e1000e/igb/ixgbe/i40e: fix message terminations
[cascardo/linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61         [board_82571]           = &e1000_82571_info,
62         [board_82572]           = &e1000_82572_info,
63         [board_82573]           = &e1000_82573_info,
64         [board_82574]           = &e1000_82574_info,
65         [board_82583]           = &e1000_82583_info,
66         [board_80003es2lan]     = &e1000_es2_info,
67         [board_ich8lan]         = &e1000_ich8_info,
68         [board_ich9lan]         = &e1000_ich9_info,
69         [board_ich10lan]        = &e1000_ich10_info,
70         [board_pchlan]          = &e1000_pch_info,
71         [board_pch2lan]         = &e1000_pch2_info,
72         [board_pch_lpt]         = &e1000_pch_lpt_info,
73 };
74
75 struct e1000_reg_info {
76         u32 ofs;
77         char *name;
78 };
79
80 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
81         /* General Registers */
82         {E1000_CTRL, "CTRL"},
83         {E1000_STATUS, "STATUS"},
84         {E1000_CTRL_EXT, "CTRL_EXT"},
85
86         /* Interrupt Registers */
87         {E1000_ICR, "ICR"},
88
89         /* Rx Registers */
90         {E1000_RCTL, "RCTL"},
91         {E1000_RDLEN(0), "RDLEN"},
92         {E1000_RDH(0), "RDH"},
93         {E1000_RDT(0), "RDT"},
94         {E1000_RDTR, "RDTR"},
95         {E1000_RXDCTL(0), "RXDCTL"},
96         {E1000_ERT, "ERT"},
97         {E1000_RDBAL(0), "RDBAL"},
98         {E1000_RDBAH(0), "RDBAH"},
99         {E1000_RDFH, "RDFH"},
100         {E1000_RDFT, "RDFT"},
101         {E1000_RDFHS, "RDFHS"},
102         {E1000_RDFTS, "RDFTS"},
103         {E1000_RDFPC, "RDFPC"},
104
105         /* Tx Registers */
106         {E1000_TCTL, "TCTL"},
107         {E1000_TDBAL(0), "TDBAL"},
108         {E1000_TDBAH(0), "TDBAH"},
109         {E1000_TDLEN(0), "TDLEN"},
110         {E1000_TDH(0), "TDH"},
111         {E1000_TDT(0), "TDT"},
112         {E1000_TIDV, "TIDV"},
113         {E1000_TXDCTL(0), "TXDCTL"},
114         {E1000_TADV, "TADV"},
115         {E1000_TARC(0), "TARC"},
116         {E1000_TDFH, "TDFH"},
117         {E1000_TDFT, "TDFT"},
118         {E1000_TDFHS, "TDFHS"},
119         {E1000_TDFTS, "TDFTS"},
120         {E1000_TDFPC, "TDFPC"},
121
122         /* List Terminator */
123         {0, NULL}
124 };
125
126 /**
127  * e1000_regdump - register printout routine
128  * @hw: pointer to the HW structure
129  * @reginfo: pointer to the register info table
130  **/
131 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
132 {
133         int n = 0;
134         char rname[16];
135         u32 regs[8];
136
137         switch (reginfo->ofs) {
138         case E1000_RXDCTL(0):
139                 for (n = 0; n < 2; n++)
140                         regs[n] = __er32(hw, E1000_RXDCTL(n));
141                 break;
142         case E1000_TXDCTL(0):
143                 for (n = 0; n < 2; n++)
144                         regs[n] = __er32(hw, E1000_TXDCTL(n));
145                 break;
146         case E1000_TARC(0):
147                 for (n = 0; n < 2; n++)
148                         regs[n] = __er32(hw, E1000_TARC(n));
149                 break;
150         default:
151                 pr_info("%-15s %08x\n",
152                         reginfo->name, __er32(hw, reginfo->ofs));
153                 return;
154         }
155
156         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
157         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
158 }
159
160 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
161                                  struct e1000_buffer *bi)
162 {
163         int i;
164         struct e1000_ps_page *ps_page;
165
166         for (i = 0; i < adapter->rx_ps_pages; i++) {
167                 ps_page = &bi->ps_pages[i];
168
169                 if (ps_page->page) {
170                         pr_info("packet dump for ps_page %d:\n", i);
171                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
172                                        16, 1, page_address(ps_page->page),
173                                        PAGE_SIZE, true);
174                 }
175         }
176 }
177
178 /**
179  * e1000e_dump - Print registers, Tx-ring and Rx-ring
180  * @adapter: board private structure
181  **/
182 static void e1000e_dump(struct e1000_adapter *adapter)
183 {
184         struct net_device *netdev = adapter->netdev;
185         struct e1000_hw *hw = &adapter->hw;
186         struct e1000_reg_info *reginfo;
187         struct e1000_ring *tx_ring = adapter->tx_ring;
188         struct e1000_tx_desc *tx_desc;
189         struct my_u0 {
190                 __le64 a;
191                 __le64 b;
192         } *u0;
193         struct e1000_buffer *buffer_info;
194         struct e1000_ring *rx_ring = adapter->rx_ring;
195         union e1000_rx_desc_packet_split *rx_desc_ps;
196         union e1000_rx_desc_extended *rx_desc;
197         struct my_u1 {
198                 __le64 a;
199                 __le64 b;
200                 __le64 c;
201                 __le64 d;
202         } *u1;
203         u32 staterr;
204         int i = 0;
205
206         if (!netif_msg_hw(adapter))
207                 return;
208
209         /* Print netdevice Info */
210         if (netdev) {
211                 dev_info(&adapter->pdev->dev, "Net device Info\n");
212                 pr_info("Device Name     state            trans_start      last_rx\n");
213                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
214                         netdev->state, netdev->trans_start, netdev->last_rx);
215         }
216
217         /* Print Registers */
218         dev_info(&adapter->pdev->dev, "Register Dump\n");
219         pr_info(" Register Name   Value\n");
220         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
221              reginfo->name; reginfo++) {
222                 e1000_regdump(hw, reginfo);
223         }
224
225         /* Print Tx Ring Summary */
226         if (!netdev || !netif_running(netdev))
227                 return;
228
229         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
230         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
231         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
232         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
233                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
234                 (unsigned long long)buffer_info->dma,
235                 buffer_info->length,
236                 buffer_info->next_to_watch,
237                 (unsigned long long)buffer_info->time_stamp);
238
239         /* Print Tx Ring */
240         if (!netif_msg_tx_done(adapter))
241                 goto rx_ring_summary;
242
243         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
244
245         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
246          *
247          * Legacy Transmit Descriptor
248          *   +--------------------------------------------------------------+
249          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
250          *   +--------------------------------------------------------------+
251          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
252          *   +--------------------------------------------------------------+
253          *   63       48 47        36 35    32 31     24 23    16 15        0
254          *
255          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
256          *   63      48 47    40 39       32 31             16 15    8 7      0
257          *   +----------------------------------------------------------------+
258          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
259          *   +----------------------------------------------------------------+
260          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
261          *   +----------------------------------------------------------------+
262          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
263          *
264          * Extended Data Descriptor (DTYP=0x1)
265          *   +----------------------------------------------------------------+
266          * 0 |                     Buffer Address [63:0]                      |
267          *   +----------------------------------------------------------------+
268          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
269          *   +----------------------------------------------------------------+
270          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
271          */
272         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
273         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
274         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
275         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
276                 const char *next_desc;
277                 tx_desc = E1000_TX_DESC(*tx_ring, i);
278                 buffer_info = &tx_ring->buffer_info[i];
279                 u0 = (struct my_u0 *)tx_desc;
280                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
281                         next_desc = " NTC/U";
282                 else if (i == tx_ring->next_to_use)
283                         next_desc = " NTU";
284                 else if (i == tx_ring->next_to_clean)
285                         next_desc = " NTC";
286                 else
287                         next_desc = "";
288                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
289                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
290                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
291                         i,
292                         (unsigned long long)le64_to_cpu(u0->a),
293                         (unsigned long long)le64_to_cpu(u0->b),
294                         (unsigned long long)buffer_info->dma,
295                         buffer_info->length, buffer_info->next_to_watch,
296                         (unsigned long long)buffer_info->time_stamp,
297                         buffer_info->skb, next_desc);
298
299                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
300                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
301                                        16, 1, buffer_info->skb->data,
302                                        buffer_info->skb->len, true);
303         }
304
305         /* Print Rx Ring Summary */
306 rx_ring_summary:
307         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
308         pr_info("Queue [NTU] [NTC]\n");
309         pr_info(" %5d %5X %5X\n",
310                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
311
312         /* Print Rx Ring */
313         if (!netif_msg_rx_status(adapter))
314                 return;
315
316         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
317         switch (adapter->rx_ps_pages) {
318         case 1:
319         case 2:
320         case 3:
321                 /* [Extended] Packet Split Receive Descriptor Format
322                  *
323                  *    +-----------------------------------------------------+
324                  *  0 |                Buffer Address 0 [63:0]              |
325                  *    +-----------------------------------------------------+
326                  *  8 |                Buffer Address 1 [63:0]              |
327                  *    +-----------------------------------------------------+
328                  * 16 |                Buffer Address 2 [63:0]              |
329                  *    +-----------------------------------------------------+
330                  * 24 |                Buffer Address 3 [63:0]              |
331                  *    +-----------------------------------------------------+
332                  */
333                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
334                 /* [Extended] Receive Descriptor (Write-Back) Format
335                  *
336                  *   63       48 47    32 31     13 12    8 7    4 3        0
337                  *   +------------------------------------------------------+
338                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
339                  *   | Checksum | Ident  |         | Queue |      |  Type   |
340                  *   +------------------------------------------------------+
341                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
342                  *   +------------------------------------------------------+
343                  *   63       48 47    32 31            20 19               0
344                  */
345                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
346                 for (i = 0; i < rx_ring->count; i++) {
347                         const char *next_desc;
348                         buffer_info = &rx_ring->buffer_info[i];
349                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
350                         u1 = (struct my_u1 *)rx_desc_ps;
351                         staterr =
352                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
353
354                         if (i == rx_ring->next_to_use)
355                                 next_desc = " NTU";
356                         else if (i == rx_ring->next_to_clean)
357                                 next_desc = " NTC";
358                         else
359                                 next_desc = "";
360
361                         if (staterr & E1000_RXD_STAT_DD) {
362                                 /* Descriptor Done */
363                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
364                                         "RWB", i,
365                                         (unsigned long long)le64_to_cpu(u1->a),
366                                         (unsigned long long)le64_to_cpu(u1->b),
367                                         (unsigned long long)le64_to_cpu(u1->c),
368                                         (unsigned long long)le64_to_cpu(u1->d),
369                                         buffer_info->skb, next_desc);
370                         } else {
371                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
372                                         "R  ", i,
373                                         (unsigned long long)le64_to_cpu(u1->a),
374                                         (unsigned long long)le64_to_cpu(u1->b),
375                                         (unsigned long long)le64_to_cpu(u1->c),
376                                         (unsigned long long)le64_to_cpu(u1->d),
377                                         (unsigned long long)buffer_info->dma,
378                                         buffer_info->skb, next_desc);
379
380                                 if (netif_msg_pktdata(adapter))
381                                         e1000e_dump_ps_pages(adapter,
382                                                              buffer_info);
383                         }
384                 }
385                 break;
386         default:
387         case 0:
388                 /* Extended Receive Descriptor (Read) Format
389                  *
390                  *   +-----------------------------------------------------+
391                  * 0 |                Buffer Address [63:0]                |
392                  *   +-----------------------------------------------------+
393                  * 8 |                      Reserved                       |
394                  *   +-----------------------------------------------------+
395                  */
396                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
397                 /* Extended Receive Descriptor (Write-Back) Format
398                  *
399                  *   63       48 47    32 31    24 23            4 3        0
400                  *   +------------------------------------------------------+
401                  *   |     RSS Hash      |        |               |         |
402                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
403                  *   | Packet   | IP     |        |               |  Type   |
404                  *   | Checksum | Ident  |        |               |         |
405                  *   +------------------------------------------------------+
406                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
407                  *   +------------------------------------------------------+
408                  *   63       48 47    32 31            20 19               0
409                  */
410                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
411
412                 for (i = 0; i < rx_ring->count; i++) {
413                         const char *next_desc;
414
415                         buffer_info = &rx_ring->buffer_info[i];
416                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
417                         u1 = (struct my_u1 *)rx_desc;
418                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
419
420                         if (i == rx_ring->next_to_use)
421                                 next_desc = " NTU";
422                         else if (i == rx_ring->next_to_clean)
423                                 next_desc = " NTC";
424                         else
425                                 next_desc = "";
426
427                         if (staterr & E1000_RXD_STAT_DD) {
428                                 /* Descriptor Done */
429                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
430                                         "RWB", i,
431                                         (unsigned long long)le64_to_cpu(u1->a),
432                                         (unsigned long long)le64_to_cpu(u1->b),
433                                         buffer_info->skb, next_desc);
434                         } else {
435                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
436                                         "R  ", i,
437                                         (unsigned long long)le64_to_cpu(u1->a),
438                                         (unsigned long long)le64_to_cpu(u1->b),
439                                         (unsigned long long)buffer_info->dma,
440                                         buffer_info->skb, next_desc);
441
442                                 if (netif_msg_pktdata(adapter) &&
443                                     buffer_info->skb)
444                                         print_hex_dump(KERN_INFO, "",
445                                                        DUMP_PREFIX_ADDRESS, 16,
446                                                        1,
447                                                        buffer_info->skb->data,
448                                                        adapter->rx_buffer_len,
449                                                        true);
450                         }
451                 }
452         }
453 }
454
455 /**
456  * e1000_desc_unused - calculate if we have unused descriptors
457  **/
458 static int e1000_desc_unused(struct e1000_ring *ring)
459 {
460         if (ring->next_to_clean > ring->next_to_use)
461                 return ring->next_to_clean - ring->next_to_use - 1;
462
463         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
464 }
465
466 /**
467  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
468  * @adapter: board private structure
469  * @hwtstamps: time stamp structure to update
470  * @systim: unsigned 64bit system time value.
471  *
472  * Convert the system time value stored in the RX/TXSTMP registers into a
473  * hwtstamp which can be used by the upper level time stamping functions.
474  *
475  * The 'systim_lock' spinlock is used to protect the consistency of the
476  * system time value. This is needed because reading the 64 bit time
477  * value involves reading two 32 bit registers. The first read latches the
478  * value.
479  **/
480 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
481                                       struct skb_shared_hwtstamps *hwtstamps,
482                                       u64 systim)
483 {
484         u64 ns;
485         unsigned long flags;
486
487         spin_lock_irqsave(&adapter->systim_lock, flags);
488         ns = timecounter_cyc2time(&adapter->tc, systim);
489         spin_unlock_irqrestore(&adapter->systim_lock, flags);
490
491         memset(hwtstamps, 0, sizeof(*hwtstamps));
492         hwtstamps->hwtstamp = ns_to_ktime(ns);
493 }
494
495 /**
496  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
497  * @adapter: board private structure
498  * @status: descriptor extended error and status field
499  * @skb: particular skb to include time stamp
500  *
501  * If the time stamp is valid, convert it into the timecounter ns value
502  * and store that result into the shhwtstamps structure which is passed
503  * up the network stack.
504  **/
505 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
506                                struct sk_buff *skb)
507 {
508         struct e1000_hw *hw = &adapter->hw;
509         u64 rxstmp;
510
511         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
512             !(status & E1000_RXDEXT_STATERR_TST) ||
513             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
514                 return;
515
516         /* The Rx time stamp registers contain the time stamp.  No other
517          * received packet will be time stamped until the Rx time stamp
518          * registers are read.  Because only one packet can be time stamped
519          * at a time, the register values must belong to this packet and
520          * therefore none of the other additional attributes need to be
521          * compared.
522          */
523         rxstmp = (u64)er32(RXSTMPL);
524         rxstmp |= (u64)er32(RXSTMPH) << 32;
525         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
526
527         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
528 }
529
530 /**
531  * e1000_receive_skb - helper function to handle Rx indications
532  * @adapter: board private structure
533  * @staterr: descriptor extended error and status field as written by hardware
534  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
535  * @skb: pointer to sk_buff to be indicated to stack
536  **/
537 static void e1000_receive_skb(struct e1000_adapter *adapter,
538                               struct net_device *netdev, struct sk_buff *skb,
539                               u32 staterr, __le16 vlan)
540 {
541         u16 tag = le16_to_cpu(vlan);
542
543         e1000e_rx_hwtstamp(adapter, staterr, skb);
544
545         skb->protocol = eth_type_trans(skb, netdev);
546
547         if (staterr & E1000_RXD_STAT_VP)
548                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
549
550         napi_gro_receive(&adapter->napi, skb);
551 }
552
553 /**
554  * e1000_rx_checksum - Receive Checksum Offload
555  * @adapter: board private structure
556  * @status_err: receive descriptor status and error fields
557  * @csum: receive descriptor csum field
558  * @sk_buff: socket buffer with received data
559  **/
560 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
561                               struct sk_buff *skb)
562 {
563         u16 status = (u16)status_err;
564         u8 errors = (u8)(status_err >> 24);
565
566         skb_checksum_none_assert(skb);
567
568         /* Rx checksum disabled */
569         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
570                 return;
571
572         /* Ignore Checksum bit is set */
573         if (status & E1000_RXD_STAT_IXSM)
574                 return;
575
576         /* TCP/UDP checksum error bit or IP checksum error bit is set */
577         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
578                 /* let the stack verify checksum errors */
579                 adapter->hw_csum_err++;
580                 return;
581         }
582
583         /* TCP/UDP Checksum has not been calculated */
584         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
585                 return;
586
587         /* It must be a TCP or UDP packet with a valid checksum */
588         skb->ip_summed = CHECKSUM_UNNECESSARY;
589         adapter->hw_csum_good++;
590 }
591
592 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
593 {
594         struct e1000_adapter *adapter = rx_ring->adapter;
595         struct e1000_hw *hw = &adapter->hw;
596         s32 ret_val = __ew32_prepare(hw);
597
598         writel(i, rx_ring->tail);
599
600         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
601                 u32 rctl = er32(RCTL);
602                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
603                 e_err("ME firmware caused invalid RDT - resetting\n");
604                 schedule_work(&adapter->reset_task);
605         }
606 }
607
608 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
609 {
610         struct e1000_adapter *adapter = tx_ring->adapter;
611         struct e1000_hw *hw = &adapter->hw;
612         s32 ret_val = __ew32_prepare(hw);
613
614         writel(i, tx_ring->tail);
615
616         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
617                 u32 tctl = er32(TCTL);
618                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
619                 e_err("ME firmware caused invalid TDT - resetting\n");
620                 schedule_work(&adapter->reset_task);
621         }
622 }
623
624 /**
625  * e1000_alloc_rx_buffers - Replace used receive buffers
626  * @rx_ring: Rx descriptor ring
627  **/
628 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
629                                    int cleaned_count, gfp_t gfp)
630 {
631         struct e1000_adapter *adapter = rx_ring->adapter;
632         struct net_device *netdev = adapter->netdev;
633         struct pci_dev *pdev = adapter->pdev;
634         union e1000_rx_desc_extended *rx_desc;
635         struct e1000_buffer *buffer_info;
636         struct sk_buff *skb;
637         unsigned int i;
638         unsigned int bufsz = adapter->rx_buffer_len;
639
640         i = rx_ring->next_to_use;
641         buffer_info = &rx_ring->buffer_info[i];
642
643         while (cleaned_count--) {
644                 skb = buffer_info->skb;
645                 if (skb) {
646                         skb_trim(skb, 0);
647                         goto map_skb;
648                 }
649
650                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
651                 if (!skb) {
652                         /* Better luck next round */
653                         adapter->alloc_rx_buff_failed++;
654                         break;
655                 }
656
657                 buffer_info->skb = skb;
658 map_skb:
659                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
660                                                   adapter->rx_buffer_len,
661                                                   DMA_FROM_DEVICE);
662                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
663                         dev_err(&pdev->dev, "Rx DMA map failed\n");
664                         adapter->rx_dma_failed++;
665                         break;
666                 }
667
668                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
669                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
670
671                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
672                         /* Force memory writes to complete before letting h/w
673                          * know there are new descriptors to fetch.  (Only
674                          * applicable for weak-ordered memory model archs,
675                          * such as IA-64).
676                          */
677                         wmb();
678                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
679                                 e1000e_update_rdt_wa(rx_ring, i);
680                         else
681                                 writel(i, rx_ring->tail);
682                 }
683                 i++;
684                 if (i == rx_ring->count)
685                         i = 0;
686                 buffer_info = &rx_ring->buffer_info[i];
687         }
688
689         rx_ring->next_to_use = i;
690 }
691
692 /**
693  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
694  * @rx_ring: Rx descriptor ring
695  **/
696 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
697                                       int cleaned_count, gfp_t gfp)
698 {
699         struct e1000_adapter *adapter = rx_ring->adapter;
700         struct net_device *netdev = adapter->netdev;
701         struct pci_dev *pdev = adapter->pdev;
702         union e1000_rx_desc_packet_split *rx_desc;
703         struct e1000_buffer *buffer_info;
704         struct e1000_ps_page *ps_page;
705         struct sk_buff *skb;
706         unsigned int i, j;
707
708         i = rx_ring->next_to_use;
709         buffer_info = &rx_ring->buffer_info[i];
710
711         while (cleaned_count--) {
712                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
713
714                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
715                         ps_page = &buffer_info->ps_pages[j];
716                         if (j >= adapter->rx_ps_pages) {
717                                 /* all unused desc entries get hw null ptr */
718                                 rx_desc->read.buffer_addr[j + 1] =
719                                     ~cpu_to_le64(0);
720                                 continue;
721                         }
722                         if (!ps_page->page) {
723                                 ps_page->page = alloc_page(gfp);
724                                 if (!ps_page->page) {
725                                         adapter->alloc_rx_buff_failed++;
726                                         goto no_buffers;
727                                 }
728                                 ps_page->dma = dma_map_page(&pdev->dev,
729                                                             ps_page->page,
730                                                             0, PAGE_SIZE,
731                                                             DMA_FROM_DEVICE);
732                                 if (dma_mapping_error(&pdev->dev,
733                                                       ps_page->dma)) {
734                                         dev_err(&adapter->pdev->dev,
735                                                 "Rx DMA page map failed\n");
736                                         adapter->rx_dma_failed++;
737                                         goto no_buffers;
738                                 }
739                         }
740                         /* Refresh the desc even if buffer_addrs
741                          * didn't change because each write-back
742                          * erases this info.
743                          */
744                         rx_desc->read.buffer_addr[j + 1] =
745                             cpu_to_le64(ps_page->dma);
746                 }
747
748                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
749                                                   gfp);
750
751                 if (!skb) {
752                         adapter->alloc_rx_buff_failed++;
753                         break;
754                 }
755
756                 buffer_info->skb = skb;
757                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
758                                                   adapter->rx_ps_bsize0,
759                                                   DMA_FROM_DEVICE);
760                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
761                         dev_err(&pdev->dev, "Rx DMA map failed\n");
762                         adapter->rx_dma_failed++;
763                         /* cleanup skb */
764                         dev_kfree_skb_any(skb);
765                         buffer_info->skb = NULL;
766                         break;
767                 }
768
769                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
770
771                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
772                         /* Force memory writes to complete before letting h/w
773                          * know there are new descriptors to fetch.  (Only
774                          * applicable for weak-ordered memory model archs,
775                          * such as IA-64).
776                          */
777                         wmb();
778                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
779                                 e1000e_update_rdt_wa(rx_ring, i << 1);
780                         else
781                                 writel(i << 1, rx_ring->tail);
782                 }
783
784                 i++;
785                 if (i == rx_ring->count)
786                         i = 0;
787                 buffer_info = &rx_ring->buffer_info[i];
788         }
789
790 no_buffers:
791         rx_ring->next_to_use = i;
792 }
793
794 /**
795  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
796  * @rx_ring: Rx descriptor ring
797  * @cleaned_count: number of buffers to allocate this pass
798  **/
799
800 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
801                                          int cleaned_count, gfp_t gfp)
802 {
803         struct e1000_adapter *adapter = rx_ring->adapter;
804         struct net_device *netdev = adapter->netdev;
805         struct pci_dev *pdev = adapter->pdev;
806         union e1000_rx_desc_extended *rx_desc;
807         struct e1000_buffer *buffer_info;
808         struct sk_buff *skb;
809         unsigned int i;
810         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
811
812         i = rx_ring->next_to_use;
813         buffer_info = &rx_ring->buffer_info[i];
814
815         while (cleaned_count--) {
816                 skb = buffer_info->skb;
817                 if (skb) {
818                         skb_trim(skb, 0);
819                         goto check_page;
820                 }
821
822                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
823                 if (unlikely(!skb)) {
824                         /* Better luck next round */
825                         adapter->alloc_rx_buff_failed++;
826                         break;
827                 }
828
829                 buffer_info->skb = skb;
830 check_page:
831                 /* allocate a new page if necessary */
832                 if (!buffer_info->page) {
833                         buffer_info->page = alloc_page(gfp);
834                         if (unlikely(!buffer_info->page)) {
835                                 adapter->alloc_rx_buff_failed++;
836                                 break;
837                         }
838                 }
839
840                 if (!buffer_info->dma) {
841                         buffer_info->dma = dma_map_page(&pdev->dev,
842                                                         buffer_info->page, 0,
843                                                         PAGE_SIZE,
844                                                         DMA_FROM_DEVICE);
845                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
846                                 adapter->alloc_rx_buff_failed++;
847                                 break;
848                         }
849                 }
850
851                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
852                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
853
854                 if (unlikely(++i == rx_ring->count))
855                         i = 0;
856                 buffer_info = &rx_ring->buffer_info[i];
857         }
858
859         if (likely(rx_ring->next_to_use != i)) {
860                 rx_ring->next_to_use = i;
861                 if (unlikely(i-- == 0))
862                         i = (rx_ring->count - 1);
863
864                 /* Force memory writes to complete before letting h/w
865                  * know there are new descriptors to fetch.  (Only
866                  * applicable for weak-ordered memory model archs,
867                  * such as IA-64).
