Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[cascardo/linux.git] / drivers / net / ethernet / chelsio / cxgb4vf / t4vf_hw.c
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35
36 #include <linux/pci.h>
37
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44
45 /*
46  * Wait for the device to become ready (signified by our "who am I" register
47  * returning a value other than all 1's).  Return an error if it doesn't
48  * become ready ...
49  */
50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52         const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53         const u32 notready1 = 0xffffffff;
54         const u32 notready2 = 0xeeeeeeee;
55         u32 val;
56
57         val = t4_read_reg(adapter, whoami);
58         if (val != notready1 && val != notready2)
59                 return 0;
60         msleep(500);
61         val = t4_read_reg(adapter, whoami);
62         if (val != notready1 && val != notready2)
63                 return 0;
64         else
65                 return -EIO;
66 }
67
68 /*
69  * Get the reply to a mailbox command and store it in @rpl in big-endian order
70  * (since the firmware data structures are specified in a big-endian layout).
71  */
72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73                          u32 mbox_data)
74 {
75         for ( ; size; size -= 8, mbox_data += 8)
76                 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78
79 /**
80  *      t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81  *      @adapter: the adapter
82  *      @cmd: the Firmware Mailbox Command or Reply
83  *      @size: command length in bytes
84  *      @access: the time (ms) needed to access the Firmware Mailbox
85  *      @execute: the time (ms) the command spent being executed
86  */
87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88                              int size, int access, int execute)
89 {
90         struct mbox_cmd_log *log = adapter->mbox_log;
91         struct mbox_cmd *entry;
92         int i;
93
94         entry = mbox_cmd_log_entry(log, log->cursor++);
95         if (log->cursor == log->size)
96                 log->cursor = 0;
97
98         for (i = 0; i < size / 8; i++)
99                 entry->cmd[i] = be64_to_cpu(cmd[i]);
100         while (i < MBOX_LEN / 8)
101                 entry->cmd[i++] = 0;
102         entry->timestamp = jiffies;
103         entry->seqno = log->seqno++;
104         entry->access = access;
105         entry->execute = execute;
106 }
107
108 /**
109  *      t4vf_wr_mbox_core - send a command to FW through the mailbox
110  *      @adapter: the adapter
111  *      @cmd: the command to write
112  *      @size: command length in bytes
113  *      @rpl: where to optionally store the reply
114  *      @sleep_ok: if true we may sleep while awaiting command completion
115  *
116  *      Sends the given command to FW through the mailbox and waits for the
117  *      FW to execute the command.  If @rpl is not %NULL it is used to store
118  *      the FW's reply to the command.  The command and its optional reply
119  *      are of the same length.  FW can take up to 500 ms to respond.
120  *      @sleep_ok determines whether we may sleep while awaiting the response.
121  *      If sleeping is allowed we use progressive backoff otherwise we spin.
122  *
123  *      The return value is 0 on success or a negative errno on failure.  A
124  *      failure can happen either because we are not able to execute the
125  *      command or FW executes it but signals an error.  In the latter case
126  *      the return value is the error code indicated by FW (negated).
127  */
128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129                       void *rpl, bool sleep_ok)
130 {
131         static const int delay[] = {
132                 1, 1, 3, 5, 10, 10, 20, 50, 100
133         };
134
135         u16 access = 0, execute = 0;
136         u32 v, mbox_data;
137         int i, ms, delay_idx, ret;
138         const __be64 *p;
139         u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140         u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141         __be64 cmd_rpl[MBOX_LEN / 8];
142         struct mbox_list entry;
143
144         /* In T6, mailbox size is changed to 128 bytes to avoid
145          * invalidating the entire prefetch buffer.
146          */
147         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148                 mbox_data = T4VF_MBDATA_BASE_ADDR;
149         else
150                 mbox_data = T6VF_MBDATA_BASE_ADDR;
151
152         /*
153          * Commands must be multiples of 16 bytes in length and may not be
154          * larger than the size of the Mailbox Data register array.
155          */
156         if ((size % 16) != 0 ||
157             size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158                 return -EINVAL;
159
160         /* Queue ourselves onto the mailbox access list.  When our entry is at
161          * the front of the list, we have rights to access the mailbox.  So we
162          * wait [for a while] till we're at the front [or bail out with an
163          * EBUSY] ...
164          */
165         spin_lock(&adapter->mbox_lock);
166         list_add_tail(&entry.list, &adapter->mlist.list);
167         spin_unlock(&adapter->mbox_lock);
168
169         delay_idx = 0;
170         ms = delay[0];
171
172         for (i = 0; ; i += ms) {
173                 /* If we've waited too long, return a busy indication.  This
174                  * really ought to be based on our initial position in the
175                  * mailbox access list but this is a start.  We very rearely
176                  * contend on access to the mailbox ...
177                  */
178                 if (i > FW_CMD_MAX_TIMEOUT) {
179                         spin_lock(&adapter->mbox_lock);
180                         list_del(&entry.list);
181                         spin_unlock(&adapter->mbox_lock);
182                         ret = -EBUSY;
183                         t4vf_record_mbox(adapter, cmd, size, access, ret);
184                         return ret;
185                 }
186
187                 /* If we're at the head, break out and start the mailbox
188                  * protocol.
189                  */
190                 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191                                      list) == &entry)
192                         break;
193
194                 /* Delay for a bit before checking again ... */
195                 if (sleep_ok) {
196                         ms = delay[delay_idx];  /* last element may repeat */
197                         if (delay_idx < ARRAY_SIZE(delay) - 1)
198                                 delay_idx++;
199                         msleep(ms);
200                 } else {
201                         mdelay(ms);
202                 }
203         }
204
205         /*
206          * Loop trying to get ownership of the mailbox.  Return an error
207          * if we can't gain ownership.
208          */
209         v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211                 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212         if (v != MBOX_OWNER_DRV) {
213                 spin_lock(&adapter->mbox_lock);
214                 list_del(&entry.list);
215                 spin_unlock(&adapter->mbox_lock);
216                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217                 t4vf_record_mbox(adapter, cmd, size, access, ret);
218                 return ret;
219         }
220
221         /*
222          * Write the command array into the Mailbox Data register array and
223          * transfer ownership of the mailbox to the firmware.
224          *
225          * For the VFs, the Mailbox Data "registers" are actually backed by
226          * T4's "MA" interface rather than PL Registers (as is the case for
227          * the PFs).  Because these are in different coherency domains, the
228          * write to the VF's PL-register-backed Mailbox Control can race in
229          * front of the writes to the MA-backed VF Mailbox Data "registers".
230          * So we need to do a read-back on at least one byte of the VF Mailbox
231          * Data registers before doing the write to the VF Mailbox Control
232          * register.
233          */
234         if (cmd_op != FW_VI_STATS_CMD)
235                 t4vf_record_mbox(adapter, cmd, size, access, 0);
236         for (i = 0, p = cmd; i < size; i += 8)
237                 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238         t4_read_reg(adapter, mbox_data);         /* flush write */
239
240         t4_write_reg(adapter, mbox_ctl,
241                      MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242         t4_read_reg(adapter, mbox_ctl);          /* flush write */
243
244         /*
245          * Spin waiting for firmware to acknowledge processing our command.
