cxgb4/cxgb4vf: Allocate more queues for 25G and 100G adapter
[cascardo/linux.git] / drivers / net / ethernet / chelsio / cxgb4vf / t4vf_hw.c
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35
36 #include <linux/pci.h>
37
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44
45 /*
46  * Wait for the device to become ready (signified by our "who am I" register
47  * returning a value other than all 1's).  Return an error if it doesn't
48  * become ready ...
49  */
50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52         const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53         const u32 notready1 = 0xffffffff;
54         const u32 notready2 = 0xeeeeeeee;
55         u32 val;
56
57         val = t4_read_reg(adapter, whoami);
58         if (val != notready1 && val != notready2)
59                 return 0;
60         msleep(500);
61         val = t4_read_reg(adapter, whoami);
62         if (val != notready1 && val != notready2)
63                 return 0;
64         else
65                 return -EIO;
66 }
67
68 /*
69  * Get the reply to a mailbox command and store it in @rpl in big-endian order
70  * (since the firmware data structures are specified in a big-endian layout).
71  */
72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73                          u32 mbox_data)
74 {
75         for ( ; size; size -= 8, mbox_data += 8)
76                 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78
79 /**
80  *      t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81  *      @adapter: the adapter
82  *      @cmd: the Firmware Mailbox Command or Reply
83  *      @size: command length in bytes
84  *      @access: the time (ms) needed to access the Firmware Mailbox
85  *      @execute: the time (ms) the command spent being executed
86  */
87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88                              int size, int access, int execute)
89 {
90         struct mbox_cmd_log *log = adapter->mbox_log;
91         struct mbox_cmd *entry;
92         int i;
93
94         entry = mbox_cmd_log_entry(log, log->cursor++);
95         if (log->cursor == log->size)
96                 log->cursor = 0;
97
98         for (i = 0; i < size / 8; i++)
99                 entry->cmd[i] = be64_to_cpu(cmd[i]);
100         while (i < MBOX_LEN / 8)
101                 entry->cmd[i++] = 0;
102         entry->timestamp = jiffies;
103         entry->seqno = log->seqno++;
104         entry->access = access;
105         entry->execute = execute;
106 }
107
108 /**
109  *      t4vf_wr_mbox_core - send a command to FW through the mailbox
110  *      @adapter: the adapter
111  *      @cmd: the command to write
112  *      @size: command length in bytes
113  *      @rpl: where to optionally store the reply
114  *      @sleep_ok: if true we may sleep while awaiting command completion
115  *
116  *      Sends the given command to FW through the mailbox and waits for the
117  *      FW to execute the command.  If @rpl is not %NULL it is used to store
118  *      the FW's reply to the command.  The command and its optional reply
119  *      are of the same length.  FW can take up to 500 ms to respond.
120  *      @sleep_ok determines whether we may sleep while awaiting the response.
121  *      If sleeping is allowed we use progressive backoff otherwise we spin.
122  *
123  *      The return value is 0 on success or a negative errno on failure.  A
124  *      failure can happen either because we are not able to execute the
125  *      command or FW executes it but signals an error.  In the latter case
126  *      the return value is the error code indicated by FW (negated).
127  */
128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129                       void *rpl, bool sleep_ok)
130 {
131         static const int delay[] = {
132                 1, 1, 3, 5, 10, 10, 20, 50, 100
133         };
134
135         u16 access = 0, execute = 0;
136         u32 v, mbox_data;
137         int i, ms, delay_idx, ret;
138         const __be64 *p;
139         u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140         u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141         __be64 cmd_rpl[MBOX_LEN / 8];
142         struct mbox_list entry;
143
144         /* In T6, mailbox size is changed to 128 bytes to avoid
145          * invalidating the entire prefetch buffer.
146          */
147         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148                 mbox_data = T4VF_MBDATA_BASE_ADDR;
149         else
150                 mbox_data = T6VF_MBDATA_BASE_ADDR;
151
152         /*
153          * Commands must be multiples of 16 bytes in length and may not be
154          * larger than the size of the Mailbox Data register array.
155          */
156         if ((size % 16) != 0 ||
157             size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158                 return -EINVAL;
159
160         /* Queue ourselves onto the mailbox access list.  When our entry is at
161          * the front of the list, we have rights to access the mailbox.  So we
162          * wait [for a while] till we're at the front [or bail out with an
163          * EBUSY] ...
164          */
165         spin_lock(&adapter->mbox_lock);
166         list_add_tail(&entry.list, &adapter->mlist.list);
167         spin_unlock(&adapter->mbox_lock);
168
169         delay_idx = 0;
170         ms = delay[0];
171
172         for (i = 0; ; i += ms) {
173                 /* If we've waited too long, return a busy indication.  This
174                  * really ought to be based on our initial position in the
175                  * mailbox access list but this is a start.  We very rearely
176                  * contend on access to the mailbox ...
177                  */
178                 if (i > FW_CMD_MAX_TIMEOUT) {
179                         spin_lock(&adapter->mbox_lock);
180                         list_del(&entry.list);
181                         spin_unlock(&adapter->mbox_lock);
182                         ret = -EBUSY;
183                         t4vf_record_mbox(adapter, cmd, size, access, ret);
184                         return ret;
185                 }
186
187                 /* If we're at the head, break out and start the mailbox
188                  * protocol.
189                  */
190                 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191                                      list) == &entry)
192                         break;
193
194                 /* Delay for a bit before checking again ... */
195                 if (sleep_ok) {
196                         ms = delay[delay_idx];  /* last element may repeat */
197                         if (delay_idx < ARRAY_SIZE(delay) - 1)
198                                 delay_idx++;
199                         msleep(ms);
200                 } else {
201                         mdelay(ms);
202                 }
203         }
204
205         /*
206          * Loop trying to get ownership of the mailbox.  Return an error
207          * if we can't gain ownership.
208          */
209         v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211                 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212         if (v != MBOX_OWNER_DRV) {
213                 spin_lock(&adapter->mbox_lock);
214                 list_del(&entry.list);
215                 spin_unlock(&adapter->mbox_lock);
216                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217                 t4vf_record_mbox(adapter, cmd, size, access, ret);
218                 return ret;
219         }
220
221         /*
222          * Write the command array into the Mailbox Data register array and
223          * transfer ownership of the mailbox to the firmware.
224          *
225          * For the VFs, the Mailbox Data "registers" are actually backed by
226          * T4's "MA" interface rather than PL Registers (as is the case for
227          * the PFs).  Because these are in different coherency domains, the
228          * write to the VF's PL-register-backed Mailbox Control can race in
229          * front of the writes to the MA-backed VF Mailbox Data "registers".
230          * So we need to do a read-back on at least one byte of the VF Mailbox
231          * Data registers before doing the write to the VF Mailbox Control
232          * register.
233          */
234         if (cmd_op != FW_VI_STATS_CMD)
235                 t4vf_record_mbox(adapter, cmd, size, access, 0);
236         for (i = 0, p = cmd; i < size; i += 8)
237                 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238         t4_read_reg(adapter, mbox_data);         /* flush write */
239
240         t4_write_reg(adapter, mbox_ctl,
241                      MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242         t4_read_reg(adapter, mbox_ctl);          /* flush write */
243
244         /*
245          * Spin waiting for firmware to acknowledge processing our command.