868                  */
869                 wmb();
870                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
871                         e1000e_update_rdt_wa(rx_ring, i);
872                 else
873                         writel(i, rx_ring->tail);
874         }
875 }
876
877 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
878                                  struct sk_buff *skb)
879 {
880         if (netdev->features & NETIF_F_RXHASH)
881                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
882 }
883
884 /**
885  * e1000_clean_rx_irq - Send received data up the network stack
886  * @rx_ring: Rx descriptor ring
887  *
888  * the return value indicates whether actual cleaning was done, there
889  * is no guarantee that everything was cleaned
890  **/
891 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
892                                int work_to_do)
893 {
894         struct e1000_adapter *adapter = rx_ring->adapter;
895         struct net_device *netdev = adapter->netdev;
896         struct pci_dev *pdev = adapter->pdev;
897         struct e1000_hw *hw = &adapter->hw;
898         union e1000_rx_desc_extended *rx_desc, *next_rxd;
899         struct e1000_buffer *buffer_info, *next_buffer;
900         u32 length, staterr;
901         unsigned int i;
902         int cleaned_count = 0;
903         bool cleaned = false;
904         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
905
906         i = rx_ring->next_to_clean;
907         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
908         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
909         buffer_info = &rx_ring->buffer_info[i];
910
911         while (staterr & E1000_RXD_STAT_DD) {
912                 struct sk_buff *skb;
913
914                 if (*work_done >= work_to_do)
915                         break;
916                 (*work_done)++;
917                 rmb();  /* read descriptor and rx_buffer_info after status DD */
918
919                 skb = buffer_info->skb;
920                 buffer_info->skb = NULL;
921
922                 prefetch(skb->data - NET_IP_ALIGN);
923
924                 i++;
925                 if (i == rx_ring->count)
926                         i = 0;
927                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
928                 prefetch(next_rxd);
929
930                 next_buffer = &rx_ring->buffer_info[i];
931
932                 cleaned = true;
933                 cleaned_count++;
934                 dma_unmap_single(&pdev->dev, buffer_info->dma,
935                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
936                 buffer_info->dma = 0;
937
938                 length = le16_to_cpu(rx_desc->wb.upper.length);
939
940                 /* !EOP means multiple descriptors were used to store a single
941                  * packet, if that's the case we need to toss it.  In fact, we
942                  * need to toss every packet with the EOP bit clear and the
943                  * next frame that _does_ have the EOP bit set, as it is by
944                  * definition only a frame fragment
945                  */
946                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
947                         adapter->flags2 |= FLAG2_IS_DISCARDING;
948
949                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
950                         /* All receives must fit into a single buffer */
951                         e_dbg("Receive packet consumed multiple buffers\n");
952                         /* recycle */
953                         buffer_info->skb = skb;
954                         if (staterr & E1000_RXD_STAT_EOP)
955                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
956                         goto next_desc;
957                 }
958
959                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
960                              !(netdev->features & NETIF_F_RXALL))) {
961                         /* recycle */
962                         buffer_info->skb = skb;
963                         goto next_desc;
964                 }
965
966                 /* adjust length to remove Ethernet CRC */
967                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
968                         /* If configured to store CRC, don't subtract FCS,
969                          * but keep the FCS bytes out of the total_rx_bytes
970                          * counter
971                          */
972                         if (netdev->features & NETIF_F_RXFCS)
973                                 total_rx_bytes -= 4;
974                         else
975                                 length -= 4;
976                 }
977
978                 total_rx_bytes += length;
979                 total_rx_packets++;
980
981                 /* code added for copybreak, this should improve
982                  * performance for small packets with large amounts
983                  * of reassembly being done in the stack
984                  */
985                 if (length < copybreak) {
986                         struct sk_buff *new_skb =
987                             netdev_alloc_skb_ip_align(netdev, length);
988                         if (new_skb) {
989                                 skb_copy_to_linear_data_offset(new_skb,
990                                                                -NET_IP_ALIGN,
991                                                                (skb->data -
992                                                                 NET_IP_ALIGN),
993                                                                (length +
994                                                                 NET_IP_ALIGN));
995                                 /* save the skb in buffer_info as good */
996                                 buffer_info->skb = skb;
997                                 skb = new_skb;
998                         }
999                         /* else just continue with the old one */
1000                 }
1001                 /* end copybreak code */
1002                 skb_put(skb, length);
1003
1004                 /* Receive Checksum Offload */
1005                 e1000_rx_checksum(adapter, staterr, skb);
1006
1007                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1008
1009                 e1000_receive_skb(adapter, netdev, skb, staterr,
1010                                   rx_desc->wb.upper.vlan);
1011
1012 next_desc:
1013                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1014
1015                 /* return some buffers to hardware, one at a time is too slow */
1016                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1017                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1018                                               GFP_ATOMIC);
1019                         cleaned_count = 0;
1020                 }
1021
1022                 /* use prefetched values */
1023                 rx_desc = next_rxd;
1024                 buffer_info = next_buffer;
1025
1026                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1027         }
1028         rx_ring->next_to_clean = i;
1029
1030         cleaned_count = e1000_desc_unused(rx_ring);
1031         if (cleaned_count)
1032                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1033
1034         adapter->total_rx_bytes += total_rx_bytes;
1035         adapter->total_rx_packets += total_rx_packets;
1036         return cleaned;
1037 }
1038
1039 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1040                             struct e1000_buffer *buffer_info)
1041 {
1042         struct e1000_adapter *adapter = tx_ring->adapter;
1043
1044         if (buffer_info->dma) {
1045                 if (buffer_info->mapped_as_page)
1046                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1047                                        buffer_info->length, DMA_TO_DEVICE);
1048                 else
1049                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1050                                          buffer_info->length, DMA_TO_DEVICE);
1051                 buffer_info->dma = 0;
1052         }
1053         if (buffer_info->skb) {
1054                 dev_kfree_skb_any(buffer_info->skb);
1055                 buffer_info->skb = NULL;
1056         }
1057         buffer_info->time_stamp = 0;
1058 }
1059
1060 static void e1000_print_hw_hang(struct work_struct *work)
1061 {
1062         struct e1000_adapter *adapter = container_of(work,
1063                                                      struct e1000_adapter,
1064                                                      print_hang_task);
1065         struct net_device *netdev = adapter->netdev;
1066         struct e1000_ring *tx_ring = adapter->tx_ring;
1067         unsigned int i = tx_ring->next_to_clean;
1068         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1069         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1070         struct e1000_hw *hw = &adapter->hw;
1071         u16 phy_status, phy_1000t_status, phy_ext_status;
1072         u16 pci_status;
1073
1074         if (test_bit(__E1000_DOWN, &adapter->state))
1075                 return;
1076
1077         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1078                 /* May be block on write-back, flush and detect again
1079                  * flush pending descriptor writebacks to memory
1080                  */
1081                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1082                 /* execute the writes immediately */
1083                 e1e_flush();
1084                 /* Due to rare timing issues, write to TIDV again to ensure
1085                  * the write is successful
1086                  */
1087                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1088                 /* execute the writes immediately */
1089                 e1e_flush();
1090                 adapter->tx_hang_recheck = true;
1091                 return;
1092         }
1093         adapter->tx_hang_recheck = false;
1094
1095         if (er32(TDH(0)) == er32(TDT(0))) {
1096                 e_dbg("false hang detected, ignoring\n");
1097                 return;
1098         }
1099
1100         /* Real hang detected */
1101         netif_stop_queue(netdev);
1102
1103         e1e_rphy(hw, MII_BMSR, &phy_status);
1104         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1105         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1106
1107         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1108
1109         /* detected Hardware unit hang */
1110         e_err("Detected Hardware Unit Hang:\n"
1111               "  TDH                  <%x>\n"
1112               "  TDT                  <%x>\n"
1113               "  next_to_use          <%x>\n"
1114               "  next_to_clean        <%x>\n"
1115               "buffer_info[next_to_clean]:\n"
1116               "  time_stamp           <%lx>\n"
1117               "  next_to_watch        <%x>\n"
1118               "  jiffies              <%lx>\n"
1119               "  next_to_watch.status <%x>\n"
1120               "MAC Status             <%x>\n"
1121               "PHY Status             <%x>\n"
1122               "PHY 1000BASE-T Status  <%x>\n"
1123               "PHY Extended Status    <%x>\n"
1124               "PCI Status             <%x>\n",
1125               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1126               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1127               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1128               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1129
1130         e1000e_dump(adapter);
1131
1132         /* Suggest workaround for known h/w issue */
1133         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1134                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1135 }
1136
1137 /**
1138  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1139  * @work: pointer to work struct
1140  *
1141  * This work function polls the TSYNCTXCTL valid bit to determine when a
1142  * timestamp has been taken for the current stored skb.  The timestamp must
1143  * be for this skb because only one such packet is allowed in the queue.
1144  */
1145 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1146 {
1147         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1148                                                      tx_hwtstamp_work);
1149         struct e1000_hw *hw = &adapter->hw;
1150
1151         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1152                 struct skb_shared_hwtstamps shhwtstamps;
1153                 u64 txstmp;
1154
1155                 txstmp = er32(TXSTMPL);
1156                 txstmp |= (u64)er32(TXSTMPH) << 32;
1157
1158                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1159
1160                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1161                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1162                 adapter->tx_hwtstamp_skb = NULL;
1163         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1164                               + adapter->tx_timeout_factor * HZ)) {
1165                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1166                 adapter->tx_hwtstamp_skb = NULL;
1167                 adapter->tx_hwtstamp_timeouts++;
1168                 e_warn("clearing Tx timestamp hang\n");
1169         } else {
1170                 /* reschedule to check later */
1171                 schedule_work(&adapter->tx_hwtstamp_work);
1172         }
1173 }
1174
1175 /**
1176  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1177  * @tx_ring: Tx descriptor ring
1178  *
1179  * the return value indicates whether actual cleaning was done, there
1180  * is no guarantee that everything was cleaned
1181  **/
1182 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1183 {
1184         struct e1000_adapter *adapter = tx_ring->adapter;
1185         struct net_device *netdev = adapter->netdev;
1186         struct e1000_hw *hw = &adapter->hw;
1187         struct e1000_tx_desc *tx_desc, *eop_desc;
1188         struct e1000_buffer *buffer_info;
1189         unsigned int i, eop;
1190         unsigned int count = 0;
1191         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1192         unsigned int bytes_compl = 0, pkts_compl = 0;
1193
1194         i = tx_ring->next_to_clean;
1195         eop = tx_ring->buffer_info[i].next_to_watch;
1196         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1197
1198         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1199                (count < tx_ring->count)) {
1200                 bool cleaned = false;
1201                 rmb();          /* read buffer_info after eop_desc */
1202                 for (; !cleaned; count++) {
1203                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1204                         buffer_info = &tx_ring->buffer_info[i];
1205                         cleaned = (i == eop);
1206
1207                         if (cleaned) {
1208                                 total_tx_packets += buffer_info->segs;
1209                                 total_tx_bytes += buffer_info->bytecount;
1210                                 if (buffer_info->skb) {
1211                                         bytes_compl += buffer_info->skb->len;
1212                                         pkts_compl++;
1213                                 }
1214                         }
1215
1216                         e1000_put_txbuf(tx_ring, buffer_info);
1217                         tx_desc->upper.data = 0;
1218
1219                         i++;
1220                         if (i == tx_ring->count)
1221                                 i = 0;
1222                 }
1223
1224                 if (i == tx_ring->next_to_use)
1225                         break;
1226                 eop = tx_ring->buffer_info[i].next_to_watch;
1227                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1228         }
1229
1230         tx_ring->next_to_clean = i;
1231
1232         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1233
1234 #define TX_WAKE_THRESHOLD 32
1235         if (count && netif_carrier_ok(netdev) &&
1236             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1237                 /* Make sure that anybody stopping the queue after this
1238                  * sees the new next_to_clean.
1239                  */
1240                 smp_mb();
1241
1242                 if (netif_queue_stopped(netdev) &&
1243                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1244                         netif_wake_queue(netdev);
1245                         ++adapter->restart_queue;
1246                 }
1247         }
1248
1249         if (adapter->detect_tx_hung) {
1250                 /* Detect a transmit hang in hardware, this serializes the
1251                  * check with the clearing of time_stamp and movement of i
1252                  */
1253                 adapter->detect_tx_hung = false;
1254                 if (tx_ring->buffer_info[i].time_stamp &&
1255                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1256                                + (adapter->tx_timeout_factor * HZ)) &&
1257                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1258                         schedule_work(&adapter->print_hang_task);
1259                 else
1260                         adapter->tx_hang_recheck = false;
1261         }
1262         adapter->total_tx_bytes += total_tx_bytes;
1263         adapter->total_tx_packets += total_tx_packets;
1264         return count < tx_ring->count;
1265 }
1266
1267 /**
1268  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1269  * @rx_ring: Rx descriptor ring
1270  *
1271  * the return value indicates whether actual cleaning was done, there
1272  * is no guarantee that everything was cleaned
1273  **/
1274 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1275                                   int work_to_do)
1276 {
1277         struct e1000_adapter *adapter = rx_ring->adapter;
1278         struct e1000_hw *hw = &adapter->hw;
1279         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1280         struct net_device *netdev = adapter->netdev;
1281         struct pci_dev *pdev = adapter->pdev;
1282         struct e1000_buffer *buffer_info, *next_buffer;
1283         struct e1000_ps_page *ps_page;
1284         struct sk_buff *skb;
1285         unsigned int i, j;
1286         u32 length, staterr;
1287         int cleaned_count = 0;
1288         bool cleaned = false;
1289         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1290
1291         i = rx_ring->next_to_clean;
1292         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1293         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1294         buffer_info = &rx_ring->buffer_info[i];
1295
1296         while (staterr & E1000_RXD_STAT_DD) {
1297                 if (*work_done >= work_to_do)
1298                         break;
1299                 (*work_done)++;
1300                 skb = buffer_info->skb;
1301                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1302
1303                 /* in the packet split case this is header only */
1304                 prefetch(skb->data - NET_IP_ALIGN);
1305
1306                 i++;
1307                 if (i == rx_ring->count)
1308                         i = 0;
1309                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1310                 prefetch(next_rxd);
1311
1312                 next_buffer = &rx_ring->buffer_info[i];
1313
1314                 cleaned = true;
1315                 cleaned_count++;
1316                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1317                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1318                 buffer_info->dma = 0;
1319
1320                 /* see !EOP comment in other Rx routine */
1321                 if (!(staterr & E1000_RXD_STAT_EOP))
1322                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1323
1324                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1325                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1326                         dev_kfree_skb_irq(skb);
1327                         if (staterr & E1000_RXD_STAT_EOP)
1328                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1329                         goto next_desc;
1330                 }
1331
1332                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1333                              !(netdev->features & NETIF_F_RXALL))) {
1334                         dev_kfree_skb_irq(skb);
1335                         goto next_desc;
1336                 }
1337
1338                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1339
1340                 if (!length) {
1341                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1342                         dev_kfree_skb_irq(skb);
1343                         goto next_desc;
1344                 }
1345
1346                 /* Good Receive */
1347                 skb_put(skb, length);
1348
1349                 {
1350                         /* this looks ugly, but it seems compiler issues make
1351                          * it more efficient than reusing j
1352                          */
1353                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1354
1355                         /* page alloc/put takes too long and effects small
1356                          * packet throughput, so unsplit small packets and
1357                          * save the alloc/put only valid in softirq (napi)
1358                          * context to call kmap_*
1359                          */
1360                         if (l1 && (l1 <= copybreak) &&
1361                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1362                                 u8 *vaddr;
1363
1364                                 ps_page = &buffer_info->ps_pages[0];
1365
1366                                 /* there is no documentation about how to call
1367                                  * kmap_atomic, so we can't hold the mapping
1368                                  * very long
1369                                  */
1370                                 dma_sync_single_for_cpu(&pdev->dev,
1371                                                         ps_page->dma,
1372                                                         PAGE_SIZE,
1373                                                         DMA_FROM_DEVICE);
1374                                 vaddr = kmap_atomic(ps_page->page);
1375                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1376                                 kunmap_atomic(vaddr);
1377                                 dma_sync_single_for_device(&pdev->dev,
1378                                                            ps_page->dma,
1379                                                            PAGE_SIZE,
1380                                                            DMA_FROM_DEVICE);
1381
1382                                 /* remove the CRC */
1383                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1384                                         if (!(netdev->features & NETIF_F_RXFCS))
1385                                                 l1 -= 4;
1386                                 }
1387
1388                                 skb_put(skb, l1);
1389                                 goto copydone;
1390                         }       /* if */
1391                 }
1392
1393                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1394                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1395                         if (!length)
1396                                 break;
1397
1398                         ps_page = &buffer_info->ps_pages[j];
1399                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1400                                        DMA_FROM_DEVICE);
1401                         ps_page->dma = 0;
1402                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1403                         ps_page->page = NULL;
1404                         skb->len += length;
1405                         skb->data_len += length;
1406                         skb->truesize += PAGE_SIZE;
1407                 }
1408
1409                 /* strip the ethernet crc, problem is we're using pages now so
1410                  * this whole operation can get a little cpu intensive
1411                  */
1412                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1413                         if (!(netdev->features & NETIF_F_RXFCS))
1414                                 pskb_trim(skb, skb->len - 4);
1415                 }
1416
1417 copydone:
1418                 total_rx_bytes += skb->len;
1419                 total_rx_packets++;
1420
1421                 e1000_rx_checksum(adapter, staterr, skb);
1422
1423                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1424
1425                 if (rx_desc->wb.upper.header_status &
1426                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1427                         adapter->rx_hdr_split++;
1428
1429                 e1000_receive_skb(adapter, netdev, skb, staterr,
1430                                   rx_desc->wb.middle.vlan);
1431
1432 next_desc:
1433                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1434                 buffer_info->skb = NULL;
1435
1436                 /* return some buffers to hardware, one at a time is too slow */
1437                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1438                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1439                                               GFP_ATOMIC);
1440                         cleaned_count = 0;
1441                 }
1442
1443                 /* use prefetched values */
1444                 rx_desc = next_rxd;
1445                 buffer_info = next_buffer;
1446
1447                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1448         }
1449         rx_ring->next_to_clean = i;
1450
1451         cleaned_count = e1000_desc_unused(rx_ring);
1452         if (cleaned_count)
1453                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1454
1455         adapter->total_rx_bytes += total_rx_bytes;
1456         adapter->total_rx_packets += total_rx_packets;
1457         return cleaned;
1458 }
1459
1460 /**
1461  * e1000_consume_page - helper function
1462  **/
1463 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1464                                u16 length)
1465 {
1466         bi->page = NULL;
1467         skb->len += length;
1468         skb->data_len += length;
1469         skb->truesize += PAGE_SIZE;
1470 }
1471
1472 /**
1473  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1474  * @adapter: board private structure
1475  *
1476  * the return value indicates whether actual cleaning was done, there
1477  * is no guarantee that everything was cleaned
1478  **/
1479 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1480                                      int work_to_do)
1481 {
1482         struct e1000_adapter *adapter = rx_ring->adapter;
1483         struct net_device *netdev = adapter->netdev;
1484         struct pci_dev *pdev = adapter->pdev;
1485         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1486         struct e1000_buffer *buffer_info, *next_buffer;
1487         u32 length, staterr;
1488         unsigned int i;
1489         int cleaned_count = 0;
1490         bool cleaned = false;
1491         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1492         struct skb_shared_info *shinfo;
1493
1494         i = rx_ring->next_to_clean;
1495         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1496         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1497         buffer_info = &rx_ring->buffer_info[i];
1498
1499         while (staterr & E1000_RXD_STAT_DD) {
1500                 struct sk_buff *skb;
1501
1502                 if (*work_done >= work_to_do)
1503                         break;
1504                 (*work_done)++;
1505                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1506
1507                 skb = buffer_info->skb;
1508                 buffer_info->skb = NULL;
1509
1510                 ++i;
1511                 if (i == rx_ring->count)
1512                         i = 0;
1513                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1514                 prefetch(next_rxd);
1515
1516                 next_buffer = &rx_ring->buffer_info[i];
1517
1518                 cleaned = true;
1519                 cleaned_count++;
1520                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1521                                DMA_FROM_DEVICE);
1522                 buffer_info->dma = 0;
1523
1524                 length = le16_to_cpu(rx_desc->wb.upper.length);
1525
1526                 /* errors is only valid for DD + EOP descriptors */
1527                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1528                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1529                               !(netdev->features & NETIF_F_RXALL)))) {
1530                         /* recycle both page and skb */
1531                         buffer_info->skb = skb;
1532                         /* an error means any chain goes out the window too */
1533                         if (rx_ring->rx_skb_top)
1534                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1535                         rx_ring->rx_skb_top = NULL;
1536                         goto next_desc;
1537                 }
1538 #define rxtop (rx_ring->rx_skb_top)
1539                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1540                         /* this descriptor is only the beginning (or middle) */
1541                         if (!rxtop) {
1542                                 /* this is the beginning of a chain */
1543                                 rxtop = skb;
1544                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1545                                                    0, length);
1546                         } else {
1547                                 /* this is the middle of a chain */
1548                                 shinfo = skb_shinfo(rxtop);
1549                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1550                                                    buffer_info->page, 0,
1551                                                    length);
1552                                 /* re-use the skb, only consumed the page */
1553                                 buffer_info->skb = skb;
1554                         }
1555                         e1000_consume_page(buffer_info, rxtop, length);
1556                         goto next_desc;
1557                 } else {
1558                         if (rxtop) {
1559                                 /* end of the chain */
1560                                 shinfo = skb_shinfo(rxtop);
1561                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1562                                                    buffer_info->page, 0,
1563                                                    length);
1564                                 /* re-use the current skb, we only consumed the
1565                                  * page
1566                                  */
1567                                 buffer_info->skb = skb;
1568                                 skb = rxtop;
1569                                 rxtop = NULL;
1570                                 e1000_consume_page(buffer_info, skb, length);
1571                         } else {
1572                                 /* no chain, got EOP, this buf is the packet
1573                                  * copybreak to save the put_page/alloc_page
1574                                  */
1575                                 if (length <= copybreak &&
1576                                     skb_tailroom(skb) >= length) {
1577                                         u8 *vaddr;
1578                                         vaddr = kmap_atomic(buffer_info->page);
1579                                         memcpy(skb_tail_pointer(skb), vaddr,
1580                                                length);
1581                                         kunmap_atomic(vaddr);
1582                                         /* re-use the page, so don't erase
1583                                          * buffer_info->page
1584                                          */
1585                                         skb_put(skb, length);
1586                                 } else {
1587                                         skb_fill_page_desc(skb, 0,
1588                                                            buffer_info->page, 0,
1589                                                            length);
1590                                         e1000_consume_page(buffer_info, skb,
1591                                                            length);
1592                                 }
1593                         }
1594                 }
1595
1596                 /* Receive Checksum Offload */
1597                 e1000_rx_checksum(adapter, staterr, skb);
1598
1599                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1600
1601                 /* probably a little skewed due to removing CRC */
1602                 total_rx_bytes += skb->len;
1603                 total_rx_packets++;
1604
1605                 /* eth type trans needs skb->data to point to something */
1606                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1607                         e_err("pskb_may_pull failed.\n");
1608                         dev_kfree_skb_irq(skb);
1609                         goto next_desc;
1610                 }
1611
1612                 e1000_receive_skb(adapter, netdev, skb, staterr,
1613                                   rx_desc->wb.upper.vlan);
1614
1615 next_desc:
1616                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1617
1618                 /* return some buffers to hardware, one at a time is too slow */
1619                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1620                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1621                                               GFP_ATOMIC);
1622                         cleaned_count = 0;
1623                 }
1624
1625                 /* use prefetched values */
1626                 rx_desc = next_rxd;
1627                 buffer_info = next_buffer;
1628
1629                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1630         }
1631         rx_ring->next_to_clean = i;
1632
1633         cleaned_count = e1000_desc_unused(rx_ring);
1634         if (cleaned_count)
1635                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1636
1637         adapter->total_rx_bytes += total_rx_bytes;
1638         adapter->total_rx_packets += total_rx_packets;
1639         return cleaned;
1640 }
1641
1642 /**
1643  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1644  * @rx_ring: Rx descriptor ring
1645  **/
1646 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1647 {
1648         struct e1000_adapter *adapter = rx_ring->adapter;
1649         struct e1000_buffer *buffer_info;
1650         struct e1000_ps_page *ps_page;
1651         struct pci_dev *pdev = adapter->pdev;
1652         unsigned int i, j;
1653
1654         /* Free all the Rx ring sk_buffs */
1655         for (i = 0; i < rx_ring->count; i++) {
1656                 buffer_info = &rx_ring->buffer_info[i];
1657                 if (buffer_info->dma) {
1658                         if (adapter->clean_rx == e1000_clean_rx_irq)
1659                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1660                                                  adapter->rx_buffer_len,
1661                                                  DMA_FROM_DEVICE);
1662                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1663                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1664                                                PAGE_SIZE, DMA_FROM_DEVICE);
1665                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1666                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1667                                                  adapter->rx_ps_bsize0,
1668                                                  DMA_FROM_DEVICE);
1669                         buffer_info->dma = 0;
1670                 }
1671
1672                 if (buffer_info->page) {
1673                         put_page(buffer_info->page);
1674                         buffer_info->page = NULL;
1675                 }
1676
1677                 if (buffer_info->skb) {
1678                         dev_kfree_skb(buffer_info->skb);
1679                         buffer_info->skb = NULL;
1680                 }
1681
1682                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1683                         ps_page = &buffer_info->ps_pages[j];
1684                         if (!ps_page->page)
1685                                 break;
1686                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1687                                        DMA_FROM_DEVICE);
1688                         ps_page->dma = 0;
1689                         put_page(ps_page->page);
1690                         ps_page->page = NULL;
1691                 }
1692         }
1693
1694         /* there also may be some cached data from a chained receive */
1695         if (rx_ring->rx_skb_top) {
1696                 dev_kfree_skb(rx_ring->rx_skb_top);
1697                 rx_ring->rx_skb_top = NULL;
1698         }
1699
1700         /* Zero out the descriptor ring */
1701         memset(rx_ring->desc, 0, rx_ring->size);
1702
1703         rx_ring->next_to_clean = 0;
1704         rx_ring->next_to_use = 0;
1705         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1706
1707         writel(0, rx_ring->head);
1708         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1709                 e1000e_update_rdt_wa(rx_ring, 0);
1710         else
1711                 writel(0, rx_ring->tail);
1712 }
1713
1714 static void e1000e_downshift_workaround(struct work_struct *work)
1715 {
1716         struct e1000_adapter *adapter = container_of(work,
1717                                                      struct e1000_adapter,
1718                                                      downshift_task);
1719
1720         if (test_bit(__E1000_DOWN, &adapter->state))
1721                 return;
1722
1723         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1724 }
1725
1726 /**
1727  * e1000_intr_msi - Interrupt Handler
1728  * @irq: interrupt number
1729  * @data: pointer to a network interface device structure
1730  **/
1731 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1732 {
1733         struct net_device *netdev = data;
1734         struct e1000_adapter *adapter = netdev_priv(netdev);
1735         struct e1000_hw *hw = &adapter->hw;
1736         u32 icr = er32(ICR);
1737
1738         /* read ICR disables interrupts using IAM */
1739         if (icr & E1000_ICR_LSC) {
1740                 hw->mac.get_link_status = true;
1741                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1742                  * disconnect (LSC) before accessing any PHY registers
1743                  */
1744                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1745                     (!(er32(STATUS) & E1000_STATUS_LU)))
1746                         schedule_work(&adapter->downshift_task);
1747
1748                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1749                  * link down event; disable receives here in the ISR and reset
1750                  * adapter in watchdog
1751                  */
1752                 if (netif_carrier_ok(netdev) &&
1753                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1754                         /* disable receives */
1755                         u32 rctl = er32(RCTL);
1756                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1757                         adapter->flags |= FLAG_RESTART_NOW;
1758                 }
1759                 /* guard against interrupt when we're going down */
1760                 if (!test_bit(__E1000_DOWN, &adapter->state))
1761                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1762         }
1763
1764         /* Reset on uncorrectable ECC error */
1765         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1766                 u32 pbeccsts = er32(PBECCSTS);
1767
1768                 adapter->corr_errors +=
1769                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1770                 adapter->uncorr_errors +=
1771                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1772                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1773
1774                 /* Do the reset outside of interrupt context */
1775                 schedule_work(&adapter->reset_task);
1776
1777                 /* return immediately since reset is imminent */
1778                 return IRQ_HANDLED;
1779         }
1780
1781         if (napi_schedule_prep(&adapter->napi)) {
1782                 adapter->total_tx_bytes = 0;
1783                 adapter->total_tx_packets = 0;
1784                 adapter->total_rx_bytes = 0;
1785                 adapter->total_rx_packets = 0;
1786                 __napi_schedule(&adapter->napi);
1787         }
1788
1789         return IRQ_HANDLED;
1790 }
1791
1792 /**
1793  * e1000_intr - Interrupt Handler
1794  * @irq: interrupt number
1795  * @data: pointer to a network interface device structure
1796  **/
1797 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1798 {
1799         struct net_device *netdev = data;
1800         struct e1000_adapter *adapter = netdev_priv(netdev);
1801         struct e1000_hw *hw = &adapter->hw;
1802         u32 rctl, icr = er32(ICR);
1803
1804         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1805                 return IRQ_NONE;        /* Not our interrupt */
1806
1807         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1808          * not set, then the adapter didn't send an interrupt
1809          */
1810         if (!(icr & E1000_ICR_INT_ASSERTED))
1811                 return IRQ_NONE;
1812
1813         /* Interrupt Auto-Mask...upon reading ICR,
1814          * interrupts are masked.  No need for the
1815          * IMC write
1816          */
1817
1818         if (icr & E1000_ICR_LSC) {
1819                 hw->mac.get_link_status = true;
1820                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1821                  * disconnect (LSC) before accessing any PHY registers
1822                  */
1823                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1824                     (!(er32(STATUS) & E1000_STATUS_LU)))
1825                         schedule_work(&adapter->downshift_task);
1826
1827                 /* 80003ES2LAN workaround--
1828                  * For packet buffer work-around on link down event;
1829                  * disable receives here in the ISR and
1830                  * reset adapter in watchdog
1831                  */
1832                 if (netif_carrier_ok(netdev) &&
1833                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1834                         /* disable receives */
1835                         rctl = er32(RCTL);
1836                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1837                         adapter->flags |= FLAG_RESTART_NOW;
1838                 }
1839                 /* guard against interrupt when we're going down */
1840                 if (!test_bit(__E1000_DOWN, &adapter->state))
1841                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1842         }
1843
1844         /* Reset on uncorrectable ECC error */
1845         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1846                 u32 pbeccsts = er32(PBECCSTS);
1847
1848                 adapter->corr_errors +=
1849                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1850                 adapter->uncorr_errors +=
1851                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1852                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1853
1854                 /* Do the reset outside of interrupt context */
1855                 schedule_work(&adapter->reset_task);
1856
1857                 /* return immediately since reset is imminent */
1858                 return IRQ_HANDLED;
1859         }
1860
1861         if (napi_schedule_prep(&adapter->napi)) {
1862                 adapter->total_tx_bytes = 0;
1863                 adapter->total_tx_packets = 0;
1864                 adapter->total_rx_bytes = 0;
1865                 adapter->total_rx_packets = 0;
1866                 __napi_schedule(&adapter->napi);
1867         }
1868
1869         return IRQ_HANDLED;
1870 }
1871
1872 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1873 {
1874         struct net_device *netdev = data;
1875         struct e1000_adapter *adapter = netdev_priv(netdev);
1876         struct e1000_hw *hw = &adapter->hw;
1877         u32 icr = er32(ICR);
1878
1879         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1880                 if (!test_bit(__E1000_DOWN, &adapter->state))
1881                         ew32(IMS, E1000_IMS_OTHER);
1882                 return IRQ_NONE;
1883         }
1884
1885         if (icr & adapter->eiac_mask)
1886                 ew32(ICS, (icr & adapter->eiac_mask));
1887
1888         if (icr & E1000_ICR_OTHER) {
1889                 if (!(icr & E1000_ICR_LSC))
1890                         goto no_link_interrupt;
1891                 hw->mac.get_link_status = true;
1892                 /* guard against interrupt when we're going down */
1893                 if (!test_bit(__E1000_DOWN, &adapter->state))
1894                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1895         }
1896
1897 no_link_interrupt:
1898         if (!test_bit(__E1000_DOWN, &adapter->state))
1899                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1900
1901         return IRQ_HANDLED;
1902 }
1903
1904 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1905 {
1906         struct net_device *netdev = data;
1907         struct e1000_adapter *adapter = netdev_priv(netdev);
1908         struct e1000_hw *hw = &adapter->hw;
1909         struct e1000_ring *tx_ring = adapter->tx_ring;
1910
1911         adapter->total_tx_bytes = 0;
1912         adapter->total_tx_packets = 0;
1913
1914         if (!e1000_clean_tx_irq(tx_ring))
1915                 /* Ring was not completely cleaned, so fire another interrupt */
1916                 ew32(ICS, tx_ring->ims_val);
1917
1918         return IRQ_HANDLED;
1919 }
1920
1921 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1922 {
1923         struct net_device *netdev = data;
1924         struct e1000_adapter *adapter = netdev_priv(netdev);
1925         struct e1000_ring *rx_ring = adapter->rx_ring;
1926
1927         /* Write the ITR value calculated at the end of the
1928          * previous interrupt.