246          */
247         delay_idx = 0;
248         ms = delay[0];
249
250         for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251                 if (sleep_ok) {
252                         ms = delay[delay_idx];
253                         if (delay_idx < ARRAY_SIZE(delay) - 1)
254                                 delay_idx++;
255                         msleep(ms);
256                 } else
257                         mdelay(ms);
258
259                 /*
260                  * If we're the owner, see if this is the reply we wanted.
261                  */
262                 v = t4_read_reg(adapter, mbox_ctl);
263                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264                         /*
265                          * If the Message Valid bit isn't on, revoke ownership
266                          * of the mailbox and continue waiting for our reply.
267                          */
268                         if ((v & MBMSGVALID_F) == 0) {
269                                 t4_write_reg(adapter, mbox_ctl,
270                                              MBOWNER_V(MBOX_OWNER_NONE));
271                                 continue;
272                         }
273
274                         /*
275                          * We now have our reply.  Extract the command return
276                          * value, copy the reply back to our caller's buffer
277                          * (if specified) and revoke ownership of the mailbox.
278                          * We return the (negated) firmware command return
279                          * code (this depends on FW_SUCCESS == 0).
280                          */
281                         get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282
283                         /* return value in low-order little-endian word */
284                         v = be64_to_cpu(cmd_rpl[0]);
285
286                         if (rpl) {
287                                 /* request bit in high-order BE word */
288                                 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289                                          & FW_CMD_REQUEST_F) == 0);
290                                 memcpy(rpl, cmd_rpl, size);
291                                 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292                                          & FW_CMD_REQUEST_F) != 0);
293                         }
294                         t4_write_reg(adapter, mbox_ctl,
295                                      MBOWNER_V(MBOX_OWNER_NONE));
296                         execute = i + ms;
297                         if (cmd_op != FW_VI_STATS_CMD)
298                                 t4vf_record_mbox(adapter, cmd_rpl, size, access,
299                                                  execute);
300                         spin_lock(&adapter->mbox_lock);
301                         list_del(&entry.list);
302                         spin_unlock(&adapter->mbox_lock);
303                         return -FW_CMD_RETVAL_G(v);
304                 }
305         }
306
307         /* We timed out.  Return the error ... */
308         ret = -ETIMEDOUT;
309         t4vf_record_mbox(adapter, cmd, size, access, ret);
310         spin_lock(&adapter->mbox_lock);
311         list_del(&entry.list);
312         spin_unlock(&adapter->mbox_lock);
313         return ret;
314 }
315
316 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
317                      FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
318                      FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
319                      FW_PORT_CAP_ANEG)
320
321 /**
322  *      init_link_config - initialize a link's SW state
323  *      @lc: structure holding the link state
324  *      @caps: link capabilities
325  *
326  *      Initializes the SW state maintained for each link, including the link's
327  *      capabilities and default speed/flow-control/autonegotiation settings.
328  */
329 static void init_link_config(struct link_config *lc, unsigned int caps)
330 {
331         lc->supported = caps;
332         lc->lp_advertising = 0;
333         lc->requested_speed = 0;
334         lc->speed = 0;
335         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
336         if (lc->supported & FW_PORT_CAP_ANEG) {
337                 lc->advertising = lc->supported & ADVERT_MASK;
338                 lc->autoneg = AUTONEG_ENABLE;
339                 lc->requested_fc |= PAUSE_AUTONEG;
340         } else {
341                 lc->advertising = 0;
342                 lc->autoneg = AUTONEG_DISABLE;
343         }
344 }
345
346 /**
347  *      t4vf_port_init - initialize port hardware/software state
348  *      @adapter: the adapter
349  *      @pidx: the adapter port index
350  */
351 int t4vf_port_init(struct adapter *adapter, int pidx)
352 {
353         struct port_info *pi = adap2pinfo(adapter, pidx);
354         struct fw_vi_cmd vi_cmd, vi_rpl;
355         struct fw_port_cmd port_cmd, port_rpl;
356         int v;
357
358         /*
359          * Execute a VI Read command to get our Virtual Interface information
360          * like MAC address, etc.
361          */
362         memset(&vi_cmd, 0, sizeof(vi_cmd));
363         vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
364                                        FW_CMD_REQUEST_F |
365                                        FW_CMD_READ_F);
366         vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
367         vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
368         v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
369         if (v)
370                 return v;
371
372         BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
373         pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
374         t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
375
376         /*
377          * If we don't have read access to our port information, we're done
378          * now.  Otherwise, execute a PORT Read command to get it ...
379          */
380         if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
381                 return 0;
382
383         memset(&port_cmd, 0, sizeof(port_cmd));
384         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
385                                             FW_CMD_REQUEST_F |
386                                             FW_CMD_READ_F |
387                                             FW_PORT_CMD_PORTID_V(pi->port_id));
388         port_cmd.action_to_len16 =
389                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
390                             FW_LEN16(port_cmd));
391         v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
392         if (v)
393                 return v;
394
395         v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
396         pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
397                         FW_PORT_CMD_MDIOADDR_G(v) : -1;
398         pi->port_type = FW_PORT_CMD_PTYPE_G(v);
399         pi->mod_type = FW_PORT_MOD_TYPE_NA;
400
401         init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
402
403         return 0;
404 }
405
406 /**
407  *      t4vf_fw_reset - issue a reset to FW
408  *      @adapter: the adapter
409  *
410  *      Issues a reset command to FW.  For a Physical Function this would
411  *      result in the Firmware resetting all of its state.  For a Virtual
412  *      Function this just resets the state associated with the VF.
413  */
414 int t4vf_fw_reset(struct adapter *adapter)
415 {
416         struct fw_reset_cmd cmd;
417
418         memset(&cmd, 0, sizeof(cmd));
419         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
420                                       FW_CMD_WRITE_F);
421         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
422         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
423 }
424
425 /**
426  *      t4vf_query_params - query FW or device parameters
427  *      @adapter: the adapter
428  *      @nparams: the number of parameters
429  *      @params: the parameter names
430  *      @vals: the parameter values
431  *
432  *      Reads the values of firmware or device parameters.  Up to 7 parameters
433  *      can be queried at once.
434  */
435 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
436                              const u32 *params, u32 *vals)
437 {
438         int i, ret;
439         struct fw_params_cmd cmd, rpl;
440         struct fw_params_param *p;
441         size_t len16;
442
443         if (nparams > 7)
444                 return -EINVAL;
445
446         memset(&cmd, 0, sizeof(cmd));
447         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
448                                     FW_CMD_REQUEST_F |
449                                     FW_CMD_READ_F);
450         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
451                                       param[nparams].mnem), 16);
452         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
453         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
454                 p->mnem = htonl(*params++);
455
456         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
457         if (ret == 0)
458                 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
459                         *vals++ = be32_to_cpu(p->val);
460         return ret;
461 }
462
463 /**
464  *      t4vf_set_params - sets FW or device parameters
465  *      @adapter: the adapter
466  *      @nparams: the number of parameters
467  *      @params: the parameter names
468  *      @vals: the parameter values
469  *
470  *      Sets the values of firmware or device parameters.  Up to 7 parameters
471  *      can be specified at once.
