
5415 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5416                               struct port_stats *stats,
5417                               struct port_stats *offset)
5418 {
5419         u64 *s, *o;
5420         int i;
5421
5422         t4_get_port_stats(adap, idx, stats);
5423         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5424                         i < (sizeof(struct port_stats) / sizeof(u64));
5425                         i++, s++, o++)
5426                 *s -= *o;
5427 }
5428
5429 /**
5430  *      t4_get_port_stats - collect port statistics
5431  *      @adap: the adapter
5432  *      @idx: the port index
5433  *      @p: the stats structure to fill
5434  *
5435  *      Collect statistics related to the given port from HW.
5436  */
5437 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5438 {
5439         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5440
5441 #define GET_STAT(name) \
5442         t4_read_reg64(adap, \
5443         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5444         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5445 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5446
5447         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5448         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5449         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5450         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5451         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5452         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5453         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5454         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5455         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5456         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5457         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5458         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5459         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5460         p->tx_drop             = GET_STAT(TX_PORT_DROP);
5461         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5462         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5463         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5464         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5465         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5466         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5467         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5468         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5469         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5470
5471         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5472         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5473         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5474         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5475         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5476         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5477         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5478         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5479         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5480         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5481         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5482         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5483         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5484         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5485         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5486         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5487         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5488         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5489         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5490         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5491         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5492         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5493         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5494         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5495         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5496         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5497         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5498
5499         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5500         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5501         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5502         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5503         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5504         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5505         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5506         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5507
5508 #undef GET_STAT
5509 #undef GET_STAT_COM
5510 }
5511
5512 /**
5513  *      t4_get_lb_stats - collect loopback port statistics
5514  *      @adap: the adapter
5515  *      @idx: the loopback port index
5516  *      @p: the stats structure to fill
5517  *
5518  *      Return HW statistics for the given loopback port.
5519  */
5520 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5521 {
5522         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5523
5524 #define GET_STAT(name) \
5525         t4_read_reg64(adap, \
5526         (is_t4(adap->params.chip) ? \
5527         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5528         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5529 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5530
5531         p->octets           = GET_STAT(BYTES);
5532         p->frames           = GET_STAT(FRAMES);
5533         p->bcast_frames     = GET_STAT(BCAST);
5534         p->mcast_frames     = GET_STAT(MCAST);
5535         p->ucast_frames     = GET_STAT(UCAST);
5536         p->error_frames     = GET_STAT(ERROR);
5537
5538         p->frames_64        = GET_STAT(64B);
5539         p->frames_65_127    = GET_STAT(65B_127B);
5540         p->frames_128_255   = GET_STAT(128B_255B);
5541         p->frames_256_511   = GET_STAT(256B_511B);
5542         p->frames_512_1023  = GET_STAT(512B_1023B);
5543         p->frames_1024_1518 = GET_STAT(1024B_1518B);
5544         p->frames_1519_max  = GET_STAT(1519B_MAX);
5545         p->drop             = GET_STAT(DROP_FRAMES);
5546
5547         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5548         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5549         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5550         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5551         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5552         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5553         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5554         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5555
5556 #undef GET_STAT
5557 #undef GET_STAT_COM
5558 }
5559
5560 /*     t4_mk_filtdelwr - create a delete filter WR
5561  *     @ftid: the filter ID
5562  *     @wr: the filter work request to populate
5563  *     @qid: ingress queue to receive the delete notification
5564  *
5565  *     Creates a filter work request to delete the supplied filter.  If @qid is
5566  *     negative the delete notification is suppressed.
5567  */
5568 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5569 {
5570         memset(wr, 0, sizeof(*wr));
5571         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5572         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5573         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5574                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
5575         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5576         if (qid >= 0)
5577                 wr->rx_chan_rx_rpl_iq =
5578                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5579 }
5580
5581 #define INIT_CMD(var, cmd, rd_wr) do { \
5582         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5583                                         FW_CMD_REQUEST_F | \
5584                                         FW_CMD_##rd_wr##_F); \
5585         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5586 } while (0)
5587
5588 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5589                           u32 addr, u32 val)
5590 {
5591         u32 ldst_addrspace;
5592         struct fw_ldst_cmd c;
5593
5594         memset(&c, 0, sizeof(c));
5595         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5596         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5597                                         FW_CMD_REQUEST_F |
5598                                         FW_CMD_WRITE_F |
5599                                         ldst_addrspace);
5600         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5601         c.u.addrval.addr = cpu_to_be32(addr);
5602         c.u.addrval.val = cpu_to_be32(val);
5603
5604         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5605 }
5606
5607 /**
5608  *      t4_mdio_rd - read a PHY register through MDIO
5609  *      @adap: the adapter
5610  *      @mbox: mailbox to use for the FW command
5611  *      @phy_addr: the PHY address
5612  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5613  *      @reg: the register to read
5614  *      @valp: where to store the value
5615  *
5616  *      Issues a FW command through the given mailbox to read a PHY register.
5617  */
5618 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5619                unsigned int mmd, unsigned int reg, u16 *valp)
5620 {
5621         int ret;
5622         u32 ldst_addrspace;
5623         struct fw_ldst_cmd c;
5624
5625         memset(&c, 0, sizeof(c));
5626         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5627         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5628                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
5629                                         ldst_addrspace);
5630         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5631         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5632                                          FW_LDST_CMD_MMD_V(mmd));
5633         c.u.mdio.raddr = cpu_to_be16(reg);
5634
5635         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5636         if (ret == 0)
5637                 *valp = be16_to_cpu(c.u.mdio.rval);
5638         return ret;
5639 }
5640
5641 /**
5642  *      t4_mdio_wr - write a PHY register through MDIO
5643  *      @adap: the adapter
5644  *      @mbox: mailbox to use for the FW command
5645  *      @phy_addr: the PHY address
5646  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5647  *      @reg: the register to write
5648  *      @valp: value to write
5649  *
5650  *      Issues a FW command through the given mailbox to write a PHY register.
5651  */
5652 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5653                unsigned int mmd, unsigned int reg, u16 val)
5654 {
5655         u32 ldst_addrspace;
5656         struct fw_ldst_cmd c;
5657
5658         memset(&c, 0, sizeof(c));
5659         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5660         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5661                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5662                                         ldst_addrspace);
5663         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5664         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5665                                          FW_LDST_CMD_MMD_V(mmd));
5666         c.u.mdio.raddr = cpu_to_be16(reg);
5667         c.u.mdio.rval = cpu_to_be16(val);
5668
5669         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5670 }
5671
5672 /**
5673  *      t4_sge_decode_idma_state - decode the idma state
5674  *      @adap: the adapter
5675  *      @state: the state idma is stuck in
5676  */
5677 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5678 {
5679         static const char * const t4_decode[] = {
5680                 "IDMA_IDLE",
5681                 "IDMA_PUSH_MORE_CPL_FIFO",
5682                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5683                 "Not used",
5684                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5685                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5686                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5687                 "IDMA_SEND_FIFO_TO_IMSG",
5688                 "IDMA_FL_REQ_DATA_FL_PREP",
5689                 "IDMA_FL_REQ_DATA_FL",
5690                 "IDMA_FL_DROP",
5691                 "IDMA_FL_H_REQ_HEADER_FL",
5692                 "IDMA_FL_H_SEND_PCIEHDR",
5693                 "IDMA_FL_H_PUSH_CPL_FIFO",
5694                 "IDMA_FL_H_SEND_CPL",
5695                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5696                 "IDMA_FL_H_SEND_IP_HDR",
5697                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5698                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5699                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5700                 "IDMA_FL_D_SEND_PCIEHDR",
5701                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5702                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5703                 "IDMA_FL_SEND_PCIEHDR",
5704                 "IDMA_FL_PUSH_CPL_FIFO",
5705                 "IDMA_FL_SEND_CPL",
5706                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5707                 "IDMA_FL_SEND_PAYLOAD",
5708                 "IDMA_FL_REQ_NEXT_DATA_FL",
5709                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5710                 "IDMA_FL_SEND_PADDING",
5711                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5712                 "IDMA_FL_SEND_FIFO_TO_IMSG",
5713                 "IDMA_FL_REQ_DATAFL_DONE",
5714                 "IDMA_FL_REQ_HEADERFL_DONE",
5715         };
5716         static const char * const t5_decode[] = {
5717                 "IDMA_IDLE",
5718                 "IDMA_ALMOST_IDLE",
5719                 "IDMA_PUSH_MORE_CPL_FIFO",
5720                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5721                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5722                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5723                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5724                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5725                 "IDMA_SEND_FIFO_TO_IMSG",
5726                 "IDMA_FL_REQ_DATA_FL",
5727                 "IDMA_FL_DROP",
5728                 "IDMA_FL_DROP_SEND_INC",
5729                 "IDMA_FL_H_REQ_HEADER_FL",
5730                 "IDMA_FL_H_SEND_PCIEHDR",
5731                 "IDMA_FL_H_PUSH_CPL_FIFO",
5732                 "IDMA_FL_H_SEND_CPL",
5733                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5734                 "IDMA_FL_H_SEND_IP_HDR",
5735                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5736                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5737                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5738                 "IDMA_FL_D_SEND_PCIEHDR",
5739                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5740                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5741                 "IDMA_FL_SEND_PCIEHDR",
5742                 "IDMA_FL_PUSH_CPL_FIFO",
5743                 "IDMA_FL_SEND_CPL",
5744                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5745                 "IDMA_FL_SEND_PAYLOAD",
5746                 "IDMA_FL_REQ_NEXT_DATA_FL",
5747                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5748                 "IDMA_FL_SEND_PADDING",
5749                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5750         };
5751         static const char * const t6_decode[] = {
5752                 "IDMA_IDLE",
5753                 "IDMA_PUSH_MORE_CPL_FIFO",
5754                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5755                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5756                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5757                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5758                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5759                 "IDMA_FL_REQ_DATA_FL",
5760                 "IDMA_FL_DROP",
5761                 "IDMA_FL_DROP_SEND_INC",
5762                 "IDMA_FL_H_REQ_HEADER_FL",
5763                 "IDMA_FL_H_SEND_PCIEHDR",
5764                 "IDMA_FL_H_PUSH_CPL_FIFO",
5765                 "IDMA_FL_H_SEND_CPL",
5766                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5767                 "IDMA_FL_H_SEND_IP_HDR",
5768                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5769                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5770                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5771                 "IDMA_FL_D_SEND_PCIEHDR",
5772                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5773                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5774                 "IDMA_FL_SEND_PCIEHDR",
5775                 "IDMA_FL_PUSH_CPL_FIFO",
5776                 "IDMA_FL_SEND_CPL",
5777                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5778                 "IDMA_FL_SEND_PAYLOAD",
5779                 "IDMA_FL_REQ_NEXT_DATA_FL",
5780                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5781                 "IDMA_FL_SEND_PADDING",
5782                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5783         };
5784         static const u32 sge_regs[] = {
5785                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5786                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5787                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5788         };
5789         const char **sge_idma_decode;
5790         int sge_idma_decode_nstates;
5791         int i;
5792         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5793
5794         /* Select the right set of decode strings to dump depending on the
5795          * adapter chip type.
