Merge tag 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford...
[cascardo/linux.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25
26 #define NIC_MAX_Q_PER_VF 16
27 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
28
29 #define SERVICE_TIMER_HZ (1 * HZ)
30
31 #define NIC_TX_CLEAN_MAX_NUM 256
32 #define NIC_RX_CLEAN_MAX_NUM 64
33
34 #define RCB_IRQ_NOT_INITED 0
35 #define RCB_IRQ_INITED 1
36 #define HNS_BUFFER_SIZE_2048 2048
37
38 #define BD_MAX_SEND_SIZE 8191
39 #define SKB_TMP_LEN(SKB) \
40         (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
41
42 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
43                          int size, dma_addr_t dma, int frag_end,
44                          int buf_num, enum hns_desc_type type, int mtu)
45 {
46         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
47         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
48         struct iphdr *iphdr;
49         struct ipv6hdr *ipv6hdr;
50         struct sk_buff *skb;
51         __be16 protocol;
52         u8 bn_pid = 0;
53         u8 rrcfv = 0;
54         u8 ip_offset = 0;
55         u8 tvsvsn = 0;
56         u16 mss = 0;
57         u8 l4_len = 0;
58         u16 paylen = 0;
59
60         desc_cb->priv = priv;
61         desc_cb->length = size;
62         desc_cb->dma = dma;
63         desc_cb->type = type;
64
65         desc->addr = cpu_to_le64(dma);
66         desc->tx.send_size = cpu_to_le16((u16)size);
67
68         /* config bd buffer end */
69         hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
70         hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
71
72         /* fill port_id in the tx bd for sending management pkts */
73         hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
74                        HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
75
76         if (type == DESC_TYPE_SKB) {
77                 skb = (struct sk_buff *)priv;
78
79                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
80                         skb_reset_mac_len(skb);
81                         protocol = skb->protocol;
82                         ip_offset = ETH_HLEN;
83
84                         if (protocol == htons(ETH_P_8021Q)) {
85                                 ip_offset += VLAN_HLEN;
86                                 protocol = vlan_get_protocol(skb);
87                                 skb->protocol = protocol;
88                         }
89
90                         if (skb->protocol == htons(ETH_P_IP)) {
91                                 iphdr = ip_hdr(skb);
92                                 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
93                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
94
95                                 /* check for tcp/udp header */
96                                 if (iphdr->protocol == IPPROTO_TCP &&
97                                     skb_is_gso(skb)) {
98                                         hnae_set_bit(tvsvsn,
99                                                      HNSV2_TXD_TSE_B, 1);
100                                         l4_len = tcp_hdrlen(skb);
101                                         mss = skb_shinfo(skb)->gso_size;
102                                         paylen = skb->len - SKB_TMP_LEN(skb);
103                                 }
104                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
105                                 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
106                                 ipv6hdr = ipv6_hdr(skb);
107                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
108
109                                 /* check for tcp/udp header */
110                                 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
111                                     skb_is_gso(skb) && skb_is_gso_v6(skb)) {
112                                         hnae_set_bit(tvsvsn,
113                                                      HNSV2_TXD_TSE_B, 1);
114                                         l4_len = tcp_hdrlen(skb);
115                                         mss = skb_shinfo(skb)->gso_size;
116                                         paylen = skb->len - SKB_TMP_LEN(skb);
117                                 }
118                         }
119                         desc->tx.ip_offset = ip_offset;
120                         desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
121                         desc->tx.mss = cpu_to_le16(mss);
122                         desc->tx.l4_len = l4_len;
123                         desc->tx.paylen = cpu_to_le16(paylen);
124                 }
125         }
126
127         hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
128
129         desc->tx.bn_pid = bn_pid;
130         desc->tx.ra_ri_cs_fe_vld = rrcfv;
131
132         ring_ptr_move_fw(ring, next_to_use);
133 }
134
135 static const struct acpi_device_id hns_enet_acpi_match[] = {
136         { "HISI00C1", 0 },
137         { "HISI00C2", 0 },
138         { },
139 };
140 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
141
142 static void fill_desc(struct hnae_ring *ring, void *priv,
143                       int size, dma_addr_t dma, int frag_end,
144                       int buf_num, enum hns_desc_type type, int mtu)
145 {
146         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
147         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
148         struct sk_buff *skb;
149         __be16 protocol;
150         u32 ip_offset;
151         u32 asid_bufnum_pid = 0;
152         u32 flag_ipoffset = 0;
153
154         desc_cb->priv = priv;
155         desc_cb->length = size;
156         desc_cb->dma = dma;
157         desc_cb->type = type;
158
159         desc->addr = cpu_to_le64(dma);
160         desc->tx.send_size = cpu_to_le16((u16)size);
161
162         /*config bd buffer end */
163         flag_ipoffset |= 1 << HNS_TXD_VLD_B;
164
165         asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
166
167         if (type == DESC_TYPE_SKB) {
168                 skb = (struct sk_buff *)priv;
169
170                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
171                         protocol = skb->protocol;
172                         ip_offset = ETH_HLEN;
173
174                         /*if it is a SW VLAN check the next protocol*/
175                         if (protocol == htons(ETH_P_8021Q)) {
176                                 ip_offset += VLAN_HLEN;
177                                 protocol = vlan_get_protocol(skb);
178                                 skb->protocol = protocol;
179                         }
180
181                         if (skb->protocol == htons(ETH_P_IP)) {
182                                 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
183                                 /* check for tcp/udp header */
184                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
185
186                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
187                                 /* ipv6 has not l3 cs, check for L4 header */
188                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
189                         }
190
191                         flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
192                 }
193         }
194
195         flag_ipoffset |= frag_end << HNS_TXD_FE_B;
196
197         desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
198         desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
199
200         ring_ptr_move_fw(ring, next_to_use);
201 }
202
203 static void unfill_desc(struct hnae_ring *ring)
204 {
205         ring_ptr_move_bw(ring, next_to_use);
206 }
207
208 static int hns_nic_maybe_stop_tx(
209         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
210 {
211         struct sk_buff *skb = *out_skb;
212         struct sk_buff *new_skb = NULL;
213         int buf_num;
214
215         /* no. of segments (plus a header) */
216         buf_num = skb_shinfo(skb)->nr_frags + 1;
217
218         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
219                 if (ring_space(ring) < 1)
220                         return -EBUSY;
221
222                 new_skb = skb_copy(skb, GFP_ATOMIC);
223                 if (!new_skb)
224                         return -ENOMEM;
225
226                 dev_kfree_skb_any(skb);
227                 *out_skb = new_skb;
228                 buf_num = 1;
229         } else if (buf_num > ring_space(ring)) {
230                 return -EBUSY;
231         }
232
233         *bnum = buf_num;
234         return 0;
235 }
236
237 static int hns_nic_maybe_stop_tso(
238         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
239 {
240         int i;
241         int size;
242         int buf_num;
243         int frag_num;
244         struct sk_buff *skb = *out_skb;
245         struct sk_buff *new_skb = NULL;
246         struct skb_frag_struct *frag;
247
248         size = skb_headlen(skb);
249         buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
250
251         frag_num = skb_shinfo(skb)->nr_frags;
252         for (i = 0; i < frag_num; i++) {
253                 frag = &skb_shinfo(skb)->frags[i];
254                 size = skb_frag_size(frag);
255                 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
256         }
257
258         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
259                 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
260                 if (ring_space(ring) < buf_num)
261                         return -EBUSY;
262                 /* manual split the send packet */
263                 new_skb = skb_copy(skb, GFP_ATOMIC);
264                 if (!new_skb)
265                         return -ENOMEM;
266                 dev_kfree_skb_any(skb);
267                 *out_skb = new_skb;
268
269         } else if (ring_space(ring) < buf_num) {
270                 return -EBUSY;
271         }
272
273         *bnum = buf_num;
274         return 0;
275 }
276
277 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
278                           int size, dma_addr_t dma, int frag_end,
279                           int buf_num, enum hns_desc_type type, int mtu)
280 {
281         int frag_buf_num;
282         int sizeoflast;
283         int k;
284
285         frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
286         sizeoflast = size % BD_MAX_SEND_SIZE;
287         sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
288
289         /* when the frag size is bigger than hardware, split this frag */
290         for (k = 0; k < frag_buf_num; k++)
291                 fill_v2_desc(ring, priv,
292                              (k == frag_buf_num - 1) ?