472  */
473 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
474                     const u32 *params, const u32 *vals)
475 {
476         int i;
477         struct fw_params_cmd cmd;
478         struct fw_params_param *p;
479         size_t len16;
480
481         if (nparams > 7)
482                 return -EINVAL;
483
484         memset(&cmd, 0, sizeof(cmd));
485         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
486                                     FW_CMD_REQUEST_F |
487                                     FW_CMD_WRITE_F);
488         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
489                                       param[nparams]), 16);
490         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
491         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
492                 p->mnem = cpu_to_be32(*params++);
493                 p->val = cpu_to_be32(*vals++);
494         }
495
496         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
497 }
498
499 /**
500  *      t4vf_fl_pkt_align - return the fl packet alignment
501  *      @adapter: the adapter
502  *
503  *      T4 has a single field to specify the packing and padding boundary.
504  *      T5 onwards has separate fields for this and hence the alignment for
505  *      next packet offset is maximum of these two.  And T6 changes the
506  *      Ingress Padding Boundary Shift, so it's all a mess and it's best
507  *      if we put this in low-level Common Code ...
508  *
509  */
510 int t4vf_fl_pkt_align(struct adapter *adapter)
511 {
512         u32 sge_control, sge_control2;
513         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
514
515         sge_control = adapter->params.sge.sge_control;
516
517         /* T4 uses a single control field to specify both the PCIe Padding and
518          * Packing Boundary.  T5 introduced the ability to specify these
519          * separately.  The actual Ingress Packet Data alignment boundary
520          * within Packed Buffer Mode is the maximum of these two
521          * specifications.  (Note that it makes no real practical sense to
522          * have the Pading Boudary be larger than the Packing Boundary but you
523          * could set the chip up that way and, in fact, legacy T4 code would
524          * end doing this because it would initialize the Padding Boundary and
525          * leave the Packing Boundary initialized to 0 (16 bytes).)
526          * Padding Boundary values in T6 starts from 8B,
527          * where as it is 32B for T4 and T5.
528          */
529         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
530                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
531         else
532                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
533
534         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
535
536         fl_align = ingpadboundary;
537         if (!is_t4(adapter->params.chip)) {
538                 /* T5 has a different interpretation of one of the PCIe Packing
539                  * Boundary values.
540                  */
541                 sge_control2 = adapter->params.sge.sge_control2;
542                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
543                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
544                         ingpackboundary = 16;
545                 else
546                         ingpackboundary = 1 << (ingpackboundary +
547                                                 INGPACKBOUNDARY_SHIFT_X);
548
549                 fl_align = max(ingpadboundary, ingpackboundary);
550         }
551         return fl_align;
552 }
553
554 /**
555  *      t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
556  *      @adapter: the adapter
557  *      @qid: the Queue ID
558  *      @qtype: the Ingress or Egress type for @qid
559  *      @pbar2_qoffset: BAR2 Queue Offset
560  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
561  *
562  *      Returns the BAR2 SGE Queue Registers information associated with the
563  *      indicated Absolute Queue ID.  These are passed back in return value
564  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
565  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
566  *
567  *      This may return an error which indicates that BAR2 SGE Queue
568  *      registers aren't available.  If an error is not returned, then the
569  *      following values are returned:
570  *
571  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
572  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
573  *
574  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
575  *      require the "Inferred Queue ID" ability may be used.  E.g. the
576  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
577  *      then these "Inferred Queue ID" register may not be used.
578  */
579 int t4vf_bar2_sge_qregs(struct adapter *adapter,
580                         unsigned int qid,
581                         enum t4_bar2_qtype qtype,
582                         u64 *pbar2_qoffset,
583                         unsigned int *pbar2_qid)
584 {
585         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
586         u64 bar2_page_offset, bar2_qoffset;
587         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
588
589         /* T4 doesn't support BAR2 SGE Queue registers.
590          */
591         if (is_t4(adapter->params.chip))
592                 return -EINVAL;
593
594         /* Get our SGE Page Size parameters.
595          */
596         page_shift = adapter->params.sge.sge_vf_hps + 10;
597         page_size = 1 << page_shift;
598
599         /* Get the right Queues per Page parameters for our Queue.
600          */
601         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
602                      ? adapter->params.sge.sge_vf_eq_qpp
603                      : adapter->params.sge.sge_vf_iq_qpp);
604         qpp_mask = (1 << qpp_shift) - 1;
605
606         /* Calculate the basics of the BAR2 SGE Queue register area:
607          *  o The BAR2 page the Queue registers will be in.
608          *  o The BAR2 Queue ID.
609          *  o The BAR2 Queue ID Offset into the BAR2 page.
610          */
611         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
612         bar2_qid = qid & qpp_mask;
613         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
614
615         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
616          * hardware will infer the Absolute Queue ID simply from the writes to
617          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
618          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
619          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
620          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
621          * from the BAR2 Page and BAR2 Queue ID.
622          *
623          * One important censequence of this is that some BAR2 SGE registers
624          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
625          * there.  But other registers synthesize the SGE Queue ID purely
626          * from the writes to the registers -- the Write Combined Doorbell
627          * Buffer is a good example.  These BAR2 SGE Registers are only
628          * available for those BAR2 SGE Register areas where the SGE Absolute
629          * Queue ID can be inferred from simple writes.
630          */
631         bar2_qoffset = bar2_page_offset;
632         bar2_qinferred = (bar2_qid_offset < page_size);
633         if (bar2_qinferred) {
634                 bar2_qoffset += bar2_qid_offset;
635                 bar2_qid = 0;
636         }
637
638         *pbar2_qoffset = bar2_qoffset;
639         *pbar2_qid = bar2_qid;
640         return 0;
641 }
642
643 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
644 {
645         u32 whoami;
646
647         whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
648         return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
649                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
650 }
651
652 /**
653  *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
654  *      @adapter: the adapter
655  *
656  *      Retrieves various core SGE parameters in the form of hardware SGE
657  *      register values.  The caller is responsible for decoding these as
658  *      needed.  The SGE parameters are stored in @adapter->params.sge.
659  */
660 int t4vf_get_sge_params(struct adapter *adapter)
661 {
662         struct sge_params *sge_params = &adapter->params.sge;
663         u32 params[7], vals[7];
664         int v;
665
666         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
667                      FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
668         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
669                      FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
670         params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
671                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
672         params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
673                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
674         params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
675                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
676         params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
677                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
678         params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
679                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
680         v = t4vf_query_params(adapter, 7, params, vals);
681         if (v)
682                 return v;
683         sge_params->sge_control = vals[0];
684         sge_params->sge_host_page_size = vals[1];
685         sge_params->sge_fl_buffer_size[0] = vals[2];
686         sge_params->sge_fl_buffer_size[1] = vals[3];
687         sge_params->sge_timer_value_0_and_1 = vals[4];
688         sge_params->sge_timer_value_2_and_3 = vals[5];
689         sge_params->sge_timer_value_4_and_5 = vals[6];
690
691         /* T4 uses a single control field to specify both the PCIe Padding and
692          * Packing Boundary.  T5 introduced the ability to specify these
693          * separately with the Padding Boundary in SGE_CONTROL and and Packing
694          * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
695          * SGE_CONTROL in order to determine how ingress packet data will be
696          * laid out in Packed Buffer Mode.  Unfortunately, older versions of
697          * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
698          * failure grabbing it we throw an error since we can't figure out the
699          * right value.