5796          */
5797         switch (chip_version) {
5798         case CHELSIO_T4:
5799                 sge_idma_decode = (const char **)t4_decode;
5800                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5801                 break;
5802
5803         case CHELSIO_T5:
5804                 sge_idma_decode = (const char **)t5_decode;
5805                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5806                 break;
5807
5808         case CHELSIO_T6:
5809                 sge_idma_decode = (const char **)t6_decode;
5810                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5811                 break;
5812
5813         default:
5814                 dev_err(adapter->pdev_dev,
5815                         "Unsupported chip version %d\n", chip_version);
5816                 return;
5817         }
5818
5819         if (is_t4(adapter->params.chip)) {
5820                 sge_idma_decode = (const char **)t4_decode;
5821                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5822         } else {
5823                 sge_idma_decode = (const char **)t5_decode;
5824                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5825         }
5826
5827         if (state < sge_idma_decode_nstates)
5828                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5829         else
5830                 CH_WARN(adapter, "idma state %d unknown\n", state);
5831
5832         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5833                 CH_WARN(adapter, "SGE register %#x value %#x\n",
5834                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5835 }
5836
5837 /**
5838  *      t4_sge_ctxt_flush - flush the SGE context cache
5839  *      @adap: the adapter
5840  *      @mbox: mailbox to use for the FW command
5841  *
5842  *      Issues a FW command through the given mailbox to flush the
5843  *      SGE context cache.
5844  */
5845 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5846 {
5847         int ret;
5848         u32 ldst_addrspace;
5849         struct fw_ldst_cmd c;
5850
5851         memset(&c, 0, sizeof(c));
5852         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5853         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5854                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
5855                                         ldst_addrspace);
5856         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5857         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5858
5859         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5860         return ret;
5861 }
5862
5863 /**
5864  *      t4_fw_hello - establish communication with FW
5865  *      @adap: the adapter
5866  *      @mbox: mailbox to use for the FW command
5867  *      @evt_mbox: mailbox to receive async FW events
5868  *      @master: specifies the caller's willingness to be the device master
5869  *      @state: returns the current device state (if non-NULL)
5870  *
5871  *      Issues a command to establish communication with FW.  Returns either
5872  *      an error (negative integer) or the mailbox of the Master PF.
5873  */
5874 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5875                 enum dev_master master, enum dev_state *state)
5876 {
5877         int ret;
5878         struct fw_hello_cmd c;
5879         u32 v;
5880         unsigned int master_mbox;
5881         int retries = FW_CMD_HELLO_RETRIES;
5882
5883 retry:
5884         memset(&c, 0, sizeof(c));
5885         INIT_CMD(c, HELLO, WRITE);
5886         c.err_to_clearinit = cpu_to_be32(
5887                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5888                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5889                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5890                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
5891                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5892                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5893                 FW_HELLO_CMD_CLEARINIT_F);
5894
5895         /*
5896          * Issue the HELLO command to the firmware.  If it's not successful
5897          * but indicates that we got a "busy" or "timeout" condition, retry
5898          * the HELLO until we exhaust our retry limit.  If we do exceed our
5899          * retry limit, check to see if the firmware left us any error
5900          * information and report that if so.
5901          */
5902         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5903         if (ret < 0) {
5904                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5905                         goto retry;
5906                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5907                         t4_report_fw_error(adap);
5908                 return ret;
5909         }
5910
5911         v = be32_to_cpu(c.err_to_clearinit);
5912         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5913         if (state) {
5914                 if (v & FW_HELLO_CMD_ERR_F)
5915                         *state = DEV_STATE_ERR;
5916                 else if (v & FW_HELLO_CMD_INIT_F)
5917                         *state = DEV_STATE_INIT;
5918                 else
5919                         *state = DEV_STATE_UNINIT;
5920         }
5921
5922         /*
5923          * If we're not the Master PF then we need to wait around for the
5924          * Master PF Driver to finish setting up the adapter.
5925          *
5926          * Note that we also do this wait if we're a non-Master-capable PF and
5927          * there is no current Master PF; a Master PF may show up momentarily
5928          * and we wouldn't want to fail pointlessly.  (This can happen when an
5929          * OS loads lots of different drivers rapidly at the same time).  In
5930          * this case, the Master PF returned by the firmware will be
5931          * PCIE_FW_MASTER_M so the test below will work ...
5932          */
5933         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5934             master_mbox != mbox) {
5935                 int waiting = FW_CMD_HELLO_TIMEOUT;
5936
5937                 /*
5938                  * Wait for the firmware to either indicate an error or
5939                  * initialized state.  If we see either of these we bail out
5940                  * and report the issue to the caller.  If we exhaust the
5941                  * "hello timeout" and we haven't exhausted our retries, try
5942                  * again.  Otherwise bail with a timeout error.
5943                  */
5944                 for (;;) {
5945                         u32 pcie_fw;
5946
5947                         msleep(50);
5948                         waiting -= 50;
5949
5950                         /*
5951                          * If neither Error nor Initialialized are indicated
5952                          * by the firmware keep waiting till we exaust our
5953                          * timeout ... and then retry if we haven't exhausted
5954                          * our retries ...
5955                          */
5956                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5957                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5958                                 if (waiting <= 0) {
5959                                         if (retries-- > 0)
5960                                                 goto retry;
5961
5962                                         return -ETIMEDOUT;
5963                                 }
5964                                 continue;
5965                         }
5966
5967                         /*
5968                          * We either have an Error or Initialized condition
5969                          * report errors preferentially.
5970                          */
5971                         if (state) {
5972                                 if (pcie_fw & PCIE_FW_ERR_F)
5973                                         *state = DEV_STATE_ERR;
5974                                 else if (pcie_fw & PCIE_FW_INIT_F)
5975                                         *state = DEV_STATE_INIT;
5976                         }
5977
5978                         /*
5979                          * If we arrived before a Master PF was selected and
5980                          * there's not a valid Master PF, grab its identity
5981                          * for our caller.
5982                          */
5983                         if (master_mbox == PCIE_FW_MASTER_M &&
5984                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
5985                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5986                         break;
5987                 }
5988         }
5989
5990         return master_mbox;
5991 }
5992
5993 /**
5994  *      t4_fw_bye - end communication with FW
5995  *      @adap: the adapter
5996  *      @mbox: mailbox to use for the FW command
5997  *
5998  *      Issues a command to terminate communication with FW.
5999  */
6000 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6001 {
6002         struct fw_bye_cmd c;
6003
6004         memset(&c, 0, sizeof(c));
6005         INIT_CMD(c, BYE, WRITE);
6006         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6007 }
6008
6009 /**
6010  *      t4_init_cmd - ask FW to initialize the device
6011  *      @adap: the adapter
6012  *      @mbox: mailbox to use for the FW command
6013  *
6014  *      Issues a command to FW to partially initialize the device.  This
6015  *      performs initialization that generally doesn't depend on user input.
6016  */
6017 int t4_early_init(struct adapter *adap, unsigned int mbox)
6018 {
6019         struct fw_initialize_cmd c;
6020
6021         memset(&c, 0, sizeof(c));
6022         INIT_CMD(c, INITIALIZE, WRITE);
6023         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6024 }
6025
6026 /**
6027  *      t4_fw_reset - issue a reset to FW
6028  *      @adap: the adapter
6029  *      @mbox: mailbox to use for the FW command
6030  *      @reset: specifies the type of reset to perform
6031  *
6032  *      Issues a reset command of the specified type to FW.
6033  */
6034 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6035 {
6036         struct fw_reset_cmd c;
6037
6038         memset(&c, 0, sizeof(c));
6039         INIT_CMD(c, RESET, WRITE);
6040         c.val = cpu_to_be32(reset);
6041         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6042 }
6043
6044 /**
6045  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6046  *      @adap: the adapter
6047  *      @mbox: mailbox to use for the FW RESET command (if desired)
6048  *      @force: force uP into RESET even if FW RESET command fails
6049  *
6050  *      Issues a RESET command to firmware (if desired) with a HALT indication
6051  *      and then puts the microprocessor into RESET state.  The RESET command
6052  *      will only be issued if a legitimate mailbox is provided (mbox <=
6053  *      PCIE_FW_MASTER_M).
6054  *
6055  *      This is generally used in order for the host to safely manipulate the
6056  *      adapter without fear of conflicting with whatever the firmware might
6057  *      be doing.  The only way out of this state is to RESTART the firmware
6058  *      ...
6059  */
6060 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6061 {
6062         int ret = 0;
6063
6064         /*
6065          * If a legitimate mailbox is provided, issue a RESET command
6066          * with a HALT indication.
6067          */
6068         if (mbox <= PCIE_FW_MASTER_M) {
6069                 struct fw_reset_cmd c;
6070
6071                 memset(&c, 0, sizeof(c));
6072                 INIT_CMD(c, RESET, WRITE);
6073                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6074                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6075                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6076         }
6077
6078         /*
6079          * Normally we won't complete the operation if the firmware RESET
6080          * command fails but if our caller insists we'll go ahead and put the
6081          * uP into RESET.  This can be useful if the firmware is hung or even
6082          * missing ...  We'll have to take the risk of putting the uP into
6083          * RESET without the cooperation of firmware in that case.
6084          *
6085          * We also force the firmware's HALT flag to be on in case we bypassed
6086          * the firmware RESET command above or we're dealing with old firmware
6087          * which doesn't have the HALT capability.  This will serve as a flag
6088          * for the incoming firmware to know that it's coming out of a HALT
6089          * rather than a RESET ... if it's new enough to understand that ...
6090          */
6091         if (ret == 0 || force) {
6092                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6093                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6094                                  PCIE_FW_HALT_F);
6095         }
6096
6097         /*
6098          * And we always return the result of the firmware RESET command
6099          * even when we force the uP into RESET ...
6100          */
6101         return ret;
6102 }
6103
6104 /**
6105  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
6106  *      @adap: the adapter
6107  *      @reset: if we want to do a RESET to restart things
6108  *
6109  *      Restart firmware previously halted by t4_fw_halt().  On successful
6110  *      return the previous PF Master remains as the new PF Master and there
6111  *      is no need to issue a new HELLO command, etc.
6112  *
6113  *      We do this in two ways:
6114  *
6115  *       1. If we're dealing with newer firmware we'll simply want to take
6116  *          the chip's microprocessor out of RESET.  This will cause the
6117  *          firmware to start up from its start vector.  And then we'll loop
6118  *          until the firmware indicates it's started again (PCIE_FW.HALT
6119  *          reset to 0) or we timeout.
6120  *
6121  *       2. If we're dealing with older firmware then we'll need to RESET
6122  *          the chip since older firmware won't recognize the PCIE_FW.HALT
6123  *          flag and automatically RESET itself on startup.
6124  */
6125 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6126 {
6127         if (reset) {
6128                 /*
6129                  * Since we're directing the RESET instead of the firmware
6130                  * doing it automatically, we need to clear the PCIE_FW.HALT
6131                  * bit.
6132                  */
6133                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6134
6135                 /*
6136                  * If we've been given a valid mailbox, first try to get the
6137                  * firmware to do the RESET.  If that works, great and we can
6138                  * return success.  Otherwise, if we haven't been given a
6139                  * valid mailbox or the RESET command failed, fall back to
6140                  * hitting the chip with a hammer.