293                                         sizeoflast : BD_MAX_SEND_SIZE,
294                              dma + BD_MAX_SEND_SIZE * k,
295                              frag_end && (k == frag_buf_num - 1) ? 1 : 0,
296                              buf_num,
297                              (type == DESC_TYPE_SKB && !k) ?
298                                         DESC_TYPE_SKB : DESC_TYPE_PAGE,
299                              mtu);
300 }
301
302 int hns_nic_net_xmit_hw(struct net_device *ndev,
303                         struct sk_buff *skb,
304                         struct hns_nic_ring_data *ring_data)
305 {
306         struct hns_nic_priv *priv = netdev_priv(ndev);
307         struct device *dev = priv->dev;
308         struct hnae_ring *ring = ring_data->ring;
309         struct netdev_queue *dev_queue;
310         struct skb_frag_struct *frag;
311         int buf_num;
312         int seg_num;
313         dma_addr_t dma;
314         int size, next_to_use;
315         int i;
316
317         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
318         case -EBUSY:
319                 ring->stats.tx_busy++;
320                 goto out_net_tx_busy;
321         case -ENOMEM:
322                 ring->stats.sw_err_cnt++;
323                 netdev_err(ndev, "no memory to xmit!\n");
324                 goto out_err_tx_ok;
325         default:
326                 break;
327         }
328
329         /* no. of segments (plus a header) */
330         seg_num = skb_shinfo(skb)->nr_frags + 1;
331         next_to_use = ring->next_to_use;
332
333         /* fill the first part */
334         size = skb_headlen(skb);
335         dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
336         if (dma_mapping_error(dev, dma)) {
337                 netdev_err(ndev, "TX head DMA map failed\n");
338                 ring->stats.sw_err_cnt++;
339                 goto out_err_tx_ok;
340         }
341         priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
342                             buf_num, DESC_TYPE_SKB, ndev->mtu);
343
344         /* fill the fragments */
345         for (i = 1; i < seg_num; i++) {
346                 frag = &skb_shinfo(skb)->frags[i - 1];
347                 size = skb_frag_size(frag);
348                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
349                 if (dma_mapping_error(dev, dma)) {
350                         netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
351                         ring->stats.sw_err_cnt++;
352                         goto out_map_frag_fail;
353                 }
354                 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
355                                     seg_num - 1 == i ? 1 : 0, buf_num,
356                                     DESC_TYPE_PAGE, ndev->mtu);
357         }
358
359         /*complete translate all packets*/
360         dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
361         netdev_tx_sent_queue(dev_queue, skb->len);
362
363         wmb(); /* commit all data before submit */
364         assert(skb->queue_mapping < priv->ae_handle->q_num);
365         hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
366         ring->stats.tx_pkts++;
367         ring->stats.tx_bytes += skb->len;
368
369         return NETDEV_TX_OK;
370
371 out_map_frag_fail:
372
373         while (ring->next_to_use != next_to_use) {
374                 unfill_desc(ring);
375                 if (ring->next_to_use != next_to_use)
376                         dma_unmap_page(dev,
377                                        ring->desc_cb[ring->next_to_use].dma,
378                                        ring->desc_cb[ring->next_to_use].length,
379                                        DMA_TO_DEVICE);
380                 else
381                         dma_unmap_single(dev,
382                                          ring->desc_cb[next_to_use].dma,
383                                          ring->desc_cb[next_to_use].length,
384                                          DMA_TO_DEVICE);
385         }
386
387 out_err_tx_ok:
388
389         dev_kfree_skb_any(skb);
390         return NETDEV_TX_OK;
391
392 out_net_tx_busy:
393
394         netif_stop_subqueue(ndev, skb->queue_mapping);
395
396         /* Herbert's original patch had:
397          *  smp_mb__after_netif_stop_queue();
398          * but since that doesn't exist yet, just open code it.
399          */
400         smp_mb();
401         return NETDEV_TX_BUSY;
402 }
403
404 /**
405  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
406  * @data: pointer to the start of the headers
407  * @max: total length of section to find headers in
408  *
409  * This function is meant to determine the length of headers that will
410  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
411  * motivation of doing this is to only perform one pull for IPv4 TCP
412  * packets so that we can do basic things like calculating the gso_size
413  * based on the average data per packet.
414  **/
415 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
416                                         unsigned int max_size)
417 {
418         unsigned char *network;
419         u8 hlen;
420
421         /* this should never happen, but better safe than sorry */
422         if (max_size < ETH_HLEN)
423                 return max_size;
424
425         /* initialize network frame pointer */
426         network = data;
427
428         /* set first protocol and move network header forward */
429         network += ETH_HLEN;
430
431         /* handle any vlan tag if present */
432         if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
433                 == HNS_RX_FLAG_VLAN_PRESENT) {
434                 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
435                         return max_size;
436
437                 network += VLAN_HLEN;
438         }
439
440         /* handle L3 protocols */
441         if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
442                 == HNS_RX_FLAG_L3ID_IPV4) {
443                 if ((typeof(max_size))(network - data) >
444                     (max_size - sizeof(struct iphdr)))
445                         return max_size;
446
447                 /* access ihl as a u8 to avoid unaligned access on ia64 */
448                 hlen = (network[0] & 0x0F) << 2;
449
450                 /* verify hlen meets minimum size requirements */
451                 if (hlen < sizeof(struct iphdr))
452                         return network - data;
453
454                 /* record next protocol if header is present */
455         } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
456                 == HNS_RX_FLAG_L3ID_IPV6) {
457                 if ((typeof(max_size))(network - data) >
458                     (max_size - sizeof(struct ipv6hdr)))
459                         return max_size;
460
461                 /* record next protocol */
462                 hlen = sizeof(struct ipv6hdr);
463         } else {
464                 return network - data;
465         }
466
467         /* relocate pointer to start of L4 header */
468         network += hlen;
469
470         /* finally sort out TCP/UDP */
471         if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
472                 == HNS_RX_FLAG_L4ID_TCP) {
473                 if ((typeof(max_size))(network - data) >
474                     (max_size - sizeof(struct tcphdr)))
475                         return max_size;
476
477                 /* access doff as a u8 to avoid unaligned access on ia64 */
478                 hlen = (network[12] & 0xF0) >> 2;
479
480                 /* verify hlen meets minimum size requirements */
481                 if (hlen < sizeof(struct tcphdr))
482                         return network - data;
483
484                 network += hlen;
485         } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
486                 == HNS_RX_FLAG_L4ID_UDP) {
487                 if ((typeof(max_size))(network - data) >
488                     (max_size - sizeof(struct udphdr)))
489                         return max_size;
490
491                 network += sizeof(struct udphdr);
492         }
493
494         /* If everything has gone correctly network should be the
495          * data section of the packet and will be the end of the header.
496          * If not then it probably represents the end of the last recognized
497          * header.