246          */
247         delay_idx = 0;
248         ms = delay[0];
249
250         for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251                 if (sleep_ok) {
252                         ms = delay[delay_idx];
253                         if (delay_idx < ARRAY_SIZE(delay) - 1)
254                                 delay_idx++;
255                         msleep(ms);
256                 } else
257                         mdelay(ms);
258
259                 /*
260                  * If we're the owner, see if this is the reply we wanted.
261                  */
262                 v = t4_read_reg(adapter, mbox_ctl);
263                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264                         /*
265                          * If the Message Valid bit isn't on, revoke ownership
266                          * of the mailbox and continue waiting for our reply.
267                          */
268                         if ((v & MBMSGVALID_F) == 0) {
269                                 t4_write_reg(adapter, mbox_ctl,
270                                              MBOWNER_V(MBOX_OWNER_NONE));
271                                 continue;
272                         }
273
274                         /*
275                          * We now have our reply.  Extract the command return
276                          * value, copy the reply back to our caller's buffer
277                          * (if specified) and revoke ownership of the mailbox.
278                          * We return the (negated) firmware command return
279                          * code (this depends on FW_SUCCESS == 0).
280                          */
281                         get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282
283                         /* return value in low-order little-endian word */
284                         v = be64_to_cpu(cmd_rpl[0]);
285
286                         if (rpl) {
287                                 /* request bit in high-order BE word */
288                                 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289                                          & FW_CMD_REQUEST_F) == 0);
290                                 memcpy(rpl, cmd_rpl, size);
291                                 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292                                          & FW_CMD_REQUEST_F) != 0);
293                         }
294                         t4_write_reg(adapter, mbox_ctl,
295                                      MBOWNER_V(MBOX_OWNER_NONE));
296                         execute = i + ms;
297                         if (cmd_op != FW_VI_STATS_CMD)
298                                 t4vf_record_mbox(adapter, cmd_rpl, size, access,
299                                                  execute);
300                         spin_lock(&adapter->mbox_lock);
301                         list_del(&entry.list);
302                         spin_unlock(&adapter->mbox_lock);
303                         return -FW_CMD_RETVAL_G(v);
304                 }
305         }
306
307         /* We timed out.  Return the error ... */
308         ret = -ETIMEDOUT;
309         t4vf_record_mbox(adapter, cmd, size, access, ret);
310         spin_lock(&adapter->mbox_lock);
311         list_del(&entry.list);
312         spin_unlock(&adapter->mbox_lock);
313         return ret;
314 }
315
316 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
317                      FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
318                      FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
319                      FW_PORT_CAP_ANEG)
320
321 /**
322  *      init_link_config - initialize a link's SW state
323  *      @lc: structure holding the link state
324  *      @caps: link capabilities
325  *
326  *      Initializes the SW state maintained for each link, including the link's
327  *      capabilities and default speed/flow-control/autonegotiation settings.
328  */
329 static void init_link_config(struct link_config *lc, unsigned int caps)
330 {
331         lc->supported = caps;
332         lc->lp_advertising = 0;
333         lc->requested_speed = 0;
334         lc->speed = 0;
335         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
336         if (lc->supported & FW_PORT_CAP_ANEG) {
337                 lc->advertising = lc->supported & ADVERT_MASK;
338                 lc->autoneg = AUTONEG_ENABLE;
339                 lc->requested_fc |= PAUSE_AUTONEG;
340         } else {
341                 lc->advertising = 0;
342                 lc->autoneg = AUTONEG_DISABLE;
343         }
344 }
345
346 /**
347  *      t4vf_port_init - initialize port hardware/software state
348  *      @adapter: the adapter
349  *      @pidx: the adapter port index
350  */
351 int t4vf_port_init(struct adapter *adapter, int pidx)
352 {
353         struct port_info *pi = adap2pinfo(adapter, pidx);
354         struct fw_vi_cmd vi_cmd, vi_rpl;
355         struct fw_port_cmd port_cmd, port_rpl;
356         int v;
357
358         /*
359          * Execute a VI Read command to get our Virtual Interface information
360          * like MAC address, etc.
361          */
362         memset(&vi_cmd, 0, sizeof(vi_cmd));
363         vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
364                                        FW_CMD_REQUEST_F |
365                                        FW_CMD_READ_F);
366         vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
367         vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
368         v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
369         if (v)
370                 return v;
371
372         BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
373         pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
374         t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
375
376         /*
377          * If we don't have read access to our port information, we're done
378          * now.  Otherwise, execute a PORT Read command to get it ...
379          */
380         if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
381                 return 0;
382
383         memset(&port_cmd, 0, sizeof(port_cmd));
384         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
385                                             FW_CMD_REQUEST_F |
386                                             FW_CMD_READ_F |
387                                             FW_PORT_CMD_PORTID_V(pi->port_id));
388         port_cmd.action_to_len16 =
389                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
390                             FW_LEN16(port_cmd));
391         v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
392         if (v)
393                 return v;
394
395         v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
396         pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
397                         FW_PORT_CMD_MDIOADDR_G(v) : -1;
398         pi->port_type = FW_PORT_CMD_PTYPE_G(v);
399         pi->mod_type = FW_PORT_MOD_TYPE_NA;
400
401         init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
402
403         return 0;
404 }
405
406 /**
407  *      t4vf_fw_reset - issue a reset to FW
408  *      @adapter: the adapter
409  *
410  *      Issues a reset command to FW.  For a Physical Function this would
411  *      result in the Firmware resetting all of its state.  For a Virtual
412  *      Function this just resets the state associated with the VF.
413  */
414 int t4vf_fw_reset(struct adapter *adapter)
415 {
416         struct fw_reset_cmd cmd;
417
418         memset(&cmd, 0, sizeof(cmd));
419         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
420                                       FW_CMD_WRITE_F);
421         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
422         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
423 }
424
425 /**
426  *      t4vf_query_params - query FW or device parameters
427  *      @adapter: the adapter
428  *      @nparams: the number of parameters
429  *      @params: the parameter names
430  *      @vals: the parameter values
431  *
432  *      Reads the values of firmware or device parameters.  Up to 7 parameters
433  *      can be queried at once.
434  */
435 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
436                              const u32 *params, u32 *vals)
437 {
438         int i, ret;
439         struct fw_params_cmd cmd, rpl;
440         struct fw_params_param *p;
441         size_t len16;
442
443         if (nparams > 7)
444                 return -EINVAL;
445
446         memset(&cmd, 0, sizeof(cmd));
447         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
448                                     FW_CMD_REQUEST_F |
449                                     FW_CMD_READ_F);
450         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
451                                       param[nparams].mnem), 16);
452         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
453         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
454                 p->mnem = htonl(*params++);
455
456         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
457         if (ret == 0)
458                 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
459                         *vals++ = be32_to_cpu(p->val);
460         return ret;
461 }
462
463 /**
464  *      t4vf_set_params - sets FW or device parameters
465  *      @adapter: the adapter
466  *      @nparams: the number of parameters
467  *      @params: the parameter names
468  *      @vals: the parameter values
469  *
470  *      Sets the values of firmware or device parameters.  Up to 7 parameters
471  *      can be specified at once.
