geneve: avoid using stale geneve socket.
[cascardo/linux.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25
26 #define NIC_MAX_Q_PER_VF 16
27 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
28
29 #define SERVICE_TIMER_HZ (1 * HZ)
30
31 #define NIC_TX_CLEAN_MAX_NUM 256
32 #define NIC_RX_CLEAN_MAX_NUM 64
33
34 #define RCB_IRQ_NOT_INITED 0
35 #define RCB_IRQ_INITED 1
36 #define HNS_BUFFER_SIZE_2048 2048
37
38 #define BD_MAX_SEND_SIZE 8191
39 #define SKB_TMP_LEN(SKB) \
40         (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
41
42 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
43                          int size, dma_addr_t dma, int frag_end,
44                          int buf_num, enum hns_desc_type type, int mtu)
45 {
46         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
47         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
48         struct iphdr *iphdr;
49         struct ipv6hdr *ipv6hdr;
50         struct sk_buff *skb;
51         __be16 protocol;
52         u8 bn_pid = 0;
53         u8 rrcfv = 0;
54         u8 ip_offset = 0;
55         u8 tvsvsn = 0;
56         u16 mss = 0;
57         u8 l4_len = 0;
58         u16 paylen = 0;
59
60         desc_cb->priv = priv;
61         desc_cb->length = size;
62         desc_cb->dma = dma;
63         desc_cb->type = type;
64
65         desc->addr = cpu_to_le64(dma);
66         desc->tx.send_size = cpu_to_le16((u16)size);
67
68         /* config bd buffer end */
69         hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
70         hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
71
72         /* fill port_id in the tx bd for sending management pkts */
73         hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
74                        HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
75
76         if (type == DESC_TYPE_SKB) {
77                 skb = (struct sk_buff *)priv;
78
79                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
80                         skb_reset_mac_len(skb);
81                         protocol = skb->protocol;
82                         ip_offset = ETH_HLEN;
83
84                         if (protocol == htons(ETH_P_8021Q)) {
85                                 ip_offset += VLAN_HLEN;
86                                 protocol = vlan_get_protocol(skb);
87                                 skb->protocol = protocol;
88                         }
89
90                         if (skb->protocol == htons(ETH_P_IP)) {
91                                 iphdr = ip_hdr(skb);
92                                 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
93                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
94
95                                 /* check for tcp/udp header */
96                                 if (iphdr->protocol == IPPROTO_TCP &&
97                                     skb_is_gso(skb)) {
98                                         hnae_set_bit(tvsvsn,
99                                                      HNSV2_TXD_TSE_B, 1);
100                                         l4_len = tcp_hdrlen(skb);
101                                         mss = skb_shinfo(skb)->gso_size;
102                                         paylen = skb->len - SKB_TMP_LEN(skb);
103                                 }
104                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
105                                 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
106                                 ipv6hdr = ipv6_hdr(skb);
107                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
108
109                                 /* check for tcp/udp header */
110                                 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
111                                     skb_is_gso(skb) && skb_is_gso_v6(skb)) {
112                                         hnae_set_bit(tvsvsn,
113                                                      HNSV2_TXD_TSE_B, 1);
114                                         l4_len = tcp_hdrlen(skb);
115                                         mss = skb_shinfo(skb)->gso_size;
116                                         paylen = skb->len - SKB_TMP_LEN(skb);
117                                 }
118                         }
119                         desc->tx.ip_offset = ip_offset;
120                         desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
121                         desc->tx.mss = cpu_to_le16(mss);
122                         desc->tx.l4_len = l4_len;
123                         desc->tx.paylen = cpu_to_le16(paylen);
124                 }
125         }
126
127         hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
128
129         desc->tx.bn_pid = bn_pid;
130         desc->tx.ra_ri_cs_fe_vld = rrcfv;
131
132         ring_ptr_move_fw(ring, next_to_use);
133 }
134
135 static const struct acpi_device_id hns_enet_acpi_match[] = {
136         { "HISI00C1", 0 },
137         { "HISI00C2", 0 },
138         { },
139 };
140 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
141
142 static void fill_desc(struct hnae_ring *ring, void *priv,
143                       int size, dma_addr_t dma, int frag_end,
144                       int buf_num, enum hns_desc_type type, int mtu)
145 {
146         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
147         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
148         struct sk_buff *skb;
149         __be16 protocol;
150         u32 ip_offset;
151         u32 asid_bufnum_pid = 0;
152         u32 flag_ipoffset = 0;
153
154         desc_cb->priv = priv;
155         desc_cb->length = size;
156         desc_cb->dma = dma;
157         desc_cb->type = type;
158
159         desc->addr = cpu_to_le64(dma);
160         desc->tx.send_size = cpu_to_le16((u16)size);
161
162         /*config bd buffer end */
163         flag_ipoffset |= 1 << HNS_TXD_VLD_B;
164
165         asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
166
167         if (type == DESC_TYPE_SKB) {
168                 skb = (struct sk_buff *)priv;
169
170                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
171                         protocol = skb->protocol;
172                         ip_offset = ETH_HLEN;
173
174                         /*if it is a SW VLAN check the next protocol*/
175                         if (protocol == htons(ETH_P_8021Q)) {
176                                 ip_offset += VLAN_HLEN;
177                                 protocol = vlan_get_protocol(skb);
178                                 skb->protocol = protocol;
179                         }
180
181                         if (skb->protocol == htons(ETH_P_IP)) {
182                                 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
183                                 /* check for tcp/udp header */
184                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
185
186                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
187                                 /* ipv6 has not l3 cs, check for L4 header */
188                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
189                         }
190
191                         flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
192                 }
193         }
194
195         flag_ipoffset |= frag_end << HNS_TXD_FE_B;
196
197         desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
198         desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
199
200         ring_ptr_move_fw(ring, next_to_use);
201 }
202
203 static void unfill_desc(struct hnae_ring *ring)
204 {
205         ring_ptr_move_bw(ring, next_to_use);
206 }
207
208 static int hns_nic_maybe_stop_tx(
209         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
210 {
211         struct sk_buff *skb = *out_skb;
212         struct sk_buff *new_skb = NULL;
213         int buf_num;
214
215         /* no. of segments (plus a header) */
216         buf_num = skb_shinfo(skb)->nr_frags + 1;
217
218         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
219                 if (ring_space(ring) < 1)
220                         return -EBUSY;
221
222                 new_skb = skb_copy(skb, GFP_ATOMIC);
223                 if (!new_skb)
224                         return -ENOMEM;
225
226                 dev_kfree_skb_any(skb);
227                 *out_skb = new_skb;
228                 buf_num = 1;
229         } else if (buf_num > ring_space(ring)) {
230                 return -EBUSY;
231         }
232
233         *bnum = buf_num;
234         return 0;
235 }
236
237 static int hns_nic_maybe_stop_tso(
238         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
239 {
240         int i;
241         int size;
242         int buf_num;
243         int frag_num;
244         struct sk_buff *skb = *out_skb;
245         struct sk_buff *new_skb = NULL;
246         struct skb_frag_struct *frag;
247
248         size = skb_headlen(skb);
249         buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
250
251         frag_num = skb_shinfo(skb)->nr_frags;
252         for (i = 0; i < frag_num; i++) {
253                 frag = &skb_shinfo(skb)->frags[i];
254                 size = skb_frag_size(frag);
255                 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
256         }
257
258         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
259                 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
260                 if (ring_space(ring) < buf_num)
261                         return -EBUSY;
262                 /* manual split the send packet */
263                 new_skb = skb_copy(skb, GFP_ATOMIC);
264                 if (!new_skb)
265                         return -ENOMEM;
266                 dev_kfree_skb_any(skb);
267                 *out_skb = new_skb;
268
269         } else if (ring_space(ring) < buf_num) {
270                 return -EBUSY;
271         }
272
273         *bnum = buf_num;
274         return 0;
275 }
276
277 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
278                           int size, dma_addr_t dma, int frag_end,
279                           int buf_num, enum hns_desc_type type, int mtu)
280 {
281         int frag_buf_num;
282         int sizeoflast;
283         int k;
284
285         frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
286         sizeoflast = size % BD_MAX_SEND_SIZE;
287         sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
288
289         /* when the frag size is bigger than hardware, split this frag */
290         for (k = 0; k < frag_buf_num; k++)
291                 fill_v2_desc(ring, priv,
292                              (k == frag_buf_num - 1) ?