498          */
499         if ((typeof(max_size))(network - data) < max_size)
500                 return network - data;
501         else
502                 return max_size;
503 }
504
505 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
506                                struct hnae_ring *ring, int pull_len,
507                                struct hnae_desc_cb *desc_cb)
508 {
509         struct hnae_desc *desc;
510         int truesize, size;
511         int last_offset;
512         bool twobufs;
513
514         twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
515
516         desc = &ring->desc[ring->next_to_clean];
517         size = le16_to_cpu(desc->rx.size);
518
519         if (twobufs) {
520                 truesize = hnae_buf_size(ring);
521         } else {
522                 truesize = ALIGN(size, L1_CACHE_BYTES);
523                 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
524         }
525
526         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
527                         size - pull_len, truesize - pull_len);
528
529          /* avoid re-using remote pages,flag default unreuse */
530         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
531                 return;
532
533         if (twobufs) {
534                 /* if we are only owner of page we can reuse it */
535                 if (likely(page_count(desc_cb->priv) == 1)) {
536                         /* flip page offset to other buffer */
537                         desc_cb->page_offset ^= truesize;
538
539                         desc_cb->reuse_flag = 1;
540                         /* bump ref count on page before it is given*/
541                         get_page(desc_cb->priv);
542                 }
543                 return;
544         }
545
546         /* move offset up to the next cache line */
547         desc_cb->page_offset += truesize;
548
549         if (desc_cb->page_offset <= last_offset) {
550                 desc_cb->reuse_flag = 1;
551                 /* bump ref count on page before it is given*/
552                 get_page(desc_cb->priv);
553         }
554 }
555
556 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
557 {
558         *out_bnum = hnae_get_field(bnum_flag,
559                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
560 }
561
562 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
563 {
564         *out_bnum = hnae_get_field(bnum_flag,
565                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
566 }
567
568 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
569                                struct sk_buff **out_skb, int *out_bnum)
570 {
571         struct hnae_ring *ring = ring_data->ring;
572         struct net_device *ndev = ring_data->napi.dev;
573         struct hns_nic_priv *priv = netdev_priv(ndev);
574         struct sk_buff *skb;
575         struct hnae_desc *desc;
576         struct hnae_desc_cb *desc_cb;
577         unsigned char *va;
578         int bnum, length, i;
579         int pull_len;
580         u32 bnum_flag;
581
582         desc = &ring->desc[ring->next_to_clean];
583         desc_cb = &ring->desc_cb[ring->next_to_clean];
584
585         prefetch(desc);
586
587         va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
588
589         /* prefetch first cache line of first page */
590         prefetch(va);
591 #if L1_CACHE_BYTES < 128
592         prefetch(va + L1_CACHE_BYTES);
593 #endif
594
595         skb = *out_skb = napi_alloc_skb(&ring_data->napi,
596                                         HNS_RX_HEAD_SIZE);
597         if (unlikely(!skb)) {
598                 netdev_err(ndev, "alloc rx skb fail\n");
599                 ring->stats.sw_err_cnt++;
600                 return -ENOMEM;
601         }
602
603         prefetchw(skb->data);
604         length = le16_to_cpu(desc->rx.pkt_len);
605         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
606         priv->ops.get_rxd_bnum(bnum_flag, &bnum);
607         *out_bnum = bnum;
608
609         if (length <= HNS_RX_HEAD_SIZE) {
610                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
611
612                 /* we can reuse buffer as-is, just make sure it is local */
613                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
614                         desc_cb->reuse_flag = 1;
615                 else /* this page cannot be reused so discard it */
616                         put_page(desc_cb->priv);
617
618                 ring_ptr_move_fw(ring, next_to_clean);
619
620                 if (unlikely(bnum != 1)) { /* check err*/
621                         *out_bnum = 1;
622                         goto out_bnum_err;
623                 }
624         } else {
625                 ring->stats.seg_pkt_cnt++;
626
627                 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
628                 memcpy(__skb_put(skb, pull_len), va,
629                        ALIGN(pull_len, sizeof(long)));
630
631                 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
632                 ring_ptr_move_fw(ring, next_to_clean);
633
634                 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
635                         *out_bnum = 1;
636                         goto out_bnum_err;
637                 }
638                 for (i = 1; i < bnum; i++) {
639                         desc = &ring->desc[ring->next_to_clean];
640                         desc_cb = &ring->desc_cb[ring->next_to_clean];
641
642                         hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
643                         ring_ptr_move_fw(ring, next_to_clean);
644                 }
645         }
646
647         /* check except process, free skb and jump the desc */
648         if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
649 out_bnum_err:
650                 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
651                 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
652                            bnum, ring->max_desc_num_per_pkt,
653                            length, (int)MAX_SKB_FRAGS,
654                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
655                 ring->stats.err_bd_num++;
656                 dev_kfree_skb_any(skb);
657                 return -EDOM;
658         }
659
660         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
661
662         if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
663                 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
664                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
665                 ring->stats.non_vld_descs++;
666                 dev_kfree_skb_any(skb);
667                 return -EINVAL;
668         }
669
670         if (unlikely((!desc->rx.pkt_len) ||
671                      hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
672                 ring->stats.err_pkt_len++;
673                 dev_kfree_skb_any(skb);
674                 return -EFAULT;
675         }
676
677         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
678                 ring->stats.l2_err++;
679                 dev_kfree_skb_any(skb);
680                 return -EFAULT;
681         }
682
683         ring->stats.rx_pkts++;
684         ring->stats.rx_bytes += skb->len;
685
686         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L3E_B) ||
687                      hnae_get_bit(bnum_flag, HNS_RXD_L4E_B))) {
688                 ring->stats.l3l4_csum_err++;
689                 return 0;
690         }
691
692         skb->ip_summed = CHECKSUM_UNNECESSARY;
693
694         return 0;
695 }
696
697 static void
698 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
699 {
700         int i, ret;
701         struct hnae_desc_cb res_cbs;
702         struct hnae_desc_cb *desc_cb;
703         struct hnae_ring *ring = ring_data->ring;
704         struct net_device *ndev = ring_data->napi.dev;
705
706         for (i = 0; i < cleand_count; i++) {
707                 desc_cb = &ring->desc_cb[ring->next_to_use];
708                 if (desc_cb->reuse_flag) {
709                         ring->stats.reuse_pg_cnt++;
710                         hnae_reuse_buffer(ring, ring->next_to_use);
711                 } else {
712                         ret = hnae_reserve_buffer_map(ring, &res_cbs);
713                         if (ret) {
714                                 ring->stats.sw_err_cnt++;
715                                 netdev_err(ndev, "hnae reserve buffer map failed.\n");
716                                 break;
717                         }
718                         hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
719                 }
720
721                 ring_ptr_move_fw(ring, next_to_use);
722         }
723
724         wmb(); /* make all data has been write before submit */
725         writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
726 }
727
728 /* return error number for error or number of desc left to take
729  */
730 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
731                               struct sk_buff *skb)
732 {
733         struct net_device *ndev = ring_data->napi.dev;
734
735         skb->protocol = eth_type_trans(skb, ndev);
736         (void)napi_gro_receive(&ring_data->napi, skb);
737         ndev->last_rx = jiffies;
738 }
739
740 static int hns_desc_unused(struct hnae_ring *ring)
741 {
742         int ntc = ring->next_to_clean;
743         int ntu = ring->next_to_use;
744
745         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
746 }
747
748 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
749                                int budget, void *v)
750 {
751         struct hnae_ring *ring = ring_data->ring;
752         struct sk_buff *skb;
753         int num, bnum;
754 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
755         int recv_pkts, recv_bds, clean_count, err;
756         int unused_count = hns_desc_unused(ring);
757
758         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
