mwifiex: channel switch handling for station
[cascardo/linux.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* 82562G 10/100 Network Connection
30  * 82562G-2 10/100 Network Connection
31  * 82562GT 10/100 Network Connection
32  * 82562GT-2 10/100 Network Connection
33  * 82562V 10/100 Network Connection
34  * 82562V-2 10/100 Network Connection
35  * 82566DC-2 Gigabit Network Connection
36  * 82566DC Gigabit Network Connection
37  * 82566DM-2 Gigabit Network Connection
38  * 82566DM Gigabit Network Connection
39  * 82566MC Gigabit Network Connection
40  * 82566MM Gigabit Network Connection
41  * 82567LM Gigabit Network Connection
42  * 82567LF Gigabit Network Connection
43  * 82567V Gigabit Network Connection
44  * 82567LM-2 Gigabit Network Connection
45  * 82567LF-2 Gigabit Network Connection
46  * 82567V-2 Gigabit Network Connection
47  * 82567LF-3 Gigabit Network Connection
48  * 82567LM-3 Gigabit Network Connection
49  * 82567LM-4 Gigabit Network Connection
50  * 82577LM Gigabit Network Connection
51  * 82577LC Gigabit Network Connection
52  * 82578DM Gigabit Network Connection
53  * 82578DC Gigabit Network Connection
54  * 82579LM Gigabit Network Connection
55  * 82579V Gigabit Network Connection
56  */
57
58 #include "e1000.h"
59
60 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
61 /* Offset 04h HSFSTS */
62 union ich8_hws_flash_status {
63         struct ich8_hsfsts {
64                 u16 flcdone:1;  /* bit 0 Flash Cycle Done */
65                 u16 flcerr:1;   /* bit 1 Flash Cycle Error */
66                 u16 dael:1;     /* bit 2 Direct Access error Log */
67                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
68                 u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
69                 u16 reserved1:2;        /* bit 13:6 Reserved */
70                 u16 reserved2:6;        /* bit 13:6 Reserved */
71                 u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
72                 u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
73         } hsf_status;
74         u16 regval;
75 };
76
77 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
78 /* Offset 06h FLCTL */
79 union ich8_hws_flash_ctrl {
80         struct ich8_hsflctl {
81                 u16 flcgo:1;    /* 0 Flash Cycle Go */
82                 u16 flcycle:2;  /* 2:1 Flash Cycle */
83                 u16 reserved:5; /* 7:3 Reserved  */
84                 u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
85                 u16 flockdn:6;  /* 15:10 Reserved */
86         } hsf_ctrl;
87         u16 regval;
88 };
89
90 /* ICH Flash Region Access Permissions */
91 union ich8_hws_flash_regacc {
92         struct ich8_flracc {
93                 u32 grra:8;     /* 0:7 GbE region Read Access */
94                 u32 grwa:8;     /* 8:15 GbE region Write Access */
95                 u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
96                 u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
97         } hsf_flregacc;
98         u16 regval;
99 };
100
101 /* ICH Flash Protected Region */
102 union ich8_flash_protected_range {
103         struct ich8_pr {
104                 u32 base:13;     /* 0:12 Protected Range Base */
105                 u32 reserved1:2; /* 13:14 Reserved */
106                 u32 rpe:1;       /* 15 Read Protection Enable */
107                 u32 limit:13;    /* 16:28 Protected Range Limit */
108                 u32 reserved2:2; /* 29:30 Reserved */
109                 u32 wpe:1;       /* 31 Write Protection Enable */
110         } range;
111         u32 regval;
112 };
113
114 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
115 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
116 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
117 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
118                                                 u32 offset, u8 byte);
119 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
120                                          u8 *data);
121 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
122                                          u16 *data);
123 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
124                                          u8 size, u16 *data);
125 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
130 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
131 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
134 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
135 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
136 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
138 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
139 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
141 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
142 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
143 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
144 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
145 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
146
147 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
148 {
149         return readw(hw->flash_address + reg);
150 }
151
152 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
153 {
154         return readl(hw->flash_address + reg);
155 }
156
157 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
158 {
159         writew(val, hw->flash_address + reg);
160 }
161
162 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
163 {
164         writel(val, hw->flash_address + reg);
165 }
166
167 #define er16flash(reg)          __er16flash(hw, (reg))
168 #define er32flash(reg)          __er32flash(hw, (reg))
169 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
170 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
171
172 /**
173  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
174  *  @hw: pointer to the HW structure
175  *
176  *  Test access to the PHY registers by reading the PHY ID registers.  If
177  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
178  *  otherwise assume the read PHY ID is correct if it is valid.
179  *
180  *  Assumes the sw/fw/hw semaphore is already acquired.
181  **/
182 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
183 {
184         u16 phy_reg = 0;
185         u32 phy_id = 0;
186         s32 ret_val;
187         u16 retry_count;
188
189         for (retry_count = 0; retry_count < 2; retry_count++) {
190                 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
191                 if (ret_val || (phy_reg == 0xFFFF))
192                         continue;
193                 phy_id = (u32)(phy_reg << 16);
194
195                 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
196                 if (ret_val || (phy_reg == 0xFFFF)) {
197                         phy_id = 0;
198                         continue;
199                 }
200                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
201                 break;
202         }
203
204         if (hw->phy.id) {
205                 if (hw->phy.id == phy_id)
206                         return true;
207         } else if (phy_id) {
208                 hw->phy.id = phy_id;
209                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
210                 return true;
211         }
212
213         /* In case the PHY needs to be in mdio slow mode,
214          * set slow mode and try to get the PHY id again.
215          */
216         hw->phy.ops.release(hw);
217         ret_val = e1000_set_mdio_slow_mode_hv(hw);
218         if (!ret_val)
219                 ret_val = e1000e_get_phy_id(hw);
220         hw->phy.ops.acquire(hw);
221
222         return !ret_val;
223 }
224
225 /**
226  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
227  *  @hw: pointer to the HW structure
228  *
229  *  Workarounds/flow necessary for PHY initialization during driver load
230  *  and resume paths.
231  **/
232 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
233 {
234         u32 mac_reg, fwsm = er32(FWSM);
235         s32 ret_val;
236         u16 phy_reg;
237
238         /* Gate automatic PHY configuration by hardware on managed and
239          * non-managed 82579 and newer adapters.
240          */
241         e1000_gate_hw_phy_config_ich8lan(hw, true);
242
243         ret_val = hw->phy.ops.acquire(hw);
244         if (ret_val) {
245                 e_dbg("Failed to initialize PHY flow\n");
246                 goto out;
247         }
248
249         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
250          * inaccessible and resetting the PHY is not blocked, toggle the
251          * LANPHYPC Value bit to force the interconnect to PCIe mode.
252          */
253         switch (hw->mac.type) {
254         case e1000_pch_lpt:
255                 if (e1000_phy_is_accessible_pchlan(hw))
256                         break;
257
258                 /* Before toggling LANPHYPC, see if PHY is accessible by
259                  * forcing MAC to SMBus mode first.
260                  */
261                 mac_reg = er32(CTRL_EXT);
262                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
263                 ew32(CTRL_EXT, mac_reg);
264
265                 /* fall-through */
266         case e1000_pch2lan:
267                 if (e1000_phy_is_accessible_pchlan(hw)) {
268                         if (hw->mac.type == e1000_pch_lpt) {
269                                 /* Unforce SMBus mode in PHY */
270                                 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
271                                 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
272                                 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
273
274                                 /* Unforce SMBus mode in MAC */
275                                 mac_reg = er32(CTRL_EXT);
276                                 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
277                                 ew32(CTRL_EXT, mac_reg);
278                         }
279                         break;
280                 }
281
282                 /* fall-through */
283         case e1000_pchlan:
284                 if ((hw->mac.type == e1000_pchlan) &&
285                     (fwsm & E1000_ICH_FWSM_FW_VALID))
286                         break;
287
288                 if (hw->phy.ops.check_reset_block(hw)) {
289                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
290                         break;
291                 }
292
293                 e_dbg("Toggling LANPHYPC\n");
294
295                 /* Set Phy Config Counter to 50msec */
296                 mac_reg = er32(FEXTNVM3);
297                 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
298                 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
299                 ew32(FEXTNVM3, mac_reg);
300
301                 if (hw->mac.type == e1000_pch_lpt) {
302                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
303                          * So ensure that the MAC is also out of SMBus mode
304                          */
305                         mac_reg = er32(CTRL_EXT);
306                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
307                         ew32(CTRL_EXT, mac_reg);
308                 }
309
310                 /* Toggle LANPHYPC Value bit */
311                 mac_reg = er32(CTRL);
312                 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
313                 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
314                 ew32(CTRL, mac_reg);
315                 e1e_flush();
316                 usleep_range(10, 20);
317                 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
318                 ew32(CTRL, mac_reg);
319                 e1e_flush();
320                 if (hw->mac.type < e1000_pch_lpt) {
321                         msleep(50);
322                 } else {
323                         u16 count = 20;
324                         do {
325                                 usleep_range(5000, 10000);
326                         } while (!(er32(CTRL_EXT) &
327                                    E1000_CTRL_EXT_LPCD) && count--);
328                 }
329                 break;
330         default:
331                 break;
332         }
333
334         hw->phy.ops.release(hw);
335
336         /* Reset the PHY before any access to it.  Doing so, ensures
337          * that the PHY is in a known good state before we read/write
338          * PHY registers.  The generic reset is sufficient here,
339          * because we haven't determined the PHY type yet.
340          */
341         ret_val = e1000e_phy_hw_reset_generic(hw);
342
343 out:
344         /* Ungate automatic PHY configuration on non-managed 82579 */
345         if ((hw->mac.type == e1000_pch2lan) &&
346             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
347                 usleep_range(10000, 20000);
348                 e1000_gate_hw_phy_config_ich8lan(hw, false);
349         }
350
351         return ret_val;
352 }
353
354 /**
355  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
356  *  @hw: pointer to the HW structure
357  *
358  *  Initialize family-specific PHY parameters and function pointers.
359  **/
360 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
361 {
362         struct e1000_phy_info *phy = &hw->phy;
363         s32 ret_val;
364
365         phy->addr                     = 1;
366         phy->reset_delay_us           = 100;
367
368         phy->ops.set_page             = e1000_set_page_igp;
369         phy->ops.read_reg             = e1000_read_phy_reg_hv;
370         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
371         phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
372         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
373         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
374         phy->ops.write_reg            = e1000_write_phy_reg_hv;
375         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
376         phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
377         phy->ops.power_up             = e1000_power_up_phy_copper;
378         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
379         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
380
381         phy->id = e1000_phy_unknown;
382
383         ret_val = e1000_init_phy_workarounds_pchlan(hw);
384         if (ret_val)
385                 return ret_val;
386
387         if (phy->id == e1000_phy_unknown)
388                 switch (hw->mac.type) {
389                 default:
390                         ret_val = e1000e_get_phy_id(hw);
391                         if (ret_val)
392                                 return ret_val;
393                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
394                                 break;
395                         /* fall-through */
396                 case e1000_pch2lan:
397                 case e1000_pch_lpt:
398                         /* In case the PHY needs to be in mdio slow mode,
399                          * set slow mode and try to get the PHY id again.
400                          */
401                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
402                         if (ret_val)
403                                 return ret_val;
404                         ret_val = e1000e_get_phy_id(hw);
405                         if (ret_val)
406                                 return ret_val;
407                         break;
408                 }
409         phy->type = e1000e_get_phy_type_from_id(phy->id);
410
411         switch (phy->type) {
412         case e1000_phy_82577:
413         case e1000_phy_82579:
414         case e1000_phy_i217:
415                 phy->ops.check_polarity = e1000_check_polarity_82577;
416                 phy->ops.force_speed_duplex =
417                     e1000_phy_force_speed_duplex_82577;
418                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
419                 phy->ops.get_info = e1000_get_phy_info_82577;
420                 phy->ops.commit = e1000e_phy_sw_reset;
421                 break;
422         case e1000_phy_82578:
423                 phy->ops.check_polarity = e1000_check_polarity_m88;
424                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
425                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
426                 phy->ops.get_info = e1000e_get_phy_info_m88;
427                 break;
428         default:
429                 ret_val = -E1000_ERR_PHY;
430                 break;
431         }
432
433         return ret_val;
434 }
435
436 /**
437  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
438  *  @hw: pointer to the HW structure
439  *
440  *  Initialize family-specific PHY parameters and function pointers.
441  **/
442 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
443 {
444         struct e1000_phy_info *phy = &hw->phy;
445         s32 ret_val;
446         u16 i = 0;
447
448         phy->addr                       = 1;
449         phy->reset_delay_us             = 100;
450
451         phy->ops.power_up               = e1000_power_up_phy_copper;
452         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
453
454         /* We may need to do this twice - once for IGP and if that fails,
455          * we'll set BM func pointers and try again
456          */
457         ret_val = e1000e_determine_phy_address(hw);
458         if (ret_val) {
459                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
460                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
461                 ret_val = e1000e_determine_phy_address(hw);
462                 if (ret_val) {
463                         e_dbg("Cannot determine PHY addr. Erroring out\n");
464                         return ret_val;
465                 }
466         }
467
468         phy->id = 0;
469         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
470                (i++ < 100)) {
471                 usleep_range(1000, 2000);
472                 ret_val = e1000e_get_phy_id(hw);
473                 if (ret_val)
474                         return ret_val;
475         }
476
477         /* Verify phy id */
478         switch (phy->id) {
479         case IGP03E1000_E_PHY_ID:
480                 phy->type = e1000_phy_igp_3;
481                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
482                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
483                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
484                 phy->ops.get_info = e1000e_get_phy_info_igp;
485                 phy->ops.check_polarity = e1000_check_polarity_igp;
486                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
487                 break;
488         case IFE_E_PHY_ID:
489         case IFE_PLUS_E_PHY_ID:
490         case IFE_C_E_PHY_ID:
491                 phy->type = e1000_phy_ife;
492                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
493                 phy->ops.get_info = e1000_get_phy_info_ife;
494                 phy->ops.check_polarity = e1000_check_polarity_ife;
495                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
496                 break;
497         case BME1000_E_PHY_ID:
498                 phy->type = e1000_phy_bm;
499                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
500                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
501                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
502                 phy->ops.commit = e1000e_phy_sw_reset;
503                 phy->ops.get_info = e1000e_get_phy_info_m88;
504                 phy->ops.check_polarity = e1000_check_polarity_m88;
505                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
506                 break;
507         default:
508                 return -E1000_ERR_PHY;
509                 break;
510         }
511
512         return 0;
513 }
514
515 /**
516  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
517  *  @hw: pointer to the HW structure
518  *
519  *  Initialize family-specific NVM parameters and function
520  *  pointers.
521  **/
522 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
523 {
524         struct e1000_nvm_info *nvm = &hw->nvm;
525         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
526         u32 gfpreg, sector_base_addr, sector_end_addr;
527         u16 i;
528
529         /* Can't read flash registers if the register set isn't mapped. */
530         if (!hw->flash_address) {
531                 e_dbg("ERROR: Flash registers not mapped\n");
532                 return -E1000_ERR_CONFIG;
533         }
534
535         nvm->type = e1000_nvm_flash_sw;
536
537         gfpreg = er32flash(ICH_FLASH_GFPREG);
538
539         /* sector_X_addr is a "sector"-aligned address (4096 bytes)
540          * Add 1 to sector_end_addr since this sector is included in
541          * the overall size.
542          */
543         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
544         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
545
546         /* flash_base_addr is byte-aligned */
547         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
548
549         /* find total size of the NVM, then cut in half since the total
550          * size represents two separate NVM banks.
551          */
552         nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
553                                 << FLASH_SECTOR_ADDR_SHIFT);
554         nvm->flash_bank_size /= 2;
555         /* Adjust to word count */
556         nvm->flash_bank_size /= sizeof(u16);
557
558         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
559
560         /* Clear shadow ram */
561         for (i = 0; i < nvm->word_size; i++) {
562                 dev_spec->shadow_ram[i].modified = false;
563                 dev_spec->shadow_ram[i].value    = 0xFFFF;
564         }
565
566         return 0;
567 }
568
569 /**
570  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
571  *  @hw: pointer to the HW structure
572  *
573  *  Initialize family-specific MAC parameters and function
574  *  pointers.
