Merge tag 'drm/tegra/for-4.6-rc1' of http://anongit.freedesktop.org/git/tegra/linux...
[cascardo/linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45  * i40e_program_fdir_filter - Program a Flow Director filter
46  * @fdir_data: Packet data that will be filter parameters
47  * @raw_packet: the pre-allocated packet buffer for FDir
48  * @pf: The PF pointer
49  * @add: True for add/update, False for remove
50  **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52                              struct i40e_pf *pf, bool add)
53 {
54         struct i40e_filter_program_desc *fdir_desc;
55         struct i40e_tx_buffer *tx_buf, *first;
56         struct i40e_tx_desc *tx_desc;
57         struct i40e_ring *tx_ring;
58         unsigned int fpt, dcc;
59         struct i40e_vsi *vsi;
60         struct device *dev;
61         dma_addr_t dma;
62         u32 td_cmd = 0;
63         u16 delay = 0;
64         u16 i;
65
66         /* find existing FDIR VSI */
67         vsi = NULL;
68         for (i = 0; i < pf->num_alloc_vsi; i++)
69                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70                         vsi = pf->vsi[i];
71         if (!vsi)
72                 return -ENOENT;
73
74         tx_ring = vsi->tx_rings[0];
75         dev = tx_ring->dev;
76
77         /* we need two descriptors to add/del a filter and we can wait */
78         do {
79                 if (I40E_DESC_UNUSED(tx_ring) > 1)
80                         break;
81                 msleep_interruptible(1);
82                 delay++;
83         } while (delay < I40E_FD_CLEAN_DELAY);
84
85         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86                 return -EAGAIN;
87
88         dma = dma_map_single(dev, raw_packet,
89                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90         if (dma_mapping_error(dev, dma))
91                 goto dma_fail;
92
93         /* grab the next descriptor */
94         i = tx_ring->next_to_use;
95         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96         first = &tx_ring->tx_bi[i];
97         memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102               I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110         /* Use LAN VSI Id if not programmed by user */
111         if (fdir_data->dest_vsi == 0)
112                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114         else
115                 fpt |= ((u32)fdir_data->dest_vsi <<
116                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121         if (add)
122                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124         else
125                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129                I40E_TXD_FLTR_QW1_DEST_MASK;
130
131         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134         if (fdir_data->cnt_index != 0) {
135                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136                 dcc |= ((u32)fdir_data->cnt_index <<
137                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139         }
140
141         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142         fdir_desc->rsvd = cpu_to_le32(0);
143         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146         /* Now program a dummy descriptor */
147         i = tx_ring->next_to_use;
148         tx_desc = I40E_TX_DESC(tx_ring, i);
149         tx_buf = &tx_ring->tx_bi[i];
150
151         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155         /* record length, and DMA address */
156         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157         dma_unmap_addr_set(tx_buf, dma, dma);
158
159         tx_desc->buffer_addr = cpu_to_le64(dma);
160         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163         tx_buf->raw_buf = (void *)raw_packet;
164
165         tx_desc->cmd_type_offset_bsz =
166                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168         /* Force memory writes to complete before letting h/w
169          * know there are new descriptors to fetch.
