net: fix suspicious rcu_dereference_check in net/sched/sch_fq_codel.c
[cascardo/linux.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static const struct pci_device_id e1000_pci_tbl[] = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1075),
76         INTEL_E1000_ETHERNET_DEVICE(0x1076),
77         INTEL_E1000_ETHERNET_DEVICE(0x1077),
78         INTEL_E1000_ETHERNET_DEVICE(0x1078),
79         INTEL_E1000_ETHERNET_DEVICE(0x1079),
80         INTEL_E1000_ETHERNET_DEVICE(0x107A),
81         INTEL_E1000_ETHERNET_DEVICE(0x107B),
82         INTEL_E1000_ETHERNET_DEVICE(0x107C),
83         INTEL_E1000_ETHERNET_DEVICE(0x108A),
84         INTEL_E1000_ETHERNET_DEVICE(0x1099),
85         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133                                     struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139                                struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142                                struct e1000_rx_ring *rx_ring,
143                                int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145                                      struct e1000_rx_ring *rx_ring,
146                                      int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148                                    struct e1000_rx_ring *rx_ring,
149                                    int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151                                          struct e1000_rx_ring *rx_ring,
152                                          int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155                            int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166                             netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168                                      bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
170                                  __be16 proto, u16 vid);
171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
172                                   __be16 proto, u16 vid);
173 static void e1000_restore_vlan(struct e1000_adapter *adapter);
174
175 #ifdef CONFIG_PM
176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177 static int e1000_resume(struct pci_dev *pdev);
178 #endif
179 static void e1000_shutdown(struct pci_dev *pdev);
180
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device *netdev);
184 #endif
185
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188 module_param(copybreak, uint, 0644);
189 MODULE_PARM_DESC(copybreak,
190         "Maximum size of packet that is copied to a new buffer on receive");
191
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193                      pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196
197 static const struct pci_error_handlers e1000_err_handler = {
198         .error_detected = e1000_io_error_detected,
199         .slot_reset = e1000_io_slot_reset,
200         .resume = e1000_io_resume,
201 };
202
203 static struct pci_driver e1000_driver = {
204         .name     = e1000_driver_name,
205         .id_table = e1000_pci_tbl,
206         .probe    = e1000_probe,
207         .remove   = e1000_remove,
208 #ifdef CONFIG_PM
209         /* Power Management Hooks */
210         .suspend  = e1000_suspend,
211         .resume   = e1000_resume,
212 #endif
213         .shutdown = e1000_shutdown,
214         .err_handler = &e1000_err_handler
215 };
216
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221
222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223 static int debug = -1;
224 module_param(debug, int, 0);
225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226
227 /**
228  * e1000_get_hw_dev - return device
229  * used by hardware layer to print debugging information
230  *
231  **/
232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233 {
234         struct e1000_adapter *adapter = hw->back;
235         return adapter->netdev;
236 }
237
238 /**
239  * e1000_init_module - Driver Registration Routine
240  *
241  * e1000_init_module is the first routine called when the driver is
242  * loaded. All it does is register with the PCI subsystem.
243  **/
244 static int __init e1000_init_module(void)
245 {
246         int ret;
247         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248
249         pr_info("%s\n", e1000_copyright);
250
251         ret = pci_register_driver(&e1000_driver);
252         if (copybreak != COPYBREAK_DEFAULT) {
253                 if (copybreak == 0)
254                         pr_info("copybreak disabled\n");
255                 else
256                         pr_info("copybreak enabled for "
257                                    "packets <= %u bytes\n", copybreak);
258         }
259         return ret;
260 }
261
262 module_init(e1000_init_module);
263
264 /**
265  * e1000_exit_module - Driver Exit Cleanup Routine
266  *
267  * e1000_exit_module is called just before the driver is removed
268  * from memory.
269  **/
270 static void __exit e1000_exit_module(void)
271 {
272         pci_unregister_driver(&e1000_driver);
273 }
274
275 module_exit(e1000_exit_module);
276
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279         struct net_device *netdev = adapter->netdev;
280         irq_handler_t handler = e1000_intr;
281         int irq_flags = IRQF_SHARED;
282         int err;
283
284         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285                           netdev);
286         if (err) {
287                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288         }
289
290         return err;
291 }
292
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295         struct net_device *netdev = adapter->netdev;
296
297         free_irq(adapter->pdev->irq, netdev);
298 }
299
300 /**
301  * e1000_irq_disable - Mask off interrupt generation on the NIC
302  * @adapter: board private structure
303  **/
304 static void e1000_irq_disable(struct e1000_adapter *adapter)
305 {
306         struct e1000_hw *hw = &adapter->hw;
307
308         ew32(IMC, ~0);
309         E1000_WRITE_FLUSH();
310         synchronize_irq(adapter->pdev->irq);
311 }
312
313 /**
314  * e1000_irq_enable - Enable default interrupt generation settings
315  * @adapter: board private structure
316  **/
317 static void e1000_irq_enable(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320
321         ew32(IMS, IMS_ENABLE_MASK);
322         E1000_WRITE_FLUSH();
323 }
324
325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
326 {
327         struct e1000_hw *hw = &adapter->hw;
328         struct net_device *netdev = adapter->netdev;
329         u16 vid = hw->mng_cookie.vlan_id;
330         u16 old_vid = adapter->mng_vlan_id;
331
332         if (!e1000_vlan_used(adapter))
333                 return;
334
335         if (!test_bit(vid, adapter->active_vlans)) {
336                 if (hw->mng_cookie.status &
337                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
338                         e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
339                         adapter->mng_vlan_id = vid;
340                 } else {
341                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
342                 }
343                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
344                     (vid != old_vid) &&
345                     !test_bit(old_vid, adapter->active_vlans))
346                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
347                                                old_vid);
348         } else {
349                 adapter->mng_vlan_id = vid;
350         }
351 }
352
353 static void e1000_init_manageability(struct e1000_adapter *adapter)
354 {
355         struct e1000_hw *hw = &adapter->hw;
356
357         if (adapter->en_mng_pt) {
358                 u32 manc = er32(MANC);
359
360                 /* disable hardware interception of ARP */
361                 manc &= ~(E1000_MANC_ARP_EN);
362
363                 ew32(MANC, manc);
364         }
365 }
366
367 static void e1000_release_manageability(struct e1000_adapter *adapter)
368 {
369         struct e1000_hw *hw = &adapter->hw;
370
371         if (adapter->en_mng_pt) {
372                 u32 manc = er32(MANC);
373
374                 /* re-enable hardware interception of ARP */
375                 manc |= E1000_MANC_ARP_EN;
376
377                 ew32(MANC, manc);
378         }
379 }
380
381 /**
382  * e1000_configure - configure the hardware for RX and TX
383  * @adapter = private board structure
384  **/
385 static void e1000_configure(struct e1000_adapter *adapter)
386 {
387         struct net_device *netdev = adapter->netdev;
388         int i;
389
390         e1000_set_rx_mode(netdev);
391
392         e1000_restore_vlan(adapter);
393         e1000_init_manageability(adapter);
394
395         e1000_configure_tx(adapter);
396         e1000_setup_rctl(adapter);
397         e1000_configure_rx(adapter);
398         /* call E1000_DESC_UNUSED which always leaves
399          * at least 1 descriptor unused to make sure
400          * next_to_use != next_to_clean
401          */
402         for (i = 0; i < adapter->num_rx_queues; i++) {
403                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404                 adapter->alloc_rx_buf(adapter, ring,
405                                       E1000_DESC_UNUSED(ring));
406         }
407 }
408
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411         struct e1000_hw *hw = &adapter->hw;
412
413         /* hardware has been reset, we need to reload some things */
414         e1000_configure(adapter);
415
416         clear_bit(__E1000_DOWN, &adapter->flags);
417
418         napi_enable(&adapter->napi);
419
420         e1000_irq_enable(adapter);
421
422         netif_wake_queue(adapter->netdev);
423
424         /* fire a link change interrupt to start the watchdog */
425         ew32(ICS, E1000_ICS_LSC);
426         return 0;
427 }
428
429 /**
430  * e1000_power_up_phy - restore link in case the phy was powered down
431  * @adapter: address of board private structure
432  *
433  * The phy may be powered down to save power and turn off link when the
434  * driver is unloaded and wake on lan is not enabled (among others)
435  * *** this routine MUST be followed by a call to e1000_reset ***
436  **/
437 void e1000_power_up_phy(struct e1000_adapter *adapter)
438 {
439         struct e1000_hw *hw = &adapter->hw;
440         u16 mii_reg = 0;
441
442         /* Just clear the power down bit to wake the phy back up */
443         if (hw->media_type == e1000_media_type_copper) {
444                 /* according to the manual, the phy will retain its
445                  * settings across a power-down/up cycle
446                  */
447                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
448                 mii_reg &= ~MII_CR_POWER_DOWN;
449                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
450         }
451 }
452
453 static void e1000_power_down_phy(struct e1000_adapter *adapter)
454 {
455         struct e1000_hw *hw = &adapter->hw;
456
457         /* Power down the PHY so no link is implied when interface is down *
458          * The PHY cannot be powered down if any of the following is true *
459          * (a) WoL is enabled
460          * (b) AMT is active
461          * (c) SoL/IDER session is active
462          */
463         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464            hw->media_type == e1000_media_type_copper) {
465                 u16 mii_reg = 0;
466
467                 switch (hw->mac_type) {
468                 case e1000_82540:
469                 case e1000_82545:
470                 case e1000_82545_rev_3:
471                 case e1000_82546:
472                 case e1000_ce4100:
473                 case e1000_82546_rev_3:
474                 case e1000_82541:
475                 case e1000_82541_rev_2:
476                 case e1000_82547:
477                 case e1000_82547_rev_2:
478                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
479                                 goto out;
480                         break;
481                 default:
482                         goto out;
483                 }
484                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485                 mii_reg |= MII_CR_POWER_DOWN;
486                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487                 msleep(1);
488         }
489 out:
490         return;
491 }
492
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495         set_bit(__E1000_DOWN, &adapter->flags);
496
497         cancel_delayed_work_sync(&adapter->watchdog_task);
498
499         /*
500          * Since the watchdog task can reschedule other tasks, we should cancel
501          * it first, otherwise we can run into the situation when a work is
502          * still running after the adapter has been turned down.
503          */
504
505         cancel_delayed_work_sync(&adapter->phy_info_task);
506         cancel_delayed_work_sync(&adapter->fifo_stall_task);
507
508         /* Only kill reset task if adapter is not resetting */
509         if (!test_bit(__E1000_RESETTING, &adapter->flags))
510                 cancel_work_sync(&adapter->reset_task);
511 }
512
513 void e1000_down(struct e1000_adapter *adapter)
514 {
515         struct e1000_hw *hw = &adapter->hw;
516         struct net_device *netdev = adapter->netdev;
517         u32 rctl, tctl;
518
519
520         /* disable receives in the hardware */
521         rctl = er32(RCTL);
522         ew32(RCTL, rctl & ~E1000_RCTL_EN);
523         /* flush and sleep below */
524
525         netif_tx_disable(netdev);
526
527         /* disable transmits in the hardware */
528         tctl = er32(TCTL);
529         tctl &= ~E1000_TCTL_EN;
530         ew32(TCTL, tctl);
531         /* flush both disables and wait for them to finish */
532         E1000_WRITE_FLUSH();
533         msleep(10);
534
535         napi_disable(&adapter->napi);
536
537         e1000_irq_disable(adapter);
538
539         /* Setting DOWN must be after irq_disable to prevent
540          * a screaming interrupt.  Setting DOWN also prevents
541          * tasks from rescheduling.
542          */
543         e1000_down_and_stop(adapter);
544
545         adapter->link_speed = 0;
546         adapter->link_duplex = 0;
547         netif_carrier_off(netdev);
548
549         e1000_reset(adapter);
550         e1000_clean_all_tx_rings(adapter);
551         e1000_clean_all_rx_rings(adapter);
552 }
553
554 void e1000_reinit_locked(struct e1000_adapter *adapter)
555 {
556         WARN_ON(in_interrupt());
557         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558                 msleep(1);
559         e1000_down(adapter);
560         e1000_up(adapter);
561         clear_bit(__E1000_RESETTING, &adapter->flags);
562 }
563
564 void e1000_reset(struct e1000_adapter *adapter)
565 {
566         struct e1000_hw *hw = &adapter->hw;
567         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
568         bool legacy_pba_adjust = false;
569         u16 hwm;
570
571         /* Repartition Pba for greater than 9k mtu
572          * To take effect CTRL.RST is required.
573          */
574
575         switch (hw->mac_type) {
576         case e1000_82542_rev2_0:
577         case e1000_82542_rev2_1:
578         case e1000_82543:
579         case e1000_82544:
580         case e1000_82540:
581         case e1000_82541:
582         case e1000_82541_rev_2:
583                 legacy_pba_adjust = true;
584                 pba = E1000_PBA_48K;
585                 break;
586         case e1000_82545:
587         case e1000_82545_rev_3:
588         case e1000_82546:
589         case e1000_ce4100:
590         case e1000_82546_rev_3:
591                 pba = E1000_PBA_48K;
592                 break;
593         case e1000_82547:
594         case e1000_82547_rev_2:
595                 legacy_pba_adjust = true;
596                 pba = E1000_PBA_30K;
597                 break;
598         case e1000_undefined:
599         case e1000_num_macs:
600                 break;
601         }
602
603         if (legacy_pba_adjust) {
604                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
605                         pba -= 8; /* allocate more FIFO for Tx */
606
607                 if (hw->mac_type == e1000_82547) {
608                         adapter->tx_fifo_head = 0;
609                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610                         adapter->tx_fifo_size =
611                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612                         atomic_set(&adapter->tx_fifo_stall, 0);
613                 }
614         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
615                 /* adjust PBA for jumbo frames */
616                 ew32(PBA, pba);
617
618                 /* To maintain wire speed transmits, the Tx FIFO should be
619                  * large enough to accommodate two full transmit packets,
620                  * rounded up to the next 1KB and expressed in KB.  Likewise,
621                  * the Rx FIFO should be large enough to accommodate at least
622                  * one full receive packet and is similarly rounded up and
623                  * expressed in KB.
624                  */
625                 pba = er32(PBA);
626                 /* upper 16 bits has Tx packet buffer allocation size in KB */
627                 tx_space = pba >> 16;
628                 /* lower 16 bits has Rx packet buffer allocation size in KB */
629                 pba &= 0xffff;
630                 /* the Tx fifo also stores 16 bytes of information about the Tx
631                  * but don't include ethernet FCS because hardware appends it
632                  */
633                 min_tx_space = (hw->max_frame_size +
634                                 sizeof(struct e1000_tx_desc) -
635                                 ETH_FCS_LEN) * 2;
636                 min_tx_space = ALIGN(min_tx_space, 1024);
637                 min_tx_space >>= 10;
638                 /* software strips receive CRC, so leave room for it */
639                 min_rx_space = hw->max_frame_size;
640                 min_rx_space = ALIGN(min_rx_space, 1024);
641                 min_rx_space >>= 10;
642
643                 /* If current Tx allocation is less than the min Tx FIFO size,
644                  * and the min Tx FIFO size is less than the current Rx FIFO
645                  * allocation, take space away from current Rx allocation
646                  */
647                 if (tx_space < min_tx_space &&
648                     ((min_tx_space - tx_space) < pba)) {
649                         pba = pba - (min_tx_space - tx_space);
650
651                         /* PCI/PCIx hardware has PBA alignment constraints */
652                         switch (hw->mac_type) {
653                         case e1000_82545 ... e1000_82546_rev_3:
654                                 pba &= ~(E1000_PBA_8K - 1);
655                                 break;
656                         default:
657                                 break;
658                         }
659
660                         /* if short on Rx space, Rx wins and must trump Tx
661                          * adjustment or use Early Receive if available
662                          */
663                         if (pba < min_rx_space)
664                                 pba = min_rx_space;
665                 }
666         }
667
668         ew32(PBA, pba);
669
670         /* flow control settings:
671          * The high water mark must be low enough to fit one full frame
672          * (or the size used for early receive) above it in the Rx FIFO.
673          * Set it to the lower of:
674          * - 90% of the Rx FIFO size, and
675          * - the full Rx FIFO size minus the early receive size (for parts
676          *   with ERT support assuming ERT set to E1000_ERT_2048), or
677          * - the full Rx FIFO size minus one full frame
678          */
679         hwm = min(((pba << 10) * 9 / 10),
680                   ((pba << 10) - hw->max_frame_size));
681
682         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
683         hw->fc_low_water = hw->fc_high_water - 8;
684         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
685         hw->fc_send_xon = 1;
686         hw->fc = hw->original_fc;
687
688         /* Allow time for pending master requests to run */
689         e1000_reset_hw(hw);
690         if (hw->mac_type >= e1000_82544)
691                 ew32(WUC, 0);
692
693         if (e1000_init_hw(hw))
694                 e_dev_err("Hardware Error\n");
695         e1000_update_mng_vlan(adapter);
696
697         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
698         if (hw->mac_type >= e1000_82544 &&
699             hw->autoneg == 1 &&
700             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
701                 u32 ctrl = er32(CTRL);
702                 /* clear phy power management bit if we are in gig only mode,
703                  * which if enabled will attempt negotiation to 100Mb, which
704                  * can cause a loss of link at power off or driver unload
705                  */
706                 ctrl &= ~E1000_CTRL_SWDPIN3;
707                 ew32(CTRL, ctrl);
708         }
709
710         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
711         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
712
713         e1000_reset_adaptive(hw);
714         e1000_phy_get_info(hw, &adapter->phy_info);
715
716         e1000_release_manageability(adapter);
717 }
718
719 /* Dump the eeprom for users having checksum issues */
720 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
721 {
722         struct net_device *netdev = adapter->netdev;
723         struct ethtool_eeprom eeprom;
724         const struct ethtool_ops *ops = netdev->ethtool_ops;
725         u8 *data;
726         int i;
727         u16 csum_old, csum_new = 0;
728
729         eeprom.len = ops->get_eeprom_len(netdev);
730         eeprom.offset = 0;
731
732         data = kmalloc(eeprom.len, GFP_KERNEL);
733         if (!data)
734                 return;
735
736         ops->get_eeprom(netdev, &eeprom, data);
737
738         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
739                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
740         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
741                 csum_new += data[i] + (data[i + 1] << 8);
742         csum_new = EEPROM_SUM - csum_new;
743
744         pr_err("/*********************/\n");
745         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
746         pr_err("Calculated              : 0x%04x\n", csum_new);
747
748         pr_err("Offset    Values\n");
749         pr_err("========  ======\n");
750         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
751
752         pr_err("Include this output when contacting your support provider.\n");
753         pr_err("This is not a software error! Something bad happened to\n");
754         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
755         pr_err("result in further problems, possibly loss of data,\n");
756         pr_err("corruption or system hangs!\n");
757         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
758         pr_err("which is invalid and requires you to set the proper MAC\n");
759         pr_err("address manually before continuing to enable this network\n");
760         pr_err("device. Please inspect the EEPROM dump and report the\n");
761         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
762         pr_err("/*********************/\n");
763
764         kfree(data);
765 }
766
767 /**
768  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
769  * @pdev: PCI device information struct
770  *
771  * Return true if an adapter needs ioport resources
772  **/
773 static int e1000_is_need_ioport(struct pci_dev *pdev)
774 {
775         switch (pdev->device) {
776         case E1000_DEV_ID_82540EM:
777         case E1000_DEV_ID_82540EM_LOM:
778         case E1000_DEV_ID_82540EP:
779         case E1000_DEV_ID_82540EP_LOM:
780         case E1000_DEV_ID_82540EP_LP:
781         case E1000_DEV_ID_82541EI:
782         case E1000_DEV_ID_82541EI_MOBILE:
783         case E1000_DEV_ID_82541ER:
784         case E1000_DEV_ID_82541ER_LOM:
785         case E1000_DEV_ID_82541GI:
786         case E1000_DEV_ID_82541GI_LF:
787         case E1000_DEV_ID_82541GI_MOBILE:
788         case E1000_DEV_ID_82544EI_COPPER:
789         case E1000_DEV_ID_82544EI_FIBER:
790         case E1000_DEV_ID_82544GC_COPPER:
791         case E1000_DEV_ID_82544GC_LOM:
792         case E1000_DEV_ID_82545EM_COPPER:
793         case E1000_DEV_ID_82545EM_FIBER:
794         case E1000_DEV_ID_82546EB_COPPER:
795         case E1000_DEV_ID_82546EB_FIBER:
796         case E1000_DEV_ID_82546EB_QUAD_COPPER:
797                 return true;
798         default:
799                 return false;
800         }
801 }
802
803 static netdev_features_t e1000_fix_features(struct net_device *netdev,
804         netdev_features_t features)
805 {
806         /* Since there is no support for separate Rx/Tx vlan accel
807          * enable/disable make sure Tx flag is always in same state as Rx.