6141                  */
6142                 if (mbox <= PCIE_FW_MASTER_M) {
6143                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6144                         msleep(100);
6145                         if (t4_fw_reset(adap, mbox,
6146                                         PIORST_F | PIORSTMODE_F) == 0)
6147                                 return 0;
6148                 }
6149
6150                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6151                 msleep(2000);
6152         } else {
6153                 int ms;
6154
6155                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6156                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6157                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6158                                 return 0;
6159                         msleep(100);
6160                         ms += 100;
6161                 }
6162                 return -ETIMEDOUT;
6163         }
6164         return 0;
6165 }
6166
6167 /**
6168  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6169  *      @adap: the adapter
6170  *      @mbox: mailbox to use for the FW RESET command (if desired)
6171  *      @fw_data: the firmware image to write
6172  *      @size: image size
6173  *      @force: force upgrade even if firmware doesn't cooperate
6174  *
6175  *      Perform all of the steps necessary for upgrading an adapter's
6176  *      firmware image.  Normally this requires the cooperation of the
6177  *      existing firmware in order to halt all existing activities
6178  *      but if an invalid mailbox token is passed in we skip that step
6179  *      (though we'll still put the adapter microprocessor into RESET in
6180  *      that case).
6181  *
6182  *      On successful return the new firmware will have been loaded and
6183  *      the adapter will have been fully RESET losing all previous setup
6184  *      state.  On unsuccessful return the adapter may be completely hosed ...
6185  *      positive errno indicates that the adapter is ~probably~ intact, a
6186  *      negative errno indicates that things are looking bad ...
6187  */
6188 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6189                   const u8 *fw_data, unsigned int size, int force)
6190 {
6191         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6192         int reset, ret;
6193
6194         if (!t4_fw_matches_chip(adap, fw_hdr))
6195                 return -EINVAL;
6196
6197         ret = t4_fw_halt(adap, mbox, force);
6198         if (ret < 0 && !force)
6199                 return ret;
6200
6201         ret = t4_load_fw(adap, fw_data, size);
6202         if (ret < 0)
6203                 return ret;
6204
6205         /*
6206          * Older versions of the firmware don't understand the new
6207          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6208          * restart.  So for newly loaded older firmware we'll have to do the
6209          * RESET for it so it starts up on a clean slate.  We can tell if
6210          * the newly loaded firmware will handle this right by checking
6211          * its header flags to see if it advertises the capability.
6212          */
6213         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6214         return t4_fw_restart(adap, mbox, reset);
6215 }
6216
6217 /**
6218  *      t4_fl_pkt_align - return the fl packet alignment
6219  *      @adap: the adapter
6220  *
6221  *      T4 has a single field to specify the packing and padding boundary.
6222  *      T5 onwards has separate fields for this and hence the alignment for
6223  *      next packet offset is maximum of these two.
6224  *
6225  */
6226 int t4_fl_pkt_align(struct adapter *adap)
6227 {
6228         u32 sge_control, sge_control2;
6229         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6230
6231         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6232
6233         /* T4 uses a single control field to specify both the PCIe Padding and
6234          * Packing Boundary.  T5 introduced the ability to specify these
6235          * separately.  The actual Ingress Packet Data alignment boundary
6236          * within Packed Buffer Mode is the maximum of these two
6237          * specifications.  (Note that it makes no real practical sense to
6238          * have the Pading Boudary be larger than the Packing Boundary but you
6239          * could set the chip up that way and, in fact, legacy T4 code would
6240          * end doing this because it would initialize the Padding Boundary and
6241          * leave the Packing Boundary initialized to 0 (16 bytes).)
6242          * Padding Boundary values in T6 starts from 8B,
6243          * where as it is 32B for T4 and T5.
6244          */
6245         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6246                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6247         else
6248                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6249
6250         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6251
6252         fl_align = ingpadboundary;
6253         if (!is_t4(adap->params.chip)) {
6254                 /* T5 has a weird interpretation of one of the PCIe Packing
6255                  * Boundary values.  No idea why ...
6256                  */
6257                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6258                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6259                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6260                         ingpackboundary = 16;
6261                 else
6262                         ingpackboundary = 1 << (ingpackboundary +
6263                                                 INGPACKBOUNDARY_SHIFT_X);
6264
6265                 fl_align = max(ingpadboundary, ingpackboundary);
6266         }
6267         return fl_align;
6268 }
6269
6270 /**
6271  *      t4_fixup_host_params - fix up host-dependent parameters
6272  *      @adap: the adapter
6273  *      @page_size: the host's Base Page Size
6274  *      @cache_line_size: the host's Cache Line Size
6275  *
6276  *      Various registers in T4 contain values which are dependent on the
6277  *      host's Base Page and Cache Line Sizes.  This function will fix all of
6278  *      those registers with the appropriate values as passed in ...
6279  */
6280 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6281                          unsigned int cache_line_size)
6282 {
6283         unsigned int page_shift = fls(page_size) - 1;
6284         unsigned int sge_hps = page_shift - 10;
6285         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6286         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6287         unsigned int fl_align_log = fls(fl_align) - 1;
6288         unsigned int ingpad;
6289
6290         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6291                      HOSTPAGESIZEPF0_V(sge_hps) |
6292                      HOSTPAGESIZEPF1_V(sge_hps) |
6293                      HOSTPAGESIZEPF2_V(sge_hps) |
6294                      HOSTPAGESIZEPF3_V(sge_hps) |
6295                      HOSTPAGESIZEPF4_V(sge_hps) |
6296                      HOSTPAGESIZEPF5_V(sge_hps) |
6297                      HOSTPAGESIZEPF6_V(sge_hps) |
6298                      HOSTPAGESIZEPF7_V(sge_hps));
6299
6300         if (is_t4(adap->params.chip)) {
6301                 t4_set_reg_field(adap, SGE_CONTROL_A,
6302                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6303                                  EGRSTATUSPAGESIZE_F,
6304                                  INGPADBOUNDARY_V(fl_align_log -
6305                                                   INGPADBOUNDARY_SHIFT_X) |
6306                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6307         } else {
6308                 /* T5 introduced the separation of the Free List Padding and
6309                  * Packing Boundaries.  Thus, we can select a smaller Padding
6310                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
6311                  * Bandwidth, and use a Packing Boundary which is large enough
6312                  * to avoid false sharing between CPUs, etc.
6313                  *
6314                  * For the PCI Link, the smaller the Padding Boundary the
6315                  * better.  For the Memory Controller, a smaller Padding
6316                  * Boundary is better until we cross under the Memory Line
6317                  * Size (the minimum unit of transfer to/from Memory).  If we
6318                  * have a Padding Boundary which is smaller than the Memory
6319                  * Line Size, that'll involve a Read-Modify-Write cycle on the
6320                  * Memory Controller which is never good.  For T5 the smallest
6321                  * Padding Boundary which we can select is 32 bytes which is
6322                  * larger than any known Memory Controller Line Size so we'll
6323                  * use that.
6324                  *
6325                  * T5 has a different interpretation of the "0" value for the
6326                  * Packing Boundary.  This corresponds to 16 bytes instead of
6327                  * the expected 32 bytes.  We never have a Packing Boundary
6328                  * less than 32 bytes so we can't use that special value but
6329                  * on the other hand, if we wanted 32 bytes, the best we can
6330                  * really do is 64 bytes.
6331                 */
6332                 if (fl_align <= 32) {
6333                         fl_align = 64;
6334                         fl_align_log = 6;
6335                 }
6336
6337                 if (is_t5(adap->params.chip))
6338                         ingpad = INGPCIEBOUNDARY_32B_X;
6339                 else
6340                         ingpad = T6_INGPADBOUNDARY_32B_X;
6341
6342                 t4_set_reg_field(adap, SGE_CONTROL_A,
6343                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6344                                  EGRSTATUSPAGESIZE_F,
6345                                  INGPADBOUNDARY_V(ingpad) |
6346                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6347                 t4_set_reg_field(adap, SGE_CONTROL2_A,
6348                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6349                                  INGPACKBOUNDARY_V(fl_align_log -
6350                                                    INGPACKBOUNDARY_SHIFT_X));
6351         }
6352         /*
6353          * Adjust various SGE Free List Host Buffer Sizes.
6354          *
6355          * This is something of a crock since we're using fixed indices into
6356          * the array which are also known by the sge.c code and the T4
6357          * Firmware Configuration File.  We need to come up with a much better
6358          * approach to managing this array.  For now, the first four entries
6359          * are:
6360          *
6361          *   0: Host Page Size
6362          *   1: 64KB
6363          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6364          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6365          *
6366          * For the single-MTU buffers in unpacked mode we need to include
6367          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6368          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6369          * Padding boundary.  All of these are accommodated in the Factory
6370          * Default Firmware Configuration File but we need to adjust it for
6371          * this host's cache line size.
6372          */
6373         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6374         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6375                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6376                      & ~(fl_align-1));
6377         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6378                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6379                      & ~(fl_align-1));
6380
6381         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6382
6383         return 0;
6384 }
6385
6386 /**
6387  *      t4_fw_initialize - ask FW to initialize the device
6388  *      @adap: the adapter
6389  *      @mbox: mailbox to use for the FW command
6390  *
6391  *      Issues a command to FW to partially initialize the device.  This
6392  *      performs initialization that generally doesn't depend on user input.
6393  */
6394 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6395 {
6396         struct fw_initialize_cmd c;
6397
6398         memset(&c, 0, sizeof(c));
6399         INIT_CMD(c, INITIALIZE, WRITE);
6400         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6401 }
6402
6403 /**
6404  *      t4_query_params_rw - query FW or device parameters
6405  *      @adap: the adapter
6406  *      @mbox: mailbox to use for the FW command
6407  *      @pf: the PF
6408  *      @vf: the VF
6409  *      @nparams: the number of parameters
6410  *      @params: the parameter names
6411  *      @val: the parameter values
6412  *      @rw: Write and read flag
6413  *
6414  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
6415  *      queried at once.
6416  */
6417 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6418                        unsigned int vf, unsigned int nparams, const u32 *params,
6419                        u32 *val, int rw)
6420 {
6421         int i, ret;
6422         struct fw_params_cmd c;
6423         __be32 *p = &c.param[0].mnem;
6424
6425         if (nparams > 7)
6426                 return -EINVAL;
6427
6428         memset(&c, 0, sizeof(c));
6429         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6430                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
6431                                   FW_PARAMS_CMD_PFN_V(pf) |
6432                                   FW_PARAMS_CMD_VFN_V(vf));
6433         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6434
6435         for (i = 0; i < nparams; i++) {
6436                 *p++ = cpu_to_be32(*params++);
6437                 if (rw)
6438                         *p = cpu_to_be32(*(val + i));
6439                 p++;
6440         }
6441
6442         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6443         if (ret == 0)
6444                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6445                         *val++ = be32_to_cpu(*p);
6446         return ret;
6447 }
6448
6449 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6450                     unsigned int vf, unsigned int nparams, const u32 *params,
6451                     u32 *val)
6452 {
6453         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6454 }
6455
6456 /**
6457  *      t4_set_params_timeout - sets FW or device parameters
6458  *      @adap: the adapter
6459  *      @mbox: mailbox to use for the FW command
6460  *      @pf: the PF
6461  *      @vf: the VF
6462  *      @nparams: the number of parameters
6463  *      @params: the parameter names
6464  *      @val: the parameter values
6465  *      @timeout: the timeout time
6466  *
6467  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6468  *      specified at once.