472  */
473 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
474                     const u32 *params, const u32 *vals)
475 {
476         int i;
477         struct fw_params_cmd cmd;
478         struct fw_params_param *p;
479         size_t len16;
480
481         if (nparams > 7)
482                 return -EINVAL;
483
484         memset(&cmd, 0, sizeof(cmd));
485         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
486                                     FW_CMD_REQUEST_F |
487                                     FW_CMD_WRITE_F);
488         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
489                                       param[nparams]), 16);
490         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
491         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
492                 p->mnem = cpu_to_be32(*params++);
493                 p->val = cpu_to_be32(*vals++);
494         }
495
496         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
497 }
498
499 /**
500  *      t4vf_fl_pkt_align - return the fl packet alignment
501  *      @adapter: the adapter
502  *
503  *      T4 has a single field to specify the packing and padding boundary.
504  *      T5 onwards has separate fields for this and hence the alignment for
505  *      next packet offset is maximum of these two.  And T6 changes the
506  *      Ingress Padding Boundary Shift, so it's all a mess and it's best
507  *      if we put this in low-level Common Code ...
508  *
509  */
510 int t4vf_fl_pkt_align(struct adapter *adapter)
511 {
512         u32 sge_control, sge_control2;
513         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
514
515         sge_control = adapter->params.sge.sge_control;
516
517         /* T4 uses a single control field to specify both the PCIe Padding and
518          * Packing Boundary.  T5 introduced the ability to specify these
519          * separately.  The actual Ingress Packet Data alignment boundary
520          * within Packed Buffer Mode is the maximum of these two
521          * specifications.  (Note that it makes no real practical sense to
522          * have the Pading Boudary be larger than the Packing Boundary but you
523          * could set the chip up that way and, in fact, legacy T4 code would
524          * end doing this because it would initialize the Padding Boundary and
525          * leave the Packing Boundary initialized to 0 (16 bytes).)
526          * Padding Boundary values in T6 starts from 8B,
527          * where as it is 32B for T4 and T5.
528          */
529         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
530                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
531         else
532                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
533
534         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
535
536         fl_align = ingpadboundary;
537         if (!is_t4(adapter->params.chip)) {
538                 /* T5 has a different interpretation of one of the PCIe Packing
539                  * Boundary values.
540                  */
541                 sge_control2 = adapter->params.sge.sge_control2;
542                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
543                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
544                         ingpackboundary = 16;
545                 else
546                         ingpackboundary = 1 << (ingpackboundary +
547                                                 INGPACKBOUNDARY_SHIFT_X);
548
549                 fl_align = max(ingpadboundary, ingpackboundary);
550         }
551         return fl_align;
552 }
553
554 /**
555  *      t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
556  *      @adapter: the adapter
557  *      @qid: the Queue ID
558  *      @qtype: the Ingress or Egress type for @qid
559  *      @pbar2_qoffset: BAR2 Queue Offset
560  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
561  *
562  *      Returns the BAR2 SGE Queue Registers information associated with the
563  *      indicated Absolute Queue ID.  These are passed back in return value
564  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
565  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
566  *
567  *      This may return an error which indicates that BAR2 SGE Queue
568  *      registers aren't available.  If an error is not returned, then the
569  *      following values are returned:
570  *
571  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
572  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
573  *
574  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
575  *      require the "Inferred Queue ID" ability may be used.  E.g. the
576  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
577  *      then these "Inferred Queue ID" register may not be used.
578  */
579 int t4vf_bar2_sge_qregs(struct adapter *adapter,
580                         unsigned int qid,
581                         enum t4_bar2_qtype qtype,
582                         u64 *pbar2_qoffset,
583                         unsigned int *pbar2_qid)
584 {
585         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
586         u64 bar2_page_offset, bar2_qoffset;
587         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
588
589         /* T4 doesn't support BAR2 SGE Queue registers.
590          */
591         if (is_t4(adapter->params.chip))
592                 return -EINVAL;
593
594         /* Get our SGE Page Size parameters.
595          */
596         page_shift = adapter->params.sge.sge_vf_hps + 10;
597         page_size = 1 << page_shift;
598
599         /* Get the right Queues per Page parameters for our Queue.
600          */
601         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
602                      ? adapter->params.sge.sge_vf_eq_qpp
603                      : adapter->params.sge.sge_vf_iq_qpp);
604         qpp_mask = (1 << qpp_shift) - 1;
605
606         /* Calculate the basics of the BAR2 SGE Queue register area:
607          *  o The BAR2 page the Queue registers will be in.
608          *  o The BAR2 Queue ID.
609          *  o The BAR2 Queue ID Offset into the BAR2 page.
610          */
611         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
612         bar2_qid = qid & qpp_mask;
613         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
614
615         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
616          * hardware will infer the Absolute Queue ID simply from the writes to
617          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
618          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
619          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
620          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
621          * from the BAR2 Page and BAR2 Queue ID.
622          *
623          * One important censequence of this is that some BAR2 SGE registers
624          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
625          * there.  But other registers synthesize the SGE Queue ID purely
626          * from the writes to the registers -- the Write Combined Doorbell
627          * Buffer is a good example.  These BAR2 SGE Registers are only
628          * available for those BAR2 SGE Register areas where the SGE Absolute
629          * Queue ID can be inferred from simple writes.
630          */
631         bar2_qoffset = bar2_page_offset;
632         bar2_qinferred = (bar2_qid_offset < page_size);
633         if (bar2_qinferred) {
634                 bar2_qoffset += bar2_qid_offset;
635                 bar2_qid = 0;
636         }
637
638         *pbar2_qoffset = bar2_qoffset;
639         *pbar2_qid = bar2_qid;
640         return 0;
641 }
642
643 /**
644  *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
645  *      @adapter: the adapter
646  *
647  *      Retrieves various core SGE parameters in the form of hardware SGE
648  *      register values.  The caller is responsible for decoding these as
649  *      needed.  The SGE parameters are stored in @adapter->params.sge.
650  */
651 int t4vf_get_sge_params(struct adapter *adapter)
652 {
653         struct sge_params *sge_params = &adapter->params.sge;
654         u32 params[7], vals[7];
655         int v;
656
657         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
658                      FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
659         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
660                      FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
661         params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
662                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
663         params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
664                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
665         params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
666                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
667         params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
668                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
669         params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
670                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
671         v = t4vf_query_params(adapter, 7, params, vals);
672         if (v)
673                 return v;
674         sge_params->sge_control = vals[0];
675         sge_params->sge_host_page_size = vals[1];
676         sge_params->sge_fl_buffer_size[0] = vals[2];
677         sge_params->sge_fl_buffer_size[1] = vals[3];
678         sge_params->sge_timer_value_0_and_1 = vals[4];
679         sge_params->sge_timer_value_2_and_3 = vals[5];
680         sge_params->sge_timer_value_4_and_5 = vals[6];
681
682         /* T4 uses a single control field to specify both the PCIe Padding and
683          * Packing Boundary.  T5 introduced the ability to specify these
684          * separately with the Padding Boundary in SGE_CONTROL and and Packing
685          * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
686          * SGE_CONTROL in order to determine how ingress packet data will be
687          * laid out in Packed Buffer Mode.  Unfortunately, older versions of
688          * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
689          * failure grabbing it we throw an error since we can't figure out the
690          * right value.