293                                         sizeoflast : BD_MAX_SEND_SIZE,
294                              dma + BD_MAX_SEND_SIZE * k,
295                              frag_end && (k == frag_buf_num - 1) ? 1 : 0,
296                              buf_num,
297                              (type == DESC_TYPE_SKB && !k) ?
298                                         DESC_TYPE_SKB : DESC_TYPE_PAGE,
299                              mtu);
300 }
301
302 int hns_nic_net_xmit_hw(struct net_device *ndev,
303                         struct sk_buff *skb,
304                         struct hns_nic_ring_data *ring_data)
305 {
306         struct hns_nic_priv *priv = netdev_priv(ndev);
307         struct device *dev = priv->dev;
308         struct hnae_ring *ring = ring_data->ring;
309         struct netdev_queue *dev_queue;
310         struct skb_frag_struct *frag;
311         int buf_num;
312         int seg_num;
313         dma_addr_t dma;
314         int size, next_to_use;
315         int i;
316
317         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
318         case -EBUSY:
319                 ring->stats.tx_busy++;
320                 goto out_net_tx_busy;
321         case -ENOMEM:
322                 ring->stats.sw_err_cnt++;
323                 netdev_err(ndev, "no memory to xmit!\n");
324                 goto out_err_tx_ok;
325         default:
326                 break;
327         }
328
329         /* no. of segments (plus a header) */
330         seg_num = skb_shinfo(skb)->nr_frags + 1;
331         next_to_use = ring->next_to_use;
332
333         /* fill the first part */
334         size = skb_headlen(skb);
335         dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
336         if (dma_mapping_error(dev, dma)) {
337                 netdev_err(ndev, "TX head DMA map failed\n");
338                 ring->stats.sw_err_cnt++;
339                 goto out_err_tx_ok;
340         }
341         priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
342                             buf_num, DESC_TYPE_SKB, ndev->mtu);
343
344         /* fill the fragments */
345         for (i = 1; i < seg_num; i++) {
346                 frag = &skb_shinfo(skb)->frags[i - 1];
347                 size = skb_frag_size(frag);
348                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
349                 if (dma_mapping_error(dev, dma)) {
350                         netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
351                         ring->stats.sw_err_cnt++;
352                         goto out_map_frag_fail;
353                 }
354                 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
355                                     seg_num - 1 == i ? 1 : 0, buf_num,
356                                     DESC_TYPE_PAGE, ndev->mtu);
357         }
358
359         /*complete translate all packets*/
360         dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
361         netdev_tx_sent_queue(dev_queue, skb->len);
362
363         wmb(); /* commit all data before submit */
364         assert(skb->queue_mapping < priv->ae_handle->q_num);
365         hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
366         ring->stats.tx_pkts++;
367         ring->stats.tx_bytes += skb->len;
368
369         return NETDEV_TX_OK;
370
371 out_map_frag_fail:
372
373         while (ring->next_to_use != next_to_use) {
374                 unfill_desc(ring);
375                 if (ring->next_to_use != next_to_use)
376                         dma_unmap_page(dev,
377                                        ring->desc_cb[ring->next_to_use].dma,
378                                        ring->desc_cb[ring->next_to_use].length,
379                                        DMA_TO_DEVICE);
380                 else
381                         dma_unmap_single(dev,
382                                          ring->desc_cb[next_to_use].dma,
383                                          ring->desc_cb[next_to_use].length,
384                                          DMA_TO_DEVICE);
385         }
386
387 out_err_tx_ok:
388
389         dev_kfree_skb_any(skb);
390         return NETDEV_TX_OK;
391
392 out_net_tx_busy:
393
394         netif_stop_subqueue(ndev, skb->queue_mapping);
395
396         /* Herbert's original patch had:
397          *  smp_mb__after_netif_stop_queue();
398          * but since that doesn't exist yet, just open code it.
399          */
400         smp_mb();
401         return NETDEV_TX_BUSY;
402 }
403
404 /**
405  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
406  * @data: pointer to the start of the headers
407  * @max: total length of section to find headers in
408  *
409  * This function is meant to determine the length of headers that will
410  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
411  * motivation of doing this is to only perform one pull for IPv4 TCP
412  * packets so that we can do basic things like calculating the gso_size
413  * based on the average data per packet.
414  **/
415 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
416                                         unsigned int max_size)
417 {
418         unsigned char *network;
419         u8 hlen;
420
421         /* this should never happen, but better safe than sorry */
422         if (max_size < ETH_HLEN)
423                 return max_size;
424
425         /* initialize network frame pointer */
426         network = data;
427
428         /* set first protocol and move network header forward */
429         network += ETH_HLEN;
430
431         /* handle any vlan tag if present */
432         if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
433                 == HNS_RX_FLAG_VLAN_PRESENT) {
434                 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
435                         return max_size;
436
437                 network += VLAN_HLEN;
438         }
439
440         /* handle L3 protocols */
441         if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
442                 == HNS_RX_FLAG_L3ID_IPV4) {
443                 if ((typeof(max_size))(network - data) >
444                     (max_size - sizeof(struct iphdr)))
445                         return max_size;
446
447                 /* access ihl as a u8 to avoid unaligned access on ia64 */
448                 hlen = (network[0] & 0x0F) << 2;
449
450                 /* verify hlen meets minimum size requirements */
451                 if (hlen < sizeof(struct iphdr))
452                         return network - data;
453
454                 /* record next protocol if header is present */
455         } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
456                 == HNS_RX_FLAG_L3ID_IPV6) {
457                 if ((typeof(max_size))(network - data) >
458                     (max_size - sizeof(struct ipv6hdr)))
459                         return max_size;
460
461                 /* record next protocol */
462                 hlen = sizeof(struct ipv6hdr);
463         } else {
464                 return network - data;
465         }
466
467         /* relocate pointer to start of L4 header */
468         network += hlen;
469
470         /* finally sort out TCP/UDP */
471         if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
472                 == HNS_RX_FLAG_L4ID_TCP) {
473                 if ((typeof(max_size))(network - data) >
474                     (max_size - sizeof(struct tcphdr)))
475                         return max_size;
476
477                 /* access doff as a u8 to avoid unaligned access on ia64 */
478                 hlen = (network[12] & 0xF0) >> 2;
479
480                 /* verify hlen meets minimum size requirements */
481                 if (hlen < sizeof(struct tcphdr))
482                         return network - data;
483
484                 network += hlen;
485         } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
486                 == HNS_RX_FLAG_L4ID_UDP) {
487                 if ((typeof(max_size))(network - data) >
488                     (max_size - sizeof(struct udphdr)))
489                         return max_size;
490
491                 network += sizeof(struct udphdr);
492         }
493
494         /* If everything has gone correctly network should be the
495          * data section of the packet and will be the end of the header.
496          * If not then it probably represents the end of the last recognized
497          * header.