759         rmb(); /* make sure num taken effect before the other data is touched */
760
761         recv_pkts = 0, recv_bds = 0, clean_count = 0;
762         num -= unused_count;
763
764         while (recv_pkts < budget && recv_bds < num) {
765                 /* reuse or realloc buffers */
766                 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
767                         hns_nic_alloc_rx_buffers(ring_data,
768                                                  clean_count + unused_count);
769                         clean_count = 0;
770                         unused_count = hns_desc_unused(ring);
771                 }
772
773                 /* poll one pkt */
774                 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
775                 if (unlikely(!skb)) /* this fault cannot be repaired */
776                         goto out;
777
778                 recv_bds += bnum;
779                 clean_count += bnum;
780                 if (unlikely(err)) {  /* do jump the err */
781                         recv_pkts++;
782                         continue;
783                 }
784
785                 /* do update ip stack process*/
786                 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
787                                                         ring_data, skb);
788                 recv_pkts++;
789         }
790
791 out:
792         /* make all data has been write before submit */
793         if (clean_count + unused_count > 0)
794                 hns_nic_alloc_rx_buffers(ring_data,
795                                          clean_count + unused_count);
796
797         return recv_pkts;
798 }
799
800 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
801 {
802         struct hnae_ring *ring = ring_data->ring;
803         int num = 0;
804
805         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
806
807         /* for hardware bug fixed */
808         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
809
810         if (num > 0) {
811                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
812                         ring_data->ring, 1);
813
814                 napi_schedule(&ring_data->napi);
815         }
816 }
817
818 static void hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
819 {
820         struct hnae_ring *ring = ring_data->ring;
821         int num = 0;
822
823         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
824
825         if (num == 0)
826                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
827                         ring, 0);
828         else
829                 napi_schedule(&ring_data->napi);
830 }
831
832 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
833                                             int *bytes, int *pkts)
834 {
835         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
836
837         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
838         (*bytes) += desc_cb->length;
839         /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
840         hnae_free_buffer_detach(ring, ring->next_to_clean);
841
842         ring_ptr_move_fw(ring, next_to_clean);
843 }
844
845 static int is_valid_clean_head(struct hnae_ring *ring, int h)
846 {
847         int u = ring->next_to_use;
848         int c = ring->next_to_clean;
849
850         if (unlikely(h > ring->desc_num))
851                 return 0;
852
853         assert(u > 0 && u < ring->desc_num);
854         assert(c > 0 && c < ring->desc_num);
855         assert(u != c && h != c); /* must be checked before call this func */
856
857         return u > c ? (h > c && h <= u) : (h > c || h <= u);
858 }
859
860 /* netif_tx_lock will turn down the performance, set only when necessary */
861 #ifdef CONFIG_NET_POLL_CONTROLLER
862 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev)
863 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev)
864 #else
865 #define NETIF_TX_LOCK(ndev)
866 #define NETIF_TX_UNLOCK(ndev)
867 #endif
868 /* reclaim all desc in one budget
869  * return error or number of desc left
870  */
871 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
872                                int budget, void *v)
873 {
874         struct hnae_ring *ring = ring_data->ring;
875         struct net_device *ndev = ring_data->napi.dev;
876         struct netdev_queue *dev_queue;
877         struct hns_nic_priv *priv = netdev_priv(ndev);
878         int head;
879         int bytes, pkts;
880
881         NETIF_TX_LOCK(ndev);
882
883         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
884         rmb(); /* make sure head is ready before touch any data */
885
886         if (is_ring_empty(ring) || head == ring->next_to_clean) {
887                 NETIF_TX_UNLOCK(ndev);
888                 return 0; /* no data to poll */
889         }
890
891         if (!is_valid_clean_head(ring, head)) {
892                 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
893                            ring->next_to_use, ring->next_to_clean);
894                 ring->stats.io_err_cnt++;
895                 NETIF_TX_UNLOCK(ndev);
896                 return -EIO;
897         }
898
899         bytes = 0;
900         pkts = 0;
901         while (head != ring->next_to_clean) {
902                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
903                 /* issue prefetch for next Tx descriptor */
904                 prefetch(&ring->desc_cb[ring->next_to_clean]);
905         }
906
907         NETIF_TX_UNLOCK(ndev);
908
909         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
910         netdev_tx_completed_queue(dev_queue, pkts, bytes);
911
912         if (unlikely(priv->link && !netif_carrier_ok(ndev)))
913                 netif_carrier_on(ndev);
914
915         if (unlikely(pkts && netif_carrier_ok(ndev) &&
916                      (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
917                 /* Make sure that anybody stopping the queue after this
918                  * sees the new next_to_clean.
919                  */
920                 smp_mb();
921                 if (netif_tx_queue_stopped(dev_queue) &&
922                     !test_bit(NIC_STATE_DOWN, &priv->state)) {
923                         netif_tx_wake_queue(dev_queue);
924                         ring->stats.restart_queue++;
925                 }
926         }
927         return 0;
928 }
929
930 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
931 {
932         struct hnae_ring *ring = ring_data->ring;
933         int head;
934
935         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
936
937         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
938
939         if (head != ring->next_to_clean) {
940                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
941                         ring_data->ring, 1);
942
943                 napi_schedule(&ring_data->napi);
944         }
945 }
946
947 static void hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
948 {
949         struct hnae_ring *ring = ring_data->ring;
950         int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
951
952         if (head == ring->next_to_clean)
953                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
954                         ring, 0);
955         else
956                 napi_schedule(&ring_data->napi);
957 }
958
959 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
960 {
961         struct hnae_ring *ring = ring_data->ring;
962         struct net_device *ndev = ring_data->napi.dev;
963         struct netdev_queue *dev_queue;
964         int head;
965         int bytes, pkts;
966
967         NETIF_TX_LOCK(ndev);
968
969         head = ring->next_to_use; /* ntu :soft setted ring position*/
970         bytes = 0;
971         pkts = 0;
972         while (head != ring->next_to_clean)
973                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
974
975         NETIF_TX_UNLOCK(ndev);
976
977         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
978         netdev_tx_reset_queue(dev_queue);
979 }
980
981 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
982 {
983         struct hns_nic_ring_data *ring_data =
984                 container_of(napi, struct hns_nic_ring_data, napi);
985         int clean_complete = ring_data->poll_one(
986                                 ring_data, budget, ring_data->ex_process);
987
988         if (clean_complete >= 0 && clean_complete < budget) {
989                 napi_complete(napi);
990                 ring_data->fini_process(ring_data);
991                 return 0;
992         }
993
994         return clean_complete;
995 }
996
997 static irqreturn_t hns_irq_handle(int irq, void *dev)
998 {
999         struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1000
1001         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1002                 ring_data->ring, 1);
1003         napi_schedule(&ring_data->napi);
1004
1005         return IRQ_HANDLED;
1006 }
1007
1008 /**
1009  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1010  *@ndev: net device
1011  */
1012 static void hns_nic_adjust_link(struct net_device *ndev)
1013 {
1014         struct hns_nic_priv *priv = netdev_priv(ndev);
1015         struct hnae_handle *h = priv->ae_handle;
1016         int state = 1;
1017
1018         if (ndev->phydev) {
1019                 h->dev->ops->adjust_link(h, ndev->phydev->speed,
1020                                          ndev->phydev->duplex);
1021                 state = ndev->phydev->link;
1022         }
1023         state = state && h->dev->ops->get_status(h);
1024
1025         if (state != priv->link) {
1026                 if (state) {
1027                         netif_carrier_on(ndev);
1028                         netif_tx_wake_all_queues(ndev);
1029                         netdev_info(ndev, "link up\n");
1030                 } else {
1031                         netif_carrier_off(ndev);