170          */
171         wmb();
172
173         /* Mark the data descriptor to be watched */
174         first->next_to_watch = tx_desc;
175
176         writel(tx_ring->next_to_use, tx_ring->tail);
177         return 0;
178
179 dma_fail:
180         return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187  * @vsi: pointer to the targeted VSI
188  * @fd_data: the flow director data required for the FDir descriptor
189  * @add: true adds a filter, false removes it
190  *
191  * Returns 0 if the filters were successfully added or removed
192  **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194                                    struct i40e_fdir_filter *fd_data,
195                                    bool add)
196 {
197         struct i40e_pf *pf = vsi->back;
198         struct udphdr *udp;
199         struct iphdr *ip;
200         bool err = false;
201         u8 *raw_packet;
202         int ret;
203         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208         if (!raw_packet)
209                 return -ENOMEM;
210         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214               + sizeof(struct iphdr));
215
216         ip->daddr = fd_data->dst_ip[0];
217         udp->dest = fd_data->dst_port;
218         ip->saddr = fd_data->src_ip[0];
219         udp->source = fd_data->src_port;
220
221         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223         if (ret) {
224                 dev_info(&pf->pdev->dev,
225                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226                          fd_data->pctype, fd_data->fd_id, ret);
227                 err = true;
228         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229                 if (add)
230                         dev_info(&pf->pdev->dev,
231                                  "Filter OK for PCTYPE %d loc = %d\n",
232                                  fd_data->pctype, fd_data->fd_id);
233                 else
234                         dev_info(&pf->pdev->dev,
235                                  "Filter deleted for PCTYPE %d loc = %d\n",
236                                  fd_data->pctype, fd_data->fd_id);
237         }
238         if (err)
239                 kfree(raw_packet);
240
241         return err ? -EOPNOTSUPP : 0;
242 }
243
244 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 /**
246  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
247  * @vsi: pointer to the targeted VSI
248  * @fd_data: the flow director data required for the FDir descriptor
249  * @add: true adds a filter, false removes it
250  *
251  * Returns 0 if the filters were successfully added or removed
252  **/
253 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
254                                    struct i40e_fdir_filter *fd_data,
255                                    bool add)
256 {
257         struct i40e_pf *pf = vsi->back;
258         struct tcphdr *tcp;
259         struct iphdr *ip;
260         bool err = false;
261         u8 *raw_packet;
262         int ret;
263         /* Dummy packet */
264         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
265                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
266                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
267                 0x0, 0x72, 0, 0, 0, 0};
268
269         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
270         if (!raw_packet)
271                 return -ENOMEM;
272         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273
274         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
275         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
276               + sizeof(struct iphdr));
277
278         ip->daddr = fd_data->dst_ip[0];
279         tcp->dest = fd_data->dst_port;
280         ip->saddr = fd_data->src_ip[0];
281         tcp->source = fd_data->src_port;
282
283         if (add) {
284                 pf->fd_tcp_rule++;
285                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
286                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
287                                 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
288                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
289                 }
290         } else {
291                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
292                                   (pf->fd_tcp_rule - 1) : 0;
293                 if (pf->fd_tcp_rule == 0) {
294                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
295                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
296                                 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
297                 }
298         }
299
300         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
301         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
302
303         if (ret) {
304                 dev_info(&pf->pdev->dev,
305                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
306                          fd_data->pctype, fd_data->fd_id, ret);
307                 err = true;
308         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
309                 if (add)
310                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
311                                  fd_data->pctype, fd_data->fd_id);
312                 else
313                         dev_info(&pf->pdev->dev,
314                                  "Filter deleted for PCTYPE %d loc = %d\n",
315                                  fd_data->pctype, fd_data->fd_id);
316         }
317
318         if (err)
319                 kfree(raw_packet);
320
321         return err ? -EOPNOTSUPP : 0;
322 }
323
324 /**
325  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
326  * a specific flow spec
327  * @vsi: pointer to the targeted VSI
328  * @fd_data: the flow director data required for the FDir descriptor
329  * @add: true adds a filter, false removes it
330  *
331  * Returns 0 if the filters were successfully added or removed
332  **/
333 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
334                                     struct i40e_fdir_filter *fd_data,
335                                     bool add)
336 {
337         return -EOPNOTSUPP;
338 }
339
340 #define I40E_IP_DUMMY_PACKET_LEN 34
341 /**
342  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
343  * a specific flow spec
344  * @vsi: pointer to the targeted VSI
345  * @fd_data: the flow director data required for the FDir descriptor
346  * @add: true adds a filter, false removes it
347  *
348  * Returns 0 if the filters were successfully added or removed
349  **/
350 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
351                                   struct i40e_fdir_filter *fd_data,
352                                   bool add)