691          */
692         if (!is_t4(adapter->params.chip)) {
693                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
694                              FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
695                 v = t4vf_query_params(adapter, 1, params, vals);
696                 if (v != FW_SUCCESS) {
697                         dev_err(adapter->pdev_dev,
698                                 "Unable to get SGE Control2; "
699                                 "probably old firmware.\n");
700                         return v;
701                 }
702                 sge_params->sge_control2 = vals[0];
703         }
704
705         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
706                      FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
707         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
708                      FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
709         v = t4vf_query_params(adapter, 2, params, vals);
710         if (v)
711                 return v;
712         sge_params->sge_ingress_rx_threshold = vals[0];
713         sge_params->sge_congestion_control = vals[1];
714
715         /* For T5 and later we want to use the new BAR2 Doorbells.
716          * Unfortunately, older firmware didn't allow the this register to be
717          * read.
718          */
719         if (!is_t4(adapter->params.chip)) {
720                 u32 whoami;
721                 unsigned int pf, s_hps, s_qpp;
722
723                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
724                              FW_PARAMS_PARAM_XYZ_V(
725                                      SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
726                 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
727                              FW_PARAMS_PARAM_XYZ_V(
728                                      SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
729                 v = t4vf_query_params(adapter, 2, params, vals);
730                 if (v != FW_SUCCESS) {
731                         dev_warn(adapter->pdev_dev,
732                                  "Unable to get VF SGE Queues/Page; "
733                                  "probably old firmware.\n");
734                         return v;
735                 }
736                 sge_params->sge_egress_queues_per_page = vals[0];
737                 sge_params->sge_ingress_queues_per_page = vals[1];
738
739                 /* We need the Queues/Page for our VF.  This is based on the
740                  * PF from which we're instantiated and is indexed in the
741                  * register we just read. Do it once here so other code in
742                  * the driver can just use it.
743                  */
744                 whoami = t4_read_reg(adapter,
745                                      T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
746                 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
747                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
748
749                 s_hps = (HOSTPAGESIZEPF0_S +
750                          (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
751                 sge_params->sge_vf_hps =
752                         ((sge_params->sge_host_page_size >> s_hps)
753                          & HOSTPAGESIZEPF0_M);
754
755                 s_qpp = (QUEUESPERPAGEPF0_S +
756                          (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
757                 sge_params->sge_vf_eq_qpp =
758                         ((sge_params->sge_egress_queues_per_page >> s_qpp)
759                          & QUEUESPERPAGEPF0_M);
760                 sge_params->sge_vf_iq_qpp =
761                         ((sge_params->sge_ingress_queues_per_page >> s_qpp)
762                          & QUEUESPERPAGEPF0_M);
763         }
764
765         return 0;
766 }
767
768 /**
769  *      t4vf_get_vpd_params - retrieve device VPD paremeters
770  *      @adapter: the adapter
771  *
772  *      Retrives various device Vital Product Data parameters.  The parameters
773  *      are stored in @adapter->params.vpd.
774  */
775 int t4vf_get_vpd_params(struct adapter *adapter)
776 {
777         struct vpd_params *vpd_params = &adapter->params.vpd;
778         u32 params[7], vals[7];
779         int v;
780
781         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
782                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
783         v = t4vf_query_params(adapter, 1, params, vals);
784         if (v)
785                 return v;
786         vpd_params->cclk = vals[0];
787
788         return 0;
789 }
790
791 /**
792  *      t4vf_get_dev_params - retrieve device paremeters
793  *      @adapter: the adapter
794  *
795  *      Retrives various device parameters.  The parameters are stored in
796  *      @adapter->params.dev.
797  */
798 int t4vf_get_dev_params(struct adapter *adapter)
799 {
800         struct dev_params *dev_params = &adapter->params.dev;
801         u32 params[7], vals[7];
802         int v;
803
804         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
805                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
806         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
807                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
808         v = t4vf_query_params(adapter, 2, params, vals);
809         if (v)
810                 return v;
811         dev_params->fwrev = vals[0];
812         dev_params->tprev = vals[1];
813
814         return 0;
815 }
816
817 /**
818  *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
819  *      @adapter: the adapter
820  *
821  *      Retrieves global RSS mode and parameters with which we have to live
822  *      and stores them in the @adapter's RSS parameters.
823  */
824 int t4vf_get_rss_glb_config(struct adapter *adapter)
825 {
826         struct rss_params *rss = &adapter->params.rss;
827         struct fw_rss_glb_config_cmd cmd, rpl;
828         int v;
829
830         /*
831          * Execute an RSS Global Configuration read command to retrieve
832          * our RSS configuration.
833          */
834         memset(&cmd, 0, sizeof(cmd));
835         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
836                                       FW_CMD_REQUEST_F |
837                                       FW_CMD_READ_F);
838         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
839         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
840         if (v)
841                 return v;
842
843         /*
844          * Transate the big-endian RSS Global Configuration into our
845          * cpu-endian format based on the RSS mode.  We also do first level
846          * filtering at this point to weed out modes which don't support
847          * VF Drivers ...
848          */
849         rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
850                         be32_to_cpu(rpl.u.manual.mode_pkd));
851         switch (rss->mode) {
852         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
853                 u32 word = be32_to_cpu(
854                                 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
855
856                 rss->u.basicvirtual.synmapen =
857                         ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
858                 rss->u.basicvirtual.syn4tupenipv6 =
859                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
860                 rss->u.basicvirtual.syn2tupenipv6 =
861                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
862                 rss->u.basicvirtual.syn4tupenipv4 =
863                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
864                 rss->u.basicvirtual.syn2tupenipv4 =
865                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
866
867                 rss->u.basicvirtual.ofdmapen =
868                         ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
869
870                 rss->u.basicvirtual.tnlmapen =
871                         ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
872                 rss->u.basicvirtual.tnlalllookup =
873                         ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
874
875                 rss->u.basicvirtual.hashtoeplitz =
876                         ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
877
878                 /* we need at least Tunnel Map Enable to be set */
879                 if (!rss->u.basicvirtual.tnlmapen)
880                         return -EINVAL;
881                 break;
882         }
883
884         default:
885                 /* all unknown/unsupported RSS modes result in an error */
886                 return -EINVAL;
887         }
888
889         return 0;
890 }
891
892 /**
893  *      t4vf_get_vfres - retrieve VF resource limits
894  *      @adapter: the adapter
895  *
896  *      Retrieves configured resource limits and capabilities for a virtual
897  *      function.  The results are stored in @adapter->vfres.