808          */
809         if (features & NETIF_F_HW_VLAN_CTAG_RX)
810                 features |= NETIF_F_HW_VLAN_CTAG_TX;
811         else
812                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
813
814         return features;
815 }
816
817 static int e1000_set_features(struct net_device *netdev,
818         netdev_features_t features)
819 {
820         struct e1000_adapter *adapter = netdev_priv(netdev);
821         netdev_features_t changed = features ^ netdev->features;
822
823         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
824                 e1000_vlan_mode(netdev, features);
825
826         if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
827                 return 0;
828
829         netdev->features = features;
830         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
831
832         if (netif_running(netdev))
833                 e1000_reinit_locked(adapter);
834         else
835                 e1000_reset(adapter);
836
837         return 0;
838 }
839
840 static const struct net_device_ops e1000_netdev_ops = {
841         .ndo_open               = e1000_open,
842         .ndo_stop               = e1000_close,
843         .ndo_start_xmit         = e1000_xmit_frame,
844         .ndo_get_stats          = e1000_get_stats,
845         .ndo_set_rx_mode        = e1000_set_rx_mode,
846         .ndo_set_mac_address    = e1000_set_mac,
847         .ndo_tx_timeout         = e1000_tx_timeout,
848         .ndo_change_mtu         = e1000_change_mtu,
849         .ndo_do_ioctl           = e1000_ioctl,
850         .ndo_validate_addr      = eth_validate_addr,
851         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
852         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
853 #ifdef CONFIG_NET_POLL_CONTROLLER
854         .ndo_poll_controller    = e1000_netpoll,
855 #endif
856         .ndo_fix_features       = e1000_fix_features,
857         .ndo_set_features       = e1000_set_features,
858 };
859
860 /**
861  * e1000_init_hw_struct - initialize members of hw struct
862  * @adapter: board private struct
863  * @hw: structure used by e1000_hw.c
864  *
865  * Factors out initialization of the e1000_hw struct to its own function
866  * that can be called very early at init (just after struct allocation).
867  * Fields are initialized based on PCI device information and
868  * OS network device settings (MTU size).
869  * Returns negative error codes if MAC type setup fails.
870  */
871 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
872                                 struct e1000_hw *hw)
873 {
874         struct pci_dev *pdev = adapter->pdev;
875
876         /* PCI config space info */
877         hw->vendor_id = pdev->vendor;
878         hw->device_id = pdev->device;
879         hw->subsystem_vendor_id = pdev->subsystem_vendor;
880         hw->subsystem_id = pdev->subsystem_device;
881         hw->revision_id = pdev->revision;
882
883         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
884
885         hw->max_frame_size = adapter->netdev->mtu +
886                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
887         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
888
889         /* identify the MAC */
890         if (e1000_set_mac_type(hw)) {
891                 e_err(probe, "Unknown MAC Type\n");
892                 return -EIO;
893         }
894
895         switch (hw->mac_type) {
896         default:
897                 break;
898         case e1000_82541:
899         case e1000_82547:
900         case e1000_82541_rev_2:
901         case e1000_82547_rev_2:
902                 hw->phy_init_script = 1;
903                 break;
904         }
905
906         e1000_set_media_type(hw);
907         e1000_get_bus_info(hw);
908
909         hw->wait_autoneg_complete = false;
910         hw->tbi_compatibility_en = true;
911         hw->adaptive_ifs = true;
912
913         /* Copper options */
914
915         if (hw->media_type == e1000_media_type_copper) {
916                 hw->mdix = AUTO_ALL_MODES;
917                 hw->disable_polarity_correction = false;
918                 hw->master_slave = E1000_MASTER_SLAVE;
919         }
920
921         return 0;
922 }
923
924 /**
925  * e1000_probe - Device Initialization Routine
926  * @pdev: PCI device information struct
927  * @ent: entry in e1000_pci_tbl
928  *
929  * Returns 0 on success, negative on failure
930  *
931  * e1000_probe initializes an adapter identified by a pci_dev structure.
932  * The OS initialization, configuring of the adapter private structure,
933  * and a hardware reset occur.
934  **/
935 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
936 {
937         struct net_device *netdev;
938         struct e1000_adapter *adapter;
939         struct e1000_hw *hw;
940
941         static int cards_found = 0;
942         static int global_quad_port_a = 0; /* global ksp3 port a indication */
943         int i, err, pci_using_dac;
944         u16 eeprom_data = 0;
945         u16 tmp = 0;
946         u16 eeprom_apme_mask = E1000_EEPROM_APME;
947         int bars, need_ioport;
948
949         /* do not allocate ioport bars when not needed */
950         need_ioport = e1000_is_need_ioport(pdev);
951         if (need_ioport) {
952                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
953                 err = pci_enable_device(pdev);
954         } else {
955                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
956                 err = pci_enable_device_mem(pdev);
957         }
958         if (err)
959                 return err;
960
961         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
962         if (err)
963                 goto err_pci_reg;
964
965         pci_set_master(pdev);
966         err = pci_save_state(pdev);
967         if (err)
968                 goto err_alloc_etherdev;
969
970         err = -ENOMEM;
971         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972         if (!netdev)
973                 goto err_alloc_etherdev;
974
975         SET_NETDEV_DEV(netdev, &pdev->dev);
976
977         pci_set_drvdata(pdev, netdev);
978         adapter = netdev_priv(netdev);
979         adapter->netdev = netdev;
980         adapter->pdev = pdev;
981         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
982         adapter->bars = bars;
983         adapter->need_ioport = need_ioport;
984
985         hw = &adapter->hw;
986         hw->back = adapter;
987
988         err = -EIO;
989         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990         if (!hw->hw_addr)
991                 goto err_ioremap;
992
993         if (adapter->need_ioport) {
994                 for (i = BAR_1; i <= BAR_5; i++) {
995                         if (pci_resource_len(pdev, i) == 0)
996                                 continue;
997                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998                                 hw->io_base = pci_resource_start(pdev, i);
999                                 break;
1000                         }
1001                 }
1002         }
1003
1004         /* make ready for any if (hw->...) below */
1005         err = e1000_init_hw_struct(adapter, hw);
1006         if (err)
1007                 goto err_sw_init;
1008
1009         /* there is a workaround being applied below that limits
1010          * 64-bit DMA addresses to 64-bit hardware.  There are some
1011          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1012          */
1013         pci_using_dac = 0;
1014         if ((hw->bus_type == e1000_bus_type_pcix) &&
1015             !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1016                 pci_using_dac = 1;
1017         } else {
1018                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019                 if (err) {
1020                         pr_err("No usable DMA config, aborting\n");
1021                         goto err_dma;
1022                 }
1023         }
1024
1025         netdev->netdev_ops = &e1000_netdev_ops;
1026         e1000_set_ethtool_ops(netdev);
1027         netdev->watchdog_timeo = 5 * HZ;
1028         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1029
1030         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1031
1032         adapter->bd_number = cards_found;
1033
1034         /* setup the private structure */
1035
1036         err = e1000_sw_init(adapter);
1037         if (err)
1038                 goto err_sw_init;
1039
1040         err = -EIO;
1041         if (hw->mac_type == e1000_ce4100) {
1042                 hw->ce4100_gbe_mdio_base_virt =
1043                                         ioremap(pci_resource_start(pdev, BAR_1),
1044                                                 pci_resource_len(pdev, BAR_1));
1045
1046                 if (!hw->ce4100_gbe_mdio_base_virt)
1047                         goto err_mdio_ioremap;
1048         }
1049
1050         if (hw->mac_type >= e1000_82543) {
1051                 netdev->hw_features = NETIF_F_SG |
1052                                    NETIF_F_HW_CSUM |
1053                                    NETIF_F_HW_VLAN_CTAG_RX;
1054                 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1055                                    NETIF_F_HW_VLAN_CTAG_FILTER;
1056         }
1057
1058         if ((hw->mac_type >= e1000_82544) &&
1059            (hw->mac_type != e1000_82547))
1060                 netdev->hw_features |= NETIF_F_TSO;
1061
1062         netdev->priv_flags |= IFF_SUPP_NOFCS;
1063
1064         netdev->features |= netdev->hw_features;
1065         netdev->hw_features |= (NETIF_F_RXCSUM |
1066                                 NETIF_F_RXALL |
1067                                 NETIF_F_RXFCS);
1068
1069         if (pci_using_dac) {
1070                 netdev->features |= NETIF_F_HIGHDMA;
1071                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1072         }
1073
1074         netdev->vlan_features |= (NETIF_F_TSO |
1075                                   NETIF_F_HW_CSUM |
1076                                   NETIF_F_SG);
1077
1078         /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1079         if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1080             hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1081                 netdev->priv_flags |= IFF_UNICAST_FLT;
1082
1083         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1084
1085         /* initialize eeprom parameters */
1086         if (e1000_init_eeprom_params(hw)) {
1087                 e_err(probe, "EEPROM initialization failed\n");
1088                 goto err_eeprom;
1089         }
1090
1091         /* before reading the EEPROM, reset the controller to
1092          * put the device in a known good starting state
1093          */
1094
1095         e1000_reset_hw(hw);
1096
1097         /* make sure the EEPROM is good */
1098         if (e1000_validate_eeprom_checksum(hw) < 0) {
1099                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1100                 e1000_dump_eeprom(adapter);
1101                 /* set MAC address to all zeroes to invalidate and temporary
1102                  * disable this device for the user. This blocks regular
1103                  * traffic while still permitting ethtool ioctls from reaching
1104                  * the hardware as well as allowing the user to run the
1105                  * interface after manually setting a hw addr using
1106                  * `ip set address`
1107                  */
1108                 memset(hw->mac_addr, 0, netdev->addr_len);
1109         } else {
1110                 /* copy the MAC address out of the EEPROM */
1111                 if (e1000_read_mac_addr(hw))
1112                         e_err(probe, "EEPROM Read Error\n");
1113         }
1114         /* don't block initalization here due to bad MAC address */
1115         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1116
1117         if (!is_valid_ether_addr(netdev->dev_addr))
1118                 e_err(probe, "Invalid MAC Address\n");
1119
1120
1121         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1122         INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1123                           e1000_82547_tx_fifo_stall_task);
1124         INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1125         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1126
1127         e1000_check_options(adapter);
1128
1129         /* Initial Wake on LAN setting
1130          * If APM wake is enabled in the EEPROM,
1131          * enable the ACPI Magic Packet filter
1132          */
1133
1134         switch (hw->mac_type) {
1135         case e1000_82542_rev2_0:
1136         case e1000_82542_rev2_1:
1137         case e1000_82543:
1138                 break;
1139         case e1000_82544:
1140                 e1000_read_eeprom(hw,
1141                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1142                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1143                 break;
1144         case e1000_82546:
1145         case e1000_82546_rev_3:
1146                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1147                         e1000_read_eeprom(hw,
1148                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1149                         break;
1150                 }
1151                 /* Fall Through */
1152         default:
1153                 e1000_read_eeprom(hw,
1154                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1155                 break;
1156         }
1157         if (eeprom_data & eeprom_apme_mask)
1158                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1159
1160         /* now that we have the eeprom settings, apply the special cases
1161          * where the eeprom may be wrong or the board simply won't support
1162          * wake on lan on a particular port
1163          */
1164         switch (pdev->device) {
1165         case E1000_DEV_ID_82546GB_PCIE:
1166                 adapter->eeprom_wol = 0;
1167                 break;
1168         case E1000_DEV_ID_82546EB_FIBER:
1169         case E1000_DEV_ID_82546GB_FIBER:
1170                 /* Wake events only supported on port A for dual fiber
1171                  * regardless of eeprom setting
1172                  */
1173                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1174                         adapter->eeprom_wol = 0;
1175                 break;
1176         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1177                 /* if quad port adapter, disable WoL on all but port A */
1178                 if (global_quad_port_a != 0)
1179                         adapter->eeprom_wol = 0;
1180                 else
1181                         adapter->quad_port_a = true;
1182                 /* Reset for multiple quad port adapters */
1183                 if (++global_quad_port_a == 4)
1184                         global_quad_port_a = 0;
1185                 break;
1186         }
1187
1188         /* initialize the wol settings based on the eeprom settings */
1189         adapter->wol = adapter->eeprom_wol;
1190         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1191
1192         /* Auto detect PHY address */
1193         if (hw->mac_type == e1000_ce4100) {
1194                 for (i = 0; i < 32; i++) {
1195                         hw->phy_addr = i;
1196                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1197                         if (tmp == 0 || tmp == 0xFF) {
1198                                 if (i == 31)
1199                                         goto err_eeprom;
1200                                 continue;
1201                         } else
1202                                 break;
1203                 }
1204         }
1205
1206         /* reset the hardware with the new settings */
1207         e1000_reset(adapter);
1208
1209         strcpy(netdev->name, "eth%d");
1210         err = register_netdev(netdev);
1211         if (err)
1212                 goto err_register;
1213
1214         e1000_vlan_filter_on_off(adapter, false);
1215
1216         /* print bus type/speed/width info */
1217         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1218                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1219                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1220                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1221                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1222                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1223                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1224                netdev->dev_addr);
1225
1226         /* carrier off reporting is important to ethtool even BEFORE open */
1227         netif_carrier_off(netdev);
1228
1229         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1230
1231         cards_found++;
1232         return 0;
1233
1234 err_register:
1235 err_eeprom:
1236         e1000_phy_hw_reset(hw);
1237
1238         if (hw->flash_address)
1239                 iounmap(hw->flash_address);
1240         kfree(adapter->tx_ring);
1241         kfree(adapter->rx_ring);
1242 err_dma:
1243 err_sw_init:
1244 err_mdio_ioremap:
1245         iounmap(hw->ce4100_gbe_mdio_base_virt);
1246         iounmap(hw->hw_addr);
1247 err_ioremap:
1248         free_netdev(netdev);
1249 err_alloc_etherdev:
1250         pci_release_selected_regions(pdev, bars);
1251 err_pci_reg:
1252         pci_disable_device(pdev);
1253         return err;
1254 }
1255
1256 /**
1257  * e1000_remove - Device Removal Routine
1258  * @pdev: PCI device information struct
1259  *
1260  * e1000_remove is called by the PCI subsystem to alert the driver
1261  * that it should release a PCI device.  The could be caused by a
1262  * Hot-Plug event, or because the driver is going to be removed from
1263  * memory.
1264  **/
1265 static void e1000_remove(struct pci_dev *pdev)
1266 {
1267         struct net_device *netdev = pci_get_drvdata(pdev);
1268         struct e1000_adapter *adapter = netdev_priv(netdev);
1269         struct e1000_hw *hw = &adapter->hw;
1270
1271         e1000_down_and_stop(adapter);
1272         e1000_release_manageability(adapter);
1273
1274         unregister_netdev(netdev);
1275
1276         e1000_phy_hw_reset(hw);
1277
1278         kfree(adapter->tx_ring);
1279         kfree(adapter->rx_ring);
1280
1281         if (hw->mac_type == e1000_ce4100)
1282                 iounmap(hw->ce4100_gbe_mdio_base_virt);
1283         iounmap(hw->hw_addr);
1284         if (hw->flash_address)
1285                 iounmap(hw->flash_address);
1286         pci_release_selected_regions(pdev, adapter->bars);
1287
1288         free_netdev(netdev);
1289
1290         pci_disable_device(pdev);
1291 }
1292
1293 /**
1294  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1295  * @adapter: board private structure to initialize
1296  *
1297  * e1000_sw_init initializes the Adapter private data structure.
1298  * e1000_init_hw_struct MUST be called before this function
1299  **/
1300 static int e1000_sw_init(struct e1000_adapter *adapter)
1301 {
1302         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1303
1304         adapter->num_tx_queues = 1;
1305         adapter->num_rx_queues = 1;
1306
1307         if (e1000_alloc_queues(adapter)) {
1308                 e_err(probe, "Unable to allocate memory for queues\n");
1309                 return -ENOMEM;
1310         }
1311
1312         /* Explicitly disable IRQ since the NIC can be in any state. */
1313         e1000_irq_disable(adapter);
1314
1315         spin_lock_init(&adapter->stats_lock);
1316
1317         set_bit(__E1000_DOWN, &adapter->flags);
1318
1319         return 0;
1320 }
1321
1322 /**
1323  * e1000_alloc_queues - Allocate memory for all rings
1324  * @adapter: board private structure to initialize
1325  *
1326  * We allocate one ring per queue at run-time since we don't know the
1327  * number of queues at compile-time.
1328  **/
1329 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1330 {
1331         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1332                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1333         if (!adapter->tx_ring)
1334                 return -ENOMEM;
1335
1336         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1337                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1338         if (!adapter->rx_ring) {
1339                 kfree(adapter->tx_ring);
1340                 return -ENOMEM;
1341         }
1342
1343         return E1000_SUCCESS;
1344 }
1345
1346 /**
1347  * e1000_open - Called when a network interface is made active
1348  * @netdev: network interface device structure
1349  *
1350  * Returns 0 on success, negative value on failure
1351  *
1352  * The open entry point is called when a network interface is made
1353  * active by the system (IFF_UP).  At this point all resources needed
1354  * for transmit and receive operations are allocated, the interrupt
1355  * handler is registered with the OS, the watchdog task is started,
1356  * and the stack is notified that the interface is ready.
1357  **/
1358 static int e1000_open(struct net_device *netdev)
1359 {
1360         struct e1000_adapter *adapter = netdev_priv(netdev);
1361         struct e1000_hw *hw = &adapter->hw;
1362         int err;
1363
1364         /* disallow open during test */
1365         if (test_bit(__E1000_TESTING, &adapter->flags))
1366                 return -EBUSY;
1367
1368         netif_carrier_off(netdev);
1369
1370         /* allocate transmit descriptors */
1371         err = e1000_setup_all_tx_resources(adapter);
1372         if (err)
1373                 goto err_setup_tx;
1374
1375         /* allocate receive descriptors */
1376         err = e1000_setup_all_rx_resources(adapter);
1377         if (err)
1378                 goto err_setup_rx;
1379
1380         e1000_power_up_phy(adapter);
1381
1382         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1383         if ((hw->mng_cookie.status &
1384                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1385                 e1000_update_mng_vlan(adapter);
1386         }
1387
1388         /* before we allocate an interrupt, we must be ready to handle it.
1389          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1390          * as soon as we call pci_request_irq, so we have to setup our
1391          * clean_rx handler before we do so.
1392          */
1393         e1000_configure(adapter);
1394
1395         err = e1000_request_irq(adapter);
1396         if (err)
1397                 goto err_req_irq;
1398
1399         /* From here on the code is the same as e1000_up() */
1400         clear_bit(__E1000_DOWN, &adapter->flags);
1401
1402         napi_enable(&adapter->napi);
1403
1404         e1000_irq_enable(adapter);
1405
1406         netif_start_queue(netdev);
1407
1408         /* fire a link status change interrupt to start the watchdog */
1409         ew32(ICS, E1000_ICS_LSC);
1410
1411         return E1000_SUCCESS;
1412
1413 err_req_irq:
1414         e1000_power_down_phy(adapter);
1415         e1000_free_all_rx_resources(adapter);
1416 err_setup_rx:
1417         e1000_free_all_tx_resources(adapter);
1418 err_setup_tx:
1419         e1000_reset(adapter);
1420
1421         return err;
1422 }
1423
1424 /**
1425  * e1000_close - Disables a network interface
1426  * @netdev: network interface device structure
1427  *
1428  * Returns 0, this is not allowed to fail
1429  *
1430  * The close entry point is called when an interface is de-activated
1431  * by the OS.  The hardware is still under the drivers control, but
1432  * needs to be disabled.  A global MAC reset is issued to stop the
1433  * hardware, and all transmit and receive resources are freed.