6469  */
6470 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6471                           unsigned int pf, unsigned int vf,
6472                           unsigned int nparams, const u32 *params,
6473                           const u32 *val, int timeout)
6474 {
6475         struct fw_params_cmd c;
6476         __be32 *p = &c.param[0].mnem;
6477
6478         if (nparams > 7)
6479                 return -EINVAL;
6480
6481         memset(&c, 0, sizeof(c));
6482         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6483                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6484                                   FW_PARAMS_CMD_PFN_V(pf) |
6485                                   FW_PARAMS_CMD_VFN_V(vf));
6486         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6487
6488         while (nparams--) {
6489                 *p++ = cpu_to_be32(*params++);
6490                 *p++ = cpu_to_be32(*val++);
6491         }
6492
6493         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6494 }
6495
6496 /**
6497  *      t4_set_params - sets FW or device parameters
6498  *      @adap: the adapter
6499  *      @mbox: mailbox to use for the FW command
6500  *      @pf: the PF
6501  *      @vf: the VF
6502  *      @nparams: the number of parameters
6503  *      @params: the parameter names
6504  *      @val: the parameter values
6505  *
6506  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6507  *      specified at once.
6508  */
6509 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6510                   unsigned int vf, unsigned int nparams, const u32 *params,
6511                   const u32 *val)
6512 {
6513         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6514                                      FW_CMD_MAX_TIMEOUT);
6515 }
6516
6517 /**
6518  *      t4_cfg_pfvf - configure PF/VF resource limits
6519  *      @adap: the adapter
6520  *      @mbox: mailbox to use for the FW command
6521  *      @pf: the PF being configured
6522  *      @vf: the VF being configured
6523  *      @txq: the max number of egress queues
6524  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
6525  *      @rxqi: the max number of interrupt-capable ingress queues
6526  *      @rxq: the max number of interruptless ingress queues
6527  *      @tc: the PCI traffic class
6528  *      @vi: the max number of virtual interfaces
6529  *      @cmask: the channel access rights mask for the PF/VF
6530  *      @pmask: the port access rights mask for the PF/VF
6531  *      @nexact: the maximum number of exact MPS filters
6532  *      @rcaps: read capabilities
6533  *      @wxcaps: write/execute capabilities
6534  *
6535  *      Configures resource limits and capabilities for a physical or virtual
6536  *      function.
6537  */
6538 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6539                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6540                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6541                 unsigned int vi, unsigned int cmask, unsigned int pmask,
6542                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6543 {
6544         struct fw_pfvf_cmd c;
6545
6546         memset(&c, 0, sizeof(c));
6547         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6548                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6549                                   FW_PFVF_CMD_VFN_V(vf));
6550         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6551         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6552                                      FW_PFVF_CMD_NIQ_V(rxq));
6553         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6554                                     FW_PFVF_CMD_PMASK_V(pmask) |
6555                                     FW_PFVF_CMD_NEQ_V(txq));
6556         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6557                                       FW_PFVF_CMD_NVI_V(vi) |
6558                                       FW_PFVF_CMD_NEXACTF_V(nexact));
6559         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6560                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6561                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6562         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6563 }
6564
6565 /**
6566  *      t4_alloc_vi - allocate a virtual interface
6567  *      @adap: the adapter
6568  *      @mbox: mailbox to use for the FW command
6569  *      @port: physical port associated with the VI
6570  *      @pf: the PF owning the VI
6571  *      @vf: the VF owning the VI
6572  *      @nmac: number of MAC addresses needed (1 to 5)
6573  *      @mac: the MAC addresses of the VI
6574  *      @rss_size: size of RSS table slice associated with this VI
6575  *
6576  *      Allocates a virtual interface for the given physical port.  If @mac is
6577  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
6578  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
6579  *      stored consecutively so the space needed is @nmac * 6 bytes.
6580  *      Returns a negative error number or the non-negative VI id.
6581  */
6582 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6583                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6584                 unsigned int *rss_size)
6585 {
6586         int ret;
6587         struct fw_vi_cmd c;
6588
6589         memset(&c, 0, sizeof(c));
6590         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6591                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6592                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6593         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6594         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6595         c.nmac = nmac - 1;
6596
6597         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6598         if (ret)
6599                 return ret;
6600
6601         if (mac) {
6602                 memcpy(mac, c.mac, sizeof(c.mac));
6603                 switch (nmac) {
6604                 case 5:
6605                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6606                 case 4:
6607                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6608                 case 3:
6609                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6610                 case 2:
6611                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6612                 }
6613         }
6614         if (rss_size)
6615                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6616         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6617 }
6618
6619 /**
6620  *      t4_free_vi - free a virtual interface
6621  *      @adap: the adapter
6622  *      @mbox: mailbox to use for the FW command
6623  *      @pf: the PF owning the VI
6624  *      @vf: the VF owning the VI
6625  *      @viid: virtual interface identifiler
6626  *
6627  *      Free a previously allocated virtual interface.
6628  */
6629 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6630                unsigned int vf, unsigned int viid)
6631 {
6632         struct fw_vi_cmd c;
6633
6634         memset(&c, 0, sizeof(c));
6635         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6636                                   FW_CMD_REQUEST_F |
6637                                   FW_CMD_EXEC_F |
6638                                   FW_VI_CMD_PFN_V(pf) |
6639                                   FW_VI_CMD_VFN_V(vf));
6640         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6641         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6642
6643         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6644 }
6645
6646 /**
6647  *      t4_set_rxmode - set Rx properties of a virtual interface
6648  *      @adap: the adapter
6649  *      @mbox: mailbox to use for the FW command
6650  *      @viid: the VI id
6651  *      @mtu: the new MTU or -1
6652  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6653  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6654  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6655  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6656  *      @sleep_ok: if true we may sleep while awaiting command completion
6657  *
6658  *      Sets Rx properties of a virtual interface.
6659  */
6660 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6661                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
6662                   bool sleep_ok)
6663 {
6664         struct fw_vi_rxmode_cmd c;
6665
6666         /* convert to FW values */
6667         if (mtu < 0)
6668                 mtu = FW_RXMODE_MTU_NO_CHG;
6669         if (promisc < 0)
6670                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6671         if (all_multi < 0)
6672                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6673         if (bcast < 0)
6674                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6675         if (vlanex < 0)
6676                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6677
6678         memset(&c, 0, sizeof(c));
6679         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6680                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6681                                    FW_VI_RXMODE_CMD_VIID_V(viid));
6682         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6683         c.mtu_to_vlanexen =
6684                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6685                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6686                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6687                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6688                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6689         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6690 }
6691
6692 /**
6693  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6694  *      @adap: the adapter
6695  *      @mbox: mailbox to use for the FW command
6696  *      @viid: the VI id
6697  *      @free: if true any existing filters for this VI id are first removed
6698  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
6699  *      @addr: the MAC address(es)
6700  *      @idx: where to store the index of each allocated filter
6701  *      @hash: pointer to hash address filter bitmap
6702  *      @sleep_ok: call is allowed to sleep
6703  *
6704  *      Allocates an exact-match filter for each of the supplied addresses and
6705  *      sets it to the corresponding address.  If @idx is not %NULL it should
6706  *      have at least @naddr entries, each of which will be set to the index of
6707  *      the filter allocated for the corresponding MAC address.  If a filter
6708  *      could not be allocated for an address its index is set to 0xffff.
6709  *      If @hash is not %NULL addresses that fail to allocate an exact filter
6710  *      are hashed and update the hash filter bitmap pointed at by @hash.
6711  *
6712  *      Returns a negative error number or the number of filters allocated.
6713  */
6714 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6715                       unsigned int viid, bool free, unsigned int naddr,
6716                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6717 {
6718         int offset, ret = 0;
6719         struct fw_vi_mac_cmd c;
6720         unsigned int nfilters = 0;
6721         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6722         unsigned int rem = naddr;
6723
6724         if (naddr > max_naddr)
6725                 return -EINVAL;
6726
6727         for (offset = 0; offset < naddr ; /**/) {
6728                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6729                                          rem : ARRAY_SIZE(c.u.exact));
6730                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6731                                                      u.exact[fw_naddr]), 16);
6732                 struct fw_vi_mac_exact *p;
6733                 int i;
6734
6735                 memset(&c, 0, sizeof(c));
6736                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6737                                            FW_CMD_REQUEST_F |
6738                                            FW_CMD_WRITE_F |
6739                                            FW_CMD_EXEC_V(free) |
6740                                            FW_VI_MAC_CMD_VIID_V(viid));
6741                 c.freemacs_to_len16 =
6742                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6743                                     FW_CMD_LEN16_V(len16));
6744
6745                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6746                         p->valid_to_idx =
6747                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6748                                             FW_VI_MAC_CMD_IDX_V(
6749                                                     FW_VI_MAC_ADD_MAC));
6750                         memcpy(p->macaddr, addr[offset + i],
6751                                sizeof(p->macaddr));
6752                 }
6753
6754                 /* It's okay if we run out of space in our MAC address arena.
6755                  * Some of the addresses we submit may get stored so we need
6756                  * to run through the reply to see what the results were ...
6757                  */
6758                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6759                 if (ret && ret != -FW_ENOMEM)
6760                         break;
6761
6762                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6763                         u16 index = FW_VI_MAC_CMD_IDX_G(
6764                                         be16_to_cpu(p->valid_to_idx));
6765
6766                         if (idx)
6767                                 idx[offset + i] = (index >= max_naddr ?
6768                                                    0xffff : index);
6769                         if (index < max_naddr)
6770                                 nfilters++;
6771                         else if (hash)
6772                                 *hash |= (1ULL <<
6773                                           hash_mac_addr(addr[offset + i]));
6774                 }
6775
6776                 free = false;
6777                 offset += fw_naddr;
6778                 rem -= fw_naddr;
6779         }
6780
6781         if (ret == 0 || ret == -FW_ENOMEM)
6782                 ret = nfilters;
6783         return ret;
6784 }
6785
6786 /**
6787  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
6788  *      @adap: the adapter
6789  *      @mbox: mailbox to use for the FW command
6790  *      @viid: the VI id
6791  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
6792  *      @addr: the MAC address(es)
6793  *      @sleep_ok: call is allowed to sleep
6794  *
6795  *      Frees the exact-match filter for each of the supplied addresses
6796  *
6797  *      Returns a negative error number or the number of filters freed.
6798  */
6799 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6800                      unsigned int viid, unsigned int naddr,
6801                      const u8 **addr, bool sleep_ok)
6802 {
6803         int offset, ret = 0;
6804         struct fw_vi_mac_cmd c;
6805         unsigned int nfilters = 0;
6806         unsigned int max_naddr = is_t4(adap->params.chip) ?