700          */
701         if (!is_t4(adapter->params.chip)) {
702                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
703                              FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
704                 v = t4vf_query_params(adapter, 1, params, vals);
705                 if (v != FW_SUCCESS) {
706                         dev_err(adapter->pdev_dev,
707                                 "Unable to get SGE Control2; "
708                                 "probably old firmware.\n");
709                         return v;
710                 }
711                 sge_params->sge_control2 = vals[0];
712         }
713
714         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
715                      FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
716         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
717                      FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
718         v = t4vf_query_params(adapter, 2, params, vals);
719         if (v)
720                 return v;
721         sge_params->sge_ingress_rx_threshold = vals[0];
722         sge_params->sge_congestion_control = vals[1];
723
724         /* For T5 and later we want to use the new BAR2 Doorbells.
725          * Unfortunately, older firmware didn't allow the this register to be
726          * read.
727          */
728         if (!is_t4(adapter->params.chip)) {
729                 unsigned int pf, s_hps, s_qpp;
730
731                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
732                              FW_PARAMS_PARAM_XYZ_V(
733                                      SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
734                 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
735                              FW_PARAMS_PARAM_XYZ_V(
736                                      SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
737                 v = t4vf_query_params(adapter, 2, params, vals);
738                 if (v != FW_SUCCESS) {
739                         dev_warn(adapter->pdev_dev,
740                                  "Unable to get VF SGE Queues/Page; "
741                                  "probably old firmware.\n");
742                         return v;
743                 }
744                 sge_params->sge_egress_queues_per_page = vals[0];
745                 sge_params->sge_ingress_queues_per_page = vals[1];
746
747                 /* We need the Queues/Page for our VF.  This is based on the
748                  * PF from which we're instantiated and is indexed in the
749                  * register we just read. Do it once here so other code in
750                  * the driver can just use it.
751                  */
752                 pf = t4vf_get_pf_from_vf(adapter);
753                 s_hps = (HOSTPAGESIZEPF0_S +
754                          (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
755                 sge_params->sge_vf_hps =
756                         ((sge_params->sge_host_page_size >> s_hps)
757                          & HOSTPAGESIZEPF0_M);
758
759                 s_qpp = (QUEUESPERPAGEPF0_S +
760                          (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
761                 sge_params->sge_vf_eq_qpp =
762                         ((sge_params->sge_egress_queues_per_page >> s_qpp)
763                          & QUEUESPERPAGEPF0_M);
764                 sge_params->sge_vf_iq_qpp =
765                         ((sge_params->sge_ingress_queues_per_page >> s_qpp)
766                          & QUEUESPERPAGEPF0_M);
767         }
768
769         return 0;
770 }
771
772 /**
773  *      t4vf_get_vpd_params - retrieve device VPD paremeters
774  *      @adapter: the adapter
775  *
776  *      Retrives various device Vital Product Data parameters.  The parameters
777  *      are stored in @adapter->params.vpd.
778  */
779 int t4vf_get_vpd_params(struct adapter *adapter)
780 {
781         struct vpd_params *vpd_params = &adapter->params.vpd;
782         u32 params[7], vals[7];
783         int v;
784
785         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
786                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
787         v = t4vf_query_params(adapter, 1, params, vals);
788         if (v)
789                 return v;
790         vpd_params->cclk = vals[0];
791
792         return 0;
793 }
794
795 /**
796  *      t4vf_get_dev_params - retrieve device paremeters
797  *      @adapter: the adapter
798  *
799  *      Retrives various device parameters.  The parameters are stored in
800  *      @adapter->params.dev.
801  */
802 int t4vf_get_dev_params(struct adapter *adapter)
803 {
804         struct dev_params *dev_params = &adapter->params.dev;
805         u32 params[7], vals[7];
806         int v;
807
808         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
809                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
810         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
811                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
812         v = t4vf_query_params(adapter, 2, params, vals);
813         if (v)
814                 return v;
815         dev_params->fwrev = vals[0];
816         dev_params->tprev = vals[1];
817
818         return 0;
819 }
820
821 /**
822  *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
823  *      @adapter: the adapter
824  *
825  *      Retrieves global RSS mode and parameters with which we have to live
826  *      and stores them in the @adapter's RSS parameters.
827  */
828 int t4vf_get_rss_glb_config(struct adapter *adapter)
829 {
830         struct rss_params *rss = &adapter->params.rss;
831         struct fw_rss_glb_config_cmd cmd, rpl;
832         int v;
833
834         /*
835          * Execute an RSS Global Configuration read command to retrieve
836          * our RSS configuration.
837          */
838         memset(&cmd, 0, sizeof(cmd));
839         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
840                                       FW_CMD_REQUEST_F |
841                                       FW_CMD_READ_F);
842         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
843         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
844         if (v)
845                 return v;
846
847         /*
848          * Transate the big-endian RSS Global Configuration into our
849          * cpu-endian format based on the RSS mode.  We also do first level
850          * filtering at this point to weed out modes which don't support
851          * VF Drivers ...
852          */
853         rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
854                         be32_to_cpu(rpl.u.manual.mode_pkd));
855         switch (rss->mode) {
856         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
857                 u32 word = be32_to_cpu(
858                                 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
859
860                 rss->u.basicvirtual.synmapen =
861                         ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
862                 rss->u.basicvirtual.syn4tupenipv6 =
863                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
864                 rss->u.basicvirtual.syn2tupenipv6 =
865                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
866                 rss->u.basicvirtual.syn4tupenipv4 =
867                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
868                 rss->u.basicvirtual.syn2tupenipv4 =
869                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
870
871                 rss->u.basicvirtual.ofdmapen =
872                         ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
873
874                 rss->u.basicvirtual.tnlmapen =
875                         ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
876                 rss->u.basicvirtual.tnlalllookup =
877                         ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
878
879                 rss->u.basicvirtual.hashtoeplitz =
880                         ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
881
882                 /* we need at least Tunnel Map Enable to be set */
883                 if (!rss->u.basicvirtual.tnlmapen)
884                         return -EINVAL;
885                 break;
886         }
887
888         default:
889                 /* all unknown/unsupported RSS modes result in an error */
890                 return -EINVAL;
891         }
892
893         return 0;
894 }
895
896 /**
897  *      t4vf_get_vfres - retrieve VF resource limits
898  *      @adapter: the adapter
899  *
900  *      Retrieves configured resource limits and capabilities for a virtual
901  *      function.  The results are stored in @adapter->vfres.
902  */
903 int t4vf_get_vfres(struct adapter *adapter)
904 {
905         struct vf_resources *vfres = &adapter->params.vfres;
906         struct fw_pfvf_cmd cmd, rpl;
907         int v;
908         u32 word;
909
910         /*
911          * Execute PFVF Read command to get VF resource limits; bail out early
912          * with error on command failure.
913          */
914         memset(&cmd, 0, sizeof(cmd));
915         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
916                                     FW_CMD_REQUEST_F |
917                                     FW_CMD_READ_F);
918         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
919         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
920         if (v)
921                 return v;
922
923         /*
924          * Extract VF resource limits and return success.