1032                         netdev_info(ndev, "link down\n");
1033                 }
1034                 priv->link = state;
1035         }
1036 }
1037
1038 /**
1039  *hns_nic_init_phy - init phy
1040  *@ndev: net device
1041  *@h: ae handle
1042  * Return 0 on success, negative on failure
1043  */
1044 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1045 {
1046         struct phy_device *phy_dev = h->phy_dev;
1047         int ret;
1048
1049         if (!h->phy_dev)
1050                 return 0;
1051
1052         if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1053                 phy_dev->dev_flags = 0;
1054
1055                 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1056                                          h->phy_if);
1057         } else {
1058                 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1059         }
1060         if (unlikely(ret))
1061                 return -ENODEV;
1062
1063         phy_dev->supported &= h->if_support;
1064         phy_dev->advertising = phy_dev->supported;
1065
1066         if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1067                 phy_dev->autoneg = false;
1068
1069         return 0;
1070 }
1071
1072 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1073 {
1074         struct hns_nic_priv *priv = netdev_priv(netdev);
1075         struct hnae_handle *h = priv->ae_handle;
1076
1077         napi_enable(&priv->ring_data[idx].napi);
1078
1079         enable_irq(priv->ring_data[idx].ring->irq);
1080         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1081
1082         return 0;
1083 }
1084
1085 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1086 {
1087         struct hns_nic_priv *priv = netdev_priv(ndev);
1088         struct hnae_handle *h = priv->ae_handle;
1089         struct sockaddr *mac_addr = p;
1090         int ret;
1091
1092         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1093                 return -EADDRNOTAVAIL;
1094
1095         ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1096         if (ret) {
1097                 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1098                 return ret;
1099         }
1100
1101         memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1102
1103         return 0;
1104 }
1105
1106 void hns_nic_update_stats(struct net_device *netdev)
1107 {
1108         struct hns_nic_priv *priv = netdev_priv(netdev);
1109         struct hnae_handle *h = priv->ae_handle;
1110
1111         h->dev->ops->update_stats(h, &netdev->stats);
1112 }
1113
1114 /* set mac addr if it is configed. or leave it to the AE driver */
1115 static void hns_init_mac_addr(struct net_device *ndev)
1116 {
1117         struct hns_nic_priv *priv = netdev_priv(ndev);
1118
1119         if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1120                 eth_hw_addr_random(ndev);
1121                 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1122                          ndev->dev_addr);
1123         }
1124 }
1125
1126 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1127 {
1128         struct hns_nic_priv *priv = netdev_priv(netdev);
1129         struct hnae_handle *h = priv->ae_handle;
1130
1131         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1132         disable_irq(priv->ring_data[idx].ring->irq);
1133
1134         napi_disable(&priv->ring_data[idx].napi);
1135 }
1136
1137 static void hns_set_irq_affinity(struct hns_nic_priv *priv)
1138 {
1139         struct hnae_handle *h = priv->ae_handle;
1140         struct hns_nic_ring_data *rd;
1141         int i;
1142         int cpu;
1143         cpumask_t mask;
1144
1145         /*diffrent irq banlance for 16core and 32core*/
1146         if (h->q_num == num_possible_cpus()) {
1147                 for (i = 0; i < h->q_num * 2; i++) {
1148                         rd = &priv->ring_data[i];
1149                         if (cpu_online(rd->queue_index)) {
1150                                 cpumask_clear(&mask);
1151                                 cpu = rd->queue_index;
1152                                 cpumask_set_cpu(cpu, &mask);
1153                                 (void)irq_set_affinity_hint(rd->ring->irq,
1154                                                             &mask);
1155                         }
1156                 }
1157         } else {
1158                 for (i = 0; i < h->q_num; i++) {
1159                         rd = &priv->ring_data[i];
1160                         if (cpu_online(rd->queue_index * 2)) {
1161                                 cpumask_clear(&mask);
1162                                 cpu = rd->queue_index * 2;
1163                                 cpumask_set_cpu(cpu, &mask);
1164                                 (void)irq_set_affinity_hint(rd->ring->irq,
1165                                                             &mask);
1166                         }
1167                 }
1168
1169                 for (i = h->q_num; i < h->q_num * 2; i++) {
1170                         rd = &priv->ring_data[i];
1171                         if (cpu_online(rd->queue_index * 2 + 1)) {
1172                                 cpumask_clear(&mask);
1173                                 cpu = rd->queue_index * 2 + 1;
1174                                 cpumask_set_cpu(cpu, &mask);
1175                                 (void)irq_set_affinity_hint(rd->ring->irq,
1176                                                             &mask);
1177                         }
1178                 }
1179         }
1180 }
1181
1182 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1183 {
1184         struct hnae_handle *h = priv->ae_handle;
1185         struct hns_nic_ring_data *rd;
1186         int i;
1187         int ret;
1188
1189         for (i = 0; i < h->q_num * 2; i++) {
1190                 rd = &priv->ring_data[i];
1191
1192                 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1193                         break;
1194
1195                 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1196                          "%s-%s%d", priv->netdev->name,
1197                          (i < h->q_num ? "tx" : "rx"), rd->queue_index);
1198
1199                 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1200
1201                 ret = request_irq(rd->ring->irq,
1202                                   hns_irq_handle, 0, rd->ring->ring_name, rd);
1203                 if (ret) {
1204                         netdev_err(priv->netdev, "request irq(%d) fail\n",
1205                                    rd->ring->irq);
1206                         return ret;
1207                 }
1208                 disable_irq(rd->ring->irq);
1209                 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1210         }
1211
1212         /*set cpu affinity*/
1213         hns_set_irq_affinity(priv);
1214
1215         return 0;
1216 }
1217
1218 static int hns_nic_net_up(struct net_device *ndev)
1219 {
1220         struct hns_nic_priv *priv = netdev_priv(ndev);
1221         struct hnae_handle *h = priv->ae_handle;
1222         int i, j;
1223         int ret;
1224
1225         ret = hns_nic_init_irq(priv);
1226         if (ret != 0) {
1227                 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1228                 return ret;
1229         }
1230
1231         for (i = 0; i < h->q_num * 2; i++) {
1232                 ret = hns_nic_ring_open(ndev, i);
1233                 if (ret)
1234                         goto out_has_some_queues;
1235         }
1236
1237         ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1238         if (ret)
1239                 goto out_set_mac_addr_err;
1240
1241         ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1242         if (ret)
1243                 goto out_start_err;
1244
1245         if (ndev->phydev)
1246                 phy_start(ndev->phydev);
1247
1248         clear_bit(NIC_STATE_DOWN, &priv->state);
1249         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1250
1251         return 0;
1252
1253 out_start_err:
1254         netif_stop_queue(ndev);
1255 out_set_mac_addr_err:
1256 out_has_some_queues:
1257         for (j = i - 1; j >= 0; j--)
1258                 hns_nic_ring_close(ndev, j);
1259
1260         set_bit(NIC_STATE_DOWN, &priv->state);
1261
1262         return ret;
1263 }
1264
1265 static void hns_nic_net_down(struct net_device *ndev)
1266 {
1267         int i;
1268         struct hnae_ae_ops *ops;
1269         struct hns_nic_priv *priv = netdev_priv(ndev);
1270
1271         if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1272                 return;
1273
1274         (void)del_timer_sync(&priv->service_timer);
1275         netif_tx_stop_all_queues(ndev);
1276         netif_carrier_off(ndev);
1277         netif_tx_disable(ndev);
1278         priv->link = 0;
1279
1280         if (ndev->phydev)
1281                 phy_stop(ndev->phydev);
1282
1283         ops = priv->ae_handle->dev->ops;
1284
1285         if (ops->stop)
1286                 ops->stop(priv->ae_handle);
1287
1288         netif_tx_stop_all_queues(ndev);
1289
1290         for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1291                 hns_nic_ring_close(ndev, i);
1292                 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1293
1294                 /* clean tx buffers*/
1295                 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1296         }
1297 }
1298
1299 void hns_nic_net_reset(struct net_device *ndev)
1300 {
1301         struct hns_nic_priv *priv = netdev_priv(ndev);
1302         struct hnae_handle *handle = priv->ae_handle;
1303
1304         while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1305                 usleep_range(1000, 2000);
1306
1307         (void)hnae_reinit_handle(handle);
1308
1309         clear_bit(NIC_STATE_RESETTING, &priv->state);
1310 }
1311
1312 void hns_nic_net_reinit(struct net_device *netdev)
1313 {
1314         struct hns_nic_priv *priv = netdev_priv(netdev);
1315
1316         netif_trans_update(priv->netdev);