6807                                        NUM_MPS_CLS_SRAM_L_INSTANCES :
6808                                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6809         unsigned int rem = naddr;
6810
6811         if (naddr > max_naddr)
6812                 return -EINVAL;
6813
6814         for (offset = 0; offset < (int)naddr ; /**/) {
6815                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6816                                          ? rem
6817                                          : ARRAY_SIZE(c.u.exact));
6818                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6819                                                      u.exact[fw_naddr]), 16);
6820                 struct fw_vi_mac_exact *p;
6821                 int i;
6822
6823                 memset(&c, 0, sizeof(c));
6824                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6825                                      FW_CMD_REQUEST_F |
6826                                      FW_CMD_WRITE_F |
6827                                      FW_CMD_EXEC_V(0) |
6828                                      FW_VI_MAC_CMD_VIID_V(viid));
6829                 c.freemacs_to_len16 =
6830                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6831                                             FW_CMD_LEN16_V(len16));
6832
6833                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6834                         p->valid_to_idx = cpu_to_be16(
6835                                 FW_VI_MAC_CMD_VALID_F |
6836                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6837                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6838                 }
6839
6840                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6841                 if (ret)
6842                         break;
6843
6844                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6845                         u16 index = FW_VI_MAC_CMD_IDX_G(
6846                                                 be16_to_cpu(p->valid_to_idx));
6847
6848                         if (index < max_naddr)
6849                                 nfilters++;
6850                 }
6851
6852                 offset += fw_naddr;
6853                 rem -= fw_naddr;
6854         }
6855
6856         if (ret == 0)
6857                 ret = nfilters;
6858         return ret;
6859 }
6860
6861 /**
6862  *      t4_change_mac - modifies the exact-match filter for a MAC address
6863  *      @adap: the adapter
6864  *      @mbox: mailbox to use for the FW command
6865  *      @viid: the VI id
6866  *      @idx: index of existing filter for old value of MAC address, or -1
6867  *      @addr: the new MAC address value
6868  *      @persist: whether a new MAC allocation should be persistent
6869  *      @add_smt: if true also add the address to the HW SMT
6870  *
6871  *      Modifies an exact-match filter and sets it to the new MAC address.
6872  *      Note that in general it is not possible to modify the value of a given
6873  *      filter so the generic way to modify an address filter is to free the one
6874  *      being used by the old address value and allocate a new filter for the
6875  *      new address value.  @idx can be -1 if the address is a new addition.
6876  *
6877  *      Returns a negative error number or the index of the filter with the new
6878  *      MAC value.
6879  */
6880 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6881                   int idx, const u8 *addr, bool persist, bool add_smt)
6882 {
6883         int ret, mode;
6884         struct fw_vi_mac_cmd c;
6885         struct fw_vi_mac_exact *p = c.u.exact;
6886         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6887
6888         if (idx < 0)                             /* new allocation */
6889                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6890         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6891
6892         memset(&c, 0, sizeof(c));
6893         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6894                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6895                                    FW_VI_MAC_CMD_VIID_V(viid));
6896         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6897         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6898                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6899                                       FW_VI_MAC_CMD_IDX_V(idx));
6900         memcpy(p->macaddr, addr, sizeof(p->macaddr));
6901
6902         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6903         if (ret == 0) {
6904                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6905                 if (ret >= max_mac_addr)
6906                         ret = -ENOMEM;
6907         }
6908         return ret;
6909 }
6910
6911 /**
6912  *      t4_set_addr_hash - program the MAC inexact-match hash filter
6913  *      @adap: the adapter
6914  *      @mbox: mailbox to use for the FW command
6915  *      @viid: the VI id
6916  *      @ucast: whether the hash filter should also match unicast addresses
6917  *      @vec: the value to be written to the hash filter
6918  *      @sleep_ok: call is allowed to sleep
6919  *
6920  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
6921  */
6922 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6923                      bool ucast, u64 vec, bool sleep_ok)
6924 {
6925         struct fw_vi_mac_cmd c;
6926
6927         memset(&c, 0, sizeof(c));
6928         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6929                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6930                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6931         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6932                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6933                                           FW_CMD_LEN16_V(1));
6934         c.u.hash.hashvec = cpu_to_be64(vec);
6935         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6936 }
6937
6938 /**
6939  *      t4_enable_vi_params - enable/disable a virtual interface
6940  *      @adap: the adapter
6941  *      @mbox: mailbox to use for the FW command
6942  *      @viid: the VI id
6943  *      @rx_en: 1=enable Rx, 0=disable Rx
6944  *      @tx_en: 1=enable Tx, 0=disable Tx
6945  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
6946  *
6947  *      Enables/disables a virtual interface.  Note that setting DCB Enable
6948  *      only makes sense when enabling a Virtual Interface ...
6949  */
6950 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6951                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6952 {
6953         struct fw_vi_enable_cmd c;
6954
6955         memset(&c, 0, sizeof(c));
6956         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6957                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6958                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6959         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6960                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6961                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6962                                      FW_LEN16(c));
6963         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6964 }
6965
6966 /**
6967  *      t4_enable_vi - enable/disable a virtual interface
6968  *      @adap: the adapter
6969  *      @mbox: mailbox to use for the FW command
6970  *      @viid: the VI id
6971  *      @rx_en: 1=enable Rx, 0=disable Rx
6972  *      @tx_en: 1=enable Tx, 0=disable Tx
6973  *
6974  *      Enables/disables a virtual interface.
6975  */
6976 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6977                  bool rx_en, bool tx_en)
6978 {
6979         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6980 }
6981
6982 /**
6983  *      t4_identify_port - identify a VI's port by blinking its LED
6984  *      @adap: the adapter
6985  *      @mbox: mailbox to use for the FW command
6986  *      @viid: the VI id
6987  *      @nblinks: how many times to blink LED at 2.5 Hz
6988  *
6989  *      Identifies a VI's port by blinking its LED.
6990  */
6991 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6992                      unsigned int nblinks)
6993 {
6994         struct fw_vi_enable_cmd c;
6995
6996         memset(&c, 0, sizeof(c));
6997         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6998                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6999                                    FW_VI_ENABLE_CMD_VIID_V(viid));
7000         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7001         c.blinkdur = cpu_to_be16(nblinks);
7002         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7003 }
7004
7005 /**
7006  *      t4_iq_stop - stop an ingress queue and its FLs
7007  *      @adap: the adapter
7008  *      @mbox: mailbox to use for the FW command
7009  *      @pf: the PF owning the queues
7010  *      @vf: the VF owning the queues
7011  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7012  *      @iqid: ingress queue id
7013  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7014  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7015  *
7016  *      Stops an ingress queue and its associated FLs, if any.  This causes
7017  *      any current or future data/messages destined for these queues to be
7018  *      tossed.
7019  */
7020 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7021                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7022                unsigned int fl0id, unsigned int fl1id)
7023 {
7024         struct fw_iq_cmd c;
7025
7026         memset(&c, 0, sizeof(c));
7027         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7028                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7029                                   FW_IQ_CMD_VFN_V(vf));
7030         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7031         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7032         c.iqid = cpu_to_be16(iqid);
7033         c.fl0id = cpu_to_be16(fl0id);
7034         c.fl1id = cpu_to_be16(fl1id);
7035         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7036 }
7037
7038 /**
7039  *      t4_iq_free - free an ingress queue and its FLs
7040  *      @adap: the adapter
7041  *      @mbox: mailbox to use for the FW command
7042  *      @pf: the PF owning the queues
7043  *      @vf: the VF owning the queues
7044  *      @iqtype: the ingress queue type
7045  *      @iqid: ingress queue id
7046  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7047  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7048  *
7049  *      Frees an ingress queue and its associated FLs, if any.
7050  */
7051 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7052                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7053                unsigned int fl0id, unsigned int fl1id)
7054 {
7055         struct fw_iq_cmd c;
7056
7057         memset(&c, 0, sizeof(c));
7058         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7059                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7060                                   FW_IQ_CMD_VFN_V(vf));
7061         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7062         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7063         c.iqid = cpu_to_be16(iqid);
7064         c.fl0id = cpu_to_be16(fl0id);
7065         c.fl1id = cpu_to_be16(fl1id);
7066         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7067 }
7068
7069 /**
7070  *      t4_eth_eq_free - free an Ethernet egress queue
7071  *      @adap: the adapter
7072  *      @mbox: mailbox to use for the FW command
7073  *      @pf: the PF owning the queue
7074  *      @vf: the VF owning the queue
7075  *      @eqid: egress queue id
7076  *
7077  *      Frees an Ethernet egress queue.
7078  */
7079 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7080                    unsigned int vf, unsigned int eqid)
7081 {
7082         struct fw_eq_eth_cmd c;
7083
7084         memset(&c, 0, sizeof(c));
7085         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7086                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7087                                   FW_EQ_ETH_CMD_PFN_V(pf) |
7088                                   FW_EQ_ETH_CMD_VFN_V(vf));
7089         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7090         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7091         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7092 }
7093
7094 /**
7095  *      t4_ctrl_eq_free - free a control egress queue
7096  *      @adap: the adapter
7097  *      @mbox: mailbox to use for the FW command
7098  *      @pf: the PF owning the queue
7099  *      @vf: the VF owning the queue
7100  *      @eqid: egress queue id
7101  *
7102  *      Frees a control egress queue.
7103  */
7104 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7105                     unsigned int vf, unsigned int eqid)
7106 {
7107         struct fw_eq_ctrl_cmd c;
7108
7109         memset(&c, 0, sizeof(c));
7110         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7111                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7112                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
7113                                   FW_EQ_CTRL_CMD_VFN_V(vf));
7114         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7115         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7116         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7117 }
7118
7119 /**
7120  *      t4_ofld_eq_free - free an offload egress queue
7121  *      @adap: the adapter
7122  *      @mbox: mailbox to use for the FW command
7123  *      @pf: the PF owning the queue
7124  *      @vf: the VF owning the queue
7125  *      @eqid: egress queue id
7126  *
7127  *      Frees a control egress queue.
7128  */
7129 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7130                     unsigned int vf, unsigned int eqid)
7131 {
7132         struct fw_eq_ofld_cmd c;
7133
7134         memset(&c, 0, sizeof(c));
7135         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7136                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7137                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
7138                                   FW_EQ_OFLD_CMD_VFN_V(vf));
7139         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7140         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7141         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7142 }
7143
7144 /**
7145  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
7146  *      @adap: the adapter
7147  *      @link_down_rc: Link Down Reason Code
7148  *
7149  *      Returns a string representation of the Link Down Reason Code.
7150  */
7151 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7152 {
7153         static const char * const reason[] = {
7154                 "Link Down",
7155                 "Remote Fault",
7156                 "Auto-negotiation Failure",
7157                 "Reserved",
7158                 "Insufficient Airflow",
7159                 "Unable To Determine Reason",
7160                 "No RX Signal Detected",
7161                 "Reserved",
7162         };
7163
7164         if (link_down_rc >= ARRAY_SIZE(reason))
7165                 return "Bad Reason Code";
7166
7167         return reason[link_down_rc];
7168 }
7169
7170 /**
7171  *      t4_handle_get_port_info - process a FW reply message
7172  *      @pi: the port info
7173  *      @rpl: start of the FW message
7174  *
7175  *      Processes a GET_PORT_INFO FW reply message.