575  **/
576 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
577 {
578         struct e1000_mac_info *mac = &hw->mac;
579
580         /* Set media type function pointer */
581         hw->phy.media_type = e1000_media_type_copper;
582
583         /* Set mta register count */
584         mac->mta_reg_count = 32;
585         /* Set rar entry count */
586         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
587         if (mac->type == e1000_ich8lan)
588                 mac->rar_entry_count--;
589         /* FWSM register */
590         mac->has_fwsm = true;
591         /* ARC subsystem not supported */
592         mac->arc_subsystem_valid = false;
593         /* Adaptive IFS supported */
594         mac->adaptive_ifs = true;
595
596         /* LED and other operations */
597         switch (mac->type) {
598         case e1000_ich8lan:
599         case e1000_ich9lan:
600         case e1000_ich10lan:
601                 /* check management mode */
602                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
603                 /* ID LED init */
604                 mac->ops.id_led_init = e1000e_id_led_init_generic;
605                 /* blink LED */
606                 mac->ops.blink_led = e1000e_blink_led_generic;
607                 /* setup LED */
608                 mac->ops.setup_led = e1000e_setup_led_generic;
609                 /* cleanup LED */
610                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
611                 /* turn on/off LED */
612                 mac->ops.led_on = e1000_led_on_ich8lan;
613                 mac->ops.led_off = e1000_led_off_ich8lan;
614                 break;
615         case e1000_pch2lan:
616                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
617                 mac->ops.rar_set = e1000_rar_set_pch2lan;
618                 /* fall-through */
619         case e1000_pch_lpt:
620         case e1000_pchlan:
621                 /* check management mode */
622                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
623                 /* ID LED init */
624                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
625                 /* setup LED */
626                 mac->ops.setup_led = e1000_setup_led_pchlan;
627                 /* cleanup LED */
628                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
629                 /* turn on/off LED */
630                 mac->ops.led_on = e1000_led_on_pchlan;
631                 mac->ops.led_off = e1000_led_off_pchlan;
632                 break;
633         default:
634                 break;
635         }
636
637         if (mac->type == e1000_pch_lpt) {
638                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
639                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
640                 mac->ops.setup_physical_interface =
641                     e1000_setup_copper_link_pch_lpt;
642         }
643
644         /* Enable PCS Lock-loss workaround for ICH8 */
645         if (mac->type == e1000_ich8lan)
646                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
647
648         return 0;
649 }
650
651 /**
652  *  __e1000_access_emi_reg_locked - Read/write EMI register
653  *  @hw: pointer to the HW structure
654  *  @addr: EMI address to program
655  *  @data: pointer to value to read/write from/to the EMI address
656  *  @read: boolean flag to indicate read or write
657  *
658  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
659  **/
660 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
661                                          u16 *data, bool read)
662 {
663         s32 ret_val;
664
665         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
666         if (ret_val)
667                 return ret_val;
668
669         if (read)
670                 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
671         else
672                 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
673
674         return ret_val;
675 }
676
677 /**
678  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
679  *  @hw: pointer to the HW structure
680  *  @addr: EMI address to program
681  *  @data: value to be read from the EMI address
682  *
683  *  Assumes the SW/FW/HW Semaphore is already acquired.
684  **/
685 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
686 {
687         return __e1000_access_emi_reg_locked(hw, addr, data, true);
688 }
689
690 /**
691  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
692  *  @hw: pointer to the HW structure
693  *  @addr: EMI address to program
694  *  @data: value to be written to the EMI address
695  *
696  *  Assumes the SW/FW/HW Semaphore is already acquired.
697  **/
698 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
699 {
700         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
701 }
702
703 /**
704  *  e1000_set_eee_pchlan - Enable/disable EEE support
705  *  @hw: pointer to the HW structure
706  *
707  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
708  *  the link and the EEE capabilities of the link partner.  The LPI Control
709  *  register bits will remain set only if/when link is up.
710  **/
711 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
712 {
713         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
714         s32 ret_val;
715         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
716
717         switch (hw->phy.type) {
718         case e1000_phy_82579:
719                 lpa = I82579_EEE_LP_ABILITY;
720                 pcs_status = I82579_EEE_PCS_STATUS;
721                 adv_addr = I82579_EEE_ADVERTISEMENT;
722                 break;
723         case e1000_phy_i217:
724                 lpa = I217_EEE_LP_ABILITY;
725                 pcs_status = I217_EEE_PCS_STATUS;
726                 adv_addr = I217_EEE_ADVERTISEMENT;
727                 break;
728         default:
729                 return 0;
730         }
731
732         ret_val = hw->phy.ops.acquire(hw);
733         if (ret_val)
734                 return ret_val;
735
736         ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
737         if (ret_val)
738                 goto release;
739
740         /* Clear bits that enable EEE in various speeds */
741         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
742
743         /* Enable EEE if not disabled by user */
744         if (!dev_spec->eee_disable) {
745                 /* Save off link partner's EEE ability */
746                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
747                                                     &dev_spec->eee_lp_ability);
748                 if (ret_val)
749                         goto release;
750
751                 /* Read EEE advertisement */
752                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
753                 if (ret_val)
754                         goto release;
755
756                 /* Enable EEE only for speeds in which the link partner is
757                  * EEE capable and for which we advertise EEE.
758                  */
759                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
760                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
761
762                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
763                         e1e_rphy_locked(hw, MII_LPA, &data);
764                         if (data & LPA_100FULL)
765                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
766                         else
767                                 /* EEE is not supported in 100Half, so ignore
768                                  * partner's EEE in 100 ability if full-duplex
769                                  * is not advertised.
770                                  */
771                                 dev_spec->eee_lp_ability &=
772                                     ~I82579_EEE_100_SUPPORTED;
773                 }
774         }
775
776         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
777         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
778         if (ret_val)
779                 goto release;
780
781         ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
782 release:
783         hw->phy.ops.release(hw);
784
785         return ret_val;
786 }
787
788 /**
789  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
790  *  @hw:   pointer to the HW structure
791  *  @link: link up bool flag
792  *
793  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
794  *  preventing further DMA write requests.  Workaround the issue by disabling
795  *  the de-assertion of the clock request when in 1Gpbs mode.
796  **/
797 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
798 {
799         u32 fextnvm6 = er32(FEXTNVM6);
800         s32 ret_val = 0;
801
802         if (link && (er32(STATUS) & E1000_STATUS_SPEED_1000)) {
803                 u16 kmrn_reg;
804
805                 ret_val = hw->phy.ops.acquire(hw);
806                 if (ret_val)
807                         return ret_val;
808
809                 ret_val =
810                     e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
811                                                 &kmrn_reg);
812                 if (ret_val)
813                         goto release;
814
815                 ret_val =
816                     e1000e_write_kmrn_reg_locked(hw,
817                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
818                                                  kmrn_reg &
819                                                  ~E1000_KMRNCTRLSTA_K1_ENABLE);
820                 if (ret_val)
821                         goto release;
822
823                 usleep_range(10, 20);
824
825                 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
826
827                 ret_val =
828                     e1000e_write_kmrn_reg_locked(hw,
829                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
830                                                  kmrn_reg);
831 release:
832                 hw->phy.ops.release(hw);
833         } else {
834                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
835                 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
836         }
837
838         return ret_val;
839 }
840
841 /**
842  *  e1000_platform_pm_pch_lpt - Set platform power management values
843  *  @hw: pointer to the HW structure
844  *  @link: bool indicating link status
845  *
846  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
847  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
848  *  when link is up (which must not exceed the maximum latency supported
849  *  by the platform), otherwise specify there is no LTR requirement.
850  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
851  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
852  *  Capability register set, on this device LTR is set by writing the
853  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
854  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
855  *  message to the PMC.
856  **/
857 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
858 {
859         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
860             link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
861         u16 lat_enc = 0;        /* latency encoded */
862
863         if (link) {
864                 u16 speed, duplex, scale = 0;
865                 u16 max_snoop, max_nosnoop;
866                 u16 max_ltr_enc;        /* max LTR latency encoded */
867                 s64 lat_ns;     /* latency (ns) */
868                 s64 value;
869                 u32 rxa;
870
871                 if (!hw->adapter->max_frame_size) {
872                         e_dbg("max_frame_size not set.\n");
873                         return -E1000_ERR_CONFIG;
874                 }
875
876                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
877                 if (!speed) {
878                         e_dbg("Speed not set.\n");
879                         return -E1000_ERR_CONFIG;
880                 }
881
882                 /* Rx Packet Buffer Allocation size (KB) */
883                 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
884
885                 /* Determine the maximum latency tolerated by the device.
886                  *
887                  * Per the PCIe spec, the tolerated latencies are encoded as
888                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
889                  * a 10-bit value (0-1023) to provide a range from 1 ns to
890                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
891                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
892                  */
893                 lat_ns = ((s64)rxa * 1024 -
894                           (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
895                 if (lat_ns < 0)
896                         lat_ns = 0;
897                 else
898                         do_div(lat_ns, speed);
899
900                 value = lat_ns;
901                 while (value > PCI_LTR_VALUE_MASK) {
902                         scale++;
903                         value = DIV_ROUND_UP(value, (1 << 5));
904                 }
905                 if (scale > E1000_LTRV_SCALE_MAX) {
906                         e_dbg("Invalid LTR latency scale %d\n", scale);
907                         return -E1000_ERR_CONFIG;
908                 }
909                 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
910
911                 /* Determine the maximum latency tolerated by the platform */
912                 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
913                                      &max_snoop);
914                 pci_read_config_word(hw->adapter->pdev,
915                                      E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
916                 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
917
918                 if (lat_enc > max_ltr_enc)
919                         lat_enc = max_ltr_enc;
920         }
921
922         /* Set Snoop and No-Snoop latencies the same */
923         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
924         ew32(LTRV, reg);
925
926         return 0;
927 }
928
929 /**
930  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
931  *  @hw: pointer to the HW structure
932  *
933  *  Checks to see of the link status of the hardware has changed.  If a
934  *  change in link status has been detected, then we read the PHY registers
935  *  to get the current speed/duplex if link exists.
936  **/
937 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
938 {
939         struct e1000_mac_info *mac = &hw->mac;
940         s32 ret_val;
941         bool link;
942         u16 phy_reg;
943
944         /* We only want to go out to the PHY registers to see if Auto-Neg
945          * has completed and/or if our link status has changed.  The
946          * get_link_status flag is set upon receiving a Link Status
947          * Change or Rx Sequence Error interrupt.
948          */
949         if (!mac->get_link_status)
950                 return 0;
951
952         /* First we want to see if the MII Status Register reports
953          * link.  If so, then we want to get the current speed/duplex
954          * of the PHY.
955          */
956         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
957         if (ret_val)
958                 return ret_val;
959
960         if (hw->mac.type == e1000_pchlan) {
961                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
962                 if (ret_val)
963                         return ret_val;
964         }
965
966         /* When connected at 10Mbps half-duplex, 82579 parts are excessively
967          * aggressive resulting in many collisions. To avoid this, increase
968          * the IPG and reduce Rx latency in the PHY.
969          */
970         if ((hw->mac.type == e1000_pch2lan) && link) {
971                 u32 reg;
972                 reg = er32(STATUS);
973                 if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
974                         reg = er32(TIPG);
975                         reg &= ~E1000_TIPG_IPGT_MASK;
976                         reg |= 0xFF;
977                         ew32(TIPG, reg);
978
979                         /* Reduce Rx latency in analog PHY */
980                         ret_val = hw->phy.ops.acquire(hw);
981                         if (ret_val)
982                                 return ret_val;
983
984                         ret_val =
985                             e1000_write_emi_reg_locked(hw, I82579_RX_CONFIG, 0);
986
987                         hw->phy.ops.release(hw);
988
989                         if (ret_val)
990                                 return ret_val;
991                 }
992         }
993
994         /* Work-around I218 hang issue */
995         if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
996             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
997                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
998                 if (ret_val)
999                         return ret_val;
1000         }
1001
1002         if (hw->mac.type == e1000_pch_lpt) {
1003                 /* Set platform power management values for
1004                  * Latency Tolerance Reporting (LTR)
1005                  */
1006                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1007                 if (ret_val)
1008                         return ret_val;
1009         }
1010
1011         /* Clear link partner's EEE ability */
1012         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1013
1014         if (!link)
1015                 return 0; /* No link detected */
1016
1017         mac->get_link_status = false;
1018
1019         switch (hw->mac.type) {
1020         case e1000_pch2lan:
1021                 ret_val = e1000_k1_workaround_lv(hw);
1022                 if (ret_val)
1023                         return ret_val;
1024                 /* fall-thru */
1025         case e1000_pchlan:
1026                 if (hw->phy.type == e1000_phy_82578) {
1027                         ret_val = e1000_link_stall_workaround_hv(hw);
1028                         if (ret_val)
1029                                 return ret_val;
1030                 }
1031
1032                 /* Workaround for PCHx parts in half-duplex:
1033                  * Set the number of preambles removed from the packet
1034                  * when it is passed from the PHY to the MAC to prevent
1035                  * the MAC from misinterpreting the packet type.
1036                  */
1037                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1038                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1039
1040                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1041                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1042
1043                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1044                 break;
1045         default:
1046                 break;
1047         }
1048
1049         /* Check if there was DownShift, must be checked
1050          * immediately after link-up
1051          */
1052         e1000e_check_downshift(hw);
1053
1054         /* Enable/Disable EEE after link up */
1055         ret_val = e1000_set_eee_pchlan(hw);
1056         if (ret_val)
1057                 return ret_val;
1058
1059         /* If we are forcing speed/duplex, then we simply return since
1060          * we have already determined whether we have link or not.
1061          */
1062         if (!mac->autoneg)
1063                 return -E1000_ERR_CONFIG;
1064
1065         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1066          * of MAC speed/duplex configuration.  So we only need to
1067          * configure Collision Distance in the MAC.
1068          */
1069         mac->ops.config_collision_dist(hw);
1070
1071         /* Configure Flow Control now that Auto-Neg has completed.
1072          * First, we need to restore the desired flow control
1073          * settings because we may have had to re-autoneg with a
1074          * different link partner.
1075          */
1076         ret_val = e1000e_config_fc_after_link_up(hw);
1077         if (ret_val)
1078                 e_dbg("Error configuring flow control\n");
1079
1080         return ret_val;
1081 }
1082
1083 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1084 {
1085         struct e1000_hw *hw = &adapter->hw;
1086         s32 rc;
1087
1088         rc = e1000_init_mac_params_ich8lan(hw);
1089         if (rc)
1090                 return rc;
1091
1092         rc = e1000_init_nvm_params_ich8lan(hw);
1093         if (rc)
1094                 return rc;
1095
1096         switch (hw->mac.type) {
1097         case e1000_ich8lan:
1098         case e1000_ich9lan:
1099         case e1000_ich10lan:
1100                 rc = e1000_init_phy_params_ich8lan(hw);
1101                 break;
1102         case e1000_pchlan:
1103         case e1000_pch2lan:
1104         case e1000_pch_lpt:
1105                 rc = e1000_init_phy_params_pchlan(hw);
1106                 break;
1107         default:
1108                 break;
1109         }
1110         if (rc)
1111                 return rc;
1112
1113         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1114          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1115          */
1116         if ((adapter->hw.phy.type == e1000_phy_ife) ||
1117             ((adapter->hw.mac.type >= e1000_pch2lan) &&
1118              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1119                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1120                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1121
1122                 hw->mac.ops.blink_led = NULL;
1123         }
1124
1125         if ((adapter->hw.mac.type == e1000_ich8lan) &&
1126             (adapter->hw.phy.type != e1000_phy_ife))
1127                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1128
1129         /* Enable workaround for 82579 w/ ME enabled */
1130         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1131             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1132                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1133
1134         return 0;
1135 }
1136
1137 static DEFINE_MUTEX(nvm_mutex);
1138
1139 /**
1140  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1141  *  @hw: pointer to the HW structure
1142  *
1143  *  Acquires the mutex for performing NVM operations.
1144  **/
1145 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1146 {
1147         mutex_lock(&nvm_mutex);
1148
1149         return 0;
1150 }
1151
1152 /**
1153  *  e1000_release_nvm_ich8lan - Release NVM mutex
1154  *  @hw: pointer to the HW structure
1155  *
1156  *  Releases the mutex used while performing NVM operations.
1157  **/
1158 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1159 {
1160         mutex_unlock(&nvm_mutex);
1161 }
1162
1163 /**
1164  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1165  *  @hw: pointer to the HW structure
1166  *
1167  *  Acquires the software control flag for performing PHY and select
1168  *  MAC CSR accesses.
1169  **/
1170 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1171 {
1172         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1173         s32 ret_val = 0;
1174
1175         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1176                              &hw->adapter->state)) {
1177                 e_dbg("contention for Phy access\n");
1178                 return -E1000_ERR_PHY;
1179         }
1180
1181         while (timeout) {
1182                 extcnf_ctrl = er32(EXTCNF_CTRL);
1183                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1184                         break;
1185
1186                 mdelay(1);
1187                 timeout--;
1188         }
1189
1190         if (!timeout) {
1191                 e_dbg("SW has already locked the resource.\n");
1192                 ret_val = -E1000_ERR_CONFIG;
1193                 goto out;
1194         }
1195
1196         timeout = SW_FLAG_TIMEOUT;
1197
1198         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1199         ew32(EXTCNF_CTRL, extcnf_ctrl);
1200
1201         while (timeout) {
1202                 extcnf_ctrl = er32(EXTCNF_CTRL);
1203                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1204                         break;
1205
1206                 mdelay(1);
1207                 timeout--;
1208         }
1209
1210         if (!timeout) {
1211                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1212                       er32(FWSM), extcnf_ctrl);
1213                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1214                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1215                 ret_val = -E1000_ERR_CONFIG;
1216                 goto out;
1217         }
1218
1219 out:
1220         if (ret_val)
1221                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1222
1223         return ret_val;
1224 }
1225
1226 /**
1227  *  e1000_release_swflag_ich8lan - Release software control flag
1228  *  @hw: pointer to the HW structure
1229  *
1230  *  Releases the software control flag for performing PHY and select
1231  *  MAC CSR accesses.