498          */
499         if ((typeof(max_size))(network - data) < max_size)
500                 return network - data;
501         else
502                 return max_size;
503 }
504
505 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
506                                struct hnae_ring *ring, int pull_len,
507                                struct hnae_desc_cb *desc_cb)
508 {
509         struct hnae_desc *desc;
510         int truesize, size;
511         int last_offset;
512         bool twobufs;
513
514         twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
515
516         desc = &ring->desc[ring->next_to_clean];
517         size = le16_to_cpu(desc->rx.size);
518
519         if (twobufs) {
520                 truesize = hnae_buf_size(ring);
521         } else {
522                 truesize = ALIGN(size, L1_CACHE_BYTES);
523                 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
524         }
525
526         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
527                         size - pull_len, truesize - pull_len);
528
529          /* avoid re-using remote pages,flag default unreuse */
530         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
531                 return;
532
533         if (twobufs) {
534                 /* if we are only owner of page we can reuse it */
535                 if (likely(page_count(desc_cb->priv) == 1)) {
536                         /* flip page offset to other buffer */
537                         desc_cb->page_offset ^= truesize;
538
539                         desc_cb->reuse_flag = 1;
540                         /* bump ref count on page before it is given*/
541                         get_page(desc_cb->priv);
542                 }
543                 return;
544         }
545
546         /* move offset up to the next cache line */
547         desc_cb->page_offset += truesize;
548
549         if (desc_cb->page_offset <= last_offset) {
550                 desc_cb->reuse_flag = 1;
551                 /* bump ref count on page before it is given*/
552                 get_page(desc_cb->priv);
553         }
554 }
555
556 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
557 {
558         *out_bnum = hnae_get_field(bnum_flag,
559                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
560 }
561
562 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
563 {
564         *out_bnum = hnae_get_field(bnum_flag,
565                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
566 }
567
568 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
569                                struct sk_buff **out_skb, int *out_bnum)
570 {
571         struct hnae_ring *ring = ring_data->ring;
572         struct net_device *ndev = ring_data->napi.dev;
573         struct hns_nic_priv *priv = netdev_priv(ndev);
574         struct sk_buff *skb;
575         struct hnae_desc *desc;
576         struct hnae_desc_cb *desc_cb;
577         struct ethhdr *eh;
578         unsigned char *va;
579         int bnum, length, i;
580         int pull_len;
581         u32 bnum_flag;
582
583         desc = &ring->desc[ring->next_to_clean];
584         desc_cb = &ring->desc_cb[ring->next_to_clean];
585
586         prefetch(desc);
587
588         va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
589
590         /* prefetch first cache line of first page */
591         prefetch(va);
592 #if L1_CACHE_BYTES < 128
593         prefetch(va + L1_CACHE_BYTES);
594 #endif
595
596         skb = *out_skb = napi_alloc_skb(&ring_data->napi,
597                                         HNS_RX_HEAD_SIZE);
598         if (unlikely(!skb)) {
599                 netdev_err(ndev, "alloc rx skb fail\n");
600                 ring->stats.sw_err_cnt++;
601                 return -ENOMEM;
602         }
603         skb_reset_mac_header(skb);
604
605         prefetchw(skb->data);
606         length = le16_to_cpu(desc->rx.pkt_len);
607         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
608         priv->ops.get_rxd_bnum(bnum_flag, &bnum);
609         *out_bnum = bnum;
610
611         if (length <= HNS_RX_HEAD_SIZE) {
612                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
613
614                 /* we can reuse buffer as-is, just make sure it is local */
615                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
616                         desc_cb->reuse_flag = 1;
617                 else /* this page cannot be reused so discard it */
618                         put_page(desc_cb->priv);
619
620                 ring_ptr_move_fw(ring, next_to_clean);
621
622                 if (unlikely(bnum != 1)) { /* check err*/
623                         *out_bnum = 1;
624                         goto out_bnum_err;
625                 }
626         } else {
627                 ring->stats.seg_pkt_cnt++;
628
629                 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
630                 memcpy(__skb_put(skb, pull_len), va,
631                        ALIGN(pull_len, sizeof(long)));
632
633                 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
634                 ring_ptr_move_fw(ring, next_to_clean);
635
636                 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
637                         *out_bnum = 1;
638                         goto out_bnum_err;
639                 }
640                 for (i = 1; i < bnum; i++) {
641                         desc = &ring->desc[ring->next_to_clean];
642                         desc_cb = &ring->desc_cb[ring->next_to_clean];
643
644                         hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
645                         ring_ptr_move_fw(ring, next_to_clean);
646                 }
647         }
648
649         /* check except process, free skb and jump the desc */
650         if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
651 out_bnum_err:
652                 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
653                 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
654                            bnum, ring->max_desc_num_per_pkt,
655                            length, (int)MAX_SKB_FRAGS,
656                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
657                 ring->stats.err_bd_num++;
658                 dev_kfree_skb_any(skb);
659                 return -EDOM;
660         }
661
662         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
663
664         if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
665                 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
666                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
667                 ring->stats.non_vld_descs++;
668                 dev_kfree_skb_any(skb);
669                 return -EINVAL;
670         }
671
672         if (unlikely((!desc->rx.pkt_len) ||
673                      hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
674                 ring->stats.err_pkt_len++;
675                 dev_kfree_skb_any(skb);
676                 return -EFAULT;
677         }
678
679         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
680                 ring->stats.l2_err++;
681                 dev_kfree_skb_any(skb);
682                 return -EFAULT;
683         }
684
685         /* filter out multicast pkt with the same src mac as this port */
686         eh = eth_hdr(skb);
687         if (unlikely(is_multicast_ether_addr(eh->h_dest) &&
688                      ether_addr_equal(ndev->dev_addr, eh->h_source))) {
689                 dev_kfree_skb_any(skb);
690                 return -EFAULT;
691         }
692
693         ring->stats.rx_pkts++;
694         ring->stats.rx_bytes += skb->len;
695
696         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L3E_B) ||
697                      hnae_get_bit(bnum_flag, HNS_RXD_L4E_B))) {
698                 ring->stats.l3l4_csum_err++;
699                 return 0;
700         }
701
702         skb->ip_summed = CHECKSUM_UNNECESSARY;
703
704         return 0;
705 }
706
707 static void
708 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
709 {
710         int i, ret;
711         struct hnae_desc_cb res_cbs;
712         struct hnae_desc_cb *desc_cb;
713         struct hnae_ring *ring = ring_data->ring;
714         struct net_device *ndev = ring_data->napi.dev;
715
716         for (i = 0; i < cleand_count; i++) {
717                 desc_cb = &ring->desc_cb[ring->next_to_use];
718                 if (desc_cb->reuse_flag) {
719                         ring->stats.reuse_pg_cnt++;
720                         hnae_reuse_buffer(ring, ring->next_to_use);
721                 } else {
722                         ret = hnae_reserve_buffer_map(ring, &res_cbs);
723                         if (ret) {
724                                 ring->stats.sw_err_cnt++;
725                                 netdev_err(ndev, "hnae reserve buffer map failed.\n");
726                                 break;
727                         }
728                         hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
729                 }
730
731                 ring_ptr_move_fw(ring, next_to_use);
732         }
733
734         wmb(); /* make all data has been write before submit */
735         writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
736 }
737
738 /* return error number for error or number of desc left to take
739  */
740 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
741                               struct sk_buff *skb)
742 {
743         struct net_device *ndev = ring_data->napi.dev;
744
745         skb->protocol = eth_type_trans(skb, ndev);
746         (void)napi_gro_receive(&ring_data->napi, skb);
747         ndev->last_rx = jiffies;
748 }
749
750 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