353 {
354         struct i40e_pf *pf = vsi->back;
355         struct iphdr *ip;
356         bool err = false;
357         u8 *raw_packet;
358         int ret;
359         int i;
360         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
361                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
362                 0, 0, 0, 0};
363
364         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
365              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
366                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
367                 if (!raw_packet)
368                         return -ENOMEM;
369                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
370                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
371
372                 ip->saddr = fd_data->src_ip[0];
373                 ip->daddr = fd_data->dst_ip[0];
374                 ip->protocol = 0;
375
376                 fd_data->pctype = i;
377                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
378
379                 if (ret) {
380                         dev_info(&pf->pdev->dev,
381                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
382                                  fd_data->pctype, fd_data->fd_id, ret);
383                         err = true;
384                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
385                         if (add)
386                                 dev_info(&pf->pdev->dev,
387                                          "Filter OK for PCTYPE %d loc = %d\n",
388                                          fd_data->pctype, fd_data->fd_id);
389                         else
390                                 dev_info(&pf->pdev->dev,
391                                          "Filter deleted for PCTYPE %d loc = %d\n",
392                                          fd_data->pctype, fd_data->fd_id);
393                 }
394         }
395
396         if (err)
397                 kfree(raw_packet);
398
399         return err ? -EOPNOTSUPP : 0;
400 }
401
402 /**
403  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
404  * @vsi: pointer to the targeted VSI
405  * @cmd: command to get or set RX flow classification rules
406  * @add: true adds a filter, false removes it
407  *
408  **/
409 int i40e_add_del_fdir(struct i40e_vsi *vsi,
410                       struct i40e_fdir_filter *input, bool add)
411 {
412         struct i40e_pf *pf = vsi->back;
413         int ret;
414
415         switch (input->flow_type & ~FLOW_EXT) {
416         case TCP_V4_FLOW:
417                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
418                 break;
419         case UDP_V4_FLOW:
420                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
421                 break;
422         case SCTP_V4_FLOW:
423                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
424                 break;
425         case IPV4_FLOW:
426                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
427                 break;
428         case IP_USER_FLOW:
429                 switch (input->ip4_proto) {
430                 case IPPROTO_TCP:
431                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
432                         break;
433                 case IPPROTO_UDP:
434                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
435                         break;
436                 case IPPROTO_SCTP:
437                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
438                         break;
439                 default:
440                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
441                         break;
442                 }
443                 break;
444         default:
445                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
446                          input->flow_type);
447                 ret = -EINVAL;
448         }
449
450         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
451         return ret;
452 }
453
454 /**
455  * i40e_fd_handle_status - check the Programming Status for FD
456  * @rx_ring: the Rx ring for this descriptor
457  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
458  * @prog_id: the id originally used for programming
459  *
460  * This is used to verify if the FD programming or invalidation
461  * requested by SW to the HW is successful or not and take actions accordingly.
462  **/
463 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
464                                   union i40e_rx_desc *rx_desc, u8 prog_id)
465 {
466         struct i40e_pf *pf = rx_ring->vsi->back;
467         struct pci_dev *pdev = pf->pdev;
468         u32 fcnt_prog, fcnt_avail;
469         u32 error;
470         u64 qw;
471
472         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
473         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
474                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
475
476         if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
477                 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
478                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
479                     (I40E_DEBUG_FD & pf->hw.debug_mask))
480                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
481                                  pf->fd_inv);
482
483                 /* Check if the programming error is for ATR.
484                  * If so, auto disable ATR and set a state for
485                  * flush in progress. Next time we come here if flush is in
486                  * progress do nothing, once flush is complete the state will
487                  * be cleared.
488                  */
489                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
490                         return;
491
492                 pf->fd_add_err++;
493                 /* store the current atr filter count */
494                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
495
496                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
497                     (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
498                         pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
499                         set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
500                 }
501
502                 /* filter programming failed most likely due to table full */
503                 fcnt_prog = i40e_get_global_fd_count(pf);
504                 fcnt_avail = pf->fdir_pf_filter_count;
505                 /* If ATR is running fcnt_prog can quickly change,
506                  * if we are very close to full, it makes sense to disable
507                  * FD ATR/SB and then re-enable it when there is room.