1232  **/
1233 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1234 {
1235         u32 extcnf_ctrl;
1236
1237         extcnf_ctrl = er32(EXTCNF_CTRL);
1238
1239         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1240                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1241                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1242         } else {
1243                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1244         }
1245
1246         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1247 }
1248
1249 /**
1250  *  e1000_check_mng_mode_ich8lan - Checks management mode
1251  *  @hw: pointer to the HW structure
1252  *
1253  *  This checks if the adapter has any manageability enabled.
1254  *  This is a function pointer entry point only called by read/write
1255  *  routines for the PHY and NVM parts.
1256  **/
1257 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1258 {
1259         u32 fwsm;
1260
1261         fwsm = er32(FWSM);
1262         return ((fwsm & E1000_ICH_FWSM_FW_VALID) &&
1263                 ((fwsm & E1000_FWSM_MODE_MASK) ==
1264                  (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)));
1265 }
1266
1267 /**
1268  *  e1000_check_mng_mode_pchlan - Checks management mode
1269  *  @hw: pointer to the HW structure
1270  *
1271  *  This checks if the adapter has iAMT enabled.
1272  *  This is a function pointer entry point only called by read/write
1273  *  routines for the PHY and NVM parts.
1274  **/
1275 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1276 {
1277         u32 fwsm;
1278
1279         fwsm = er32(FWSM);
1280         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1281             (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1282 }
1283
1284 /**
1285  *  e1000_rar_set_pch2lan - Set receive address register
1286  *  @hw: pointer to the HW structure
1287  *  @addr: pointer to the receive address
1288  *  @index: receive address array register
1289  *
1290  *  Sets the receive address array register at index to the address passed
1291  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1292  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1293  *  Use SHRA[0-3] in place of those reserved for ME.
1294  **/
1295 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1296 {
1297         u32 rar_low, rar_high;
1298
1299         /* HW expects these in little endian so we reverse the byte order
1300          * from network order (big endian) to little endian
1301          */
1302         rar_low = ((u32)addr[0] |
1303                    ((u32)addr[1] << 8) |
1304                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1305
1306         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1307
1308         /* If MAC address zero, no need to set the AV bit */
1309         if (rar_low || rar_high)
1310                 rar_high |= E1000_RAH_AV;
1311
1312         if (index == 0) {
1313                 ew32(RAL(index), rar_low);
1314                 e1e_flush();
1315                 ew32(RAH(index), rar_high);
1316                 e1e_flush();
1317                 return;
1318         }
1319
1320         if (index < hw->mac.rar_entry_count) {
1321                 s32 ret_val;
1322
1323                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1324                 if (ret_val)
1325                         goto out;
1326
1327                 ew32(SHRAL(index - 1), rar_low);
1328                 e1e_flush();
1329                 ew32(SHRAH(index - 1), rar_high);
1330                 e1e_flush();
1331
1332                 e1000_release_swflag_ich8lan(hw);
1333
1334                 /* verify the register updates */
1335                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1336                     (er32(SHRAH(index - 1)) == rar_high))
1337                         return;
1338
1339                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1340                       (index - 1), er32(FWSM));
1341         }
1342
1343 out:
1344         e_dbg("Failed to write receive address at index %d\n", index);
1345 }
1346
1347 /**
1348  *  e1000_rar_set_pch_lpt - Set receive address registers
1349  *  @hw: pointer to the HW structure
1350  *  @addr: pointer to the receive address
1351  *  @index: receive address array register
1352  *
1353  *  Sets the receive address register array at index to the address passed
1354  *  in by addr. For LPT, RAR[0] is the base address register that is to
1355  *  contain the MAC address. SHRA[0-10] are the shared receive address
1356  *  registers that are shared between the Host and manageability engine (ME).
1357  **/
1358 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1359 {
1360         u32 rar_low, rar_high;
1361         u32 wlock_mac;
1362
1363         /* HW expects these in little endian so we reverse the byte order
1364          * from network order (big endian) to little endian
1365          */
1366         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1367                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1368
1369         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1370
1371         /* If MAC address zero, no need to set the AV bit */
1372         if (rar_low || rar_high)
1373                 rar_high |= E1000_RAH_AV;
1374
1375         if (index == 0) {
1376                 ew32(RAL(index), rar_low);
1377                 e1e_flush();
1378                 ew32(RAH(index), rar_high);
1379                 e1e_flush();
1380                 return;
1381         }
1382
1383         /* The manageability engine (ME) can lock certain SHRAR registers that
1384          * it is using - those registers are unavailable for use.
1385          */
1386         if (index < hw->mac.rar_entry_count) {
1387                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1388                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1389
1390                 /* Check if all SHRAR registers are locked */
1391                 if (wlock_mac == 1)
1392                         goto out;
1393
1394                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1395                         s32 ret_val;
1396
1397                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1398
1399                         if (ret_val)
1400                                 goto out;
1401
1402                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1403                         e1e_flush();
1404                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1405                         e1e_flush();
1406
1407                         e1000_release_swflag_ich8lan(hw);
1408
1409                         /* verify the register updates */
1410                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1411                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1412                                 return;
1413                 }
1414         }
1415
1416 out:
1417         e_dbg("Failed to write receive address at index %d\n", index);
1418 }
1419
1420 /**
1421  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1422  *  @hw: pointer to the HW structure
1423  *
1424  *  Checks if firmware is blocking the reset of the PHY.
1425  *  This is a function pointer entry point only called by
1426  *  reset routines.
1427  **/
1428 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1429 {
1430         u32 fwsm;
1431
1432         fwsm = er32(FWSM);
1433
1434         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1435 }
1436
1437 /**
1438  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1439  *  @hw: pointer to the HW structure
1440  *
1441  *  Assumes semaphore already acquired.
1442  *
1443  **/
1444 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1445 {
1446         u16 phy_data;
1447         u32 strap = er32(STRAP);
1448         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1449             E1000_STRAP_SMT_FREQ_SHIFT;
1450         s32 ret_val;
1451
1452         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1453
1454         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1455         if (ret_val)
1456                 return ret_val;
1457
1458         phy_data &= ~HV_SMB_ADDR_MASK;
1459         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1460         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1461
1462         if (hw->phy.type == e1000_phy_i217) {
1463                 /* Restore SMBus frequency */
1464                 if (freq--) {
1465                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1466                         phy_data |= (freq & (1 << 0)) <<
1467                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
1468                         phy_data |= (freq & (1 << 1)) <<
1469                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1470                 } else {
1471                         e_dbg("Unsupported SMB frequency in PHY\n");
1472                 }
1473         }
1474
1475         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1476 }
1477
1478 /**
1479  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1480  *  @hw:   pointer to the HW structure
1481  *
1482  *  SW should configure the LCD from the NVM extended configuration region
1483  *  as a workaround for certain parts.
1484  **/
1485 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1486 {
1487         struct e1000_phy_info *phy = &hw->phy;
1488         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1489         s32 ret_val = 0;
1490         u16 word_addr, reg_data, reg_addr, phy_page = 0;
1491
1492         /* Initialize the PHY from the NVM on ICH platforms.  This
1493          * is needed due to an issue where the NVM configuration is
1494          * not properly autoloaded after power transitions.
1495          * Therefore, after each PHY reset, we will load the
1496          * configuration data out of the NVM manually.
1497          */
1498         switch (hw->mac.type) {
1499         case e1000_ich8lan:
1500                 if (phy->type != e1000_phy_igp_3)
1501                         return ret_val;
1502
1503                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1504                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1505                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1506                         break;
1507                 }
1508                 /* Fall-thru */
1509         case e1000_pchlan:
1510         case e1000_pch2lan:
1511         case e1000_pch_lpt:
1512                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1513                 break;
1514         default:
1515                 return ret_val;
1516         }
1517
1518         ret_val = hw->phy.ops.acquire(hw);
1519         if (ret_val)
1520                 return ret_val;
1521
1522         data = er32(FEXTNVM);
1523         if (!(data & sw_cfg_mask))
1524                 goto release;
1525
1526         /* Make sure HW does not configure LCD from PHY
1527          * extended configuration before SW configuration
1528          */
1529         data = er32(EXTCNF_CTRL);
1530         if ((hw->mac.type < e1000_pch2lan) &&
1531             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1532                 goto release;
1533
1534         cnf_size = er32(EXTCNF_SIZE);
1535         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1536         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1537         if (!cnf_size)
1538                 goto release;
1539
1540         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1541         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1542
1543         if (((hw->mac.type == e1000_pchlan) &&
1544              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1545             (hw->mac.type > e1000_pchlan)) {
1546                 /* HW configures the SMBus address and LEDs when the
1547                  * OEM and LCD Write Enable bits are set in the NVM.
1548                  * When both NVM bits are cleared, SW will configure
1549                  * them instead.
1550                  */
1551                 ret_val = e1000_write_smbus_addr(hw);
1552                 if (ret_val)
1553                         goto release;
1554
1555                 data = er32(LEDCTL);
1556                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1557                                                         (u16)data);
1558                 if (ret_val)
1559                         goto release;
1560         }
1561
1562         /* Configure LCD from extended configuration region. */
1563
1564         /* cnf_base_addr is in DWORD */
1565         word_addr = (u16)(cnf_base_addr << 1);
1566
1567         for (i = 0; i < cnf_size; i++) {
1568                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
1569                 if (ret_val)
1570                         goto release;
1571
1572                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1573                                          1, &reg_addr);
1574                 if (ret_val)
1575                         goto release;
1576
1577                 /* Save off the PHY page for future writes. */
1578                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1579                         phy_page = reg_data;
1580                         continue;
1581                 }
1582
1583                 reg_addr &= PHY_REG_MASK;
1584                 reg_addr |= phy_page;
1585
1586                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1587                 if (ret_val)
1588                         goto release;
1589         }
1590
1591 release:
1592         hw->phy.ops.release(hw);
1593         return ret_val;
1594 }
1595
1596 /**
1597  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1598  *  @hw:   pointer to the HW structure
1599  *  @link: link up bool flag
1600  *
1601  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1602  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1603  *  If link is down, the function will restore the default K1 setting located
1604  *  in the NVM.
1605  **/
1606 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1607 {
1608         s32 ret_val = 0;
1609         u16 status_reg = 0;
1610         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1611
1612         if (hw->mac.type != e1000_pchlan)
1613                 return 0;
1614
1615         /* Wrap the whole flow with the sw flag */
1616         ret_val = hw->phy.ops.acquire(hw);
1617         if (ret_val)
1618                 return ret_val;
1619
1620         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1621         if (link) {
1622                 if (hw->phy.type == e1000_phy_82578) {
1623                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1624                                                   &status_reg);
1625                         if (ret_val)
1626                                 goto release;
1627
1628                         status_reg &= (BM_CS_STATUS_LINK_UP |
1629                                        BM_CS_STATUS_RESOLVED |
1630                                        BM_CS_STATUS_SPEED_MASK);
1631
1632                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1633                                            BM_CS_STATUS_RESOLVED |
1634                                            BM_CS_STATUS_SPEED_1000))
1635                                 k1_enable = false;
1636                 }
1637
1638                 if (hw->phy.type == e1000_phy_82577) {
1639                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1640                         if (ret_val)
1641                                 goto release;
1642
1643                         status_reg &= (HV_M_STATUS_LINK_UP |
1644                                        HV_M_STATUS_AUTONEG_COMPLETE |
1645                                        HV_M_STATUS_SPEED_MASK);
1646
1647                         if (status_reg == (HV_M_STATUS_LINK_UP |
1648                                            HV_M_STATUS_AUTONEG_COMPLETE |
1649                                            HV_M_STATUS_SPEED_1000))
1650                                 k1_enable = false;
1651                 }
1652
1653                 /* Link stall fix for link up */
1654                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1655                 if (ret_val)
1656                         goto release;
1657
1658         } else {
1659                 /* Link stall fix for link down */
1660                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1661                 if (ret_val)
1662                         goto release;
1663         }
1664
1665         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1666
1667 release:
1668         hw->phy.ops.release(hw);
1669
1670         return ret_val;
1671 }
1672
1673 /**
1674  *  e1000_configure_k1_ich8lan - Configure K1 power state
1675  *  @hw: pointer to the HW structure
1676  *  @enable: K1 state to configure
1677  *
1678  *  Configure the K1 power state based on the provided parameter.
1679  *  Assumes semaphore already acquired.
1680  *
1681  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1682  **/
1683 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1684 {
1685         s32 ret_val;
1686         u32 ctrl_reg = 0;
1687         u32 ctrl_ext = 0;
1688         u32 reg = 0;
1689         u16 kmrn_reg = 0;
1690
1691         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1692                                               &kmrn_reg);
1693         if (ret_val)
1694                 return ret_val;
1695
1696         if (k1_enable)
1697                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1698         else
1699                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1700
1701         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1702                                                kmrn_reg);
1703         if (ret_val)
1704                 return ret_val;
1705
1706         usleep_range(20, 40);
1707         ctrl_ext = er32(CTRL_EXT);
1708         ctrl_reg = er32(CTRL);
1709
1710         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1711         reg |= E1000_CTRL_FRCSPD;
1712         ew32(CTRL, reg);
1713
1714         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1715         e1e_flush();
1716         usleep_range(20, 40);
1717         ew32(CTRL, ctrl_reg);
1718         ew32(CTRL_EXT, ctrl_ext);
1719         e1e_flush();
1720         usleep_range(20, 40);
1721
1722         return 0;
1723 }
1724
1725 /**
1726  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1727  *  @hw:       pointer to the HW structure
1728  *  @d0_state: boolean if entering d0 or d3 device state
1729  *
1730  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1731  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1732  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1733  **/
1734 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1735 {
1736         s32 ret_val = 0;
1737         u32 mac_reg;
1738         u16 oem_reg;
1739
1740         if (hw->mac.type < e1000_pchlan)
1741                 return ret_val;
1742
1743         ret_val = hw->phy.ops.acquire(hw);
1744         if (ret_val)
1745                 return ret_val;
1746
1747         if (hw->mac.type == e1000_pchlan) {
1748                 mac_reg = er32(EXTCNF_CTRL);
1749                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1750                         goto release;
1751         }
1752
1753         mac_reg = er32(FEXTNVM);
1754         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1755                 goto release;
1756
1757         mac_reg = er32(PHY_CTRL);
1758
1759         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1760         if (ret_val)
1761                 goto release;
1762
1763         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1764
1765         if (d0_state) {
1766                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1767                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1768
1769                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1770                         oem_reg |= HV_OEM_BITS_LPLU;
1771         } else {
1772                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1773                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1774                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1775
1776                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1777                                E1000_PHY_CTRL_NOND0A_LPLU))
1778                         oem_reg |= HV_OEM_BITS_LPLU;
1779         }
1780
1781         /* Set Restart auto-neg to activate the bits */
1782         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1783             !hw->phy.ops.check_reset_block(hw))
1784                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1785
1786         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1787
1788 release:
1789         hw->phy.ops.release(hw);
1790
1791         return ret_val;
1792 }
1793
1794 /**
1795  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1796  *  @hw:   pointer to the HW structure
1797  **/
1798 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1799 {
1800         s32 ret_val;
1801         u16 data;
1802
1803         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1804         if (ret_val)
1805                 return ret_val;
1806
1807         data |= HV_KMRN_MDIO_SLOW;
1808
1809         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1810
1811         return ret_val;
1812 }
1813
1814 /**
1815  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1816  *  done after every PHY reset.
1817  **/
1818 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1819 {
1820         s32 ret_val = 0;
1821         u16 phy_data;
1822
1823         if (hw->mac.type != e1000_pchlan)
1824                 return 0;
1825
1826         /* Set MDIO slow mode before any other MDIO access */
1827         if (hw->phy.type == e1000_phy_82577) {
1828                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1829                 if (ret_val)
1830                         return ret_val;
1831         }
1832
1833         if (((hw->phy.type == e1000_phy_82577) &&
1834              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1835             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1836                 /* Disable generation of early preamble */
1837                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1838                 if (ret_val)
1839                         return ret_val;
1840
1841                 /* Preamble tuning for SSC */
1842                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1843                 if (ret_val)
1844                         return ret_val;
1845         }
1846
1847         if (hw->phy.type == e1000_phy_82578) {
1848                 /* Return registers to default by doing a soft reset then
1849                  * writing 0x3140 to the control register.
1850                  */
1851                 if (hw->phy.revision < 2) {
1852                         e1000e_phy_sw_reset(hw);
1853                         ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
1854                 }
1855         }
1856
1857         /* Select page 0 */
1858         ret_val = hw->phy.ops.acquire(hw);
1859         if (ret_val)
1860                 return ret_val;
1861
1862         hw->phy.addr = 1;
1863         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1864         hw->phy.ops.release(hw);
1865         if (ret_val)
1866                 return ret_val;
1867
1868         /* Configure the K1 Si workaround during phy reset assuming there is
1869          * link so that it disables K1 if link is in 1Gbps.