751                                int budget, void *v)
752 {
753         struct hnae_ring *ring = ring_data->ring;
754         struct sk_buff *skb;
755         int num, bnum, ex_num;
756 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
757         int recv_pkts, recv_bds, clean_count, err;
758
759         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
760         rmb(); /* make sure num taken effect before the other data is touched */
761
762         recv_pkts = 0, recv_bds = 0, clean_count = 0;
763 recv:
764         while (recv_pkts < budget && recv_bds < num) {
765                 /* reuse or realloc buffers */
766                 if (clean_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
767                         hns_nic_alloc_rx_buffers(ring_data, clean_count);
768                         clean_count = 0;
769                 }
770
771                 /* poll one pkt */
772                 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
773                 if (unlikely(!skb)) /* this fault cannot be repaired */
774                         goto out;
775
776                 recv_bds += bnum;
777                 clean_count += bnum;
778                 if (unlikely(err)) {  /* do jump the err */
779                         recv_pkts++;
780                         continue;
781                 }
782
783                 /* do update ip stack process*/
784                 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
785                                                         ring_data, skb);
786                 recv_pkts++;
787         }
788
789         /* make all data has been write before submit */
790         if (recv_pkts < budget) {
791                 ex_num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
792
793                 if (ex_num > clean_count) {
794                         num += ex_num - clean_count;
795                         rmb(); /*complete read rx ring bd number*/
796                         goto recv;
797                 }
798         }
799
800 out:
801         /* make all data has been write before submit */
802         if (clean_count > 0)
803                 hns_nic_alloc_rx_buffers(ring_data, clean_count);
804
805         return recv_pkts;
806 }
807
808 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
809 {
810         struct hnae_ring *ring = ring_data->ring;
811         int num = 0;
812
813         /* for hardware bug fixed */
814         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
815
816         if (num > 0) {
817                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
818                         ring_data->ring, 1);
819
820                 napi_schedule(&ring_data->napi);
821         }
822 }
823
824 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
825                                             int *bytes, int *pkts)
826 {
827         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
828
829         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
830         (*bytes) += desc_cb->length;
831         /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
832         hnae_free_buffer_detach(ring, ring->next_to_clean);
833
834         ring_ptr_move_fw(ring, next_to_clean);
835 }
836
837 static int is_valid_clean_head(struct hnae_ring *ring, int h)
838 {
839         int u = ring->next_to_use;
840         int c = ring->next_to_clean;
841
842         if (unlikely(h > ring->desc_num))
843                 return 0;
844
845         assert(u > 0 && u < ring->desc_num);
846         assert(c > 0 && c < ring->desc_num);
847         assert(u != c && h != c); /* must be checked before call this func */
848
849         return u > c ? (h > c && h <= u) : (h > c || h <= u);
850 }
851
852 /* netif_tx_lock will turn down the performance, set only when necessary */
853 #ifdef CONFIG_NET_POLL_CONTROLLER
854 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev)
855 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev)
856 #else
857 #define NETIF_TX_LOCK(ndev)
858 #define NETIF_TX_UNLOCK(ndev)
859 #endif
860 /* reclaim all desc in one budget
861  * return error or number of desc left
862  */
863 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
864                                int budget, void *v)
865 {
866         struct hnae_ring *ring = ring_data->ring;
867         struct net_device *ndev = ring_data->napi.dev;
868         struct netdev_queue *dev_queue;
869         struct hns_nic_priv *priv = netdev_priv(ndev);
870         int head;
871         int bytes, pkts;
872
873         NETIF_TX_LOCK(ndev);
874
875         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
876         rmb(); /* make sure head is ready before touch any data */
877
878         if (is_ring_empty(ring) || head == ring->next_to_clean) {
879                 NETIF_TX_UNLOCK(ndev);
880                 return 0; /* no data to poll */
881         }
882
883         if (!is_valid_clean_head(ring, head)) {
884                 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
885                            ring->next_to_use, ring->next_to_clean);
886                 ring->stats.io_err_cnt++;
887                 NETIF_TX_UNLOCK(ndev);
888                 return -EIO;
889         }
890
891         bytes = 0;
892         pkts = 0;
893         while (head != ring->next_to_clean) {
894                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
895                 /* issue prefetch for next Tx descriptor */
896                 prefetch(&ring->desc_cb[ring->next_to_clean]);
897         }
898
899         NETIF_TX_UNLOCK(ndev);
900
901         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
902         netdev_tx_completed_queue(dev_queue, pkts, bytes);
903
904         if (unlikely(priv->link && !netif_carrier_ok(ndev)))
905                 netif_carrier_on(ndev);
906
907         if (unlikely(pkts && netif_carrier_ok(ndev) &&
908                      (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
909                 /* Make sure that anybody stopping the queue after this
910                  * sees the new next_to_clean.
911                  */
912                 smp_mb();
913                 if (netif_tx_queue_stopped(dev_queue) &&
914                     !test_bit(NIC_STATE_DOWN, &priv->state)) {
915                         netif_tx_wake_queue(dev_queue);
916                         ring->stats.restart_queue++;
917                 }
918         }
919         return 0;
920 }
921
922 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
923 {
924         struct hnae_ring *ring = ring_data->ring;
925         int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
926
927         if (head != ring->next_to_clean) {
928                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
929                         ring_data->ring, 1);
930
931                 napi_schedule(&ring_data->napi);
932         }
933 }
934
935 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
936 {
937         struct hnae_ring *ring = ring_data->ring;
938         struct net_device *ndev = ring_data->napi.dev;
939         struct netdev_queue *dev_queue;
940         int head;
941         int bytes, pkts;
942
943         NETIF_TX_LOCK(ndev);
944
945         head = ring->next_to_use; /* ntu :soft setted ring position*/
946         bytes = 0;
947         pkts = 0;
948         while (head != ring->next_to_clean)
949                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
950
951         NETIF_TX_UNLOCK(ndev);
952
953         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
954         netdev_tx_reset_queue(dev_queue);
955 }
956
957 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
958 {
959         struct hns_nic_ring_data *ring_data =
960                 container_of(napi, struct hns_nic_ring_data, napi);
961         int clean_complete = ring_data->poll_one(
962                                 ring_data, budget, ring_data->ex_process);
963
964         if (clean_complete >= 0 && clean_complete < budget) {
965                 napi_complete(napi);
966                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
967                         ring_data->ring, 0);
968                 if (ring_data->fini_process)
969                         ring_data->fini_process(ring_data);
970                 return 0;
971         }
972
973         return clean_complete;
974 }
975
976 static irqreturn_t hns_irq_handle(int irq, void *dev)
977 {
978         struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
979
980         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
981                 ring_data->ring, 1);
982         napi_schedule(&ring_data->napi);
983
984         return IRQ_HANDLED;
985 }
986
987 /**
988  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
989  *@ndev: net device
990  */
991 static void hns_nic_adjust_link(struct net_device *ndev)
992 {
993         struct hns_nic_priv *priv = netdev_priv(ndev);
994         struct hnae_handle *h = priv->ae_handle;
995         int state = 1;
996
997         if (ndev->phydev) {
998                 h->dev->ops->adjust_link(h, ndev->phydev->speed,
999                                          ndev->phydev->duplex);
1000                 state = ndev->phydev->link;
1001         }
1002         state = state && h->dev->ops->get_status(h);
1003
1004         if (state != priv->link) {
1005                 if (state) {
1006                         netif_carrier_on(ndev);
1007                         netif_tx_wake_all_queues(ndev);
1008                         netdev_info(ndev, "link up\n");
1009                 } else {
1010                         netif_carrier_off(ndev);
1011                         netdev_info(ndev, "link down\n");
1012                 }
1013                 priv->link = state;
1014         }