1929          */
1930         if (rx_ring->set_itr) {
1931                 writel(1000000000 / (rx_ring->itr_val * 256),
1932                        rx_ring->itr_register);
1933                 rx_ring->set_itr = 0;
1934         }
1935
1936         if (napi_schedule_prep(&adapter->napi)) {
1937                 adapter->total_rx_bytes = 0;
1938                 adapter->total_rx_packets = 0;
1939                 __napi_schedule(&adapter->napi);
1940         }
1941         return IRQ_HANDLED;
1942 }
1943
1944 /**
1945  * e1000_configure_msix - Configure MSI-X hardware
1946  *
1947  * e1000_configure_msix sets up the hardware to properly
1948  * generate MSI-X interrupts.
1949  **/
1950 static void e1000_configure_msix(struct e1000_adapter *adapter)
1951 {
1952         struct e1000_hw *hw = &adapter->hw;
1953         struct e1000_ring *rx_ring = adapter->rx_ring;
1954         struct e1000_ring *tx_ring = adapter->tx_ring;
1955         int vector = 0;
1956         u32 ctrl_ext, ivar = 0;
1957
1958         adapter->eiac_mask = 0;
1959
1960         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1961         if (hw->mac.type == e1000_82574) {
1962                 u32 rfctl = er32(RFCTL);
1963                 rfctl |= E1000_RFCTL_ACK_DIS;
1964                 ew32(RFCTL, rfctl);
1965         }
1966
1967         /* Configure Rx vector */
1968         rx_ring->ims_val = E1000_IMS_RXQ0;
1969         adapter->eiac_mask |= rx_ring->ims_val;
1970         if (rx_ring->itr_val)
1971                 writel(1000000000 / (rx_ring->itr_val * 256),
1972                        rx_ring->itr_register);
1973         else
1974                 writel(1, rx_ring->itr_register);
1975         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1976
1977         /* Configure Tx vector */
1978         tx_ring->ims_val = E1000_IMS_TXQ0;
1979         vector++;
1980         if (tx_ring->itr_val)
1981                 writel(1000000000 / (tx_ring->itr_val * 256),
1982                        tx_ring->itr_register);
1983         else
1984                 writel(1, tx_ring->itr_register);
1985         adapter->eiac_mask |= tx_ring->ims_val;
1986         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1987
1988         /* set vector for Other Causes, e.g. link changes */
1989         vector++;
1990         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1991         if (rx_ring->itr_val)
1992                 writel(1000000000 / (rx_ring->itr_val * 256),
1993                        hw->hw_addr + E1000_EITR_82574(vector));
1994         else
1995                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1996
1997         /* Cause Tx interrupts on every write back */
1998         ivar |= (1 << 31);
1999
2000         ew32(IVAR, ivar);
2001
2002         /* enable MSI-X PBA support */
2003         ctrl_ext = er32(CTRL_EXT);
2004         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2005
2006         /* Auto-Mask Other interrupts upon ICR read */
2007         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2008         ctrl_ext |= E1000_CTRL_EXT_EIAME;
2009         ew32(CTRL_EXT, ctrl_ext);
2010         e1e_flush();
2011 }
2012
2013 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2014 {
2015         if (adapter->msix_entries) {
2016                 pci_disable_msix(adapter->pdev);
2017                 kfree(adapter->msix_entries);
2018                 adapter->msix_entries = NULL;
2019         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2020                 pci_disable_msi(adapter->pdev);
2021                 adapter->flags &= ~FLAG_MSI_ENABLED;
2022         }
2023 }
2024
2025 /**
2026  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2027  *
2028  * Attempt to configure interrupts using the best available
2029  * capabilities of the hardware and kernel.
2030  **/
2031 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2032 {
2033         int err;
2034         int i;
2035
2036         switch (adapter->int_mode) {
2037         case E1000E_INT_MODE_MSIX:
2038                 if (adapter->flags & FLAG_HAS_MSIX) {
2039                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2040                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2041                                                         sizeof(struct
2042                                                                msix_entry),
2043                                                         GFP_KERNEL);
2044                         if (adapter->msix_entries) {
2045                                 struct e1000_adapter *a = adapter;
2046
2047                                 for (i = 0; i < adapter->num_vectors; i++)
2048                                         adapter->msix_entries[i].entry = i;
2049
2050                                 err = pci_enable_msix_range(a->pdev,
2051                                                             a->msix_entries,
2052                                                             a->num_vectors,
2053                                                             a->num_vectors);
2054                                 if (err > 0)
2055                                         return;
2056                         }
2057                         /* MSI-X failed, so fall through and try MSI */
2058                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2059                         e1000e_reset_interrupt_capability(adapter);
2060                 }
2061                 adapter->int_mode = E1000E_INT_MODE_MSI;
2062                 /* Fall through */
2063         case E1000E_INT_MODE_MSI:
2064                 if (!pci_enable_msi(adapter->pdev)) {
2065                         adapter->flags |= FLAG_MSI_ENABLED;
2066                 } else {
2067                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2068                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2069                 }
2070                 /* Fall through */
2071         case E1000E_INT_MODE_LEGACY:
2072                 /* Don't do anything; this is the system default */
2073                 break;
2074         }
2075
2076         /* store the number of vectors being used */
2077         adapter->num_vectors = 1;
2078 }
2079
2080 /**
2081  * e1000_request_msix - Initialize MSI-X interrupts
2082  *
2083  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2084  * kernel.
2085  **/
2086 static int e1000_request_msix(struct e1000_adapter *adapter)
2087 {
2088         struct net_device *netdev = adapter->netdev;
2089         int err = 0, vector = 0;
2090
2091         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2092                 snprintf(adapter->rx_ring->name,
2093                          sizeof(adapter->rx_ring->name) - 1,
2094                          "%s-rx-0", netdev->name);
2095         else
2096                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2097         err = request_irq(adapter->msix_entries[vector].vector,
2098                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2099                           netdev);
2100         if (err)
2101                 return err;
2102         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2103             E1000_EITR_82574(vector);
2104         adapter->rx_ring->itr_val = adapter->itr;
2105         vector++;
2106
2107         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2108                 snprintf(adapter->tx_ring->name,
2109                          sizeof(adapter->tx_ring->name) - 1,
2110                          "%s-tx-0", netdev->name);
2111         else
2112                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2113         err = request_irq(adapter->msix_entries[vector].vector,
2114                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2115                           netdev);
2116         if (err)
2117                 return err;
2118         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2119             E1000_EITR_82574(vector);
2120         adapter->tx_ring->itr_val = adapter->itr;
2121         vector++;
2122
2123         err = request_irq(adapter->msix_entries[vector].vector,
2124                           e1000_msix_other, 0, netdev->name, netdev);
2125         if (err)
2126                 return err;
2127
2128         e1000_configure_msix(adapter);
2129
2130         return 0;
2131 }
2132
2133 /**
2134  * e1000_request_irq - initialize interrupts
2135  *
2136  * Attempts to configure interrupts using the best available
2137  * capabilities of the hardware and kernel.
2138  **/
2139 static int e1000_request_irq(struct e1000_adapter *adapter)
2140 {
2141         struct net_device *netdev = adapter->netdev;
2142         int err;
2143
2144         if (adapter->msix_entries) {
2145                 err = e1000_request_msix(adapter);
2146                 if (!err)
2147                         return err;
2148                 /* fall back to MSI */
2149                 e1000e_reset_interrupt_capability(adapter);
2150                 adapter->int_mode = E1000E_INT_MODE_MSI;
2151                 e1000e_set_interrupt_capability(adapter);
2152         }
2153         if (adapter->flags & FLAG_MSI_ENABLED) {
2154                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2155                                   netdev->name, netdev);
2156                 if (!err)
2157                         return err;
2158
2159                 /* fall back to legacy interrupt */
2160                 e1000e_reset_interrupt_capability(adapter);
2161                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2162         }
2163
2164         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2165                           netdev->name, netdev);
2166         if (err)
2167                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2168
2169         return err;
2170 }
2171
2172 static void e1000_free_irq(struct e1000_adapter *adapter)
2173 {
2174         struct net_device *netdev = adapter->netdev;
2175
2176         if (adapter->msix_entries) {
2177                 int vector = 0;
2178
2179                 free_irq(adapter->msix_entries[vector].vector, netdev);
2180                 vector++;
2181
2182                 free_irq(adapter->msix_entries[vector].vector, netdev);
2183                 vector++;
2184
2185                 /* Other Causes interrupt vector */
2186                 free_irq(adapter->msix_entries[vector].vector, netdev);
2187                 return;
2188         }
2189
2190         free_irq(adapter->pdev->irq, netdev);
2191 }
2192
2193 /**
2194  * e1000_irq_disable - Mask off interrupt generation on the NIC
2195  **/
2196 static void e1000_irq_disable(struct e1000_adapter *adapter)
2197 {
2198         struct e1000_hw *hw = &adapter->hw;
2199
2200         ew32(IMC, ~0);
2201         if (adapter->msix_entries)
2202                 ew32(EIAC_82574, 0);
2203         e1e_flush();
2204
2205         if (adapter->msix_entries) {
2206                 int i;
2207                 for (i = 0; i < adapter->num_vectors; i++)
2208                         synchronize_irq(adapter->msix_entries[i].vector);
2209         } else {
2210                 synchronize_irq(adapter->pdev->irq);
2211         }
2212 }
2213
2214 /**
2215  * e1000_irq_enable - Enable default interrupt generation settings
2216  **/
2217 static void e1000_irq_enable(struct e1000_adapter *adapter)
2218 {
2219         struct e1000_hw *hw = &adapter->hw;
2220
2221         if (adapter->msix_entries) {
2222                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2223                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2224         } else if (hw->mac.type == e1000_pch_lpt) {
2225                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2226         } else {
2227                 ew32(IMS, IMS_ENABLE_MASK);
2228         }
2229         e1e_flush();
2230 }
2231
2232 /**
2233  * e1000e_get_hw_control - get control of the h/w from f/w
2234  * @adapter: address of board private structure
2235  *
2236  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2237  * For ASF and Pass Through versions of f/w this means that
2238  * the driver is loaded. For AMT version (only with 82573)
2239  * of the f/w this means that the network i/f is open.
2240  **/
2241 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2242 {
2243         struct e1000_hw *hw = &adapter->hw;
2244         u32 ctrl_ext;
2245         u32 swsm;
2246
2247         /* Let firmware know the driver has taken over */
2248         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2249                 swsm = er32(SWSM);
2250                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2251         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2252                 ctrl_ext = er32(CTRL_EXT);
2253                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2254         }
2255 }
2256
2257 /**
2258  * e1000e_release_hw_control - release control of the h/w to f/w
2259  * @adapter: address of board private structure
2260  *
2261  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2262  * For ASF and Pass Through versions of f/w this means that the
2263  * driver is no longer loaded. For AMT version (only with 82573) i
2264  * of the f/w this means that the network i/f is closed.
2265  *
2266  **/
2267 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2268 {
2269         struct e1000_hw *hw = &adapter->hw;
2270         u32 ctrl_ext;
2271         u32 swsm;
2272
2273         /* Let firmware taken over control of h/w */
2274         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2275                 swsm = er32(SWSM);
2276                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2277         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2278                 ctrl_ext = er32(CTRL_EXT);
2279                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2280         }
2281 }
2282
2283 /**
2284  * e1000_alloc_ring_dma - allocate memory for a ring structure
2285  **/
2286 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2287                                 struct e1000_ring *ring)
2288 {
2289         struct pci_dev *pdev = adapter->pdev;
2290
2291         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2292                                         GFP_KERNEL);
2293         if (!ring->desc)
2294                 return -ENOMEM;
2295
2296         return 0;
2297 }
2298
2299 /**
2300  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2301  * @tx_ring: Tx descriptor ring
2302  *
2303  * Return 0 on success, negative on failure
2304  **/
2305 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2306 {
2307         struct e1000_adapter *adapter = tx_ring->adapter;
2308         int err = -ENOMEM, size;
2309
2310         size = sizeof(struct e1000_buffer) * tx_ring->count;
2311         tx_ring->buffer_info = vzalloc(size);
2312         if (!tx_ring->buffer_info)
2313                 goto err;
2314
2315         /* round up to nearest 4K */
2316         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2317         tx_ring->size = ALIGN(tx_ring->size, 4096);
2318
2319         err = e1000_alloc_ring_dma(adapter, tx_ring);
2320         if (err)
2321                 goto err;
2322
2323         tx_ring->next_to_use = 0;
2324         tx_ring->next_to_clean = 0;
2325
2326         return 0;
2327 err:
2328         vfree(tx_ring->buffer_info);
2329         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2330         return err;
2331 }
2332
2333 /**
2334  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2335  * @rx_ring: Rx descriptor ring
2336  *
2337  * Returns 0 on success, negative on failure
2338  **/
2339 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2340 {
2341         struct e1000_adapter *adapter = rx_ring->adapter;
2342         struct e1000_buffer *buffer_info;
2343         int i, size, desc_len, err = -ENOMEM;
2344
2345         size = sizeof(struct e1000_buffer) * rx_ring->count;
2346         rx_ring->buffer_info = vzalloc(size);
2347         if (!rx_ring->buffer_info)
2348                 goto err;
2349
2350         for (i = 0; i < rx_ring->count; i++) {
2351                 buffer_info = &rx_ring->buffer_info[i];
2352                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2353                                                 sizeof(struct e1000_ps_page),
2354                                                 GFP_KERNEL);
2355                 if (!buffer_info->ps_pages)
2356                         goto err_pages;
2357         }
2358
2359         desc_len = sizeof(union e1000_rx_desc_packet_split);
2360
2361         /* Round up to nearest 4K */
2362         rx_ring->size = rx_ring->count * desc_len;
2363         rx_ring->size = ALIGN(rx_ring->size, 4096);
2364
2365         err = e1000_alloc_ring_dma(adapter, rx_ring);
2366         if (err)
2367                 goto err_pages;
2368
2369         rx_ring->next_to_clean = 0;
2370         rx_ring->next_to_use = 0;
2371         rx_ring->rx_skb_top = NULL;
2372
2373         return 0;
2374
2375 err_pages:
2376         for (i = 0; i < rx_ring->count; i++) {
2377                 buffer_info = &rx_ring->buffer_info[i];
2378                 kfree(buffer_info->ps_pages);
2379         }
2380 err:
2381         vfree(rx_ring->buffer_info);
2382         e_err("Unable to allocate memory for the receive descriptor ring\n");
2383         return err;
2384 }
2385
2386 /**
2387  * e1000_clean_tx_ring - Free Tx Buffers
2388  * @tx_ring: Tx descriptor ring
2389  **/
2390 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2391 {
2392         struct e1000_adapter *adapter = tx_ring->adapter;
2393         struct e1000_buffer *buffer_info;
2394         unsigned long size;
2395         unsigned int i;
2396
2397         for (i = 0; i < tx_ring->count; i++) {
2398                 buffer_info = &tx_ring->buffer_info[i];
2399                 e1000_put_txbuf(tx_ring, buffer_info);
2400         }
2401
2402         netdev_reset_queue(adapter->netdev);
2403         size = sizeof(struct e1000_buffer) * tx_ring->count;
2404         memset(tx_ring->buffer_info, 0, size);
2405
2406         memset(tx_ring->desc, 0, tx_ring->size);
2407
2408         tx_ring->next_to_use = 0;
2409         tx_ring->next_to_clean = 0;
2410
2411         writel(0, tx_ring->head);
2412         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2413                 e1000e_update_tdt_wa(tx_ring, 0);
2414         else
2415                 writel(0, tx_ring->tail);
2416 }
2417
2418 /**
2419  * e1000e_free_tx_resources - Free Tx Resources per Queue
2420  * @tx_ring: Tx descriptor ring
2421  *
2422  * Free all transmit software resources
2423  **/
2424 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2425 {
2426         struct e1000_adapter *adapter = tx_ring->adapter;
2427         struct pci_dev *pdev = adapter->pdev;
2428
2429         e1000_clean_tx_ring(tx_ring);
2430
2431         vfree(tx_ring->buffer_info);
2432         tx_ring->buffer_info = NULL;
2433
2434         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2435                           tx_ring->dma);
2436         tx_ring->desc = NULL;
2437 }
2438
2439 /**
2440  * e1000e_free_rx_resources - Free Rx Resources
2441  * @rx_ring: Rx descriptor ring
2442  *
2443  * Free all receive software resources
2444  **/
2445 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2446 {
2447         struct e1000_adapter *adapter = rx_ring->adapter;
2448         struct pci_dev *pdev = adapter->pdev;
2449         int i;
2450
2451         e1000_clean_rx_ring(rx_ring);
2452
2453         for (i = 0; i < rx_ring->count; i++)
2454                 kfree(rx_ring->buffer_info[i].ps_pages);
2455
2456         vfree(rx_ring->buffer_info);
2457         rx_ring->buffer_info = NULL;
2458
2459         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2460                           rx_ring->dma);
2461         rx_ring->desc = NULL;
2462 }
2463
2464 /**
2465  * e1000_update_itr - update the dynamic ITR value based on statistics
2466  * @adapter: pointer to adapter
2467  * @itr_setting: current adapter->itr
2468  * @packets: the number of packets during this measurement interval
2469  * @bytes: the number of bytes during this measurement interval
2470  *
2471  *      Stores a new ITR value based on packets and byte
2472  *      counts during the last interrupt.  The advantage of per interrupt
2473  *      computation is faster updates and more accurate ITR for the current
2474  *      traffic pattern.  Constants in this function were computed
2475  *      based on theoretical maximum wire speed and thresholds were set based
2476  *      on testing data as well as attempting to minimize response time
2477  *      while increasing bulk throughput.  This functionality is controlled
2478  *      by the InterruptThrottleRate module parameter.
2479  **/
2480 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2481 {
2482         unsigned int retval = itr_setting;
2483
2484         if (packets == 0)
2485                 return itr_setting;
2486
2487         switch (itr_setting) {
2488         case lowest_latency:
2489                 /* handle TSO and jumbo frames */
2490                 if (bytes / packets > 8000)
2491                         retval = bulk_latency;
2492                 else if ((packets < 5) && (bytes > 512))
2493                         retval = low_latency;
2494                 break;
2495         case low_latency:       /* 50 usec aka 20000 ints/s */
2496                 if (bytes > 10000) {
2497                         /* this if handles the TSO accounting */
2498                         if (bytes / packets > 8000)
2499                                 retval = bulk_latency;
2500                         else if ((packets < 10) || ((bytes / packets) > 1200))
2501                                 retval = bulk_latency;
2502                         else if ((packets > 35))
2503                                 retval = lowest_latency;
2504                 } else if (bytes / packets > 2000) {
2505                         retval = bulk_latency;
2506                 } else if (packets <= 2 && bytes < 512) {
2507                         retval = lowest_latency;
2508                 }
2509                 break;
2510         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2511                 if (bytes > 25000) {
2512                         if (packets > 35)
2513                                 retval = low_latency;
2514                 } else if (bytes < 6000) {
2515                         retval = low_latency;
2516                 }
2517                 break;
2518         }
2519
2520         return retval;
2521 }
2522
2523 static void e1000_set_itr(struct e1000_adapter *adapter)
2524 {
2525         u16 current_itr;
2526         u32 new_itr = adapter->itr;
2527
2528         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2529         if (adapter->link_speed != SPEED_1000) {
2530                 current_itr = 0;
2531                 new_itr = 4000;
2532                 goto set_itr_now;
2533         }
2534
2535         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2536                 new_itr = 0;
2537                 goto set_itr_now;
2538         }
2539
2540         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2541                                            adapter->total_tx_packets,
2542                                            adapter->total_tx_bytes);
2543         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2544         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2545                 adapter->tx_itr = low_latency;
2546
2547         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2548                                            adapter->total_rx_packets,
2549                                            adapter->total_rx_bytes);
2550         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2551         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2552                 adapter->rx_itr = low_latency;
2553
2554         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2555
2556         /* counts and packets in update_itr are dependent on these numbers */
2557         switch (current_itr) {
2558         case lowest_latency:
2559                 new_itr = 70000;
2560                 break;
2561         case low_latency:
2562                 new_itr = 20000;        /* aka hwitr = ~200 */
2563                 break;
2564         case bulk_latency:
2565                 new_itr = 4000;
2566                 break;
2567         default:
2568                 break;
2569         }
2570
2571 set_itr_now:
2572         if (new_itr != adapter->itr) {
2573                 /* this attempts to bias the interrupt rate towards Bulk
2574                  * by adding intermediate steps when interrupt rate is
2575                  * increasing
2576                  */
2577                 new_itr = new_itr > adapter->itr ?
2578                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2579                 adapter->itr = new_itr;
2580                 adapter->rx_ring->itr_val = new_itr;
2581                 if (adapter->msix_entries)
2582                         adapter->rx_ring->set_itr = 1;
2583                 else
2584                         e1000e_write_itr(adapter, new_itr);
2585         }
2586 }
2587
2588 /**
2589  * e1000e_write_itr - write the ITR value to the appropriate registers
2590  * @adapter: address of board private structure
2591  * @itr: new ITR value to program
2592  *
2593  * e1000e_write_itr determines if the adapter is in MSI-X mode
2594  * and, if so, writes the EITR registers with the ITR value.
2595  * Otherwise, it writes the ITR value into the ITR register.