1434  **/
1435 static int e1000_close(struct net_device *netdev)
1436 {
1437         struct e1000_adapter *adapter = netdev_priv(netdev);
1438         struct e1000_hw *hw = &adapter->hw;
1439         int count = E1000_CHECK_RESET_COUNT;
1440
1441         while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1442                 usleep_range(10000, 20000);
1443
1444         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1445         e1000_down(adapter);
1446         e1000_power_down_phy(adapter);
1447         e1000_free_irq(adapter);
1448
1449         e1000_free_all_tx_resources(adapter);
1450         e1000_free_all_rx_resources(adapter);
1451
1452         /* kill manageability vlan ID if supported, but not if a vlan with
1453          * the same ID is registered on the host OS (let 8021q kill it)
1454          */
1455         if ((hw->mng_cookie.status &
1456              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1457             !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1458                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1459                                        adapter->mng_vlan_id);
1460         }
1461
1462         return 0;
1463 }
1464
1465 /**
1466  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1467  * @adapter: address of board private structure
1468  * @start: address of beginning of memory
1469  * @len: length of memory
1470  **/
1471 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1472                                   unsigned long len)
1473 {
1474         struct e1000_hw *hw = &adapter->hw;
1475         unsigned long begin = (unsigned long)start;
1476         unsigned long end = begin + len;
1477
1478         /* First rev 82545 and 82546 need to not allow any memory
1479          * write location to cross 64k boundary due to errata 23
1480          */
1481         if (hw->mac_type == e1000_82545 ||
1482             hw->mac_type == e1000_ce4100 ||
1483             hw->mac_type == e1000_82546) {
1484                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1485         }
1486
1487         return true;
1488 }
1489
1490 /**
1491  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1492  * @adapter: board private structure
1493  * @txdr:    tx descriptor ring (for a specific queue) to setup
1494  *
1495  * Return 0 on success, negative on failure
1496  **/
1497 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1498                                     struct e1000_tx_ring *txdr)
1499 {
1500         struct pci_dev *pdev = adapter->pdev;
1501         int size;
1502
1503         size = sizeof(struct e1000_tx_buffer) * txdr->count;
1504         txdr->buffer_info = vzalloc(size);
1505         if (!txdr->buffer_info)
1506                 return -ENOMEM;
1507
1508         /* round up to nearest 4K */
1509
1510         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1511         txdr->size = ALIGN(txdr->size, 4096);
1512
1513         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1514                                         GFP_KERNEL);
1515         if (!txdr->desc) {
1516 setup_tx_desc_die:
1517                 vfree(txdr->buffer_info);
1518                 return -ENOMEM;
1519         }
1520
1521         /* Fix for errata 23, can't cross 64kB boundary */
1522         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1523                 void *olddesc = txdr->desc;
1524                 dma_addr_t olddma = txdr->dma;
1525                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1526                       txdr->size, txdr->desc);
1527                 /* Try again, without freeing the previous */
1528                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1529                                                 &txdr->dma, GFP_KERNEL);
1530                 /* Failed allocation, critical failure */
1531                 if (!txdr->desc) {
1532                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1533                                           olddma);
1534                         goto setup_tx_desc_die;
1535                 }
1536
1537                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1538                         /* give up */
1539                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1540                                           txdr->dma);
1541                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1542                                           olddma);
1543                         e_err(probe, "Unable to allocate aligned memory "
1544                               "for the transmit descriptor ring\n");
1545                         vfree(txdr->buffer_info);
1546                         return -ENOMEM;
1547                 } else {
1548                         /* Free old allocation, new allocation was successful */
1549                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1550                                           olddma);
1551                 }
1552         }
1553         memset(txdr->desc, 0, txdr->size);
1554
1555         txdr->next_to_use = 0;
1556         txdr->next_to_clean = 0;
1557
1558         return 0;
1559 }
1560
1561 /**
1562  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1563  *                                (Descriptors) for all queues
1564  * @adapter: board private structure
1565  *
1566  * Return 0 on success, negative on failure
1567  **/
1568 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1569 {
1570         int i, err = 0;
1571
1572         for (i = 0; i < adapter->num_tx_queues; i++) {
1573                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1574                 if (err) {
1575                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1576                         for (i-- ; i >= 0; i--)
1577                                 e1000_free_tx_resources(adapter,
1578                                                         &adapter->tx_ring[i]);
1579                         break;
1580                 }
1581         }
1582
1583         return err;
1584 }
1585
1586 /**
1587  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1588  * @adapter: board private structure
1589  *
1590  * Configure the Tx unit of the MAC after a reset.
1591  **/
1592 static void e1000_configure_tx(struct e1000_adapter *adapter)
1593 {
1594         u64 tdba;
1595         struct e1000_hw *hw = &adapter->hw;
1596         u32 tdlen, tctl, tipg;
1597         u32 ipgr1, ipgr2;
1598
1599         /* Setup the HW Tx Head and Tail descriptor pointers */
1600
1601         switch (adapter->num_tx_queues) {
1602         case 1:
1603         default:
1604                 tdba = adapter->tx_ring[0].dma;
1605                 tdlen = adapter->tx_ring[0].count *
1606                         sizeof(struct e1000_tx_desc);
1607                 ew32(TDLEN, tdlen);
1608                 ew32(TDBAH, (tdba >> 32));
1609                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1610                 ew32(TDT, 0);
1611                 ew32(TDH, 0);
1612                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1613                                            E1000_TDH : E1000_82542_TDH);
1614                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1615                                            E1000_TDT : E1000_82542_TDT);
1616                 break;
1617         }
1618
1619         /* Set the default values for the Tx Inter Packet Gap timer */
1620         if ((hw->media_type == e1000_media_type_fiber ||
1621              hw->media_type == e1000_media_type_internal_serdes))
1622                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1623         else
1624                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1625
1626         switch (hw->mac_type) {
1627         case e1000_82542_rev2_0:
1628         case e1000_82542_rev2_1:
1629                 tipg = DEFAULT_82542_TIPG_IPGT;
1630                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1631                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1632                 break;
1633         default:
1634                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1635                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1636                 break;
1637         }
1638         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1639         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1640         ew32(TIPG, tipg);
1641
1642         /* Set the Tx Interrupt Delay register */
1643
1644         ew32(TIDV, adapter->tx_int_delay);
1645         if (hw->mac_type >= e1000_82540)
1646                 ew32(TADV, adapter->tx_abs_int_delay);
1647
1648         /* Program the Transmit Control Register */
1649
1650         tctl = er32(TCTL);
1651         tctl &= ~E1000_TCTL_CT;
1652         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1653                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1654
1655         e1000_config_collision_dist(hw);
1656
1657         /* Setup Transmit Descriptor Settings for eop descriptor */
1658         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1659
1660         /* only set IDE if we are delaying interrupts using the timers */
1661         if (adapter->tx_int_delay)
1662                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1663
1664         if (hw->mac_type < e1000_82543)
1665                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1666         else
1667                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1668
1669         /* Cache if we're 82544 running in PCI-X because we'll
1670          * need this to apply a workaround later in the send path.
1671          */
1672         if (hw->mac_type == e1000_82544 &&
1673             hw->bus_type == e1000_bus_type_pcix)
1674                 adapter->pcix_82544 = true;
1675
1676         ew32(TCTL, tctl);
1677
1678 }
1679
1680 /**
1681  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1682  * @adapter: board private structure
1683  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1684  *
1685  * Returns 0 on success, negative on failure
1686  **/
1687 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1688                                     struct e1000_rx_ring *rxdr)
1689 {
1690         struct pci_dev *pdev = adapter->pdev;
1691         int size, desc_len;
1692
1693         size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1694         rxdr->buffer_info = vzalloc(size);
1695         if (!rxdr->buffer_info)
1696                 return -ENOMEM;
1697
1698         desc_len = sizeof(struct e1000_rx_desc);
1699
1700         /* Round up to nearest 4K */
1701
1702         rxdr->size = rxdr->count * desc_len;
1703         rxdr->size = ALIGN(rxdr->size, 4096);
1704
1705         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1706                                         GFP_KERNEL);
1707         if (!rxdr->desc) {
1708 setup_rx_desc_die:
1709                 vfree(rxdr->buffer_info);
1710                 return -ENOMEM;
1711         }
1712
1713         /* Fix for errata 23, can't cross 64kB boundary */
1714         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1715                 void *olddesc = rxdr->desc;
1716                 dma_addr_t olddma = rxdr->dma;
1717                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1718                       rxdr->size, rxdr->desc);
1719                 /* Try again, without freeing the previous */
1720                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1721                                                 &rxdr->dma, GFP_KERNEL);
1722                 /* Failed allocation, critical failure */
1723                 if (!rxdr->desc) {
1724                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1725                                           olddma);
1726                         goto setup_rx_desc_die;
1727                 }
1728
1729                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1730                         /* give up */
1731                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1732                                           rxdr->dma);
1733                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1734                                           olddma);
1735                         e_err(probe, "Unable to allocate aligned memory for "
1736                               "the Rx descriptor ring\n");
1737                         goto setup_rx_desc_die;
1738                 } else {
1739                         /* Free old allocation, new allocation was successful */
1740                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1741                                           olddma);
1742                 }
1743         }
1744         memset(rxdr->desc, 0, rxdr->size);
1745
1746         rxdr->next_to_clean = 0;
1747         rxdr->next_to_use = 0;
1748         rxdr->rx_skb_top = NULL;
1749
1750         return 0;
1751 }
1752
1753 /**
1754  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1755  *                                (Descriptors) for all queues
1756  * @adapter: board private structure
1757  *
1758  * Return 0 on success, negative on failure
1759  **/
1760 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1761 {
1762         int i, err = 0;
1763
1764         for (i = 0; i < adapter->num_rx_queues; i++) {
1765                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1766                 if (err) {
1767                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1768                         for (i-- ; i >= 0; i--)
1769                                 e1000_free_rx_resources(adapter,
1770                                                         &adapter->rx_ring[i]);
1771                         break;
1772                 }
1773         }
1774
1775         return err;
1776 }
1777
1778 /**
1779  * e1000_setup_rctl - configure the receive control registers
1780  * @adapter: Board private structure
1781  **/
1782 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1783 {
1784         struct e1000_hw *hw = &adapter->hw;
1785         u32 rctl;
1786
1787         rctl = er32(RCTL);
1788
1789         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1790
1791         rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1792                 E1000_RCTL_RDMTS_HALF |
1793                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1794
1795         if (hw->tbi_compatibility_on == 1)
1796                 rctl |= E1000_RCTL_SBP;
1797         else
1798                 rctl &= ~E1000_RCTL_SBP;
1799
1800         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1801                 rctl &= ~E1000_RCTL_LPE;
1802         else
1803                 rctl |= E1000_RCTL_LPE;
1804
1805         /* Setup buffer sizes */
1806         rctl &= ~E1000_RCTL_SZ_4096;
1807         rctl |= E1000_RCTL_BSEX;
1808         switch (adapter->rx_buffer_len) {
1809                 case E1000_RXBUFFER_2048:
1810                 default:
1811                         rctl |= E1000_RCTL_SZ_2048;
1812                         rctl &= ~E1000_RCTL_BSEX;
1813                         break;
1814                 case E1000_RXBUFFER_4096:
1815                         rctl |= E1000_RCTL_SZ_4096;
1816                         break;
1817                 case E1000_RXBUFFER_8192:
1818                         rctl |= E1000_RCTL_SZ_8192;
1819                         break;
1820                 case E1000_RXBUFFER_16384:
1821                         rctl |= E1000_RCTL_SZ_16384;
1822                         break;
1823         }
1824
1825         /* This is useful for sniffing bad packets. */
1826         if (adapter->netdev->features & NETIF_F_RXALL) {
1827                 /* UPE and MPE will be handled by normal PROMISC logic
1828                  * in e1000e_set_rx_mode
1829                  */
1830                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1831                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
1832                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1833
1834                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1835                           E1000_RCTL_DPF | /* Allow filtered pause */
1836                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1837                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1838                  * and that breaks VLANs.
1839                  */
1840         }
1841
1842         ew32(RCTL, rctl);
1843 }
1844
1845 /**
1846  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1847  * @adapter: board private structure
1848  *
1849  * Configure the Rx unit of the MAC after a reset.
1850  **/
1851 static void e1000_configure_rx(struct e1000_adapter *adapter)
1852 {
1853         u64 rdba;
1854         struct e1000_hw *hw = &adapter->hw;
1855         u32 rdlen, rctl, rxcsum;
1856
1857         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1858                 rdlen = adapter->rx_ring[0].count *
1859                         sizeof(struct e1000_rx_desc);
1860                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1861                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1862         } else {
1863                 rdlen = adapter->rx_ring[0].count *
1864                         sizeof(struct e1000_rx_desc);
1865                 adapter->clean_rx = e1000_clean_rx_irq;
1866                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1867         }
1868
1869         /* disable receives while setting up the descriptors */
1870         rctl = er32(RCTL);
1871         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1872
1873         /* set the Receive Delay Timer Register */
1874         ew32(RDTR, adapter->rx_int_delay);
1875
1876         if (hw->mac_type >= e1000_82540) {
1877                 ew32(RADV, adapter->rx_abs_int_delay);
1878                 if (adapter->itr_setting != 0)
1879                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1880         }
1881
1882         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1883          * the Base and Length of the Rx Descriptor Ring
1884          */
1885         switch (adapter->num_rx_queues) {
1886         case 1:
1887         default:
1888                 rdba = adapter->rx_ring[0].dma;
1889                 ew32(RDLEN, rdlen);
1890                 ew32(RDBAH, (rdba >> 32));
1891                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1892                 ew32(RDT, 0);
1893                 ew32(RDH, 0);
1894                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1895                                            E1000_RDH : E1000_82542_RDH);
1896                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1897                                            E1000_RDT : E1000_82542_RDT);
1898                 break;
1899         }
1900
1901         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1902         if (hw->mac_type >= e1000_82543) {
1903                 rxcsum = er32(RXCSUM);
1904                 if (adapter->rx_csum)
1905                         rxcsum |= E1000_RXCSUM_TUOFL;
1906                 else
1907                         /* don't need to clear IPPCSE as it defaults to 0 */
1908                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1909                 ew32(RXCSUM, rxcsum);
1910         }
1911
1912         /* Enable Receives */
1913         ew32(RCTL, rctl | E1000_RCTL_EN);
1914 }
1915
1916 /**
1917  * e1000_free_tx_resources - Free Tx Resources per Queue
1918  * @adapter: board private structure
1919  * @tx_ring: Tx descriptor ring for a specific queue
1920  *
1921  * Free all transmit software resources
1922  **/
1923 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1924                                     struct e1000_tx_ring *tx_ring)
1925 {
1926         struct pci_dev *pdev = adapter->pdev;
1927
1928         e1000_clean_tx_ring(adapter, tx_ring);
1929
1930         vfree(tx_ring->buffer_info);
1931         tx_ring->buffer_info = NULL;
1932
1933         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1934                           tx_ring->dma);
1935
1936         tx_ring->desc = NULL;
1937 }
1938
1939 /**
1940  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1941  * @adapter: board private structure
1942  *
1943  * Free all transmit software resources
1944  **/
1945 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1946 {
1947         int i;
1948
1949         for (i = 0; i < adapter->num_tx_queues; i++)
1950                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1951 }
1952
1953 static void
1954 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1955                                  struct e1000_tx_buffer *buffer_info)
1956 {
1957         if (buffer_info->dma) {
1958                 if (buffer_info->mapped_as_page)
1959                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1960                                        buffer_info->length, DMA_TO_DEVICE);
1961                 else
1962                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1963                                          buffer_info->length,
1964                                          DMA_TO_DEVICE);
1965                 buffer_info->dma = 0;
1966         }
1967         if (buffer_info->skb) {
1968                 dev_kfree_skb_any(buffer_info->skb);
1969                 buffer_info->skb = NULL;
1970         }
1971         buffer_info->time_stamp = 0;
1972         /* buffer_info must be completely set up in the transmit path */
1973 }
1974
1975 /**
1976  * e1000_clean_tx_ring - Free Tx Buffers
1977  * @adapter: board private structure
1978  * @tx_ring: ring to be cleaned
1979  **/
1980 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1981                                 struct e1000_tx_ring *tx_ring)
1982 {
1983         struct e1000_hw *hw = &adapter->hw;
1984         struct e1000_tx_buffer *buffer_info;
1985         unsigned long size;
1986         unsigned int i;
1987
1988         /* Free all the Tx ring sk_buffs */
1989
1990         for (i = 0; i < tx_ring->count; i++) {
1991                 buffer_info = &tx_ring->buffer_info[i];
1992                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1993         }
1994
1995         netdev_reset_queue(adapter->netdev);
1996         size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1997         memset(tx_ring->buffer_info, 0, size);
1998
1999         /* Zero out the descriptor ring */
2000
2001         memset(tx_ring->desc, 0, tx_ring->size);
2002
2003         tx_ring->next_to_use = 0;
2004         tx_ring->next_to_clean = 0;
2005         tx_ring->last_tx_tso = false;
2006
2007         writel(0, hw->hw_addr + tx_ring->tdh);
2008         writel(0, hw->hw_addr + tx_ring->tdt);
2009 }
2010
2011 /**
2012  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2013  * @adapter: board private structure
2014  **/
2015 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2016 {
2017         int i;
2018
2019         for (i = 0; i < adapter->num_tx_queues; i++)
2020                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2021 }
2022
2023 /**
2024  * e1000_free_rx_resources - Free Rx Resources
2025  * @adapter: board private structure
2026  * @rx_ring: ring to clean the resources from
2027  *
2028  * Free all receive software resources
2029  **/
2030 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2031                                     struct e1000_rx_ring *rx_ring)
2032 {
2033         struct pci_dev *pdev = adapter->pdev;
2034
2035         e1000_clean_rx_ring(adapter, rx_ring);
2036
2037         vfree(rx_ring->buffer_info);
2038         rx_ring->buffer_info = NULL;
2039
2040         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2041                           rx_ring->dma);
2042
2043         rx_ring->desc = NULL;
2044 }
2045
2046 /**
2047  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2048  * @adapter: board private structure
2049  *
2050  * Free all receive software resources
2051  **/
2052 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2053 {
2054         int i;
2055
2056         for (i = 0; i < adapter->num_rx_queues; i++)
2057                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2058 }
2059
2060 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2061 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2062 {
2063         return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2064                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2065 }
2066
2067 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2068 {
2069         unsigned int len = e1000_frag_len(a);
2070         u8 *data = netdev_alloc_frag(len);
2071
2072         if (likely(data))
2073                 data += E1000_HEADROOM;
2074         return data;
2075 }
2076
2077 static void e1000_free_frag(const void *data)
2078 {
2079         put_page(virt_to_head_page(data));
2080 }
2081
2082 /**
2083  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084  * @adapter: board private structure
2085  * @rx_ring: ring to free buffers from
2086  **/
2087 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088                                 struct e1000_rx_ring *rx_ring)
2089 {
2090         struct e1000_hw *hw = &adapter->hw;
2091         struct e1000_rx_buffer *buffer_info;
2092         struct pci_dev *pdev = adapter->pdev;
2093         unsigned long size;
2094         unsigned int i;
2095
2096         /* Free all the Rx netfrags */
2097         for (i = 0; i < rx_ring->count; i++) {
2098                 buffer_info = &rx_ring->buffer_info[i];
2099                 if (adapter->clean_rx == e1000_clean_rx_irq) {
2100                         if (buffer_info->dma)
2101                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
2102                                                  adapter->rx_buffer_len,
2103                                                  DMA_FROM_DEVICE);
2104                         if (buffer_info->rxbuf.data) {
2105                                 e1000_free_frag(buffer_info->rxbuf.data);
2106                                 buffer_info->rxbuf.data = NULL;
2107                         }
2108                 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109                         if (buffer_info->dma)
2110                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
2111                                                adapter->rx_buffer_len,
2112                                                DMA_FROM_DEVICE);
2113                         if (buffer_info->rxbuf.page) {
2114                                 put_page(buffer_info->rxbuf.page);
2115                                 buffer_info->rxbuf.page = NULL;
2116                         }
2117                 }
2118
2119                 buffer_info->dma = 0;
2120         }
2121
2122         /* there also may be some cached data from a chained receive */
2123         napi_free_frags(&adapter->napi);
2124         rx_ring->rx_skb_top = NULL;
2125
2126         size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2127         memset(rx_ring->buffer_info, 0, size);
2128
2129         /* Zero out the descriptor ring */
2130         memset(rx_ring->desc, 0, rx_ring->size);
2131
2132         rx_ring->next_to_clean = 0;
2133         rx_ring->next_to_use = 0;
2134
2135         writel(0, hw->hw_addr + rx_ring->rdh);
2136         writel(0, hw->hw_addr + rx_ring->rdt);
2137 }
2138
2139 /**
2140  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141  * @adapter: board private structure
2142  **/
2143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2144 {
2145         int i;
2146
2147         for (i = 0; i < adapter->num_rx_queues; i++)
2148                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2149 }
2150
2151 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152  * and memory write and invalidate disabled for certain operations
2153  */
2154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2155 {
2156         struct e1000_hw *hw = &adapter->hw;
2157         struct net_device *netdev = adapter->netdev;
2158         u32 rctl;
2159
2160         e1000_pci_clear_mwi(hw);
2161
2162         rctl = er32(RCTL);
2163         rctl |= E1000_RCTL_RST;
2164         ew32(RCTL, rctl);
2165         E1000_WRITE_FLUSH();
2166         mdelay(5);
2167
2168         if (netif_running(netdev))
2169                 e1000_clean_all_rx_rings(adapter);
2170 }
2171
2172 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2173 {
2174         struct e1000_hw *hw = &adapter->hw;
2175         struct net_device *netdev = adapter->netdev;
2176         u32 rctl;
2177
2178         rctl = er32(RCTL);
2179         rctl &= ~E1000_RCTL_RST;
2180         ew32(RCTL, rctl);
2181         E1000_WRITE_FLUSH();
2182         mdelay(5);
2183
2184         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185                 e1000_pci_set_mwi(hw);
2186
2187         if (netif_running(netdev)) {
2188                 /* No need to loop, because 82542 supports only 1 queue */
2189                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2190                 e1000_configure_rx(adapter);
2191                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2192         }
2193 }
2194
2195 /**
2196  * e1000_set_mac - Change the Ethernet Address of the NIC
2197  * @netdev: network interface device structure
2198  * @p: pointer to an address structure
2199  *
2200  * Returns 0 on success, negative on failure
2201  **/
2202 static int e1000_set_mac(struct net_device *netdev, void *p)
2203 {
2204         struct e1000_adapter *adapter = netdev_priv(netdev);
2205         struct e1000_hw *hw = &adapter->hw;
2206         struct sockaddr *addr = p;
2207
2208         if (!is_valid_ether_addr(addr->sa_data))
2209                 return -EADDRNOTAVAIL;
2210
2211         /* 82542 2.0 needs to be in reset to write receive address registers */
2212
2213         if (hw->mac_type == e1000_82542_rev2_0)
2214                 e1000_enter_82542_rst(adapter);
2215
2216         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2217         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2218
2219         e1000_rar_set(hw, hw->mac_addr, 0);
2220
2221         if (hw->mac_type == e1000_82542_rev2_0)
2222                 e1000_leave_82542_rst(adapter);
2223
2224         return 0;
2225 }
2226
2227 /**
2228  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2229  * @netdev: network interface device structure
2230  *
2231  * The set_rx_mode entry point is called whenever the unicast or multicast
2232  * address lists or the network interface flags are updated. This routine is
2233  * responsible for configuring the hardware for proper unicast, multicast,
2234  * promiscuous mode, and all-multi behavior.