925          */
926         word = be32_to_cpu(rpl.niqflint_niq);
927         vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
928         vfres->niq = FW_PFVF_CMD_NIQ_G(word);
929
930         word = be32_to_cpu(rpl.type_to_neq);
931         vfres->neq = FW_PFVF_CMD_NEQ_G(word);
932         vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
933
934         word = be32_to_cpu(rpl.tc_to_nexactf);
935         vfres->tc = FW_PFVF_CMD_TC_G(word);
936         vfres->nvi = FW_PFVF_CMD_NVI_G(word);
937         vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
938
939         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
940         vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
941         vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
942         vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
943
944         return 0;
945 }
946
947 /**
948  *      t4vf_read_rss_vi_config - read a VI's RSS configuration
949  *      @adapter: the adapter
950  *      @viid: Virtual Interface ID
951  *      @config: pointer to host-native VI RSS Configuration buffer
952  *
953  *      Reads the Virtual Interface's RSS configuration information and
954  *      translates it into CPU-native format.
955  */
956 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
957                             union rss_vi_config *config)
958 {
959         struct fw_rss_vi_config_cmd cmd, rpl;
960         int v;
961
962         memset(&cmd, 0, sizeof(cmd));
963         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
964                                      FW_CMD_REQUEST_F |
965                                      FW_CMD_READ_F |
966                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
967         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
968         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
969         if (v)
970                 return v;
971
972         switch (adapter->params.rss.mode) {
973         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
974                 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
975
976                 config->basicvirtual.ip6fourtupen =
977                         ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
978                 config->basicvirtual.ip6twotupen =
979                         ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
980                 config->basicvirtual.ip4fourtupen =
981                         ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
982                 config->basicvirtual.ip4twotupen =
983                         ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
984                 config->basicvirtual.udpen =
985                         ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
986                 config->basicvirtual.defaultq =
987                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
988                 break;
989         }
990
991         default:
992                 return -EINVAL;
993         }
994
995         return 0;
996 }
997
998 /**
999  *      t4vf_write_rss_vi_config - write a VI's RSS configuration
1000  *      @adapter: the adapter
1001  *      @viid: Virtual Interface ID
1002  *      @config: pointer to host-native VI RSS Configuration buffer
1003  *
1004  *      Write the Virtual Interface's RSS configuration information
1005  *      (translating it into firmware-native format before writing).
1006  */
1007 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1008                              union rss_vi_config *config)
1009 {
1010         struct fw_rss_vi_config_cmd cmd, rpl;
1011
1012         memset(&cmd, 0, sizeof(cmd));
1013         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1014                                      FW_CMD_REQUEST_F |
1015                                      FW_CMD_WRITE_F |
1016                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1017         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1018         switch (adapter->params.rss.mode) {
1019         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1020                 u32 word = 0;
1021
1022                 if (config->basicvirtual.ip6fourtupen)
1023                         word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1024                 if (config->basicvirtual.ip6twotupen)
1025                         word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1026                 if (config->basicvirtual.ip4fourtupen)
1027                         word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1028                 if (config->basicvirtual.ip4twotupen)
1029                         word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1030                 if (config->basicvirtual.udpen)
1031                         word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1032                 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1033                                 config->basicvirtual.defaultq);
1034                 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1035                 break;
1036         }
1037
1038         default:
1039                 return -EINVAL;
1040         }
1041
1042         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1043 }
1044
1045 /**
1046  *      t4vf_config_rss_range - configure a portion of the RSS mapping table
1047  *      @adapter: the adapter
1048  *      @viid: Virtual Interface of RSS Table Slice
1049  *      @start: starting entry in the table to write
1050  *      @n: how many table entries to write
1051  *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1052  *      @nrspq: number of values in @rspq
1053  *
1054  *      Programs the selected part of the VI's RSS mapping table with the
1055  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
1056  *      until the full table range is populated.
1057  *
1058  *      The caller must ensure the values in @rspq are in the range 0..1023.
1059  */
1060 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1061                           int start, int n, const u16 *rspq, int nrspq)
1062 {
1063         const u16 *rsp = rspq;
1064         const u16 *rsp_end = rspq+nrspq;
1065         struct fw_rss_ind_tbl_cmd cmd;
1066
1067         /*
1068          * Initialize firmware command template to write the RSS table.
1069          */
1070         memset(&cmd, 0, sizeof(cmd));
1071         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1072                                      FW_CMD_REQUEST_F |
1073                                      FW_CMD_WRITE_F |
1074                                      FW_RSS_IND_TBL_CMD_VIID_V(viid));
1075         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1076
1077         /*
1078          * Each firmware RSS command can accommodate up to 32 RSS Ingress
1079          * Queue Identifiers.  These Ingress Queue IDs are packed three to
1080          * a 32-bit word as 10-bit values with the upper remaining 2 bits
1081          * reserved.
1082          */
1083         while (n > 0) {
1084                 __be32 *qp = &cmd.iq0_to_iq2;
1085                 int nq = min(n, 32);
1086                 int ret;
1087
1088                 /*
1089                  * Set up the firmware RSS command header to send the next
1090                  * "nq" Ingress Queue IDs to the firmware.
1091                  */
1092                 cmd.niqid = cpu_to_be16(nq);
1093                 cmd.startidx = cpu_to_be16(start);
1094
1095                 /*
1096                  * "nq" more done for the start of the next loop.
1097                  */
1098                 start += nq;
1099                 n -= nq;
1100
1101                 /*
1102                  * While there are still Ingress Queue IDs to stuff into the
1103                  * current firmware RSS command, retrieve them from the
1104                  * Ingress Queue ID array and insert them into the command.
1105                  */
1106                 while (nq > 0) {
1107                         /*
1108                          * Grab up to the next 3 Ingress Queue IDs (wrapping
1109                          * around the Ingress Queue ID array if necessary) and
1110                          * insert them into the firmware RSS command at the
1111                          * current 3-tuple position within the commad.
1112                          */
1113                         u16 qbuf[3];
1114                         u16 *qbp = qbuf;
1115                         int nqbuf = min(3, nq);
1116
1117                         nq -= nqbuf;
1118                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
1119                         while (nqbuf) {
1120                                 nqbuf--;
1121                                 *qbp++ = *rsp++;
1122                                 if (rsp >= rsp_end)
1123                                         rsp = rspq;
1124                         }
1125                         *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1126                                             FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1127                                             FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1128                 }
1129
1130                 /*
1131                  * Send this portion of the RRS table update to the firmware;
1132                  * bail out on any errors.
1133                  */
1134                 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1135                 if (ret)
1136                         return ret;
1137         }
1138         return 0;
1139 }
1140
1141 /**
1142  *      t4vf_alloc_vi - allocate a virtual interface on a port
1143  *      @adapter: the adapter
1144  *      @port_id: physical port associated with the VI
1145  *
1146  *      Allocate a new Virtual Interface and bind it to the indicated
1147  *      physical port.  Return the new Virtual Interface Identifier on
1148  *      success, or a [negative] error number on failure.
1149  */
1150 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1151 {
1152         struct fw_vi_cmd cmd, rpl;
1153         int v;
1154
1155         /*
1156          * Execute a VI command to allocate Virtual Interface and return its
1157          * VIID.