2596  **/
2597 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2598 {
2599         struct e1000_hw *hw = &adapter->hw;
2600         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2601
2602         if (adapter->msix_entries) {
2603                 int vector;
2604
2605                 for (vector = 0; vector < adapter->num_vectors; vector++)
2606                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2607         } else {
2608                 ew32(ITR, new_itr);
2609         }
2610 }
2611
2612 /**
2613  * e1000_alloc_queues - Allocate memory for all rings
2614  * @adapter: board private structure to initialize
2615  **/
2616 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2617 {
2618         int size = sizeof(struct e1000_ring);
2619
2620         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2621         if (!adapter->tx_ring)
2622                 goto err;
2623         adapter->tx_ring->count = adapter->tx_ring_count;
2624         adapter->tx_ring->adapter = adapter;
2625
2626         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2627         if (!adapter->rx_ring)
2628                 goto err;
2629         adapter->rx_ring->count = adapter->rx_ring_count;
2630         adapter->rx_ring->adapter = adapter;
2631
2632         return 0;
2633 err:
2634         e_err("Unable to allocate memory for queues\n");
2635         kfree(adapter->rx_ring);
2636         kfree(adapter->tx_ring);
2637         return -ENOMEM;
2638 }
2639
2640 /**
2641  * e1000e_poll - NAPI Rx polling callback
2642  * @napi: struct associated with this polling callback
2643  * @weight: number of packets driver is allowed to process this poll
2644  **/
2645 static int e1000e_poll(struct napi_struct *napi, int weight)
2646 {
2647         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2648                                                      napi);
2649         struct e1000_hw *hw = &adapter->hw;
2650         struct net_device *poll_dev = adapter->netdev;
2651         int tx_cleaned = 1, work_done = 0;
2652
2653         adapter = netdev_priv(poll_dev);
2654
2655         if (!adapter->msix_entries ||
2656             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2657                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2658
2659         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2660
2661         if (!tx_cleaned)
2662                 work_done = weight;
2663
2664         /* If weight not fully consumed, exit the polling mode */
2665         if (work_done < weight) {
2666                 if (adapter->itr_setting & 3)
2667                         e1000_set_itr(adapter);
2668                 napi_complete(napi);
2669                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2670                         if (adapter->msix_entries)
2671                                 ew32(IMS, adapter->rx_ring->ims_val);
2672                         else
2673                                 e1000_irq_enable(adapter);
2674                 }
2675         }
2676
2677         return work_done;
2678 }
2679
2680 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2681                                  __always_unused __be16 proto, u16 vid)
2682 {
2683         struct e1000_adapter *adapter = netdev_priv(netdev);
2684         struct e1000_hw *hw = &adapter->hw;
2685         u32 vfta, index;
2686
2687         /* don't update vlan cookie if already programmed */
2688         if ((adapter->hw.mng_cookie.status &
2689              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2690             (vid == adapter->mng_vlan_id))
2691                 return 0;
2692
2693         /* add VID to filter table */
2694         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2695                 index = (vid >> 5) & 0x7F;
2696                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2697                 vfta |= (1 << (vid & 0x1F));
2698                 hw->mac.ops.write_vfta(hw, index, vfta);
2699         }
2700
2701         set_bit(vid, adapter->active_vlans);
2702
2703         return 0;
2704 }
2705
2706 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2707                                   __always_unused __be16 proto, u16 vid)
2708 {
2709         struct e1000_adapter *adapter = netdev_priv(netdev);
2710         struct e1000_hw *hw = &adapter->hw;
2711         u32 vfta, index;
2712
2713         if ((adapter->hw.mng_cookie.status &
2714              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2715             (vid == adapter->mng_vlan_id)) {
2716                 /* release control to f/w */
2717                 e1000e_release_hw_control(adapter);
2718                 return 0;
2719         }
2720
2721         /* remove VID from filter table */
2722         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2723                 index = (vid >> 5) & 0x7F;
2724                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2725                 vfta &= ~(1 << (vid & 0x1F));
2726                 hw->mac.ops.write_vfta(hw, index, vfta);
2727         }
2728
2729         clear_bit(vid, adapter->active_vlans);
2730
2731         return 0;
2732 }
2733
2734 /**
2735  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2736  * @adapter: board private structure to initialize
2737  **/
2738 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2739 {
2740         struct net_device *netdev = adapter->netdev;
2741         struct e1000_hw *hw = &adapter->hw;
2742         u32 rctl;
2743
2744         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2745                 /* disable VLAN receive filtering */
2746                 rctl = er32(RCTL);
2747                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2748                 ew32(RCTL, rctl);
2749
2750                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2751                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2752                                                adapter->mng_vlan_id);
2753                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2754                 }
2755         }
2756 }
2757
2758 /**
2759  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2760  * @adapter: board private structure to initialize
2761  **/
2762 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2763 {
2764         struct e1000_hw *hw = &adapter->hw;
2765         u32 rctl;
2766
2767         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2768                 /* enable VLAN receive filtering */
2769                 rctl = er32(RCTL);
2770                 rctl |= E1000_RCTL_VFE;
2771                 rctl &= ~E1000_RCTL_CFIEN;
2772                 ew32(RCTL, rctl);
2773         }
2774 }
2775
2776 /**
2777  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2778  * @adapter: board private structure to initialize
2779  **/
2780 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2781 {
2782         struct e1000_hw *hw = &adapter->hw;
2783         u32 ctrl;
2784
2785         /* disable VLAN tag insert/strip */
2786         ctrl = er32(CTRL);
2787         ctrl &= ~E1000_CTRL_VME;
2788         ew32(CTRL, ctrl);
2789 }
2790
2791 /**
2792  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2793  * @adapter: board private structure to initialize
2794  **/
2795 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2796 {
2797         struct e1000_hw *hw = &adapter->hw;
2798         u32 ctrl;
2799
2800         /* enable VLAN tag insert/strip */
2801         ctrl = er32(CTRL);
2802         ctrl |= E1000_CTRL_VME;
2803         ew32(CTRL, ctrl);
2804 }
2805
2806 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2807 {
2808         struct net_device *netdev = adapter->netdev;
2809         u16 vid = adapter->hw.mng_cookie.vlan_id;
2810         u16 old_vid = adapter->mng_vlan_id;
2811
2812         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2813                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2814                 adapter->mng_vlan_id = vid;
2815         }
2816
2817         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2818                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2819 }
2820
2821 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2822 {
2823         u16 vid;
2824
2825         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2826
2827         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2828             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2829 }
2830
2831 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2832 {
2833         struct e1000_hw *hw = &adapter->hw;
2834         u32 manc, manc2h, mdef, i, j;
2835
2836         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2837                 return;
2838
2839         manc = er32(MANC);
2840
2841         /* enable receiving management packets to the host. this will probably
2842          * generate destination unreachable messages from the host OS, but
2843          * the packets will be handled on SMBUS
2844          */
2845         manc |= E1000_MANC_EN_MNG2HOST;
2846         manc2h = er32(MANC2H);
2847
2848         switch (hw->mac.type) {
2849         default:
2850                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2851                 break;
2852         case e1000_82574:
2853         case e1000_82583:
2854                 /* Check if IPMI pass-through decision filter already exists;
2855                  * if so, enable it.
2856                  */
2857                 for (i = 0, j = 0; i < 8; i++) {
2858                         mdef = er32(MDEF(i));
2859
2860                         /* Ignore filters with anything other than IPMI ports */
2861                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2862                                 continue;
2863
2864                         /* Enable this decision filter in MANC2H */
2865                         if (mdef)
2866                                 manc2h |= (1 << i);
2867
2868                         j |= mdef;
2869                 }
2870
2871                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2872                         break;
2873
2874                 /* Create new decision filter in an empty filter */
2875                 for (i = 0, j = 0; i < 8; i++)
2876                         if (er32(MDEF(i)) == 0) {
2877                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2878                                                E1000_MDEF_PORT_664));
2879                                 manc2h |= (1 << 1);
2880                                 j++;
2881                                 break;
2882                         }
2883
2884                 if (!j)
2885                         e_warn("Unable to create IPMI pass-through filter\n");
2886                 break;
2887         }
2888
2889         ew32(MANC2H, manc2h);
2890         ew32(MANC, manc);
2891 }
2892
2893 /**
2894  * e1000_configure_tx - Configure Transmit Unit after Reset
2895  * @adapter: board private structure
2896  *
2897  * Configure the Tx unit of the MAC after a reset.
2898  **/
2899 static void e1000_configure_tx(struct e1000_adapter *adapter)
2900 {
2901         struct e1000_hw *hw = &adapter->hw;
2902         struct e1000_ring *tx_ring = adapter->tx_ring;
2903         u64 tdba;
2904         u32 tdlen, tctl, tarc;
2905
2906         /* Setup the HW Tx Head and Tail descriptor pointers */
2907         tdba = tx_ring->dma;
2908         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2909         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2910         ew32(TDBAH(0), (tdba >> 32));
2911         ew32(TDLEN(0), tdlen);
2912         ew32(TDH(0), 0);
2913         ew32(TDT(0), 0);
2914         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2915         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2916
2917         /* Set the Tx Interrupt Delay register */
2918         ew32(TIDV, adapter->tx_int_delay);
2919         /* Tx irq moderation */
2920         ew32(TADV, adapter->tx_abs_int_delay);
2921
2922         if (adapter->flags2 & FLAG2_DMA_BURST) {
2923                 u32 txdctl = er32(TXDCTL(0));
2924                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2925                             E1000_TXDCTL_WTHRESH);
2926                 /* set up some performance related parameters to encourage the
2927                  * hardware to use the bus more efficiently in bursts, depends
2928                  * on the tx_int_delay to be enabled,
2929                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2930                  * hthresh = 1 ==> prefetch when one or more available
2931                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2932                  * BEWARE: this seems to work but should be considered first if
2933                  * there are Tx hangs or other Tx related bugs
2934                  */
2935                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2936                 ew32(TXDCTL(0), txdctl);
2937         }
2938         /* erratum work around: set txdctl the same for both queues */
2939         ew32(TXDCTL(1), er32(TXDCTL(0)));
2940
2941         /* Program the Transmit Control Register */
2942         tctl = er32(TCTL);
2943         tctl &= ~E1000_TCTL_CT;
2944         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2945                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2946
2947         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2948                 tarc = er32(TARC(0));
2949                 /* set the speed mode bit, we'll clear it if we're not at
2950                  * gigabit link later
2951                  */
2952 #define SPEED_MODE_BIT (1 << 21)
2953                 tarc |= SPEED_MODE_BIT;
2954                 ew32(TARC(0), tarc);
2955         }
2956
2957         /* errata: program both queues to unweighted RR */
2958         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2959                 tarc = er32(TARC(0));
2960                 tarc |= 1;
2961                 ew32(TARC(0), tarc);
2962                 tarc = er32(TARC(1));
2963                 tarc |= 1;
2964                 ew32(TARC(1), tarc);
2965         }
2966
2967         /* Setup Transmit Descriptor Settings for eop descriptor */
2968         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2969
2970         /* only set IDE if we are delaying interrupts using the timers */
2971         if (adapter->tx_int_delay)
2972                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2973
2974         /* enable Report Status bit */
2975         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2976
2977         ew32(TCTL, tctl);
2978
2979         hw->mac.ops.config_collision_dist(hw);
2980 }
2981
2982 /**
2983  * e1000_setup_rctl - configure the receive control registers
2984  * @adapter: Board private structure
2985  **/
2986 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2987                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2988 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2989 {
2990         struct e1000_hw *hw = &adapter->hw;
2991         u32 rctl, rfctl;
2992         u32 pages = 0;
2993
2994         /* Workaround Si errata on PCHx - configure jumbo frame flow.
2995          * If jumbo frames not set, program related MAC/PHY registers
2996          * to h/w defaults
2997          */
2998         if (hw->mac.type >= e1000_pch2lan) {
2999                 s32 ret_val;
3000
3001                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3002                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3003                 else
3004                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3005
3006                 if (ret_val)
3007                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3008         }
3009
3010         /* Program MC offset vector base */
3011         rctl = er32(RCTL);
3012         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3013         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3014             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3015             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3016
3017         /* Do not Store bad packets */
3018         rctl &= ~E1000_RCTL_SBP;
3019
3020         /* Enable Long Packet receive */
3021         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3022                 rctl &= ~E1000_RCTL_LPE;
3023         else
3024                 rctl |= E1000_RCTL_LPE;
3025
3026         /* Some systems expect that the CRC is included in SMBUS traffic. The
3027          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3028          * host memory when this is enabled
3029          */
3030         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3031                 rctl |= E1000_RCTL_SECRC;
3032
3033         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3034         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3035                 u16 phy_data;
3036
3037                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3038                 phy_data &= 0xfff8;
3039                 phy_data |= (1 << 2);
3040                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3041
3042                 e1e_rphy(hw, 22, &phy_data);
3043                 phy_data &= 0x0fff;
3044                 phy_data |= (1 << 14);
3045                 e1e_wphy(hw, 0x10, 0x2823);
3046                 e1e_wphy(hw, 0x11, 0x0003);
3047                 e1e_wphy(hw, 22, phy_data);
3048         }
3049
3050         /* Setup buffer sizes */
3051         rctl &= ~E1000_RCTL_SZ_4096;
3052         rctl |= E1000_RCTL_BSEX;
3053         switch (adapter->rx_buffer_len) {
3054         case 2048:
3055         default:
3056                 rctl |= E1000_RCTL_SZ_2048;
3057                 rctl &= ~E1000_RCTL_BSEX;
3058                 break;
3059         case 4096:
3060                 rctl |= E1000_RCTL_SZ_4096;
3061                 break;
3062         case 8192:
3063                 rctl |= E1000_RCTL_SZ_8192;
3064                 break;
3065         case 16384:
3066                 rctl |= E1000_RCTL_SZ_16384;
3067                 break;
3068         }
3069
3070         /* Enable Extended Status in all Receive Descriptors */
3071         rfctl = er32(RFCTL);
3072         rfctl |= E1000_RFCTL_EXTEN;
3073         ew32(RFCTL, rfctl);
3074
3075         /* 82571 and greater support packet-split where the protocol
3076          * header is placed in skb->data and the packet data is
3077          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3078          * In the case of a non-split, skb->data is linearly filled,
3079          * followed by the page buffers.  Therefore, skb->data is
3080          * sized to hold the largest protocol header.
3081          *
3082          * allocations using alloc_page take too long for regular MTU
3083          * so only enable packet split for jumbo frames
3084          *
3085          * Using pages when the page size is greater than 16k wastes
3086          * a lot of memory, since we allocate 3 pages at all times
3087          * per packet.
3088          */
3089         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3090         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3091                 adapter->rx_ps_pages = pages;
3092         else
3093                 adapter->rx_ps_pages = 0;
3094
3095         if (adapter->rx_ps_pages) {
3096                 u32 psrctl = 0;
3097
3098                 /* Enable Packet split descriptors */
3099                 rctl |= E1000_RCTL_DTYP_PS;
3100
3101                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3102
3103                 switch (adapter->rx_ps_pages) {
3104                 case 3:
3105                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3106                         /* fall-through */
3107                 case 2:
3108                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3109                         /* fall-through */
3110                 case 1:
3111                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3112                         break;
3113                 }
3114
3115                 ew32(PSRCTL, psrctl);
3116         }
3117
3118         /* This is useful for sniffing bad packets. */
3119         if (adapter->netdev->features & NETIF_F_RXALL) {
3120                 /* UPE and MPE will be handled by normal PROMISC logic
3121                  * in e1000e_set_rx_mode
3122                  */
3123                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3124                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3125                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3126
3127                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3128                           E1000_RCTL_DPF |      /* Allow filtered pause */
3129                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3130                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3131                  * and that breaks VLANs.
3132                  */
3133         }
3134
3135         ew32(RCTL, rctl);
3136         /* just started the receive unit, no need to restart */
3137         adapter->flags &= ~FLAG_RESTART_NOW;
3138 }
3139
3140 /**
3141  * e1000_configure_rx - Configure Receive Unit after Reset
3142  * @adapter: board private structure
3143  *
3144  * Configure the Rx unit of the MAC after a reset.
3145  **/
3146 static void e1000_configure_rx(struct e1000_adapter *adapter)
3147 {
3148         struct e1000_hw *hw = &adapter->hw;
3149         struct e1000_ring *rx_ring = adapter->rx_ring;
3150         u64 rdba;
3151         u32 rdlen, rctl, rxcsum, ctrl_ext;
3152
3153         if (adapter->rx_ps_pages) {
3154                 /* this is a 32 byte descriptor */
3155                 rdlen = rx_ring->count *
3156                     sizeof(union e1000_rx_desc_packet_split);
3157                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3158                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3159         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3160                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3161                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3162                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3163         } else {
3164                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3165                 adapter->clean_rx = e1000_clean_rx_irq;
3166                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3167         }
3168
3169         /* disable receives while setting up the descriptors */
3170         rctl = er32(RCTL);
3171         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3172                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3173         e1e_flush();
3174         usleep_range(10000, 20000);
3175
3176         if (adapter->flags2 & FLAG2_DMA_BURST) {
3177                 /* set the writeback threshold (only takes effect if the RDTR
3178                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3179                  * enable prefetching of 0x20 Rx descriptors
3180                  * granularity = 01
3181                  * wthresh = 04,
3182                  * hthresh = 04,
3183                  * pthresh = 0x20
3184                  */
3185                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3186                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3187
3188                 /* override the delay timers for enabling bursting, only if
3189                  * the value was not set by the user via module options
3190                  */
3191                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3192                         adapter->rx_int_delay = BURST_RDTR;
3193                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3194                         adapter->rx_abs_int_delay = BURST_RADV;
3195         }
3196
3197         /* set the Receive Delay Timer Register */
3198         ew32(RDTR, adapter->rx_int_delay);
3199
3200         /* irq moderation */
3201         ew32(RADV, adapter->rx_abs_int_delay);
3202         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3203                 e1000e_write_itr(adapter, adapter->itr);
3204
3205         ctrl_ext = er32(CTRL_EXT);
3206         /* Auto-Mask interrupts upon ICR access */
3207         ctrl_ext |= E1000_CTRL_EXT_IAME;
3208         ew32(IAM, 0xffffffff);
3209         ew32(CTRL_EXT, ctrl_ext);
3210         e1e_flush();
3211
3212         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3213          * the Base and Length of the Rx Descriptor Ring
3214          */
3215         rdba = rx_ring->dma;
3216         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3217         ew32(RDBAH(0), (rdba >> 32));
3218         ew32(RDLEN(0), rdlen);
3219         ew32(RDH(0), 0);
3220         ew32(RDT(0), 0);
3221         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3222         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3223
3224         /* Enable Receive Checksum Offload for TCP and UDP */
3225         rxcsum = er32(RXCSUM);
3226         if (adapter->netdev->features & NETIF_F_RXCSUM)
3227                 rxcsum |= E1000_RXCSUM_TUOFL;
3228         else
3229                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3230         ew32(RXCSUM, rxcsum);
3231
3232         /* With jumbo frames, excessive C-state transition latencies result
3233          * in dropped transactions.
3234          */
3235         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3236                 u32 lat =
3237                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3238                      adapter->max_frame_size) * 8 / 1000;
3239
3240                 if (adapter->flags & FLAG_IS_ICH) {
3241                         u32 rxdctl = er32(RXDCTL(0));
3242                         ew32(RXDCTL(0), rxdctl | 0x3);
3243                 }
3244
3245                 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3246         } else {
3247                 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3248                                       PM_QOS_DEFAULT_VALUE);
3249         }
3250
3251         /* Enable Receives */
3252         ew32(RCTL, rctl);
3253 }
3254
3255 /**
3256  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3257  * @netdev: network interface device structure
3258  *
3259  * Writes multicast address list to the MTA hash table.
3260  * Returns: -ENOMEM on failure
3261  *                0 on no addresses written
3262  *                X on writing X addresses to MTA
3263  */
3264 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3265 {
3266         struct e1000_adapter *adapter = netdev_priv(netdev);
3267         struct e1000_hw *hw = &adapter->hw;
3268         struct netdev_hw_addr *ha;
3269         u8 *mta_list;
3270         int i;
3271
3272         if (netdev_mc_empty(netdev)) {
3273                 /* nothing to program, so clear mc list */
3274                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3275                 return 0;
3276         }
3277
3278         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3279         if (!mta_list)
3280                 return -ENOMEM;
3281
3282         /* update_mc_addr_list expects a packed array of only addresses. */
3283         i = 0;
3284         netdev_for_each_mc_addr(ha, netdev)
3285             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3286
3287         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3288         kfree(mta_list);
3289
3290         return netdev_mc_count(netdev);
3291 }
3292
3293 /**
3294  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3295  * @netdev: network interface device structure
3296  *
3297  * Writes unicast address list to the RAR table.
3298  * Returns: -ENOMEM on failure/insufficient address space
3299  *                0 on no addresses written
3300  *                X on writing X addresses to the RAR table
3301  **/
3302 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3303 {
3304         struct e1000_adapter *adapter = netdev_priv(netdev);
3305         struct e1000_hw *hw = &adapter->hw;
3306         unsigned int rar_entries = hw->mac.rar_entry_count;
3307         int count = 0;
3308
3309         /* save a rar entry for our hardware address */
3310         rar_entries--;
3311
3312         /* save a rar entry for the LAA workaround */
3313         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3314                 rar_entries--;
3315
3316         /* return ENOMEM indicating insufficient memory for addresses */
3317         if (netdev_uc_count(netdev) > rar_entries)
3318                 return -ENOMEM;
3319
3320         if (!netdev_uc_empty(netdev) && rar_entries) {
3321                 struct netdev_hw_addr *ha;
3322
3323                 /* write the addresses in reverse order to avoid write
3324                  * combining
3325                  */
3326                 netdev_for_each_uc_addr(ha, netdev) {
3327                         if (!rar_entries)
3328                                 break;
3329                         hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3330                         count++;
3331                 }
3332         }
3333
3334         /* zero out the remaining RAR entries not used above */
3335         for (; rar_entries > 0; rar_entries--) {
3336                 ew32(RAH(rar_entries), 0);
3337                 ew32(RAL(rar_entries), 0);
3338         }
3339         e1e_flush();
3340
3341         return count;
3342 }
3343
3344 /**
3345  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3346  * @netdev: network interface device structure
3347  *
3348  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3349  * address list or the network interface flags are updated.  This routine is
3350  * responsible for configuring the hardware for proper unicast, multicast,
3351  * promiscuous mode, and all-multi behavior.
3352  **/
3353 static void e1000e_set_rx_mode(struct net_device *netdev)
3354 {
3355         struct e1000_adapter *adapter = netdev_priv(netdev);
3356         struct e1000_hw *hw = &adapter->hw;
3357         u32 rctl;
3358
3359         if (pm_runtime_suspended(netdev->dev.parent))
3360                 return;
3361
3362         /* Check for Promiscuous and All Multicast modes */
3363         rctl = er32(RCTL);
3364
3365         /* clear the affected bits */
3366         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3367
3368         if (netdev->flags & IFF_PROMISC) {
3369                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3370                 /* Do not hardware filter VLANs in promisc mode */
3371                 e1000e_vlan_filter_disable(adapter);
3372         } else {
3373                 int count;
3374
3375                 if (netdev->flags & IFF_ALLMULTI) {
3376                         rctl |= E1000_RCTL_MPE;
3377                 } else {
3378                         /* Write addresses to the MTA, if the attempt fails
3379                          * then we should just turn on promiscuous mode so
3380                          * that we can at least receive multicast traffic
3381                          */
3382                         count = e1000e_write_mc_addr_list(netdev);
3383                         if (count < 0)
3384                                 rctl |= E1000_RCTL_MPE;
3385                 }
3386                 e1000e_vlan_filter_enable(adapter);
3387                 /* Write addresses to available RAR registers, if there is not
3388                  * sufficient space to store all the addresses then enable
3389                  * unicast promiscuous mode
3390                  */
3391                 count = e1000e_write_uc_addr_list(netdev);
3392                 if (count < 0)
3393                         rctl |= E1000_RCTL_UPE;
3394         }
3395
3396         ew32(RCTL, rctl);
3397
3398         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3399                 e1000e_vlan_strip_enable(adapter);
3400         else
3401                 e1000e_vlan_strip_disable(adapter);
3402 }
3403
3404 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3405 {
3406         struct e1000_hw *hw = &adapter->hw;
3407         u32 mrqc, rxcsum;
3408         int i;
3409         static const u32 rsskey[10] = {
3410                 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3411                 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3412         };
3413
3414         /* Fill out hash function seed */
3415         for (i = 0; i < 10; i++)
3416                 ew32(RSSRK(i), rsskey[i]);
3417
3418         /* Direct all traffic to queue 0 */
3419         for (i = 0; i < 32; i++)
3420                 ew32(RETA(i), 0);
3421
3422         /* Disable raw packet checksumming so that RSS hash is placed in
3423          * descriptor on writeback.
3424          */
3425         rxcsum = er32(RXCSUM);
3426         rxcsum |= E1000_RXCSUM_PCSD;
3427
3428         ew32(RXCSUM, rxcsum);
3429
3430         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3431                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3432                 E1000_MRQC_RSS_FIELD_IPV6 |
3433                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3434                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3435
3436         ew32(MRQC, mrqc);
3437 }
3438
3439 /**
3440  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3441  * @adapter: board private structure
3442  * @timinca: pointer to returned time increment attributes
3443  *
3444  * Get attributes for incrementing the System Time Register SYSTIML/H at
3445  * the default base frequency, and set the cyclecounter shift value.
3446  **/
3447 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3448 {
3449         struct e1000_hw *hw = &adapter->hw;
3450         u32 incvalue, incperiod, shift;
3451
3452         /* Make sure clock is enabled on I217 before checking the frequency */
3453         if ((hw->mac.type == e1000_pch_lpt) &&
3454             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3455             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3456                 u32 fextnvm7 = er32(FEXTNVM7);
3457
3458                 if (!(fextnvm7 & (1 << 0))) {
3459                         ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3460                         e1e_flush();
3461                 }
3462         }
3463
3464         switch (hw->mac.type) {
3465         case e1000_pch2lan:
3466         case e1000_pch_lpt:
3467                 /* On I217, the clock frequency is 25MHz or 96MHz as
3468                  * indicated by the System Clock Frequency Indication
3469                  */
3470                 if ((hw->mac.type != e1000_pch_lpt) ||
3471                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3472                         /* Stable 96MHz frequency */
3473                         incperiod = INCPERIOD_96MHz;
3474                         incvalue = INCVALUE_96MHz;
3475                         shift = INCVALUE_SHIFT_96MHz;
3476                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3477                         break;
3478                 }
3479                 /* fall-through */
3480         case e1000_82574:
3481         case e1000_82583:
3482                 /* Stable 25MHz frequency */
3483                 incperiod = INCPERIOD_25MHz;
3484                 incvalue = INCVALUE_25MHz;
3485                 shift = INCVALUE_SHIFT_25MHz;
3486                 adapter->cc.shift = shift;
3487                 break;
3488         default:
3489                 return -EINVAL;
3490         }
3491
3492         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3493                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3494
3495         return 0;
3496 }
3497
3498 /**
3499  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3500  * @adapter: board private structure
3501  *
3502  * Outgoing time stamping can be enabled and disabled. Play nice and
3503  * disable it when requested, although it shouldn't cause any overhead
3504  * when no packet needs it. At most one packet in the queue may be
3505  * marked for time stamping, otherwise it would be impossible to tell
3506  * for sure to which packet the hardware time stamp belongs.
3507  *
3508  * Incoming time stamping has to be configured via the hardware filters.
3509  * Not all combinations are supported, in particular event type has to be
3510  * specified. Matching the kind of event packet is not supported, with the
3511  * exception of "all V2 events regardless of level 2 or 4".
3512  **/
3513 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3514                                   struct hwtstamp_config *config)
3515 {
3516         struct e1000_hw *hw = &adapter->hw;
3517         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3518         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3519         u32 rxmtrl = 0;
3520         u16 rxudp = 0;
3521         bool is_l4 = false;
3522         bool is_l2 = false;
3523         u32 regval;
3524         s32 ret_val;
3525
3526         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3527                 return -EINVAL;
3528
3529         /* flags reserved for future extensions - must be zero */
3530         if (config->flags)
3531                 return -EINVAL;
3532
3533         switch (config->tx_type) {
3534         case HWTSTAMP_TX_OFF:
3535                 tsync_tx_ctl = 0;
3536                 break;
3537         case HWTSTAMP_TX_ON:
3538                 break;
3539         default:
3540                 return -ERANGE;
3541         }
3542
3543         switch (config->rx_filter) {
3544         case HWTSTAMP_FILTER_NONE:
3545                 tsync_rx_ctl = 0;
3546                 break;
3547         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3548                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3549                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3550                 is_l4 = true;
3551                 break;
3552         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3553                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3554                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3555                 is_l4 = true;
3556                 break;
3557         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3558                 /* Also time stamps V2 L2 Path Delay Request/Response */
3559                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3560                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3561                 is_l2 = true;
3562                 break;
3563         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3564                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3565                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3566                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3567                 is_l2 = true;
3568                 break;
3569         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3570                 /* Hardware cannot filter just V2 L4 Sync messages;
3571                  * fall-through to V2 (both L2 and L4) Sync.
3572                  */
3573         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3574                 /* Also time stamps V2 Path Delay Request/Response. */
3575                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3576                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3577                 is_l2 = true;
3578                 is_l4 = true;
3579                 break;
3580         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3581                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3582                  * fall-through to V2 (both L2 and L4) Delay Request.
3583                  */
3584         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3585                 /* Also time stamps V2 Path Delay Request/Response. */
3586                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3587                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3588                 is_l2 = true;
3589                 is_l4 = true;
3590                 break;
3591         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3592         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3593                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3594                  * fall-through to all V2 (both L2 and L4) Events.
3595                  */
3596         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3597                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3598                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3599                 is_l2 = true;
3600                 is_l4 = true;
3601                 break;
3602         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3603                 /* For V1, the hardware can only filter Sync messages or
3604                  * Delay Request messages but not both so fall-through to
3605                  * time stamp all packets.