898  */
899 int t4vf_get_vfres(struct adapter *adapter)
900 {
901         struct vf_resources *vfres = &adapter->params.vfres;
902         struct fw_pfvf_cmd cmd, rpl;
903         int v;
904         u32 word;
905
906         /*
907          * Execute PFVF Read command to get VF resource limits; bail out early
908          * with error on command failure.
909          */
910         memset(&cmd, 0, sizeof(cmd));
911         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
912                                     FW_CMD_REQUEST_F |
913                                     FW_CMD_READ_F);
914         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
915         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
916         if (v)
917                 return v;
918
919         /*
920          * Extract VF resource limits and return success.
921          */
922         word = be32_to_cpu(rpl.niqflint_niq);
923         vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
924         vfres->niq = FW_PFVF_CMD_NIQ_G(word);
925
926         word = be32_to_cpu(rpl.type_to_neq);
927         vfres->neq = FW_PFVF_CMD_NEQ_G(word);
928         vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
929
930         word = be32_to_cpu(rpl.tc_to_nexactf);
931         vfres->tc = FW_PFVF_CMD_TC_G(word);
932         vfres->nvi = FW_PFVF_CMD_NVI_G(word);
933         vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
934
935         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
936         vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
937         vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
938         vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
939
940         return 0;
941 }
942
943 /**
944  *      t4vf_read_rss_vi_config - read a VI's RSS configuration
945  *      @adapter: the adapter
946  *      @viid: Virtual Interface ID
947  *      @config: pointer to host-native VI RSS Configuration buffer
948  *
949  *      Reads the Virtual Interface's RSS configuration information and
950  *      translates it into CPU-native format.
951  */
952 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
953                             union rss_vi_config *config)
954 {
955         struct fw_rss_vi_config_cmd cmd, rpl;
956         int v;
957
958         memset(&cmd, 0, sizeof(cmd));
959         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
960                                      FW_CMD_REQUEST_F |
961                                      FW_CMD_READ_F |
962                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
963         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
964         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
965         if (v)
966                 return v;
967
968         switch (adapter->params.rss.mode) {
969         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
970                 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
971
972                 config->basicvirtual.ip6fourtupen =
973                         ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
974                 config->basicvirtual.ip6twotupen =
975                         ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
976                 config->basicvirtual.ip4fourtupen =
977                         ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
978                 config->basicvirtual.ip4twotupen =
979                         ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
980                 config->basicvirtual.udpen =
981                         ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
982                 config->basicvirtual.defaultq =
983                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
984                 break;
985         }
986
987         default:
988                 return -EINVAL;
989         }
990
991         return 0;
992 }
993
994 /**
995  *      t4vf_write_rss_vi_config - write a VI's RSS configuration
996  *      @adapter: the adapter
997  *      @viid: Virtual Interface ID
998  *      @config: pointer to host-native VI RSS Configuration buffer
999  *
1000  *      Write the Virtual Interface's RSS configuration information
1001  *      (translating it into firmware-native format before writing).
1002  */
1003 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1004                              union rss_vi_config *config)
1005 {
1006         struct fw_rss_vi_config_cmd cmd, rpl;
1007
1008         memset(&cmd, 0, sizeof(cmd));
1009         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1010                                      FW_CMD_REQUEST_F |
1011                                      FW_CMD_WRITE_F |
1012                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1013         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1014         switch (adapter->params.rss.mode) {
1015         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1016                 u32 word = 0;
1017
1018                 if (config->basicvirtual.ip6fourtupen)
1019                         word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1020                 if (config->basicvirtual.ip6twotupen)
1021                         word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1022                 if (config->basicvirtual.ip4fourtupen)
1023                         word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1024                 if (config->basicvirtual.ip4twotupen)
1025                         word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1026                 if (config->basicvirtual.udpen)
1027                         word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1028                 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1029                                 config->basicvirtual.defaultq);
1030                 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1031                 break;
1032         }
1033
1034         default:
1035                 return -EINVAL;
1036         }
1037
1038         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1039 }
1040
1041 /**
1042  *      t4vf_config_rss_range - configure a portion of the RSS mapping table
1043  *      @adapter: the adapter
1044  *      @viid: Virtual Interface of RSS Table Slice
1045  *      @start: starting entry in the table to write
1046  *      @n: how many table entries to write
1047  *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1048  *      @nrspq: number of values in @rspq
1049  *
1050  *      Programs the selected part of the VI's RSS mapping table with the
1051  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
1052  *      until the full table range is populated.
1053  *
1054  *      The caller must ensure the values in @rspq are in the range 0..1023.
1055  */
1056 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1057                           int start, int n, const u16 *rspq, int nrspq)
1058 {
1059         const u16 *rsp = rspq;
1060         const u16 *rsp_end = rspq+nrspq;
1061         struct fw_rss_ind_tbl_cmd cmd;
1062
1063         /*
1064          * Initialize firmware command template to write the RSS table.
1065          */
1066         memset(&cmd, 0, sizeof(cmd));
1067         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1068                                      FW_CMD_REQUEST_F |
1069                                      FW_CMD_WRITE_F |
1070                                      FW_RSS_IND_TBL_CMD_VIID_V(viid));
1071         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1072
1073         /*
1074          * Each firmware RSS command can accommodate up to 32 RSS Ingress
1075          * Queue Identifiers.  These Ingress Queue IDs are packed three to
1076          * a 32-bit word as 10-bit values with the upper remaining 2 bits
1077          * reserved.
1078          */
1079         while (n > 0) {
1080                 __be32 *qp = &cmd.iq0_to_iq2;
1081                 int nq = min(n, 32);
1082                 int ret;
1083
1084                 /*
1085                  * Set up the firmware RSS command header to send the next
1086                  * "nq" Ingress Queue IDs to the firmware.
1087                  */
1088                 cmd.niqid = cpu_to_be16(nq);
1089                 cmd.startidx = cpu_to_be16(start);
1090
1091                 /*
1092                  * "nq" more done for the start of the next loop.
1093                  */
1094                 start += nq;
1095                 n -= nq;
1096
1097                 /*
1098                  * While there are still Ingress Queue IDs to stuff into the
1099                  * current firmware RSS command, retrieve them from the
1100                  * Ingress Queue ID array and insert them into the command.
1101                  */
1102                 while (nq > 0) {
1103                         /*
1104                          * Grab up to the next 3 Ingress Queue IDs (wrapping
1105                          * around the Ingress Queue ID array if necessary) and
1106                          * insert them into the firmware RSS command at the
1107                          * current 3-tuple position within the commad.
1108                          */
1109                         u16 qbuf[3];
1110                         u16 *qbp = qbuf;
1111                         int nqbuf = min(3, nq);
1112
1113                         nq -= nqbuf;
1114                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
1115                         while (nqbuf) {
1116                                 nqbuf--;
1117                                 *qbp++ = *rsp++;
1118                                 if (rsp >= rsp_end)
1119                                         rsp = rspq;
1120                         }
1121                         *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1122                                             FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1123                                             FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1124                 }
1125
1126                 /*
1127                  * Send this portion of the RRS table update to the firmware;
1128                  * bail out on any errors.