1870          */
1871         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1872         if (ret_val)
1873                 return ret_val;
1874
1875         /* Workaround for link disconnects on a busy hub in half duplex */
1876         ret_val = hw->phy.ops.acquire(hw);
1877         if (ret_val)
1878                 return ret_val;
1879         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1880         if (ret_val)
1881                 goto release;
1882         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1883         if (ret_val)
1884                 goto release;
1885
1886         /* set MSE higher to enable link to stay up when noise is high */
1887         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
1888 release:
1889         hw->phy.ops.release(hw);
1890
1891         return ret_val;
1892 }
1893
1894 /**
1895  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1896  *  @hw:   pointer to the HW structure
1897  **/
1898 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1899 {
1900         u32 mac_reg;
1901         u16 i, phy_reg = 0;
1902         s32 ret_val;
1903
1904         ret_val = hw->phy.ops.acquire(hw);
1905         if (ret_val)
1906                 return;
1907         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1908         if (ret_val)
1909                 goto release;
1910
1911         /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1912         for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1913                 mac_reg = er32(RAL(i));
1914                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1915                                            (u16)(mac_reg & 0xFFFF));
1916                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1917                                            (u16)((mac_reg >> 16) & 0xFFFF));
1918
1919                 mac_reg = er32(RAH(i));
1920                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1921                                            (u16)(mac_reg & 0xFFFF));
1922                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1923                                            (u16)((mac_reg & E1000_RAH_AV)
1924                                                  >> 16));
1925         }
1926
1927         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1928
1929 release:
1930         hw->phy.ops.release(hw);
1931 }
1932
1933 /**
1934  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1935  *  with 82579 PHY
1936  *  @hw: pointer to the HW structure
1937  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1938  **/
1939 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1940 {
1941         s32 ret_val = 0;
1942         u16 phy_reg, data;
1943         u32 mac_reg;
1944         u16 i;
1945
1946         if (hw->mac.type < e1000_pch2lan)
1947                 return 0;
1948
1949         /* disable Rx path while enabling/disabling workaround */
1950         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1951         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1952         if (ret_val)
1953                 return ret_val;
1954
1955         if (enable) {
1956                 /* Write Rx addresses (rar_entry_count for RAL/H, +4 for
1957                  * SHRAL/H) and initial CRC values to the MAC
1958                  */
1959                 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1960                         u8 mac_addr[ETH_ALEN] = { 0 };
1961                         u32 addr_high, addr_low;
1962
1963                         addr_high = er32(RAH(i));
1964                         if (!(addr_high & E1000_RAH_AV))
1965                                 continue;
1966                         addr_low = er32(RAL(i));
1967                         mac_addr[0] = (addr_low & 0xFF);
1968                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
1969                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
1970                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
1971                         mac_addr[4] = (addr_high & 0xFF);
1972                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
1973
1974                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1975                 }
1976
1977                 /* Write Rx addresses to the PHY */
1978                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1979
1980                 /* Enable jumbo frame workaround in the MAC */
1981                 mac_reg = er32(FFLT_DBG);
1982                 mac_reg &= ~(1 << 14);
1983                 mac_reg |= (7 << 15);
1984                 ew32(FFLT_DBG, mac_reg);
1985
1986                 mac_reg = er32(RCTL);
1987                 mac_reg |= E1000_RCTL_SECRC;
1988                 ew32(RCTL, mac_reg);
1989
1990                 ret_val = e1000e_read_kmrn_reg(hw,
1991                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
1992                                                &data);
1993                 if (ret_val)
1994                         return ret_val;
1995                 ret_val = e1000e_write_kmrn_reg(hw,
1996                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1997                                                 data | (1 << 0));
1998                 if (ret_val)
1999                         return ret_val;
2000                 ret_val = e1000e_read_kmrn_reg(hw,
2001                                                E1000_KMRNCTRLSTA_HD_CTRL,
2002                                                &data);
2003                 if (ret_val)
2004                         return ret_val;
2005                 data &= ~(0xF << 8);
2006                 data |= (0xB << 8);
2007                 ret_val = e1000e_write_kmrn_reg(hw,
2008                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2009                                                 data);
2010                 if (ret_val)
2011                         return ret_val;
2012
2013                 /* Enable jumbo frame workaround in the PHY */
2014                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2015                 data &= ~(0x7F << 5);
2016                 data |= (0x37 << 5);
2017                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2018                 if (ret_val)
2019                         return ret_val;
2020                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2021                 data &= ~(1 << 13);
2022                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2023                 if (ret_val)
2024                         return ret_val;
2025                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2026                 data &= ~(0x3FF << 2);
2027                 data |= (0x1A << 2);
2028                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2029                 if (ret_val)
2030                         return ret_val;
2031                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2032                 if (ret_val)
2033                         return ret_val;
2034                 e1e_rphy(hw, HV_PM_CTRL, &data);
2035                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2036                 if (ret_val)
2037                         return ret_val;
2038         } else {
2039                 /* Write MAC register values back to h/w defaults */
2040                 mac_reg = er32(FFLT_DBG);
2041                 mac_reg &= ~(0xF << 14);
2042                 ew32(FFLT_DBG, mac_reg);
2043
2044                 mac_reg = er32(RCTL);
2045                 mac_reg &= ~E1000_RCTL_SECRC;
2046                 ew32(RCTL, mac_reg);
2047
2048                 ret_val = e1000e_read_kmrn_reg(hw,
2049                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2050                                                &data);
2051                 if (ret_val)
2052                         return ret_val;
2053                 ret_val = e1000e_write_kmrn_reg(hw,
2054                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2055                                                 data & ~(1 << 0));
2056                 if (ret_val)
2057                         return ret_val;
2058                 ret_val = e1000e_read_kmrn_reg(hw,
2059                                                E1000_KMRNCTRLSTA_HD_CTRL,
2060                                                &data);
2061                 if (ret_val)
2062                         return ret_val;
2063                 data &= ~(0xF << 8);
2064                 data |= (0xB << 8);
2065                 ret_val = e1000e_write_kmrn_reg(hw,
2066                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2067                                                 data);
2068                 if (ret_val)
2069                         return ret_val;
2070
2071                 /* Write PHY register values back to h/w defaults */
2072                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2073                 data &= ~(0x7F << 5);
2074                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2075                 if (ret_val)
2076                         return ret_val;
2077                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2078                 data |= (1 << 13);
2079                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2080                 if (ret_val)
2081                         return ret_val;
2082                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2083                 data &= ~(0x3FF << 2);
2084                 data |= (0x8 << 2);
2085                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2086                 if (ret_val)
2087                         return ret_val;
2088                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2089                 if (ret_val)
2090                         return ret_val;
2091                 e1e_rphy(hw, HV_PM_CTRL, &data);
2092                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2093                 if (ret_val)
2094                         return ret_val;
2095         }
2096
2097         /* re-enable Rx path after enabling/disabling workaround */
2098         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2099 }
2100
2101 /**
2102  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2103  *  done after every PHY reset.
2104  **/
2105 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2106 {
2107         s32 ret_val = 0;
2108
2109         if (hw->mac.type != e1000_pch2lan)
2110                 return 0;
2111
2112         /* Set MDIO slow mode before any other MDIO access */
2113         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2114         if (ret_val)
2115                 return ret_val;
2116
2117         ret_val = hw->phy.ops.acquire(hw);
2118         if (ret_val)
2119                 return ret_val;
2120         /* set MSE higher to enable link to stay up when noise is high */
2121         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2122         if (ret_val)
2123                 goto release;
2124         /* drop link after 5 times MSE threshold was reached */
2125         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2126 release:
2127         hw->phy.ops.release(hw);
2128
2129         return ret_val;
2130 }
2131
2132 /**
2133  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2134  *  @hw:   pointer to the HW structure
2135  *
2136  *  Workaround to set the K1 beacon duration for 82579 parts
2137  **/
2138 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2139 {
2140         s32 ret_val = 0;
2141         u16 status_reg = 0;
2142         u32 mac_reg;
2143         u16 phy_reg;
2144
2145         if (hw->mac.type != e1000_pch2lan)
2146                 return 0;
2147
2148         /* Set K1 beacon duration based on 1Gbps speed or otherwise */
2149         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2150         if (ret_val)
2151                 return ret_val;
2152
2153         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2154             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2155                 mac_reg = er32(FEXTNVM4);
2156                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2157
2158                 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2159                 if (ret_val)
2160                         return ret_val;
2161
2162                 if (status_reg & HV_M_STATUS_SPEED_1000) {
2163                         u16 pm_phy_reg;
2164
2165                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2166                         phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2167                         /* LV 1G Packet drop issue wa  */
2168                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2169                         if (ret_val)
2170                                 return ret_val;
2171                         pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2172                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2173                         if (ret_val)
2174                                 return ret_val;
2175                 } else {
2176                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2177                         phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2178                 }
2179                 ew32(FEXTNVM4, mac_reg);
2180                 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2181         }
2182
2183         return ret_val;
2184 }
2185
2186 /**
2187  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2188  *  @hw:   pointer to the HW structure
2189  *  @gate: boolean set to true to gate, false to ungate
2190  *
2191  *  Gate/ungate the automatic PHY configuration via hardware; perform
2192  *  the configuration via software instead.
2193  **/
2194 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2195 {
2196         u32 extcnf_ctrl;
2197
2198         if (hw->mac.type < e1000_pch2lan)
2199                 return;
2200
2201         extcnf_ctrl = er32(EXTCNF_CTRL);
2202
2203         if (gate)
2204                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2205         else
2206                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2207
2208         ew32(EXTCNF_CTRL, extcnf_ctrl);
2209 }
2210
2211 /**
2212  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2213  *  @hw: pointer to the HW structure
2214  *
2215  *  Check the appropriate indication the MAC has finished configuring the
2216  *  PHY after a software reset.
2217  **/
2218 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2219 {
2220         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2221
2222         /* Wait for basic configuration completes before proceeding */
2223         do {
2224                 data = er32(STATUS);
2225                 data &= E1000_STATUS_LAN_INIT_DONE;
2226                 usleep_range(100, 200);
2227         } while ((!data) && --loop);
2228
2229         /* If basic configuration is incomplete before the above loop
2230          * count reaches 0, loading the configuration from NVM will
2231          * leave the PHY in a bad state possibly resulting in no link.
2232          */
2233         if (loop == 0)
2234                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2235
2236         /* Clear the Init Done bit for the next init event */
2237         data = er32(STATUS);
2238         data &= ~E1000_STATUS_LAN_INIT_DONE;
2239         ew32(STATUS, data);
2240 }
2241
2242 /**
2243  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2244  *  @hw: pointer to the HW structure
2245  **/
2246 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2247 {
2248         s32 ret_val = 0;
2249         u16 reg;
2250
2251         if (hw->phy.ops.check_reset_block(hw))
2252                 return 0;
2253
2254         /* Allow time for h/w to get to quiescent state after reset */
2255         usleep_range(10000, 20000);
2256
2257         /* Perform any necessary post-reset workarounds */
2258         switch (hw->mac.type) {
2259         case e1000_pchlan:
2260                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2261                 if (ret_val)
2262                         return ret_val;
2263                 break;
2264         case e1000_pch2lan:
2265                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2266                 if (ret_val)
2267                         return ret_val;
2268                 break;
2269         default:
2270                 break;
2271         }
2272
2273         /* Clear the host wakeup bit after lcd reset */
2274         if (hw->mac.type >= e1000_pchlan) {
2275                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2276                 reg &= ~BM_WUC_HOST_WU_BIT;
2277                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2278         }
2279
2280         /* Configure the LCD with the extended configuration region in NVM */
2281         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2282         if (ret_val)
2283                 return ret_val;
2284
2285         /* Configure the LCD with the OEM bits in NVM */
2286         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2287
2288         if (hw->mac.type == e1000_pch2lan) {
2289                 /* Ungate automatic PHY configuration on non-managed 82579 */
2290                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2291                         usleep_range(10000, 20000);
2292                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2293                 }
2294
2295                 /* Set EEE LPI Update Timer to 200usec */
2296                 ret_val = hw->phy.ops.acquire(hw);
2297                 if (ret_val)
2298                         return ret_val;
2299                 ret_val = e1000_write_emi_reg_locked(hw,
2300                                                      I82579_LPI_UPDATE_TIMER,
2301                                                      0x1387);
2302                 hw->phy.ops.release(hw);
2303         }
2304
2305         return ret_val;
2306 }
2307
2308 /**
2309  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2310  *  @hw: pointer to the HW structure
2311  *
2312  *  Resets the PHY
2313  *  This is a function pointer entry point called by drivers
2314  *  or other shared routines.
2315  **/
2316 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2317 {
2318         s32 ret_val = 0;
2319
2320         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2321         if ((hw->mac.type == e1000_pch2lan) &&
2322             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2323                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2324
2325         ret_val = e1000e_phy_hw_reset_generic(hw);
2326         if (ret_val)
2327                 return ret_val;
2328
2329         return e1000_post_phy_reset_ich8lan(hw);
2330 }
2331
2332 /**
2333  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2334  *  @hw: pointer to the HW structure
2335  *  @active: true to enable LPLU, false to disable
2336  *
2337  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2338  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2339  *  the phy speed. This function will manually set the LPLU bit and restart
2340  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2341  *  since it configures the same bit.
2342  **/
2343 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2344 {
2345         s32 ret_val;
2346         u16 oem_reg;
2347
2348         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2349         if (ret_val)
2350                 return ret_val;
2351
2352         if (active)
2353                 oem_reg |= HV_OEM_BITS_LPLU;
2354         else
2355                 oem_reg &= ~HV_OEM_BITS_LPLU;
2356
2357         if (!hw->phy.ops.check_reset_block(hw))
2358                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2359
2360         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2361 }
2362
2363 /**
2364  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2365  *  @hw: pointer to the HW structure
2366  *  @active: true to enable LPLU, false to disable
2367  *
2368  *  Sets the LPLU D0 state according to the active flag.  When
2369  *  activating LPLU this function also disables smart speed
2370  *  and vice versa.  LPLU will not be activated unless the
2371  *  device autonegotiation advertisement meets standards of
2372  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2373  *  This is a function pointer entry point only called by
2374  *  PHY setup routines.
2375  **/
2376 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2377 {
2378         struct e1000_phy_info *phy = &hw->phy;
2379         u32 phy_ctrl;
2380         s32 ret_val = 0;
2381         u16 data;
2382
2383         if (phy->type == e1000_phy_ife)
2384                 return 0;
2385
2386         phy_ctrl = er32(PHY_CTRL);
2387
2388         if (active) {
2389                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2390                 ew32(PHY_CTRL, phy_ctrl);
2391
2392                 if (phy->type != e1000_phy_igp_3)
2393                         return 0;
2394
2395                 /* Call gig speed drop workaround on LPLU before accessing
2396                  * any PHY registers
2397                  */
2398                 if (hw->mac.type == e1000_ich8lan)
2399                         e1000e_gig_downshift_workaround_ich8lan(hw);
2400
2401                 /* When LPLU is enabled, we should disable SmartSpeed */
2402                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2403                 if (ret_val)
2404                         return ret_val;
2405                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2406                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2407                 if (ret_val)
2408                         return ret_val;
2409         } else {
2410                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2411                 ew32(PHY_CTRL, phy_ctrl);
2412
2413                 if (phy->type != e1000_phy_igp_3)
2414                         return 0;
2415
2416                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2417                  * during Dx states where the power conservation is most
2418                  * important.  During driver activity we should enable
2419                  * SmartSpeed, so performance is maintained.
2420                  */
2421                 if (phy->smart_speed == e1000_smart_speed_on) {
2422                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2423                                            &data);
2424                         if (ret_val)
2425                                 return ret_val;
2426
2427                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2428                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2429                                            data);
2430                         if (ret_val)
2431                                 return ret_val;
2432                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2433                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2434                                            &data);
2435                         if (ret_val)
2436                                 return ret_val;
2437
2438                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2439                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2440                                            data);
2441                         if (ret_val)
2442                                 return ret_val;
2443                 }
2444         }
2445
2446         return 0;
2447 }
2448
2449 /**
2450  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2451  *  @hw: pointer to the HW structure
2452  *  @active: true to enable LPLU, false to disable
2453  *
2454  *  Sets the LPLU D3 state according to the active flag.  When
2455  *  activating LPLU this function also disables smart speed
2456  *  and vice versa.  LPLU will not be activated unless the
2457  *  device autonegotiation advertisement meets standards of
2458  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2459  *  This is a function pointer entry point only called by
2460  *  PHY setup routines.
2461  **/
2462 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2463 {
2464         struct e1000_phy_info *phy = &hw->phy;
2465         u32 phy_ctrl;
2466         s32 ret_val = 0;
2467         u16 data;
2468
2469         phy_ctrl = er32(PHY_CTRL);
2470
2471         if (!active) {
2472                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2473                 ew32(PHY_CTRL, phy_ctrl);
2474
2475                 if (phy->type != e1000_phy_igp_3)
2476                         return 0;
2477
2478                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2479                  * during Dx states where the power conservation is most
2480                  * important.  During driver activity we should enable
2481                  * SmartSpeed, so performance is maintained.
2482                  */
2483                 if (phy->smart_speed == e1000_smart_speed_on) {
2484                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2485                                            &data);
2486                         if (ret_val)
2487                                 return ret_val;
2488
2489                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2490                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2491                                            data);
2492                         if (ret_val)
2493                                 return ret_val;
2494                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2495                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2496                                            &data);
2497                         if (ret_val)
2498                                 return ret_val;
2499
2500                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2501                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2502                                            data);
2503                         if (ret_val)
2504                                 return ret_val;
2505                 }
2506         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2507                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2508                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2509                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2510                 ew32(PHY_CTRL, phy_ctrl);
2511
2512                 if (phy->type != e1000_phy_igp_3)
2513                         return 0;
2514
2515                 /* Call gig speed drop workaround on LPLU before accessing
2516                  * any PHY registers
2517                  */
2518                 if (hw->mac.type == e1000_ich8lan)
2519                         e1000e_gig_downshift_workaround_ich8lan(hw);
2520
2521                 /* When LPLU is enabled, we should disable SmartSpeed */
2522                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2523                 if (ret_val)
2524                         return ret_val;
2525
2526                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2527                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2528         }
2529
2530         return ret_val;
2531 }
2532
2533 /**
2534  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2535  *  @hw: pointer to the HW structure
2536  *  @bank:  pointer to the variable that returns the active bank
2537  *
2538  *  Reads signature byte from the NVM using the flash access registers.