1015 }
1016
1017 /**
1018  *hns_nic_init_phy - init phy
1019  *@ndev: net device
1020  *@h: ae handle
1021  * Return 0 on success, negative on failure
1022  */
1023 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1024 {
1025         struct phy_device *phy_dev = h->phy_dev;
1026         int ret;
1027
1028         if (!h->phy_dev)
1029                 return 0;
1030
1031         if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1032                 phy_dev->dev_flags = 0;
1033
1034                 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1035                                          h->phy_if);
1036         } else {
1037                 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1038         }
1039         if (unlikely(ret))
1040                 return -ENODEV;
1041
1042         phy_dev->supported &= h->if_support;
1043         phy_dev->advertising = phy_dev->supported;
1044
1045         if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1046                 phy_dev->autoneg = false;
1047
1048         return 0;
1049 }
1050
1051 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1052 {
1053         struct hns_nic_priv *priv = netdev_priv(netdev);
1054         struct hnae_handle *h = priv->ae_handle;
1055
1056         napi_enable(&priv->ring_data[idx].napi);
1057
1058         enable_irq(priv->ring_data[idx].ring->irq);
1059         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1060
1061         return 0;
1062 }
1063
1064 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1065 {
1066         struct hns_nic_priv *priv = netdev_priv(ndev);
1067         struct hnae_handle *h = priv->ae_handle;
1068         struct sockaddr *mac_addr = p;
1069         int ret;
1070
1071         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1072                 return -EADDRNOTAVAIL;
1073
1074         ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1075         if (ret) {
1076                 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1077                 return ret;
1078         }
1079
1080         memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1081
1082         return 0;
1083 }
1084
1085 void hns_nic_update_stats(struct net_device *netdev)
1086 {
1087         struct hns_nic_priv *priv = netdev_priv(netdev);
1088         struct hnae_handle *h = priv->ae_handle;
1089
1090         h->dev->ops->update_stats(h, &netdev->stats);
1091 }
1092
1093 /* set mac addr if it is configed. or leave it to the AE driver */
1094 static void hns_init_mac_addr(struct net_device *ndev)
1095 {
1096         struct hns_nic_priv *priv = netdev_priv(ndev);
1097
1098         if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1099                 eth_hw_addr_random(ndev);
1100                 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1101                          ndev->dev_addr);
1102         }
1103 }
1104
1105 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1106 {
1107         struct hns_nic_priv *priv = netdev_priv(netdev);
1108         struct hnae_handle *h = priv->ae_handle;
1109
1110         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1111         disable_irq(priv->ring_data[idx].ring->irq);
1112
1113         napi_disable(&priv->ring_data[idx].napi);
1114 }
1115
1116 static void hns_set_irq_affinity(struct hns_nic_priv *priv)
1117 {
1118         struct hnae_handle *h = priv->ae_handle;
1119         struct hns_nic_ring_data *rd;
1120         int i;
1121         int cpu;
1122         cpumask_t mask;
1123
1124         /*diffrent irq banlance for 16core and 32core*/
1125         if (h->q_num == num_possible_cpus()) {
1126                 for (i = 0; i < h->q_num * 2; i++) {
1127                         rd = &priv->ring_data[i];
1128                         if (cpu_online(rd->queue_index)) {
1129                                 cpumask_clear(&mask);
1130                                 cpu = rd->queue_index;
1131                                 cpumask_set_cpu(cpu, &mask);
1132                                 (void)irq_set_affinity_hint(rd->ring->irq,
1133                                                             &mask);
1134                         }
1135                 }
1136         } else {
1137                 for (i = 0; i < h->q_num; i++) {
1138                         rd = &priv->ring_data[i];
1139                         if (cpu_online(rd->queue_index * 2)) {
1140                                 cpumask_clear(&mask);
1141                                 cpu = rd->queue_index * 2;
1142                                 cpumask_set_cpu(cpu, &mask);
1143                                 (void)irq_set_affinity_hint(rd->ring->irq,
1144                                                             &mask);
1145                         }
1146                 }
1147
1148                 for (i = h->q_num; i < h->q_num * 2; i++) {
1149                         rd = &priv->ring_data[i];
1150                         if (cpu_online(rd->queue_index * 2 + 1)) {
1151                                 cpumask_clear(&mask);
1152                                 cpu = rd->queue_index * 2 + 1;
1153                                 cpumask_set_cpu(cpu, &mask);
1154                                 (void)irq_set_affinity_hint(rd->ring->irq,
1155                                                             &mask);
1156                         }
1157                 }
1158         }
1159 }
1160
1161 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1162 {
1163         struct hnae_handle *h = priv->ae_handle;
1164         struct hns_nic_ring_data *rd;
1165         int i;
1166         int ret;
1167
1168         for (i = 0; i < h->q_num * 2; i++) {
1169                 rd = &priv->ring_data[i];
1170
1171                 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1172                         break;
1173
1174                 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1175                          "%s-%s%d", priv->netdev->name,
1176                          (i < h->q_num ? "tx" : "rx"), rd->queue_index);
1177
1178                 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1179
1180                 ret = request_irq(rd->ring->irq,
1181                                   hns_irq_handle, 0, rd->ring->ring_name, rd);
1182                 if (ret) {
1183                         netdev_err(priv->netdev, "request irq(%d) fail\n",
1184                                    rd->ring->irq);
1185                         return ret;
1186                 }
1187                 disable_irq(rd->ring->irq);
1188                 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1189         }
1190
1191         /*set cpu affinity*/
1192         hns_set_irq_affinity(priv);
1193
1194         return 0;
1195 }
1196
1197 static int hns_nic_net_up(struct net_device *ndev)
1198 {
1199         struct hns_nic_priv *priv = netdev_priv(ndev);
1200         struct hnae_handle *h = priv->ae_handle;
1201         int i, j;
1202         int ret;
1203
1204         ret = hns_nic_init_irq(priv);
1205         if (ret != 0) {
1206                 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1207                 return ret;
1208         }
1209
1210         for (i = 0; i < h->q_num * 2; i++) {
1211                 ret = hns_nic_ring_open(ndev, i);
1212                 if (ret)
1213                         goto out_has_some_queues;
1214         }
1215
1216         ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1217         if (ret)
1218                 goto out_set_mac_addr_err;
1219
1220         ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1221         if (ret)
1222                 goto out_start_err;
1223
1224         if (ndev->phydev)
1225                 phy_start(ndev->phydev);
1226
1227         clear_bit(NIC_STATE_DOWN, &priv->state);
1228         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1229
1230         return 0;
1231
1232 out_start_err:
1233         netif_stop_queue(ndev);
1234 out_set_mac_addr_err:
1235 out_has_some_queues:
1236         for (j = i - 1; j >= 0; j--)
1237                 hns_nic_ring_close(ndev, j);
1238
1239         set_bit(NIC_STATE_DOWN, &priv->state);
1240
1241         return ret;
1242 }
1243
1244 static void hns_nic_net_down(struct net_device *ndev)
1245 {
1246         int i;
1247         struct hnae_ae_ops *ops;
1248         struct hns_nic_priv *priv = netdev_priv(ndev);
1249
1250         if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1251                 return;
1252
1253         (void)del_timer_sync(&priv->service_timer);
1254         netif_tx_stop_all_queues(ndev);
1255         netif_carrier_off(ndev);
1256         netif_tx_disable(ndev);
1257         priv->link = 0;
1258
1259         if (ndev->phydev)
1260                 phy_stop(ndev->phydev);
1261
1262         ops = priv->ae_handle->dev->ops;
1263
1264         if (ops->stop)
1265                 ops->stop(priv->ae_handle);
1266
1267         netif_tx_stop_all_queues(ndev);
1268
1269         for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1270                 hns_nic_ring_close(ndev, i);
1271                 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1272
1273                 /* clean tx buffers*/
1274                 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1275         }
1276 }
1277
1278 void hns_nic_net_reset(struct net_device *ndev)
1279 {
1280         struct hns_nic_priv *priv = netdev_priv(ndev);
1281         struct hnae_handle *handle = priv->ae_handle;
1282
1283         while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1284                 usleep_range(1000, 2000);
1285
1286         (void)hnae_reinit_handle(handle);
1287
1288         clear_bit(NIC_STATE_RESETTING, &priv->state);
1289 }
1290
1291 void hns_nic_net_reinit(struct net_device *netdev)
1292 {