1317         while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1318                 usleep_range(1000, 2000);
1319
1320         hns_nic_net_down(netdev);
1321         hns_nic_net_reset(netdev);
1322         (void)hns_nic_net_up(netdev);
1323         clear_bit(NIC_STATE_REINITING, &priv->state);
1324 }
1325
1326 static int hns_nic_net_open(struct net_device *ndev)
1327 {
1328         struct hns_nic_priv *priv = netdev_priv(ndev);
1329         struct hnae_handle *h = priv->ae_handle;
1330         int ret;
1331
1332         if (test_bit(NIC_STATE_TESTING, &priv->state))
1333                 return -EBUSY;
1334
1335         priv->link = 0;
1336         netif_carrier_off(ndev);
1337
1338         ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1339         if (ret < 0) {
1340                 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1341                            ret);
1342                 return ret;
1343         }
1344
1345         ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1346         if (ret < 0) {
1347                 netdev_err(ndev,
1348                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1349                 return ret;
1350         }
1351
1352         ret = hns_nic_net_up(ndev);
1353         if (ret) {
1354                 netdev_err(ndev,
1355                            "hns net up fail, ret=%d!\n", ret);
1356                 return ret;
1357         }
1358
1359         return 0;
1360 }
1361
1362 static int hns_nic_net_stop(struct net_device *ndev)
1363 {
1364         hns_nic_net_down(ndev);
1365
1366         return 0;
1367 }
1368
1369 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1370 static void hns_nic_net_timeout(struct net_device *ndev)
1371 {
1372         struct hns_nic_priv *priv = netdev_priv(ndev);
1373
1374         hns_tx_timeout_reset(priv);
1375 }
1376
1377 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1378                             int cmd)
1379 {
1380         struct phy_device *phy_dev = netdev->phydev;
1381
1382         if (!netif_running(netdev))
1383                 return -EINVAL;
1384
1385         if (!phy_dev)
1386                 return -ENOTSUPP;
1387
1388         return phy_mii_ioctl(phy_dev, ifr, cmd);
1389 }
1390
1391 /* use only for netconsole to poll with the device without interrupt */
1392 #ifdef CONFIG_NET_POLL_CONTROLLER
1393 void hns_nic_poll_controller(struct net_device *ndev)
1394 {
1395         struct hns_nic_priv *priv = netdev_priv(ndev);
1396         unsigned long flags;
1397         int i;
1398
1399         local_irq_save(flags);
1400         for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1401                 napi_schedule(&priv->ring_data[i].napi);
1402         local_irq_restore(flags);
1403 }
1404 #endif
1405
1406 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1407                                     struct net_device *ndev)
1408 {
1409         struct hns_nic_priv *priv = netdev_priv(ndev);
1410         int ret;
1411
1412         assert(skb->queue_mapping < ndev->ae_handle->q_num);
1413         ret = hns_nic_net_xmit_hw(ndev, skb,
1414                                   &tx_ring_data(priv, skb->queue_mapping));
1415         if (ret == NETDEV_TX_OK) {
1416                 netif_trans_update(ndev);
1417                 ndev->stats.tx_bytes += skb->len;
1418                 ndev->stats.tx_packets++;
1419         }
1420         return (netdev_tx_t)ret;
1421 }
1422
1423 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1424 {
1425         struct hns_nic_priv *priv = netdev_priv(ndev);
1426         struct hnae_handle *h = priv->ae_handle;
1427         int ret;
1428
1429         /* MTU < 68 is an error and causes problems on some kernels */
1430         if (new_mtu < 68)
1431                 return -EINVAL;
1432
1433         if (!h->dev->ops->set_mtu)
1434                 return -ENOTSUPP;
1435
1436         if (netif_running(ndev)) {
1437                 (void)hns_nic_net_stop(ndev);
1438                 msleep(100);
1439
1440                 ret = h->dev->ops->set_mtu(h, new_mtu);
1441                 if (ret)
1442                         netdev_err(ndev, "set mtu fail, return value %d\n",
1443                                    ret);
1444
1445                 if (hns_nic_net_open(ndev))
1446                         netdev_err(ndev, "hns net open fail\n");
1447         } else {
1448                 ret = h->dev->ops->set_mtu(h, new_mtu);
1449         }
1450
1451         if (!ret)
1452                 ndev->mtu = new_mtu;
1453
1454         return ret;
1455 }
1456
1457 static int hns_nic_set_features(struct net_device *netdev,
1458                                 netdev_features_t features)
1459 {
1460         struct hns_nic_priv *priv = netdev_priv(netdev);
1461
1462         switch (priv->enet_ver) {
1463         case AE_VERSION_1:
1464                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1465                         netdev_info(netdev, "enet v1 do not support tso!\n");
1466                 break;
1467         default:
1468                 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1469                         priv->ops.fill_desc = fill_tso_desc;
1470                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1471                         /* The chip only support 7*4096 */
1472                         netif_set_gso_max_size(netdev, 7 * 4096);
1473                 } else {
1474                         priv->ops.fill_desc = fill_v2_desc;
1475                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1476                 }
1477                 break;
1478         }
1479         netdev->features = features;
1480         return 0;
1481 }
1482
1483 static netdev_features_t hns_nic_fix_features(
1484                 struct net_device *netdev, netdev_features_t features)
1485 {
1486         struct hns_nic_priv *priv = netdev_priv(netdev);
1487
1488         switch (priv->enet_ver) {
1489         case AE_VERSION_1:
1490                 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1491                                 NETIF_F_HW_VLAN_CTAG_FILTER);
1492                 break;
1493         default:
1494                 break;
1495         }
1496         return features;
1497 }
1498
1499 /**
1500  * nic_set_multicast_list - set mutl mac address
1501  * @netdev: net device
1502  * @p: mac address
1503  *
1504  * return void
1505  */
1506 void hns_set_multicast_list(struct net_device *ndev)
1507 {
1508         struct hns_nic_priv *priv = netdev_priv(ndev);
1509         struct hnae_handle *h = priv->ae_handle;
1510         struct netdev_hw_addr *ha = NULL;
1511
1512         if (!h) {
1513                 netdev_err(ndev, "hnae handle is null\n");
1514                 return;
1515         }
1516
1517         if (h->dev->ops->set_mc_addr) {
1518                 netdev_for_each_mc_addr(ha, ndev)
1519                         if (h->dev->ops->set_mc_addr(h, ha->addr))
1520                                 netdev_err(ndev, "set multicast fail\n");
1521         }
1522 }
1523
1524 void hns_nic_set_rx_mode(struct net_device *ndev)
1525 {
1526         struct hns_nic_priv *priv = netdev_priv(ndev);
1527         struct hnae_handle *h = priv->ae_handle;
1528
1529         if (h->dev->ops->set_promisc_mode) {
1530                 if (ndev->flags & IFF_PROMISC)
1531                         h->dev->ops->set_promisc_mode(h, 1);
1532                 else
1533                         h->dev->ops->set_promisc_mode(h, 0);
1534         }
1535
1536         hns_set_multicast_list(ndev);
1537 }
1538
1539 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev,
1540                                               struct rtnl_link_stats64 *stats)
1541 {
1542         int idx = 0;
1543         u64 tx_bytes = 0;
1544         u64 rx_bytes = 0;
1545         u64 tx_pkts = 0;
1546         u64 rx_pkts = 0;
1547         struct hns_nic_priv *priv = netdev_priv(ndev);
1548         struct hnae_handle *h = priv->ae_handle;
1549
1550         for (idx = 0; idx < h->q_num; idx++) {
1551                 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1552                 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1553                 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1554                 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1555         }
1556
1557         stats->tx_bytes = tx_bytes;
1558         stats->tx_packets = tx_pkts;
1559         stats->rx_bytes = rx_bytes;
1560         stats->rx_packets = rx_pkts;
1561
1562         stats->rx_errors = ndev->stats.rx_errors;
1563         stats->multicast = ndev->stats.multicast;
1564         stats->rx_length_errors = ndev->stats.rx_length_errors;
1565         stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1566         stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1567
1568         stats->tx_errors = ndev->stats.tx_errors;
1569         stats->rx_dropped = ndev->stats.rx_dropped;
1570         stats->tx_dropped = ndev->stats.tx_dropped;
1571         stats->collisions = ndev->stats.collisions;
1572         stats->rx_over_errors = ndev->stats.rx_over_errors;
1573         stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1574         stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1575         stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1576         stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1577         stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1578         stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1579         stats->tx_window_errors = ndev->stats.tx_window_errors;
1580         stats->rx_compressed = ndev->stats.rx_compressed;
1581         stats->tx_compressed = ndev->stats.tx_compressed;
1582
1583         return stats;
1584 }
1585
1586 static u16
1587 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1588                      void *accel_priv, select_queue_fallback_t fallback)
1589 {
1590         struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1591         struct hns_nic_priv *priv = netdev_priv(ndev);