2539  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2540  **/
2541 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2542 {
2543         u32 eecd;
2544         struct e1000_nvm_info *nvm = &hw->nvm;
2545         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2546         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2547         u8 sig_byte = 0;
2548         s32 ret_val;
2549
2550         switch (hw->mac.type) {
2551         case e1000_ich8lan:
2552         case e1000_ich9lan:
2553                 eecd = er32(EECD);
2554                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2555                     E1000_EECD_SEC1VAL_VALID_MASK) {
2556                         if (eecd & E1000_EECD_SEC1VAL)
2557                                 *bank = 1;
2558                         else
2559                                 *bank = 0;
2560
2561                         return 0;
2562                 }
2563                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2564                 /* fall-thru */
2565         default:
2566                 /* set bank to 0 in case flash read fails */
2567                 *bank = 0;
2568
2569                 /* Check bank 0 */
2570                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2571                                                         &sig_byte);
2572                 if (ret_val)
2573                         return ret_val;
2574                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2575                     E1000_ICH_NVM_SIG_VALUE) {
2576                         *bank = 0;
2577                         return 0;
2578                 }
2579
2580                 /* Check bank 1 */
2581                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2582                                                         bank1_offset,
2583                                                         &sig_byte);
2584                 if (ret_val)
2585                         return ret_val;
2586                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2587                     E1000_ICH_NVM_SIG_VALUE) {
2588                         *bank = 1;
2589                         return 0;
2590                 }
2591
2592                 e_dbg("ERROR: No valid NVM bank present\n");
2593                 return -E1000_ERR_NVM;
2594         }
2595 }
2596
2597 /**
2598  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2599  *  @hw: pointer to the HW structure
2600  *  @offset: The offset (in bytes) of the word(s) to read.
2601  *  @words: Size of data to read in words
2602  *  @data: Pointer to the word(s) to read at offset.
2603  *
2604  *  Reads a word(s) from the NVM using the flash access registers.
2605  **/
2606 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2607                                   u16 *data)
2608 {
2609         struct e1000_nvm_info *nvm = &hw->nvm;
2610         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2611         u32 act_offset;
2612         s32 ret_val = 0;
2613         u32 bank = 0;
2614         u16 i, word;
2615
2616         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2617             (words == 0)) {
2618                 e_dbg("nvm parameter(s) out of bounds\n");
2619                 ret_val = -E1000_ERR_NVM;
2620                 goto out;
2621         }
2622
2623         nvm->ops.acquire(hw);
2624
2625         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2626         if (ret_val) {
2627                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2628                 bank = 0;
2629         }
2630
2631         act_offset = (bank) ? nvm->flash_bank_size : 0;
2632         act_offset += offset;
2633
2634         ret_val = 0;
2635         for (i = 0; i < words; i++) {
2636                 if (dev_spec->shadow_ram[offset + i].modified) {
2637                         data[i] = dev_spec->shadow_ram[offset + i].value;
2638                 } else {
2639                         ret_val = e1000_read_flash_word_ich8lan(hw,
2640                                                                 act_offset + i,
2641                                                                 &word);
2642                         if (ret_val)
2643                                 break;
2644                         data[i] = word;
2645                 }
2646         }
2647
2648         nvm->ops.release(hw);
2649
2650 out:
2651         if (ret_val)
2652                 e_dbg("NVM read error: %d\n", ret_val);
2653
2654         return ret_val;
2655 }
2656
2657 /**
2658  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2659  *  @hw: pointer to the HW structure
2660  *
2661  *  This function does initial flash setup so that a new read/write/erase cycle
2662  *  can be started.
2663  **/
2664 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2665 {
2666         union ich8_hws_flash_status hsfsts;
2667         s32 ret_val = -E1000_ERR_NVM;
2668
2669         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2670
2671         /* Check if the flash descriptor is valid */
2672         if (!hsfsts.hsf_status.fldesvalid) {
2673                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2674                 return -E1000_ERR_NVM;
2675         }
2676
2677         /* Clear FCERR and DAEL in hw status by writing 1 */
2678         hsfsts.hsf_status.flcerr = 1;
2679         hsfsts.hsf_status.dael = 1;
2680
2681         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2682
2683         /* Either we should have a hardware SPI cycle in progress
2684          * bit to check against, in order to start a new cycle or
2685          * FDONE bit should be changed in the hardware so that it
2686          * is 1 after hardware reset, which can then be used as an
2687          * indication whether a cycle is in progress or has been
2688          * completed.
2689          */
2690
2691         if (!hsfsts.hsf_status.flcinprog) {
2692                 /* There is no cycle running at present,
2693                  * so we can start a cycle.
2694                  * Begin by setting Flash Cycle Done.
2695                  */
2696                 hsfsts.hsf_status.flcdone = 1;
2697                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2698                 ret_val = 0;
2699         } else {
2700                 s32 i;
2701
2702                 /* Otherwise poll for sometime so the current
2703                  * cycle has a chance to end before giving up.
2704                  */
2705                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2706                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2707                         if (!hsfsts.hsf_status.flcinprog) {
2708                                 ret_val = 0;
2709                                 break;
2710                         }
2711                         udelay(1);
2712                 }
2713                 if (!ret_val) {
2714                         /* Successful in waiting for previous cycle to timeout,
2715                          * now set the Flash Cycle Done.
2716                          */
2717                         hsfsts.hsf_status.flcdone = 1;
2718                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2719                 } else {
2720                         e_dbg("Flash controller busy, cannot get access\n");
2721                 }
2722         }
2723
2724         return ret_val;
2725 }
2726
2727 /**
2728  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2729  *  @hw: pointer to the HW structure
2730  *  @timeout: maximum time to wait for completion
2731  *
2732  *  This function starts a flash cycle and waits for its completion.
2733  **/
2734 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2735 {
2736         union ich8_hws_flash_ctrl hsflctl;
2737         union ich8_hws_flash_status hsfsts;
2738         u32 i = 0;
2739
2740         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2741         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2742         hsflctl.hsf_ctrl.flcgo = 1;
2743         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2744
2745         /* wait till FDONE bit is set to 1 */
2746         do {
2747                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2748                 if (hsfsts.hsf_status.flcdone)
2749                         break;
2750                 udelay(1);
2751         } while (i++ < timeout);
2752
2753         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2754                 return 0;
2755
2756         return -E1000_ERR_NVM;
2757 }
2758
2759 /**
2760  *  e1000_read_flash_word_ich8lan - Read word from flash
2761  *  @hw: pointer to the HW structure
2762  *  @offset: offset to data location
2763  *  @data: pointer to the location for storing the data
2764  *
2765  *  Reads the flash word at offset into data.  Offset is converted
2766  *  to bytes before read.
2767  **/
2768 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2769                                          u16 *data)
2770 {
2771         /* Must convert offset into bytes. */
2772         offset <<= 1;
2773
2774         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2775 }
2776
2777 /**
2778  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2779  *  @hw: pointer to the HW structure
2780  *  @offset: The offset of the byte to read.
2781  *  @data: Pointer to a byte to store the value read.
2782  *
2783  *  Reads a single byte from the NVM using the flash access registers.
2784  **/
2785 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2786                                          u8 *data)
2787 {
2788         s32 ret_val;
2789         u16 word = 0;
2790
2791         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2792         if (ret_val)
2793                 return ret_val;
2794
2795         *data = (u8)word;
2796
2797         return 0;
2798 }
2799
2800 /**
2801  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2802  *  @hw: pointer to the HW structure
2803  *  @offset: The offset (in bytes) of the byte or word to read.
2804  *  @size: Size of data to read, 1=byte 2=word
2805  *  @data: Pointer to the word to store the value read.
2806  *
2807  *  Reads a byte or word from the NVM using the flash access registers.
2808  **/
2809 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2810                                          u8 size, u16 *data)
2811 {
2812         union ich8_hws_flash_status hsfsts;
2813         union ich8_hws_flash_ctrl hsflctl;
2814         u32 flash_linear_addr;
2815         u32 flash_data = 0;
2816         s32 ret_val = -E1000_ERR_NVM;
2817         u8 count = 0;
2818
2819         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2820                 return -E1000_ERR_NVM;
2821
2822         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2823                              hw->nvm.flash_base_addr);
2824
2825         do {
2826                 udelay(1);
2827                 /* Steps */
2828                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2829                 if (ret_val)
2830                         break;
2831
2832                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2833                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2834                 hsflctl.hsf_ctrl.fldbcount = size - 1;
2835                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2836                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2837
2838                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2839
2840                 ret_val =
2841                     e1000_flash_cycle_ich8lan(hw,
2842                                               ICH_FLASH_READ_COMMAND_TIMEOUT);
2843
2844                 /* Check if FCERR is set to 1, if set to 1, clear it
2845                  * and try the whole sequence a few more times, else
2846                  * read in (shift in) the Flash Data0, the order is
2847                  * least significant byte first msb to lsb
2848                  */
2849                 if (!ret_val) {
2850                         flash_data = er32flash(ICH_FLASH_FDATA0);
2851                         if (size == 1)
2852                                 *data = (u8)(flash_data & 0x000000FF);
2853                         else if (size == 2)
2854                                 *data = (u16)(flash_data & 0x0000FFFF);
2855                         break;
2856                 } else {
2857                         /* If we've gotten here, then things are probably
2858                          * completely hosed, but if the error condition is
2859                          * detected, it won't hurt to give it another try...
2860                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2861                          */
2862                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2863                         if (hsfsts.hsf_status.flcerr) {
2864                                 /* Repeat for some time before giving up. */
2865                                 continue;
2866                         } else if (!hsfsts.hsf_status.flcdone) {
2867                                 e_dbg("Timeout error - flash cycle did not complete.\n");
2868                                 break;
2869                         }
2870                 }
2871         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2872
2873         return ret_val;
2874 }
2875
2876 /**
2877  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2878  *  @hw: pointer to the HW structure
2879  *  @offset: The offset (in bytes) of the word(s) to write.
2880  *  @words: Size of data to write in words
2881  *  @data: Pointer to the word(s) to write at offset.
2882  *
2883  *  Writes a byte or word to the NVM using the flash access registers.
2884  **/
2885 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2886                                    u16 *data)
2887 {
2888         struct e1000_nvm_info *nvm = &hw->nvm;
2889         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2890         u16 i;
2891
2892         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2893             (words == 0)) {
2894                 e_dbg("nvm parameter(s) out of bounds\n");
2895                 return -E1000_ERR_NVM;
2896         }
2897
2898         nvm->ops.acquire(hw);
2899
2900         for (i = 0; i < words; i++) {
2901                 dev_spec->shadow_ram[offset + i].modified = true;
2902                 dev_spec->shadow_ram[offset + i].value = data[i];
2903         }
2904
2905         nvm->ops.release(hw);
2906
2907         return 0;
2908 }
2909
2910 /**
2911  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2912  *  @hw: pointer to the HW structure
2913  *
2914  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2915  *  which writes the checksum to the shadow ram.  The changes in the shadow
2916  *  ram are then committed to the EEPROM by processing each bank at a time
2917  *  checking for the modified bit and writing only the pending changes.
2918  *  After a successful commit, the shadow ram is cleared and is ready for
2919  *  future writes.
2920  **/
2921 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2922 {
2923         struct e1000_nvm_info *nvm = &hw->nvm;
2924         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2925         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2926         s32 ret_val;
2927         u16 data;
2928
2929         ret_val = e1000e_update_nvm_checksum_generic(hw);
2930         if (ret_val)
2931                 goto out;
2932
2933         if (nvm->type != e1000_nvm_flash_sw)
2934                 goto out;
2935
2936         nvm->ops.acquire(hw);
2937
2938         /* We're writing to the opposite bank so if we're on bank 1,
2939          * write to bank 0 etc.  We also need to erase the segment that
2940          * is going to be written
2941          */
2942         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2943         if (ret_val) {
2944                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2945                 bank = 0;
2946         }
2947
2948         if (bank == 0) {
2949                 new_bank_offset = nvm->flash_bank_size;
2950                 old_bank_offset = 0;
2951                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2952                 if (ret_val)
2953                         goto release;
2954         } else {
2955                 old_bank_offset = nvm->flash_bank_size;
2956                 new_bank_offset = 0;
2957                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2958                 if (ret_val)
2959                         goto release;
2960         }
2961
2962         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2963                 /* Determine whether to write the value stored
2964                  * in the other NVM bank or a modified value stored
2965                  * in the shadow RAM
2966                  */
2967                 if (dev_spec->shadow_ram[i].modified) {
2968                         data = dev_spec->shadow_ram[i].value;
2969                 } else {
2970                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2971                                                                 old_bank_offset,
2972                                                                 &data);
2973                         if (ret_val)
2974                                 break;
2975                 }
2976
2977                 /* If the word is 0x13, then make sure the signature bits
2978                  * (15:14) are 11b until the commit has completed.
2979                  * This will allow us to write 10b which indicates the
2980                  * signature is valid.  We want to do this after the write
2981                  * has completed so that we don't mark the segment valid
2982                  * while the write is still in progress
2983                  */
2984                 if (i == E1000_ICH_NVM_SIG_WORD)
2985                         data |= E1000_ICH_NVM_SIG_MASK;
2986
2987                 /* Convert offset to bytes. */
2988                 act_offset = (i + new_bank_offset) << 1;
2989
2990                 usleep_range(100, 200);
2991                 /* Write the bytes to the new bank. */
2992                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2993                                                                act_offset,
2994                                                                (u8)data);
2995                 if (ret_val)
2996                         break;
2997
2998                 usleep_range(100, 200);
2999                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3000                                                                act_offset + 1,
3001                                                                (u8)(data >> 8));
3002                 if (ret_val)
3003                         break;
3004         }
3005
3006         /* Don't bother writing the segment valid bits if sector
3007          * programming failed.
3008          */
3009         if (ret_val) {
3010                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3011                 e_dbg("Flash commit failed.\n");
3012                 goto release;
3013         }
3014
3015         /* Finally validate the new segment by setting bit 15:14
3016          * to 10b in word 0x13 , this can be done without an
3017          * erase as well since these bits are 11 to start with
3018          * and we need to change bit 14 to 0b
3019          */
3020         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3021         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3022         if (ret_val)
3023                 goto release;
3024
3025         data &= 0xBFFF;
3026         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3027                                                        act_offset * 2 + 1,
3028                                                        (u8)(data >> 8));
3029         if (ret_val)
3030                 goto release;
3031
3032         /* And invalidate the previously valid segment by setting
3033          * its signature word (0x13) high_byte to 0b. This can be
3034          * done without an erase because flash erase sets all bits
3035          * to 1's. We can write 1's to 0's without an erase
3036          */
3037         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3038         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3039         if (ret_val)
3040                 goto release;
3041
3042         /* Great!  Everything worked, we can now clear the cached entries. */
3043         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3044                 dev_spec->shadow_ram[i].modified = false;
3045                 dev_spec->shadow_ram[i].value = 0xFFFF;
3046         }
3047
3048 release:
3049         nvm->ops.release(hw);
3050
3051         /* Reload the EEPROM, or else modifications will not appear
3052          * until after the next adapter reset.
3053          */
3054         if (!ret_val) {
3055                 nvm->ops.reload(hw);
3056                 usleep_range(10000, 20000);
3057         }
3058
3059 out:
3060         if (ret_val)
3061                 e_dbg("NVM update error: %d\n", ret_val);
3062
3063         return ret_val;
3064 }
3065
3066 /**
3067  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3068  *  @hw: pointer to the HW structure
3069  *
3070  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3071  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3072  *  calculated, in which case we need to calculate the checksum and set bit 6.
3073  **/
3074 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3075 {
3076         s32 ret_val;
3077         u16 data;
3078         u16 word;
3079         u16 valid_csum_mask;
3080
3081         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3082          * the checksum needs to be fixed.  This bit is an indication that
3083          * the NVM was prepared by OEM software and did not calculate
3084          * the checksum...a likely scenario.
3085          */
3086         switch (hw->mac.type) {
3087         case e1000_pch_lpt:
3088                 word = NVM_COMPAT;
3089                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3090                 break;
3091         default:
3092                 word = NVM_FUTURE_INIT_WORD1;
3093                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3094                 break;
3095         }
3096
3097         ret_val = e1000_read_nvm(hw, word, 1, &data);
3098         if (ret_val)
3099                 return ret_val;
3100
3101         if (!(data & valid_csum_mask)) {
3102                 data |= valid_csum_mask;
3103                 ret_val = e1000_write_nvm(hw, word, 1, &data);
3104                 if (ret_val)
3105                         return ret_val;
3106                 ret_val = e1000e_update_nvm_checksum(hw);
3107                 if (ret_val)
3108                         return ret_val;
3109         }
3110
3111         return e1000e_validate_nvm_checksum_generic(hw);
3112 }
3113
3114 /**
3115  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3116  *  @hw: pointer to the HW structure
3117  *
3118  *  To prevent malicious write/erase of the NVM, set it to be read-only
3119  *  so that the hardware ignores all write/erase cycles of the NVM via
3120  *  the flash control registers.  The shadow-ram copy of the NVM will
3121  *  still be updated, however any updates to this copy will not stick
3122  *  across driver reloads.