7176  */
7177 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7178 {
7179         const struct fw_port_cmd *p = (const void *)rpl;
7180         struct adapter *adap = pi->adapter;
7181
7182         /* link/module state change message */
7183         int speed = 0, fc = 0;
7184         struct link_config *lc;
7185         u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7186         int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7187         u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7188
7189         if (stat & FW_PORT_CMD_RXPAUSE_F)
7190                 fc |= PAUSE_RX;
7191         if (stat & FW_PORT_CMD_TXPAUSE_F)
7192                 fc |= PAUSE_TX;
7193         if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7194                 speed = 100;
7195         else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7196                 speed = 1000;
7197         else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7198                 speed = 10000;
7199         else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7200                 speed = 40000;
7201
7202         lc = &pi->link_cfg;
7203
7204         if (mod != pi->mod_type) {
7205                 pi->mod_type = mod;
7206                 t4_os_portmod_changed(adap, pi->port_id);
7207         }
7208         if (link_ok != lc->link_ok || speed != lc->speed ||
7209             fc != lc->fc) {     /* something changed */
7210                 if (!link_ok && lc->link_ok) {
7211                         unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat);
7212
7213                         lc->link_down_rc = rc;
7214                         dev_warn(adap->pdev_dev,
7215                                  "Port %d link down, reason: %s\n",
7216                                  pi->port_id, t4_link_down_rc_str(rc));
7217                 }
7218                 lc->link_ok = link_ok;
7219                 lc->speed = speed;
7220                 lc->fc = fc;
7221                 lc->supported = be16_to_cpu(p->u.info.pcap);
7222                 lc->lp_advertising = be16_to_cpu(p->u.info.lpacap);
7223                 t4_os_link_changed(adap, pi->port_id, link_ok);
7224         }
7225 }
7226
7227 /**
7228  *      t4_handle_fw_rpl - process a FW reply message
7229  *      @adap: the adapter
7230  *      @rpl: start of the FW message
7231  *
7232  *      Processes a FW message, such as link state change messages.
7233  */
7234 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7235 {
7236         u8 opcode = *(const u8 *)rpl;
7237
7238         /* This might be a port command ... this simplifies the following
7239          * conditionals ...  We can get away with pre-dereferencing
7240          * action_to_len16 because it's in the first 16 bytes and all messages
7241          * will be at least that long.
7242          */
7243         const struct fw_port_cmd *p = (const void *)rpl;
7244         unsigned int action =
7245                 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
7246
7247         if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7248                 int i;
7249                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
7250                 struct port_info *pi = NULL;
7251
7252                 for_each_port(adap, i) {
7253                         pi = adap2pinfo(adap, i);
7254                         if (pi->tx_chan == chan)
7255                                 break;
7256                 }
7257
7258                 t4_handle_get_port_info(pi, rpl);
7259         } else {
7260                 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode);
7261                 return -EINVAL;
7262         }
7263         return 0;
7264 }
7265
7266 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
7267 {
7268         u16 val;
7269
7270         if (pci_is_pcie(adapter->pdev)) {
7271                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
7272                 p->speed = val & PCI_EXP_LNKSTA_CLS;
7273                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7274         }
7275 }
7276
7277 /**
7278  *      init_link_config - initialize a link's SW state
7279  *      @lc: structure holding the link state
7280  *      @caps: link capabilities
7281  *
7282  *      Initializes the SW state maintained for each link, including the link's
7283  *      capabilities and default speed/flow-control/autonegotiation settings.
7284  */
7285 static void init_link_config(struct link_config *lc, unsigned int caps)
7286 {
7287         lc->supported = caps;
7288         lc->lp_advertising = 0;
7289         lc->requested_speed = 0;
7290         lc->speed = 0;
7291         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7292         if (lc->supported & FW_PORT_CAP_ANEG) {
7293                 lc->advertising = lc->supported & ADVERT_MASK;
7294                 lc->autoneg = AUTONEG_ENABLE;
7295                 lc->requested_fc |= PAUSE_AUTONEG;
7296         } else {
7297                 lc->advertising = 0;
7298                 lc->autoneg = AUTONEG_DISABLE;
7299         }
7300 }
7301
7302 #define CIM_PF_NOACCESS 0xeeeeeeee
7303
7304 int t4_wait_dev_ready(void __iomem *regs)
7305 {
7306         u32 whoami;
7307
7308         whoami = readl(regs + PL_WHOAMI_A);
7309         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7310                 return 0;
7311
7312         msleep(500);
7313         whoami = readl(regs + PL_WHOAMI_A);
7314         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7315 }
7316
7317 struct flash_desc {
7318         u32 vendor_and_model_id;
7319         u32 size_mb;
7320 };
7321
7322 static int get_flash_params(struct adapter *adap)
7323 {
7324         /* Table for non-Numonix supported flash parts.  Numonix parts are left
7325          * to the preexisting code.  All flash parts have 64KB sectors.
7326          */
7327         static struct flash_desc supported_flash[] = {
7328                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7329         };
7330
7331         int ret;
7332         u32 info;
7333
7334         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7335         if (!ret)
7336                 ret = sf1_read(adap, 3, 0, 1, &info);
7337         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
7338         if (ret)
7339                 return ret;
7340
7341         for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7342                 if (supported_flash[ret].vendor_and_model_id == info) {
7343                         adap->params.sf_size = supported_flash[ret].size_mb;
7344                         adap->params.sf_nsec =
7345                                 adap->params.sf_size / SF_SEC_SIZE;
7346                         return 0;
7347                 }
7348
7349         if ((info & 0xff) != 0x20)             /* not a Numonix flash */
7350                 return -EINVAL;
7351         info >>= 16;                           /* log2 of size */
7352         if (info >= 0x14 && info < 0x18)
7353                 adap->params.sf_nsec = 1 << (info - 16);
7354         else if (info == 0x18)
7355                 adap->params.sf_nsec = 64;
7356         else
7357                 return -EINVAL;
7358         adap->params.sf_size = 1 << info;
7359         adap->params.sf_fw_start =
7360                 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7361
7362         if (adap->params.sf_size < FLASH_MIN_SIZE)
7363                 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7364                          adap->params.sf_size, FLASH_MIN_SIZE);
7365         return 0;
7366 }
7367
7368 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7369 {
7370         u16 val;
7371         u32 pcie_cap;
7372
7373         pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7374         if (pcie_cap) {
7375                 pci_read_config_word(adapter->pdev,
7376                                      pcie_cap + PCI_EXP_DEVCTL2, &val);
7377                 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7378                 val |= range;
7379                 pci_write_config_word(adapter->pdev,
7380                                       pcie_cap + PCI_EXP_DEVCTL2, val);
7381         }
7382 }
7383
7384 /**
7385  *      t4_prep_adapter - prepare SW and HW for operation
7386  *      @adapter: the adapter
7387  *      @reset: if true perform a HW reset
7388  *
7389  *      Initialize adapter SW state for the various HW modules, set initial
7390  *      values for some adapter tunables, take PHYs out of reset, and
7391  *      initialize the MDIO interface.
7392  */
7393 int t4_prep_adapter(struct adapter *adapter)
7394 {
7395         int ret, ver;
7396         uint16_t device_id;
7397         u32 pl_rev;
7398
7399         get_pci_mode(adapter, &adapter->params.pci);
7400         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7401
7402         ret = get_flash_params(adapter);
7403         if (ret < 0) {
7404                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7405                 return ret;
7406         }
7407
7408         /* Retrieve adapter's device ID
7409          */
7410         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7411         ver = device_id >> 12;
7412         adapter->params.chip = 0;
7413         switch (ver) {
7414         case CHELSIO_T4:
7415                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7416                 adapter->params.arch.sge_fl_db = DBPRIO_F;
7417                 adapter->params.arch.mps_tcam_size =
7418                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
7419                 adapter->params.arch.mps_rplc_size = 128;
7420                 adapter->params.arch.nchan = NCHAN;
7421                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7422                 adapter->params.arch.vfcount = 128;
7423                 /* Congestion map is for 4 channels so that
7424                  * MPS can have 4 priority per port.
7425                  */
7426                 adapter->params.arch.cng_ch_bits_log = 2;
7427                 break;
7428         case CHELSIO_T5:
7429                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7430                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7431                 adapter->params.arch.mps_tcam_size =
7432                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7433                 adapter->params.arch.mps_rplc_size = 128;
7434                 adapter->params.arch.nchan = NCHAN;
7435                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7436                 adapter->params.arch.vfcount = 128;
7437                 adapter->params.arch.cng_ch_bits_log = 2;
7438                 break;
7439         case CHELSIO_T6:
7440                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7441                 adapter->params.arch.sge_fl_db = 0;
7442                 adapter->params.arch.mps_tcam_size =
7443                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7444                 adapter->params.arch.mps_rplc_size = 256;
7445                 adapter->params.arch.nchan = 2;
7446                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7447                 adapter->params.arch.vfcount = 256;
7448                 /* Congestion map will be for 2 channels so that
7449                  * MPS can have 8 priority per port.
7450                  */
7451                 adapter->params.arch.cng_ch_bits_log = 3;
7452                 break;
7453         default:
7454                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7455                         device_id);
7456                 return -EINVAL;
7457         }
7458
7459         adapter->params.cim_la_size = CIMLA_SIZE;
7460         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7461
7462         /*
7463          * Default port for debugging in case we can't reach FW.
7464          */
7465         adapter->params.nports = 1;
7466         adapter->params.portvec = 1;
7467         adapter->params.vpd.cclk = 50000;
7468
7469         /* Set pci completion timeout value to 4 seconds. */
7470         set_pcie_completion_timeout(adapter, 0xd);
7471         return 0;
7472 }
7473
7474 /**
7475  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7476  *      @adapter: the adapter
7477  *      @qid: the Queue ID
7478  *      @qtype: the Ingress or Egress type for @qid
7479  *      @user: true if this request is for a user mode queue
7480  *      @pbar2_qoffset: BAR2 Queue Offset
7481  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7482  *
7483  *      Returns the BAR2 SGE Queue Registers information associated with the
7484  *      indicated Absolute Queue ID.  These are passed back in return value
7485  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7486  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7487  *
7488  *      This may return an error which indicates that BAR2 SGE Queue
7489  *      registers aren't available.  If an error is not returned, then the
7490  *      following values are returned:
7491  *
7492  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7493  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7494  *
7495  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7496  *      require the "Inferred Queue ID" ability may be used.  E.g. the
7497  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7498  *      then these "Inferred Queue ID" register may not be used.
7499  */
7500 int t4_bar2_sge_qregs(struct adapter *adapter,
7501                       unsigned int qid,
7502                       enum t4_bar2_qtype qtype,
7503                       int user,
7504                       u64 *pbar2_qoffset,
7505                       unsigned int *pbar2_qid)
7506 {
7507         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7508         u64 bar2_page_offset, bar2_qoffset;
7509         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7510
7511         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7512         if (!user && is_t4(adapter->params.chip))
7513                 return -EINVAL;
7514
7515         /* Get our SGE Page Size parameters.
7516          */
7517         page_shift = adapter->params.sge.hps + 10;
7518         page_size = 1 << page_shift;
7519
7520         /* Get the right Queues per Page parameters for our Queue.