3606                  */
3607         case HWTSTAMP_FILTER_ALL:
3608                 is_l2 = true;
3609                 is_l4 = true;
3610                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3611                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3612                 break;
3613         default:
3614                 return -ERANGE;
3615         }
3616
3617         adapter->hwtstamp_config = *config;
3618
3619         /* enable/disable Tx h/w time stamping */
3620         regval = er32(TSYNCTXCTL);
3621         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3622         regval |= tsync_tx_ctl;
3623         ew32(TSYNCTXCTL, regval);
3624         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3625             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3626                 e_err("Timesync Tx Control register not set as expected\n");
3627                 return -EAGAIN;
3628         }
3629
3630         /* enable/disable Rx h/w time stamping */
3631         regval = er32(TSYNCRXCTL);
3632         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3633         regval |= tsync_rx_ctl;
3634         ew32(TSYNCRXCTL, regval);
3635         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3636                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3637             (regval & (E1000_TSYNCRXCTL_ENABLED |
3638                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3639                 e_err("Timesync Rx Control register not set as expected\n");
3640                 return -EAGAIN;
3641         }
3642
3643         /* L2: define ethertype filter for time stamped packets */
3644         if (is_l2)
3645                 rxmtrl |= ETH_P_1588;
3646
3647         /* define which PTP packets get time stamped */
3648         ew32(RXMTRL, rxmtrl);
3649
3650         /* Filter by destination port */
3651         if (is_l4) {
3652                 rxudp = PTP_EV_PORT;
3653                 cpu_to_be16s(&rxudp);
3654         }
3655         ew32(RXUDP, rxudp);
3656
3657         e1e_flush();
3658
3659         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3660         er32(RXSTMPH);
3661         er32(TXSTMPH);
3662
3663         /* Get and set the System Time Register SYSTIM base frequency */
3664         ret_val = e1000e_get_base_timinca(adapter, &regval);
3665         if (ret_val)
3666                 return ret_val;
3667         ew32(TIMINCA, regval);
3668
3669         /* reset the ns time counter */
3670         timecounter_init(&adapter->tc, &adapter->cc,
3671                          ktime_to_ns(ktime_get_real()));
3672
3673         return 0;
3674 }
3675
3676 /**
3677  * e1000_configure - configure the hardware for Rx and Tx
3678  * @adapter: private board structure
3679  **/
3680 static void e1000_configure(struct e1000_adapter *adapter)
3681 {
3682         struct e1000_ring *rx_ring = adapter->rx_ring;
3683
3684         e1000e_set_rx_mode(adapter->netdev);
3685
3686         e1000_restore_vlan(adapter);
3687         e1000_init_manageability_pt(adapter);
3688
3689         e1000_configure_tx(adapter);
3690
3691         if (adapter->netdev->features & NETIF_F_RXHASH)
3692                 e1000e_setup_rss_hash(adapter);
3693         e1000_setup_rctl(adapter);
3694         e1000_configure_rx(adapter);
3695         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3696 }
3697
3698 /**
3699  * e1000e_power_up_phy - restore link in case the phy was powered down
3700  * @adapter: address of board private structure
3701  *
3702  * The phy may be powered down to save power and turn off link when the
3703  * driver is unloaded and wake on lan is not enabled (among others)
3704  * *** this routine MUST be followed by a call to e1000e_reset ***
3705  **/
3706 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3707 {
3708         if (adapter->hw.phy.ops.power_up)
3709                 adapter->hw.phy.ops.power_up(&adapter->hw);
3710
3711         adapter->hw.mac.ops.setup_link(&adapter->hw);
3712 }
3713
3714 /**
3715  * e1000_power_down_phy - Power down the PHY
3716  *
3717  * Power down the PHY so no link is implied when interface is down.
3718  * The PHY cannot be powered down if management or WoL is active.
3719  */
3720 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3721 {
3722         if (adapter->hw.phy.ops.power_down)
3723                 adapter->hw.phy.ops.power_down(&adapter->hw);
3724 }
3725
3726 /**
3727  * e1000e_reset - bring the hardware into a known good state
3728  *
3729  * This function boots the hardware and enables some settings that
3730  * require a configuration cycle of the hardware - those cannot be
3731  * set/changed during runtime. After reset the device needs to be
3732  * properly configured for Rx, Tx etc.
3733  */
3734 void e1000e_reset(struct e1000_adapter *adapter)
3735 {
3736         struct e1000_mac_info *mac = &adapter->hw.mac;
3737         struct e1000_fc_info *fc = &adapter->hw.fc;
3738         struct e1000_hw *hw = &adapter->hw;
3739         u32 tx_space, min_tx_space, min_rx_space;
3740         u32 pba = adapter->pba;
3741         u16 hwm;
3742
3743         /* reset Packet Buffer Allocation to default */
3744         ew32(PBA, pba);
3745
3746         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3747                 /* To maintain wire speed transmits, the Tx FIFO should be
3748                  * large enough to accommodate two full transmit packets,
3749                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3750                  * the Rx FIFO should be large enough to accommodate at least
3751                  * one full receive packet and is similarly rounded up and
3752                  * expressed in KB.
3753                  */
3754                 pba = er32(PBA);
3755                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3756                 tx_space = pba >> 16;
3757                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3758                 pba &= 0xffff;
3759                 /* the Tx fifo also stores 16 bytes of information about the Tx
3760                  * but don't include ethernet FCS because hardware appends it
3761                  */
3762                 min_tx_space = (adapter->max_frame_size +
3763                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3764                 min_tx_space = ALIGN(min_tx_space, 1024);
3765                 min_tx_space >>= 10;
3766                 /* software strips receive CRC, so leave room for it */
3767                 min_rx_space = adapter->max_frame_size;
3768                 min_rx_space = ALIGN(min_rx_space, 1024);
3769                 min_rx_space >>= 10;
3770
3771                 /* If current Tx allocation is less than the min Tx FIFO size,
3772                  * and the min Tx FIFO size is less than the current Rx FIFO
3773                  * allocation, take space away from current Rx allocation
3774                  */
3775                 if ((tx_space < min_tx_space) &&
3776                     ((min_tx_space - tx_space) < pba)) {
3777                         pba -= min_tx_space - tx_space;
3778
3779                         /* if short on Rx space, Rx wins and must trump Tx
3780                          * adjustment
3781                          */
3782                         if (pba < min_rx_space)
3783                                 pba = min_rx_space;
3784                 }
3785
3786                 ew32(PBA, pba);
3787         }
3788
3789         /* flow control settings
3790          *
3791          * The high water mark must be low enough to fit one full frame
3792          * (or the size used for early receive) above it in the Rx FIFO.
3793          * Set it to the lower of:
3794          * - 90% of the Rx FIFO size, and
3795          * - the full Rx FIFO size minus one full frame
3796          */
3797         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3798                 fc->pause_time = 0xFFFF;
3799         else
3800                 fc->pause_time = E1000_FC_PAUSE_TIME;
3801         fc->send_xon = true;
3802         fc->current_mode = fc->requested_mode;
3803
3804         switch (hw->mac.type) {
3805         case e1000_ich9lan:
3806         case e1000_ich10lan:
3807                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3808                         pba = 14;
3809                         ew32(PBA, pba);
3810                         fc->high_water = 0x2800;
3811                         fc->low_water = fc->high_water - 8;
3812                         break;
3813                 }
3814                 /* fall-through */
3815         default:
3816                 hwm = min(((pba << 10) * 9 / 10),
3817                           ((pba << 10) - adapter->max_frame_size));
3818
3819                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3820                 fc->low_water = fc->high_water - 8;
3821                 break;
3822         case e1000_pchlan:
3823                 /* Workaround PCH LOM adapter hangs with certain network
3824                  * loads.  If hangs persist, try disabling Tx flow control.
3825                  */
3826                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3827                         fc->high_water = 0x3500;
3828                         fc->low_water = 0x1500;
3829                 } else {
3830                         fc->high_water = 0x5000;
3831                         fc->low_water = 0x3000;
3832                 }
3833                 fc->refresh_time = 0x1000;
3834                 break;
3835         case e1000_pch2lan:
3836         case e1000_pch_lpt:
3837                 fc->refresh_time = 0x0400;
3838
3839                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3840                         fc->high_water = 0x05C20;
3841                         fc->low_water = 0x05048;
3842                         fc->pause_time = 0x0650;
3843                         break;
3844                 }
3845
3846                 pba = 14;
3847                 ew32(PBA, pba);
3848                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3849                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3850                 break;
3851         }
3852
3853         /* Alignment of Tx data is on an arbitrary byte boundary with the
3854          * maximum size per Tx descriptor limited only to the transmit
3855          * allocation of the packet buffer minus 96 bytes with an upper
3856          * limit of 24KB due to receive synchronization limitations.
3857          */
3858         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3859                                        24 << 10);
3860
3861         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3862          * fit in receive buffer.
3863          */
3864         if (adapter->itr_setting & 0x3) {
3865                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3866                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3867                                 dev_info(&adapter->pdev->dev,
3868                                          "Interrupt Throttle Rate off\n");
3869                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3870                                 e1000e_write_itr(adapter, 0);
3871                         }
3872                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3873                         dev_info(&adapter->pdev->dev,
3874                                  "Interrupt Throttle Rate on\n");
3875                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3876                         adapter->itr = 20000;
3877                         e1000e_write_itr(adapter, adapter->itr);
3878                 }
3879         }
3880
3881         /* Allow time for pending master requests to run */
3882         mac->ops.reset_hw(hw);
3883
3884         /* For parts with AMT enabled, let the firmware know
3885          * that the network interface is in control
3886          */
3887         if (adapter->flags & FLAG_HAS_AMT)
3888                 e1000e_get_hw_control(adapter);
3889
3890         ew32(WUC, 0);
3891
3892         if (mac->ops.init_hw(hw))
3893                 e_err("Hardware Error\n");
3894
3895         e1000_update_mng_vlan(adapter);
3896
3897         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3898         ew32(VET, ETH_P_8021Q);
3899
3900         e1000e_reset_adaptive(hw);
3901
3902         /* initialize systim and reset the ns time counter */
3903         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3904
3905         /* Set EEE advertisement as appropriate */
3906         if (adapter->flags2 & FLAG2_HAS_EEE) {
3907                 s32 ret_val;
3908                 u16 adv_addr;
3909
3910                 switch (hw->phy.type) {
3911                 case e1000_phy_82579:
3912                         adv_addr = I82579_EEE_ADVERTISEMENT;
3913                         break;
3914                 case e1000_phy_i217:
3915                         adv_addr = I217_EEE_ADVERTISEMENT;
3916                         break;
3917                 default:
3918                         dev_err(&adapter->pdev->dev,
3919                                 "Invalid PHY type setting EEE advertisement\n");
3920                         return;
3921                 }
3922
3923                 ret_val = hw->phy.ops.acquire(hw);
3924                 if (ret_val) {
3925                         dev_err(&adapter->pdev->dev,
3926                                 "EEE advertisement - unable to acquire PHY\n");
3927                         return;
3928                 }
3929
3930                 e1000_write_emi_reg_locked(hw, adv_addr,
3931                                            hw->dev_spec.ich8lan.eee_disable ?
3932                                            0 : adapter->eee_advert);
3933
3934                 hw->phy.ops.release(hw);
3935         }
3936
3937         if (!netif_running(adapter->netdev) &&
3938             !test_bit(__E1000_TESTING, &adapter->state))
3939                 e1000_power_down_phy(adapter);
3940
3941         e1000_get_phy_info(hw);
3942
3943         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3944             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3945                 u16 phy_data = 0;
3946                 /* speed up time to link by disabling smart power down, ignore
3947                  * the return value of this function because there is nothing
3948                  * different we would do if it failed
3949                  */
3950                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3951                 phy_data &= ~IGP02E1000_PM_SPD;
3952                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3953         }
3954 }
3955
3956 int e1000e_up(struct e1000_adapter *adapter)
3957 {
3958         struct e1000_hw *hw = &adapter->hw;
3959
3960         /* hardware has been reset, we need to reload some things */
3961         e1000_configure(adapter);
3962
3963         clear_bit(__E1000_DOWN, &adapter->state);
3964
3965         if (adapter->msix_entries)
3966                 e1000_configure_msix(adapter);
3967         e1000_irq_enable(adapter);
3968
3969         netif_start_queue(adapter->netdev);
3970
3971         /* fire a link change interrupt to start the watchdog */
3972         if (adapter->msix_entries)
3973                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3974         else
3975                 ew32(ICS, E1000_ICS_LSC);
3976
3977         return 0;
3978 }
3979
3980 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3981 {
3982         struct e1000_hw *hw = &adapter->hw;
3983
3984         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3985                 return;
3986
3987         /* flush pending descriptor writebacks to memory */
3988         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3989         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3990
3991         /* execute the writes immediately */
3992         e1e_flush();
3993
3994         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
3995          * write is successful
3996          */
3997         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3998         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3999
4000         /* execute the writes immediately */
4001         e1e_flush();
4002 }
4003
4004 static void e1000e_update_stats(struct e1000_adapter *adapter);
4005
4006 /**
4007  * e1000e_down - quiesce the device and optionally reset the hardware
4008  * @adapter: board private structure
4009  * @reset: boolean flag to reset the hardware or not
4010  */
4011 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4012 {
4013         struct net_device *netdev = adapter->netdev;
4014         struct e1000_hw *hw = &adapter->hw;
4015         u32 tctl, rctl;
4016
4017         /* signal that we're down so the interrupt handler does not
4018          * reschedule our watchdog timer
4019          */
4020         set_bit(__E1000_DOWN, &adapter->state);
4021
4022         /* disable receives in the hardware */
4023         rctl = er32(RCTL);
4024         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4025                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4026         /* flush and sleep below */
4027
4028         netif_stop_queue(netdev);
4029
4030         /* disable transmits in the hardware */
4031         tctl = er32(TCTL);
4032         tctl &= ~E1000_TCTL_EN;
4033         ew32(TCTL, tctl);
4034
4035         /* flush both disables and wait for them to finish */
4036         e1e_flush();
4037         usleep_range(10000, 20000);
4038
4039         e1000_irq_disable(adapter);
4040
4041         napi_synchronize(&adapter->napi);
4042
4043         del_timer_sync(&adapter->watchdog_timer);
4044         del_timer_sync(&adapter->phy_info_timer);
4045
4046         netif_carrier_off(netdev);
4047
4048         spin_lock(&adapter->stats64_lock);
4049         e1000e_update_stats(adapter);
4050         spin_unlock(&adapter->stats64_lock);
4051
4052         e1000e_flush_descriptors(adapter);
4053         e1000_clean_tx_ring(adapter->tx_ring);
4054         e1000_clean_rx_ring(adapter->rx_ring);
4055
4056         adapter->link_speed = 0;
4057         adapter->link_duplex = 0;
4058
4059         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4060         if ((hw->mac.type >= e1000_pch2lan) &&
4061             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4062             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4063                 e_dbg("failed to disable jumbo frame workaround mode\n");
4064
4065         if (reset && !pci_channel_offline(adapter->pdev))
4066                 e1000e_reset(adapter);
4067 }
4068
4069 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4070 {
4071         might_sleep();
4072         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4073                 usleep_range(1000, 2000);
4074         e1000e_down(adapter, true);
4075         e1000e_up(adapter);
4076         clear_bit(__E1000_RESETTING, &adapter->state);
4077 }
4078
4079 /**
4080  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4081  * @cc: cyclecounter structure
4082  **/
4083 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4084 {
4085         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4086                                                      cc);
4087         struct e1000_hw *hw = &adapter->hw;
4088         cycle_t systim;
4089
4090         /* latch SYSTIMH on read of SYSTIML */
4091         systim = (cycle_t)er32(SYSTIML);
4092         systim |= (cycle_t)er32(SYSTIMH) << 32;
4093
4094         return systim;
4095 }
4096
4097 /**
4098  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4099  * @adapter: board private structure to initialize
4100  *
4101  * e1000_sw_init initializes the Adapter private data structure.
4102  * Fields are initialized based on PCI device information and
4103  * OS network device settings (MTU size).
4104  **/
4105 static int e1000_sw_init(struct e1000_adapter *adapter)
4106 {
4107         struct net_device *netdev = adapter->netdev;
4108
4109         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4110         adapter->rx_ps_bsize0 = 128;
4111         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4112         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4113         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4114         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4115
4116         spin_lock_init(&adapter->stats64_lock);
4117
4118         e1000e_set_interrupt_capability(adapter);
4119
4120         if (e1000_alloc_queues(adapter))
4121                 return -ENOMEM;
4122
4123         /* Setup hardware time stamping cyclecounter */
4124         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4125                 adapter->cc.read = e1000e_cyclecounter_read;
4126                 adapter->cc.mask = CLOCKSOURCE_MASK(64);
4127                 adapter->cc.mult = 1;
4128                 /* cc.shift set in e1000e_get_base_tininca() */
4129
4130                 spin_lock_init(&adapter->systim_lock);
4131                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4132         }
4133
4134         /* Explicitly disable IRQ since the NIC can be in any state. */
4135         e1000_irq_disable(adapter);
4136
4137         set_bit(__E1000_DOWN, &adapter->state);
4138         return 0;
4139 }
4140
4141 /**
4142  * e1000_intr_msi_test - Interrupt Handler
4143  * @irq: interrupt number
4144  * @data: pointer to a network interface device structure
4145  **/
4146 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4147 {
4148         struct net_device *netdev = data;
4149         struct e1000_adapter *adapter = netdev_priv(netdev);
4150         struct e1000_hw *hw = &adapter->hw;
4151         u32 icr = er32(ICR);
4152
4153         e_dbg("icr is %08X\n", icr);
4154         if (icr & E1000_ICR_RXSEQ) {
4155                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4156                 /* Force memory writes to complete before acknowledging the
4157                  * interrupt is handled.
4158                  */
4159                 wmb();
4160         }
4161
4162         return IRQ_HANDLED;
4163 }
4164
4165 /**
4166  * e1000_test_msi_interrupt - Returns 0 for successful test
4167  * @adapter: board private struct
4168  *
4169  * code flow taken from tg3.c
4170  **/
4171 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4172 {
4173         struct net_device *netdev = adapter->netdev;
4174         struct e1000_hw *hw = &adapter->hw;
4175         int err;
4176
4177         /* poll_enable hasn't been called yet, so don't need disable */
4178         /* clear any pending events */
4179         er32(ICR);
4180
4181         /* free the real vector and request a test handler */
4182         e1000_free_irq(adapter);
4183         e1000e_reset_interrupt_capability(adapter);
4184
4185         /* Assume that the test fails, if it succeeds then the test
4186          * MSI irq handler will unset this flag
4187          */
4188         adapter->flags |= FLAG_MSI_TEST_FAILED;
4189
4190         err = pci_enable_msi(adapter->pdev);
4191         if (err)
4192                 goto msi_test_failed;
4193
4194         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4195                           netdev->name, netdev);
4196         if (err) {
4197                 pci_disable_msi(adapter->pdev);
4198                 goto msi_test_failed;
4199         }
4200
4201         /* Force memory writes to complete before enabling and firing an
4202          * interrupt.
4203          */
4204         wmb();
4205
4206         e1000_irq_enable(adapter);
4207
4208         /* fire an unusual interrupt on the test handler */
4209         ew32(ICS, E1000_ICS_RXSEQ);
4210         e1e_flush();
4211         msleep(100);
4212
4213         e1000_irq_disable(adapter);
4214
4215         rmb();                  /* read flags after interrupt has been fired */
4216
4217         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4218                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4219                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4220         } else {
4221                 e_dbg("MSI interrupt test succeeded!\n");
4222         }
4223
4224         free_irq(adapter->pdev->irq, netdev);
4225         pci_disable_msi(adapter->pdev);
4226
4227 msi_test_failed:
4228         e1000e_set_interrupt_capability(adapter);
4229         return e1000_request_irq(adapter);
4230 }
4231
4232 /**
4233  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4234  * @adapter: board private struct
4235  *
4236  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4237  **/
4238 static int e1000_test_msi(struct e1000_adapter *adapter)
4239 {
4240         int err;
4241         u16 pci_cmd;
4242
4243         if (!(adapter->flags & FLAG_MSI_ENABLED))
4244                 return 0;
4245
4246         /* disable SERR in case the MSI write causes a master abort */
4247         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4248         if (pci_cmd & PCI_COMMAND_SERR)
4249                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4250                                       pci_cmd & ~PCI_COMMAND_SERR);
4251
4252         err = e1000_test_msi_interrupt(adapter);
4253
4254         /* re-enable SERR */
4255         if (pci_cmd & PCI_COMMAND_SERR) {
4256                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4257                 pci_cmd |= PCI_COMMAND_SERR;
4258                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4259         }
4260
4261         return err;
4262 }
4263
4264 /**
4265  * e1000_open - Called when a network interface is made active
4266  * @netdev: network interface device structure
4267  *
4268  * Returns 0 on success, negative value on failure
4269  *
4270  * The open entry point is called when a network interface is made
4271  * active by the system (IFF_UP).  At this point all resources needed
4272  * for transmit and receive operations are allocated, the interrupt
4273  * handler is registered with the OS, the watchdog timer is started,
4274  * and the stack is notified that the interface is ready.
4275  **/
4276 static int e1000_open(struct net_device *netdev)
4277 {
4278         struct e1000_adapter *adapter = netdev_priv(netdev);
4279         struct e1000_hw *hw = &adapter->hw;
4280         struct pci_dev *pdev = adapter->pdev;
4281         int err;
4282
4283         /* disallow open during test */
4284         if (test_bit(__E1000_TESTING, &adapter->state))
4285                 return -EBUSY;
4286
4287         pm_runtime_get_sync(&pdev->dev);
4288
4289         netif_carrier_off(netdev);
4290
4291         /* allocate transmit descriptors */
4292         err = e1000e_setup_tx_resources(adapter->tx_ring);
4293         if (err)
4294                 goto err_setup_tx;
4295
4296         /* allocate receive descriptors */
4297         err = e1000e_setup_rx_resources(adapter->rx_ring);
4298         if (err)
4299                 goto err_setup_rx;
4300
4301         /* If AMT is enabled, let the firmware know that the network
4302          * interface is now open and reset the part to a known state.
4303          */
4304         if (adapter->flags & FLAG_HAS_AMT) {
4305                 e1000e_get_hw_control(adapter);
4306                 e1000e_reset(adapter);
4307         }
4308
4309         e1000e_power_up_phy(adapter);
4310
4311         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4312         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4313                 e1000_update_mng_vlan(adapter);
4314
4315         /* DMA latency requirement to workaround jumbo issue */
4316         pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4317                            PM_QOS_DEFAULT_VALUE);
4318
4319         /* before we allocate an interrupt, we must be ready to handle it.
4320          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4321          * as soon as we call pci_request_irq, so we have to setup our
4322          * clean_rx handler before we do so.
4323          */
4324         e1000_configure(adapter);
4325
4326         err = e1000_request_irq(adapter);
4327         if (err)
4328                 goto err_req_irq;
4329
4330         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4331          * ignore e1000e MSI messages, which means we need to test our MSI
4332          * interrupt now
4333          */
4334         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4335                 err = e1000_test_msi(adapter);
4336                 if (err) {
4337                         e_err("Interrupt allocation failed\n");
4338                         goto err_req_irq;
4339                 }
4340         }
4341
4342         /* From here on the code is the same as e1000e_up() */
4343         clear_bit(__E1000_DOWN, &adapter->state);
4344
4345         napi_enable(&adapter->napi);
4346
4347         e1000_irq_enable(adapter);
4348
4349         adapter->tx_hang_recheck = false;
4350         netif_start_queue(netdev);
4351
4352         hw->mac.get_link_status = true;
4353         pm_runtime_put(&pdev->dev);
4354
4355         /* fire a link status change interrupt to start the watchdog */
4356         if (adapter->msix_entries)
4357                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4358         else
4359                 ew32(ICS, E1000_ICS_LSC);
4360
4361         return 0;
4362
4363 err_req_irq:
4364         e1000e_release_hw_control(adapter);
4365         e1000_power_down_phy(adapter);
4366         e1000e_free_rx_resources(adapter->rx_ring);
4367 err_setup_rx:
4368         e1000e_free_tx_resources(adapter->tx_ring);
4369 err_setup_tx:
4370         e1000e_reset(adapter);
4371         pm_runtime_put_sync(&pdev->dev);
4372
4373         return err;
4374 }
4375
4376 /**
4377  * e1000_close - Disables a network interface
4378  * @netdev: network interface device structure
4379  *
4380  * Returns 0, this is not allowed to fail
4381  *
4382  * The close entry point is called when an interface is de-activated
4383  * by the OS.  The hardware is still under the drivers control, but
4384  * needs to be disabled.  A global MAC reset is issued to stop the
4385  * hardware, and all transmit and receive resources are freed.
4386  **/
4387 static int e1000_close(struct net_device *netdev)
4388 {
4389         struct e1000_adapter *adapter = netdev_priv(netdev);
4390         struct pci_dev *pdev = adapter->pdev;
4391         int count = E1000_CHECK_RESET_COUNT;
4392
4393         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4394                 usleep_range(10000, 20000);
4395
4396         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4397
4398         pm_runtime_get_sync(&pdev->dev);
4399
4400         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4401                 e1000e_down(adapter, true);
4402                 e1000_free_irq(adapter);
4403
4404                 /* Link status message must follow this format */
4405                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4406         }
4407
4408         napi_disable(&adapter->napi);
4409
4410         e1000e_free_tx_resources(adapter->tx_ring);
4411         e1000e_free_rx_resources(adapter->rx_ring);
4412
4413         /* kill manageability vlan ID if supported, but not if a vlan with
4414          * the same ID is registered on the host OS (let 8021q kill it)
4415          */
4416         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4417                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4418                                        adapter->mng_vlan_id);
4419
4420         /* If AMT is enabled, let the firmware know that the network
4421          * interface is now closed
4422          */
4423         if ((adapter->flags & FLAG_HAS_AMT) &&
4424             !test_bit(__E1000_TESTING, &adapter->state))
4425                 e1000e_release_hw_control(adapter);
4426
4427         pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4428
4429         pm_runtime_put_sync(&pdev->dev);
4430
4431         return 0;
4432 }
4433
4434 /**
4435  * e1000_set_mac - Change the Ethernet Address of the NIC
4436  * @netdev: network interface device structure
4437  * @p: pointer to an address structure
4438  *
4439  * Returns 0 on success, negative on failure
4440  **/
4441 static int e1000_set_mac(struct net_device *netdev, void *p)
4442 {
4443         struct e1000_adapter *adapter = netdev_priv(netdev);
4444         struct e1000_hw *hw = &adapter->hw;
4445         struct sockaddr *addr = p;
4446
4447         if (!is_valid_ether_addr(addr->sa_data))
4448                 return -EADDRNOTAVAIL;
4449
4450         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4451         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4452
4453         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4454
4455         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4456                 /* activate the work around */
4457                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4458
4459                 /* Hold a copy of the LAA in RAR[14] This is done so that
4460                  * between the time RAR[0] gets clobbered  and the time it
4461                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4462                  * of the RARs and no incoming packets directed to this port
4463                  * are dropped. Eventually the LAA will be in RAR[0] and
4464                  * RAR[14]
4465                  */
4466                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4467                                     adapter->hw.mac.rar_entry_count - 1);
4468         }
4469
4470         return 0;
4471 }
4472
4473 /**
4474  * e1000e_update_phy_task - work thread to update phy
4475  * @work: pointer to our work struct
4476  *
4477  * this worker thread exists because we must acquire a
4478  * semaphore to read the phy, which we could msleep while
4479  * waiting for it, and we can't msleep in a timer.
4480  **/
4481 static void e1000e_update_phy_task(struct work_struct *work)
4482 {
4483         struct e1000_adapter *adapter = container_of(work,
4484                                                      struct e1000_adapter,
4485                                                      update_phy_task);
4486         struct e1000_hw *hw = &adapter->hw;
4487
4488         if (test_bit(__E1000_DOWN, &adapter->state))
4489                 return;
4490
4491         e1000_get_phy_info(hw);
4492
4493         /* Enable EEE on 82579 after link up */
4494         if (hw->phy.type == e1000_phy_82579)
4495                 e1000_set_eee_pchlan(hw);
4496 }
4497
4498 /**
4499  * e1000_update_phy_info - timre call-back to update PHY info
4500  * @data: pointer to adapter cast into an unsigned long
4501  *
4502  * Need to wait a few seconds after link up to get diagnostic information from
4503  * the phy
4504  **/
4505 static void e1000_update_phy_info(unsigned long data)
4506 {
4507         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4508
4509         if (test_bit(__E1000_DOWN, &adapter->state))
4510                 return;
4511
4512         schedule_work(&adapter->update_phy_task);
4513 }
4514
4515 /**
4516  * e1000e_update_phy_stats - Update the PHY statistics counters
4517  * @adapter: board private structure
4518  *
4519  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4520  **/
4521 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4522 {
4523         struct e1000_hw *hw = &adapter->hw;
4524         s32 ret_val;
4525         u16 phy_data;
4526
4527         ret_val = hw->phy.ops.acquire(hw);
4528         if (ret_val)
4529                 return;
4530
4531         /* A page set is expensive so check if already on desired page.