1158          */
1159         memset(&cmd, 0, sizeof(cmd));
1160         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1161                                     FW_CMD_REQUEST_F |
1162                                     FW_CMD_WRITE_F |
1163                                     FW_CMD_EXEC_F);
1164         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1165                                          FW_VI_CMD_ALLOC_F);
1166         cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1167         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1168         if (v)
1169                 return v;
1170
1171         return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1172 }
1173
1174 /**
1175  *      t4vf_free_vi -- free a virtual interface
1176  *      @adapter: the adapter
1177  *      @viid: the virtual interface identifier
1178  *
1179  *      Free a previously allocated Virtual Interface.  Return an error on
1180  *      failure.
1181  */
1182 int t4vf_free_vi(struct adapter *adapter, int viid)
1183 {
1184         struct fw_vi_cmd cmd;
1185
1186         /*
1187          * Execute a VI command to free the Virtual Interface.
1188          */
1189         memset(&cmd, 0, sizeof(cmd));
1190         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1191                                     FW_CMD_REQUEST_F |
1192                                     FW_CMD_EXEC_F);
1193         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1194                                          FW_VI_CMD_FREE_F);
1195         cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1196         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1197 }
1198
1199 /**
1200  *      t4vf_enable_vi - enable/disable a virtual interface
1201  *      @adapter: the adapter
1202  *      @viid: the Virtual Interface ID
1203  *      @rx_en: 1=enable Rx, 0=disable Rx
1204  *      @tx_en: 1=enable Tx, 0=disable Tx
1205  *
1206  *      Enables/disables a virtual interface.
1207  */
1208 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1209                    bool rx_en, bool tx_en)
1210 {
1211         struct fw_vi_enable_cmd cmd;
1212
1213         memset(&cmd, 0, sizeof(cmd));
1214         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1215                                      FW_CMD_REQUEST_F |
1216                                      FW_CMD_EXEC_F |
1217                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1218         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1219                                        FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1220                                        FW_LEN16(cmd));
1221         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1222 }
1223
1224 /**
1225  *      t4vf_identify_port - identify a VI's port by blinking its LED
1226  *      @adapter: the adapter
1227  *      @viid: the Virtual Interface ID
1228  *      @nblinks: how many times to blink LED at 2.5 Hz
1229  *
1230  *      Identifies a VI's port by blinking its LED.
1231  */
1232 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1233                        unsigned int nblinks)
1234 {
1235         struct fw_vi_enable_cmd cmd;
1236
1237         memset(&cmd, 0, sizeof(cmd));
1238         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1239                                      FW_CMD_REQUEST_F |
1240                                      FW_CMD_EXEC_F |
1241                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1242         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1243                                        FW_LEN16(cmd));
1244         cmd.blinkdur = cpu_to_be16(nblinks);
1245         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1246 }
1247
1248 /**
1249  *      t4vf_set_rxmode - set Rx properties of a virtual interface
1250  *      @adapter: the adapter
1251  *      @viid: the VI id
1252  *      @mtu: the new MTU or -1 for no change
1253  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1254  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1255  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1256  *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1257  *              -1 no change
1258  *
1259  *      Sets Rx properties of a virtual interface.
1260  */
1261 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1262                     int mtu, int promisc, int all_multi, int bcast, int vlanex,
1263                     bool sleep_ok)
1264 {
1265         struct fw_vi_rxmode_cmd cmd;
1266
1267         /* convert to FW values */
1268         if (mtu < 0)
1269                 mtu = FW_VI_RXMODE_CMD_MTU_M;
1270         if (promisc < 0)
1271                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1272         if (all_multi < 0)
1273                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1274         if (bcast < 0)
1275                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1276         if (vlanex < 0)
1277                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1278
1279         memset(&cmd, 0, sizeof(cmd));
1280         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1281                                      FW_CMD_REQUEST_F |
1282                                      FW_CMD_WRITE_F |
1283                                      FW_VI_RXMODE_CMD_VIID_V(viid));
1284         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1285         cmd.mtu_to_vlanexen =
1286                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1287                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1288                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1289                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1290                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1291         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1292 }
1293
1294 /**
1295  *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1296  *      @adapter: the adapter
1297  *      @viid: the Virtual Interface Identifier
1298  *      @free: if true any existing filters for this VI id are first removed
1299  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1300  *      @addr: the MAC address(es)
1301  *      @idx: where to store the index of each allocated filter
1302  *      @hash: pointer to hash address filter bitmap
1303  *      @sleep_ok: call is allowed to sleep
1304  *
1305  *      Allocates an exact-match filter for each of the supplied addresses and
1306  *      sets it to the corresponding address.  If @idx is not %NULL it should
1307  *      have at least @naddr entries, each of which will be set to the index of
1308  *      the filter allocated for the corresponding MAC address.  If a filter
1309  *      could not be allocated for an address its index is set to 0xffff.
1310  *      If @hash is not %NULL addresses that fail to allocate an exact filter
1311  *      are hashed and update the hash filter bitmap pointed at by @hash.
1312  *
1313  *      Returns a negative error number or the number of filters allocated.
1314  */
1315 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1316                         unsigned int naddr, const u8 **addr, u16 *idx,
1317                         u64 *hash, bool sleep_ok)
1318 {
1319         int offset, ret = 0;
1320         unsigned nfilters = 0;
1321         unsigned int rem = naddr;
1322         struct fw_vi_mac_cmd cmd, rpl;
1323         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1324
1325         if (naddr > max_naddr)
1326                 return -EINVAL;
1327
1328         for (offset = 0; offset < naddr; /**/) {
1329                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1330                                          ? rem
1331                                          : ARRAY_SIZE(cmd.u.exact));
1332                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1333                                                      u.exact[fw_naddr]), 16);
1334                 struct fw_vi_mac_exact *p;
1335                 int i;
1336
1337                 memset(&cmd, 0, sizeof(cmd));
1338                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1339                                              FW_CMD_REQUEST_F |
1340                                              FW_CMD_WRITE_F |
1341                                              (free ? FW_CMD_EXEC_F : 0) |
1342                                              FW_VI_MAC_CMD_VIID_V(viid));
1343                 cmd.freemacs_to_len16 =
1344                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1345                                     FW_CMD_LEN16_V(len16));
1346
1347                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1348                         p->valid_to_idx = cpu_to_be16(
1349                                 FW_VI_MAC_CMD_VALID_F |
1350                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1351                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1352                 }
1353
1354
1355                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1356                                         sleep_ok);
1357                 if (ret && ret != -ENOMEM)
1358                         break;
1359
1360                 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1361                         u16 index = FW_VI_MAC_CMD_IDX_G(
1362                                 be16_to_cpu(p->valid_to_idx));
1363
1364                         if (idx)
1365                                 idx[offset+i] =
1366                                         (index >= max_naddr
1367                                          ? 0xffff
1368                                          : index);
1369                         if (index < max_naddr)
1370                                 nfilters++;
1371                         else if (hash)
1372                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1373                 }
1374
1375                 free = false;
1376                 offset += fw_naddr;
1377                 rem -= fw_naddr;
1378         }
1379
1380         /*
1381          * If there were no errors or we merely ran out of room in our MAC
1382          * address arena, return the number of filters actually written.