7521          */
7522         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7523                      ? adapter->params.sge.eq_qpp
7524                      : adapter->params.sge.iq_qpp);
7525         qpp_mask = (1 << qpp_shift) - 1;
7526
7527         /*  Calculate the basics of the BAR2 SGE Queue register area:
7528          *  o The BAR2 page the Queue registers will be in.
7529          *  o The BAR2 Queue ID.
7530          *  o The BAR2 Queue ID Offset into the BAR2 page.
7531          */
7532         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7533         bar2_qid = qid & qpp_mask;
7534         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7535
7536         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7537          * hardware will infer the Absolute Queue ID simply from the writes to
7538          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7539          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7540          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7541          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7542          * from the BAR2 Page and BAR2 Queue ID.
7543          *
7544          * One important censequence of this is that some BAR2 SGE registers
7545          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7546          * there.  But other registers synthesize the SGE Queue ID purely
7547          * from the writes to the registers -- the Write Combined Doorbell
7548          * Buffer is a good example.  These BAR2 SGE Registers are only
7549          * available for those BAR2 SGE Register areas where the SGE Absolute
7550          * Queue ID can be inferred from simple writes.
7551          */
7552         bar2_qoffset = bar2_page_offset;
7553         bar2_qinferred = (bar2_qid_offset < page_size);
7554         if (bar2_qinferred) {
7555                 bar2_qoffset += bar2_qid_offset;
7556                 bar2_qid = 0;
7557         }
7558
7559         *pbar2_qoffset = bar2_qoffset;
7560         *pbar2_qid = bar2_qid;
7561         return 0;
7562 }
7563
7564 /**
7565  *      t4_init_devlog_params - initialize adapter->params.devlog
7566  *      @adap: the adapter
7567  *
7568  *      Initialize various fields of the adapter's Firmware Device Log
7569  *      Parameters structure.
7570  */
7571 int t4_init_devlog_params(struct adapter *adap)
7572 {
7573         struct devlog_params *dparams = &adap->params.devlog;
7574         u32 pf_dparams;
7575         unsigned int devlog_meminfo;
7576         struct fw_devlog_cmd devlog_cmd;
7577         int ret;
7578
7579         /* If we're dealing with newer firmware, the Device Log Paramerters
7580          * are stored in a designated register which allows us to access the
7581          * Device Log even if we can't talk to the firmware.
7582          */
7583         pf_dparams =
7584                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7585         if (pf_dparams) {
7586                 unsigned int nentries, nentries128;
7587
7588                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7589                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7590
7591                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7592                 nentries = (nentries128 + 1) * 128;
7593                 dparams->size = nentries * sizeof(struct fw_devlog_e);
7594
7595                 return 0;
7596         }
7597
7598         /* Otherwise, ask the firmware for it's Device Log Parameters.
7599          */
7600         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7601         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7602                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
7603         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7604         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7605                          &devlog_cmd);
7606         if (ret)
7607                 return ret;
7608
7609         devlog_meminfo =
7610                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7611         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7612         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7613         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7614
7615         return 0;
7616 }
7617
7618 /**
7619  *      t4_init_sge_params - initialize adap->params.sge
7620  *      @adapter: the adapter
7621  *
7622  *      Initialize various fields of the adapter's SGE Parameters structure.
7623  */
7624 int t4_init_sge_params(struct adapter *adapter)
7625 {
7626         struct sge_params *sge_params = &adapter->params.sge;
7627         u32 hps, qpp;
7628         unsigned int s_hps, s_qpp;
7629
7630         /* Extract the SGE Page Size for our PF.
7631          */
7632         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7633         s_hps = (HOSTPAGESIZEPF0_S +
7634                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7635         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7636
7637         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7638          */
7639         s_qpp = (QUEUESPERPAGEPF0_S +
7640                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7641         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7642         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7643         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7644         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7645
7646         return 0;
7647 }
7648
7649 /**
7650  *      t4_init_tp_params - initialize adap->params.tp
7651  *      @adap: the adapter
7652  *
7653  *      Initialize various fields of the adapter's TP Parameters structure.
7654  */
7655 int t4_init_tp_params(struct adapter *adap)
7656 {
7657         int chan;
7658         u32 v;
7659
7660         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7661         adap->params.tp.tre = TIMERRESOLUTION_G(v);
7662         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7663
7664         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7665         for (chan = 0; chan < NCHAN; chan++)
7666                 adap->params.tp.tx_modq[chan] = chan;
7667
7668         /* Cache the adapter's Compressed Filter Mode and global Incress
7669          * Configuration.
7670          */
7671         if (t4_use_ldst(adap)) {
7672                 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7673                                 TP_VLAN_PRI_MAP_A, 1);
7674                 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7675                                 TP_INGRESS_CONFIG_A, 1);
7676         } else {
7677                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7678                                  &adap->params.tp.vlan_pri_map, 1,
7679                                  TP_VLAN_PRI_MAP_A);
7680                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7681                                  &adap->params.tp.ingress_config, 1,
7682                                  TP_INGRESS_CONFIG_A);
7683         }
7684
7685         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7686          * shift positions of several elements of the Compressed Filter Tuple
7687          * for this adapter which we need frequently ...
7688          */
7689         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7690         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7691         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7692         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7693                                                                PROTOCOL_F);
7694
7695         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7696          * represents the presence of an Outer VLAN instead of a VNIC ID.
7697          */
7698         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7699                 adap->params.tp.vnic_shift = -1;
7700
7701         return 0;
7702 }
7703
7704 /**
7705  *      t4_filter_field_shift - calculate filter field shift
7706  *      @adap: the adapter
7707  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7708  *
7709  *      Return the shift position of a filter field within the Compressed
7710  *      Filter Tuple.  The filter field is specified via its selection bit
7711  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7712  */
7713 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7714 {
7715         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7716         unsigned int sel;
7717         int field_shift;
7718
7719         if ((filter_mode & filter_sel) == 0)
7720                 return -1;
7721
7722         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7723                 switch (filter_mode & sel) {
7724                 case FCOE_F:
7725                         field_shift += FT_FCOE_W;
7726                         break;
7727                 case PORT_F:
7728                         field_shift += FT_PORT_W;
7729                         break;
7730                 case VNIC_ID_F:
7731                         field_shift += FT_VNIC_ID_W;
7732                         break;
7733                 case VLAN_F:
7734                         field_shift += FT_VLAN_W;
7735                         break;
7736                 case TOS_F:
7737                         field_shift += FT_TOS_W;
7738                         break;
7739                 case PROTOCOL_F:
7740                         field_shift += FT_PROTOCOL_W;
7741                         break;
7742                 case ETHERTYPE_F:
7743                         field_shift += FT_ETHERTYPE_W;
7744                         break;
7745                 case MACMATCH_F:
7746                         field_shift += FT_MACMATCH_W;
7747                         break;
7748                 case MPSHITTYPE_F:
7749                         field_shift += FT_MPSHITTYPE_W;
7750                         break;
7751                 case FRAGMENTATION_F:
7752                         field_shift += FT_FRAGMENTATION_W;
7753                         break;
7754                 }
7755         }
7756         return field_shift;
7757 }
7758
7759 int t4_init_rss_mode(struct adapter *adap, int mbox)
7760 {
7761         int i, ret;
7762         struct fw_rss_vi_config_cmd rvc;
7763
7764         memset(&rvc, 0, sizeof(rvc));
7765
7766         for_each_port(adap, i) {
7767                 struct port_info *p = adap2pinfo(adap, i);
7768
7769                 rvc.op_to_viid =
7770                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7771                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7772                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7773                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7774                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7775                 if (ret)
7776                         return ret;
7777                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7778         }
7779         return 0;
7780 }
7781
7782 /**
7783  *      t4_init_portinfo - allocate a virtual interface amd initialize port_info
7784  *      @pi: the port_info
7785  *      @mbox: mailbox to use for the FW command
7786  *      @port: physical port associated with the VI
7787  *      @pf: the PF owning the VI
7788  *      @vf: the VF owning the VI
7789  *      @mac: the MAC address of the VI
7790  *
7791  *      Allocates a virtual interface for the given physical port.  If @mac is
7792  *      not %NULL it contains the MAC address of the VI as assigned by FW.
7793  *      @mac should be large enough to hold an Ethernet address.
7794  *      Returns < 0 on error.
7795  */
7796 int t4_init_portinfo(struct port_info *pi, int mbox,
7797                      int port, int pf, int vf, u8 mac[])
7798 {
7799         int ret;
7800         struct fw_port_cmd c;
7801         unsigned int rss_size;
7802
7803         memset(&c, 0, sizeof(c));
7804         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7805                                      FW_CMD_REQUEST_F | FW_CMD_READ_F |
7806                                      FW_PORT_CMD_PORTID_V(port));
7807         c.action_to_len16 = cpu_to_be32(
7808                 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7809                 FW_LEN16(c));
7810         ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c);
7811         if (ret)
7812                 return ret;
7813
7814         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
7815         if (ret < 0)
7816                 return ret;
7817
7818         pi->viid = ret;
7819         pi->tx_chan = port;
7820         pi->lport = port;
7821         pi->rss_size = rss_size;
7822
7823         ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7824         pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7825                 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7826         pi->port_type = FW_PORT_CMD_PTYPE_G(ret);
7827         pi->mod_type = FW_PORT_MOD_TYPE_NA;
7828
7829         init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap));
7830         return 0;
7831 }
7832
7833 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7834 {
7835         u8 addr[6];
7836         int ret, i, j = 0;
7837
7838         for_each_port(adap, i) {
7839                 struct port_info *pi = adap2pinfo(adap, i);
7840
7841                 while ((adap->params.portvec & (1 << j)) == 0)
7842                         j++;
7843
7844                 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
7845                 if (ret)
7846                         return ret;
7847
7848                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7849                 adap->port[i]->dev_port = j;
7850                 j++;
7851         }
7852         return 0;
7853 }
7854
7855 /**
7856  *      t4_read_cimq_cfg - read CIM queue configuration
7857  *      @adap: the adapter
7858  *      @base: holds the queue base addresses in bytes
7859  *      @size: holds the queue sizes in bytes
7860  *      @thres: holds the queue full thresholds in bytes
7861  *
7862  *      Returns the current configuration of the CIM queues, starting with
7863  *      the IBQs, then the OBQs.
7864  */
7865 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7866 {
7867         unsigned int i, v;
7868         int cim_num_obq = is_t4(adap->params.chip) ?
7869                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7870
7871         for (i = 0; i < CIM_NUM_IBQ; i++) {
7872                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7873                              QUENUMSELECT_V(i));
7874                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7875                 /* value is in 256-byte units */
7876                 *base++ = CIMQBASE_G(v) * 256;
7877                 *size++ = CIMQSIZE_G(v) * 256;
7878                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7879         }
7880         for (i = 0; i < cim_num_obq; i++) {
7881                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7882                              QUENUMSELECT_V(i));
7883                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7884                 /* value is in 256-byte units */
7885                 *base++ = CIMQBASE_G(v) * 256;
7886                 *size++ = CIMQSIZE_G(v) * 256;
7887         }
7888 }
7889
7890 /**
7891  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
7892  *      @adap: the adapter
7893  *      @qid: the queue index
7894  *      @data: where to store the queue contents
7895  *      @n: capacity of @data in 32-bit words
7896  *
7897  *      Reads the contents of the selected CIM queue starting at address 0 up
7898  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7899  *      error and the number of 32-bit words actually read on success.