3123  **/
3124 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3125 {
3126         struct e1000_nvm_info *nvm = &hw->nvm;
3127         union ich8_flash_protected_range pr0;
3128         union ich8_hws_flash_status hsfsts;
3129         u32 gfpreg;
3130
3131         nvm->ops.acquire(hw);
3132
3133         gfpreg = er32flash(ICH_FLASH_GFPREG);
3134
3135         /* Write-protect GbE Sector of NVM */
3136         pr0.regval = er32flash(ICH_FLASH_PR0);
3137         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3138         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3139         pr0.range.wpe = true;
3140         ew32flash(ICH_FLASH_PR0, pr0.regval);
3141
3142         /* Lock down a subset of GbE Flash Control Registers, e.g.
3143          * PR0 to prevent the write-protection from being lifted.
3144          * Once FLOCKDN is set, the registers protected by it cannot
3145          * be written until FLOCKDN is cleared by a hardware reset.
3146          */
3147         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3148         hsfsts.hsf_status.flockdn = true;
3149         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3150
3151         nvm->ops.release(hw);
3152 }
3153
3154 /**
3155  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3156  *  @hw: pointer to the HW structure
3157  *  @offset: The offset (in bytes) of the byte/word to read.
3158  *  @size: Size of data to read, 1=byte 2=word
3159  *  @data: The byte(s) to write to the NVM.
3160  *
3161  *  Writes one/two bytes to the NVM using the flash access registers.
3162  **/
3163 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3164                                           u8 size, u16 data)
3165 {
3166         union ich8_hws_flash_status hsfsts;
3167         union ich8_hws_flash_ctrl hsflctl;
3168         u32 flash_linear_addr;
3169         u32 flash_data = 0;
3170         s32 ret_val;
3171         u8 count = 0;
3172
3173         if (size < 1 || size > 2 || data > size * 0xff ||
3174             offset > ICH_FLASH_LINEAR_ADDR_MASK)
3175                 return -E1000_ERR_NVM;
3176
3177         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3178                              hw->nvm.flash_base_addr);
3179
3180         do {
3181                 udelay(1);
3182                 /* Steps */
3183                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3184                 if (ret_val)
3185                         break;
3186
3187                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3188                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3189                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3190                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3191                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3192
3193                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3194
3195                 if (size == 1)
3196                         flash_data = (u32)data & 0x00FF;
3197                 else
3198                         flash_data = (u32)data;
3199
3200                 ew32flash(ICH_FLASH_FDATA0, flash_data);
3201
3202                 /* check if FCERR is set to 1 , if set to 1, clear it
3203                  * and try the whole sequence a few more times else done
3204                  */
3205                 ret_val =
3206                     e1000_flash_cycle_ich8lan(hw,
3207                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3208                 if (!ret_val)
3209                         break;
3210
3211                 /* If we're here, then things are most likely
3212                  * completely hosed, but if the error condition
3213                  * is detected, it won't hurt to give it another
3214                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3215                  */
3216                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3217                 if (hsfsts.hsf_status.flcerr)
3218                         /* Repeat for some time before giving up. */
3219                         continue;
3220                 if (!hsfsts.hsf_status.flcdone) {
3221                         e_dbg("Timeout error - flash cycle did not complete.\n");
3222                         break;
3223                 }
3224         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3225
3226         return ret_val;
3227 }
3228
3229 /**
3230  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3231  *  @hw: pointer to the HW structure
3232  *  @offset: The index of the byte to read.
3233  *  @data: The byte to write to the NVM.
3234  *
3235  *  Writes a single byte to the NVM using the flash access registers.
3236  **/
3237 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3238                                           u8 data)
3239 {
3240         u16 word = (u16)data;
3241
3242         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3243 }
3244
3245 /**
3246  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3247  *  @hw: pointer to the HW structure
3248  *  @offset: The offset of the byte to write.
3249  *  @byte: The byte to write to the NVM.
3250  *
3251  *  Writes a single byte to the NVM using the flash access registers.
3252  *  Goes through a retry algorithm before giving up.
3253  **/
3254 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3255                                                 u32 offset, u8 byte)
3256 {
3257         s32 ret_val;
3258         u16 program_retries;
3259
3260         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3261         if (!ret_val)
3262                 return ret_val;
3263
3264         for (program_retries = 0; program_retries < 100; program_retries++) {
3265                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3266                 usleep_range(100, 200);
3267                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3268                 if (!ret_val)
3269                         break;
3270         }
3271         if (program_retries == 100)
3272                 return -E1000_ERR_NVM;
3273
3274         return 0;
3275 }
3276
3277 /**
3278  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3279  *  @hw: pointer to the HW structure
3280  *  @bank: 0 for first bank, 1 for second bank, etc.
3281  *
3282  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3283  *  bank N is 4096 * N + flash_reg_addr.
3284  **/
3285 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3286 {
3287         struct e1000_nvm_info *nvm = &hw->nvm;
3288         union ich8_hws_flash_status hsfsts;
3289         union ich8_hws_flash_ctrl hsflctl;
3290         u32 flash_linear_addr;
3291         /* bank size is in 16bit words - adjust to bytes */
3292         u32 flash_bank_size = nvm->flash_bank_size * 2;
3293         s32 ret_val;
3294         s32 count = 0;
3295         s32 j, iteration, sector_size;
3296
3297         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3298
3299         /* Determine HW Sector size: Read BERASE bits of hw flash status
3300          * register
3301          * 00: The Hw sector is 256 bytes, hence we need to erase 16
3302          *     consecutive sectors.  The start index for the nth Hw sector
3303          *     can be calculated as = bank * 4096 + n * 256
3304          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3305          *     The start index for the nth Hw sector can be calculated
3306          *     as = bank * 4096
3307          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3308          *     (ich9 only, otherwise error condition)
3309          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3310          */
3311         switch (hsfsts.hsf_status.berasesz) {
3312         case 0:
3313                 /* Hw sector size 256 */
3314                 sector_size = ICH_FLASH_SEG_SIZE_256;
3315                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3316                 break;
3317         case 1:
3318                 sector_size = ICH_FLASH_SEG_SIZE_4K;
3319                 iteration = 1;
3320                 break;
3321         case 2:
3322                 sector_size = ICH_FLASH_SEG_SIZE_8K;
3323                 iteration = 1;
3324                 break;
3325         case 3:
3326                 sector_size = ICH_FLASH_SEG_SIZE_64K;
3327                 iteration = 1;
3328                 break;
3329         default:
3330                 return -E1000_ERR_NVM;
3331         }
3332
3333         /* Start with the base address, then add the sector offset. */
3334         flash_linear_addr = hw->nvm.flash_base_addr;
3335         flash_linear_addr += (bank) ? flash_bank_size : 0;
3336
3337         for (j = 0; j < iteration; j++) {
3338                 do {
3339                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3340
3341                         /* Steps */
3342                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
3343                         if (ret_val)
3344                                 return ret_val;
3345
3346                         /* Write a value 11 (block Erase) in Flash
3347                          * Cycle field in hw flash control
3348                          */
3349                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3350                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3351                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3352
3353                         /* Write the last 24 bits of an index within the
3354                          * block into Flash Linear address field in Flash
3355                          * Address.
3356                          */
3357                         flash_linear_addr += (j * sector_size);
3358                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3359
3360                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
3361                         if (!ret_val)
3362                                 break;
3363
3364                         /* Check if FCERR is set to 1.  If 1,
3365                          * clear it and try the whole sequence
3366                          * a few more times else Done
3367                          */
3368                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3369                         if (hsfsts.hsf_status.flcerr)
3370                                 /* repeat for some time before giving up */
3371                                 continue;
3372                         else if (!hsfsts.hsf_status.flcdone)
3373                                 return ret_val;
3374                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3375         }
3376
3377         return 0;
3378 }
3379
3380 /**
3381  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3382  *  @hw: pointer to the HW structure
3383  *  @data: Pointer to the LED settings
3384  *
3385  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3386  *  settings is all 0's or F's, set the LED default to a valid LED default
3387  *  setting.
3388  **/
3389 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3390 {
3391         s32 ret_val;
3392
3393         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3394         if (ret_val) {
3395                 e_dbg("NVM Read Error\n");
3396                 return ret_val;
3397         }
3398
3399         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
3400                 *data = ID_LED_DEFAULT_ICH8LAN;
3401
3402         return 0;
3403 }
3404
3405 /**
3406  *  e1000_id_led_init_pchlan - store LED configurations
3407  *  @hw: pointer to the HW structure
3408  *
3409  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3410  *  the PHY LED configuration register.
3411  *
3412  *  PCH also does not have an "always on" or "always off" mode which
3413  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3414  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3415  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3416  *  link based on logic in e1000_led_[on|off]_pchlan().
3417  **/
3418 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3419 {
3420         struct e1000_mac_info *mac = &hw->mac;
3421         s32 ret_val;
3422         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3423         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3424         u16 data, i, temp, shift;
3425
3426         /* Get default ID LED modes */
3427         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3428         if (ret_val)
3429                 return ret_val;
3430
3431         mac->ledctl_default = er32(LEDCTL);
3432         mac->ledctl_mode1 = mac->ledctl_default;
3433         mac->ledctl_mode2 = mac->ledctl_default;
3434
3435         for (i = 0; i < 4; i++) {
3436                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3437                 shift = (i * 5);
3438                 switch (temp) {
3439                 case ID_LED_ON1_DEF2:
3440                 case ID_LED_ON1_ON2:
3441                 case ID_LED_ON1_OFF2:
3442                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3443                         mac->ledctl_mode1 |= (ledctl_on << shift);
3444                         break;
3445                 case ID_LED_OFF1_DEF2:
3446                 case ID_LED_OFF1_ON2:
3447                 case ID_LED_OFF1_OFF2:
3448                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3449                         mac->ledctl_mode1 |= (ledctl_off << shift);
3450                         break;
3451                 default:
3452                         /* Do nothing */
3453                         break;
3454                 }
3455                 switch (temp) {
3456                 case ID_LED_DEF1_ON2:
3457                 case ID_LED_ON1_ON2:
3458                 case ID_LED_OFF1_ON2:
3459                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3460                         mac->ledctl_mode2 |= (ledctl_on << shift);
3461                         break;
3462                 case ID_LED_DEF1_OFF2:
3463                 case ID_LED_ON1_OFF2:
3464                 case ID_LED_OFF1_OFF2:
3465                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3466                         mac->ledctl_mode2 |= (ledctl_off << shift);
3467                         break;
3468                 default:
3469                         /* Do nothing */
3470                         break;
3471                 }
3472         }
3473
3474         return 0;
3475 }
3476
3477 /**
3478  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3479  *  @hw: pointer to the HW structure
3480  *
3481  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3482  *  register, so the the bus width is hard coded.
3483  **/
3484 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3485 {
3486         struct e1000_bus_info *bus = &hw->bus;
3487         s32 ret_val;
3488
3489         ret_val = e1000e_get_bus_info_pcie(hw);
3490
3491         /* ICH devices are "PCI Express"-ish.  They have
3492          * a configuration space, but do not contain
3493          * PCI Express Capability registers, so bus width
3494          * must be hardcoded.
3495          */
3496         if (bus->width == e1000_bus_width_unknown)
3497                 bus->width = e1000_bus_width_pcie_x1;
3498
3499         return ret_val;
3500 }
3501
3502 /**
3503  *  e1000_reset_hw_ich8lan - Reset the hardware
3504  *  @hw: pointer to the HW structure
3505  *
3506  *  Does a full reset of the hardware which includes a reset of the PHY and
3507  *  MAC.
3508  **/
3509 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3510 {
3511         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3512         u16 kum_cfg;
3513         u32 ctrl, reg;
3514         s32 ret_val;
3515
3516         /* Prevent the PCI-E bus from sticking if there is no TLP connection
3517          * on the last TLP read/write transaction when MAC is reset.
3518          */
3519         ret_val = e1000e_disable_pcie_master(hw);
3520         if (ret_val)
3521                 e_dbg("PCI-E Master disable polling has failed.\n");
3522
3523         e_dbg("Masking off all interrupts\n");
3524         ew32(IMC, 0xffffffff);
3525
3526         /* Disable the Transmit and Receive units.  Then delay to allow
3527          * any pending transactions to complete before we hit the MAC
3528          * with the global reset.
3529          */
3530         ew32(RCTL, 0);
3531         ew32(TCTL, E1000_TCTL_PSP);
3532         e1e_flush();
3533
3534         usleep_range(10000, 20000);
3535
3536         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3537         if (hw->mac.type == e1000_ich8lan) {
3538                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3539                 ew32(PBA, E1000_PBA_8K);
3540                 /* Set Packet Buffer Size to 16k. */
3541                 ew32(PBS, E1000_PBS_16K);
3542         }
3543
3544         if (hw->mac.type == e1000_pchlan) {
3545                 /* Save the NVM K1 bit setting */
3546                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3547                 if (ret_val)
3548                         return ret_val;
3549
3550                 if (kum_cfg & E1000_NVM_K1_ENABLE)
3551                         dev_spec->nvm_k1_enabled = true;
3552                 else
3553                         dev_spec->nvm_k1_enabled = false;
3554         }
3555
3556         ctrl = er32(CTRL);
3557
3558         if (!hw->phy.ops.check_reset_block(hw)) {
3559                 /* Full-chip reset requires MAC and PHY reset at the same
3560                  * time to make sure the interface between MAC and the
3561                  * external PHY is reset.
3562                  */
3563                 ctrl |= E1000_CTRL_PHY_RST;
3564
3565                 /* Gate automatic PHY configuration by hardware on
3566                  * non-managed 82579
3567                  */
3568                 if ((hw->mac.type == e1000_pch2lan) &&
3569                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3570                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3571         }
3572         ret_val = e1000_acquire_swflag_ich8lan(hw);
3573         e_dbg("Issuing a global reset to ich8lan\n");
3574         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3575         /* cannot issue a flush here because it hangs the hardware */
3576         msleep(20);
3577
3578         /* Set Phy Config Counter to 50msec */
3579         if (hw->mac.type == e1000_pch2lan) {
3580                 reg = er32(FEXTNVM3);
3581                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3582                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3583                 ew32(FEXTNVM3, reg);
3584         }
3585
3586         if (!ret_val)
3587                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3588
3589         if (ctrl & E1000_CTRL_PHY_RST) {
3590                 ret_val = hw->phy.ops.get_cfg_done(hw);
3591                 if (ret_val)
3592                         return ret_val;
3593
3594                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3595                 if (ret_val)
3596                         return ret_val;
3597         }
3598
3599         /* For PCH, this write will make sure that any noise
3600          * will be detected as a CRC error and be dropped rather than show up
3601          * as a bad packet to the DMA engine.
3602          */
3603         if (hw->mac.type == e1000_pchlan)
3604                 ew32(CRC_OFFSET, 0x65656565);
3605
3606         ew32(IMC, 0xffffffff);
3607         er32(ICR);
3608
3609         reg = er32(KABGTXD);
3610         reg |= E1000_KABGTXD_BGSQLBIAS;
3611         ew32(KABGTXD, reg);
3612
3613         return 0;
3614 }
3615
3616 /**
3617  *  e1000_init_hw_ich8lan - Initialize the hardware
3618  *  @hw: pointer to the HW structure
3619  *
3620  *  Prepares the hardware for transmit and receive by doing the following:
3621  *   - initialize hardware bits
3622  *   - initialize LED identification
3623  *   - setup receive address registers
3624  *   - setup flow control
3625  *   - setup transmit descriptors
3626  *   - clear statistics
3627  **/
3628 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3629 {
3630         struct e1000_mac_info *mac = &hw->mac;
3631         u32 ctrl_ext, txdctl, snoop;
3632         s32 ret_val;
3633         u16 i;
3634
3635         e1000_initialize_hw_bits_ich8lan(hw);
3636
3637         /* Initialize identification LED */
3638         ret_val = mac->ops.id_led_init(hw);
3639         /* An error is not fatal and we should not stop init due to this */
3640         if (ret_val)
3641                 e_dbg("Error initializing identification LED\n");
3642
3643         /* Setup the receive address. */
3644         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3645
3646         /* Zero out the Multicast HASH table */
3647         e_dbg("Zeroing the MTA\n");
3648         for (i = 0; i < mac->mta_reg_count; i++)
3649                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3650
3651         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
3652          * the ME.  Disable wakeup by clearing the host wakeup bit.
3653          * Reset the phy after disabling host wakeup to reset the Rx buffer.