4532          * If not, set to the page with the PHY status registers.
4533          */
4534         hw->phy.addr = 1;
4535         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4536                                            &phy_data);
4537         if (ret_val)
4538                 goto release;
4539         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4540                 ret_val = hw->phy.ops.set_page(hw,
4541                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4542                 if (ret_val)
4543                         goto release;
4544         }
4545
4546         /* Single Collision Count */
4547         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4548         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4549         if (!ret_val)
4550                 adapter->stats.scc += phy_data;
4551
4552         /* Excessive Collision Count */
4553         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4554         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4555         if (!ret_val)
4556                 adapter->stats.ecol += phy_data;
4557
4558         /* Multiple Collision Count */
4559         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4560         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4561         if (!ret_val)
4562                 adapter->stats.mcc += phy_data;
4563
4564         /* Late Collision Count */
4565         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4566         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4567         if (!ret_val)
4568                 adapter->stats.latecol += phy_data;
4569
4570         /* Collision Count - also used for adaptive IFS */
4571         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4572         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4573         if (!ret_val)
4574                 hw->mac.collision_delta = phy_data;
4575
4576         /* Defer Count */
4577         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4578         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4579         if (!ret_val)
4580                 adapter->stats.dc += phy_data;
4581
4582         /* Transmit with no CRS */
4583         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4584         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4585         if (!ret_val)
4586                 adapter->stats.tncrs += phy_data;
4587
4588 release:
4589         hw->phy.ops.release(hw);
4590 }
4591
4592 /**
4593  * e1000e_update_stats - Update the board statistics counters
4594  * @adapter: board private structure
4595  **/
4596 static void e1000e_update_stats(struct e1000_adapter *adapter)
4597 {
4598         struct net_device *netdev = adapter->netdev;
4599         struct e1000_hw *hw = &adapter->hw;
4600         struct pci_dev *pdev = adapter->pdev;
4601
4602         /* Prevent stats update while adapter is being reset, or if the pci
4603          * connection is down.
4604          */
4605         if (adapter->link_speed == 0)
4606                 return;
4607         if (pci_channel_offline(pdev))
4608                 return;
4609
4610         adapter->stats.crcerrs += er32(CRCERRS);
4611         adapter->stats.gprc += er32(GPRC);
4612         adapter->stats.gorc += er32(GORCL);
4613         er32(GORCH);            /* Clear gorc */
4614         adapter->stats.bprc += er32(BPRC);
4615         adapter->stats.mprc += er32(MPRC);
4616         adapter->stats.roc += er32(ROC);
4617
4618         adapter->stats.mpc += er32(MPC);
4619
4620         /* Half-duplex statistics */
4621         if (adapter->link_duplex == HALF_DUPLEX) {
4622                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4623                         e1000e_update_phy_stats(adapter);
4624                 } else {
4625                         adapter->stats.scc += er32(SCC);
4626                         adapter->stats.ecol += er32(ECOL);
4627                         adapter->stats.mcc += er32(MCC);
4628                         adapter->stats.latecol += er32(LATECOL);
4629                         adapter->stats.dc += er32(DC);
4630
4631                         hw->mac.collision_delta = er32(COLC);
4632
4633                         if ((hw->mac.type != e1000_82574) &&
4634                             (hw->mac.type != e1000_82583))
4635                                 adapter->stats.tncrs += er32(TNCRS);
4636                 }
4637                 adapter->stats.colc += hw->mac.collision_delta;
4638         }
4639
4640         adapter->stats.xonrxc += er32(XONRXC);
4641         adapter->stats.xontxc += er32(XONTXC);
4642         adapter->stats.xoffrxc += er32(XOFFRXC);
4643         adapter->stats.xofftxc += er32(XOFFTXC);
4644         adapter->stats.gptc += er32(GPTC);
4645         adapter->stats.gotc += er32(GOTCL);
4646         er32(GOTCH);            /* Clear gotc */
4647         adapter->stats.rnbc += er32(RNBC);
4648         adapter->stats.ruc += er32(RUC);
4649
4650         adapter->stats.mptc += er32(MPTC);
4651         adapter->stats.bptc += er32(BPTC);
4652
4653         /* used for adaptive IFS */
4654
4655         hw->mac.tx_packet_delta = er32(TPT);
4656         adapter->stats.tpt += hw->mac.tx_packet_delta;
4657
4658         adapter->stats.algnerrc += er32(ALGNERRC);
4659         adapter->stats.rxerrc += er32(RXERRC);
4660         adapter->stats.cexterr += er32(CEXTERR);
4661         adapter->stats.tsctc += er32(TSCTC);
4662         adapter->stats.tsctfc += er32(TSCTFC);
4663
4664         /* Fill out the OS statistics structure */
4665         netdev->stats.multicast = adapter->stats.mprc;
4666         netdev->stats.collisions = adapter->stats.colc;
4667
4668         /* Rx Errors */
4669
4670         /* RLEC on some newer hardware can be incorrect so build
4671          * our own version based on RUC and ROC
4672          */
4673         netdev->stats.rx_errors = adapter->stats.rxerrc +
4674             adapter->stats.crcerrs + adapter->stats.algnerrc +
4675             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4676         netdev->stats.rx_length_errors = adapter->stats.ruc +
4677             adapter->stats.roc;
4678         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4679         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4680         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4681
4682         /* Tx Errors */
4683         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4684         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4685         netdev->stats.tx_window_errors = adapter->stats.latecol;
4686         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4687
4688         /* Tx Dropped needs to be maintained elsewhere */
4689
4690         /* Management Stats */
4691         adapter->stats.mgptc += er32(MGTPTC);
4692         adapter->stats.mgprc += er32(MGTPRC);
4693         adapter->stats.mgpdc += er32(MGTPDC);
4694
4695         /* Correctable ECC Errors */
4696         if (hw->mac.type == e1000_pch_lpt) {
4697                 u32 pbeccsts = er32(PBECCSTS);
4698                 adapter->corr_errors +=
4699                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4700                 adapter->uncorr_errors +=
4701                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4702                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4703         }
4704 }
4705
4706 /**
4707  * e1000_phy_read_status - Update the PHY register status snapshot
4708  * @adapter: board private structure
4709  **/
4710 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4711 {
4712         struct e1000_hw *hw = &adapter->hw;
4713         struct e1000_phy_regs *phy = &adapter->phy_regs;
4714
4715         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4716             (er32(STATUS) & E1000_STATUS_LU) &&
4717             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4718                 int ret_val;
4719
4720                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4721                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4722                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4723                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4724                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4725                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4726                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4727                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4728                 if (ret_val)
4729                         e_warn("Error reading PHY register\n");
4730         } else {
4731                 /* Do not read PHY registers if link is not up
4732                  * Set values to typical power-on defaults
4733                  */
4734                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4735                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4736                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4737                              BMSR_ERCAP);
4738                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4739                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4740                 phy->lpa = 0;
4741                 phy->expansion = EXPANSION_ENABLENPAGE;
4742                 phy->ctrl1000 = ADVERTISE_1000FULL;
4743                 phy->stat1000 = 0;
4744                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4745         }
4746 }
4747
4748 static void e1000_print_link_info(struct e1000_adapter *adapter)
4749 {
4750         struct e1000_hw *hw = &adapter->hw;
4751         u32 ctrl = er32(CTRL);
4752
4753         /* Link status message must follow this format for user tools */
4754         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4755                 adapter->netdev->name, adapter->link_speed,
4756                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4757                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4758                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4759                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4760 }
4761
4762 static bool e1000e_has_link(struct e1000_adapter *adapter)
4763 {
4764         struct e1000_hw *hw = &adapter->hw;
4765         bool link_active = false;
4766         s32 ret_val = 0;
4767
4768         /* get_link_status is set on LSC (link status) interrupt or
4769          * Rx sequence error interrupt.  get_link_status will stay
4770          * false until the check_for_link establishes link
4771          * for copper adapters ONLY
4772          */
4773         switch (hw->phy.media_type) {
4774         case e1000_media_type_copper:
4775                 if (hw->mac.get_link_status) {
4776                         ret_val = hw->mac.ops.check_for_link(hw);
4777                         link_active = !hw->mac.get_link_status;
4778                 } else {
4779                         link_active = true;
4780                 }
4781                 break;
4782         case e1000_media_type_fiber:
4783                 ret_val = hw->mac.ops.check_for_link(hw);
4784                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4785                 break;
4786         case e1000_media_type_internal_serdes:
4787                 ret_val = hw->mac.ops.check_for_link(hw);
4788                 link_active = adapter->hw.mac.serdes_has_link;
4789                 break;
4790         default:
4791         case e1000_media_type_unknown:
4792                 break;
4793         }
4794
4795         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4796             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4797                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4798                 e_info("Gigabit has been disabled, downgrading speed\n");
4799         }
4800
4801         return link_active;
4802 }
4803
4804 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4805 {
4806         /* make sure the receive unit is started */
4807         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4808             (adapter->flags & FLAG_RESTART_NOW)) {
4809                 struct e1000_hw *hw = &adapter->hw;
4810                 u32 rctl = er32(RCTL);
4811                 ew32(RCTL, rctl | E1000_RCTL_EN);
4812                 adapter->flags &= ~FLAG_RESTART_NOW;
4813         }
4814 }
4815
4816 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4817 {
4818         struct e1000_hw *hw = &adapter->hw;
4819
4820         /* With 82574 controllers, PHY needs to be checked periodically
4821          * for hung state and reset, if two calls return true
4822          */
4823         if (e1000_check_phy_82574(hw))
4824                 adapter->phy_hang_count++;
4825         else
4826                 adapter->phy_hang_count = 0;
4827
4828         if (adapter->phy_hang_count > 1) {
4829                 adapter->phy_hang_count = 0;
4830                 e_dbg("PHY appears hung - resetting\n");
4831                 schedule_work(&adapter->reset_task);
4832         }
4833 }
4834
4835 /**
4836  * e1000_watchdog - Timer Call-back
4837  * @data: pointer to adapter cast into an unsigned long
4838  **/
4839 static void e1000_watchdog(unsigned long data)
4840 {
4841         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4842
4843         /* Do the rest outside of interrupt context */
4844         schedule_work(&adapter->watchdog_task);
4845
4846         /* TODO: make this use queue_delayed_work() */
4847 }
4848
4849 static void e1000_watchdog_task(struct work_struct *work)
4850 {
4851         struct e1000_adapter *adapter = container_of(work,
4852                                                      struct e1000_adapter,
4853                                                      watchdog_task);
4854         struct net_device *netdev = adapter->netdev;
4855         struct e1000_mac_info *mac = &adapter->hw.mac;
4856         struct e1000_phy_info *phy = &adapter->hw.phy;
4857         struct e1000_ring *tx_ring = adapter->tx_ring;
4858         struct e1000_hw *hw = &adapter->hw;
4859         u32 link, tctl;
4860
4861         if (test_bit(__E1000_DOWN, &adapter->state))
4862                 return;
4863
4864         link = e1000e_has_link(adapter);
4865         if ((netif_carrier_ok(netdev)) && link) {
4866                 /* Cancel scheduled suspend requests. */
4867                 pm_runtime_resume(netdev->dev.parent);
4868
4869                 e1000e_enable_receives(adapter);
4870                 goto link_up;
4871         }
4872
4873         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4874             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4875                 e1000_update_mng_vlan(adapter);
4876
4877         if (link) {
4878                 if (!netif_carrier_ok(netdev)) {
4879                         bool txb2b = true;
4880
4881                         /* Cancel scheduled suspend requests. */
4882                         pm_runtime_resume(netdev->dev.parent);
4883
4884                         /* update snapshot of PHY registers on LSC */
4885                         e1000_phy_read_status(adapter);
4886                         mac->ops.get_link_up_info(&adapter->hw,
4887                                                   &adapter->link_speed,
4888                                                   &adapter->link_duplex);
4889                         e1000_print_link_info(adapter);
4890
4891                         /* check if SmartSpeed worked */
4892                         e1000e_check_downshift(hw);
4893                         if (phy->speed_downgraded)
4894                                 netdev_warn(netdev,
4895                                             "Link Speed was downgraded by SmartSpeed\n");
4896
4897                         /* On supported PHYs, check for duplex mismatch only
4898                          * if link has autonegotiated at 10/100 half
4899                          */
4900                         if ((hw->phy.type == e1000_phy_igp_3 ||
4901                              hw->phy.type == e1000_phy_bm) &&
4902                             hw->mac.autoneg &&
4903                             (adapter->link_speed == SPEED_10 ||
4904                              adapter->link_speed == SPEED_100) &&
4905                             (adapter->link_duplex == HALF_DUPLEX)) {
4906                                 u16 autoneg_exp;
4907
4908                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4909
4910                                 if (!(autoneg_exp & EXPANSION_NWAY))
4911                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4912                         }
4913
4914                         /* adjust timeout factor according to speed/duplex */
4915                         adapter->tx_timeout_factor = 1;
4916                         switch (adapter->link_speed) {
4917                         case SPEED_10:
4918                                 txb2b = false;
4919                                 adapter->tx_timeout_factor = 16;
4920                                 break;
4921                         case SPEED_100:
4922                                 txb2b = false;
4923                                 adapter->tx_timeout_factor = 10;
4924                                 break;
4925                         }
4926
4927                         /* workaround: re-program speed mode bit after
4928                          * link-up event
4929                          */
4930                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4931                             !txb2b) {
4932                                 u32 tarc0;
4933                                 tarc0 = er32(TARC(0));
4934                                 tarc0 &= ~SPEED_MODE_BIT;
4935                                 ew32(TARC(0), tarc0);
4936                         }
4937
4938                         /* disable TSO for pcie and 10/100 speeds, to avoid
4939                          * some hardware issues
4940                          */
4941                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4942                                 switch (adapter->link_speed) {
4943                                 case SPEED_10:
4944                                 case SPEED_100:
4945                                         e_info("10/100 speed: disabling TSO\n");
4946                                         netdev->features &= ~NETIF_F_TSO;
4947                                         netdev->features &= ~NETIF_F_TSO6;
4948                                         break;
4949                                 case SPEED_1000:
4950                                         netdev->features |= NETIF_F_TSO;
4951                                         netdev->features |= NETIF_F_TSO6;
4952                                         break;
4953                                 default:
4954                                         /* oops */
4955                                         break;
4956                                 }
4957                         }
4958
4959                         /* enable transmits in the hardware, need to do this
4960                          * after setting TARC(0)
4961                          */
4962                         tctl = er32(TCTL);
4963                         tctl |= E1000_TCTL_EN;
4964                         ew32(TCTL, tctl);
4965
4966                         /* Perform any post-link-up configuration before
4967                          * reporting link up.
4968                          */
4969                         if (phy->ops.cfg_on_link_up)
4970                                 phy->ops.cfg_on_link_up(hw);
4971
4972                         netif_carrier_on(netdev);
4973
4974                         if (!test_bit(__E1000_DOWN, &adapter->state))
4975                                 mod_timer(&adapter->phy_info_timer,
4976                                           round_jiffies(jiffies + 2 * HZ));
4977                 }
4978         } else {
4979                 if (netif_carrier_ok(netdev)) {
4980                         adapter->link_speed = 0;
4981                         adapter->link_duplex = 0;
4982                         /* Link status message must follow this format */
4983                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4984                         netif_carrier_off(netdev);
4985                         if (!test_bit(__E1000_DOWN, &adapter->state))
4986                                 mod_timer(&adapter->phy_info_timer,
4987                                           round_jiffies(jiffies + 2 * HZ));
4988
4989                         /* 8000ES2LAN requires a Rx packet buffer work-around
4990                          * on link down event; reset the controller to flush
4991                          * the Rx packet buffer.
4992                          */
4993                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4994                                 adapter->flags |= FLAG_RESTART_NOW;
4995                         else
4996                                 pm_schedule_suspend(netdev->dev.parent,
4997                                                     LINK_TIMEOUT);
4998                 }
4999         }
5000
5001 link_up:
5002         spin_lock(&adapter->stats64_lock);
5003         e1000e_update_stats(adapter);
5004
5005         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5006         adapter->tpt_old = adapter->stats.tpt;
5007         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5008         adapter->colc_old = adapter->stats.colc;
5009
5010         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5011         adapter->gorc_old = adapter->stats.gorc;
5012         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5013         adapter->gotc_old = adapter->stats.gotc;
5014         spin_unlock(&adapter->stats64_lock);
5015
5016         /* If the link is lost the controller stops DMA, but
5017          * if there is queued Tx work it cannot be done.  So
5018          * reset the controller to flush the Tx packet buffers.
5019          */
5020         if (!netif_carrier_ok(netdev) &&
5021             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5022                 adapter->flags |= FLAG_RESTART_NOW;
5023
5024         /* If reset is necessary, do it outside of interrupt context. */
5025         if (adapter->flags & FLAG_RESTART_NOW) {
5026                 schedule_work(&adapter->reset_task);
5027                 /* return immediately since reset is imminent */
5028                 return;
5029         }
5030
5031         e1000e_update_adaptive(&adapter->hw);
5032
5033         /* Simple mode for Interrupt Throttle Rate (ITR) */
5034         if (adapter->itr_setting == 4) {
5035                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5036                  * Total asymmetrical Tx or Rx gets ITR=8000;
5037                  * everyone else is between 2000-8000.
5038                  */
5039                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5040                 u32 dif = (adapter->gotc > adapter->gorc ?
5041                            adapter->gotc - adapter->gorc :
5042                            adapter->gorc - adapter->gotc) / 10000;
5043                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5044
5045                 e1000e_write_itr(adapter, itr);
5046         }
5047
5048         /* Cause software interrupt to ensure Rx ring is cleaned */
5049         if (adapter->msix_entries)
5050                 ew32(ICS, adapter->rx_ring->ims_val);
5051         else
5052                 ew32(ICS, E1000_ICS_RXDMT0);
5053
5054         /* flush pending descriptors to memory before detecting Tx hang */
5055         e1000e_flush_descriptors(adapter);
5056
5057         /* Force detection of hung controller every watchdog period */
5058         adapter->detect_tx_hung = true;
5059
5060         /* With 82571 controllers, LAA may be overwritten due to controller
5061          * reset from the other port. Set the appropriate LAA in RAR[0]
5062          */
5063         if (e1000e_get_laa_state_82571(hw))
5064                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5065
5066         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5067                 e1000e_check_82574_phy_workaround(adapter);
5068
5069         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5070         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5071                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5072                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5073                         er32(RXSTMPH);
5074                         adapter->rx_hwtstamp_cleared++;
5075                 } else {
5076                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5077                 }
5078         }
5079
5080         /* Reset the timer */
5081         if (!test_bit(__E1000_DOWN, &adapter->state))
5082                 mod_timer(&adapter->watchdog_timer,
5083                           round_jiffies(jiffies + 2 * HZ));
5084 }
5085
5086 #define E1000_TX_FLAGS_CSUM             0x00000001
5087 #define E1000_TX_FLAGS_VLAN             0x00000002
5088 #define E1000_TX_FLAGS_TSO              0x00000004
5089 #define E1000_TX_FLAGS_IPV4             0x00000008
5090 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5091 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5092 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5093 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5094
5095 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
5096 {
5097         struct e1000_context_desc *context_desc;
5098         struct e1000_buffer *buffer_info;
5099         unsigned int i;
5100         u32 cmd_length = 0;
5101         u16 ipcse = 0, mss;
5102         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5103         int err;
5104
5105         if (!skb_is_gso(skb))
5106                 return 0;
5107
5108         err = skb_cow_head(skb, 0);
5109         if (err < 0)
5110                 return err;
5111
5112         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5113         mss = skb_shinfo(skb)->gso_size;
5114         if (skb->protocol == htons(ETH_P_IP)) {
5115                 struct iphdr *iph = ip_hdr(skb);
5116                 iph->tot_len = 0;
5117                 iph->check = 0;
5118                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5119                                                          0, IPPROTO_TCP, 0);
5120                 cmd_length = E1000_TXD_CMD_IP;
5121                 ipcse = skb_transport_offset(skb) - 1;
5122         } else if (skb_is_gso_v6(skb)) {
5123                 ipv6_hdr(skb)->payload_len = 0;
5124                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5125                                                        &ipv6_hdr(skb)->daddr,
5126                                                        0, IPPROTO_TCP, 0);
5127                 ipcse = 0;
5128         }
5129         ipcss = skb_network_offset(skb);
5130         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5131         tucss = skb_transport_offset(skb);
5132         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5133
5134         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5135                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5136
5137         i = tx_ring->next_to_use;
5138         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5139         buffer_info = &tx_ring->buffer_info[i];
5140
5141         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5142         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5143         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5144         context_desc->upper_setup.tcp_fields.tucss = tucss;
5145         context_desc->upper_setup.tcp_fields.tucso = tucso;
5146         context_desc->upper_setup.tcp_fields.tucse = 0;
5147         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5148         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5149         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5150
5151         buffer_info->time_stamp = jiffies;
5152         buffer_info->next_to_watch = i;
5153
5154         i++;
5155         if (i == tx_ring->count)
5156                 i = 0;
5157         tx_ring->next_to_use = i;
5158
5159         return 1;
5160 }
5161
5162 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
5163 {
5164         struct e1000_adapter *adapter = tx_ring->adapter;
5165         struct e1000_context_desc *context_desc;
5166         struct e1000_buffer *buffer_info;
5167         unsigned int i;
5168         u8 css;
5169         u32 cmd_len = E1000_TXD_CMD_DEXT;
5170         __be16 protocol;
5171
5172         if (skb->ip_summed != CHECKSUM_PARTIAL)
5173                 return 0;
5174
5175         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5176                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5177         else
5178                 protocol = skb->protocol;
5179
5180         switch (protocol) {
5181         case cpu_to_be16(ETH_P_IP):
5182                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5183                         cmd_len |= E1000_TXD_CMD_TCP;
5184                 break;
5185         case cpu_to_be16(ETH_P_IPV6):
5186                 /* XXX not handling all IPV6 headers */
5187                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5188                         cmd_len |= E1000_TXD_CMD_TCP;
5189                 break;
5190         default:
5191                 if (unlikely(net_ratelimit()))
5192                         e_warn("checksum_partial proto=%x!\n",
5193                                be16_to_cpu(protocol));
5194                 break;
5195         }
5196
5197         css = skb_checksum_start_offset(skb);
5198
5199         i = tx_ring->next_to_use;
5200         buffer_info = &tx_ring->buffer_info[i];
5201         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5202
5203         context_desc->lower_setup.ip_config = 0;
5204         context_desc->upper_setup.tcp_fields.tucss = css;
5205         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5206         context_desc->upper_setup.tcp_fields.tucse = 0;
5207         context_desc->tcp_seg_setup.data = 0;
5208         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5209
5210         buffer_info->time_stamp = jiffies;
5211         buffer_info->next_to_watch = i;
5212
5213         i++;
5214         if (i == tx_ring->count)
5215                 i = 0;
5216         tx_ring->next_to_use = i;
5217
5218         return 1;
5219 }
5220
5221 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5222                         unsigned int first, unsigned int max_per_txd,
5223                         unsigned int nr_frags)
5224 {
5225         struct e1000_adapter *adapter = tx_ring->adapter;
5226         struct pci_dev *pdev = adapter->pdev;
5227         struct e1000_buffer *buffer_info;
5228         unsigned int len = skb_headlen(skb);
5229         unsigned int offset = 0, size, count = 0, i;
5230         unsigned int f, bytecount, segs;
5231
5232         i = tx_ring->next_to_use;
5233
5234         while (len) {
5235                 buffer_info = &tx_ring->buffer_info[i];
5236                 size = min(len, max_per_txd);
5237
5238                 buffer_info->length = size;
5239                 buffer_info->time_stamp = jiffies;
5240                 buffer_info->next_to_watch = i;
5241                 buffer_info->dma = dma_map_single(&pdev->dev,
5242                                                   skb->data + offset,
5243                                                   size, DMA_TO_DEVICE);
5244                 buffer_info->mapped_as_page = false;
5245                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5246                         goto dma_error;
5247
5248                 len -= size;
5249                 offset += size;
5250                 count++;
5251
5252                 if (len) {
5253                         i++;
5254                         if (i == tx_ring->count)
5255                                 i = 0;
5256                 }
5257         }
5258
5259         for (f = 0; f < nr_frags; f++) {
5260                 const struct skb_frag_struct *frag;
5261
5262                 frag = &skb_shinfo(skb)->frags[f];
5263                 len = skb_frag_size(frag);
5264                 offset = 0;
5265
5266                 while (len) {
5267                         i++;
5268                         if (i == tx_ring->count)
5269                                 i = 0;
5270
5271                         buffer_info = &tx_ring->buffer_info[i];
5272                         size = min(len, max_per_txd);
5273
5274                         buffer_info->length = size;
5275                         buffer_info->time_stamp = jiffies;
5276                         buffer_info->next_to_watch = i;
5277                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5278                                                             offset, size,
5279                                                             DMA_TO_DEVICE);
5280                         buffer_info->mapped_as_page = true;
5281                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5282                                 goto dma_error;
5283
5284                         len -= size;
5285                         offset += size;
5286                         count++;
5287                 }
5288         }
5289
5290         segs = skb_shinfo(skb)->gso_segs ? : 1;
5291         /* multiply data chunks by size of headers */
5292         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5293
5294         tx_ring->buffer_info[i].skb = skb;
5295         tx_ring->buffer_info[i].segs = segs;
5296         tx_ring->buffer_info[i].bytecount = bytecount;
5297         tx_ring->buffer_info[first].next_to_watch = i;
5298
5299         return count;
5300
5301 dma_error:
5302         dev_err(&pdev->dev, "Tx DMA map failed\n");
5303         buffer_info->dma = 0;
5304         if (count)
5305                 count--;
5306
5307         while (count--) {
5308                 if (i == 0)
5309                         i += tx_ring->count;
5310                 i--;
5311                 buffer_info = &tx_ring->buffer_info[i];
5312                 e1000_put_txbuf(tx_ring, buffer_info);
5313         }
5314
5315         return 0;
5316 }
5317
5318 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5319 {
5320         struct e1000_adapter *adapter = tx_ring->adapter;
5321         struct e1000_tx_desc *tx_desc = NULL;
5322         struct e1000_buffer *buffer_info;
5323         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5324         unsigned int i;
5325
5326         if (tx_flags & E1000_TX_FLAGS_TSO) {
5327                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5328                     E1000_TXD_CMD_TSE;
5329                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5330
5331                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5332                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5333         }
5334
5335         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5336                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5337                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5338         }
5339
5340         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5341                 txd_lower |= E1000_TXD_CMD_VLE;
5342                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5343         }
5344
5345         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5346                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5347
5348         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5349                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5350                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5351         }
5352
5353         i = tx_ring->next_to_use;
5354
5355         do {
5356                 buffer_info = &tx_ring->buffer_info[i];
5357                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5358                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5359                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5360                                                   buffer_info->length);
5361                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5362
5363                 i++;
5364                 if (i == tx_ring->count)
5365                         i = 0;
5366         } while (--count > 0);
5367
5368         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5369
5370         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5371         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5372                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5373
5374         /* Force memory writes to complete before letting h/w
5375          * know there are new descriptors to fetch.  (Only
5376          * applicable for weak-ordered memory model archs,
5377          * such as IA-64).