7900  */
7901 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7902 {
7903         int i, err, attempts;
7904         unsigned int addr;
7905         const unsigned int nwords = CIM_IBQ_SIZE * 4;
7906
7907         if (qid > 5 || (n & 3))
7908                 return -EINVAL;
7909
7910         addr = qid * nwords;
7911         if (n > nwords)
7912                 n = nwords;
7913
7914         /* It might take 3-10ms before the IBQ debug read access is allowed.
7915          * Wait for 1 Sec with a delay of 1 usec.
7916          */
7917         attempts = 1000000;
7918
7919         for (i = 0; i < n; i++, addr++) {
7920                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7921                              IBQDBGEN_F);
7922                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7923                                       attempts, 1);
7924                 if (err)
7925                         return err;
7926                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7927         }
7928         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7929         return i;
7930 }
7931
7932 /**
7933  *      t4_read_cim_obq - read the contents of a CIM outbound queue
7934  *      @adap: the adapter
7935  *      @qid: the queue index
7936  *      @data: where to store the queue contents
7937  *      @n: capacity of @data in 32-bit words
7938  *
7939  *      Reads the contents of the selected CIM queue starting at address 0 up
7940  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7941  *      error and the number of 32-bit words actually read on success.
7942  */
7943 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7944 {
7945         int i, err;
7946         unsigned int addr, v, nwords;
7947         int cim_num_obq = is_t4(adap->params.chip) ?
7948                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7949
7950         if ((qid > (cim_num_obq - 1)) || (n & 3))
7951                 return -EINVAL;
7952
7953         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7954                      QUENUMSELECT_V(qid));
7955         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7956
7957         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
7958         nwords = CIMQSIZE_G(v) * 64;  /* same */
7959         if (n > nwords)
7960                 n = nwords;
7961
7962         for (i = 0; i < n; i++, addr++) {
7963                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7964                              OBQDBGEN_F);
7965                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7966                                       2, 1);
7967                 if (err)
7968                         return err;
7969                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7970         }
7971         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7972         return i;
7973 }
7974
7975 /**
7976  *      t4_cim_read - read a block from CIM internal address space
7977  *      @adap: the adapter
7978  *      @addr: the start address within the CIM address space
7979  *      @n: number of words to read
7980  *      @valp: where to store the result
7981  *
7982  *      Reads a block of 4-byte words from the CIM intenal address space.
7983  */
7984 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7985                 unsigned int *valp)
7986 {
7987         int ret = 0;
7988
7989         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7990                 return -EBUSY;
7991
7992         for ( ; !ret && n--; addr += 4) {
7993                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7994                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7995                                       0, 5, 2);
7996                 if (!ret)
7997                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7998         }
7999         return ret;
8000 }
8001
8002 /**
8003  *      t4_cim_write - write a block into CIM internal address space
8004  *      @adap: the adapter
8005  *      @addr: the start address within the CIM address space
8006  *      @n: number of words to write
8007  *      @valp: set of values to write
8008  *
8009  *      Writes a block of 4-byte words into the CIM intenal address space.
8010  */
8011 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8012                  const unsigned int *valp)
8013 {
8014         int ret = 0;
8015
8016         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8017                 return -EBUSY;
8018
8019         for ( ; !ret && n--; addr += 4) {
8020                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
8021                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
8022                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8023                                       0, 5, 2);
8024         }
8025         return ret;
8026 }
8027
8028 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8029                          unsigned int val)
8030 {
8031         return t4_cim_write(adap, addr, 1, &val);
8032 }
8033
8034 /**
8035  *      t4_cim_read_la - read CIM LA capture buffer
8036  *      @adap: the adapter
8037  *      @la_buf: where to store the LA data
8038  *      @wrptr: the HW write pointer within the capture buffer
8039  *
8040  *      Reads the contents of the CIM LA buffer with the most recent entry at
8041  *      the end of the returned data and with the entry at @wrptr first.
8042  *      We try to leave the LA in the running state we find it in.
8043  */
8044 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8045 {
8046         int i, ret;
8047         unsigned int cfg, val, idx;
8048
8049         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
8050         if (ret)
8051                 return ret;
8052
8053         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
8054                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
8055                 if (ret)
8056                         return ret;
8057         }
8058
8059         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8060         if (ret)
8061                 goto restart;
8062
8063         idx = UPDBGLAWRPTR_G(val);
8064         if (wrptr)
8065                 *wrptr = idx;
8066
8067         for (i = 0; i < adap->params.cim_la_size; i++) {
8068                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8069                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
8070                 if (ret)
8071                         break;
8072                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8073                 if (ret)
8074                         break;
8075                 if (val & UPDBGLARDEN_F) {
8076                         ret = -ETIMEDOUT;
8077                         break;
8078                 }
8079                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
8080                 if (ret)
8081                         break;
8082                 idx = (idx + 1) & UPDBGLARDPTR_M;
8083         }
8084 restart:
8085         if (cfg & UPDBGLAEN_F) {
8086                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8087                                       cfg & ~UPDBGLARDEN_F);
8088                 if (!ret)
8089                         ret = r;
8090         }
8091         return ret;
8092 }
8093
8094 /**
8095  *      t4_tp_read_la - read TP LA capture buffer
8096  *      @adap: the adapter
8097  *      @la_buf: where to store the LA data
8098  *      @wrptr: the HW write pointer within the capture buffer
8099  *
8100  *      Reads the contents of the TP LA buffer with the most recent entry at
8101  *      the end of the returned data and with the entry at @wrptr first.
8102  *      We leave the LA in the running state we find it in.
8103  */
8104 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8105 {
8106         bool last_incomplete;
8107         unsigned int i, cfg, val, idx;
8108
8109         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
8110         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
8111                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8112                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
8113
8114         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
8115         idx = DBGLAWPTR_G(val);
8116         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
8117         if (last_incomplete)
8118                 idx = (idx + 1) & DBGLARPTR_M;
8119         if (wrptr)
8120                 *wrptr = idx;
8121
8122         val &= 0xffff;
8123         val &= ~DBGLARPTR_V(DBGLARPTR_M);
8124         val |= adap->params.tp.la_mask;
8125
8126         for (i = 0; i < TPLA_SIZE; i++) {
8127                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
8128                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
8129                 idx = (idx + 1) & DBGLARPTR_M;
8130         }
8131
8132         /* Wipe out last entry if it isn't valid */
8133         if (last_incomplete)
8134                 la_buf[TPLA_SIZE - 1] = ~0ULL;
8135
8136         if (cfg & DBGLAENABLE_F)                    /* restore running state */
8137                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8138                              cfg | adap->params.tp.la_mask);
8139 }
8140
8141 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8142  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8143  * state for more than the Warning Threshold then we'll issue a warning about
8144  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8145  * appears to be hung every Warning Repeat second till the situation clears.
8146  * If the situation clears, we'll note that as well.
8147  */
8148 #define SGE_IDMA_WARN_THRESH 1
8149 #define SGE_IDMA_WARN_REPEAT 300
8150
8151 /**
8152  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8153  *      @adapter: the adapter
8154  *      @idma: the adapter IDMA Monitor state
8155  *
8156  *      Initialize the state of an SGE Ingress DMA Monitor.
8157  */
8158 void t4_idma_monitor_init(struct adapter *adapter,
8159                           struct sge_idma_monitor_state *idma)
8160 {
8161         /* Initialize the state variables for detecting an SGE Ingress DMA
8162          * hang.  The SGE has internal counters which count up on each clock
8163          * tick whenever the SGE finds its Ingress DMA State Engines in the
8164          * same state they were on the previous clock tick.  The clock used is
8165          * the Core Clock so we have a limit on the maximum "time" they can
8166          * record; typically a very small number of seconds.  For instance,
8167          * with a 600MHz Core Clock, we can only count up to a bit more than
8168          * 7s.  So we'll synthesize a larger counter in order to not run the
8169          * risk of having the "timers" overflow and give us the flexibility to
8170          * maintain a Hung SGE State Machine of our own which operates across
8171          * a longer time frame.
8172          */
8173         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8174         idma->idma_stalled[0] = 0;
8175         idma->idma_stalled[1] = 0;
8176 }
8177
8178 /**
8179  *      t4_idma_monitor - monitor SGE Ingress DMA state
8180  *      @adapter: the adapter
8181  *      @idma: the adapter IDMA Monitor state
8182  *      @hz: number of ticks/second
8183  *      @ticks: number of ticks since the last IDMA Monitor call
8184  */
8185 void t4_idma_monitor(struct adapter *adapter,
8186                      struct sge_idma_monitor_state *idma,
8187                      int hz, int ticks)
8188 {
8189         int i, idma_same_state_cnt[2];
8190
8191          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8192           * are counters inside the SGE which count up on each clock when the
8193           * SGE finds its Ingress DMA State Engines in the same states they
8194           * were in the previous clock.  The counters will peg out at
8195           * 0xffffffff without wrapping around so once they pass the 1s
8196           * threshold they'll stay above that till the IDMA state changes.
8197           */
8198         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8199         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8200         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8201
8202         for (i = 0; i < 2; i++) {
8203                 u32 debug0, debug11;
8204
8205                 /* If the Ingress DMA Same State Counter ("timer") is less
8206                  * than 1s, then we can reset our synthesized Stall Timer and
8207                  * continue.  If we have previously emitted warnings about a
8208                  * potential stalled Ingress Queue, issue a note indicating
8209                  * that the Ingress Queue has resumed forward progress.
8210                  */
8211                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8212                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8213                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8214                                          "resumed after %d seconds\n",
8215                                          i, idma->idma_qid[i],
8216                                          idma->idma_stalled[i] / hz);
8217                         idma->idma_stalled[i] = 0;
8218                         continue;
8219                 }
8220
8221                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8222                  * domain.  The first time we get here it'll be because we
8223                  * passed the 1s Threshold; each additional time it'll be
8224                  * because the RX Timer Callback is being fired on its regular
8225                  * schedule.
8226                  *
8227                  * If the stall is below our Potential Hung Ingress Queue
8228                  * Warning Threshold, continue.
8229                  */
8230                 if (idma->idma_stalled[i] == 0) {
8231                         idma->idma_stalled[i] = hz;
8232                         idma->idma_warn[i] = 0;
8233                 } else {
8234                         idma->idma_stalled[i] += ticks;
8235                         idma->idma_warn[i] -= ticks;
8236                 }
8237
8238                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8239                         continue;
8240
8241                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8242                  */
8243                 if (idma->idma_warn[i] > 0)
8244                         continue;
8245                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8246
8247                 /* Read and save the SGE IDMA State and Queue ID information.
8248                  * We do this every time in case it changes across time ...
8249                  * can't be too careful ...
8250                  */
8251                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8252                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8253                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8254
8255                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8256                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8257                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8258
8259                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8260                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8261                          i, idma->idma_qid[i], idma->idma_state[i],
8262                          idma->idma_stalled[i] / hz,
8263                          debug0, debug11);
8264                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8265         }
8266 }