2235  **/
2236 static void e1000_set_rx_mode(struct net_device *netdev)
2237 {
2238         struct e1000_adapter *adapter = netdev_priv(netdev);
2239         struct e1000_hw *hw = &adapter->hw;
2240         struct netdev_hw_addr *ha;
2241         bool use_uc = false;
2242         u32 rctl;
2243         u32 hash_value;
2244         int i, rar_entries = E1000_RAR_ENTRIES;
2245         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2246         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247
2248         if (!mcarray)
2249                 return;
2250
2251         /* Check for Promiscuous and All Multicast modes */
2252
2253         rctl = er32(RCTL);
2254
2255         if (netdev->flags & IFF_PROMISC) {
2256                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2257                 rctl &= ~E1000_RCTL_VFE;
2258         } else {
2259                 if (netdev->flags & IFF_ALLMULTI)
2260                         rctl |= E1000_RCTL_MPE;
2261                 else
2262                         rctl &= ~E1000_RCTL_MPE;
2263                 /* Enable VLAN filter if there is a VLAN */
2264                 if (e1000_vlan_used(adapter))
2265                         rctl |= E1000_RCTL_VFE;
2266         }
2267
2268         if (netdev_uc_count(netdev) > rar_entries - 1) {
2269                 rctl |= E1000_RCTL_UPE;
2270         } else if (!(netdev->flags & IFF_PROMISC)) {
2271                 rctl &= ~E1000_RCTL_UPE;
2272                 use_uc = true;
2273         }
2274
2275         ew32(RCTL, rctl);
2276
2277         /* 82542 2.0 needs to be in reset to write receive address registers */
2278
2279         if (hw->mac_type == e1000_82542_rev2_0)
2280                 e1000_enter_82542_rst(adapter);
2281
2282         /* load the first 14 addresses into the exact filters 1-14. Unicast
2283          * addresses take precedence to avoid disabling unicast filtering
2284          * when possible.
2285          *
2286          * RAR 0 is used for the station MAC address
2287          * if there are not 14 addresses, go ahead and clear the filters
2288          */
2289         i = 1;
2290         if (use_uc)
2291                 netdev_for_each_uc_addr(ha, netdev) {
2292                         if (i == rar_entries)
2293                                 break;
2294                         e1000_rar_set(hw, ha->addr, i++);
2295                 }
2296
2297         netdev_for_each_mc_addr(ha, netdev) {
2298                 if (i == rar_entries) {
2299                         /* load any remaining addresses into the hash table */
2300                         u32 hash_reg, hash_bit, mta;
2301                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2302                         hash_reg = (hash_value >> 5) & 0x7F;
2303                         hash_bit = hash_value & 0x1F;
2304                         mta = (1 << hash_bit);
2305                         mcarray[hash_reg] |= mta;
2306                 } else {
2307                         e1000_rar_set(hw, ha->addr, i++);
2308                 }
2309         }
2310
2311         for (; i < rar_entries; i++) {
2312                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313                 E1000_WRITE_FLUSH();
2314                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315                 E1000_WRITE_FLUSH();
2316         }
2317
2318         /* write the hash table completely, write from bottom to avoid
2319          * both stupid write combining chipsets, and flushing each write
2320          */
2321         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2322                 /* If we are on an 82544 has an errata where writing odd
2323                  * offsets overwrites the previous even offset, but writing
2324                  * backwards over the range solves the issue by always
2325                  * writing the odd offset first
2326                  */
2327                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2328         }
2329         E1000_WRITE_FLUSH();
2330
2331         if (hw->mac_type == e1000_82542_rev2_0)
2332                 e1000_leave_82542_rst(adapter);
2333
2334         kfree(mcarray);
2335 }
2336
2337 /**
2338  * e1000_update_phy_info_task - get phy info
2339  * @work: work struct contained inside adapter struct
2340  *
2341  * Need to wait a few seconds after link up to get diagnostic information from
2342  * the phy
2343  */
2344 static void e1000_update_phy_info_task(struct work_struct *work)
2345 {
2346         struct e1000_adapter *adapter = container_of(work,
2347                                                      struct e1000_adapter,
2348                                                      phy_info_task.work);
2349
2350         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2351 }
2352
2353 /**
2354  * e1000_82547_tx_fifo_stall_task - task to complete work
2355  * @work: work struct contained inside adapter struct
2356  **/
2357 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2358 {
2359         struct e1000_adapter *adapter = container_of(work,
2360                                                      struct e1000_adapter,
2361                                                      fifo_stall_task.work);
2362         struct e1000_hw *hw = &adapter->hw;
2363         struct net_device *netdev = adapter->netdev;
2364         u32 tctl;
2365
2366         if (atomic_read(&adapter->tx_fifo_stall)) {
2367                 if ((er32(TDT) == er32(TDH)) &&
2368                    (er32(TDFT) == er32(TDFH)) &&
2369                    (er32(TDFTS) == er32(TDFHS))) {
2370                         tctl = er32(TCTL);
2371                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372                         ew32(TDFT, adapter->tx_head_addr);
2373                         ew32(TDFH, adapter->tx_head_addr);
2374                         ew32(TDFTS, adapter->tx_head_addr);
2375                         ew32(TDFHS, adapter->tx_head_addr);
2376                         ew32(TCTL, tctl);
2377                         E1000_WRITE_FLUSH();
2378
2379                         adapter->tx_fifo_head = 0;
2380                         atomic_set(&adapter->tx_fifo_stall, 0);
2381                         netif_wake_queue(netdev);
2382                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2383                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
2384                 }
2385         }
2386 }
2387
2388 bool e1000_has_link(struct e1000_adapter *adapter)
2389 {
2390         struct e1000_hw *hw = &adapter->hw;
2391         bool link_active = false;
2392
2393         /* get_link_status is set on LSC (link status) interrupt or rx
2394          * sequence error interrupt (except on intel ce4100).
2395          * get_link_status will stay false until the
2396          * e1000_check_for_link establishes link for copper adapters
2397          * ONLY
2398          */
2399         switch (hw->media_type) {
2400         case e1000_media_type_copper:
2401                 if (hw->mac_type == e1000_ce4100)
2402                         hw->get_link_status = 1;
2403                 if (hw->get_link_status) {
2404                         e1000_check_for_link(hw);
2405                         link_active = !hw->get_link_status;
2406                 } else {
2407                         link_active = true;
2408                 }
2409                 break;
2410         case e1000_media_type_fiber:
2411                 e1000_check_for_link(hw);
2412                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2413                 break;
2414         case e1000_media_type_internal_serdes:
2415                 e1000_check_for_link(hw);
2416                 link_active = hw->serdes_has_link;
2417                 break;
2418         default:
2419                 break;
2420         }
2421
2422         return link_active;
2423 }
2424
2425 /**
2426  * e1000_watchdog - work function
2427  * @work: work struct contained inside adapter struct
2428  **/
2429 static void e1000_watchdog(struct work_struct *work)
2430 {
2431         struct e1000_adapter *adapter = container_of(work,
2432                                                      struct e1000_adapter,
2433                                                      watchdog_task.work);
2434         struct e1000_hw *hw = &adapter->hw;
2435         struct net_device *netdev = adapter->netdev;
2436         struct e1000_tx_ring *txdr = adapter->tx_ring;
2437         u32 link, tctl;
2438
2439         link = e1000_has_link(adapter);
2440         if ((netif_carrier_ok(netdev)) && link)
2441                 goto link_up;
2442
2443         if (link) {
2444                 if (!netif_carrier_ok(netdev)) {
2445                         u32 ctrl;
2446                         bool txb2b = true;
2447                         /* update snapshot of PHY registers on LSC */
2448                         e1000_get_speed_and_duplex(hw,
2449                                                    &adapter->link_speed,
2450                                                    &adapter->link_duplex);
2451
2452                         ctrl = er32(CTRL);
2453                         pr_info("%s NIC Link is Up %d Mbps %s, "
2454                                 "Flow Control: %s\n",
2455                                 netdev->name,
2456                                 adapter->link_speed,
2457                                 adapter->link_duplex == FULL_DUPLEX ?
2458                                 "Full Duplex" : "Half Duplex",
2459                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2460                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2461                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2462                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2463
2464                         /* adjust timeout factor according to speed/duplex */
2465                         adapter->tx_timeout_factor = 1;
2466                         switch (adapter->link_speed) {
2467                         case SPEED_10:
2468                                 txb2b = false;
2469                                 adapter->tx_timeout_factor = 16;
2470                                 break;
2471                         case SPEED_100:
2472                                 txb2b = false;
2473                                 /* maybe add some timeout factor ? */
2474                                 break;
2475                         }
2476
2477                         /* enable transmits in the hardware */
2478                         tctl = er32(TCTL);
2479                         tctl |= E1000_TCTL_EN;
2480                         ew32(TCTL, tctl);
2481
2482                         netif_carrier_on(netdev);
2483                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2484                                 schedule_delayed_work(&adapter->phy_info_task,
2485                                                       2 * HZ);
2486                         adapter->smartspeed = 0;
2487                 }
2488         } else {
2489                 if (netif_carrier_ok(netdev)) {
2490                         adapter->link_speed = 0;
2491                         adapter->link_duplex = 0;
2492                         pr_info("%s NIC Link is Down\n",
2493                                 netdev->name);
2494                         netif_carrier_off(netdev);
2495
2496                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2497                                 schedule_delayed_work(&adapter->phy_info_task,
2498                                                       2 * HZ);
2499                 }
2500
2501                 e1000_smartspeed(adapter);
2502         }
2503
2504 link_up:
2505         e1000_update_stats(adapter);
2506
2507         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2508         adapter->tpt_old = adapter->stats.tpt;
2509         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2510         adapter->colc_old = adapter->stats.colc;
2511
2512         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2513         adapter->gorcl_old = adapter->stats.gorcl;
2514         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2515         adapter->gotcl_old = adapter->stats.gotcl;
2516
2517         e1000_update_adaptive(hw);
2518
2519         if (!netif_carrier_ok(netdev)) {
2520                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2521                         /* We've lost link, so the controller stops DMA,
2522                          * but we've got queued Tx work that's never going
2523                          * to get done, so reset controller to flush Tx.
2524                          * (Do the reset outside of interrupt context).
2525                          */
2526                         adapter->tx_timeout_count++;
2527                         schedule_work(&adapter->reset_task);
2528                         /* exit immediately since reset is imminent */
2529                         return;
2530                 }
2531         }
2532
2533         /* Simple mode for Interrupt Throttle Rate (ITR) */
2534         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2535                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2536                  * Total asymmetrical Tx or Rx gets ITR=8000;
2537                  * everyone else is between 2000-8000.
2538                  */
2539                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2540                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2541                             adapter->gotcl - adapter->gorcl :
2542                             adapter->gorcl - adapter->gotcl) / 10000;
2543                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2544
2545                 ew32(ITR, 1000000000 / (itr * 256));
2546         }
2547
2548         /* Cause software interrupt to ensure rx ring is cleaned */
2549         ew32(ICS, E1000_ICS_RXDMT0);
2550
2551         /* Force detection of hung controller every watchdog period */
2552         adapter->detect_tx_hung = true;
2553
2554         /* Reschedule the task */
2555         if (!test_bit(__E1000_DOWN, &adapter->flags))
2556                 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2557 }
2558
2559 enum latency_range {
2560         lowest_latency = 0,
2561         low_latency = 1,
2562         bulk_latency = 2,
2563         latency_invalid = 255
2564 };
2565
2566 /**
2567  * e1000_update_itr - update the dynamic ITR value based on statistics
2568  * @adapter: pointer to adapter
2569  * @itr_setting: current adapter->itr
2570  * @packets: the number of packets during this measurement interval
2571  * @bytes: the number of bytes during this measurement interval
2572  *
2573  *      Stores a new ITR value based on packets and byte
2574  *      counts during the last interrupt.  The advantage of per interrupt
2575  *      computation is faster updates and more accurate ITR for the current
2576  *      traffic pattern.  Constants in this function were computed
2577  *      based on theoretical maximum wire speed and thresholds were set based
2578  *      on testing data as well as attempting to minimize response time
2579  *      while increasing bulk throughput.
2580  *      this functionality is controlled by the InterruptThrottleRate module
2581  *      parameter (see e1000_param.c)
2582  **/
2583 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2584                                      u16 itr_setting, int packets, int bytes)
2585 {
2586         unsigned int retval = itr_setting;
2587         struct e1000_hw *hw = &adapter->hw;
2588
2589         if (unlikely(hw->mac_type < e1000_82540))
2590                 goto update_itr_done;
2591
2592         if (packets == 0)
2593                 goto update_itr_done;
2594
2595         switch (itr_setting) {
2596         case lowest_latency:
2597                 /* jumbo frames get bulk treatment*/
2598                 if (bytes/packets > 8000)
2599                         retval = bulk_latency;
2600                 else if ((packets < 5) && (bytes > 512))
2601                         retval = low_latency;
2602                 break;
2603         case low_latency:  /* 50 usec aka 20000 ints/s */
2604                 if (bytes > 10000) {
2605                         /* jumbo frames need bulk latency setting */
2606                         if (bytes/packets > 8000)
2607                                 retval = bulk_latency;
2608                         else if ((packets < 10) || ((bytes/packets) > 1200))
2609                                 retval = bulk_latency;
2610                         else if ((packets > 35))
2611                                 retval = lowest_latency;
2612                 } else if (bytes/packets > 2000)
2613                         retval = bulk_latency;
2614                 else if (packets <= 2 && bytes < 512)
2615                         retval = lowest_latency;
2616                 break;
2617         case bulk_latency: /* 250 usec aka 4000 ints/s */
2618                 if (bytes > 25000) {
2619                         if (packets > 35)
2620                                 retval = low_latency;
2621                 } else if (bytes < 6000) {
2622                         retval = low_latency;
2623                 }
2624                 break;
2625         }
2626
2627 update_itr_done:
2628         return retval;
2629 }
2630
2631 static void e1000_set_itr(struct e1000_adapter *adapter)
2632 {
2633         struct e1000_hw *hw = &adapter->hw;
2634         u16 current_itr;
2635         u32 new_itr = adapter->itr;
2636
2637         if (unlikely(hw->mac_type < e1000_82540))
2638                 return;
2639
2640         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641         if (unlikely(adapter->link_speed != SPEED_1000)) {
2642                 current_itr = 0;
2643                 new_itr = 4000;
2644                 goto set_itr_now;
2645         }
2646
2647         adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2648                                            adapter->total_tx_packets,
2649                                            adapter->total_tx_bytes);
2650         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2652                 adapter->tx_itr = low_latency;
2653
2654         adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2655                                            adapter->total_rx_packets,
2656                                            adapter->total_rx_bytes);
2657         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2658         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659                 adapter->rx_itr = low_latency;
2660
2661         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2662
2663         switch (current_itr) {
2664         /* counts and packets in update_itr are dependent on these numbers */
2665         case lowest_latency:
2666                 new_itr = 70000;
2667                 break;
2668         case low_latency:
2669                 new_itr = 20000; /* aka hwitr = ~200 */
2670                 break;
2671         case bulk_latency:
2672                 new_itr = 4000;
2673                 break;
2674         default:
2675                 break;
2676         }
2677
2678 set_itr_now:
2679         if (new_itr != adapter->itr) {
2680                 /* this attempts to bias the interrupt rate towards Bulk
2681                  * by adding intermediate steps when interrupt rate is
2682                  * increasing
2683                  */
2684                 new_itr = new_itr > adapter->itr ?
2685                           min(adapter->itr + (new_itr >> 2), new_itr) :
2686                           new_itr;
2687                 adapter->itr = new_itr;
2688                 ew32(ITR, 1000000000 / (new_itr * 256));
2689         }
2690 }
2691
2692 #define E1000_TX_FLAGS_CSUM             0x00000001
2693 #define E1000_TX_FLAGS_VLAN             0x00000002
2694 #define E1000_TX_FLAGS_TSO              0x00000004
2695 #define E1000_TX_FLAGS_IPV4             0x00000008
2696 #define E1000_TX_FLAGS_NO_FCS           0x00000010
2697 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2698 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2699
2700 static int e1000_tso(struct e1000_adapter *adapter,
2701                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2702                      __be16 protocol)
2703 {
2704         struct e1000_context_desc *context_desc;
2705         struct e1000_tx_buffer *buffer_info;
2706         unsigned int i;
2707         u32 cmd_length = 0;
2708         u16 ipcse = 0, tucse, mss;
2709         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2710
2711         if (skb_is_gso(skb)) {
2712                 int err;
2713
2714                 err = skb_cow_head(skb, 0);
2715                 if (err < 0)
2716                         return err;
2717
2718                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2719                 mss = skb_shinfo(skb)->gso_size;
2720                 if (protocol == htons(ETH_P_IP)) {
2721                         struct iphdr *iph = ip_hdr(skb);
2722                         iph->tot_len = 0;
2723                         iph->check = 0;
2724                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725                                                                  iph->daddr, 0,
2726                                                                  IPPROTO_TCP,
2727                                                                  0);
2728                         cmd_length = E1000_TXD_CMD_IP;
2729                         ipcse = skb_transport_offset(skb) - 1;
2730                 } else if (skb_is_gso_v6(skb)) {
2731                         ipv6_hdr(skb)->payload_len = 0;
2732                         tcp_hdr(skb)->check =
2733                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734                                                  &ipv6_hdr(skb)->daddr,
2735                                                  0, IPPROTO_TCP, 0);
2736                         ipcse = 0;
2737                 }
2738                 ipcss = skb_network_offset(skb);
2739                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2740                 tucss = skb_transport_offset(skb);
2741                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2742                 tucse = 0;
2743
2744                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2745                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2746
2747                 i = tx_ring->next_to_use;
2748                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2749                 buffer_info = &tx_ring->buffer_info[i];
2750
2751                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2752                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2753                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2754                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2755                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2756                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2758                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760
2761                 buffer_info->time_stamp = jiffies;
2762                 buffer_info->next_to_watch = i;
2763
2764                 if (++i == tx_ring->count) i = 0;
2765                 tx_ring->next_to_use = i;
2766
2767                 return true;
2768         }
2769         return false;
2770 }
2771
2772 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2773                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2774                           __be16 protocol)
2775 {
2776         struct e1000_context_desc *context_desc;
2777         struct e1000_tx_buffer *buffer_info;
2778         unsigned int i;
2779         u8 css;
2780         u32 cmd_len = E1000_TXD_CMD_DEXT;
2781
2782         if (skb->ip_summed != CHECKSUM_PARTIAL)
2783                 return false;
2784
2785         switch (protocol) {
2786         case cpu_to_be16(ETH_P_IP):
2787                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2788                         cmd_len |= E1000_TXD_CMD_TCP;
2789                 break;
2790         case cpu_to_be16(ETH_P_IPV6):
2791                 /* XXX not handling all IPV6 headers */
2792                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2793                         cmd_len |= E1000_TXD_CMD_TCP;
2794                 break;
2795         default:
2796                 if (unlikely(net_ratelimit()))
2797                         e_warn(drv, "checksum_partial proto=%x!\n",
2798                                skb->protocol);
2799                 break;
2800         }
2801
2802         css = skb_checksum_start_offset(skb);
2803
2804         i = tx_ring->next_to_use;
2805         buffer_info = &tx_ring->buffer_info[i];
2806         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2807
2808         context_desc->lower_setup.ip_config = 0;
2809         context_desc->upper_setup.tcp_fields.tucss = css;
2810         context_desc->upper_setup.tcp_fields.tucso =
2811                 css + skb->csum_offset;
2812         context_desc->upper_setup.tcp_fields.tucse = 0;
2813         context_desc->tcp_seg_setup.data = 0;
2814         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2815
2816         buffer_info->time_stamp = jiffies;
2817         buffer_info->next_to_watch = i;
2818
2819         if (unlikely(++i == tx_ring->count)) i = 0;
2820         tx_ring->next_to_use = i;
2821
2822         return true;
2823 }
2824
2825 #define E1000_MAX_TXD_PWR       12
2826 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2827
2828 static int e1000_tx_map(struct e1000_adapter *adapter,
2829                         struct e1000_tx_ring *tx_ring,
2830                         struct sk_buff *skb, unsigned int first,
2831                         unsigned int max_per_txd, unsigned int nr_frags,
2832                         unsigned int mss)
2833 {
2834         struct e1000_hw *hw = &adapter->hw;
2835         struct pci_dev *pdev = adapter->pdev;
2836         struct e1000_tx_buffer *buffer_info;
2837         unsigned int len = skb_headlen(skb);
2838         unsigned int offset = 0, size, count = 0, i;
2839         unsigned int f, bytecount, segs;
2840
2841         i = tx_ring->next_to_use;
2842
2843         while (len) {
2844                 buffer_info = &tx_ring->buffer_info[i];
2845                 size = min(len, max_per_txd);
2846                 /* Workaround for Controller erratum --
2847                  * descriptor for non-tso packet in a linear SKB that follows a
2848                  * tso gets written back prematurely before the data is fully
2849                  * DMA'd to the controller
2850                  */
2851                 if (!skb->data_len && tx_ring->last_tx_tso &&
2852                     !skb_is_gso(skb)) {
2853                         tx_ring->last_tx_tso = false;
2854                         size -= 4;
2855                 }
2856
2857                 /* Workaround for premature desc write-backs
2858                  * in TSO mode.  Append 4-byte sentinel desc
2859                  */
2860                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2861                         size -= 4;
2862                 /* work-around for errata 10 and it applies
2863                  * to all controllers in PCI-X mode
2864                  * The fix is to make sure that the first descriptor of a
2865                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2866                  */
2867                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2868                                 (size > 2015) && count == 0))
2869                         size = 2015;
2870
2871                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2872                  * terminating buffers within evenly-aligned dwords.