1129                  */
1130                 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1131                 if (ret)
1132                         return ret;
1133         }
1134         return 0;
1135 }
1136
1137 /**
1138  *      t4vf_alloc_vi - allocate a virtual interface on a port
1139  *      @adapter: the adapter
1140  *      @port_id: physical port associated with the VI
1141  *
1142  *      Allocate a new Virtual Interface and bind it to the indicated
1143  *      physical port.  Return the new Virtual Interface Identifier on
1144  *      success, or a [negative] error number on failure.
1145  */
1146 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1147 {
1148         struct fw_vi_cmd cmd, rpl;
1149         int v;
1150
1151         /*
1152          * Execute a VI command to allocate Virtual Interface and return its
1153          * VIID.
1154          */
1155         memset(&cmd, 0, sizeof(cmd));
1156         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1157                                     FW_CMD_REQUEST_F |
1158                                     FW_CMD_WRITE_F |
1159                                     FW_CMD_EXEC_F);
1160         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1161                                          FW_VI_CMD_ALLOC_F);
1162         cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1163         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1164         if (v)
1165                 return v;
1166
1167         return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1168 }
1169
1170 /**
1171  *      t4vf_free_vi -- free a virtual interface
1172  *      @adapter: the adapter
1173  *      @viid: the virtual interface identifier
1174  *
1175  *      Free a previously allocated Virtual Interface.  Return an error on
1176  *      failure.
1177  */
1178 int t4vf_free_vi(struct adapter *adapter, int viid)
1179 {
1180         struct fw_vi_cmd cmd;
1181
1182         /*
1183          * Execute a VI command to free the Virtual Interface.
1184          */
1185         memset(&cmd, 0, sizeof(cmd));
1186         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1187                                     FW_CMD_REQUEST_F |
1188                                     FW_CMD_EXEC_F);
1189         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1190                                          FW_VI_CMD_FREE_F);
1191         cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1192         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1193 }
1194
1195 /**
1196  *      t4vf_enable_vi - enable/disable a virtual interface
1197  *      @adapter: the adapter
1198  *      @viid: the Virtual Interface ID
1199  *      @rx_en: 1=enable Rx, 0=disable Rx
1200  *      @tx_en: 1=enable Tx, 0=disable Tx
1201  *
1202  *      Enables/disables a virtual interface.
1203  */
1204 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1205                    bool rx_en, bool tx_en)
1206 {
1207         struct fw_vi_enable_cmd cmd;
1208
1209         memset(&cmd, 0, sizeof(cmd));
1210         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1211                                      FW_CMD_REQUEST_F |
1212                                      FW_CMD_EXEC_F |
1213                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1214         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1215                                        FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1216                                        FW_LEN16(cmd));
1217         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1218 }
1219
1220 /**
1221  *      t4vf_identify_port - identify a VI's port by blinking its LED
1222  *      @adapter: the adapter
1223  *      @viid: the Virtual Interface ID
1224  *      @nblinks: how many times to blink LED at 2.5 Hz
1225  *
1226  *      Identifies a VI's port by blinking its LED.
1227  */
1228 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1229                        unsigned int nblinks)
1230 {
1231         struct fw_vi_enable_cmd cmd;
1232
1233         memset(&cmd, 0, sizeof(cmd));
1234         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1235                                      FW_CMD_REQUEST_F |
1236                                      FW_CMD_EXEC_F |
1237                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1238         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1239                                        FW_LEN16(cmd));
1240         cmd.blinkdur = cpu_to_be16(nblinks);
1241         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1242 }
1243
1244 /**
1245  *      t4vf_set_rxmode - set Rx properties of a virtual interface
1246  *      @adapter: the adapter
1247  *      @viid: the VI id
1248  *      @mtu: the new MTU or -1 for no change
1249  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1250  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1251  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1252  *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1253  *              -1 no change
1254  *
1255  *      Sets Rx properties of a virtual interface.
1256  */
1257 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1258                     int mtu, int promisc, int all_multi, int bcast, int vlanex,
1259                     bool sleep_ok)
1260 {
1261         struct fw_vi_rxmode_cmd cmd;
1262
1263         /* convert to FW values */
1264         if (mtu < 0)
1265                 mtu = FW_VI_RXMODE_CMD_MTU_M;
1266         if (promisc < 0)
1267                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1268         if (all_multi < 0)
1269                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1270         if (bcast < 0)
1271                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1272         if (vlanex < 0)
1273                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1274
1275         memset(&cmd, 0, sizeof(cmd));
1276         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1277                                      FW_CMD_REQUEST_F |
1278                                      FW_CMD_WRITE_F |
1279                                      FW_VI_RXMODE_CMD_VIID_V(viid));
1280         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1281         cmd.mtu_to_vlanexen =
1282                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1283                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1284                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1285                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1286                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1287         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1288 }
1289
1290 /**
1291  *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1292  *      @adapter: the adapter
1293  *      @viid: the Virtual Interface Identifier
1294  *      @free: if true any existing filters for this VI id are first removed
1295  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1296  *      @addr: the MAC address(es)
1297  *      @idx: where to store the index of each allocated filter
1298  *      @hash: pointer to hash address filter bitmap
1299  *      @sleep_ok: call is allowed to sleep
1300  *
1301  *      Allocates an exact-match filter for each of the supplied addresses and
1302  *      sets it to the corresponding address.  If @idx is not %NULL it should
1303  *      have at least @naddr entries, each of which will be set to the index of
1304  *      the filter allocated for the corresponding MAC address.  If a filter
1305  *      could not be allocated for an address its index is set to 0xffff.
1306  *      If @hash is not %NULL addresses that fail to allocate an exact filter
1307  *      are hashed and update the hash filter bitmap pointed at by @hash.
1308  *
1309  *      Returns a negative error number or the number of filters allocated.
1310  */
1311 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1312                         unsigned int naddr, const u8 **addr, u16 *idx,
1313                         u64 *hash, bool sleep_ok)
1314 {
1315         int offset, ret = 0;
1316         unsigned nfilters = 0;
1317         unsigned int rem = naddr;
1318         struct fw_vi_mac_cmd cmd, rpl;
1319         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1320
1321         if (naddr > max_naddr)
1322                 return -EINVAL;
1323
1324         for (offset = 0; offset < naddr; /**/) {
1325                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1326                                          ? rem
1327                                          : ARRAY_SIZE(cmd.u.exact));
1328                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1329                                                      u.exact[fw_naddr]), 16);
1330                 struct fw_vi_mac_exact *p;
1331                 int i;
1332
1333                 memset(&cmd, 0, sizeof(cmd));
1334                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1335                                              FW_CMD_REQUEST_F |
1336                                              FW_CMD_WRITE_F |
1337                                              (free ? FW_CMD_EXEC_F : 0) |
1338                                              FW_VI_MAC_CMD_VIID_V(viid));
1339                 cmd.freemacs_to_len16 =
1340                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1341                                     FW_CMD_LEN16_V(len16));
1342
1343                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1344                         p->valid_to_idx = cpu_to_be16(
1345                                 FW_VI_MAC_CMD_VALID_F |
1346                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1347                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1348                 }
1349
1350
1351                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1352                                         sleep_ok);
1353                 if (ret && ret != -ENOMEM)
1354                         break;
1355
1356                 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1357                         u16 index = FW_VI_MAC_CMD_IDX_G(
1358                                 be16_to_cpu(p->valid_to_idx));
1359
1360                         if (idx)
1361                                 idx[offset+i] =
1362                                         (index >= max_naddr
1363                                          ? 0xffff
1364                                          : index);
1365                         if (index < max_naddr)
1366                                 nfilters++;
1367                         else if (hash)
1368                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1369                 }
1370
1371                 free = false;
1372                 offset += fw_naddr;
1373                 rem -= fw_naddr;
1374         }
1375
1376         /*
1377          * If there were no errors or we merely ran out of room in our MAC
1378          * address arena, return the number of filters actually written.