5378          */
5379         wmb();
5380
5381         tx_ring->next_to_use = i;
5382
5383         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5384                 e1000e_update_tdt_wa(tx_ring, i);
5385         else
5386                 writel(i, tx_ring->tail);
5387
5388         /* we need this if more than one processor can write to our tail
5389          * at a time, it synchronizes IO on IA64/Altix systems
5390          */
5391         mmiowb();
5392 }
5393
5394 #define MINIMUM_DHCP_PACKET_SIZE 282
5395 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5396                                     struct sk_buff *skb)
5397 {
5398         struct e1000_hw *hw = &adapter->hw;
5399         u16 length, offset;
5400
5401         if (vlan_tx_tag_present(skb) &&
5402             !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5403               (adapter->hw.mng_cookie.status &
5404                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5405                 return 0;
5406
5407         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5408                 return 0;
5409
5410         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5411                 return 0;
5412
5413         {
5414                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5415                 struct udphdr *udp;
5416
5417                 if (ip->protocol != IPPROTO_UDP)
5418                         return 0;
5419
5420                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5421                 if (ntohs(udp->dest) != 67)
5422                         return 0;
5423
5424                 offset = (u8 *)udp + 8 - skb->data;
5425                 length = skb->len - offset;
5426                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5427         }
5428
5429         return 0;
5430 }
5431
5432 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5433 {
5434         struct e1000_adapter *adapter = tx_ring->adapter;
5435
5436         netif_stop_queue(adapter->netdev);
5437         /* Herbert's original patch had:
5438          *  smp_mb__after_netif_stop_queue();
5439          * but since that doesn't exist yet, just open code it.
5440          */
5441         smp_mb();
5442
5443         /* We need to check again in a case another CPU has just
5444          * made room available.
5445          */
5446         if (e1000_desc_unused(tx_ring) < size)
5447                 return -EBUSY;
5448
5449         /* A reprieve! */
5450         netif_start_queue(adapter->netdev);
5451         ++adapter->restart_queue;
5452         return 0;
5453 }
5454
5455 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5456 {
5457         BUG_ON(size > tx_ring->count);
5458
5459         if (e1000_desc_unused(tx_ring) >= size)
5460                 return 0;
5461         return __e1000_maybe_stop_tx(tx_ring, size);
5462 }
5463
5464 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5465                                     struct net_device *netdev)
5466 {
5467         struct e1000_adapter *adapter = netdev_priv(netdev);
5468         struct e1000_ring *tx_ring = adapter->tx_ring;
5469         unsigned int first;
5470         unsigned int tx_flags = 0;
5471         unsigned int len = skb_headlen(skb);
5472         unsigned int nr_frags;
5473         unsigned int mss;
5474         int count = 0;
5475         int tso;
5476         unsigned int f;
5477
5478         if (test_bit(__E1000_DOWN, &adapter->state)) {
5479                 dev_kfree_skb_any(skb);
5480                 return NETDEV_TX_OK;
5481         }
5482
5483         if (skb->len <= 0) {
5484                 dev_kfree_skb_any(skb);
5485                 return NETDEV_TX_OK;
5486         }
5487
5488         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5489          * pad skb in order to meet this minimum size requirement
5490          */
5491         if (unlikely(skb->len < 17)) {
5492                 if (skb_pad(skb, 17 - skb->len))
5493                         return NETDEV_TX_OK;
5494                 skb->len = 17;
5495                 skb_set_tail_pointer(skb, 17);
5496         }
5497
5498         mss = skb_shinfo(skb)->gso_size;
5499         if (mss) {
5500                 u8 hdr_len;
5501
5502                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5503                  * points to just header, pull a few bytes of payload from
5504                  * frags into skb->data
5505                  */
5506                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5507                 /* we do this workaround for ES2LAN, but it is un-necessary,
5508                  * avoiding it could save a lot of cycles
5509                  */
5510                 if (skb->data_len && (hdr_len == len)) {
5511                         unsigned int pull_size;
5512
5513                         pull_size = min_t(unsigned int, 4, skb->data_len);
5514                         if (!__pskb_pull_tail(skb, pull_size)) {
5515                                 e_err("__pskb_pull_tail failed.\n");
5516                                 dev_kfree_skb_any(skb);
5517                                 return NETDEV_TX_OK;
5518                         }
5519                         len = skb_headlen(skb);
5520                 }
5521         }
5522
5523         /* reserve a descriptor for the offload context */
5524         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5525                 count++;
5526         count++;
5527
5528         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5529
5530         nr_frags = skb_shinfo(skb)->nr_frags;
5531         for (f = 0; f < nr_frags; f++)
5532                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5533                                       adapter->tx_fifo_limit);
5534
5535         if (adapter->hw.mac.tx_pkt_filtering)
5536                 e1000_transfer_dhcp_info(adapter, skb);
5537
5538         /* need: count + 2 desc gap to keep tail from touching
5539          * head, otherwise try next time
5540          */
5541         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5542                 return NETDEV_TX_BUSY;
5543
5544         if (vlan_tx_tag_present(skb)) {
5545                 tx_flags |= E1000_TX_FLAGS_VLAN;
5546                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5547         }
5548
5549         first = tx_ring->next_to_use;
5550
5551         tso = e1000_tso(tx_ring, skb);
5552         if (tso < 0) {
5553                 dev_kfree_skb_any(skb);
5554                 return NETDEV_TX_OK;
5555         }
5556
5557         if (tso)
5558                 tx_flags |= E1000_TX_FLAGS_TSO;
5559         else if (e1000_tx_csum(tx_ring, skb))
5560                 tx_flags |= E1000_TX_FLAGS_CSUM;
5561
5562         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5563          * 82571 hardware supports TSO capabilities for IPv6 as well...
5564          * no longer assume, we must.
5565          */
5566         if (skb->protocol == htons(ETH_P_IP))
5567                 tx_flags |= E1000_TX_FLAGS_IPV4;
5568
5569         if (unlikely(skb->no_fcs))
5570                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5571
5572         /* if count is 0 then mapping error has occurred */
5573         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5574                              nr_frags);
5575         if (count) {
5576                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5577                              !adapter->tx_hwtstamp_skb)) {
5578                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5579                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5580                         adapter->tx_hwtstamp_skb = skb_get(skb);
5581                         adapter->tx_hwtstamp_start = jiffies;
5582                         schedule_work(&adapter->tx_hwtstamp_work);
5583                 } else {
5584                         skb_tx_timestamp(skb);
5585                 }
5586
5587                 netdev_sent_queue(netdev, skb->len);
5588                 e1000_tx_queue(tx_ring, tx_flags, count);
5589                 /* Make sure there is space in the ring for the next send. */
5590                 e1000_maybe_stop_tx(tx_ring,
5591                                     (MAX_SKB_FRAGS *
5592                                      DIV_ROUND_UP(PAGE_SIZE,
5593                                                   adapter->tx_fifo_limit) + 2));
5594         } else {
5595                 dev_kfree_skb_any(skb);
5596                 tx_ring->buffer_info[first].time_stamp = 0;
5597                 tx_ring->next_to_use = first;
5598         }
5599
5600         return NETDEV_TX_OK;
5601 }
5602
5603 /**
5604  * e1000_tx_timeout - Respond to a Tx Hang
5605  * @netdev: network interface device structure
5606  **/
5607 static void e1000_tx_timeout(struct net_device *netdev)
5608 {
5609         struct e1000_adapter *adapter = netdev_priv(netdev);
5610
5611         /* Do the reset outside of interrupt context */
5612         adapter->tx_timeout_count++;
5613         schedule_work(&adapter->reset_task);
5614 }
5615
5616 static void e1000_reset_task(struct work_struct *work)
5617 {
5618         struct e1000_adapter *adapter;
5619         adapter = container_of(work, struct e1000_adapter, reset_task);
5620
5621         /* don't run the task if already down */
5622         if (test_bit(__E1000_DOWN, &adapter->state))
5623                 return;
5624
5625         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5626                 e1000e_dump(adapter);
5627                 e_err("Reset adapter unexpectedly\n");
5628         }
5629         e1000e_reinit_locked(adapter);
5630 }
5631
5632 /**
5633  * e1000_get_stats64 - Get System Network Statistics
5634  * @netdev: network interface device structure
5635  * @stats: rtnl_link_stats64 pointer
5636  *
5637  * Returns the address of the device statistics structure.
5638  **/
5639 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5640                                              struct rtnl_link_stats64 *stats)
5641 {
5642         struct e1000_adapter *adapter = netdev_priv(netdev);
5643
5644         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5645         spin_lock(&adapter->stats64_lock);
5646         e1000e_update_stats(adapter);
5647         /* Fill out the OS statistics structure */
5648         stats->rx_bytes = adapter->stats.gorc;
5649         stats->rx_packets = adapter->stats.gprc;
5650         stats->tx_bytes = adapter->stats.gotc;
5651         stats->tx_packets = adapter->stats.gptc;
5652         stats->multicast = adapter->stats.mprc;
5653         stats->collisions = adapter->stats.colc;
5654
5655         /* Rx Errors */
5656
5657         /* RLEC on some newer hardware can be incorrect so build
5658          * our own version based on RUC and ROC
5659          */
5660         stats->rx_errors = adapter->stats.rxerrc +
5661             adapter->stats.crcerrs + adapter->stats.algnerrc +
5662             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5663         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5664         stats->rx_crc_errors = adapter->stats.crcerrs;
5665         stats->rx_frame_errors = adapter->stats.algnerrc;
5666         stats->rx_missed_errors = adapter->stats.mpc;
5667
5668         /* Tx Errors */
5669         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5670         stats->tx_aborted_errors = adapter->stats.ecol;
5671         stats->tx_window_errors = adapter->stats.latecol;
5672         stats->tx_carrier_errors = adapter->stats.tncrs;
5673
5674         /* Tx Dropped needs to be maintained elsewhere */
5675
5676         spin_unlock(&adapter->stats64_lock);
5677         return stats;
5678 }
5679
5680 /**
5681  * e1000_change_mtu - Change the Maximum Transfer Unit
5682  * @netdev: network interface device structure
5683  * @new_mtu: new value for maximum frame size
5684  *
5685  * Returns 0 on success, negative on failure
5686  **/
5687 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5688 {
5689         struct e1000_adapter *adapter = netdev_priv(netdev);
5690         int max_frame = new_mtu + VLAN_HLEN + ETH_HLEN + ETH_FCS_LEN;
5691
5692         /* Jumbo frame support */
5693         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5694             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5695                 e_err("Jumbo Frames not supported.\n");
5696                 return -EINVAL;
5697         }
5698
5699         /* Supported frame sizes */
5700         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5701             (max_frame > adapter->max_hw_frame_size)) {
5702                 e_err("Unsupported MTU setting\n");
5703                 return -EINVAL;
5704         }
5705
5706         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5707         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5708             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5709             (new_mtu > ETH_DATA_LEN)) {
5710                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5711                 return -EINVAL;
5712         }
5713
5714         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5715                 usleep_range(1000, 2000);
5716         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5717         adapter->max_frame_size = max_frame;
5718         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5719         netdev->mtu = new_mtu;
5720
5721         pm_runtime_get_sync(netdev->dev.parent);
5722
5723         if (netif_running(netdev))
5724                 e1000e_down(adapter, true);
5725
5726         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5727          * means we reserve 2 more, this pushes us to allocate from the next
5728          * larger slab size.
5729          * i.e. RXBUFFER_2048 --> size-4096 slab
5730          * However with the new *_jumbo_rx* routines, jumbo receives will use
5731          * fragmented skbs
5732          */
5733
5734         if (max_frame <= 2048)
5735                 adapter->rx_buffer_len = 2048;
5736         else
5737                 adapter->rx_buffer_len = 4096;
5738
5739         /* adjust allocation if LPE protects us, and we aren't using SBP */
5740         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5741             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5742                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5743                     + ETH_FCS_LEN;
5744
5745         if (netif_running(netdev))
5746                 e1000e_up(adapter);
5747         else
5748                 e1000e_reset(adapter);
5749
5750         pm_runtime_put_sync(netdev->dev.parent);
5751
5752         clear_bit(__E1000_RESETTING, &adapter->state);
5753
5754         return 0;
5755 }
5756
5757 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5758                            int cmd)
5759 {
5760         struct e1000_adapter *adapter = netdev_priv(netdev);
5761         struct mii_ioctl_data *data = if_mii(ifr);
5762
5763         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5764                 return -EOPNOTSUPP;
5765
5766         switch (cmd) {
5767         case SIOCGMIIPHY:
5768                 data->phy_id = adapter->hw.phy.addr;
5769                 break;
5770         case SIOCGMIIREG:
5771                 e1000_phy_read_status(adapter);
5772
5773                 switch (data->reg_num & 0x1F) {
5774                 case MII_BMCR:
5775                         data->val_out = adapter->phy_regs.bmcr;
5776                         break;
5777                 case MII_BMSR:
5778                         data->val_out = adapter->phy_regs.bmsr;
5779                         break;
5780                 case MII_PHYSID1:
5781                         data->val_out = (adapter->hw.phy.id >> 16);
5782                         break;
5783                 case MII_PHYSID2:
5784                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5785                         break;
5786                 case MII_ADVERTISE:
5787                         data->val_out = adapter->phy_regs.advertise;
5788                         break;
5789                 case MII_LPA:
5790                         data->val_out = adapter->phy_regs.lpa;
5791                         break;
5792                 case MII_EXPANSION:
5793                         data->val_out = adapter->phy_regs.expansion;
5794                         break;
5795                 case MII_CTRL1000:
5796                         data->val_out = adapter->phy_regs.ctrl1000;
5797                         break;
5798                 case MII_STAT1000:
5799                         data->val_out = adapter->phy_regs.stat1000;
5800                         break;
5801                 case MII_ESTATUS:
5802                         data->val_out = adapter->phy_regs.estatus;
5803                         break;
5804                 default:
5805                         return -EIO;
5806                 }
5807                 break;
5808         case SIOCSMIIREG:
5809         default:
5810                 return -EOPNOTSUPP;
5811         }
5812         return 0;
5813 }
5814
5815 /**
5816  * e1000e_hwtstamp_ioctl - control hardware time stamping
5817  * @netdev: network interface device structure
5818  * @ifreq: interface request
5819  *
5820  * Outgoing time stamping can be enabled and disabled. Play nice and
5821  * disable it when requested, although it shouldn't cause any overhead
5822  * when no packet needs it. At most one packet in the queue may be
5823  * marked for time stamping, otherwise it would be impossible to tell
5824  * for sure to which packet the hardware time stamp belongs.
5825  *
5826  * Incoming time stamping has to be configured via the hardware filters.
5827  * Not all combinations are supported, in particular event type has to be
5828  * specified. Matching the kind of event packet is not supported, with the
5829  * exception of "all V2 events regardless of level 2 or 4".
5830  **/
5831 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
5832 {
5833         struct e1000_adapter *adapter = netdev_priv(netdev);
5834         struct hwtstamp_config config;
5835         int ret_val;
5836
5837         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5838                 return -EFAULT;
5839
5840         ret_val = e1000e_config_hwtstamp(adapter, &config);
5841         if (ret_val)
5842                 return ret_val;
5843
5844         switch (config.rx_filter) {
5845         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5846         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5847         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5848         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5849         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5850         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5851                 /* With V2 type filters which specify a Sync or Delay Request,
5852                  * Path Delay Request/Response messages are also time stamped
5853                  * by hardware so notify the caller the requested packets plus
5854                  * some others are time stamped.
5855                  */
5856                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5857                 break;
5858         default:
5859                 break;
5860         }
5861
5862         return copy_to_user(ifr->ifr_data, &config,
5863                             sizeof(config)) ? -EFAULT : 0;
5864 }
5865
5866 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
5867 {
5868         struct e1000_adapter *adapter = netdev_priv(netdev);
5869
5870         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
5871                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
5872 }
5873
5874 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5875 {
5876         switch (cmd) {
5877         case SIOCGMIIPHY:
5878         case SIOCGMIIREG:
5879         case SIOCSMIIREG:
5880                 return e1000_mii_ioctl(netdev, ifr, cmd);
5881         case SIOCSHWTSTAMP:
5882                 return e1000e_hwtstamp_set(netdev, ifr);
5883         case SIOCGHWTSTAMP:
5884                 return e1000e_hwtstamp_get(netdev, ifr);
5885         default:
5886                 return -EOPNOTSUPP;
5887         }
5888 }
5889
5890 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5891 {
5892         struct e1000_hw *hw = &adapter->hw;
5893         u32 i, mac_reg, wuc;
5894         u16 phy_reg, wuc_enable;
5895         int retval;
5896
5897         /* copy MAC RARs to PHY RARs */
5898         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5899
5900         retval = hw->phy.ops.acquire(hw);
5901         if (retval) {
5902                 e_err("Could not acquire PHY\n");
5903                 return retval;
5904         }
5905
5906         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5907         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5908         if (retval)
5909                 goto release;
5910
5911         /* copy MAC MTA to PHY MTA - only needed for pchlan */
5912         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5913                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5914                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5915                                            (u16)(mac_reg & 0xFFFF));
5916                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5917                                            (u16)((mac_reg >> 16) & 0xFFFF));
5918         }
5919
5920         /* configure PHY Rx Control register */
5921         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5922         mac_reg = er32(RCTL);
5923         if (mac_reg & E1000_RCTL_UPE)
5924                 phy_reg |= BM_RCTL_UPE;
5925         if (mac_reg & E1000_RCTL_MPE)
5926                 phy_reg |= BM_RCTL_MPE;
5927         phy_reg &= ~(BM_RCTL_MO_MASK);
5928         if (mac_reg & E1000_RCTL_MO_3)
5929                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5930                             << BM_RCTL_MO_SHIFT);
5931         if (mac_reg & E1000_RCTL_BAM)
5932                 phy_reg |= BM_RCTL_BAM;
5933         if (mac_reg & E1000_RCTL_PMCF)
5934                 phy_reg |= BM_RCTL_PMCF;
5935         mac_reg = er32(CTRL);
5936         if (mac_reg & E1000_CTRL_RFCE)
5937                 phy_reg |= BM_RCTL_RFCE;
5938         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5939
5940         wuc = E1000_WUC_PME_EN;
5941         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
5942                 wuc |= E1000_WUC_APME;
5943
5944         /* enable PHY wakeup in MAC register */
5945         ew32(WUFC, wufc);
5946         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
5947                    E1000_WUC_PME_STATUS | wuc));
5948
5949         /* configure and enable PHY wakeup in PHY registers */
5950         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5951         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
5952
5953         /* activate PHY wakeup */
5954         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5955         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5956         if (retval)
5957                 e_err("Could not set PHY Host Wakeup bit\n");
5958 release:
5959         hw->phy.ops.release(hw);
5960
5961         return retval;
5962 }
5963
5964 static int e1000e_pm_freeze(struct device *dev)
5965 {
5966         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
5967         struct e1000_adapter *adapter = netdev_priv(netdev);
5968
5969         netif_device_detach(netdev);
5970
5971         if (netif_running(netdev)) {
5972                 int count = E1000_CHECK_RESET_COUNT;
5973
5974                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5975                         usleep_range(10000, 20000);
5976
5977                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5978
5979                 /* Quiesce the device without resetting the hardware */
5980                 e1000e_down(adapter, false);
5981                 e1000_free_irq(adapter);
5982         }
5983         e1000e_reset_interrupt_capability(adapter);
5984
5985         /* Allow time for pending master requests to run */
5986         e1000e_disable_pcie_master(&adapter->hw);
5987
5988         return 0;
5989 }
5990
5991 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
5992 {
5993         struct net_device *netdev = pci_get_drvdata(pdev);
5994         struct e1000_adapter *adapter = netdev_priv(netdev);
5995         struct e1000_hw *hw = &adapter->hw;
5996         u32 ctrl, ctrl_ext, rctl, status;
5997         /* Runtime suspend should only enable wakeup for link changes */
5998         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5999         int retval = 0;
6000
6001         status = er32(STATUS);
6002         if (status & E1000_STATUS_LU)
6003                 wufc &= ~E1000_WUFC_LNKC;
6004
6005         if (wufc) {
6006                 e1000_setup_rctl(adapter);
6007                 e1000e_set_rx_mode(netdev);
6008
6009                 /* turn on all-multi mode if wake on multicast is enabled */
6010                 if (wufc & E1000_WUFC_MC) {
6011                         rctl = er32(RCTL);
6012                         rctl |= E1000_RCTL_MPE;
6013                         ew32(RCTL, rctl);
6014                 }
6015
6016                 ctrl = er32(CTRL);
6017                 ctrl |= E1000_CTRL_ADVD3WUC;
6018                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6019                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6020                 ew32(CTRL, ctrl);
6021
6022                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6023                     adapter->hw.phy.media_type ==
6024                     e1000_media_type_internal_serdes) {
6025                         /* keep the laser running in D3 */
6026                         ctrl_ext = er32(CTRL_EXT);
6027                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6028                         ew32(CTRL_EXT, ctrl_ext);
6029                 }
6030
6031                 if (!runtime)
6032                         e1000e_power_up_phy(adapter);
6033
6034                 if (adapter->flags & FLAG_IS_ICH)
6035                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6036
6037                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6038                         /* enable wakeup by the PHY */
6039                         retval = e1000_init_phy_wakeup(adapter, wufc);
6040                         if (retval)
6041                                 return retval;
6042                 } else {
6043                         /* enable wakeup by the MAC */
6044                         ew32(WUFC, wufc);
6045                         ew32(WUC, E1000_WUC_PME_EN);
6046                 }
6047         } else {
6048                 ew32(WUC, 0);
6049                 ew32(WUFC, 0);
6050
6051                 e1000_power_down_phy(adapter);
6052         }
6053
6054         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6055                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6056         } else if (hw->mac.type == e1000_pch_lpt) {
6057                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6058                         /* ULP does not support wake from unicast, multicast
6059                          * or broadcast.
6060                          */
6061                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6062
6063                 if (retval)
6064                         return retval;
6065         }
6066
6067
6068         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6069          * would have already happened in close and is redundant.
6070          */
6071         e1000e_release_hw_control(adapter);
6072
6073         pci_clear_master(pdev);
6074
6075         /* The pci-e switch on some quad port adapters will report a
6076          * correctable error when the MAC transitions from D0 to D3.  To
6077          * prevent this we need to mask off the correctable errors on the
6078          * downstream port of the pci-e switch.
6079          *
6080          * We don't have the associated upstream bridge while assigning
6081          * the PCI device into guest. For example, the KVM on power is
6082          * one of the cases.
6083          */
6084         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6085                 struct pci_dev *us_dev = pdev->bus->self;
6086                 u16 devctl;
6087
6088                 if (!us_dev)
6089                         return 0;
6090
6091                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6092                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6093                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6094
6095                 pci_save_state(pdev);
6096                 pci_prepare_to_sleep(pdev);
6097
6098                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6099         }
6100
6101         return 0;
6102 }
6103
6104 /**
6105  * e1000e_disable_aspm - Disable ASPM states
6106  * @pdev: pointer to PCI device struct
6107  * @state: bit-mask of ASPM states to disable
6108  *
6109  * Some devices *must* have certain ASPM states disabled per hardware errata.
6110  **/
6111 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6112 {
6113         struct pci_dev *parent = pdev->bus->self;
6114         u16 aspm_dis_mask = 0;
6115         u16 pdev_aspmc, parent_aspmc;
6116
6117         switch (state) {
6118         case PCIE_LINK_STATE_L0S:
6119         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6120                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6121                 /* fall-through - can't have L1 without L0s */
6122         case PCIE_LINK_STATE_L1:
6123                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6124                 break;
6125         default:
6126                 return;
6127         }
6128
6129         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6130         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6131
6132         if (parent) {
6133                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6134                                           &parent_aspmc);
6135                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6136         }
6137
6138         /* Nothing to do if the ASPM states to be disabled already are */
6139         if (!(pdev_aspmc & aspm_dis_mask) &&
6140             (!parent || !(parent_aspmc & aspm_dis_mask)))
6141                 return;
6142
6143         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6144                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6145                  "L0s" : "",
6146                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6147                  "L1" : "");
6148
6149 #ifdef CONFIG_PCIEASPM
6150         pci_disable_link_state_locked(pdev, state);
6151
6152         /* Double-check ASPM control.  If not disabled by the above, the
6153          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6154          * not enabled); override by writing PCI config space directly.
6155          */
6156         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6157         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6158
6159         if (!(aspm_dis_mask & pdev_aspmc))
6160                 return;
6161 #endif
6162
6163         /* Both device and parent should have the same ASPM setting.
6164          * Disable ASPM in downstream component first and then upstream.
6165          */
6166         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6167
6168         if (parent)
6169                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6170                                            aspm_dis_mask);
6171 }
6172
6173 #ifdef CONFIG_PM
6174 static int __e1000_resume(struct pci_dev *pdev)
6175 {
6176         struct net_device *netdev = pci_get_drvdata(pdev);
6177         struct e1000_adapter *adapter = netdev_priv(netdev);
6178         struct e1000_hw *hw = &adapter->hw;
6179         u16 aspm_disable_flag = 0;
6180
6181         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6182                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6183         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6184                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6185         if (aspm_disable_flag)
6186                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6187
6188         pci_set_master(pdev);
6189
6190         if (hw->mac.type >= e1000_pch2lan)
6191                 e1000_resume_workarounds_pchlan(&adapter->hw);
6192
6193         e1000e_power_up_phy(adapter);
6194
6195         /* report the system wakeup cause from S3/S4 */
6196         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6197                 u16 phy_data;
6198
6199                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6200                 if (phy_data) {
6201                         e_info("PHY Wakeup cause - %s\n",
6202                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6203                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6204                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6205                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6206                                phy_data & E1000_WUS_LNKC ?
6207                                "Link Status Change" : "other");
6208                 }
6209                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6210         } else {
6211                 u32 wus = er32(WUS);
6212                 if (wus) {
6213                         e_info("MAC Wakeup cause - %s\n",
6214                                wus & E1000_WUS_EX ? "Unicast Packet" :
6215                                wus & E1000_WUS_MC ? "Multicast Packet" :
6216                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6217                                wus & E1000_WUS_MAG ? "Magic Packet" :
6218                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6219                                "other");
6220                 }
6221                 ew32(WUS, ~0);
6222         }
6223
6224         e1000e_reset(adapter);
6225
6226         e1000_init_manageability_pt(adapter);
6227
6228         /* If the controller has AMT, do not set DRV_LOAD until the interface
6229          * is up.  For all other cases, let the f/w know that the h/w is now
6230          * under the control of the driver.