1592
1593         /* fix hardware broadcast/multicast packets queue loopback */
1594         if (!AE_IS_VER1(priv->enet_ver) &&
1595             is_multicast_ether_addr(eth_hdr->h_dest))
1596                 return 0;
1597         else
1598                 return fallback(ndev, skb);
1599 }
1600
1601 static const struct net_device_ops hns_nic_netdev_ops = {
1602         .ndo_open = hns_nic_net_open,
1603         .ndo_stop = hns_nic_net_stop,
1604         .ndo_start_xmit = hns_nic_net_xmit,
1605         .ndo_tx_timeout = hns_nic_net_timeout,
1606         .ndo_set_mac_address = hns_nic_net_set_mac_address,
1607         .ndo_change_mtu = hns_nic_change_mtu,
1608         .ndo_do_ioctl = hns_nic_do_ioctl,
1609         .ndo_set_features = hns_nic_set_features,
1610         .ndo_fix_features = hns_nic_fix_features,
1611         .ndo_get_stats64 = hns_nic_get_stats64,
1612 #ifdef CONFIG_NET_POLL_CONTROLLER
1613         .ndo_poll_controller = hns_nic_poll_controller,
1614 #endif
1615         .ndo_set_rx_mode = hns_nic_set_rx_mode,
1616         .ndo_select_queue = hns_nic_select_queue,
1617 };
1618
1619 static void hns_nic_update_link_status(struct net_device *netdev)
1620 {
1621         struct hns_nic_priv *priv = netdev_priv(netdev);
1622
1623         struct hnae_handle *h = priv->ae_handle;
1624
1625         if (h->phy_dev) {
1626                 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1627                         return;
1628
1629                 (void)genphy_read_status(h->phy_dev);
1630         }
1631         hns_nic_adjust_link(netdev);
1632 }
1633
1634 /* for dumping key regs*/
1635 static void hns_nic_dump(struct hns_nic_priv *priv)
1636 {
1637         struct hnae_handle *h = priv->ae_handle;
1638         struct hnae_ae_ops *ops = h->dev->ops;
1639         u32 *data, reg_num, i;
1640
1641         if (ops->get_regs_len && ops->get_regs) {
1642                 reg_num = ops->get_regs_len(priv->ae_handle);
1643                 reg_num = (reg_num + 3ul) & ~3ul;
1644                 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1645                 if (data) {
1646                         ops->get_regs(priv->ae_handle, data);
1647                         for (i = 0; i < reg_num; i += 4)
1648                                 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1649                                         i, data[i], data[i + 1],
1650                                         data[i + 2], data[i + 3]);
1651                         kfree(data);
1652                 }
1653         }
1654
1655         for (i = 0; i < h->q_num; i++) {
1656                 pr_info("tx_queue%d_next_to_clean:%d\n",
1657                         i, h->qs[i]->tx_ring.next_to_clean);
1658                 pr_info("tx_queue%d_next_to_use:%d\n",
1659                         i, h->qs[i]->tx_ring.next_to_use);
1660                 pr_info("rx_queue%d_next_to_clean:%d\n",
1661                         i, h->qs[i]->rx_ring.next_to_clean);
1662                 pr_info("rx_queue%d_next_to_use:%d\n",
1663                         i, h->qs[i]->rx_ring.next_to_use);
1664         }
1665 }
1666
1667 /* for resetting subtask */
1668 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1669 {
1670         enum hnae_port_type type = priv->ae_handle->port_type;
1671
1672         if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1673                 return;
1674         clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1675
1676         /* If we're already down, removing or resetting, just bail */
1677         if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1678             test_bit(NIC_STATE_REMOVING, &priv->state) ||
1679             test_bit(NIC_STATE_RESETTING, &priv->state))
1680                 return;
1681
1682         hns_nic_dump(priv);
1683         netdev_info(priv->netdev, "try to reset %s port!\n",
1684                     (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1685
1686         rtnl_lock();
1687         /* put off any impending NetWatchDogTimeout */
1688         netif_trans_update(priv->netdev);
1689
1690         if (type == HNAE_PORT_DEBUG) {
1691                 hns_nic_net_reinit(priv->netdev);
1692         } else {
1693                 netif_carrier_off(priv->netdev);
1694                 netif_tx_disable(priv->netdev);
1695         }
1696         rtnl_unlock();
1697 }
1698
1699 /* for doing service complete*/
1700 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
1701 {
1702         WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
1703
1704         smp_mb__before_atomic();
1705         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1706 }
1707
1708 static void hns_nic_service_task(struct work_struct *work)
1709 {
1710         struct hns_nic_priv *priv
1711                 = container_of(work, struct hns_nic_priv, service_task);
1712         struct hnae_handle *h = priv->ae_handle;
1713
1714         hns_nic_update_link_status(priv->netdev);
1715         h->dev->ops->update_led_status(h);
1716         hns_nic_update_stats(priv->netdev);
1717
1718         hns_nic_reset_subtask(priv);
1719         hns_nic_service_event_complete(priv);
1720 }
1721
1722 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
1723 {
1724         if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
1725             !test_bit(NIC_STATE_REMOVING, &priv->state) &&
1726             !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
1727                 (void)schedule_work(&priv->service_task);
1728 }
1729
1730 static void hns_nic_service_timer(unsigned long data)
1731 {
1732         struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
1733
1734         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1735
1736         hns_nic_task_schedule(priv);
1737 }
1738
1739 /**
1740  * hns_tx_timeout_reset - initiate reset due to Tx timeout
1741  * @priv: driver private struct
1742  **/
1743 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
1744 {
1745         /* Do the reset outside of interrupt context */
1746         if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
1747                 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1748                 netdev_warn(priv->netdev,
1749                             "initiating reset due to tx timeout(%llu,0x%lx)\n",
1750                             priv->tx_timeout_count, priv->state);
1751                 priv->tx_timeout_count++;
1752                 hns_nic_task_schedule(priv);
1753         }
1754 }
1755
1756 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
1757 {
1758         struct hnae_handle *h = priv->ae_handle;
1759         struct hns_nic_ring_data *rd;
1760         bool is_ver1 = AE_IS_VER1(priv->enet_ver);
1761         int i;
1762
1763         if (h->q_num > NIC_MAX_Q_PER_VF) {
1764                 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
1765                 return -EINVAL;
1766         }
1767
1768         priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
1769                                   GFP_KERNEL);
1770         if (!priv->ring_data)
1771                 return -ENOMEM;
1772
1773         for (i = 0; i < h->q_num; i++) {
1774                 rd = &priv->ring_data[i];
1775                 rd->queue_index = i;
1776                 rd->ring = &h->qs[i]->tx_ring;
1777                 rd->poll_one = hns_nic_tx_poll_one;
1778                 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
1779                         hns_nic_tx_fini_pro_v2;
1780
1781                 netif_napi_add(priv->netdev, &rd->napi,
1782                                hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
1783                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1784         }
1785         for (i = h->q_num; i < h->q_num * 2; i++) {
1786                 rd = &priv->ring_data[i];
1787                 rd->queue_index = i - h->q_num;
1788                 rd->ring = &h->qs[i - h->q_num]->rx_ring;
1789                 rd->poll_one = hns_nic_rx_poll_one;
1790                 rd->ex_process = hns_nic_rx_up_pro;
1791                 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
1792                         hns_nic_rx_fini_pro_v2;
1793
1794                 netif_napi_add(priv->netdev, &rd->napi,
1795                                hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
1796                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1797         }
1798
1799         return 0;
1800 }
1801
1802 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
1803 {
1804         struct hnae_handle *h = priv->ae_handle;
1805         int i;
1806
1807         for (i = 0; i < h->q_num * 2; i++) {
1808                 netif_napi_del(&priv->ring_data[i].napi);
1809                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1810                         (void)irq_set_affinity_hint(
1811                                 priv->ring_data[i].ring->irq,
1812                                 NULL);
1813                         free_irq(priv->ring_data[i].ring->irq,
1814                                  &priv->ring_data[i]);
1815                 }
1816
1817                 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1818         }
1819         kfree(priv->ring_data);
1820 }
1821
1822 static void hns_nic_set_priv_ops(struct net_device *netdev)
1823 {
1824         struct hns_nic_priv *priv = netdev_priv(netdev);
1825         struct hnae_handle *h = priv->ae_handle;
1826
1827         if (AE_IS_VER1(priv->enet_ver)) {
1828                 priv->ops.fill_desc = fill_desc;
1829                 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
1830                 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1831         } else {
1832                 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
1833                 if ((netdev->features & NETIF_F_TSO) ||
1834                     (netdev->features & NETIF_F_TSO6)) {
1835                         priv->ops.fill_desc = fill_tso_desc;