508                  */
509                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
510                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
511                             !(pf->auto_disable_flags &
512                                      I40E_FLAG_FD_SB_ENABLED)) {
513                                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
514                                         dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
515                                 pf->auto_disable_flags |=
516                                                         I40E_FLAG_FD_SB_ENABLED;
517                         }
518                 }
519         } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
520                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
521                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
522                                  rx_desc->wb.qword0.hi_dword.fd_id);
523         }
524 }
525
526 /**
527  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
528  * @ring:      the ring that owns the buffer
529  * @tx_buffer: the buffer to free
530  **/
531 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
532                                             struct i40e_tx_buffer *tx_buffer)
533 {
534         if (tx_buffer->skb) {
535                 dev_kfree_skb_any(tx_buffer->skb);
536                 if (dma_unmap_len(tx_buffer, len))
537                         dma_unmap_single(ring->dev,
538                                          dma_unmap_addr(tx_buffer, dma),
539                                          dma_unmap_len(tx_buffer, len),
540                                          DMA_TO_DEVICE);
541         } else if (dma_unmap_len(tx_buffer, len)) {
542                 dma_unmap_page(ring->dev,
543                                dma_unmap_addr(tx_buffer, dma),
544                                dma_unmap_len(tx_buffer, len),
545                                DMA_TO_DEVICE);
546         }
547
548         if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
549                 kfree(tx_buffer->raw_buf);
550
551         tx_buffer->next_to_watch = NULL;
552         tx_buffer->skb = NULL;
553         dma_unmap_len_set(tx_buffer, len, 0);
554         /* tx_buffer must be completely set up in the transmit path */
555 }
556
557 /**
558  * i40e_clean_tx_ring - Free any empty Tx buffers
559  * @tx_ring: ring to be cleaned
560  **/
561 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
562 {
563         unsigned long bi_size;
564         u16 i;
565
566         /* ring already cleared, nothing to do */
567         if (!tx_ring->tx_bi)
568                 return;
569
570         /* Free all the Tx ring sk_buffs */
571         for (i = 0; i < tx_ring->count; i++)
572                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
573
574         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
575         memset(tx_ring->tx_bi, 0, bi_size);
576
577         /* Zero out the descriptor ring */
578         memset(tx_ring->desc, 0, tx_ring->size);
579
580         tx_ring->next_to_use = 0;
581         tx_ring->next_to_clean = 0;
582
583         if (!tx_ring->netdev)
584                 return;
585
586         /* cleanup Tx queue statistics */
587         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
588                                                   tx_ring->queue_index));
589 }
590
591 /**
592  * i40e_free_tx_resources - Free Tx resources per queue
593  * @tx_ring: Tx descriptor ring for a specific queue
594  *
595  * Free all transmit software resources
596  **/
597 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
598 {
599         i40e_clean_tx_ring(tx_ring);
600         kfree(tx_ring->tx_bi);
601         tx_ring->tx_bi = NULL;
602
603         if (tx_ring->desc) {
604                 dma_free_coherent(tx_ring->dev, tx_ring->size,
605                                   tx_ring->desc, tx_ring->dma);
606                 tx_ring->desc = NULL;
607         }
608 }
609
610 /**
611  * i40e_get_tx_pending - how many tx descriptors not processed
612  * @tx_ring: the ring of descriptors
613  *
614  * Since there is no access to the ring head register
615  * in XL710, we need to use our local copies
616  **/
617 u32 i40e_get_tx_pending(struct i40e_ring *ring)
618 {
619         u32 head, tail;
620
621         head = i40e_get_head(ring);
622         tail = readl(ring->tail);
623
624         if (head != tail)
625                 return (head < tail) ?
626                         tail - head : (tail + ring->count - head);
627
628         return 0;
629 }
630
631 #define WB_STRIDE 0x3
632
633 /**
634  * i40e_clean_tx_irq - Reclaim resources after transmit completes
635  * @tx_ring:  tx ring to clean
636  * @budget:   how many cleans we're allowed
637  *
638  * Returns true if there's any budget left (e.g. the clean is finished)
639  **/
640 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
641 {
642         u16 i = tx_ring->next_to_clean;
643         struct i40e_tx_buffer *tx_buf;
644         struct i40e_tx_desc *tx_head;
645         struct i40e_tx_desc *tx_desc;
646         unsigned int total_packets = 0;
647         unsigned int total_bytes = 0;
648
649         tx_buf = &tx_ring->tx_bi[i];
650         tx_desc = I40E_TX_DESC(tx_ring, i);
651         i -= tx_ring->count;
652
653         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
654
655         do {
656                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
657
658                 /* if next_to_watch is not set then there is no work pending */
659                 if (!eop_desc)
660                         break;
661
662                 /* prevent any other reads prior to eop_desc */
663                 read_barrier_depends();
664
665                 /* we have caught up to head, no work left to do */
666                 if (tx_head == tx_desc)
667                         break;
668
669                 /* clear next_to_watch to prevent false hangs */
670                 tx_buf->next_to_watch = NULL;
671
672                 /* update the statistics for this packet */
673                 total_bytes += tx_buf->bytecount;
674                 total_packets += tx_buf->gso_segs;
675
676                 /* free the skb */
677                 dev_consume_skb_any(tx_buf->skb);
678
679                 /* unmap skb header data */