2873                  */
2874                 if (unlikely(adapter->pcix_82544 &&
2875                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2876                    size > 4))
2877                         size -= 4;
2878
2879                 buffer_info->length = size;
2880                 /* set time_stamp *before* dma to help avoid a possible race */
2881                 buffer_info->time_stamp = jiffies;
2882                 buffer_info->mapped_as_page = false;
2883                 buffer_info->dma = dma_map_single(&pdev->dev,
2884                                                   skb->data + offset,
2885                                                   size, DMA_TO_DEVICE);
2886                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2887                         goto dma_error;
2888                 buffer_info->next_to_watch = i;
2889
2890                 len -= size;
2891                 offset += size;
2892                 count++;
2893                 if (len) {
2894                         i++;
2895                         if (unlikely(i == tx_ring->count))
2896                                 i = 0;
2897                 }
2898         }
2899
2900         for (f = 0; f < nr_frags; f++) {
2901                 const struct skb_frag_struct *frag;
2902
2903                 frag = &skb_shinfo(skb)->frags[f];
2904                 len = skb_frag_size(frag);
2905                 offset = 0;
2906
2907                 while (len) {
2908                         unsigned long bufend;
2909                         i++;
2910                         if (unlikely(i == tx_ring->count))
2911                                 i = 0;
2912
2913                         buffer_info = &tx_ring->buffer_info[i];
2914                         size = min(len, max_per_txd);
2915                         /* Workaround for premature desc write-backs
2916                          * in TSO mode.  Append 4-byte sentinel desc
2917                          */
2918                         if (unlikely(mss && f == (nr_frags-1) &&
2919                             size == len && size > 8))
2920                                 size -= 4;
2921                         /* Workaround for potential 82544 hang in PCI-X.
2922                          * Avoid terminating buffers within evenly-aligned
2923                          * dwords.
2924                          */
2925                         bufend = (unsigned long)
2926                                 page_to_phys(skb_frag_page(frag));
2927                         bufend += offset + size - 1;
2928                         if (unlikely(adapter->pcix_82544 &&
2929                                      !(bufend & 4) &&
2930                                      size > 4))
2931                                 size -= 4;
2932
2933                         buffer_info->length = size;
2934                         buffer_info->time_stamp = jiffies;
2935                         buffer_info->mapped_as_page = true;
2936                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2937                                                 offset, size, DMA_TO_DEVICE);
2938                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2939                                 goto dma_error;
2940                         buffer_info->next_to_watch = i;
2941
2942                         len -= size;
2943                         offset += size;
2944                         count++;
2945                 }
2946         }
2947
2948         segs = skb_shinfo(skb)->gso_segs ?: 1;
2949         /* multiply data chunks by size of headers */
2950         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2951
2952         tx_ring->buffer_info[i].skb = skb;
2953         tx_ring->buffer_info[i].segs = segs;
2954         tx_ring->buffer_info[i].bytecount = bytecount;
2955         tx_ring->buffer_info[first].next_to_watch = i;
2956
2957         return count;
2958
2959 dma_error:
2960         dev_err(&pdev->dev, "TX DMA map failed\n");
2961         buffer_info->dma = 0;
2962         if (count)
2963                 count--;
2964
2965         while (count--) {
2966                 if (i==0)
2967                         i += tx_ring->count;
2968                 i--;
2969                 buffer_info = &tx_ring->buffer_info[i];
2970                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2971         }
2972
2973         return 0;
2974 }
2975
2976 static void e1000_tx_queue(struct e1000_adapter *adapter,
2977                            struct e1000_tx_ring *tx_ring, int tx_flags,
2978                            int count)
2979 {
2980         struct e1000_hw *hw = &adapter->hw;
2981         struct e1000_tx_desc *tx_desc = NULL;
2982         struct e1000_tx_buffer *buffer_info;
2983         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2984         unsigned int i;
2985
2986         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2987                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2988                              E1000_TXD_CMD_TSE;
2989                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2990
2991                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2992                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2993         }
2994
2995         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2996                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2997                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2998         }
2999
3000         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3001                 txd_lower |= E1000_TXD_CMD_VLE;
3002                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3003         }
3004
3005         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3006                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3007
3008         i = tx_ring->next_to_use;
3009
3010         while (count--) {
3011                 buffer_info = &tx_ring->buffer_info[i];
3012                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3013                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3014                 tx_desc->lower.data =
3015                         cpu_to_le32(txd_lower | buffer_info->length);
3016                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3017                 if (unlikely(++i == tx_ring->count)) i = 0;
3018         }
3019
3020         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3021
3022         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3023         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3024                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3025
3026         /* Force memory writes to complete before letting h/w
3027          * know there are new descriptors to fetch.  (Only
3028          * applicable for weak-ordered memory model archs,
3029          * such as IA-64).
3030          */
3031         wmb();
3032
3033         tx_ring->next_to_use = i;
3034         writel(i, hw->hw_addr + tx_ring->tdt);
3035         /* we need this if more than one processor can write to our tail
3036          * at a time, it synchronizes IO on IA64/Altix systems
3037          */
3038         mmiowb();
3039 }
3040
3041 /* 82547 workaround to avoid controller hang in half-duplex environment.
3042  * The workaround is to avoid queuing a large packet that would span
3043  * the internal Tx FIFO ring boundary by notifying the stack to resend
3044  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3045  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3046  * to the beginning of the Tx FIFO.
3047  */
3048
3049 #define E1000_FIFO_HDR                  0x10
3050 #define E1000_82547_PAD_LEN             0x3E0
3051
3052 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3053                                        struct sk_buff *skb)
3054 {
3055         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3056         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3057
3058         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3059
3060         if (adapter->link_duplex != HALF_DUPLEX)
3061                 goto no_fifo_stall_required;
3062
3063         if (atomic_read(&adapter->tx_fifo_stall))
3064                 return 1;
3065
3066         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3067                 atomic_set(&adapter->tx_fifo_stall, 1);
3068                 return 1;
3069         }
3070
3071 no_fifo_stall_required:
3072         adapter->tx_fifo_head += skb_fifo_len;
3073         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3074                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3075         return 0;
3076 }
3077
3078 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3079 {
3080         struct e1000_adapter *adapter = netdev_priv(netdev);
3081         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3082
3083         netif_stop_queue(netdev);
3084         /* Herbert's original patch had:
3085          *  smp_mb__after_netif_stop_queue();
3086          * but since that doesn't exist yet, just open code it.
3087          */
3088         smp_mb();
3089
3090         /* We need to check again in a case another CPU has just
3091          * made room available.
3092          */
3093         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3094                 return -EBUSY;
3095
3096         /* A reprieve! */
3097         netif_start_queue(netdev);
3098         ++adapter->restart_queue;
3099         return 0;
3100 }
3101
3102 static int e1000_maybe_stop_tx(struct net_device *netdev,
3103                                struct e1000_tx_ring *tx_ring, int size)
3104 {
3105         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3106                 return 0;
3107         return __e1000_maybe_stop_tx(netdev, size);
3108 }
3109
3110 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3111 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3112                                     struct net_device *netdev)
3113 {
3114         struct e1000_adapter *adapter = netdev_priv(netdev);
3115         struct e1000_hw *hw = &adapter->hw;
3116         struct e1000_tx_ring *tx_ring;
3117         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3118         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3119         unsigned int tx_flags = 0;
3120         unsigned int len = skb_headlen(skb);
3121         unsigned int nr_frags;
3122         unsigned int mss;
3123         int count = 0;
3124         int tso;
3125         unsigned int f;
3126         __be16 protocol = vlan_get_protocol(skb);
3127
3128         /* This goes back to the question of how to logically map a Tx queue
3129          * to a flow.  Right now, performance is impacted slightly negatively
3130          * if using multiple Tx queues.  If the stack breaks away from a
3131          * single qdisc implementation, we can look at this again.
3132          */
3133         tx_ring = adapter->tx_ring;
3134
3135         /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3136          * packets may get corrupted during padding by HW.
3137          * To WA this issue, pad all small packets manually.
3138          */
3139         if (skb->len < ETH_ZLEN) {
3140                 if (skb_pad(skb, ETH_ZLEN - skb->len))
3141                         return NETDEV_TX_OK;
3142                 skb->len = ETH_ZLEN;
3143                 skb_set_tail_pointer(skb, ETH_ZLEN);
3144         }
3145
3146         mss = skb_shinfo(skb)->gso_size;
3147         /* The controller does a simple calculation to
3148          * make sure there is enough room in the FIFO before
3149          * initiating the DMA for each buffer.  The calc is:
3150          * 4 = ceil(buffer len/mss).  To make sure we don't
3151          * overrun the FIFO, adjust the max buffer len if mss
3152          * drops.
3153          */
3154         if (mss) {
3155                 u8 hdr_len;
3156                 max_per_txd = min(mss << 2, max_per_txd);
3157                 max_txd_pwr = fls(max_per_txd) - 1;
3158
3159                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3160                 if (skb->data_len && hdr_len == len) {
3161                         switch (hw->mac_type) {
3162                                 unsigned int pull_size;
3163                         case e1000_82544:
3164                                 /* Make sure we have room to chop off 4 bytes,
3165                                  * and that the end alignment will work out to
3166                                  * this hardware's requirements
3167                                  * NOTE: this is a TSO only workaround
3168                                  * if end byte alignment not correct move us
3169                                  * into the next dword
3170                                  */
3171                                 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3172                                     & 4)
3173                                         break;
3174                                 /* fall through */
3175                                 pull_size = min((unsigned int)4, skb->data_len);
3176                                 if (!__pskb_pull_tail(skb, pull_size)) {
3177                                         e_err(drv, "__pskb_pull_tail "
3178                                               "failed.\n");
3179                                         dev_kfree_skb_any(skb);
3180                                         return NETDEV_TX_OK;
3181                                 }
3182                                 len = skb_headlen(skb);
3183                                 break;
3184                         default:
3185                                 /* do nothing */
3186                                 break;
3187                         }
3188                 }
3189         }
3190
3191         /* reserve a descriptor for the offload context */
3192         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3193                 count++;
3194         count++;
3195
3196         /* Controller Erratum workaround */
3197         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3198                 count++;
3199
3200         count += TXD_USE_COUNT(len, max_txd_pwr);
3201
3202         if (adapter->pcix_82544)
3203                 count++;
3204
3205         /* work-around for errata 10 and it applies to all controllers
3206          * in PCI-X mode, so add one more descriptor to the count
3207          */
3208         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3209                         (len > 2015)))
3210                 count++;
3211
3212         nr_frags = skb_shinfo(skb)->nr_frags;
3213         for (f = 0; f < nr_frags; f++)
3214                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3215                                        max_txd_pwr);
3216         if (adapter->pcix_82544)
3217                 count += nr_frags;
3218
3219         /* need: count + 2 desc gap to keep tail from touching
3220          * head, otherwise try next time
3221          */
3222         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3223                 return NETDEV_TX_BUSY;
3224
3225         if (unlikely((hw->mac_type == e1000_82547) &&
3226                      (e1000_82547_fifo_workaround(adapter, skb)))) {
3227                 netif_stop_queue(netdev);
3228                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3229                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
3230                 return NETDEV_TX_BUSY;
3231         }
3232
3233         if (vlan_tx_tag_present(skb)) {
3234                 tx_flags |= E1000_TX_FLAGS_VLAN;
3235                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3236         }
3237
3238         first = tx_ring->next_to_use;
3239
3240         tso = e1000_tso(adapter, tx_ring, skb, protocol);
3241         if (tso < 0) {
3242                 dev_kfree_skb_any(skb);
3243                 return NETDEV_TX_OK;
3244         }
3245
3246         if (likely(tso)) {
3247                 if (likely(hw->mac_type != e1000_82544))
3248                         tx_ring->last_tx_tso = true;
3249                 tx_flags |= E1000_TX_FLAGS_TSO;
3250         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3251                 tx_flags |= E1000_TX_FLAGS_CSUM;
3252
3253         if (protocol == htons(ETH_P_IP))
3254                 tx_flags |= E1000_TX_FLAGS_IPV4;
3255
3256         if (unlikely(skb->no_fcs))
3257                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3258
3259         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3260                              nr_frags, mss);
3261
3262         if (count) {
3263                 netdev_sent_queue(netdev, skb->len);
3264                 skb_tx_timestamp(skb);
3265
3266                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3267                 /* Make sure there is space in the ring for the next send. */
3268                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3269
3270         } else {
3271                 dev_kfree_skb_any(skb);
3272                 tx_ring->buffer_info[first].time_stamp = 0;
3273                 tx_ring->next_to_use = first;
3274         }
3275
3276         return NETDEV_TX_OK;
3277 }
3278
3279 #define NUM_REGS 38 /* 1 based count */
3280 static void e1000_regdump(struct e1000_adapter *adapter)
3281 {
3282         struct e1000_hw *hw = &adapter->hw;
3283         u32 regs[NUM_REGS];
3284         u32 *regs_buff = regs;
3285         int i = 0;
3286
3287         static const char * const reg_name[] = {
3288                 "CTRL",  "STATUS",
3289                 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3290                 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3291                 "TIDV", "TXDCTL", "TADV", "TARC0",
3292                 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3293                 "TXDCTL1", "TARC1",
3294                 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3295                 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3296                 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3297         };
3298
3299         regs_buff[0]  = er32(CTRL);
3300         regs_buff[1]  = er32(STATUS);
3301
3302         regs_buff[2]  = er32(RCTL);
3303         regs_buff[3]  = er32(RDLEN);
3304         regs_buff[4]  = er32(RDH);
3305         regs_buff[5]  = er32(RDT);
3306         regs_buff[6]  = er32(RDTR);
3307
3308         regs_buff[7]  = er32(TCTL);
3309         regs_buff[8]  = er32(TDBAL);
3310         regs_buff[9]  = er32(TDBAH);
3311         regs_buff[10] = er32(TDLEN);
3312         regs_buff[11] = er32(TDH);
3313         regs_buff[12] = er32(TDT);
3314         regs_buff[13] = er32(TIDV);
3315         regs_buff[14] = er32(TXDCTL);
3316         regs_buff[15] = er32(TADV);
3317         regs_buff[16] = er32(TARC0);
3318
3319         regs_buff[17] = er32(TDBAL1);
3320         regs_buff[18] = er32(TDBAH1);
3321         regs_buff[19] = er32(TDLEN1);
3322         regs_buff[20] = er32(TDH1);
3323         regs_buff[21] = er32(TDT1);
3324         regs_buff[22] = er32(TXDCTL1);
3325         regs_buff[23] = er32(TARC1);
3326         regs_buff[24] = er32(CTRL_EXT);
3327         regs_buff[25] = er32(ERT);
3328         regs_buff[26] = er32(RDBAL0);
3329         regs_buff[27] = er32(RDBAH0);
3330         regs_buff[28] = er32(TDFH);
3331         regs_buff[29] = er32(TDFT);
3332         regs_buff[30] = er32(TDFHS);
3333         regs_buff[31] = er32(TDFTS);
3334         regs_buff[32] = er32(TDFPC);
3335         regs_buff[33] = er32(RDFH);
3336         regs_buff[34] = er32(RDFT);
3337         regs_buff[35] = er32(RDFHS);
3338         regs_buff[36] = er32(RDFTS);
3339         regs_buff[37] = er32(RDFPC);
3340
3341         pr_info("Register dump\n");
3342         for (i = 0; i < NUM_REGS; i++)
3343                 pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3344 }
3345
3346 /*
3347  * e1000_dump: Print registers, tx ring and rx ring
3348  */
3349 static void e1000_dump(struct e1000_adapter *adapter)
3350 {
3351         /* this code doesn't handle multiple rings */
3352         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3353         struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3354         int i;
3355
3356         if (!netif_msg_hw(adapter))
3357                 return;
3358
3359         /* Print Registers */
3360         e1000_regdump(adapter);
3361
3362         /* transmit dump */
3363         pr_info("TX Desc ring0 dump\n");
3364
3365         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3366          *
3367          * Legacy Transmit Descriptor
3368          *   +--------------------------------------------------------------+
3369          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3370          *   +--------------------------------------------------------------+
3371          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3372          *   +--------------------------------------------------------------+
3373          *   63       48 47        36 35    32 31     24 23    16 15        0
3374          *
3375          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3376          *   63      48 47    40 39       32 31             16 15    8 7      0
3377          *   +----------------------------------------------------------------+
3378          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3379          *   +----------------------------------------------------------------+
3380          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3381          *   +----------------------------------------------------------------+
3382          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3383          *
3384          * Extended Data Descriptor (DTYP=0x1)
3385          *   +----------------------------------------------------------------+
3386          * 0 |                     Buffer Address [63:0]                      |
3387          *   +----------------------------------------------------------------+
3388          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3389          *   +----------------------------------------------------------------+
3390          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3391          */
3392         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3393         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3394
3395         if (!netif_msg_tx_done(adapter))
3396                 goto rx_ring_summary;
3397
3398         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3399                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3400                 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3401                 struct my_u { __le64 a; __le64 b; };
3402                 struct my_u *u = (struct my_u *)tx_desc;
3403                 const char *type;
3404
3405                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3406                         type = "NTC/U";
3407                 else if (i == tx_ring->next_to_use)
3408                         type = "NTU";
3409                 else if (i == tx_ring->next_to_clean)
3410                         type = "NTC";
3411                 else
3412                         type = "";
3413
3414                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3415                         ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3416                         le64_to_cpu(u->a), le64_to_cpu(u->b),
3417                         (u64)buffer_info->dma, buffer_info->length,
3418                         buffer_info->next_to_watch,
3419                         (u64)buffer_info->time_stamp, buffer_info->skb, type);
3420         }
3421
3422 rx_ring_summary:
3423         /* receive dump */
3424         pr_info("\nRX Desc ring dump\n");
3425
3426         /* Legacy Receive Descriptor Format
3427          *
3428          * +-----------------------------------------------------+
3429          * |                Buffer Address [63:0]                |
3430          * +-----------------------------------------------------+
3431          * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3432          * +-----------------------------------------------------+
3433          * 63       48 47    40 39      32 31         16 15      0
3434          */
3435         pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3436
3437         if (!netif_msg_rx_status(adapter))
3438                 goto exit;
3439
3440         for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3441                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3442                 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3443                 struct my_u { __le64 a; __le64 b; };
3444                 struct my_u *u = (struct my_u *)rx_desc;
3445                 const char *type;
3446
3447                 if (i == rx_ring->next_to_use)
3448                         type = "NTU";
3449                 else if (i == rx_ring->next_to_clean)
3450                         type = "NTC";
3451                 else
3452                         type = "";
3453
3454                 pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3455                         i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3456                         (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3457         } /* for */
3458
3459         /* dump the descriptor caches */
3460         /* rx */
3461         pr_info("Rx descriptor cache in 64bit format\n");
3462         for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3463                 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3464                         i,
3465                         readl(adapter->hw.hw_addr + i+4),
3466                         readl(adapter->hw.hw_addr + i),
3467                         readl(adapter->hw.hw_addr + i+12),
3468                         readl(adapter->hw.hw_addr + i+8));
3469         }
3470         /* tx */
3471         pr_info("Tx descriptor cache in 64bit format\n");
3472         for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3473                 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3474                         i,
3475                         readl(adapter->hw.hw_addr + i+4),
3476                         readl(adapter->hw.hw_addr + i),
3477                         readl(adapter->hw.hw_addr + i+12),
3478                         readl(adapter->hw.hw_addr + i+8));
3479         }
3480 exit:
3481         return;
3482 }
3483
3484 /**
3485  * e1000_tx_timeout - Respond to a Tx Hang
3486  * @netdev: network interface device structure
3487  **/
3488 static void e1000_tx_timeout(struct net_device *netdev)
3489 {
3490         struct e1000_adapter *adapter = netdev_priv(netdev);
3491
3492         /* Do the reset outside of interrupt context */
3493         adapter->tx_timeout_count++;
3494         schedule_work(&adapter->reset_task);
3495 }
3496
3497 static void e1000_reset_task(struct work_struct *work)
3498 {
3499         struct e1000_adapter *adapter =
3500                 container_of(work, struct e1000_adapter, reset_task);
3501
3502         e_err(drv, "Reset adapter\n");
3503         e1000_reinit_locked(adapter);
3504 }
3505
3506 /**
3507  * e1000_get_stats - Get System Network Statistics
3508  * @netdev: network interface device structure
3509  *
3510  * Returns the address of the device statistics structure.