3654          */
3655         if (hw->phy.type == e1000_phy_82578) {
3656                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3657                 i &= ~BM_WUC_HOST_WU_BIT;
3658                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3659                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3660                 if (ret_val)
3661                         return ret_val;
3662         }
3663
3664         /* Setup link and flow control */
3665         ret_val = mac->ops.setup_link(hw);
3666
3667         /* Set the transmit descriptor write-back policy for both queues */
3668         txdctl = er32(TXDCTL(0));
3669         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
3670                   E1000_TXDCTL_FULL_TX_DESC_WB);
3671         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
3672                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
3673         ew32(TXDCTL(0), txdctl);
3674         txdctl = er32(TXDCTL(1));
3675         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
3676                   E1000_TXDCTL_FULL_TX_DESC_WB);
3677         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
3678                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
3679         ew32(TXDCTL(1), txdctl);
3680
3681         /* ICH8 has opposite polarity of no_snoop bits.
3682          * By default, we should use snoop behavior.
3683          */
3684         if (mac->type == e1000_ich8lan)
3685                 snoop = PCIE_ICH8_SNOOP_ALL;
3686         else
3687                 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
3688         e1000e_set_pcie_no_snoop(hw, snoop);
3689
3690         ctrl_ext = er32(CTRL_EXT);
3691         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3692         ew32(CTRL_EXT, ctrl_ext);
3693
3694         /* Clear all of the statistics registers (clear on read).  It is
3695          * important that we do this after we have tried to establish link
3696          * because the symbol error count will increment wildly if there
3697          * is no link.
3698          */
3699         e1000_clear_hw_cntrs_ich8lan(hw);
3700
3701         return ret_val;
3702 }
3703
3704 /**
3705  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3706  *  @hw: pointer to the HW structure
3707  *
3708  *  Sets/Clears required hardware bits necessary for correctly setting up the
3709  *  hardware for transmit and receive.
3710  **/
3711 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3712 {
3713         u32 reg;
3714
3715         /* Extended Device Control */
3716         reg = er32(CTRL_EXT);
3717         reg |= (1 << 22);
3718         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3719         if (hw->mac.type >= e1000_pchlan)
3720                 reg |= E1000_CTRL_EXT_PHYPDEN;
3721         ew32(CTRL_EXT, reg);
3722
3723         /* Transmit Descriptor Control 0 */
3724         reg = er32(TXDCTL(0));
3725         reg |= (1 << 22);
3726         ew32(TXDCTL(0), reg);
3727
3728         /* Transmit Descriptor Control 1 */
3729         reg = er32(TXDCTL(1));
3730         reg |= (1 << 22);
3731         ew32(TXDCTL(1), reg);
3732
3733         /* Transmit Arbitration Control 0 */
3734         reg = er32(TARC(0));
3735         if (hw->mac.type == e1000_ich8lan)
3736                 reg |= (1 << 28) | (1 << 29);
3737         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3738         ew32(TARC(0), reg);
3739
3740         /* Transmit Arbitration Control 1 */
3741         reg = er32(TARC(1));
3742         if (er32(TCTL) & E1000_TCTL_MULR)
3743                 reg &= ~(1 << 28);
3744         else
3745                 reg |= (1 << 28);
3746         reg |= (1 << 24) | (1 << 26) | (1 << 30);
3747         ew32(TARC(1), reg);
3748
3749         /* Device Status */
3750         if (hw->mac.type == e1000_ich8lan) {
3751                 reg = er32(STATUS);
3752                 reg &= ~(1 << 31);
3753                 ew32(STATUS, reg);
3754         }
3755
3756         /* work-around descriptor data corruption issue during nfs v2 udp
3757          * traffic, just disable the nfs filtering capability
3758          */
3759         reg = er32(RFCTL);
3760         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3761
3762         /* Disable IPv6 extension header parsing because some malformed
3763          * IPv6 headers can hang the Rx.
3764          */
3765         if (hw->mac.type == e1000_ich8lan)
3766                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3767         ew32(RFCTL, reg);
3768
3769         /* Enable ECC on Lynxpoint */
3770         if (hw->mac.type == e1000_pch_lpt) {
3771                 reg = er32(PBECCSTS);
3772                 reg |= E1000_PBECCSTS_ECC_ENABLE;
3773                 ew32(PBECCSTS, reg);
3774
3775                 reg = er32(CTRL);
3776                 reg |= E1000_CTRL_MEHE;
3777                 ew32(CTRL, reg);
3778         }
3779 }
3780
3781 /**
3782  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3783  *  @hw: pointer to the HW structure
3784  *
3785  *  Determines which flow control settings to use, then configures flow
3786  *  control.  Calls the appropriate media-specific link configuration
3787  *  function.  Assuming the adapter has a valid link partner, a valid link
3788  *  should be established.  Assumes the hardware has previously been reset
3789  *  and the transmitter and receiver are not enabled.
3790  **/
3791 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3792 {
3793         s32 ret_val;
3794
3795         if (hw->phy.ops.check_reset_block(hw))
3796                 return 0;
3797
3798         /* ICH parts do not have a word in the NVM to determine
3799          * the default flow control setting, so we explicitly
3800          * set it to full.
3801          */
3802         if (hw->fc.requested_mode == e1000_fc_default) {
3803                 /* Workaround h/w hang when Tx flow control enabled */
3804                 if (hw->mac.type == e1000_pchlan)
3805                         hw->fc.requested_mode = e1000_fc_rx_pause;
3806                 else
3807                         hw->fc.requested_mode = e1000_fc_full;
3808         }
3809
3810         /* Save off the requested flow control mode for use later.  Depending
3811          * on the link partner's capabilities, we may or may not use this mode.
3812          */
3813         hw->fc.current_mode = hw->fc.requested_mode;
3814
3815         e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
3816
3817         /* Continue to configure the copper link. */
3818         ret_val = hw->mac.ops.setup_physical_interface(hw);
3819         if (ret_val)
3820                 return ret_val;
3821
3822         ew32(FCTTV, hw->fc.pause_time);
3823         if ((hw->phy.type == e1000_phy_82578) ||
3824             (hw->phy.type == e1000_phy_82579) ||
3825             (hw->phy.type == e1000_phy_i217) ||
3826             (hw->phy.type == e1000_phy_82577)) {
3827                 ew32(FCRTV_PCH, hw->fc.refresh_time);
3828
3829                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3830                                    hw->fc.pause_time);
3831                 if (ret_val)
3832                         return ret_val;
3833         }
3834
3835         return e1000e_set_fc_watermarks(hw);
3836 }
3837
3838 /**
3839  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3840  *  @hw: pointer to the HW structure
3841  *
3842  *  Configures the kumeran interface to the PHY to wait the appropriate time
3843  *  when polling the PHY, then call the generic setup_copper_link to finish
3844  *  configuring the copper link.
3845  **/
3846 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3847 {
3848         u32 ctrl;
3849         s32 ret_val;
3850         u16 reg_data;
3851
3852         ctrl = er32(CTRL);
3853         ctrl |= E1000_CTRL_SLU;
3854         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3855         ew32(CTRL, ctrl);
3856
3857         /* Set the mac to wait the maximum time between each iteration
3858          * and increase the max iterations when polling the phy;
3859          * this fixes erroneous timeouts at 10Mbps.
3860          */
3861         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3862         if (ret_val)
3863                 return ret_val;
3864         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3865                                        &reg_data);
3866         if (ret_val)
3867                 return ret_val;
3868         reg_data |= 0x3F;
3869         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3870                                         reg_data);
3871         if (ret_val)
3872                 return ret_val;
3873
3874         switch (hw->phy.type) {
3875         case e1000_phy_igp_3:
3876                 ret_val = e1000e_copper_link_setup_igp(hw);
3877                 if (ret_val)
3878                         return ret_val;
3879                 break;
3880         case e1000_phy_bm:
3881         case e1000_phy_82578:
3882                 ret_val = e1000e_copper_link_setup_m88(hw);
3883                 if (ret_val)
3884                         return ret_val;
3885                 break;
3886         case e1000_phy_82577:
3887         case e1000_phy_82579:
3888                 ret_val = e1000_copper_link_setup_82577(hw);
3889                 if (ret_val)
3890                         return ret_val;
3891                 break;
3892         case e1000_phy_ife:
3893                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3894                 if (ret_val)
3895                         return ret_val;
3896
3897                 reg_data &= ~IFE_PMC_AUTO_MDIX;
3898
3899                 switch (hw->phy.mdix) {
3900                 case 1:
3901                         reg_data &= ~IFE_PMC_FORCE_MDIX;
3902                         break;
3903                 case 2:
3904                         reg_data |= IFE_PMC_FORCE_MDIX;
3905                         break;
3906                 case 0:
3907                 default:
3908                         reg_data |= IFE_PMC_AUTO_MDIX;
3909                         break;
3910                 }
3911                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3912                 if (ret_val)
3913                         return ret_val;
3914                 break;
3915         default:
3916                 break;
3917         }
3918
3919         return e1000e_setup_copper_link(hw);
3920 }
3921
3922 /**
3923  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
3924  *  @hw: pointer to the HW structure
3925  *
3926  *  Calls the PHY specific link setup function and then calls the
3927  *  generic setup_copper_link to finish configuring the link for
3928  *  Lynxpoint PCH devices
3929  **/
3930 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
3931 {
3932         u32 ctrl;
3933         s32 ret_val;
3934
3935         ctrl = er32(CTRL);
3936         ctrl |= E1000_CTRL_SLU;
3937         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3938         ew32(CTRL, ctrl);
3939
3940         ret_val = e1000_copper_link_setup_82577(hw);
3941         if (ret_val)
3942                 return ret_val;
3943
3944         return e1000e_setup_copper_link(hw);
3945 }
3946
3947 /**
3948  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3949  *  @hw: pointer to the HW structure
3950  *  @speed: pointer to store current link speed
3951  *  @duplex: pointer to store the current link duplex
3952  *
3953  *  Calls the generic get_speed_and_duplex to retrieve the current link
3954  *  information and then calls the Kumeran lock loss workaround for links at
3955  *  gigabit speeds.
3956  **/
3957 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3958                                           u16 *duplex)
3959 {
3960         s32 ret_val;
3961
3962         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3963         if (ret_val)
3964                 return ret_val;
3965
3966         if ((hw->mac.type == e1000_ich8lan) &&
3967             (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3968                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3969         }
3970
3971         return ret_val;
3972 }
3973
3974 /**
3975  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3976  *  @hw: pointer to the HW structure
3977  *
3978  *  Work-around for 82566 Kumeran PCS lock loss:
3979  *  On link status change (i.e. PCI reset, speed change) and link is up and
3980  *  speed is gigabit-
3981  *    0) if workaround is optionally disabled do nothing
3982  *    1) wait 1ms for Kumeran link to come up
3983  *    2) check Kumeran Diagnostic register PCS lock loss bit
3984  *    3) if not set the link is locked (all is good), otherwise...
3985  *    4) reset the PHY
3986  *    5) repeat up to 10 times
3987  *  Note: this is only called for IGP3 copper when speed is 1gb.
3988  **/
3989 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3990 {
3991         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3992         u32 phy_ctrl;
3993         s32 ret_val;
3994         u16 i, data;
3995         bool link;
3996
3997         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3998                 return 0;
3999
4000         /* Make sure link is up before proceeding.  If not just return.
4001          * Attempting this while link is negotiating fouled up link
4002          * stability
4003          */
4004         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
4005         if (!link)
4006                 return 0;
4007
4008         for (i = 0; i < 10; i++) {
4009                 /* read once to clear */
4010                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4011                 if (ret_val)
4012                         return ret_val;
4013                 /* and again to get new status */
4014                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4015                 if (ret_val)
4016                         return ret_val;
4017
4018                 /* check for PCS lock */
4019                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4020                         return 0;
4021
4022                 /* Issue PHY reset */
4023                 e1000_phy_hw_reset(hw);
4024                 mdelay(5);
4025         }
4026         /* Disable GigE link negotiation */
4027         phy_ctrl = er32(PHY_CTRL);
4028         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4029                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4030         ew32(PHY_CTRL, phy_ctrl);
4031
4032         /* Call gig speed drop workaround on Gig disable before accessing
4033          * any PHY registers
4034          */
4035         e1000e_gig_downshift_workaround_ich8lan(hw);
4036
4037         /* unable to acquire PCS lock */
4038         return -E1000_ERR_PHY;
4039 }
4040
4041 /**
4042  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4043  *  @hw: pointer to the HW structure
4044  *  @state: boolean value used to set the current Kumeran workaround state
4045  *
4046  *  If ICH8, set the current Kumeran workaround state (enabled - true
4047  *  /disabled - false).
4048  **/
4049 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4050                                                   bool state)
4051 {
4052         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4053
4054         if (hw->mac.type != e1000_ich8lan) {
4055                 e_dbg("Workaround applies to ICH8 only.\n");
4056                 return;
4057         }
4058
4059         dev_spec->kmrn_lock_loss_workaround_enabled = state;
4060 }
4061
4062 /**
4063  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4064  *  @hw: pointer to the HW structure
4065  *
4066  *  Workaround for 82566 power-down on D3 entry:
4067  *    1) disable gigabit link
4068  *    2) write VR power-down enable
4069  *    3) read it back
4070  *  Continue if successful, else issue LCD reset and repeat
4071  **/
4072 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4073 {
4074         u32 reg;
4075         u16 data;
4076         u8  retry = 0;
4077
4078         if (hw->phy.type != e1000_phy_igp_3)
4079                 return;
4080
4081         /* Try the workaround twice (if needed) */
4082         do {
4083                 /* Disable link */
4084                 reg = er32(PHY_CTRL);
4085                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4086                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4087                 ew32(PHY_CTRL, reg);
4088
4089                 /* Call gig speed drop workaround on Gig disable before
4090                  * accessing any PHY registers
4091                  */
4092                 if (hw->mac.type == e1000_ich8lan)
4093                         e1000e_gig_downshift_workaround_ich8lan(hw);
4094
4095                 /* Write VR power-down enable */
4096                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
4097                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4098                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4099
4100                 /* Read it back and test */
4101                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
4102                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4103                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4104                         break;
4105
4106                 /* Issue PHY reset and repeat at most one more time */
4107                 reg = er32(CTRL);
4108                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4109                 retry++;
4110         } while (retry);
4111 }
4112
4113 /**
4114  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4115  *  @hw: pointer to the HW structure
4116  *
4117  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4118  *  LPLU, Gig disable, MDIC PHY reset):
4119  *    1) Set Kumeran Near-end loopback
4120  *    2) Clear Kumeran Near-end loopback
4121  *  Should only be called for ICH8[m] devices with any 1G Phy.
4122  **/
4123 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4124 {
4125         s32 ret_val;
4126         u16 reg_data;
4127
4128         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4129                 return;
4130
4131         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4132                                        &reg_data);
4133         if (ret_val)
4134                 return;
4135         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4136         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4137                                         reg_data);
4138         if (ret_val)
4139                 return;
4140         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4141         e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
4142 }
4143
4144 /**
4145  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4146  *  @hw: pointer to the HW structure
4147  *
4148  *  During S0 to Sx transition, it is possible the link remains at gig
4149  *  instead of negotiating to a lower speed.  Before going to Sx, set
4150  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4151  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4152  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4153  *  needs to be written.
4154  *  Parts that support (and are linked to a partner which support) EEE in
4155  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4156  *  than 10Mbps w/o EEE.
4157  **/
4158 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4159 {
4160         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4161         u32 phy_ctrl;
4162         s32 ret_val;
4163
4164         phy_ctrl = er32(PHY_CTRL);
4165         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4166
4167         if (hw->phy.type == e1000_phy_i217) {
4168                 u16 phy_reg, device_id = hw->adapter->pdev->device;
4169
4170                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4171                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
4172                         u32 fextnvm6 = er32(FEXTNVM6);
4173
4174                         ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4175                 }
4176
4177                 ret_val = hw->phy.ops.acquire(hw);
4178                 if (ret_val)
4179                         goto out;
4180
4181                 if (!dev_spec->eee_disable) {
4182                         u16 eee_advert;
4183
4184                         ret_val =
4185                             e1000_read_emi_reg_locked(hw,
4186                                                       I217_EEE_ADVERTISEMENT,
4187                                                       &eee_advert);
4188                         if (ret_val)
4189                                 goto release;
4190
4191                         /* Disable LPLU if both link partners support 100BaseT
4192                          * EEE and 100Full is advertised on both ends of the
4193                          * link.
4194                          */
4195                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4196                             (dev_spec->eee_lp_ability &
4197                              I82579_EEE_100_SUPPORTED) &&
4198                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4199                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4200                                               E1000_PHY_CTRL_NOND0A_LPLU);
4201                 }
4202
4203                 /* For i217 Intel Rapid Start Technology support,
4204                  * when the system is going into Sx and no manageability engine
4205                  * is present, the driver must configure proxy to reset only on
4206                  * power good.  LPI (Low Power Idle) state must also reset only
4207                  * on power good, as well as the MTA (Multicast table array).
4208                  * The SMBus release must also be disabled on LCD reset.
4209                  */
4210                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4211                         /* Enable proxy to reset only on power good. */
4212                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4213                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4214                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4215
4216                         /* Set bit enable LPI (EEE) to reset only on
4217                          * power good.