1379          */
1380         if (ret == 0 || ret == -ENOMEM)
1381                 ret = nfilters;
1382         return ret;
1383 }
1384
1385 /**
1386  *      t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1387  *      @adapter: the adapter
1388  *      @viid: the VI id
1389  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1390  *      @addr: the MAC address(es)
1391  *      @sleep_ok: call is allowed to sleep
1392  *
1393  *      Frees the exact-match filter for each of the supplied addresses
1394  *
1395  *      Returns a negative error number or the number of filters freed.
1396  */
1397 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1398                        unsigned int naddr, const u8 **addr, bool sleep_ok)
1399 {
1400         int offset, ret = 0;
1401         struct fw_vi_mac_cmd cmd;
1402         unsigned int nfilters = 0;
1403         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1404         unsigned int rem = naddr;
1405
1406         if (naddr > max_naddr)
1407                 return -EINVAL;
1408
1409         for (offset = 0; offset < (int)naddr ; /**/) {
1410                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1411                                          rem : ARRAY_SIZE(cmd.u.exact));
1412                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1413                                                      u.exact[fw_naddr]), 16);
1414                 struct fw_vi_mac_exact *p;
1415                 int i;
1416
1417                 memset(&cmd, 0, sizeof(cmd));
1418                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1419                                      FW_CMD_REQUEST_F |
1420                                      FW_CMD_WRITE_F |
1421                                      FW_CMD_EXEC_V(0) |
1422                                      FW_VI_MAC_CMD_VIID_V(viid));
1423                 cmd.freemacs_to_len16 =
1424                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1425                                             FW_CMD_LEN16_V(len16));
1426
1427                 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1428                         p->valid_to_idx = cpu_to_be16(
1429                                 FW_VI_MAC_CMD_VALID_F |
1430                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1431                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1432                 }
1433
1434                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1435                                         sleep_ok);
1436                 if (ret)
1437                         break;
1438
1439                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1440                         u16 index = FW_VI_MAC_CMD_IDX_G(
1441                                                 be16_to_cpu(p->valid_to_idx));
1442
1443                         if (index < max_naddr)
1444                                 nfilters++;
1445                 }
1446
1447                 offset += fw_naddr;
1448                 rem -= fw_naddr;
1449         }
1450
1451         if (ret == 0)
1452                 ret = nfilters;
1453         return ret;
1454 }
1455
1456 /**
1457  *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1458  *      @adapter: the adapter
1459  *      @viid: the Virtual Interface ID
1460  *      @idx: index of existing filter for old value of MAC address, or -1
1461  *      @addr: the new MAC address value
1462  *      @persist: if idx < 0, the new MAC allocation should be persistent
1463  *
1464  *      Modifies an exact-match filter and sets it to the new MAC address.
1465  *      Note that in general it is not possible to modify the value of a given
1466  *      filter so the generic way to modify an address filter is to free the
1467  *      one being used by the old address value and allocate a new filter for
1468  *      the new address value.  @idx can be -1 if the address is a new
1469  *      addition.
1470  *
1471  *      Returns a negative error number or the index of the filter with the new
1472  *      MAC value.
1473  */
1474 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1475                     int idx, const u8 *addr, bool persist)
1476 {
1477         int ret;
1478         struct fw_vi_mac_cmd cmd, rpl;
1479         struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1480         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1481                                              u.exact[1]), 16);
1482         unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1483
1484         /*
1485          * If this is a new allocation, determine whether it should be
1486          * persistent (across a "freemacs" operation) or not.
1487          */
1488         if (idx < 0)
1489                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1490
1491         memset(&cmd, 0, sizeof(cmd));
1492         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1493                                      FW_CMD_REQUEST_F |
1494                                      FW_CMD_WRITE_F |
1495                                      FW_VI_MAC_CMD_VIID_V(viid));
1496         cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1497         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1498                                       FW_VI_MAC_CMD_IDX_V(idx));
1499         memcpy(p->macaddr, addr, sizeof(p->macaddr));
1500
1501         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1502         if (ret == 0) {
1503                 p = &rpl.u.exact[0];
1504                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1505                 if (ret >= max_mac_addr)
1506                         ret = -ENOMEM;
1507         }
1508         return ret;
1509 }
1510
1511 /**
1512  *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1513  *      @adapter: the adapter
1514  *      @viid: the Virtual Interface Identifier
1515  *      @ucast: whether the hash filter should also match unicast addresses
1516  *      @vec: the value to be written to the hash filter
1517  *      @sleep_ok: call is allowed to sleep
1518  *
1519  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1520  */
1521 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1522                        bool ucast, u64 vec, bool sleep_ok)
1523 {
1524         struct fw_vi_mac_cmd cmd;
1525         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1526                                              u.exact[0]), 16);
1527
1528         memset(&cmd, 0, sizeof(cmd));
1529         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1530                                      FW_CMD_REQUEST_F |
1531                                      FW_CMD_WRITE_F |
1532                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1533         cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1534                                             FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1535                                             FW_CMD_LEN16_V(len16));
1536         cmd.u.hash.hashvec = cpu_to_be64(vec);
1537         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1538 }
1539
1540 /**
1541  *      t4vf_get_port_stats - collect "port" statistics
1542  *      @adapter: the adapter
1543  *      @pidx: the port index
1544  *      @s: the stats structure to fill
1545  *
1546  *      Collect statistics for the "port"'s Virtual Interface.
1547  */
1548 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1549                         struct t4vf_port_stats *s)
1550 {
1551         struct port_info *pi = adap2pinfo(adapter, pidx);
1552         struct fw_vi_stats_vf fwstats;
1553         unsigned int rem = VI_VF_NUM_STATS;
1554         __be64 *fwsp = (__be64 *)&fwstats;
1555
1556         /*
1557          * Grab the Virtual Interface statistics a chunk at a time via mailbox
1558          * commands.  We could use a Work Request and get all of them at once
1559          * but that's an asynchronous interface which is awkward to use.