1383          */
1384         if (ret == 0 || ret == -ENOMEM)
1385                 ret = nfilters;
1386         return ret;
1387 }
1388
1389 /**
1390  *      t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1391  *      @adapter: the adapter
1392  *      @viid: the VI id
1393  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1394  *      @addr: the MAC address(es)
1395  *      @sleep_ok: call is allowed to sleep
1396  *
1397  *      Frees the exact-match filter for each of the supplied addresses
1398  *
1399  *      Returns a negative error number or the number of filters freed.
1400  */
1401 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1402                        unsigned int naddr, const u8 **addr, bool sleep_ok)
1403 {
1404         int offset, ret = 0;
1405         struct fw_vi_mac_cmd cmd;
1406         unsigned int nfilters = 0;
1407         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1408         unsigned int rem = naddr;
1409
1410         if (naddr > max_naddr)
1411                 return -EINVAL;
1412
1413         for (offset = 0; offset < (int)naddr ; /**/) {
1414                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1415                                          rem : ARRAY_SIZE(cmd.u.exact));
1416                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1417                                                      u.exact[fw_naddr]), 16);
1418                 struct fw_vi_mac_exact *p;
1419                 int i;
1420
1421                 memset(&cmd, 0, sizeof(cmd));
1422                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1423                                      FW_CMD_REQUEST_F |
1424                                      FW_CMD_WRITE_F |
1425                                      FW_CMD_EXEC_V(0) |
1426                                      FW_VI_MAC_CMD_VIID_V(viid));
1427                 cmd.freemacs_to_len16 =
1428                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1429                                             FW_CMD_LEN16_V(len16));
1430
1431                 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1432                         p->valid_to_idx = cpu_to_be16(
1433                                 FW_VI_MAC_CMD_VALID_F |
1434                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1435                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1436                 }
1437
1438                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1439                                         sleep_ok);
1440                 if (ret)
1441                         break;
1442
1443                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1444                         u16 index = FW_VI_MAC_CMD_IDX_G(
1445                                                 be16_to_cpu(p->valid_to_idx));
1446
1447                         if (index < max_naddr)
1448                                 nfilters++;
1449                 }
1450
1451                 offset += fw_naddr;
1452                 rem -= fw_naddr;
1453         }
1454
1455         if (ret == 0)
1456                 ret = nfilters;
1457         return ret;
1458 }
1459
1460 /**
1461  *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1462  *      @adapter: the adapter
1463  *      @viid: the Virtual Interface ID
1464  *      @idx: index of existing filter for old value of MAC address, or -1
1465  *      @addr: the new MAC address value
1466  *      @persist: if idx < 0, the new MAC allocation should be persistent
1467  *
1468  *      Modifies an exact-match filter and sets it to the new MAC address.
1469  *      Note that in general it is not possible to modify the value of a given
1470  *      filter so the generic way to modify an address filter is to free the
1471  *      one being used by the old address value and allocate a new filter for
1472  *      the new address value.  @idx can be -1 if the address is a new
1473  *      addition.
1474  *
1475  *      Returns a negative error number or the index of the filter with the new
1476  *      MAC value.
1477  */
1478 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1479                     int idx, const u8 *addr, bool persist)
1480 {
1481         int ret;
1482         struct fw_vi_mac_cmd cmd, rpl;
1483         struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1484         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1485                                              u.exact[1]), 16);
1486         unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1487
1488         /*
1489          * If this is a new allocation, determine whether it should be
1490          * persistent (across a "freemacs" operation) or not.
1491          */
1492         if (idx < 0)
1493                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1494
1495         memset(&cmd, 0, sizeof(cmd));
1496         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1497                                      FW_CMD_REQUEST_F |
1498                                      FW_CMD_WRITE_F |
1499                                      FW_VI_MAC_CMD_VIID_V(viid));
1500         cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1501         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1502                                       FW_VI_MAC_CMD_IDX_V(idx));
1503         memcpy(p->macaddr, addr, sizeof(p->macaddr));
1504
1505         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1506         if (ret == 0) {
1507                 p = &rpl.u.exact[0];
1508                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1509                 if (ret >= max_mac_addr)
1510                         ret = -ENOMEM;
1511         }
1512         return ret;
1513 }
1514
1515 /**
1516  *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1517  *      @adapter: the adapter
1518  *      @viid: the Virtual Interface Identifier
1519  *      @ucast: whether the hash filter should also match unicast addresses
1520  *      @vec: the value to be written to the hash filter
1521  *      @sleep_ok: call is allowed to sleep
1522  *
1523  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1524  */
1525 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1526                        bool ucast, u64 vec, bool sleep_ok)
1527 {
1528         struct fw_vi_mac_cmd cmd;
1529         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1530                                              u.exact[0]), 16);
1531
1532         memset(&cmd, 0, sizeof(cmd));
1533         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1534                                      FW_CMD_REQUEST_F |
1535                                      FW_CMD_WRITE_F |
1536                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1537         cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1538                                             FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1539                                             FW_CMD_LEN16_V(len16));
1540         cmd.u.hash.hashvec = cpu_to_be64(vec);
1541         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1542 }
1543
1544 /**
1545  *      t4vf_get_port_stats - collect "port" statistics
1546  *      @adapter: the adapter
1547  *      @pidx: the port index
1548  *      @s: the stats structure to fill
1549  *
1550  *      Collect statistics for the "port"'s Virtual Interface.
1551  */
1552 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1553                         struct t4vf_port_stats *s)
1554 {
1555         struct port_info *pi = adap2pinfo(adapter, pidx);
1556         struct fw_vi_stats_vf fwstats;
1557         unsigned int rem = VI_VF_NUM_STATS;
1558         __be64 *fwsp = (__be64 *)&fwstats;
1559
1560         /*
1561          * Grab the Virtual Interface statistics a chunk at a time via mailbox
1562          * commands.  We could use a Work Request and get all of them at once
1563          * but that's an asynchronous interface which is awkward to use.
1564          */
1565         while (rem) {
1566                 unsigned int ix = VI_VF_NUM_STATS - rem;
1567                 unsigned int nstats = min(6U, rem);
1568                 struct fw_vi_stats_cmd cmd, rpl;
1569                 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1570                               sizeof(struct fw_vi_stats_ctl));
1571                 size_t len16 = DIV_ROUND_UP(len, 16);
1572                 int ret;
1573
1574                 memset(&cmd, 0, sizeof(cmd));
1575                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1576                                              FW_VI_STATS_CMD_VIID_V(pi->viid) |
1577                                              FW_CMD_REQUEST_F |
1578                                              FW_CMD_READ_F);
1579                 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1580                 cmd.u.ctl.nstats_ix =
1581                         cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1582                                     FW_VI_STATS_CMD_NSTATS_V(nstats));
1583                 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1584                 if (ret)
1585                         return ret;
1586
1587                 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1588
1589                 rem -= nstats;
1590                 fwsp += nstats;
1591         }
1592
1593         /*
1594          * Translate firmware statistics into host native statistics.
1595          */
1596         s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1597         s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1598         s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1599         s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1600         s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1601         s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1602         s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1603         s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1604         s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1605
1606         s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1607         s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1608         s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1609         s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1610         s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1611         s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1612
1613         s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1614
1615         return 0;
1616 }
1617
1618 /**
1619  *      t4vf_iq_free - free an ingress queue and its free lists
1620  *      @adapter: the adapter
1621  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1622  *      @iqid: ingress queue ID
1623  *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1624  *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1625  *
1626  *      Frees an ingress queue and its associated free lists, if any.