1293         struct hns_nic_priv *priv = netdev_priv(netdev);
1294
1295         netif_trans_update(priv->netdev);
1296         while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1297                 usleep_range(1000, 2000);
1298
1299         hns_nic_net_down(netdev);
1300         hns_nic_net_reset(netdev);
1301         (void)hns_nic_net_up(netdev);
1302         clear_bit(NIC_STATE_REINITING, &priv->state);
1303 }
1304
1305 static int hns_nic_net_open(struct net_device *ndev)
1306 {
1307         struct hns_nic_priv *priv = netdev_priv(ndev);
1308         struct hnae_handle *h = priv->ae_handle;
1309         int ret;
1310
1311         if (test_bit(NIC_STATE_TESTING, &priv->state))
1312                 return -EBUSY;
1313
1314         priv->link = 0;
1315         netif_carrier_off(ndev);
1316
1317         ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1318         if (ret < 0) {
1319                 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1320                            ret);
1321                 return ret;
1322         }
1323
1324         ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1325         if (ret < 0) {
1326                 netdev_err(ndev,
1327                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1328                 return ret;
1329         }
1330
1331         ret = hns_nic_net_up(ndev);
1332         if (ret) {
1333                 netdev_err(ndev,
1334                            "hns net up fail, ret=%d!\n", ret);
1335                 return ret;
1336         }
1337
1338         return 0;
1339 }
1340
1341 static int hns_nic_net_stop(struct net_device *ndev)
1342 {
1343         hns_nic_net_down(ndev);
1344
1345         return 0;
1346 }
1347
1348 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1349 static void hns_nic_net_timeout(struct net_device *ndev)
1350 {
1351         struct hns_nic_priv *priv = netdev_priv(ndev);
1352
1353         hns_tx_timeout_reset(priv);
1354 }
1355
1356 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1357                             int cmd)
1358 {
1359         struct phy_device *phy_dev = netdev->phydev;
1360
1361         if (!netif_running(netdev))
1362                 return -EINVAL;
1363
1364         if (!phy_dev)
1365                 return -ENOTSUPP;
1366
1367         return phy_mii_ioctl(phy_dev, ifr, cmd);
1368 }
1369
1370 /* use only for netconsole to poll with the device without interrupt */
1371 #ifdef CONFIG_NET_POLL_CONTROLLER
1372 void hns_nic_poll_controller(struct net_device *ndev)
1373 {
1374         struct hns_nic_priv *priv = netdev_priv(ndev);
1375         unsigned long flags;
1376         int i;
1377
1378         local_irq_save(flags);
1379         for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1380                 napi_schedule(&priv->ring_data[i].napi);
1381         local_irq_restore(flags);
1382 }
1383 #endif
1384
1385 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1386                                     struct net_device *ndev)
1387 {
1388         struct hns_nic_priv *priv = netdev_priv(ndev);
1389         int ret;
1390
1391         assert(skb->queue_mapping < ndev->ae_handle->q_num);
1392         ret = hns_nic_net_xmit_hw(ndev, skb,
1393                                   &tx_ring_data(priv, skb->queue_mapping));
1394         if (ret == NETDEV_TX_OK) {
1395                 netif_trans_update(ndev);
1396                 ndev->stats.tx_bytes += skb->len;
1397                 ndev->stats.tx_packets++;
1398         }
1399         return (netdev_tx_t)ret;
1400 }
1401
1402 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1403 {
1404         struct hns_nic_priv *priv = netdev_priv(ndev);
1405         struct hnae_handle *h = priv->ae_handle;
1406         int ret;
1407
1408         /* MTU < 68 is an error and causes problems on some kernels */
1409         if (new_mtu < 68)
1410                 return -EINVAL;
1411
1412         if (!h->dev->ops->set_mtu)
1413                 return -ENOTSUPP;
1414
1415         if (netif_running(ndev)) {
1416                 (void)hns_nic_net_stop(ndev);
1417                 msleep(100);
1418
1419                 ret = h->dev->ops->set_mtu(h, new_mtu);
1420                 if (ret)
1421                         netdev_err(ndev, "set mtu fail, return value %d\n",
1422                                    ret);
1423
1424                 if (hns_nic_net_open(ndev))
1425                         netdev_err(ndev, "hns net open fail\n");
1426         } else {
1427                 ret = h->dev->ops->set_mtu(h, new_mtu);
1428         }
1429
1430         if (!ret)
1431                 ndev->mtu = new_mtu;
1432
1433         return ret;
1434 }
1435
1436 static int hns_nic_set_features(struct net_device *netdev,
1437                                 netdev_features_t features)
1438 {
1439         struct hns_nic_priv *priv = netdev_priv(netdev);
1440
1441         switch (priv->enet_ver) {
1442         case AE_VERSION_1:
1443                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1444                         netdev_info(netdev, "enet v1 do not support tso!\n");
1445                 break;
1446         default:
1447                 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1448                         priv->ops.fill_desc = fill_tso_desc;
1449                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1450                         /* The chip only support 7*4096 */
1451                         netif_set_gso_max_size(netdev, 7 * 4096);
1452                 } else {
1453                         priv->ops.fill_desc = fill_v2_desc;
1454                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1455                 }
1456                 break;
1457         }
1458         netdev->features = features;
1459         return 0;
1460 }
1461
1462 static netdev_features_t hns_nic_fix_features(
1463                 struct net_device *netdev, netdev_features_t features)
1464 {
1465         struct hns_nic_priv *priv = netdev_priv(netdev);
1466
1467         switch (priv->enet_ver) {
1468         case AE_VERSION_1:
1469                 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1470                                 NETIF_F_HW_VLAN_CTAG_FILTER);
1471                 break;
1472         default:
1473                 break;
1474         }
1475         return features;
1476 }
1477
1478 /**
1479  * nic_set_multicast_list - set mutl mac address
1480  * @netdev: net device
1481  * @p: mac address
1482  *
1483  * return void
1484  */
1485 void hns_set_multicast_list(struct net_device *ndev)
1486 {
1487         struct hns_nic_priv *priv = netdev_priv(ndev);
1488         struct hnae_handle *h = priv->ae_handle;
1489         struct netdev_hw_addr *ha = NULL;
1490
1491         if (!h) {
1492                 netdev_err(ndev, "hnae handle is null\n");
1493                 return;
1494         }
1495
1496         if (h->dev->ops->set_mc_addr) {
1497                 netdev_for_each_mc_addr(ha, ndev)
1498                         if (h->dev->ops->set_mc_addr(h, ha->addr))
1499                                 netdev_err(ndev, "set multicast fail\n");
1500         }
1501 }
1502
1503 void hns_nic_set_rx_mode(struct net_device *ndev)
1504 {
1505         struct hns_nic_priv *priv = netdev_priv(ndev);
1506         struct hnae_handle *h = priv->ae_handle;
1507
1508         if (h->dev->ops->set_promisc_mode) {
1509                 if (ndev->flags & IFF_PROMISC)
1510                         h->dev->ops->set_promisc_mode(h, 1);
1511                 else
1512                         h->dev->ops->set_promisc_mode(h, 0);
1513         }
1514
1515         hns_set_multicast_list(ndev);
1516 }
1517
1518 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev,
1519                                               struct rtnl_link_stats64 *stats)
1520 {
1521         int idx = 0;
1522         u64 tx_bytes = 0;
1523         u64 rx_bytes = 0;
1524         u64 tx_pkts = 0;
1525         u64 rx_pkts = 0;
1526         struct hns_nic_priv *priv = netdev_priv(ndev);
1527         struct hnae_handle *h = priv->ae_handle;
1528
1529         for (idx = 0; idx < h->q_num; idx++) {
1530                 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1531                 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1532                 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1533                 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1534         }
1535
1536         stats->tx_bytes = tx_bytes;
1537         stats->tx_packets = tx_pkts;
1538         stats->rx_bytes = rx_bytes;
1539         stats->rx_packets = rx_pkts;
1540
1541         stats->rx_errors = ndev->stats.rx_errors;
1542         stats->multicast = ndev->stats.multicast;
1543         stats->rx_length_errors = ndev->stats.rx_length_errors;
1544         stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1545         stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1546
1547         stats->tx_errors = ndev->stats.tx_errors;
1548         stats->rx_dropped = ndev->stats.rx_dropped;
1549         stats->tx_dropped = ndev->stats.tx_dropped;
1550         stats->collisions = ndev->stats.collisions;
1551         stats->rx_over_errors = ndev->stats.rx_over_errors;
1552         stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1553         stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1554         stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1555         stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1556         stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1557         stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1558         stats->tx_window_errors = ndev->stats.tx_window_errors;
1559         stats->rx_compressed = ndev->stats.rx_compressed;
1560         stats->tx_compressed = ndev->stats.tx_compressed;