3511  * The statistics are actually updated from the watchdog.
3512  **/
3513 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3514 {
3515         /* only return the current stats */
3516         return &netdev->stats;
3517 }
3518
3519 /**
3520  * e1000_change_mtu - Change the Maximum Transfer Unit
3521  * @netdev: network interface device structure
3522  * @new_mtu: new value for maximum frame size
3523  *
3524  * Returns 0 on success, negative on failure
3525  **/
3526 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3527 {
3528         struct e1000_adapter *adapter = netdev_priv(netdev);
3529         struct e1000_hw *hw = &adapter->hw;
3530         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3531
3532         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3533             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3534                 e_err(probe, "Invalid MTU setting\n");
3535                 return -EINVAL;
3536         }
3537
3538         /* Adapter-specific max frame size limits. */
3539         switch (hw->mac_type) {
3540         case e1000_undefined ... e1000_82542_rev2_1:
3541                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3542                         e_err(probe, "Jumbo Frames not supported.\n");
3543                         return -EINVAL;
3544                 }
3545                 break;
3546         default:
3547                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3548                 break;
3549         }
3550
3551         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3552                 msleep(1);
3553         /* e1000_down has a dependency on max_frame_size */
3554         hw->max_frame_size = max_frame;
3555         if (netif_running(netdev))
3556                 e1000_down(adapter);
3557
3558         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3559          * means we reserve 2 more, this pushes us to allocate from the next
3560          * larger slab size.
3561          * i.e. RXBUFFER_2048 --> size-4096 slab
3562          * however with the new *_jumbo_rx* routines, jumbo receives will use
3563          * fragmented skbs
3564          */
3565
3566         if (max_frame <= E1000_RXBUFFER_2048)
3567                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3568         else
3569 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3570                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3571 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3572                 adapter->rx_buffer_len = PAGE_SIZE;
3573 #endif
3574
3575         /* adjust allocation if LPE protects us, and we aren't using SBP */
3576         if (!hw->tbi_compatibility_on &&
3577             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3578              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3579                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3580
3581         pr_info("%s changing MTU from %d to %d\n",
3582                 netdev->name, netdev->mtu, new_mtu);
3583         netdev->mtu = new_mtu;
3584
3585         if (netif_running(netdev))
3586                 e1000_up(adapter);
3587         else
3588                 e1000_reset(adapter);
3589
3590         clear_bit(__E1000_RESETTING, &adapter->flags);
3591
3592         return 0;
3593 }
3594
3595 /**
3596  * e1000_update_stats - Update the board statistics counters
3597  * @adapter: board private structure
3598  **/
3599 void e1000_update_stats(struct e1000_adapter *adapter)
3600 {
3601         struct net_device *netdev = adapter->netdev;
3602         struct e1000_hw *hw = &adapter->hw;
3603         struct pci_dev *pdev = adapter->pdev;
3604         unsigned long flags;
3605         u16 phy_tmp;
3606
3607 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3608
3609         /* Prevent stats update while adapter is being reset, or if the pci
3610          * connection is down.
3611          */
3612         if (adapter->link_speed == 0)
3613                 return;
3614         if (pci_channel_offline(pdev))
3615                 return;
3616
3617         spin_lock_irqsave(&adapter->stats_lock, flags);
3618
3619         /* these counters are modified from e1000_tbi_adjust_stats,
3620          * called from the interrupt context, so they must only
3621          * be written while holding adapter->stats_lock
3622          */
3623
3624         adapter->stats.crcerrs += er32(CRCERRS);
3625         adapter->stats.gprc += er32(GPRC);
3626         adapter->stats.gorcl += er32(GORCL);
3627         adapter->stats.gorch += er32(GORCH);
3628         adapter->stats.bprc += er32(BPRC);
3629         adapter->stats.mprc += er32(MPRC);
3630         adapter->stats.roc += er32(ROC);
3631
3632         adapter->stats.prc64 += er32(PRC64);
3633         adapter->stats.prc127 += er32(PRC127);
3634         adapter->stats.prc255 += er32(PRC255);
3635         adapter->stats.prc511 += er32(PRC511);
3636         adapter->stats.prc1023 += er32(PRC1023);
3637         adapter->stats.prc1522 += er32(PRC1522);
3638
3639         adapter->stats.symerrs += er32(SYMERRS);
3640         adapter->stats.mpc += er32(MPC);
3641         adapter->stats.scc += er32(SCC);
3642         adapter->stats.ecol += er32(ECOL);
3643         adapter->stats.mcc += er32(MCC);
3644         adapter->stats.latecol += er32(LATECOL);
3645         adapter->stats.dc += er32(DC);
3646         adapter->stats.sec += er32(SEC);
3647         adapter->stats.rlec += er32(RLEC);
3648         adapter->stats.xonrxc += er32(XONRXC);
3649         adapter->stats.xontxc += er32(XONTXC);
3650         adapter->stats.xoffrxc += er32(XOFFRXC);
3651         adapter->stats.xofftxc += er32(XOFFTXC);
3652         adapter->stats.fcruc += er32(FCRUC);
3653         adapter->stats.gptc += er32(GPTC);
3654         adapter->stats.gotcl += er32(GOTCL);
3655         adapter->stats.gotch += er32(GOTCH);
3656         adapter->stats.rnbc += er32(RNBC);
3657         adapter->stats.ruc += er32(RUC);
3658         adapter->stats.rfc += er32(RFC);
3659         adapter->stats.rjc += er32(RJC);
3660         adapter->stats.torl += er32(TORL);
3661         adapter->stats.torh += er32(TORH);
3662         adapter->stats.totl += er32(TOTL);
3663         adapter->stats.toth += er32(TOTH);
3664         adapter->stats.tpr += er32(TPR);
3665
3666         adapter->stats.ptc64 += er32(PTC64);
3667         adapter->stats.ptc127 += er32(PTC127);
3668         adapter->stats.ptc255 += er32(PTC255);
3669         adapter->stats.ptc511 += er32(PTC511);
3670         adapter->stats.ptc1023 += er32(PTC1023);
3671         adapter->stats.ptc1522 += er32(PTC1522);
3672
3673         adapter->stats.mptc += er32(MPTC);
3674         adapter->stats.bptc += er32(BPTC);
3675
3676         /* used for adaptive IFS */
3677
3678         hw->tx_packet_delta = er32(TPT);
3679         adapter->stats.tpt += hw->tx_packet_delta;
3680         hw->collision_delta = er32(COLC);
3681         adapter->stats.colc += hw->collision_delta;
3682
3683         if (hw->mac_type >= e1000_82543) {
3684                 adapter->stats.algnerrc += er32(ALGNERRC);
3685                 adapter->stats.rxerrc += er32(RXERRC);
3686                 adapter->stats.tncrs += er32(TNCRS);
3687                 adapter->stats.cexterr += er32(CEXTERR);
3688                 adapter->stats.tsctc += er32(TSCTC);
3689                 adapter->stats.tsctfc += er32(TSCTFC);
3690         }
3691
3692         /* Fill out the OS statistics structure */
3693         netdev->stats.multicast = adapter->stats.mprc;
3694         netdev->stats.collisions = adapter->stats.colc;
3695
3696         /* Rx Errors */
3697
3698         /* RLEC on some newer hardware can be incorrect so build
3699          * our own version based on RUC and ROC
3700          */
3701         netdev->stats.rx_errors = adapter->stats.rxerrc +
3702                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3703                 adapter->stats.ruc + adapter->stats.roc +
3704                 adapter->stats.cexterr;
3705         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3706         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3707         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3708         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3709         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3710
3711         /* Tx Errors */
3712         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3713         netdev->stats.tx_errors = adapter->stats.txerrc;
3714         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3715         netdev->stats.tx_window_errors = adapter->stats.latecol;
3716         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3717         if (hw->bad_tx_carr_stats_fd &&
3718             adapter->link_duplex == FULL_DUPLEX) {
3719                 netdev->stats.tx_carrier_errors = 0;
3720                 adapter->stats.tncrs = 0;
3721         }
3722
3723         /* Tx Dropped needs to be maintained elsewhere */
3724
3725         /* Phy Stats */
3726         if (hw->media_type == e1000_media_type_copper) {
3727                 if ((adapter->link_speed == SPEED_1000) &&
3728                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3729                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3730                         adapter->phy_stats.idle_errors += phy_tmp;
3731                 }
3732
3733                 if ((hw->mac_type <= e1000_82546) &&
3734                    (hw->phy_type == e1000_phy_m88) &&
3735                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3736                         adapter->phy_stats.receive_errors += phy_tmp;
3737         }
3738
3739         /* Management Stats */
3740         if (hw->has_smbus) {
3741                 adapter->stats.mgptc += er32(MGTPTC);
3742                 adapter->stats.mgprc += er32(MGTPRC);
3743                 adapter->stats.mgpdc += er32(MGTPDC);
3744         }
3745
3746         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3747 }
3748
3749 /**
3750  * e1000_intr - Interrupt Handler
3751  * @irq: interrupt number
3752  * @data: pointer to a network interface device structure
3753  **/
3754 static irqreturn_t e1000_intr(int irq, void *data)
3755 {
3756         struct net_device *netdev = data;
3757         struct e1000_adapter *adapter = netdev_priv(netdev);
3758         struct e1000_hw *hw = &adapter->hw;
3759         u32 icr = er32(ICR);
3760
3761         if (unlikely((!icr)))
3762                 return IRQ_NONE;  /* Not our interrupt */
3763
3764         /* we might have caused the interrupt, but the above
3765          * read cleared it, and just in case the driver is
3766          * down there is nothing to do so return handled
3767          */
3768         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3769                 return IRQ_HANDLED;
3770
3771         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3772                 hw->get_link_status = 1;
3773                 /* guard against interrupt when we're going down */
3774                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3775                         schedule_delayed_work(&adapter->watchdog_task, 1);
3776         }
3777
3778         /* disable interrupts, without the synchronize_irq bit */
3779         ew32(IMC, ~0);
3780         E1000_WRITE_FLUSH();
3781
3782         if (likely(napi_schedule_prep(&adapter->napi))) {
3783                 adapter->total_tx_bytes = 0;
3784                 adapter->total_tx_packets = 0;
3785                 adapter->total_rx_bytes = 0;
3786                 adapter->total_rx_packets = 0;
3787                 __napi_schedule(&adapter->napi);
3788         } else {
3789                 /* this really should not happen! if it does it is basically a
3790                  * bug, but not a hard error, so enable ints and continue
3791                  */
3792                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3793                         e1000_irq_enable(adapter);
3794         }
3795
3796         return IRQ_HANDLED;
3797 }
3798
3799 /**
3800  * e1000_clean - NAPI Rx polling callback
3801  * @adapter: board private structure
3802  **/
3803 static int e1000_clean(struct napi_struct *napi, int budget)
3804 {
3805         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3806                                                      napi);
3807         int tx_clean_complete = 0, work_done = 0;
3808
3809         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3810
3811         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3812
3813         if (!tx_clean_complete)
3814                 work_done = budget;
3815
3816         /* If budget not fully consumed, exit the polling mode */
3817         if (work_done < budget) {
3818                 if (likely(adapter->itr_setting & 3))
3819                         e1000_set_itr(adapter);
3820                 napi_complete(napi);
3821                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3822                         e1000_irq_enable(adapter);
3823         }
3824
3825         return work_done;
3826 }
3827
3828 /**
3829  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3830  * @adapter: board private structure
3831  **/
3832 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3833                                struct e1000_tx_ring *tx_ring)
3834 {
3835         struct e1000_hw *hw = &adapter->hw;
3836         struct net_device *netdev = adapter->netdev;
3837         struct e1000_tx_desc *tx_desc, *eop_desc;
3838         struct e1000_tx_buffer *buffer_info;
3839         unsigned int i, eop;
3840         unsigned int count = 0;
3841         unsigned int total_tx_bytes=0, total_tx_packets=0;
3842         unsigned int bytes_compl = 0, pkts_compl = 0;
3843
3844         i = tx_ring->next_to_clean;
3845         eop = tx_ring->buffer_info[i].next_to_watch;
3846         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3847
3848         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3849                (count < tx_ring->count)) {
3850                 bool cleaned = false;
3851                 rmb();  /* read buffer_info after eop_desc */
3852                 for ( ; !cleaned; count++) {
3853                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3854                         buffer_info = &tx_ring->buffer_info[i];
3855                         cleaned = (i == eop);
3856
3857                         if (cleaned) {
3858                                 total_tx_packets += buffer_info->segs;
3859                                 total_tx_bytes += buffer_info->bytecount;
3860                                 if (buffer_info->skb) {
3861                                         bytes_compl += buffer_info->skb->len;
3862                                         pkts_compl++;
3863                                 }
3864
3865                         }
3866                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3867                         tx_desc->upper.data = 0;
3868
3869                         if (unlikely(++i == tx_ring->count)) i = 0;
3870                 }
3871
3872                 eop = tx_ring->buffer_info[i].next_to_watch;
3873                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3874         }
3875
3876         tx_ring->next_to_clean = i;
3877
3878         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3879
3880 #define TX_WAKE_THRESHOLD 32
3881         if (unlikely(count && netif_carrier_ok(netdev) &&
3882                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3883                 /* Make sure that anybody stopping the queue after this
3884                  * sees the new next_to_clean.
3885                  */
3886                 smp_mb();
3887
3888                 if (netif_queue_stopped(netdev) &&
3889                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3890                         netif_wake_queue(netdev);
3891                         ++adapter->restart_queue;
3892                 }
3893         }
3894
3895         if (adapter->detect_tx_hung) {
3896                 /* Detect a transmit hang in hardware, this serializes the
3897                  * check with the clearing of time_stamp and movement of i
3898                  */
3899                 adapter->detect_tx_hung = false;
3900                 if (tx_ring->buffer_info[eop].time_stamp &&
3901                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3902                                (adapter->tx_timeout_factor * HZ)) &&
3903                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3904
3905                         /* detected Tx unit hang */
3906                         e_err(drv, "Detected Tx Unit Hang\n"
3907                               "  Tx Queue             <%lu>\n"
3908                               "  TDH                  <%x>\n"
3909                               "  TDT                  <%x>\n"
3910                               "  next_to_use          <%x>\n"
3911                               "  next_to_clean        <%x>\n"
3912                               "buffer_info[next_to_clean]\n"
3913                               "  time_stamp           <%lx>\n"
3914                               "  next_to_watch        <%x>\n"
3915                               "  jiffies              <%lx>\n"
3916                               "  next_to_watch.status <%x>\n",
3917                                 (unsigned long)(tx_ring - adapter->tx_ring),
3918                                 readl(hw->hw_addr + tx_ring->tdh),
3919                                 readl(hw->hw_addr + tx_ring->tdt),
3920                                 tx_ring->next_to_use,
3921                                 tx_ring->next_to_clean,
3922                                 tx_ring->buffer_info[eop].time_stamp,
3923                                 eop,
3924                                 jiffies,
3925                                 eop_desc->upper.fields.status);
3926                         e1000_dump(adapter);
3927                         netif_stop_queue(netdev);
3928                 }
3929         }
3930         adapter->total_tx_bytes += total_tx_bytes;
3931         adapter->total_tx_packets += total_tx_packets;
3932         netdev->stats.tx_bytes += total_tx_bytes;
3933         netdev->stats.tx_packets += total_tx_packets;
3934         return count < tx_ring->count;
3935 }
3936
3937 /**
3938  * e1000_rx_checksum - Receive Checksum Offload for 82543
3939  * @adapter:     board private structure
3940  * @status_err:  receive descriptor status and error fields
3941  * @csum:        receive descriptor csum field
3942  * @sk_buff:     socket buffer with received data
3943  **/
3944 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3945                               u32 csum, struct sk_buff *skb)
3946 {
3947         struct e1000_hw *hw = &adapter->hw;
3948         u16 status = (u16)status_err;
3949         u8 errors = (u8)(status_err >> 24);
3950
3951         skb_checksum_none_assert(skb);
3952
3953         /* 82543 or newer only */
3954         if (unlikely(hw->mac_type < e1000_82543)) return;
3955         /* Ignore Checksum bit is set */
3956         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3957         /* TCP/UDP checksum error bit is set */
3958         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3959                 /* let the stack verify checksum errors */
3960                 adapter->hw_csum_err++;
3961                 return;
3962         }
3963         /* TCP/UDP Checksum has not been calculated */
3964         if (!(status & E1000_RXD_STAT_TCPCS))
3965                 return;
3966
3967         /* It must be a TCP or UDP packet with a valid checksum */
3968         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3969                 /* TCP checksum is good */
3970                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3971         }
3972         adapter->hw_csum_good++;
3973 }
3974
3975 /**
3976  * e1000_consume_page - helper function for jumbo Rx path
3977  **/
3978 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3979                                u16 length)
3980 {
3981         bi->rxbuf.page = NULL;
3982         skb->len += length;
3983         skb->data_len += length;
3984         skb->truesize += PAGE_SIZE;
3985 }
3986
3987 /**
3988  * e1000_receive_skb - helper function to handle rx indications
3989  * @adapter: board private structure
3990  * @status: descriptor status field as written by hardware
3991  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3992  * @skb: pointer to sk_buff to be indicated to stack
3993  */
3994 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3995                               __le16 vlan, struct sk_buff *skb)
3996 {
3997         skb->protocol = eth_type_trans(skb, adapter->netdev);
3998
3999         if (status & E1000_RXD_STAT_VP) {
4000                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4001
4002                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4003         }
4004         napi_gro_receive(&adapter->napi, skb);
4005 }
4006
4007 /**
4008  * e1000_tbi_adjust_stats
4009  * @hw: Struct containing variables accessed by shared code
4010  * @frame_len: The length of the frame in question
4011  * @mac_addr: The Ethernet destination address of the frame in question
4012  *
4013  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4014  */
4015 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4016                                    struct e1000_hw_stats *stats,
4017                                    u32 frame_len, const u8 *mac_addr)
4018 {
4019         u64 carry_bit;
4020
4021         /* First adjust the frame length. */
4022         frame_len--;
4023         /* We need to adjust the statistics counters, since the hardware
4024          * counters overcount this packet as a CRC error and undercount
4025          * the packet as a good packet
4026          */
4027         /* This packet should not be counted as a CRC error. */
4028         stats->crcerrs--;
4029         /* This packet does count as a Good Packet Received. */
4030         stats->gprc++;
4031
4032         /* Adjust the Good Octets received counters */
4033         carry_bit = 0x80000000 & stats->gorcl;
4034         stats->gorcl += frame_len;
4035         /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4036          * Received Count) was one before the addition,
4037          * AND it is zero after, then we lost the carry out,
4038          * need to add one to Gorch (Good Octets Received Count High).