1627  */
1628 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1629                  unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1630 {
1631         struct fw_iq_cmd cmd;
1632
1633         memset(&cmd, 0, sizeof(cmd));
1634         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1635                                     FW_CMD_REQUEST_F |
1636                                     FW_CMD_EXEC_F);
1637         cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1638                                          FW_LEN16(cmd));
1639         cmd.type_to_iqandstindex =
1640                 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1641
1642         cmd.iqid = cpu_to_be16(iqid);
1643         cmd.fl0id = cpu_to_be16(fl0id);
1644         cmd.fl1id = cpu_to_be16(fl1id);
1645         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1646 }
1647
1648 /**
1649  *      t4vf_eth_eq_free - free an Ethernet egress queue
1650  *      @adapter: the adapter
1651  *      @eqid: egress queue ID
1652  *
1653  *      Frees an Ethernet egress queue.
1654  */
1655 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1656 {
1657         struct fw_eq_eth_cmd cmd;
1658
1659         memset(&cmd, 0, sizeof(cmd));
1660         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1661                                     FW_CMD_REQUEST_F |
1662                                     FW_CMD_EXEC_F);
1663         cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1664                                          FW_LEN16(cmd));
1665         cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1666         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1667 }
1668
1669 /**
1670  *      t4vf_handle_fw_rpl - process a firmware reply message
1671  *      @adapter: the adapter
1672  *      @rpl: start of the firmware message
1673  *
1674  *      Processes a firmware message, such as link state change messages.
1675  */
1676 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1677 {
1678         const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1679         u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
1680
1681         switch (opcode) {
1682         case FW_PORT_CMD: {
1683                 /*
1684                  * Link/module state change message.
1685                  */
1686                 const struct fw_port_cmd *port_cmd =
1687                         (const struct fw_port_cmd *)rpl;
1688                 u32 stat, mod;
1689                 int action, port_id, link_ok, speed, fc, pidx;
1690
1691                 /*
1692                  * Extract various fields from port status change message.
1693                  */
1694                 action = FW_PORT_CMD_ACTION_G(
1695                         be32_to_cpu(port_cmd->action_to_len16));
1696                 if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1697                         dev_err(adapter->pdev_dev,
1698                                 "Unknown firmware PORT reply action %x\n",
1699                                 action);
1700                         break;
1701                 }
1702
1703                 port_id = FW_PORT_CMD_PORTID_G(
1704                         be32_to_cpu(port_cmd->op_to_portid));
1705
1706                 stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1707                 link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
1708                 speed = 0;
1709                 fc = 0;
1710                 if (stat & FW_PORT_CMD_RXPAUSE_F)
1711                         fc |= PAUSE_RX;
1712                 if (stat & FW_PORT_CMD_TXPAUSE_F)
1713                         fc |= PAUSE_TX;
1714                 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1715                         speed = 100;
1716                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1717                         speed = 1000;
1718                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1719                         speed = 10000;
1720                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1721                         speed = 25000;
1722                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1723                         speed = 40000;
1724                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1725                         speed = 100000;
1726
1727                 /*
1728                  * Scan all of our "ports" (Virtual Interfaces) looking for
1729                  * those bound to the physical port which has changed.  If
1730                  * our recorded state doesn't match the current state,
1731                  * signal that change to the OS code.
1732                  */
1733                 for_each_port(adapter, pidx) {
1734                         struct port_info *pi = adap2pinfo(adapter, pidx);
1735                         struct link_config *lc;
1736
1737                         if (pi->port_id != port_id)
1738                                 continue;
1739
1740                         lc = &pi->link_cfg;
1741
1742                         mod = FW_PORT_CMD_MODTYPE_G(stat);
1743                         if (mod != pi->mod_type) {
1744                                 pi->mod_type = mod;
1745                                 t4vf_os_portmod_changed(adapter, pidx);
1746                         }
1747
1748                         if (link_ok != lc->link_ok || speed != lc->speed ||
1749                             fc != lc->fc) {
1750                                 /* something changed */
1751                                 lc->link_ok = link_ok;
1752                                 lc->speed = speed;
1753                                 lc->fc = fc;
1754                                 lc->supported =
1755                                         be16_to_cpu(port_cmd->u.info.pcap);
1756                                 lc->lp_advertising =
1757                                         be16_to_cpu(port_cmd->u.info.lpacap);
1758                                 t4vf_os_link_changed(adapter, pidx, link_ok);
1759                         }
1760                 }
1761                 break;
1762         }
1763
1764         default:
1765                 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1766                         opcode);
1767         }
1768         return 0;
1769 }
1770
1771 /**
1772  */
1773 int t4vf_prep_adapter(struct adapter *adapter)
1774 {
1775         int err;
1776         unsigned int chipid;
1777
1778         /* Wait for the device to become ready before proceeding ...
1779          */
1780         err = t4vf_wait_dev_ready(adapter);
1781         if (err)
1782                 return err;
1783
1784         /* Default port and clock for debugging in case we can't reach
1785          * firmware.
1786          */
1787         adapter->params.nports = 1;
1788         adapter->params.vfres.pmask = 1;
1789         adapter->params.vpd.cclk = 50000;
1790
1791         adapter->params.chip = 0;
1792         switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1793         case CHELSIO_T4:
1794                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1795                 adapter->params.arch.sge_fl_db = DBPRIO_F;
1796                 adapter->params.arch.mps_tcam_size =
1797                                 NUM_MPS_CLS_SRAM_L_INSTANCES;
1798                 break;
1799
1800         case CHELSIO_T5:
1801                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1802                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1803                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
1804                 adapter->params.arch.mps_tcam_size =
1805                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1806                 break;
1807
1808         case CHELSIO_T6:
1809                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1810                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
1811                 adapter->params.arch.sge_fl_db = 0;
1812                 adapter->params.arch.mps_tcam_size =
1813                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1814                 break;
1815         }
1816
1817         return 0;
1818 }
1819
1820 /**
1821  *      t4vf_get_vf_mac_acl - Get the MAC address to be set to
1822  *                            the VI of this VF.
1823  *      @adapter: The adapter
1824  *      @pf: The pf associated with vf
1825  *      @naddr: the number of ACL MAC addresses returned in addr
1826  *      @addr: Placeholder for MAC addresses
1827  *
1828  *      Find the MAC address to be set to the VF's VI. The requested MAC address
1829  *      is from the host OS via callback in the PF driver.
1830  */
1831 int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
1832                         unsigned int *naddr, u8 *addr)
1833 {
1834         struct fw_acl_mac_cmd cmd;
1835         int ret;
1836
1837         memset(&cmd, 0, sizeof(cmd));
1838         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
1839                                     FW_CMD_REQUEST_F |
1840                                     FW_CMD_READ_F);
1841         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
1842         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
1843         if (ret)
1844                 return ret;
1845
1846         if (cmd.nmac < *naddr)
1847                 *naddr = cmd.nmac;
1848
1849         switch (pf) {
1850         case 3:
1851                 memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
1852                 break;
1853         case 2:
1854                 memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
1855                 break;
1856         case 1:
1857                 memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
1858                 break;
1859         case 0:
1860                 memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
1861                 break;
1862         }
1863
1864         return ret;
1865 }