1561
1562         return stats;
1563 }
1564
1565 static const struct net_device_ops hns_nic_netdev_ops = {
1566         .ndo_open = hns_nic_net_open,
1567         .ndo_stop = hns_nic_net_stop,
1568         .ndo_start_xmit = hns_nic_net_xmit,
1569         .ndo_tx_timeout = hns_nic_net_timeout,
1570         .ndo_set_mac_address = hns_nic_net_set_mac_address,
1571         .ndo_change_mtu = hns_nic_change_mtu,
1572         .ndo_do_ioctl = hns_nic_do_ioctl,
1573         .ndo_set_features = hns_nic_set_features,
1574         .ndo_fix_features = hns_nic_fix_features,
1575         .ndo_get_stats64 = hns_nic_get_stats64,
1576 #ifdef CONFIG_NET_POLL_CONTROLLER
1577         .ndo_poll_controller = hns_nic_poll_controller,
1578 #endif
1579         .ndo_set_rx_mode = hns_nic_set_rx_mode,
1580 };
1581
1582 static void hns_nic_update_link_status(struct net_device *netdev)
1583 {
1584         struct hns_nic_priv *priv = netdev_priv(netdev);
1585
1586         struct hnae_handle *h = priv->ae_handle;
1587
1588         if (h->phy_dev) {
1589                 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1590                         return;
1591
1592                 (void)genphy_read_status(h->phy_dev);
1593         }
1594         hns_nic_adjust_link(netdev);
1595 }
1596
1597 /* for dumping key regs*/
1598 static void hns_nic_dump(struct hns_nic_priv *priv)
1599 {
1600         struct hnae_handle *h = priv->ae_handle;
1601         struct hnae_ae_ops *ops = h->dev->ops;
1602         u32 *data, reg_num, i;
1603
1604         if (ops->get_regs_len && ops->get_regs) {
1605                 reg_num = ops->get_regs_len(priv->ae_handle);
1606                 reg_num = (reg_num + 3ul) & ~3ul;
1607                 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1608                 if (data) {
1609                         ops->get_regs(priv->ae_handle, data);
1610                         for (i = 0; i < reg_num; i += 4)
1611                                 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1612                                         i, data[i], data[i + 1],
1613                                         data[i + 2], data[i + 3]);
1614                         kfree(data);
1615                 }
1616         }
1617
1618         for (i = 0; i < h->q_num; i++) {
1619                 pr_info("tx_queue%d_next_to_clean:%d\n",
1620                         i, h->qs[i]->tx_ring.next_to_clean);
1621                 pr_info("tx_queue%d_next_to_use:%d\n",
1622                         i, h->qs[i]->tx_ring.next_to_use);
1623                 pr_info("rx_queue%d_next_to_clean:%d\n",
1624                         i, h->qs[i]->rx_ring.next_to_clean);
1625                 pr_info("rx_queue%d_next_to_use:%d\n",
1626                         i, h->qs[i]->rx_ring.next_to_use);
1627         }
1628 }
1629
1630 /* for resetting subtask */
1631 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1632 {
1633         enum hnae_port_type type = priv->ae_handle->port_type;
1634
1635         if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1636                 return;
1637         clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1638
1639         /* If we're already down, removing or resetting, just bail */
1640         if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1641             test_bit(NIC_STATE_REMOVING, &priv->state) ||
1642             test_bit(NIC_STATE_RESETTING, &priv->state))
1643                 return;
1644
1645         hns_nic_dump(priv);
1646         netdev_info(priv->netdev, "try to reset %s port!\n",
1647                     (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1648
1649         rtnl_lock();
1650         /* put off any impending NetWatchDogTimeout */
1651         netif_trans_update(priv->netdev);
1652
1653         if (type == HNAE_PORT_DEBUG) {
1654                 hns_nic_net_reinit(priv->netdev);
1655         } else {
1656                 netif_carrier_off(priv->netdev);
1657                 netif_tx_disable(priv->netdev);
1658         }
1659         rtnl_unlock();
1660 }
1661
1662 /* for doing service complete*/
1663 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
1664 {
1665         WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
1666
1667         smp_mb__before_atomic();
1668         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1669 }
1670
1671 static void hns_nic_service_task(struct work_struct *work)
1672 {
1673         struct hns_nic_priv *priv
1674                 = container_of(work, struct hns_nic_priv, service_task);
1675         struct hnae_handle *h = priv->ae_handle;
1676
1677         hns_nic_update_link_status(priv->netdev);
1678         h->dev->ops->update_led_status(h);
1679         hns_nic_update_stats(priv->netdev);
1680
1681         hns_nic_reset_subtask(priv);
1682         hns_nic_service_event_complete(priv);
1683 }
1684
1685 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
1686 {
1687         if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
1688             !test_bit(NIC_STATE_REMOVING, &priv->state) &&
1689             !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
1690                 (void)schedule_work(&priv->service_task);
1691 }
1692
1693 static void hns_nic_service_timer(unsigned long data)
1694 {
1695         struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
1696
1697         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1698
1699         hns_nic_task_schedule(priv);
1700 }
1701
1702 /**
1703  * hns_tx_timeout_reset - initiate reset due to Tx timeout
1704  * @priv: driver private struct
1705  **/
1706 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
1707 {
1708         /* Do the reset outside of interrupt context */
1709         if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
1710                 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1711                 netdev_warn(priv->netdev,
1712                             "initiating reset due to tx timeout(%llu,0x%lx)\n",
1713                             priv->tx_timeout_count, priv->state);
1714                 priv->tx_timeout_count++;
1715                 hns_nic_task_schedule(priv);
1716         }
1717 }
1718
1719 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
1720 {
1721         struct hnae_handle *h = priv->ae_handle;
1722         struct hns_nic_ring_data *rd;
1723         bool is_ver1 = AE_IS_VER1(priv->enet_ver);
1724         int i;
1725
1726         if (h->q_num > NIC_MAX_Q_PER_VF) {
1727                 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
1728                 return -EINVAL;
1729         }
1730
1731         priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
1732                                   GFP_KERNEL);
1733         if (!priv->ring_data)
1734                 return -ENOMEM;
1735
1736         for (i = 0; i < h->q_num; i++) {
1737                 rd = &priv->ring_data[i];
1738                 rd->queue_index = i;
1739                 rd->ring = &h->qs[i]->tx_ring;
1740                 rd->poll_one = hns_nic_tx_poll_one;
1741                 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : NULL;
1742
1743                 netif_napi_add(priv->netdev, &rd->napi,
1744                                hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
1745                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1746         }
1747         for (i = h->q_num; i < h->q_num * 2; i++) {
1748                 rd = &priv->ring_data[i];
1749                 rd->queue_index = i - h->q_num;
1750                 rd->ring = &h->qs[i - h->q_num]->rx_ring;
1751                 rd->poll_one = hns_nic_rx_poll_one;
1752                 rd->ex_process = hns_nic_rx_up_pro;
1753                 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : NULL;
1754
1755                 netif_napi_add(priv->netdev, &rd->napi,
1756                                hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
1757                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1758         }
1759
1760         return 0;
1761 }
1762
1763 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
1764 {
1765         struct hnae_handle *h = priv->ae_handle;
1766         int i;
1767
1768         for (i = 0; i < h->q_num * 2; i++) {
1769                 netif_napi_del(&priv->ring_data[i].napi);
1770                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1771                         (void)irq_set_affinity_hint(
1772                                 priv->ring_data[i].ring->irq,
1773                                 NULL);
1774                         free_irq(priv->ring_data[i].ring->irq,
1775                                  &priv->ring_data[i]);
1776                 }
1777
1778                 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1779         }
1780         kfree(priv->ring_data);
1781 }
1782
1783 static void hns_nic_set_priv_ops(struct net_device *netdev)
1784 {
1785         struct hns_nic_priv *priv = netdev_priv(netdev);
1786         struct hnae_handle *h = priv->ae_handle;
1787
1788         if (AE_IS_VER1(priv->enet_ver)) {
1789                 priv->ops.fill_desc = fill_desc;
1790                 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
1791                 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1792         } else {
1793                 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
1794                 if ((netdev->features & NETIF_F_TSO) ||
1795                     (netdev->features & NETIF_F_TSO6)) {
1796                         priv->ops.fill_desc = fill_tso_desc;
1797                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1798                         /* This chip only support 7*4096 */
1799                         netif_set_gso_max_size(netdev, 7 * 4096);