4039          * This could be simplified if all environments supported
4040          * 64-bit integers.
4041          */
4042         if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4043                 stats->gorch++;
4044         /* Is this a broadcast or multicast?  Check broadcast first,
4045          * since the test for a multicast frame will test positive on
4046          * a broadcast frame.
4047          */
4048         if (is_broadcast_ether_addr(mac_addr))
4049                 stats->bprc++;
4050         else if (is_multicast_ether_addr(mac_addr))
4051                 stats->mprc++;
4052
4053         if (frame_len == hw->max_frame_size) {
4054                 /* In this case, the hardware has overcounted the number of
4055                  * oversize frames.
4056                  */
4057                 if (stats->roc > 0)
4058                         stats->roc--;
4059         }
4060
4061         /* Adjust the bin counters when the extra byte put the frame in the
4062          * wrong bin. Remember that the frame_len was adjusted above.
4063          */
4064         if (frame_len == 64) {
4065                 stats->prc64++;
4066                 stats->prc127--;
4067         } else if (frame_len == 127) {
4068                 stats->prc127++;
4069                 stats->prc255--;
4070         } else if (frame_len == 255) {
4071                 stats->prc255++;
4072                 stats->prc511--;
4073         } else if (frame_len == 511) {
4074                 stats->prc511++;
4075                 stats->prc1023--;
4076         } else if (frame_len == 1023) {
4077                 stats->prc1023++;
4078                 stats->prc1522--;
4079         } else if (frame_len == 1522) {
4080                 stats->prc1522++;
4081         }
4082 }
4083
4084 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4085                                     u8 status, u8 errors,
4086                                     u32 length, const u8 *data)
4087 {
4088         struct e1000_hw *hw = &adapter->hw;
4089         u8 last_byte = *(data + length - 1);
4090
4091         if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4092                 unsigned long irq_flags;
4093
4094                 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4095                 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4096                 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4097
4098                 return true;
4099         }
4100
4101         return false;
4102 }
4103
4104 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4105                                           unsigned int bufsz)
4106 {
4107         struct sk_buff *skb = netdev_alloc_skb_ip_align(adapter->netdev, bufsz);
4108
4109         if (unlikely(!skb))
4110                 adapter->alloc_rx_buff_failed++;
4111         return skb;
4112 }
4113
4114 /**
4115  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4116  * @adapter: board private structure
4117  * @rx_ring: ring to clean
4118  * @work_done: amount of napi work completed this call
4119  * @work_to_do: max amount of work allowed for this call to do
4120  *
4121  * the return value indicates whether actual cleaning was done, there
4122  * is no guarantee that everything was cleaned
4123  */
4124 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4125                                      struct e1000_rx_ring *rx_ring,
4126                                      int *work_done, int work_to_do)
4127 {
4128         struct net_device *netdev = adapter->netdev;
4129         struct pci_dev *pdev = adapter->pdev;
4130         struct e1000_rx_desc *rx_desc, *next_rxd;
4131         struct e1000_rx_buffer *buffer_info, *next_buffer;
4132         u32 length;
4133         unsigned int i;
4134         int cleaned_count = 0;
4135         bool cleaned = false;
4136         unsigned int total_rx_bytes=0, total_rx_packets=0;
4137
4138         i = rx_ring->next_to_clean;
4139         rx_desc = E1000_RX_DESC(*rx_ring, i);
4140         buffer_info = &rx_ring->buffer_info[i];
4141
4142         while (rx_desc->status & E1000_RXD_STAT_DD) {
4143                 struct sk_buff *skb;
4144                 u8 status;
4145
4146                 if (*work_done >= work_to_do)
4147                         break;
4148                 (*work_done)++;
4149                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4150
4151                 status = rx_desc->status;
4152
4153                 if (++i == rx_ring->count) i = 0;
4154                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4155                 prefetch(next_rxd);
4156
4157                 next_buffer = &rx_ring->buffer_info[i];
4158
4159                 cleaned = true;
4160                 cleaned_count++;
4161                 dma_unmap_page(&pdev->dev, buffer_info->dma,
4162                                adapter->rx_buffer_len, DMA_FROM_DEVICE);
4163                 buffer_info->dma = 0;
4164
4165                 length = le16_to_cpu(rx_desc->length);
4166
4167                 /* errors is only valid for DD + EOP descriptors */
4168                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4169                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4170                         u8 *mapped = page_address(buffer_info->rxbuf.page);
4171
4172                         if (e1000_tbi_should_accept(adapter, status,
4173                                                     rx_desc->errors,
4174                                                     length, mapped)) {
4175                                 length--;
4176                         } else if (netdev->features & NETIF_F_RXALL) {
4177                                 goto process_skb;
4178                         } else {
4179                                 /* an error means any chain goes out the window
4180                                  * too
4181                                  */
4182                                 if (rx_ring->rx_skb_top)
4183                                         dev_kfree_skb(rx_ring->rx_skb_top);
4184                                 rx_ring->rx_skb_top = NULL;
4185                                 goto next_desc;
4186                         }
4187                 }
4188
4189 #define rxtop rx_ring->rx_skb_top
4190 process_skb:
4191                 if (!(status & E1000_RXD_STAT_EOP)) {
4192                         /* this descriptor is only the beginning (or middle) */
4193                         if (!rxtop) {
4194                                 /* this is the beginning of a chain */
4195                                 rxtop = napi_get_frags(&adapter->napi);
4196                                 if (!rxtop)
4197                                         break;
4198
4199                                 skb_fill_page_desc(rxtop, 0,
4200                                                    buffer_info->rxbuf.page,
4201                                                    0, length);
4202                         } else {
4203                                 /* this is the middle of a chain */
4204                                 skb_fill_page_desc(rxtop,
4205                                     skb_shinfo(rxtop)->nr_frags,
4206                                     buffer_info->rxbuf.page, 0, length);
4207                         }
4208                         e1000_consume_page(buffer_info, rxtop, length);
4209                         goto next_desc;
4210                 } else {
4211                         if (rxtop) {
4212                                 /* end of the chain */
4213                                 skb_fill_page_desc(rxtop,
4214                                     skb_shinfo(rxtop)->nr_frags,
4215                                     buffer_info->rxbuf.page, 0, length);
4216                                 skb = rxtop;
4217                                 rxtop = NULL;
4218                                 e1000_consume_page(buffer_info, skb, length);
4219                         } else {
4220                                 struct page *p;
4221                                 /* no chain, got EOP, this buf is the packet
4222                                  * copybreak to save the put_page/alloc_page
4223                                  */
4224                                 p = buffer_info->rxbuf.page;
4225                                 if (length <= copybreak) {
4226                                         u8 *vaddr;
4227
4228                                         if (likely(!(netdev->features & NETIF_F_RXFCS)))
4229                                                 length -= 4;
4230                                         skb = e1000_alloc_rx_skb(adapter,
4231                                                                  length);
4232                                         if (!skb)
4233                                                 break;
4234
4235                                         vaddr = kmap_atomic(p);
4236                                         memcpy(skb_tail_pointer(skb), vaddr,
4237                                                length);
4238                                         kunmap_atomic(vaddr);
4239                                         /* re-use the page, so don't erase
4240                                          * buffer_info->rxbuf.page
4241                                          */
4242                                         skb_put(skb, length);
4243                                         e1000_rx_checksum(adapter,
4244                                                           status | rx_desc->errors << 24,
4245                                                           le16_to_cpu(rx_desc->csum), skb);
4246
4247                                         total_rx_bytes += skb->len;
4248                                         total_rx_packets++;
4249
4250                                         e1000_receive_skb(adapter, status,
4251                                                           rx_desc->special, skb);
4252                                         goto next_desc;
4253                                 } else {
4254                                         skb = napi_get_frags(&adapter->napi);
4255                                         if (!skb) {
4256                                                 adapter->alloc_rx_buff_failed++;
4257                                                 break;
4258                                         }
4259                                         skb_fill_page_desc(skb, 0, p, 0,
4260                                                            length);
4261                                         e1000_consume_page(buffer_info, skb,
4262                                                            length);
4263                                 }
4264                         }
4265                 }
4266
4267                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4268                 e1000_rx_checksum(adapter,
4269                                   (u32)(status) |
4270                                   ((u32)(rx_desc->errors) << 24),
4271                                   le16_to_cpu(rx_desc->csum), skb);
4272
4273                 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4274                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4275                         pskb_trim(skb, skb->len - 4);
4276                 total_rx_packets++;
4277
4278                 if (status & E1000_RXD_STAT_VP) {
4279                         __le16 vlan = rx_desc->special;
4280                         u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4281
4282                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4283                 }
4284
4285                 napi_gro_frags(&adapter->napi);
4286
4287 next_desc:
4288                 rx_desc->status = 0;
4289
4290                 /* return some buffers to hardware, one at a time is too slow */
4291                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4292                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4293                         cleaned_count = 0;
4294                 }
4295
4296                 /* use prefetched values */
4297                 rx_desc = next_rxd;
4298                 buffer_info = next_buffer;
4299         }
4300         rx_ring->next_to_clean = i;
4301
4302         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4303         if (cleaned_count)
4304                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4305
4306         adapter->total_rx_packets += total_rx_packets;
4307         adapter->total_rx_bytes += total_rx_bytes;
4308         netdev->stats.rx_bytes += total_rx_bytes;
4309         netdev->stats.rx_packets += total_rx_packets;
4310         return cleaned;
4311 }
4312
4313 /* this should improve performance for small packets with large amounts
4314  * of reassembly being done in the stack
4315  */
4316 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4317                                        struct e1000_rx_buffer *buffer_info,
4318                                        u32 length, const void *data)
4319 {
4320         struct sk_buff *skb;
4321
4322         if (length > copybreak)
4323                 return NULL;
4324
4325         skb = e1000_alloc_rx_skb(adapter, length);
4326         if (!skb)
4327                 return NULL;
4328
4329         dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4330                                 length, DMA_FROM_DEVICE);
4331
4332         memcpy(skb_put(skb, length), data, length);
4333
4334         return skb;
4335 }
4336
4337 /**
4338  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4339  * @adapter: board private structure
4340  * @rx_ring: ring to clean
4341  * @work_done: amount of napi work completed this call
4342  * @work_to_do: max amount of work allowed for this call to do
4343  */
4344 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4345                                struct e1000_rx_ring *rx_ring,
4346                                int *work_done, int work_to_do)
4347 {
4348         struct net_device *netdev = adapter->netdev;
4349         struct pci_dev *pdev = adapter->pdev;
4350         struct e1000_rx_desc *rx_desc, *next_rxd;
4351         struct e1000_rx_buffer *buffer_info, *next_buffer;
4352         u32 length;
4353         unsigned int i;
4354         int cleaned_count = 0;
4355         bool cleaned = false;
4356         unsigned int total_rx_bytes=0, total_rx_packets=0;
4357
4358         i = rx_ring->next_to_clean;
4359         rx_desc = E1000_RX_DESC(*rx_ring, i);
4360         buffer_info = &rx_ring->buffer_info[i];
4361
4362         while (rx_desc->status & E1000_RXD_STAT_DD) {
4363                 struct sk_buff *skb;
4364                 u8 *data;
4365                 u8 status;
4366
4367                 if (*work_done >= work_to_do)
4368                         break;
4369                 (*work_done)++;
4370                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4371
4372                 status = rx_desc->status;
4373                 length = le16_to_cpu(rx_desc->length);
4374
4375                 data = buffer_info->rxbuf.data;
4376                 prefetch(data);
4377                 skb = e1000_copybreak(adapter, buffer_info, length, data);
4378                 if (!skb) {
4379                         unsigned int frag_len = e1000_frag_len(adapter);
4380
4381                         skb = build_skb(data - E1000_HEADROOM, frag_len);
4382                         if (!skb) {
4383                                 adapter->alloc_rx_buff_failed++;
4384                                 break;
4385                         }
4386
4387                         skb_reserve(skb, E1000_HEADROOM);
4388                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4389                                          adapter->rx_buffer_len,
4390                                          DMA_FROM_DEVICE);
4391                         buffer_info->dma = 0;
4392                         buffer_info->rxbuf.data = NULL;
4393                 }
4394
4395                 if (++i == rx_ring->count) i = 0;
4396                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4397                 prefetch(next_rxd);
4398
4399                 next_buffer = &rx_ring->buffer_info[i];
4400
4401                 cleaned = true;
4402                 cleaned_count++;
4403
4404                 /* !EOP means multiple descriptors were used to store a single
4405                  * packet, if thats the case we need to toss it.  In fact, we
4406                  * to toss every packet with the EOP bit clear and the next
4407                  * frame that _does_ have the EOP bit set, as it is by
4408                  * definition only a frame fragment
4409                  */
4410                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4411                         adapter->discarding = true;
4412
4413                 if (adapter->discarding) {
4414                         /* All receives must fit into a single buffer */
4415                         netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4416                         dev_kfree_skb(skb);
4417                         if (status & E1000_RXD_STAT_EOP)
4418                                 adapter->discarding = false;
4419                         goto next_desc;
4420                 }
4421
4422                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4423                         if (e1000_tbi_should_accept(adapter, status,
4424                                                     rx_desc->errors,
4425                                                     length, data)) {
4426                                 length--;
4427                         } else if (netdev->features & NETIF_F_RXALL) {
4428                                 goto process_skb;
4429                         } else {
4430                                 dev_kfree_skb(skb);
4431                                 goto next_desc;
4432                         }
4433                 }
4434
4435 process_skb:
4436                 total_rx_bytes += (length - 4); /* don't count FCS */
4437                 total_rx_packets++;
4438
4439                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4440                         /* adjust length to remove Ethernet CRC, this must be
4441                          * done after the TBI_ACCEPT workaround above
4442                          */
4443                         length -= 4;
4444
4445                 if (buffer_info->rxbuf.data == NULL)
4446                         skb_put(skb, length);
4447                 else /* copybreak skb */
4448                         skb_trim(skb, length);
4449
4450                 /* Receive Checksum Offload */
4451                 e1000_rx_checksum(adapter,
4452                                   (u32)(status) |
4453                                   ((u32)(rx_desc->errors) << 24),
4454                                   le16_to_cpu(rx_desc->csum), skb);
4455
4456                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4457
4458 next_desc:
4459                 rx_desc->status = 0;
4460
4461                 /* return some buffers to hardware, one at a time is too slow */
4462                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4463                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4464                         cleaned_count = 0;
4465                 }
4466
4467                 /* use prefetched values */
4468                 rx_desc = next_rxd;
4469                 buffer_info = next_buffer;
4470         }
4471         rx_ring->next_to_clean = i;
4472
4473         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4474         if (cleaned_count)
4475                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4476
4477         adapter->total_rx_packets += total_rx_packets;
4478         adapter->total_rx_bytes += total_rx_bytes;
4479         netdev->stats.rx_bytes += total_rx_bytes;
4480         netdev->stats.rx_packets += total_rx_packets;
4481         return cleaned;
4482 }
4483
4484 /**
4485  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4486  * @adapter: address of board private structure
4487  * @rx_ring: pointer to receive ring structure
4488  * @cleaned_count: number of buffers to allocate this pass
4489  **/
4490 static void
4491 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4492                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4493 {
4494         struct pci_dev *pdev = adapter->pdev;
4495         struct e1000_rx_desc *rx_desc;
4496         struct e1000_rx_buffer *buffer_info;
4497         unsigned int i;
4498
4499         i = rx_ring->next_to_use;
4500         buffer_info = &rx_ring->buffer_info[i];
4501
4502         while (cleaned_count--) {
4503                 /* allocate a new page if necessary */
4504                 if (!buffer_info->rxbuf.page) {
4505                         buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4506                         if (unlikely(!buffer_info->rxbuf.page)) {
4507                                 adapter->alloc_rx_buff_failed++;
4508                                 break;
4509                         }
4510                 }
4511
4512                 if (!buffer_info->dma) {
4513                         buffer_info->dma = dma_map_page(&pdev->dev,
4514                                                         buffer_info->rxbuf.page, 0,
4515                                                         adapter->rx_buffer_len,
4516                                                         DMA_FROM_DEVICE);
4517                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4518                                 put_page(buffer_info->rxbuf.page);
4519                                 buffer_info->rxbuf.page = NULL;
4520                                 buffer_info->dma = 0;
4521                                 adapter->alloc_rx_buff_failed++;
4522                                 break;
4523                         }
4524                 }
4525
4526                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4527                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4528
4529                 if (unlikely(++i == rx_ring->count))
4530                         i = 0;
4531                 buffer_info = &rx_ring->buffer_info[i];
4532         }
4533
4534         if (likely(rx_ring->next_to_use != i)) {
4535                 rx_ring->next_to_use = i;
4536                 if (unlikely(i-- == 0))
4537                         i = (rx_ring->count - 1);
4538
4539                 /* Force memory writes to complete before letting h/w
4540                  * know there are new descriptors to fetch.  (Only
4541                  * applicable for weak-ordered memory model archs,
4542                  * such as IA-64).
4543                  */
4544                 wmb();
4545                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4546         }
4547 }
4548
4549 /**
4550  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4551  * @adapter: address of board private structure
4552  **/
4553 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4554                                    struct e1000_rx_ring *rx_ring,
4555                                    int cleaned_count)
4556 {
4557         struct e1000_hw *hw = &adapter->hw;
4558         struct pci_dev *pdev = adapter->pdev;
4559         struct e1000_rx_desc *rx_desc;
4560         struct e1000_rx_buffer *buffer_info;
4561         unsigned int i;
4562         unsigned int bufsz = adapter->rx_buffer_len;
4563
4564         i = rx_ring->next_to_use;
4565         buffer_info = &rx_ring->buffer_info[i];
4566
4567         while (cleaned_count--) {
4568                 void *data;
4569
4570                 if (buffer_info->rxbuf.data)
4571                         goto skip;
4572
4573                 data = e1000_alloc_frag(adapter);
4574                 if (!data) {
4575                         /* Better luck next round */
4576                         adapter->alloc_rx_buff_failed++;
4577                         break;
4578                 }
4579
4580                 /* Fix for errata 23, can't cross 64kB boundary */
4581                 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4582                         void *olddata = data;
4583                         e_err(rx_err, "skb align check failed: %u bytes at "
4584                               "%p\n", bufsz, data);
4585                         /* Try again, without freeing the previous */
4586                         data = e1000_alloc_frag(adapter);
4587                         /* Failed allocation, critical failure */
4588                         if (!data) {
4589                                 e1000_free_frag(olddata);
4590                                 adapter->alloc_rx_buff_failed++;
4591                                 break;
4592                         }
4593
4594                         if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4595                                 /* give up */
4596                                 e1000_free_frag(data);
4597                                 e1000_free_frag(olddata);
4598                                 adapter->alloc_rx_buff_failed++;
4599                                 break;
4600                         }
4601
4602                         /* Use new allocation */
4603                         e1000_free_frag(olddata);
4604                 }
4605                 buffer_info->dma = dma_map_single(&pdev->dev,
4606                                                   data,
4607                                                   adapter->rx_buffer_len,
4608                                                   DMA_FROM_DEVICE);
4609                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4610                         e1000_free_frag(data);
4611                         buffer_info->dma = 0;
4612                         adapter->alloc_rx_buff_failed++;
4613                         break;
4614                 }
4615
4616                 /* XXX if it was allocated cleanly it will never map to a
4617                  * boundary crossing
4618                  */
4619
4620                 /* Fix for errata 23, can't cross 64kB boundary */
4621                 if (!e1000_check_64k_bound(adapter,
4622                                         (void *)(unsigned long)buffer_info->dma,
4623                                         adapter->rx_buffer_len)) {
4624                         e_err(rx_err, "dma align check failed: %u bytes at "
4625                               "%p\n", adapter->rx_buffer_len,
4626                               (void *)(unsigned long)buffer_info->dma);
4627
4628                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4629                                          adapter->rx_buffer_len,
4630                                          DMA_FROM_DEVICE);
4631
4632                         e1000_free_frag(data);
4633                         buffer_info->rxbuf.data = NULL;
4634                         buffer_info->dma = 0;
4635
4636                         adapter->alloc_rx_buff_failed++;
4637                         break;
4638                 }
4639                 buffer_info->rxbuf.data = data;
4640  skip:
4641                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4642                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4643
4644                 if (unlikely(++i == rx_ring->count))
4645                         i = 0;
4646                 buffer_info = &rx_ring->buffer_info[i];
4647         }
4648
4649         if (likely(rx_ring->next_to_use != i)) {
4650                 rx_ring->next_to_use = i;
4651                 if (unlikely(i-- == 0))
4652                         i = (rx_ring->count - 1);
4653
4654                 /* Force memory writes to complete before letting h/w
4655                  * know there are new descriptors to fetch.  (Only
4656                  * applicable for weak-ordered memory model archs,
4657                  * such as IA-64).