4218                          */
4219                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4220                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4221                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4222
4223                         /* Disable the SMB release on LCD reset. */
4224                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4225                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4226                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4227                 }
4228
4229                 /* Enable MTA to reset for Intel Rapid Start Technology
4230                  * Support
4231                  */
4232                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4233                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4234                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4235
4236 release:
4237                 hw->phy.ops.release(hw);
4238         }
4239 out:
4240         ew32(PHY_CTRL, phy_ctrl);
4241
4242         if (hw->mac.type == e1000_ich8lan)
4243                 e1000e_gig_downshift_workaround_ich8lan(hw);
4244
4245         if (hw->mac.type >= e1000_pchlan) {
4246                 e1000_oem_bits_config_ich8lan(hw, false);
4247
4248                 /* Reset PHY to activate OEM bits on 82577/8 */
4249                 if (hw->mac.type == e1000_pchlan)
4250                         e1000e_phy_hw_reset_generic(hw);
4251
4252                 ret_val = hw->phy.ops.acquire(hw);
4253                 if (ret_val)
4254                         return;
4255                 e1000_write_smbus_addr(hw);
4256                 hw->phy.ops.release(hw);
4257         }
4258 }
4259
4260 /**
4261  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4262  *  @hw: pointer to the HW structure
4263  *
4264  *  During Sx to S0 transitions on non-managed devices or managed devices
4265  *  on which PHY resets are not blocked, if the PHY registers cannot be
4266  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4267  *  the PHY.
4268  *  On i217, setup Intel Rapid Start Technology.
4269  **/
4270 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4271 {
4272         s32 ret_val;
4273
4274         if (hw->mac.type < e1000_pch2lan)
4275                 return;
4276
4277         ret_val = e1000_init_phy_workarounds_pchlan(hw);
4278         if (ret_val) {
4279                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4280                 return;
4281         }
4282
4283         /* For i217 Intel Rapid Start Technology support when the system
4284          * is transitioning from Sx and no manageability engine is present
4285          * configure SMBus to restore on reset, disable proxy, and enable
4286          * the reset on MTA (Multicast table array).
4287          */
4288         if (hw->phy.type == e1000_phy_i217) {
4289                 u16 phy_reg;
4290
4291                 ret_val = hw->phy.ops.acquire(hw);
4292                 if (ret_val) {
4293                         e_dbg("Failed to setup iRST\n");
4294                         return;
4295                 }
4296
4297                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4298                         /* Restore clear on SMB if no manageability engine
4299                          * is present
4300                          */
4301                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4302                         if (ret_val)
4303                                 goto release;
4304                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4305                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4306
4307                         /* Disable Proxy */
4308                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4309                 }
4310                 /* Enable reset on MTA */
4311                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4312                 if (ret_val)
4313                         goto release;
4314                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4315                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4316 release:
4317                 if (ret_val)
4318                         e_dbg("Error %d in resume workarounds\n", ret_val);
4319                 hw->phy.ops.release(hw);
4320         }
4321 }
4322
4323 /**
4324  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4325  *  @hw: pointer to the HW structure
4326  *
4327  *  Return the LED back to the default configuration.
4328  **/
4329 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4330 {
4331         if (hw->phy.type == e1000_phy_ife)
4332                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4333
4334         ew32(LEDCTL, hw->mac.ledctl_default);
4335         return 0;
4336 }
4337
4338 /**
4339  *  e1000_led_on_ich8lan - Turn LEDs on
4340  *  @hw: pointer to the HW structure
4341  *
4342  *  Turn on the LEDs.
4343  **/
4344 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4345 {
4346         if (hw->phy.type == e1000_phy_ife)
4347                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4348                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4349
4350         ew32(LEDCTL, hw->mac.ledctl_mode2);
4351         return 0;
4352 }
4353
4354 /**
4355  *  e1000_led_off_ich8lan - Turn LEDs off
4356  *  @hw: pointer to the HW structure
4357  *
4358  *  Turn off the LEDs.
4359  **/
4360 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4361 {
4362         if (hw->phy.type == e1000_phy_ife)
4363                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4364                                 (IFE_PSCL_PROBE_MODE |
4365                                  IFE_PSCL_PROBE_LEDS_OFF));
4366
4367         ew32(LEDCTL, hw->mac.ledctl_mode1);
4368         return 0;
4369 }
4370
4371 /**
4372  *  e1000_setup_led_pchlan - Configures SW controllable LED
4373  *  @hw: pointer to the HW structure
4374  *
4375  *  This prepares the SW controllable LED for use.
4376  **/
4377 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4378 {
4379         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4380 }
4381
4382 /**
4383  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4384  *  @hw: pointer to the HW structure
4385  *
4386  *  Return the LED back to the default configuration.
4387  **/
4388 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4389 {
4390         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4391 }
4392
4393 /**
4394  *  e1000_led_on_pchlan - Turn LEDs on
4395  *  @hw: pointer to the HW structure
4396  *
4397  *  Turn on the LEDs.
4398  **/
4399 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4400 {
4401         u16 data = (u16)hw->mac.ledctl_mode2;
4402         u32 i, led;
4403
4404         /* If no link, then turn LED on by setting the invert bit
4405          * for each LED that's mode is "link_up" in ledctl_mode2.
4406          */
4407         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4408                 for (i = 0; i < 3; i++) {
4409                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4410                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4411                             E1000_LEDCTL_MODE_LINK_UP)
4412                                 continue;
4413                         if (led & E1000_PHY_LED0_IVRT)
4414                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4415                         else
4416                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4417                 }
4418         }
4419
4420         return e1e_wphy(hw, HV_LED_CONFIG, data);
4421 }
4422
4423 /**
4424  *  e1000_led_off_pchlan - Turn LEDs off
4425  *  @hw: pointer to the HW structure
4426  *
4427  *  Turn off the LEDs.
4428  **/
4429 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4430 {
4431         u16 data = (u16)hw->mac.ledctl_mode1;
4432         u32 i, led;
4433
4434         /* If no link, then turn LED off by clearing the invert bit
4435          * for each LED that's mode is "link_up" in ledctl_mode1.
4436          */
4437         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4438                 for (i = 0; i < 3; i++) {
4439                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4440                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4441                             E1000_LEDCTL_MODE_LINK_UP)
4442                                 continue;
4443                         if (led & E1000_PHY_LED0_IVRT)
4444                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4445                         else
4446                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4447                 }
4448         }
4449
4450         return e1e_wphy(hw, HV_LED_CONFIG, data);
4451 }
4452
4453 /**
4454  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4455  *  @hw: pointer to the HW structure
4456  *
4457  *  Read appropriate register for the config done bit for completion status
4458  *  and configure the PHY through s/w for EEPROM-less parts.
4459  *
4460  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4461  *  config done bit, so only an error is logged and continues.  If we were
4462  *  to return with error, EEPROM-less silicon would not be able to be reset
4463  *  or change link.
4464  **/
4465 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4466 {
4467         s32 ret_val = 0;
4468         u32 bank = 0;
4469         u32 status;
4470
4471         e1000e_get_cfg_done_generic(hw);
4472
4473         /* Wait for indication from h/w that it has completed basic config */
4474         if (hw->mac.type >= e1000_ich10lan) {
4475                 e1000_lan_init_done_ich8lan(hw);
4476         } else {
4477                 ret_val = e1000e_get_auto_rd_done(hw);
4478                 if (ret_val) {
4479                         /* When auto config read does not complete, do not
4480                          * return with an error. This can happen in situations
4481                          * where there is no eeprom and prevents getting link.
4482                          */
4483                         e_dbg("Auto Read Done did not complete\n");
4484                         ret_val = 0;
4485                 }
4486         }
4487
4488         /* Clear PHY Reset Asserted bit */
4489         status = er32(STATUS);
4490         if (status & E1000_STATUS_PHYRA)
4491                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4492         else
4493                 e_dbg("PHY Reset Asserted not set - needs delay\n");
4494
4495         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
4496         if (hw->mac.type <= e1000_ich9lan) {
4497                 if (!(er32(EECD) & E1000_EECD_PRES) &&
4498                     (hw->phy.type == e1000_phy_igp_3)) {
4499                         e1000e_phy_init_script_igp3(hw);
4500                 }
4501         } else {
4502                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4503                         /* Maybe we should do a basic PHY config */
4504                         e_dbg("EEPROM not present\n");
4505                         ret_val = -E1000_ERR_CONFIG;
4506                 }
4507         }
4508
4509         return ret_val;
4510 }
4511
4512 /**
4513  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4514  * @hw: pointer to the HW structure
4515  *
4516  * In the case of a PHY power down to save power, or to turn off link during a
4517  * driver unload, or wake on lan is not enabled, remove the link.
4518  **/
4519 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4520 {
4521         /* If the management interface is not enabled, then power down */
4522         if (!(hw->mac.ops.check_mng_mode(hw) ||
4523               hw->phy.ops.check_reset_block(hw)))
4524                 e1000_power_down_phy_copper(hw);
4525 }
4526
4527 /**
4528  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4529  *  @hw: pointer to the HW structure
4530  *
4531  *  Clears hardware counters specific to the silicon family and calls
4532  *  clear_hw_cntrs_generic to clear all general purpose counters.
4533  **/
4534 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4535 {
4536         u16 phy_data;
4537         s32 ret_val;
4538
4539         e1000e_clear_hw_cntrs_base(hw);
4540
4541         er32(ALGNERRC);
4542         er32(RXERRC);
4543         er32(TNCRS);
4544         er32(CEXTERR);
4545         er32(TSCTC);
4546         er32(TSCTFC);
4547
4548         er32(MGTPRC);
4549         er32(MGTPDC);
4550         er32(MGTPTC);
4551
4552         er32(IAC);
4553         er32(ICRXOC);
4554
4555         /* Clear PHY statistics registers */
4556         if ((hw->phy.type == e1000_phy_82578) ||
4557             (hw->phy.type == e1000_phy_82579) ||
4558             (hw->phy.type == e1000_phy_i217) ||
4559             (hw->phy.type == e1000_phy_82577)) {
4560                 ret_val = hw->phy.ops.acquire(hw);
4561                 if (ret_val)
4562                         return;
4563                 ret_val = hw->phy.ops.set_page(hw,
4564                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4565                 if (ret_val)
4566                         goto release;
4567                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4568                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4569                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4570                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4571                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4572                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4573                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4574                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4575                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4576                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4577                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4578                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4579                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4580                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4581 release:
4582                 hw->phy.ops.release(hw);
4583         }
4584 }
4585
4586 static const struct e1000_mac_operations ich8_mac_ops = {
4587         /* check_mng_mode dependent on mac type */
4588         .check_for_link         = e1000_check_for_copper_link_ich8lan,
4589         /* cleanup_led dependent on mac type */
4590         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
4591         .get_bus_info           = e1000_get_bus_info_ich8lan,
4592         .set_lan_id             = e1000_set_lan_id_single_port,
4593         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
4594         /* led_on dependent on mac type */
4595         /* led_off dependent on mac type */
4596         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
4597         .reset_hw               = e1000_reset_hw_ich8lan,
4598         .init_hw                = e1000_init_hw_ich8lan,
4599         .setup_link             = e1000_setup_link_ich8lan,
4600         .setup_physical_interface = e1000_setup_copper_link_ich8lan,
4601         /* id_led_init dependent on mac type */
4602         .config_collision_dist  = e1000e_config_collision_dist_generic,
4603         .rar_set                = e1000e_rar_set_generic,
4604 };
4605
4606 static const struct e1000_phy_operations ich8_phy_ops = {
4607         .acquire                = e1000_acquire_swflag_ich8lan,
4608         .check_reset_block      = e1000_check_reset_block_ich8lan,
4609         .commit                 = NULL,
4610         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
4611         .get_cable_length       = e1000e_get_cable_length_igp_2,
4612         .read_reg               = e1000e_read_phy_reg_igp,
4613         .release                = e1000_release_swflag_ich8lan,
4614         .reset                  = e1000_phy_hw_reset_ich8lan,
4615         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
4616         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
4617         .write_reg              = e1000e_write_phy_reg_igp,
4618 };
4619
4620 static const struct e1000_nvm_operations ich8_nvm_ops = {
4621         .acquire                = e1000_acquire_nvm_ich8lan,
4622         .read                   = e1000_read_nvm_ich8lan,
4623         .release                = e1000_release_nvm_ich8lan,
4624         .reload                 = e1000e_reload_nvm_generic,
4625         .update                 = e1000_update_nvm_checksum_ich8lan,
4626         .valid_led_default      = e1000_valid_led_default_ich8lan,
4627         .validate               = e1000_validate_nvm_checksum_ich8lan,
4628         .write                  = e1000_write_nvm_ich8lan,
4629 };
4630
4631 const struct e1000_info e1000_ich8_info = {
4632         .mac                    = e1000_ich8lan,
4633         .flags                  = FLAG_HAS_WOL
4634                                   | FLAG_IS_ICH
4635                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4636                                   | FLAG_HAS_AMT
4637                                   | FLAG_HAS_FLASH
4638                                   | FLAG_APME_IN_WUC,
4639         .pba                    = 8,
4640         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
4641         .get_variants           = e1000_get_variants_ich8lan,
4642         .mac_ops                = &ich8_mac_ops,
4643         .phy_ops                = &ich8_phy_ops,
4644         .nvm_ops                = &ich8_nvm_ops,
4645 };
4646
4647 const struct e1000_info e1000_ich9_info = {
4648         .mac                    = e1000_ich9lan,
4649         .flags                  = FLAG_HAS_JUMBO_FRAMES
4650                                   | FLAG_IS_ICH
4651                                   | FLAG_HAS_WOL
4652                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4653                                   | FLAG_HAS_AMT
4654                                   | FLAG_HAS_FLASH
4655                                   | FLAG_APME_IN_WUC,
4656         .pba                    = 18,
4657         .max_hw_frame_size      = DEFAULT_JUMBO,
4658         .get_variants           = e1000_get_variants_ich8lan,
4659         .mac_ops                = &ich8_mac_ops,
4660         .phy_ops                = &ich8_phy_ops,
4661         .nvm_ops                = &ich8_nvm_ops,
4662 };
4663
4664 const struct e1000_info e1000_ich10_info = {
4665         .mac                    = e1000_ich10lan,
4666         .flags                  = FLAG_HAS_JUMBO_FRAMES
4667                                   | FLAG_IS_ICH
4668                                   | FLAG_HAS_WOL
4669                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4670                                   | FLAG_HAS_AMT
4671                                   | FLAG_HAS_FLASH
4672                                   | FLAG_APME_IN_WUC,
4673         .pba                    = 18,
4674         .max_hw_frame_size      = DEFAULT_JUMBO,
4675         .get_variants           = e1000_get_variants_ich8lan,
4676         .mac_ops                = &ich8_mac_ops,
4677         .phy_ops                = &ich8_phy_ops,
4678         .nvm_ops                = &ich8_nvm_ops,
4679 };
4680
4681 const struct e1000_info e1000_pch_info = {
4682         .mac                    = e1000_pchlan,
4683         .flags                  = FLAG_IS_ICH
4684                                   | FLAG_HAS_WOL
4685                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4686                                   | FLAG_HAS_AMT
4687                                   | FLAG_HAS_FLASH
4688                                   | FLAG_HAS_JUMBO_FRAMES
4689                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4690                                   | FLAG_APME_IN_WUC,
4691         .flags2                 = FLAG2_HAS_PHY_STATS,
4692         .pba                    = 26,
4693         .max_hw_frame_size      = 4096,
4694         .get_variants           = e1000_get_variants_ich8lan,
4695         .mac_ops                = &ich8_mac_ops,
4696         .phy_ops                = &ich8_phy_ops,
4697         .nvm_ops                = &ich8_nvm_ops,
4698 };
4699
4700 const struct e1000_info e1000_pch2_info = {
4701         .mac                    = e1000_pch2lan,
4702         .flags                  = FLAG_IS_ICH
4703                                   | FLAG_HAS_WOL
4704                                   | FLAG_HAS_HW_TIMESTAMP
4705                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4706                                   | FLAG_HAS_AMT
4707                                   | FLAG_HAS_FLASH
4708                                   | FLAG_HAS_JUMBO_FRAMES
4709                                   | FLAG_APME_IN_WUC,
4710         .flags2                 = FLAG2_HAS_PHY_STATS
4711                                   | FLAG2_HAS_EEE,
4712         .pba                    = 26,
4713         .max_hw_frame_size      = 9018,
4714         .get_variants           = e1000_get_variants_ich8lan,
4715         .mac_ops                = &ich8_mac_ops,
4716         .phy_ops                = &ich8_phy_ops,
4717         .nvm_ops                = &ich8_nvm_ops,
4718 };
4719
4720 const struct e1000_info e1000_pch_lpt_info = {
4721         .mac                    = e1000_pch_lpt,
4722         .flags                  = FLAG_IS_ICH
4723                                   | FLAG_HAS_WOL
4724                                   | FLAG_HAS_HW_TIMESTAMP
4725                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4726                                   | FLAG_HAS_AMT
4727                                   | FLAG_HAS_FLASH
4728                                   | FLAG_HAS_JUMBO_FRAMES
4729                                   | FLAG_APME_IN_WUC,
4730         .flags2                 = FLAG2_HAS_PHY_STATS
4731                                   | FLAG2_HAS_EEE,
4732         .pba                    = 26,
4733         .max_hw_frame_size      = 9018,
4734         .get_variants           = e1000_get_variants_ich8lan,
4735         .mac_ops                = &ich8_mac_ops,
4736         .phy_ops                = &ich8_phy_ops,
4737         .nvm_ops                = &ich8_nvm_ops,
4738 };