1560          */
1561         while (rem) {
1562                 unsigned int ix = VI_VF_NUM_STATS - rem;
1563                 unsigned int nstats = min(6U, rem);
1564                 struct fw_vi_stats_cmd cmd, rpl;
1565                 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1566                               sizeof(struct fw_vi_stats_ctl));
1567                 size_t len16 = DIV_ROUND_UP(len, 16);
1568                 int ret;
1569
1570                 memset(&cmd, 0, sizeof(cmd));
1571                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1572                                              FW_VI_STATS_CMD_VIID_V(pi->viid) |
1573                                              FW_CMD_REQUEST_F |
1574                                              FW_CMD_READ_F);
1575                 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1576                 cmd.u.ctl.nstats_ix =
1577                         cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1578                                     FW_VI_STATS_CMD_NSTATS_V(nstats));
1579                 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1580                 if (ret)
1581                         return ret;
1582
1583                 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1584
1585                 rem -= nstats;
1586                 fwsp += nstats;
1587         }
1588
1589         /*
1590          * Translate firmware statistics into host native statistics.
1591          */
1592         s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1593         s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1594         s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1595         s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1596         s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1597         s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1598         s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1599         s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1600         s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1601
1602         s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1603         s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1604         s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1605         s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1606         s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1607         s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1608
1609         s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1610
1611         return 0;
1612 }
1613
1614 /**
1615  *      t4vf_iq_free - free an ingress queue and its free lists
1616  *      @adapter: the adapter
1617  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1618  *      @iqid: ingress queue ID
1619  *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1620  *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1621  *
1622  *      Frees an ingress queue and its associated free lists, if any.
1623  */
1624 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1625                  unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1626 {
1627         struct fw_iq_cmd cmd;
1628
1629         memset(&cmd, 0, sizeof(cmd));
1630         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1631                                     FW_CMD_REQUEST_F |
1632                                     FW_CMD_EXEC_F);
1633         cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1634                                          FW_LEN16(cmd));
1635         cmd.type_to_iqandstindex =
1636                 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1637
1638         cmd.iqid = cpu_to_be16(iqid);
1639         cmd.fl0id = cpu_to_be16(fl0id);
1640         cmd.fl1id = cpu_to_be16(fl1id);
1641         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1642 }
1643
1644 /**
1645  *      t4vf_eth_eq_free - free an Ethernet egress queue
1646  *      @adapter: the adapter
1647  *      @eqid: egress queue ID
1648  *
1649  *      Frees an Ethernet egress queue.
1650  */
1651 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1652 {
1653         struct fw_eq_eth_cmd cmd;
1654
1655         memset(&cmd, 0, sizeof(cmd));
1656         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1657                                     FW_CMD_REQUEST_F |
1658                                     FW_CMD_EXEC_F);
1659         cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1660                                          FW_LEN16(cmd));
1661         cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1662         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1663 }
1664
1665 /**
1666  *      t4vf_handle_fw_rpl - process a firmware reply message
1667  *      @adapter: the adapter
1668  *      @rpl: start of the firmware message
1669  *
1670  *      Processes a firmware message, such as link state change messages.
1671  */
1672 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1673 {
1674         const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1675         u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
1676
1677         switch (opcode) {
1678         case FW_PORT_CMD: {
1679                 /*
1680                  * Link/module state change message.
1681                  */
1682                 const struct fw_port_cmd *port_cmd =
1683                         (const struct fw_port_cmd *)rpl;
1684                 u32 stat, mod;
1685                 int action, port_id, link_ok, speed, fc, pidx;
1686
1687                 /*
1688                  * Extract various fields from port status change message.
1689                  */
1690                 action = FW_PORT_CMD_ACTION_G(
1691                         be32_to_cpu(port_cmd->action_to_len16));
1692                 if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1693                         dev_err(adapter->pdev_dev,
1694                                 "Unknown firmware PORT reply action %x\n",
1695                                 action);
1696                         break;
1697                 }
1698
1699                 port_id = FW_PORT_CMD_PORTID_G(
1700                         be32_to_cpu(port_cmd->op_to_portid));
1701
1702                 stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1703                 link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
1704                 speed = 0;
1705                 fc = 0;
1706                 if (stat & FW_PORT_CMD_RXPAUSE_F)
1707                         fc |= PAUSE_RX;
1708                 if (stat & FW_PORT_CMD_TXPAUSE_F)
1709                         fc |= PAUSE_TX;
1710                 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1711                         speed = 100;
1712                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1713                         speed = 1000;
1714                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1715                         speed = 10000;
1716                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1717                         speed = 25000;
1718                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1719                         speed = 40000;
1720                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1721                         speed = 100000;
1722
1723                 /*
1724                  * Scan all of our "ports" (Virtual Interfaces) looking for
1725                  * those bound to the physical port which has changed.  If
1726                  * our recorded state doesn't match the current state,
1727                  * signal that change to the OS code.
1728                  */
1729                 for_each_port(adapter, pidx) {
1730                         struct port_info *pi = adap2pinfo(adapter, pidx);
1731                         struct link_config *lc;
1732
1733                         if (pi->port_id != port_id)
1734                                 continue;
1735
1736                         lc = &pi->link_cfg;
1737
1738                         mod = FW_PORT_CMD_MODTYPE_G(stat);
1739                         if (mod != pi->mod_type) {
1740                                 pi->mod_type = mod;
1741                                 t4vf_os_portmod_changed(adapter, pidx);
1742                         }
1743
1744                         if (link_ok != lc->link_ok || speed != lc->speed ||
1745                             fc != lc->fc) {
1746                                 /* something changed */
1747                                 lc->link_ok = link_ok;
1748                                 lc->speed = speed;
1749                                 lc->fc = fc;
1750                                 lc->supported =
1751                                         be16_to_cpu(port_cmd->u.info.pcap);
1752                                 lc->lp_advertising =
1753                                         be16_to_cpu(port_cmd->u.info.lpacap);
1754                                 t4vf_os_link_changed(adapter, pidx, link_ok);
1755                         }
1756                 }
1757                 break;
1758         }
1759
1760         default:
1761                 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1762                         opcode);
1763         }
1764         return 0;
1765 }
1766
1767 /**
1768  */
1769 int t4vf_prep_adapter(struct adapter *adapter)
1770 {
1771         int err;
1772         unsigned int chipid;
1773
1774         /* Wait for the device to become ready before proceeding ...
1775          */
1776         err = t4vf_wait_dev_ready(adapter);
1777         if (err)
1778                 return err;
1779
1780         /* Default port and clock for debugging in case we can't reach
1781          * firmware.
1782          */
1783         adapter->params.nports = 1;
1784         adapter->params.vfres.pmask = 1;
1785         adapter->params.vpd.cclk = 50000;
1786
1787         adapter->params.chip = 0;
1788         switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1789         case CHELSIO_T4:
1790                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1791                 adapter->params.arch.sge_fl_db = DBPRIO_F;
1792                 adapter->params.arch.mps_tcam_size =
1793                                 NUM_MPS_CLS_SRAM_L_INSTANCES;
1794                 break;
1795
1796         case CHELSIO_T5:
1797                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1798                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1799                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
1800                 adapter->params.arch.mps_tcam_size =
1801                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1802                 break;
1803
1804         case CHELSIO_T6:
1805                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1806                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
1807                 adapter->params.arch.sge_fl_db = 0;
1808                 adapter->params.arch.mps_tcam_size =
1809                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1810                 break;
1811         }
1812
1813         return 0;
1814 }