1836                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1837                         /* This chip only support 7*4096 */
1838                         netif_set_gso_max_size(netdev, 7 * 4096);
1839                 } else {
1840                         priv->ops.fill_desc = fill_v2_desc;
1841                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1842                 }
1843                 /* enable tso when init
1844                  * control tso on/off through TSE bit in bd
1845                  */
1846                 h->dev->ops->set_tso_stats(h, 1);
1847         }
1848 }
1849
1850 static int hns_nic_try_get_ae(struct net_device *ndev)
1851 {
1852         struct hns_nic_priv *priv = netdev_priv(ndev);
1853         struct hnae_handle *h;
1854         int ret;
1855
1856         h = hnae_get_handle(&priv->netdev->dev,
1857                             priv->fwnode, priv->port_id, NULL);
1858         if (IS_ERR_OR_NULL(h)) {
1859                 ret = -ENODEV;
1860                 dev_dbg(priv->dev, "has not handle, register notifier!\n");
1861                 goto out;
1862         }
1863         priv->ae_handle = h;
1864
1865         ret = hns_nic_init_phy(ndev, h);
1866         if (ret) {
1867                 dev_err(priv->dev, "probe phy device fail!\n");
1868                 goto out_init_phy;
1869         }
1870
1871         ret = hns_nic_init_ring_data(priv);
1872         if (ret) {
1873                 ret = -ENOMEM;
1874                 goto out_init_ring_data;
1875         }
1876
1877         hns_nic_set_priv_ops(ndev);
1878
1879         ret = register_netdev(ndev);
1880         if (ret) {
1881                 dev_err(priv->dev, "probe register netdev fail!\n");
1882                 goto out_reg_ndev_fail;
1883         }
1884         return 0;
1885
1886 out_reg_ndev_fail:
1887         hns_nic_uninit_ring_data(priv);
1888         priv->ring_data = NULL;
1889 out_init_phy:
1890 out_init_ring_data:
1891         hnae_put_handle(priv->ae_handle);
1892         priv->ae_handle = NULL;
1893 out:
1894         return ret;
1895 }
1896
1897 static int hns_nic_notifier_action(struct notifier_block *nb,
1898                                    unsigned long action, void *data)
1899 {
1900         struct hns_nic_priv *priv =
1901                 container_of(nb, struct hns_nic_priv, notifier_block);
1902
1903         assert(action == HNAE_AE_REGISTER);
1904
1905         if (!hns_nic_try_get_ae(priv->netdev)) {
1906                 hnae_unregister_notifier(&priv->notifier_block);
1907                 priv->notifier_block.notifier_call = NULL;
1908         }
1909         return 0;
1910 }
1911
1912 static int hns_nic_dev_probe(struct platform_device *pdev)
1913 {
1914         struct device *dev = &pdev->dev;
1915         struct net_device *ndev;
1916         struct hns_nic_priv *priv;
1917         u32 port_id;
1918         int ret;
1919
1920         ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
1921         if (!ndev)
1922                 return -ENOMEM;
1923
1924         platform_set_drvdata(pdev, ndev);
1925
1926         priv = netdev_priv(ndev);
1927         priv->dev = dev;
1928         priv->netdev = ndev;
1929
1930         if (dev_of_node(dev)) {
1931                 struct device_node *ae_node;
1932
1933                 if (of_device_is_compatible(dev->of_node,
1934                                             "hisilicon,hns-nic-v1"))
1935                         priv->enet_ver = AE_VERSION_1;
1936                 else
1937                         priv->enet_ver = AE_VERSION_2;
1938
1939                 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
1940                 if (IS_ERR_OR_NULL(ae_node)) {
1941                         ret = PTR_ERR(ae_node);
1942                         dev_err(dev, "not find ae-handle\n");
1943                         goto out_read_prop_fail;
1944                 }
1945                 priv->fwnode = &ae_node->fwnode;
1946         } else if (is_acpi_node(dev->fwnode)) {
1947                 struct acpi_reference_args args;
1948
1949                 if (acpi_dev_found(hns_enet_acpi_match[0].id))
1950                         priv->enet_ver = AE_VERSION_1;
1951                 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
1952                         priv->enet_ver = AE_VERSION_2;
1953                 else
1954                         return -ENXIO;
1955
1956                 /* try to find port-idx-in-ae first */
1957                 ret = acpi_node_get_property_reference(dev->fwnode,
1958                                                        "ae-handle", 0, &args);
1959                 if (ret) {
1960                         dev_err(dev, "not find ae-handle\n");
1961                         goto out_read_prop_fail;
1962                 }
1963                 priv->fwnode = acpi_fwnode_handle(args.adev);
1964         } else {
1965                 dev_err(dev, "cannot read cfg data from OF or acpi\n");
1966                 return -ENXIO;
1967         }
1968
1969         ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
1970         if (ret) {
1971                 /* only for old code compatible */
1972                 ret = device_property_read_u32(dev, "port-id", &port_id);
1973                 if (ret)
1974                         goto out_read_prop_fail;
1975                 /* for old dts, we need to caculate the port offset */
1976                 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
1977                         : port_id - HNS_SRV_OFFSET;
1978         }
1979         priv->port_id = port_id;
1980
1981         hns_init_mac_addr(ndev);
1982
1983         ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1984         ndev->priv_flags |= IFF_UNICAST_FLT;
1985         ndev->netdev_ops = &hns_nic_netdev_ops;
1986         hns_ethtool_set_ops(ndev);
1987
1988         ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1989                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1990                 NETIF_F_GRO;
1991         ndev->vlan_features |=
1992                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
1993         ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
1994
1995         switch (priv->enet_ver) {
1996         case AE_VERSION_2:
1997                 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1998                 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1999                         NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2000                         NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2001                 break;
2002         default:
2003                 break;
2004         }
2005
2006         SET_NETDEV_DEV(ndev, dev);
2007
2008         if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2009                 dev_dbg(dev, "set mask to 64bit\n");
2010         else
2011                 dev_err(dev, "set mask to 64bit fail!\n");
2012
2013         /* carrier off reporting is important to ethtool even BEFORE open */
2014         netif_carrier_off(ndev);
2015
2016         setup_timer(&priv->service_timer, hns_nic_service_timer,
2017                     (unsigned long)priv);
2018         INIT_WORK(&priv->service_task, hns_nic_service_task);
2019
2020         set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2021         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2022         set_bit(NIC_STATE_DOWN, &priv->state);
2023
2024         if (hns_nic_try_get_ae(priv->netdev)) {
2025                 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2026                 ret = hnae_register_notifier(&priv->notifier_block);
2027                 if (ret) {
2028                         dev_err(dev, "register notifier fail!\n");
2029                         goto out_notify_fail;
2030                 }
2031                 dev_dbg(dev, "has not handle, register notifier!\n");
2032         }
2033
2034         return 0;
2035
2036 out_notify_fail:
2037         (void)cancel_work_sync(&priv->service_task);
2038 out_read_prop_fail:
2039         free_netdev(ndev);
2040         return ret;
2041 }
2042
2043 static int hns_nic_dev_remove(struct platform_device *pdev)
2044 {
2045         struct net_device *ndev = platform_get_drvdata(pdev);
2046         struct hns_nic_priv *priv = netdev_priv(ndev);
2047
2048         if (ndev->reg_state != NETREG_UNINITIALIZED)
2049                 unregister_netdev(ndev);
2050
2051         if (priv->ring_data)
2052                 hns_nic_uninit_ring_data(priv);
2053         priv->ring_data = NULL;
2054
2055         if (ndev->phydev)
2056                 phy_disconnect(ndev->phydev);
2057
2058         if (!IS_ERR_OR_NULL(priv->ae_handle))
2059                 hnae_put_handle(priv->ae_handle);
2060         priv->ae_handle = NULL;
2061         if (priv->notifier_block.notifier_call)
2062                 hnae_unregister_notifier(&priv->notifier_block);
2063         priv->notifier_block.notifier_call = NULL;
2064
2065         set_bit(NIC_STATE_REMOVING, &priv->state);
2066         (void)cancel_work_sync(&priv->service_task);
2067
2068         free_netdev(ndev);
2069         return 0;
2070 }
2071
2072 static const struct of_device_id hns_enet_of_match[] = {
2073         {.compatible = "hisilicon,hns-nic-v1",},
2074         {.compatible = "hisilicon,hns-nic-v2",},
2075         {},
2076 };
2077
2078 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2079
2080 static struct platform_driver hns_nic_dev_driver = {
2081         .driver = {
2082                 .name = "hns-nic",
2083                 .of_match_table = hns_enet_of_match,
2084                 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2085         },
2086         .probe = hns_nic_dev_probe,
2087         .remove = hns_nic_dev_remove,
2088 };
2089
2090 module_platform_driver(hns_nic_dev_driver);
2091
2092 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2093 MODULE_AUTHOR("Hisilicon, Inc.");
2094 MODULE_LICENSE("GPL");
2095 MODULE_ALIAS("platform:hns-nic");