4658                  */
4659                 wmb();
4660                 writel(i, hw->hw_addr + rx_ring->rdt);
4661         }
4662 }
4663
4664 /**
4665  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4666  * @adapter:
4667  **/
4668 static void e1000_smartspeed(struct e1000_adapter *adapter)
4669 {
4670         struct e1000_hw *hw = &adapter->hw;
4671         u16 phy_status;
4672         u16 phy_ctrl;
4673
4674         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4675            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4676                 return;
4677
4678         if (adapter->smartspeed == 0) {
4679                 /* If Master/Slave config fault is asserted twice,
4680                  * we assume back-to-back
4681                  */
4682                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4683                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4684                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4685                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4686                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4687                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4688                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4689                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4690                                             phy_ctrl);
4691                         adapter->smartspeed++;
4692                         if (!e1000_phy_setup_autoneg(hw) &&
4693                            !e1000_read_phy_reg(hw, PHY_CTRL,
4694                                                &phy_ctrl)) {
4695                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4696                                              MII_CR_RESTART_AUTO_NEG);
4697                                 e1000_write_phy_reg(hw, PHY_CTRL,
4698                                                     phy_ctrl);
4699                         }
4700                 }
4701                 return;
4702         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4703                 /* If still no link, perhaps using 2/3 pair cable */
4704                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4705                 phy_ctrl |= CR_1000T_MS_ENABLE;
4706                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4707                 if (!e1000_phy_setup_autoneg(hw) &&
4708                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4709                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4710                                      MII_CR_RESTART_AUTO_NEG);
4711                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4712                 }
4713         }
4714         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4715         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4716                 adapter->smartspeed = 0;
4717 }
4718
4719 /**
4720  * e1000_ioctl -
4721  * @netdev:
4722  * @ifreq:
4723  * @cmd:
4724  **/
4725 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4726 {
4727         switch (cmd) {
4728         case SIOCGMIIPHY:
4729         case SIOCGMIIREG:
4730         case SIOCSMIIREG:
4731                 return e1000_mii_ioctl(netdev, ifr, cmd);
4732         default:
4733                 return -EOPNOTSUPP;
4734         }
4735 }
4736
4737 /**
4738  * e1000_mii_ioctl -
4739  * @netdev:
4740  * @ifreq:
4741  * @cmd:
4742  **/
4743 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4744                            int cmd)
4745 {
4746         struct e1000_adapter *adapter = netdev_priv(netdev);
4747         struct e1000_hw *hw = &adapter->hw;
4748         struct mii_ioctl_data *data = if_mii(ifr);
4749         int retval;
4750         u16 mii_reg;
4751         unsigned long flags;
4752
4753         if (hw->media_type != e1000_media_type_copper)
4754                 return -EOPNOTSUPP;
4755
4756         switch (cmd) {
4757         case SIOCGMIIPHY:
4758                 data->phy_id = hw->phy_addr;
4759                 break;
4760         case SIOCGMIIREG:
4761                 spin_lock_irqsave(&adapter->stats_lock, flags);
4762                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4763                                    &data->val_out)) {
4764                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4765                         return -EIO;
4766                 }
4767                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4768                 break;
4769         case SIOCSMIIREG:
4770                 if (data->reg_num & ~(0x1F))
4771                         return -EFAULT;
4772                 mii_reg = data->val_in;
4773                 spin_lock_irqsave(&adapter->stats_lock, flags);
4774                 if (e1000_write_phy_reg(hw, data->reg_num,
4775                                         mii_reg)) {
4776                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4777                         return -EIO;
4778                 }
4779                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4780                 if (hw->media_type == e1000_media_type_copper) {
4781                         switch (data->reg_num) {
4782                         case PHY_CTRL:
4783                                 if (mii_reg & MII_CR_POWER_DOWN)
4784                                         break;
4785                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4786                                         hw->autoneg = 1;
4787                                         hw->autoneg_advertised = 0x2F;
4788                                 } else {
4789                                         u32 speed;
4790                                         if (mii_reg & 0x40)
4791                                                 speed = SPEED_1000;
4792                                         else if (mii_reg & 0x2000)
4793                                                 speed = SPEED_100;
4794                                         else
4795                                                 speed = SPEED_10;
4796                                         retval = e1000_set_spd_dplx(
4797                                                 adapter, speed,
4798                                                 ((mii_reg & 0x100)
4799                                                  ? DUPLEX_FULL :
4800                                                  DUPLEX_HALF));
4801                                         if (retval)
4802                                                 return retval;
4803                                 }
4804                                 if (netif_running(adapter->netdev))
4805                                         e1000_reinit_locked(adapter);
4806                                 else
4807                                         e1000_reset(adapter);
4808                                 break;
4809                         case M88E1000_PHY_SPEC_CTRL:
4810                         case M88E1000_EXT_PHY_SPEC_CTRL:
4811                                 if (e1000_phy_reset(hw))
4812                                         return -EIO;
4813                                 break;
4814                         }
4815                 } else {
4816                         switch (data->reg_num) {
4817                         case PHY_CTRL:
4818                                 if (mii_reg & MII_CR_POWER_DOWN)
4819                                         break;
4820                                 if (netif_running(adapter->netdev))
4821                                         e1000_reinit_locked(adapter);
4822                                 else
4823                                         e1000_reset(adapter);
4824                                 break;
4825                         }
4826                 }
4827                 break;
4828         default:
4829                 return -EOPNOTSUPP;
4830         }
4831         return E1000_SUCCESS;
4832 }
4833
4834 void e1000_pci_set_mwi(struct e1000_hw *hw)
4835 {
4836         struct e1000_adapter *adapter = hw->back;
4837         int ret_val = pci_set_mwi(adapter->pdev);
4838
4839         if (ret_val)
4840                 e_err(probe, "Error in setting MWI\n");
4841 }
4842
4843 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4844 {
4845         struct e1000_adapter *adapter = hw->back;
4846
4847         pci_clear_mwi(adapter->pdev);
4848 }
4849
4850 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4851 {
4852         struct e1000_adapter *adapter = hw->back;
4853         return pcix_get_mmrbc(adapter->pdev);
4854 }
4855
4856 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4857 {
4858         struct e1000_adapter *adapter = hw->back;
4859         pcix_set_mmrbc(adapter->pdev, mmrbc);
4860 }
4861
4862 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4863 {
4864         outl(value, port);
4865 }
4866
4867 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4868 {
4869         u16 vid;
4870
4871         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4872                 return true;
4873         return false;
4874 }
4875
4876 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4877                               netdev_features_t features)
4878 {
4879         struct e1000_hw *hw = &adapter->hw;
4880         u32 ctrl;
4881
4882         ctrl = er32(CTRL);
4883         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4884                 /* enable VLAN tag insert/strip */
4885                 ctrl |= E1000_CTRL_VME;
4886         } else {
4887                 /* disable VLAN tag insert/strip */
4888                 ctrl &= ~E1000_CTRL_VME;
4889         }
4890         ew32(CTRL, ctrl);
4891 }
4892 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4893                                      bool filter_on)
4894 {
4895         struct e1000_hw *hw = &adapter->hw;
4896         u32 rctl;
4897
4898         if (!test_bit(__E1000_DOWN, &adapter->flags))
4899                 e1000_irq_disable(adapter);
4900
4901         __e1000_vlan_mode(adapter, adapter->netdev->features);
4902         if (filter_on) {
4903                 /* enable VLAN receive filtering */
4904                 rctl = er32(RCTL);
4905                 rctl &= ~E1000_RCTL_CFIEN;
4906                 if (!(adapter->netdev->flags & IFF_PROMISC))
4907                         rctl |= E1000_RCTL_VFE;
4908                 ew32(RCTL, rctl);
4909                 e1000_update_mng_vlan(adapter);
4910         } else {
4911                 /* disable VLAN receive filtering */
4912                 rctl = er32(RCTL);
4913                 rctl &= ~E1000_RCTL_VFE;
4914                 ew32(RCTL, rctl);
4915         }
4916
4917         if (!test_bit(__E1000_DOWN, &adapter->flags))
4918                 e1000_irq_enable(adapter);
4919 }
4920
4921 static void e1000_vlan_mode(struct net_device *netdev,
4922                             netdev_features_t features)
4923 {
4924         struct e1000_adapter *adapter = netdev_priv(netdev);
4925
4926         if (!test_bit(__E1000_DOWN, &adapter->flags))
4927                 e1000_irq_disable(adapter);
4928
4929         __e1000_vlan_mode(adapter, features);
4930
4931         if (!test_bit(__E1000_DOWN, &adapter->flags))
4932                 e1000_irq_enable(adapter);
4933 }
4934
4935 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4936                                  __be16 proto, u16 vid)
4937 {
4938         struct e1000_adapter *adapter = netdev_priv(netdev);
4939         struct e1000_hw *hw = &adapter->hw;
4940         u32 vfta, index;
4941
4942         if ((hw->mng_cookie.status &
4943              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4944             (vid == adapter->mng_vlan_id))
4945                 return 0;
4946
4947         if (!e1000_vlan_used(adapter))
4948                 e1000_vlan_filter_on_off(adapter, true);
4949
4950         /* add VID to filter table */
4951         index = (vid >> 5) & 0x7F;
4952         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4953         vfta |= (1 << (vid & 0x1F));
4954         e1000_write_vfta(hw, index, vfta);
4955
4956         set_bit(vid, adapter->active_vlans);
4957
4958         return 0;
4959 }
4960
4961 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4962                                   __be16 proto, u16 vid)
4963 {
4964         struct e1000_adapter *adapter = netdev_priv(netdev);
4965         struct e1000_hw *hw = &adapter->hw;
4966         u32 vfta, index;
4967
4968         if (!test_bit(__E1000_DOWN, &adapter->flags))
4969                 e1000_irq_disable(adapter);
4970         if (!test_bit(__E1000_DOWN, &adapter->flags))
4971                 e1000_irq_enable(adapter);
4972
4973         /* remove VID from filter table */
4974         index = (vid >> 5) & 0x7F;
4975         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4976         vfta &= ~(1 << (vid & 0x1F));
4977         e1000_write_vfta(hw, index, vfta);
4978
4979         clear_bit(vid, adapter->active_vlans);
4980
4981         if (!e1000_vlan_used(adapter))
4982                 e1000_vlan_filter_on_off(adapter, false);
4983
4984         return 0;
4985 }
4986
4987 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4988 {
4989         u16 vid;
4990
4991         if (!e1000_vlan_used(adapter))
4992                 return;
4993
4994         e1000_vlan_filter_on_off(adapter, true);
4995         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4996                 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4997 }
4998
4999 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5000 {
5001         struct e1000_hw *hw = &adapter->hw;
5002
5003         hw->autoneg = 0;
5004
5005         /* Make sure dplx is at most 1 bit and lsb of speed is not set
5006          * for the switch() below to work
5007          */
5008         if ((spd & 1) || (dplx & ~1))
5009                 goto err_inval;
5010
5011         /* Fiber NICs only allow 1000 gbps Full duplex */
5012         if ((hw->media_type == e1000_media_type_fiber) &&
5013             spd != SPEED_1000 &&
5014             dplx != DUPLEX_FULL)
5015                 goto err_inval;
5016
5017         switch (spd + dplx) {
5018         case SPEED_10 + DUPLEX_HALF:
5019                 hw->forced_speed_duplex = e1000_10_half;
5020                 break;
5021         case SPEED_10 + DUPLEX_FULL:
5022                 hw->forced_speed_duplex = e1000_10_full;
5023                 break;
5024         case SPEED_100 + DUPLEX_HALF:
5025                 hw->forced_speed_duplex = e1000_100_half;
5026                 break;
5027         case SPEED_100 + DUPLEX_FULL:
5028                 hw->forced_speed_duplex = e1000_100_full;
5029                 break;
5030         case SPEED_1000 + DUPLEX_FULL:
5031                 hw->autoneg = 1;
5032                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5033                 break;
5034         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5035         default:
5036                 goto err_inval;
5037         }
5038
5039         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5040         hw->mdix = AUTO_ALL_MODES;
5041
5042         return 0;
5043
5044 err_inval:
5045         e_err(probe, "Unsupported Speed/Duplex configuration\n");
5046         return -EINVAL;
5047 }
5048
5049 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5050 {
5051         struct net_device *netdev = pci_get_drvdata(pdev);
5052         struct e1000_adapter *adapter = netdev_priv(netdev);
5053         struct e1000_hw *hw = &adapter->hw;
5054         u32 ctrl, ctrl_ext, rctl, status;
5055         u32 wufc = adapter->wol;
5056 #ifdef CONFIG_PM
5057         int retval = 0;
5058 #endif
5059
5060         netif_device_detach(netdev);
5061
5062         if (netif_running(netdev)) {
5063                 int count = E1000_CHECK_RESET_COUNT;
5064
5065                 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5066                         usleep_range(10000, 20000);
5067
5068                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5069                 e1000_down(adapter);
5070         }
5071
5072 #ifdef CONFIG_PM
5073         retval = pci_save_state(pdev);
5074         if (retval)
5075                 return retval;
5076 #endif
5077
5078         status = er32(STATUS);
5079         if (status & E1000_STATUS_LU)
5080                 wufc &= ~E1000_WUFC_LNKC;
5081
5082         if (wufc) {
5083                 e1000_setup_rctl(adapter);
5084                 e1000_set_rx_mode(netdev);
5085
5086                 rctl = er32(RCTL);
5087
5088                 /* turn on all-multi mode if wake on multicast is enabled */
5089                 if (wufc & E1000_WUFC_MC)
5090                         rctl |= E1000_RCTL_MPE;
5091
5092                 /* enable receives in the hardware */
5093                 ew32(RCTL, rctl | E1000_RCTL_EN);
5094
5095                 if (hw->mac_type >= e1000_82540) {
5096                         ctrl = er32(CTRL);
5097                         /* advertise wake from D3Cold */
5098                         #define E1000_CTRL_ADVD3WUC 0x00100000
5099                         /* phy power management enable */
5100                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5101                         ctrl |= E1000_CTRL_ADVD3WUC |
5102                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5103                         ew32(CTRL, ctrl);
5104                 }
5105
5106                 if (hw->media_type == e1000_media_type_fiber ||
5107                     hw->media_type == e1000_media_type_internal_serdes) {
5108                         /* keep the laser running in D3 */
5109                         ctrl_ext = er32(CTRL_EXT);
5110                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5111                         ew32(CTRL_EXT, ctrl_ext);
5112                 }
5113
5114                 ew32(WUC, E1000_WUC_PME_EN);
5115                 ew32(WUFC, wufc);
5116         } else {
5117                 ew32(WUC, 0);
5118                 ew32(WUFC, 0);
5119         }
5120
5121         e1000_release_manageability(adapter);
5122
5123         *enable_wake = !!wufc;
5124
5125         /* make sure adapter isn't asleep if manageability is enabled */
5126         if (adapter->en_mng_pt)
5127                 *enable_wake = true;
5128
5129         if (netif_running(netdev))
5130                 e1000_free_irq(adapter);
5131
5132         pci_disable_device(pdev);
5133
5134         return 0;
5135 }
5136
5137 #ifdef CONFIG_PM
5138 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5139 {
5140         int retval;
5141         bool wake;
5142
5143         retval = __e1000_shutdown(pdev, &wake);
5144         if (retval)
5145                 return retval;
5146
5147         if (wake) {
5148                 pci_prepare_to_sleep(pdev);
5149         } else {
5150                 pci_wake_from_d3(pdev, false);
5151                 pci_set_power_state(pdev, PCI_D3hot);
5152         }
5153
5154         return 0;
5155 }
5156
5157 static int e1000_resume(struct pci_dev *pdev)
5158 {
5159         struct net_device *netdev = pci_get_drvdata(pdev);
5160         struct e1000_adapter *adapter = netdev_priv(netdev);
5161         struct e1000_hw *hw = &adapter->hw;
5162         u32 err;
5163
5164         pci_set_power_state(pdev, PCI_D0);
5165         pci_restore_state(pdev);
5166         pci_save_state(pdev);
5167
5168         if (adapter->need_ioport)
5169                 err = pci_enable_device(pdev);
5170         else
5171                 err = pci_enable_device_mem(pdev);
5172         if (err) {
5173                 pr_err("Cannot enable PCI device from suspend\n");
5174                 return err;
5175         }
5176         pci_set_master(pdev);
5177
5178         pci_enable_wake(pdev, PCI_D3hot, 0);
5179         pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181         if (netif_running(netdev)) {
5182                 err = e1000_request_irq(adapter);
5183                 if (err)
5184                         return err;
5185         }
5186
5187         e1000_power_up_phy(adapter);
5188         e1000_reset(adapter);
5189         ew32(WUS, ~0);
5190
5191         e1000_init_manageability(adapter);
5192
5193         if (netif_running(netdev))
5194                 e1000_up(adapter);
5195
5196         netif_device_attach(netdev);
5197
5198         return 0;
5199 }
5200 #endif
5201
5202 static void e1000_shutdown(struct pci_dev *pdev)
5203 {
5204         bool wake;
5205
5206         __e1000_shutdown(pdev, &wake);
5207
5208         if (system_state == SYSTEM_POWER_OFF) {
5209                 pci_wake_from_d3(pdev, wake);
5210                 pci_set_power_state(pdev, PCI_D3hot);
5211         }
5212 }
5213
5214 #ifdef CONFIG_NET_POLL_CONTROLLER
5215 /* Polling 'interrupt' - used by things like netconsole to send skbs
5216  * without having to re-enable interrupts. It's not called while
5217  * the interrupt routine is executing.
5218  */
5219 static void e1000_netpoll(struct net_device *netdev)
5220 {
5221         struct e1000_adapter *adapter = netdev_priv(netdev);
5222
5223         disable_irq(adapter->pdev->irq);
5224         e1000_intr(adapter->pdev->irq, netdev);
5225         enable_irq(adapter->pdev->irq);
5226 }
5227 #endif
5228
5229 /**
5230  * e1000_io_error_detected - called when PCI error is detected
5231  * @pdev: Pointer to PCI device
5232  * @state: The current pci connection state
5233  *
5234  * This function is called after a PCI bus error affecting
5235  * this device has been detected.
5236  */
5237 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5238                                                 pci_channel_state_t state)
5239 {
5240         struct net_device *netdev = pci_get_drvdata(pdev);
5241         struct e1000_adapter *adapter = netdev_priv(netdev);
5242
5243         netif_device_detach(netdev);
5244
5245         if (state == pci_channel_io_perm_failure)
5246                 return PCI_ERS_RESULT_DISCONNECT;
5247
5248         if (netif_running(netdev))
5249                 e1000_down(adapter);
5250         pci_disable_device(pdev);
5251
5252         /* Request a slot slot reset. */
5253         return PCI_ERS_RESULT_NEED_RESET;
5254 }
5255
5256 /**
5257  * e1000_io_slot_reset - called after the pci bus has been reset.
5258  * @pdev: Pointer to PCI device
5259  *
5260  * Restart the card from scratch, as if from a cold-boot. Implementation
5261  * resembles the first-half of the e1000_resume routine.
5262  */
5263 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5264 {
5265         struct net_device *netdev = pci_get_drvdata(pdev);
5266         struct e1000_adapter *adapter = netdev_priv(netdev);
5267         struct e1000_hw *hw = &adapter->hw;
5268         int err;
5269
5270         if (adapter->need_ioport)
5271                 err = pci_enable_device(pdev);
5272         else
5273                 err = pci_enable_device_mem(pdev);
5274         if (err) {
5275                 pr_err("Cannot re-enable PCI device after reset.\n");
5276                 return PCI_ERS_RESULT_DISCONNECT;
5277         }
5278         pci_set_master(pdev);
5279
5280         pci_enable_wake(pdev, PCI_D3hot, 0);
5281         pci_enable_wake(pdev, PCI_D3cold, 0);
5282
5283         e1000_reset(adapter);
5284         ew32(WUS, ~0);
5285
5286         return PCI_ERS_RESULT_RECOVERED;
5287 }
5288
5289 /**
5290  * e1000_io_resume - called when traffic can start flowing again.
5291  * @pdev: Pointer to PCI device
5292  *
5293  * This callback is called when the error recovery driver tells us that
5294  * its OK to resume normal operation. Implementation resembles the
5295  * second-half of the e1000_resume routine.
5296  */
5297 static void e1000_io_resume(struct pci_dev *pdev)
5298 {
5299         struct net_device *netdev = pci_get_drvdata(pdev);
5300         struct e1000_adapter *adapter = netdev_priv(netdev);
5301
5302         e1000_init_manageability(adapter);
5303
5304         if (netif_running(netdev)) {
5305                 if (e1000_up(adapter)) {
5306                         pr_info("can't bring device back up after reset\n");
5307                         return;
5308                 }
5309         }
5310
5311         netif_device_attach(netdev);
5312 }
5313
5314 /* e1000_main.c */