6231          */
6232         if (!(adapter->flags & FLAG_HAS_AMT))
6233                 e1000e_get_hw_control(adapter);
6234
6235         return 0;
6236 }
6237
6238 #ifdef CONFIG_PM_SLEEP
6239 static int e1000e_pm_thaw(struct device *dev)
6240 {
6241         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6242         struct e1000_adapter *adapter = netdev_priv(netdev);
6243
6244         e1000e_set_interrupt_capability(adapter);
6245         if (netif_running(netdev)) {
6246                 u32 err = e1000_request_irq(adapter);
6247
6248                 if (err)
6249                         return err;
6250
6251                 e1000e_up(adapter);
6252         }
6253
6254         netif_device_attach(netdev);
6255
6256         return 0;
6257 }
6258
6259 static int e1000e_pm_suspend(struct device *dev)
6260 {
6261         struct pci_dev *pdev = to_pci_dev(dev);
6262
6263         e1000e_pm_freeze(dev);
6264
6265         return __e1000_shutdown(pdev, false);
6266 }
6267
6268 static int e1000e_pm_resume(struct device *dev)
6269 {
6270         struct pci_dev *pdev = to_pci_dev(dev);
6271         int rc;
6272
6273         rc = __e1000_resume(pdev);
6274         if (rc)
6275                 return rc;
6276
6277         return e1000e_pm_thaw(dev);
6278 }
6279 #endif /* CONFIG_PM_SLEEP */
6280
6281 #ifdef CONFIG_PM_RUNTIME
6282 static int e1000e_pm_runtime_idle(struct device *dev)
6283 {
6284         struct pci_dev *pdev = to_pci_dev(dev);
6285         struct net_device *netdev = pci_get_drvdata(pdev);
6286         struct e1000_adapter *adapter = netdev_priv(netdev);
6287
6288         if (!e1000e_has_link(adapter))
6289                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6290
6291         return -EBUSY;
6292 }
6293
6294 static int e1000e_pm_runtime_resume(struct device *dev)
6295 {
6296         struct pci_dev *pdev = to_pci_dev(dev);
6297         struct net_device *netdev = pci_get_drvdata(pdev);
6298         struct e1000_adapter *adapter = netdev_priv(netdev);
6299         int rc;
6300
6301         rc = __e1000_resume(pdev);
6302         if (rc)
6303                 return rc;
6304
6305         if (netdev->flags & IFF_UP)
6306                 rc = e1000e_up(adapter);
6307
6308         return rc;
6309 }
6310
6311 static int e1000e_pm_runtime_suspend(struct device *dev)
6312 {
6313         struct pci_dev *pdev = to_pci_dev(dev);
6314         struct net_device *netdev = pci_get_drvdata(pdev);
6315         struct e1000_adapter *adapter = netdev_priv(netdev);
6316
6317         if (netdev->flags & IFF_UP) {
6318                 int count = E1000_CHECK_RESET_COUNT;
6319
6320                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6321                         usleep_range(10000, 20000);
6322
6323                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6324
6325                 /* Down the device without resetting the hardware */
6326                 e1000e_down(adapter, false);
6327         }
6328
6329         if (__e1000_shutdown(pdev, true)) {
6330                 e1000e_pm_runtime_resume(dev);
6331                 return -EBUSY;
6332         }
6333
6334         return 0;
6335 }
6336 #endif /* CONFIG_PM_RUNTIME */
6337 #endif /* CONFIG_PM */
6338
6339 static void e1000_shutdown(struct pci_dev *pdev)
6340 {
6341         e1000e_pm_freeze(&pdev->dev);
6342
6343         __e1000_shutdown(pdev, false);
6344 }
6345
6346 #ifdef CONFIG_NET_POLL_CONTROLLER
6347
6348 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6349 {
6350         struct net_device *netdev = data;
6351         struct e1000_adapter *adapter = netdev_priv(netdev);
6352
6353         if (adapter->msix_entries) {
6354                 int vector, msix_irq;
6355
6356                 vector = 0;
6357                 msix_irq = adapter->msix_entries[vector].vector;
6358                 disable_irq(msix_irq);
6359                 e1000_intr_msix_rx(msix_irq, netdev);
6360                 enable_irq(msix_irq);
6361
6362                 vector++;
6363                 msix_irq = adapter->msix_entries[vector].vector;
6364                 disable_irq(msix_irq);
6365                 e1000_intr_msix_tx(msix_irq, netdev);
6366                 enable_irq(msix_irq);
6367
6368                 vector++;
6369                 msix_irq = adapter->msix_entries[vector].vector;
6370                 disable_irq(msix_irq);
6371                 e1000_msix_other(msix_irq, netdev);
6372                 enable_irq(msix_irq);
6373         }
6374
6375         return IRQ_HANDLED;
6376 }
6377
6378 /**
6379  * e1000_netpoll
6380  * @netdev: network interface device structure
6381  *
6382  * Polling 'interrupt' - used by things like netconsole to send skbs
6383  * without having to re-enable interrupts. It's not called while
6384  * the interrupt routine is executing.
6385  */
6386 static void e1000_netpoll(struct net_device *netdev)
6387 {
6388         struct e1000_adapter *adapter = netdev_priv(netdev);
6389
6390         switch (adapter->int_mode) {
6391         case E1000E_INT_MODE_MSIX:
6392                 e1000_intr_msix(adapter->pdev->irq, netdev);
6393                 break;
6394         case E1000E_INT_MODE_MSI:
6395                 disable_irq(adapter->pdev->irq);
6396                 e1000_intr_msi(adapter->pdev->irq, netdev);
6397                 enable_irq(adapter->pdev->irq);
6398                 break;
6399         default:                /* E1000E_INT_MODE_LEGACY */
6400                 disable_irq(adapter->pdev->irq);
6401                 e1000_intr(adapter->pdev->irq, netdev);
6402                 enable_irq(adapter->pdev->irq);
6403                 break;
6404         }
6405 }
6406 #endif
6407
6408 /**
6409  * e1000_io_error_detected - called when PCI error is detected
6410  * @pdev: Pointer to PCI device
6411  * @state: The current pci connection state
6412  *
6413  * This function is called after a PCI bus error affecting
6414  * this device has been detected.
6415  */
6416 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6417                                                 pci_channel_state_t state)
6418 {
6419         struct net_device *netdev = pci_get_drvdata(pdev);
6420         struct e1000_adapter *adapter = netdev_priv(netdev);
6421
6422         netif_device_detach(netdev);
6423
6424         if (state == pci_channel_io_perm_failure)
6425                 return PCI_ERS_RESULT_DISCONNECT;
6426
6427         if (netif_running(netdev))
6428                 e1000e_down(adapter, true);
6429         pci_disable_device(pdev);
6430
6431         /* Request a slot slot reset. */
6432         return PCI_ERS_RESULT_NEED_RESET;
6433 }
6434
6435 /**
6436  * e1000_io_slot_reset - called after the pci bus has been reset.
6437  * @pdev: Pointer to PCI device
6438  *
6439  * Restart the card from scratch, as if from a cold-boot. Implementation
6440  * resembles the first-half of the e1000e_pm_resume routine.
6441  */
6442 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6443 {
6444         struct net_device *netdev = pci_get_drvdata(pdev);
6445         struct e1000_adapter *adapter = netdev_priv(netdev);
6446         struct e1000_hw *hw = &adapter->hw;
6447         u16 aspm_disable_flag = 0;
6448         int err;
6449         pci_ers_result_t result;
6450
6451         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6452                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6453         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6454                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6455         if (aspm_disable_flag)
6456                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6457
6458         err = pci_enable_device_mem(pdev);
6459         if (err) {
6460                 dev_err(&pdev->dev,
6461                         "Cannot re-enable PCI device after reset.\n");
6462                 result = PCI_ERS_RESULT_DISCONNECT;
6463         } else {
6464                 pdev->state_saved = true;
6465                 pci_restore_state(pdev);
6466                 pci_set_master(pdev);
6467
6468                 pci_enable_wake(pdev, PCI_D3hot, 0);
6469                 pci_enable_wake(pdev, PCI_D3cold, 0);
6470
6471                 e1000e_reset(adapter);
6472                 ew32(WUS, ~0);
6473                 result = PCI_ERS_RESULT_RECOVERED;
6474         }
6475
6476         pci_cleanup_aer_uncorrect_error_status(pdev);
6477
6478         return result;
6479 }
6480
6481 /**
6482  * e1000_io_resume - called when traffic can start flowing again.
6483  * @pdev: Pointer to PCI device
6484  *
6485  * This callback is called when the error recovery driver tells us that
6486  * its OK to resume normal operation. Implementation resembles the
6487  * second-half of the e1000e_pm_resume routine.
6488  */
6489 static void e1000_io_resume(struct pci_dev *pdev)
6490 {
6491         struct net_device *netdev = pci_get_drvdata(pdev);
6492         struct e1000_adapter *adapter = netdev_priv(netdev);
6493
6494         e1000_init_manageability_pt(adapter);
6495
6496         if (netif_running(netdev)) {
6497                 if (e1000e_up(adapter)) {
6498                         dev_err(&pdev->dev,
6499                                 "can't bring device back up after reset\n");
6500                         return;
6501                 }
6502         }
6503
6504         netif_device_attach(netdev);
6505
6506         /* If the controller has AMT, do not set DRV_LOAD until the interface
6507          * is up.  For all other cases, let the f/w know that the h/w is now
6508          * under the control of the driver.
6509          */
6510         if (!(adapter->flags & FLAG_HAS_AMT))
6511                 e1000e_get_hw_control(adapter);
6512 }
6513
6514 static void e1000_print_device_info(struct e1000_adapter *adapter)
6515 {
6516         struct e1000_hw *hw = &adapter->hw;
6517         struct net_device *netdev = adapter->netdev;
6518         u32 ret_val;
6519         u8 pba_str[E1000_PBANUM_LENGTH];
6520
6521         /* print bus type/speed/width info */
6522         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6523                /* bus width */
6524                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6525                 "Width x1"),
6526                /* MAC address */
6527                netdev->dev_addr);
6528         e_info("Intel(R) PRO/%s Network Connection\n",
6529                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6530         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6531                                                 E1000_PBANUM_LENGTH);
6532         if (ret_val)
6533                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6534         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6535                hw->mac.type, hw->phy.type, pba_str);
6536 }
6537
6538 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6539 {
6540         struct e1000_hw *hw = &adapter->hw;
6541         int ret_val;
6542         u16 buf = 0;
6543
6544         if (hw->mac.type != e1000_82573)
6545                 return;
6546
6547         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6548         le16_to_cpus(&buf);
6549         if (!ret_val && (!(buf & (1 << 0)))) {
6550                 /* Deep Smart Power Down (DSPD) */
6551                 dev_warn(&adapter->pdev->dev,
6552                          "Warning: detected DSPD enabled in EEPROM\n");
6553         }
6554 }
6555
6556 static int e1000_set_features(struct net_device *netdev,
6557                               netdev_features_t features)
6558 {
6559         struct e1000_adapter *adapter = netdev_priv(netdev);
6560         netdev_features_t changed = features ^ netdev->features;
6561
6562         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6563                 adapter->flags |= FLAG_TSO_FORCE;
6564
6565         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6566                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6567                          NETIF_F_RXALL)))
6568                 return 0;
6569
6570         if (changed & NETIF_F_RXFCS) {
6571                 if (features & NETIF_F_RXFCS) {
6572                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6573                 } else {
6574                         /* We need to take it back to defaults, which might mean
6575                          * stripping is still disabled at the adapter level.
6576                          */
6577                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6578                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6579                         else
6580                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6581                 }
6582         }
6583
6584         netdev->features = features;
6585
6586         if (netif_running(netdev))
6587                 e1000e_reinit_locked(adapter);
6588         else
6589                 e1000e_reset(adapter);
6590
6591         return 0;
6592 }
6593
6594 static const struct net_device_ops e1000e_netdev_ops = {
6595         .ndo_open               = e1000_open,
6596         .ndo_stop               = e1000_close,
6597         .ndo_start_xmit         = e1000_xmit_frame,
6598         .ndo_get_stats64        = e1000e_get_stats64,
6599         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6600         .ndo_set_mac_address    = e1000_set_mac,
6601         .ndo_change_mtu         = e1000_change_mtu,
6602         .ndo_do_ioctl           = e1000_ioctl,
6603         .ndo_tx_timeout         = e1000_tx_timeout,
6604         .ndo_validate_addr      = eth_validate_addr,
6605
6606         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6607         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6608 #ifdef CONFIG_NET_POLL_CONTROLLER
6609         .ndo_poll_controller    = e1000_netpoll,
6610 #endif
6611         .ndo_set_features = e1000_set_features,
6612 };
6613
6614 /**
6615  * e1000_probe - Device Initialization Routine
6616  * @pdev: PCI device information struct
6617  * @ent: entry in e1000_pci_tbl
6618  *
6619  * Returns 0 on success, negative on failure
6620  *
6621  * e1000_probe initializes an adapter identified by a pci_dev structure.
6622  * The OS initialization, configuring of the adapter private structure,
6623  * and a hardware reset occur.
6624  **/
6625 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6626 {
6627         struct net_device *netdev;
6628         struct e1000_adapter *adapter;
6629         struct e1000_hw *hw;
6630         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6631         resource_size_t mmio_start, mmio_len;
6632         resource_size_t flash_start, flash_len;
6633         static int cards_found;
6634         u16 aspm_disable_flag = 0;
6635         int bars, i, err, pci_using_dac;
6636         u16 eeprom_data = 0;
6637         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6638
6639         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6640                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6641         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6642                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6643         if (aspm_disable_flag)
6644                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6645
6646         err = pci_enable_device_mem(pdev);
6647         if (err)
6648                 return err;
6649
6650         pci_using_dac = 0;
6651         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6652         if (!err) {
6653                 pci_using_dac = 1;
6654         } else {
6655                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6656                 if (err) {
6657                         dev_err(&pdev->dev,
6658                                 "No usable DMA configuration, aborting\n");
6659                         goto err_dma;
6660                 }
6661         }
6662
6663         bars = pci_select_bars(pdev, IORESOURCE_MEM);
6664         err = pci_request_selected_regions_exclusive(pdev, bars,
6665                                                      e1000e_driver_name);
6666         if (err)
6667                 goto err_pci_reg;
6668
6669         /* AER (Advanced Error Reporting) hooks */
6670         pci_enable_pcie_error_reporting(pdev);
6671
6672         pci_set_master(pdev);
6673         /* PCI config space info */
6674         err = pci_save_state(pdev);
6675         if (err)
6676                 goto err_alloc_etherdev;
6677
6678         err = -ENOMEM;
6679         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6680         if (!netdev)
6681                 goto err_alloc_etherdev;
6682
6683         SET_NETDEV_DEV(netdev, &pdev->dev);
6684
6685         netdev->irq = pdev->irq;
6686
6687         pci_set_drvdata(pdev, netdev);
6688         adapter = netdev_priv(netdev);
6689         hw = &adapter->hw;
6690         adapter->netdev = netdev;
6691         adapter->pdev = pdev;
6692         adapter->ei = ei;
6693         adapter->pba = ei->pba;
6694         adapter->flags = ei->flags;
6695         adapter->flags2 = ei->flags2;
6696         adapter->hw.adapter = adapter;
6697         adapter->hw.mac.type = ei->mac;
6698         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6699         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6700
6701         mmio_start = pci_resource_start(pdev, 0);
6702         mmio_len = pci_resource_len(pdev, 0);
6703
6704         err = -EIO;
6705         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6706         if (!adapter->hw.hw_addr)
6707                 goto err_ioremap;
6708
6709         if ((adapter->flags & FLAG_HAS_FLASH) &&
6710             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6711                 flash_start = pci_resource_start(pdev, 1);
6712                 flash_len = pci_resource_len(pdev, 1);
6713                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6714                 if (!adapter->hw.flash_address)
6715                         goto err_flashmap;
6716         }
6717
6718         /* Set default EEE advertisement */
6719         if (adapter->flags2 & FLAG2_HAS_EEE)
6720                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6721
6722         /* construct the net_device struct */
6723         netdev->netdev_ops = &e1000e_netdev_ops;
6724         e1000e_set_ethtool_ops(netdev);
6725         netdev->watchdog_timeo = 5 * HZ;
6726         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6727         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6728
6729         netdev->mem_start = mmio_start;
6730         netdev->mem_end = mmio_start + mmio_len;
6731
6732         adapter->bd_number = cards_found++;
6733
6734         e1000e_check_options(adapter);
6735
6736         /* setup adapter struct */
6737         err = e1000_sw_init(adapter);
6738         if (err)
6739                 goto err_sw_init;
6740
6741         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6742         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6743         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6744
6745         err = ei->get_variants(adapter);
6746         if (err)
6747                 goto err_hw_init;
6748
6749         if ((adapter->flags & FLAG_IS_ICH) &&
6750             (adapter->flags & FLAG_READ_ONLY_NVM))
6751                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6752
6753         hw->mac.ops.get_bus_info(&adapter->hw);
6754
6755         adapter->hw.phy.autoneg_wait_to_complete = 0;
6756
6757         /* Copper options */
6758         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6759                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6760                 adapter->hw.phy.disable_polarity_correction = 0;
6761                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6762         }
6763
6764         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6765                 dev_info(&pdev->dev,
6766                          "PHY reset is blocked due to SOL/IDER session.\n");
6767
6768         /* Set initial default active device features */
6769         netdev->features = (NETIF_F_SG |
6770                             NETIF_F_HW_VLAN_CTAG_RX |
6771                             NETIF_F_HW_VLAN_CTAG_TX |
6772                             NETIF_F_TSO |
6773                             NETIF_F_TSO6 |
6774                             NETIF_F_RXHASH |
6775                             NETIF_F_RXCSUM |
6776                             NETIF_F_HW_CSUM);
6777
6778         /* Set user-changeable features (subset of all device features) */
6779         netdev->hw_features = netdev->features;
6780         netdev->hw_features |= NETIF_F_RXFCS;
6781         netdev->priv_flags |= IFF_SUPP_NOFCS;
6782         netdev->hw_features |= NETIF_F_RXALL;
6783
6784         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6785                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6786
6787         netdev->vlan_features |= (NETIF_F_SG |
6788                                   NETIF_F_TSO |
6789                                   NETIF_F_TSO6 |
6790                                   NETIF_F_HW_CSUM);
6791
6792         netdev->priv_flags |= IFF_UNICAST_FLT;
6793
6794         if (pci_using_dac) {
6795                 netdev->features |= NETIF_F_HIGHDMA;
6796                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6797         }
6798
6799         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6800                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6801
6802         /* before reading the NVM, reset the controller to
6803          * put the device in a known good starting state
6804          */
6805         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6806
6807         /* systems with ASPM and others may see the checksum fail on the first
6808          * attempt. Let's give it a few tries
6809          */
6810         for (i = 0;; i++) {
6811                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6812                         break;
6813                 if (i == 2) {
6814                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6815                         err = -EIO;
6816                         goto err_eeprom;
6817                 }
6818         }
6819
6820         e1000_eeprom_checks(adapter);
6821
6822         /* copy the MAC address */
6823         if (e1000e_read_mac_addr(&adapter->hw))
6824                 dev_err(&pdev->dev,
6825                         "NVM Read Error while reading MAC address\n");
6826
6827         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6828
6829         if (!is_valid_ether_addr(netdev->dev_addr)) {
6830                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6831                         netdev->dev_addr);
6832                 err = -EIO;
6833                 goto err_eeprom;
6834         }
6835
6836         init_timer(&adapter->watchdog_timer);
6837         adapter->watchdog_timer.function = e1000_watchdog;
6838         adapter->watchdog_timer.data = (unsigned long)adapter;
6839
6840         init_timer(&adapter->phy_info_timer);
6841         adapter->phy_info_timer.function = e1000_update_phy_info;
6842         adapter->phy_info_timer.data = (unsigned long)adapter;
6843
6844         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6845         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6846         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6847         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6848         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6849
6850         /* Initialize link parameters. User can change them with ethtool */
6851         adapter->hw.mac.autoneg = 1;
6852         adapter->fc_autoneg = true;
6853         adapter->hw.fc.requested_mode = e1000_fc_default;
6854         adapter->hw.fc.current_mode = e1000_fc_default;
6855         adapter->hw.phy.autoneg_advertised = 0x2f;
6856
6857         /* Initial Wake on LAN setting - If APM wake is enabled in
6858          * the EEPROM, enable the ACPI Magic Packet filter
6859          */
6860         if (adapter->flags & FLAG_APME_IN_WUC) {
6861                 /* APME bit in EEPROM is mapped to WUC.APME */
6862                 eeprom_data = er32(WUC);
6863                 eeprom_apme_mask = E1000_WUC_APME;
6864                 if ((hw->mac.type > e1000_ich10lan) &&
6865                     (eeprom_data & E1000_WUC_PHY_WAKE))
6866                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6867         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6868                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6869                     (adapter->hw.bus.func == 1))
6870                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6871                                        1, &eeprom_data);
6872                 else
6873                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6874                                        1, &eeprom_data);
6875         }
6876
6877         /* fetch WoL from EEPROM */
6878         if (eeprom_data & eeprom_apme_mask)
6879                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6880
6881         /* now that we have the eeprom settings, apply the special cases
6882          * where the eeprom may be wrong or the board simply won't support
6883          * wake on lan on a particular port
6884          */
6885         if (!(adapter->flags & FLAG_HAS_WOL))
6886                 adapter->eeprom_wol = 0;
6887
6888         /* initialize the wol settings based on the eeprom settings */
6889         adapter->wol = adapter->eeprom_wol;
6890
6891         /* make sure adapter isn't asleep if manageability is enabled */
6892         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6893             (hw->mac.ops.check_mng_mode(hw)))
6894                 device_wakeup_enable(&pdev->dev);
6895
6896         /* save off EEPROM version number */
6897         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6898
6899         /* reset the hardware with the new settings */
6900         e1000e_reset(adapter);
6901
6902         /* If the controller has AMT, do not set DRV_LOAD until the interface
6903          * is up.  For all other cases, let the f/w know that the h/w is now
6904          * under the control of the driver.
6905          */
6906         if (!(adapter->flags & FLAG_HAS_AMT))
6907                 e1000e_get_hw_control(adapter);
6908
6909         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6910         err = register_netdev(netdev);
6911         if (err)
6912                 goto err_register;
6913
6914         /* carrier off reporting is important to ethtool even BEFORE open */
6915         netif_carrier_off(netdev);
6916
6917         /* init PTP hardware clock */
6918         e1000e_ptp_init(adapter);
6919
6920         e1000_print_device_info(adapter);
6921
6922         if (pci_dev_run_wake(pdev))
6923                 pm_runtime_put_noidle(&pdev->dev);
6924
6925         return 0;
6926
6927 err_register:
6928         if (!(adapter->flags & FLAG_HAS_AMT))
6929                 e1000e_release_hw_control(adapter);
6930 err_eeprom:
6931         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6932                 e1000_phy_hw_reset(&adapter->hw);
6933 err_hw_init:
6934         kfree(adapter->tx_ring);
6935         kfree(adapter->rx_ring);
6936 err_sw_init:
6937         if (adapter->hw.flash_address)
6938                 iounmap(adapter->hw.flash_address);
6939         e1000e_reset_interrupt_capability(adapter);
6940 err_flashmap:
6941         iounmap(adapter->hw.hw_addr);
6942 err_ioremap:
6943         free_netdev(netdev);
6944 err_alloc_etherdev:
6945         pci_release_selected_regions(pdev,
6946                                      pci_select_bars(pdev, IORESOURCE_MEM));
6947 err_pci_reg:
6948 err_dma:
6949         pci_disable_device(pdev);
6950         return err;
6951 }
6952
6953 /**
6954  * e1000_remove - Device Removal Routine
6955  * @pdev: PCI device information struct
6956  *
6957  * e1000_remove is called by the PCI subsystem to alert the driver
6958  * that it should release a PCI device.  The could be caused by a
6959  * Hot-Plug event, or because the driver is going to be removed from
6960  * memory.
6961  **/
6962 static void e1000_remove(struct pci_dev *pdev)
6963 {
6964         struct net_device *netdev = pci_get_drvdata(pdev);
6965         struct e1000_adapter *adapter = netdev_priv(netdev);
6966         bool down = test_bit(__E1000_DOWN, &adapter->state);
6967
6968         e1000e_ptp_remove(adapter);
6969
6970         /* The timers may be rescheduled, so explicitly disable them
6971          * from being rescheduled.
6972          */
6973         if (!down)
6974                 set_bit(__E1000_DOWN, &adapter->state);
6975         del_timer_sync(&adapter->watchdog_timer);
6976         del_timer_sync(&adapter->phy_info_timer);
6977
6978         cancel_work_sync(&adapter->reset_task);
6979         cancel_work_sync(&adapter->watchdog_task);
6980         cancel_work_sync(&adapter->downshift_task);
6981         cancel_work_sync(&adapter->update_phy_task);
6982         cancel_work_sync(&adapter->print_hang_task);
6983
6984         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
6985                 cancel_work_sync(&adapter->tx_hwtstamp_work);
6986                 if (adapter->tx_hwtstamp_skb) {
6987                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
6988                         adapter->tx_hwtstamp_skb = NULL;
6989                 }
6990         }
6991
6992         /* Don't lie to e1000_close() down the road. */
6993         if (!down)
6994                 clear_bit(__E1000_DOWN, &adapter->state);
6995         unregister_netdev(netdev);
6996
6997         if (pci_dev_run_wake(pdev))
6998                 pm_runtime_get_noresume(&pdev->dev);
6999
7000         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7001          * would have already happened in close and is redundant.
7002          */
7003         e1000e_release_hw_control(adapter);
7004
7005         e1000e_reset_interrupt_capability(adapter);
7006         kfree(adapter->tx_ring);
7007         kfree(adapter->rx_ring);
7008
7009         iounmap(adapter->hw.hw_addr);
7010         if (adapter->hw.flash_address)
7011                 iounmap(adapter->hw.flash_address);
7012         pci_release_selected_regions(pdev,
7013                                      pci_select_bars(pdev, IORESOURCE_MEM));
7014
7015         free_netdev(netdev);
7016
7017         /* AER disable */
7018         pci_disable_pcie_error_reporting(pdev);
7019
7020         pci_disable_device(pdev);
7021 }
7022
7023 /* PCI Error Recovery (ERS) */
7024 static const struct pci_error_handlers e1000_err_handler = {
7025         .error_detected = e1000_io_error_detected,
7026         .slot_reset = e1000_io_slot_reset,
7027         .resume = e1000_io_resume,
7028 };
7029
7030 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
7031         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7032         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7033         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7034         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7035           board_82571 },
7036         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7037         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7038         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7039         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7040         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7041
7042         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7043         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7044         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7045         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7046
7047         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7048         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7049         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7050
7051         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7052         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7053         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7054
7055         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7056           board_80003es2lan },
7057         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7058           board_80003es2lan },
7059         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7060           board_80003es2lan },
7061         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7062           board_80003es2lan },
7063
7064         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7065         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7066         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7067         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7068         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7069         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7070         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7071         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7072
7073         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7074         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7075         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7076         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7077         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7078         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7079         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7080         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7081         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7082
7083         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7084         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7085         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7086
7087         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7088         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7089         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7090
7091         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7092         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7093         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7094         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7095
7096         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7097         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7098
7099         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7107
7108         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7109 };
7110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7111
7112 static const struct dev_pm_ops e1000_pm_ops = {
7113 #ifdef CONFIG_PM_SLEEP
7114         .suspend        = e1000e_pm_suspend,
7115         .resume         = e1000e_pm_resume,
7116         .freeze         = e1000e_pm_freeze,
7117         .thaw           = e1000e_pm_thaw,
7118         .poweroff       = e1000e_pm_suspend,
7119         .restore        = e1000e_pm_resume,
7120 #endif
7121         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7122                            e1000e_pm_runtime_idle)
7123 };
7124
7125 /* PCI Device API Driver */
7126 static struct pci_driver e1000_driver = {
7127         .name     = e1000e_driver_name,
7128         .id_table = e1000_pci_tbl,
7129         .probe    = e1000_probe,
7130         .remove   = e1000_remove,
7131         .driver   = {
7132                 .pm = &e1000_pm_ops,
7133         },
7134         .shutdown = e1000_shutdown,
7135         .err_handler = &e1000_err_handler
7136 };
7137
7138 /**
7139  * e1000_init_module - Driver Registration Routine
7140  *
7141  * e1000_init_module is the first routine called when the driver is
7142  * loaded. All it does is register with the PCI subsystem.
7143  **/
7144 static int __init e1000_init_module(void)
7145 {
7146         int ret;
7147         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7148                 e1000e_driver_version);
7149         pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
7150         ret = pci_register_driver(&e1000_driver);
7151
7152         return ret;
7153 }
7154 module_init(e1000_init_module);
7155
7156 /**
7157  * e1000_exit_module - Driver Exit Cleanup Routine
7158  *
7159  * e1000_exit_module is called just before the driver is removed
7160  * from memory.
7161  **/
7162 static void __exit e1000_exit_module(void)
7163 {
7164         pci_unregister_driver(&e1000_driver);
7165 }
7166 module_exit(e1000_exit_module);
7167
7168 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7169 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7170 MODULE_LICENSE("GPL");
7171 MODULE_VERSION(DRV_VERSION);
7172
7173 /* netdev.c */