1800                 } else {
1801                         priv->ops.fill_desc = fill_v2_desc;
1802                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1803                 }
1804                 /* enable tso when init
1805                  * control tso on/off through TSE bit in bd
1806                  */
1807                 h->dev->ops->set_tso_stats(h, 1);
1808         }
1809 }
1810
1811 static int hns_nic_try_get_ae(struct net_device *ndev)
1812 {
1813         struct hns_nic_priv *priv = netdev_priv(ndev);
1814         struct hnae_handle *h;
1815         int ret;
1816
1817         h = hnae_get_handle(&priv->netdev->dev,
1818                             priv->fwnode, priv->port_id, NULL);
1819         if (IS_ERR_OR_NULL(h)) {
1820                 ret = -ENODEV;
1821                 dev_dbg(priv->dev, "has not handle, register notifier!\n");
1822                 goto out;
1823         }
1824         priv->ae_handle = h;
1825
1826         ret = hns_nic_init_phy(ndev, h);
1827         if (ret) {
1828                 dev_err(priv->dev, "probe phy device fail!\n");
1829                 goto out_init_phy;
1830         }
1831
1832         ret = hns_nic_init_ring_data(priv);
1833         if (ret) {
1834                 ret = -ENOMEM;
1835                 goto out_init_ring_data;
1836         }
1837
1838         hns_nic_set_priv_ops(ndev);
1839
1840         ret = register_netdev(ndev);
1841         if (ret) {
1842                 dev_err(priv->dev, "probe register netdev fail!\n");
1843                 goto out_reg_ndev_fail;
1844         }
1845         return 0;
1846
1847 out_reg_ndev_fail:
1848         hns_nic_uninit_ring_data(priv);
1849         priv->ring_data = NULL;
1850 out_init_phy:
1851 out_init_ring_data:
1852         hnae_put_handle(priv->ae_handle);
1853         priv->ae_handle = NULL;
1854 out:
1855         return ret;
1856 }
1857
1858 static int hns_nic_notifier_action(struct notifier_block *nb,
1859                                    unsigned long action, void *data)
1860 {
1861         struct hns_nic_priv *priv =
1862                 container_of(nb, struct hns_nic_priv, notifier_block);
1863
1864         assert(action == HNAE_AE_REGISTER);
1865
1866         if (!hns_nic_try_get_ae(priv->netdev)) {
1867                 hnae_unregister_notifier(&priv->notifier_block);
1868                 priv->notifier_block.notifier_call = NULL;
1869         }
1870         return 0;
1871 }
1872
1873 static int hns_nic_dev_probe(struct platform_device *pdev)
1874 {
1875         struct device *dev = &pdev->dev;
1876         struct net_device *ndev;
1877         struct hns_nic_priv *priv;
1878         u32 port_id;
1879         int ret;
1880
1881         ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
1882         if (!ndev)
1883                 return -ENOMEM;
1884
1885         platform_set_drvdata(pdev, ndev);
1886
1887         priv = netdev_priv(ndev);
1888         priv->dev = dev;
1889         priv->netdev = ndev;
1890
1891         if (dev_of_node(dev)) {
1892                 struct device_node *ae_node;
1893
1894                 if (of_device_is_compatible(dev->of_node,
1895                                             "hisilicon,hns-nic-v1"))
1896                         priv->enet_ver = AE_VERSION_1;
1897                 else
1898                         priv->enet_ver = AE_VERSION_2;
1899
1900                 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
1901                 if (IS_ERR_OR_NULL(ae_node)) {
1902                         ret = PTR_ERR(ae_node);
1903                         dev_err(dev, "not find ae-handle\n");
1904                         goto out_read_prop_fail;
1905                 }
1906                 priv->fwnode = &ae_node->fwnode;
1907         } else if (is_acpi_node(dev->fwnode)) {
1908                 struct acpi_reference_args args;
1909
1910                 if (acpi_dev_found(hns_enet_acpi_match[0].id))
1911                         priv->enet_ver = AE_VERSION_1;
1912                 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
1913                         priv->enet_ver = AE_VERSION_2;
1914                 else
1915                         return -ENXIO;
1916
1917                 /* try to find port-idx-in-ae first */
1918                 ret = acpi_node_get_property_reference(dev->fwnode,
1919                                                        "ae-handle", 0, &args);
1920                 if (ret) {
1921                         dev_err(dev, "not find ae-handle\n");
1922                         goto out_read_prop_fail;
1923                 }
1924                 priv->fwnode = acpi_fwnode_handle(args.adev);
1925         } else {
1926                 dev_err(dev, "cannot read cfg data from OF or acpi\n");
1927                 return -ENXIO;
1928         }
1929
1930         ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
1931         if (ret) {
1932                 /* only for old code compatible */
1933                 ret = device_property_read_u32(dev, "port-id", &port_id);
1934                 if (ret)
1935                         goto out_read_prop_fail;
1936                 /* for old dts, we need to caculate the port offset */
1937                 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
1938                         : port_id - HNS_SRV_OFFSET;
1939         }
1940         priv->port_id = port_id;
1941
1942         hns_init_mac_addr(ndev);
1943
1944         ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1945         ndev->priv_flags |= IFF_UNICAST_FLT;
1946         ndev->netdev_ops = &hns_nic_netdev_ops;
1947         hns_ethtool_set_ops(ndev);
1948
1949         ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1950                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1951                 NETIF_F_GRO;
1952         ndev->vlan_features |=
1953                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
1954         ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
1955
1956         switch (priv->enet_ver) {
1957         case AE_VERSION_2:
1958                 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1959                 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1960                         NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1961                         NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
1962                 break;
1963         default:
1964                 break;
1965         }
1966
1967         SET_NETDEV_DEV(ndev, dev);
1968
1969         if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
1970                 dev_dbg(dev, "set mask to 64bit\n");
1971         else
1972                 dev_err(dev, "set mask to 64bit fail!\n");
1973
1974         /* carrier off reporting is important to ethtool even BEFORE open */
1975         netif_carrier_off(ndev);
1976
1977         setup_timer(&priv->service_timer, hns_nic_service_timer,
1978                     (unsigned long)priv);
1979         INIT_WORK(&priv->service_task, hns_nic_service_task);
1980
1981         set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
1982         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1983         set_bit(NIC_STATE_DOWN, &priv->state);
1984
1985         if (hns_nic_try_get_ae(priv->netdev)) {
1986                 priv->notifier_block.notifier_call = hns_nic_notifier_action;
1987                 ret = hnae_register_notifier(&priv->notifier_block);
1988                 if (ret) {
1989                         dev_err(dev, "register notifier fail!\n");
1990                         goto out_notify_fail;
1991                 }
1992                 dev_dbg(dev, "has not handle, register notifier!\n");
1993         }
1994
1995         return 0;
1996
1997 out_notify_fail:
1998         (void)cancel_work_sync(&priv->service_task);
1999 out_read_prop_fail:
2000         free_netdev(ndev);
2001         return ret;
2002 }
2003
2004 static int hns_nic_dev_remove(struct platform_device *pdev)
2005 {
2006         struct net_device *ndev = platform_get_drvdata(pdev);
2007         struct hns_nic_priv *priv = netdev_priv(ndev);
2008
2009         if (ndev->reg_state != NETREG_UNINITIALIZED)
2010                 unregister_netdev(ndev);
2011
2012         if (priv->ring_data)
2013                 hns_nic_uninit_ring_data(priv);
2014         priv->ring_data = NULL;
2015
2016         if (ndev->phydev)
2017                 phy_disconnect(ndev->phydev);
2018
2019         if (!IS_ERR_OR_NULL(priv->ae_handle))
2020                 hnae_put_handle(priv->ae_handle);
2021         priv->ae_handle = NULL;
2022         if (priv->notifier_block.notifier_call)
2023                 hnae_unregister_notifier(&priv->notifier_block);
2024         priv->notifier_block.notifier_call = NULL;
2025
2026         set_bit(NIC_STATE_REMOVING, &priv->state);
2027         (void)cancel_work_sync(&priv->service_task);
2028
2029         free_netdev(ndev);
2030         return 0;
2031 }
2032
2033 static const struct of_device_id hns_enet_of_match[] = {
2034         {.compatible = "hisilicon,hns-nic-v1",},
2035         {.compatible = "hisilicon,hns-nic-v2",},
2036         {},
2037 };
2038
2039 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2040
2041 static struct platform_driver hns_nic_dev_driver = {
2042         .driver = {
2043                 .name = "hns-nic",
2044                 .of_match_table = hns_enet_of_match,
2045                 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2046         },
2047         .probe = hns_nic_dev_probe,
2048         .remove = hns_nic_dev_remove,
2049 };
2050
2051 module_platform_driver(hns_nic_dev_driver);
2052
2053 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2054 MODULE_AUTHOR("Hisilicon, Inc.");
2055 MODULE_LICENSE("GPL");
2056 MODULE_ALIAS("platform:hns-nic");