680                 dma_unmap_single(tx_ring->dev,
681                                  dma_unmap_addr(tx_buf, dma),
682                                  dma_unmap_len(tx_buf, len),
683                                  DMA_TO_DEVICE);
684
685                 /* clear tx_buffer data */
686                 tx_buf->skb = NULL;
687                 dma_unmap_len_set(tx_buf, len, 0);
688
689                 /* unmap remaining buffers */
690                 while (tx_desc != eop_desc) {
691
692                         tx_buf++;
693                         tx_desc++;
694                         i++;
695                         if (unlikely(!i)) {
696                                 i -= tx_ring->count;
697                                 tx_buf = tx_ring->tx_bi;
698                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
699                         }
700
701                         /* unmap any remaining paged data */
702                         if (dma_unmap_len(tx_buf, len)) {
703                                 dma_unmap_page(tx_ring->dev,
704                                                dma_unmap_addr(tx_buf, dma),
705                                                dma_unmap_len(tx_buf, len),
706                                                DMA_TO_DEVICE);
707                                 dma_unmap_len_set(tx_buf, len, 0);
708                         }
709                 }
710
711                 /* move us one more past the eop_desc for start of next pkt */
712                 tx_buf++;
713                 tx_desc++;
714                 i++;
715                 if (unlikely(!i)) {
716                         i -= tx_ring->count;
717                         tx_buf = tx_ring->tx_bi;
718                         tx_desc = I40E_TX_DESC(tx_ring, 0);
719                 }
720
721                 prefetch(tx_desc);
722
723                 /* update budget accounting */
724                 budget--;
725         } while (likely(budget));
726
727         i += tx_ring->count;
728         tx_ring->next_to_clean = i;
729         u64_stats_update_begin(&tx_ring->syncp);
730         tx_ring->stats.bytes += total_bytes;
731         tx_ring->stats.packets += total_packets;
732         u64_stats_update_end(&tx_ring->syncp);
733         tx_ring->q_vector->tx.total_bytes += total_bytes;
734         tx_ring->q_vector->tx.total_packets += total_packets;
735
736         if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
737                 unsigned int j = 0;
738
739                 /* check to see if there are < 4 descriptors
740                  * waiting to be written back, then kick the hardware to force
741                  * them to be written back in case we stay in NAPI.
742                  * In this mode on X722 we do not enable Interrupt.
743                  */
744                 j = i40e_get_tx_pending(tx_ring);
745
746                 if (budget &&
747                     ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
748                     !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
749                     (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
750                         tx_ring->arm_wb = true;
751         }
752
753         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
754                                                       tx_ring->queue_index),
755                                   total_packets, total_bytes);
756
757 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
758         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
759                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
760                 /* Make sure that anybody stopping the queue after this
761                  * sees the new next_to_clean.
762                  */
763                 smp_mb();
764                 if (__netif_subqueue_stopped(tx_ring->netdev,
765                                              tx_ring->queue_index) &&
766                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
767                         netif_wake_subqueue(tx_ring->netdev,
768                                             tx_ring->queue_index);
769                         ++tx_ring->tx_stats.restart_queue;
770                 }
771         }
772
773         return !!budget;
774 }
775
776 /**
777  * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
778  * @vsi: the VSI we care about
779  * @q_vector: the vector  on which to force writeback
780  *
781  **/
782 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
783 {
784         u16 flags = q_vector->tx.ring[0].flags;
785
786         if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
787                 u32 val;
788
789                 if (q_vector->arm_wb_state)
790                         return;
791
792                 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK;
793
794                 wr32(&vsi->back->hw,
795                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
796                                          vsi->base_vector - 1),
797                      val);
798                 q_vector->arm_wb_state = true;
799         } else if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
800                 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
801                           I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
802                           I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
803                           I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
804                           /* allow 00 to be written to the index */
805
806                 wr32(&vsi->back->hw,
807                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
808                                          vsi->base_vector - 1), val);
809         } else {
810                 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
811                           I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
812                           I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
813                           I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
814                         /* allow 00 to be written to the index */
815
816                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
817         }
818 }
819
820 /**
821  * i40e_set_new_dynamic_itr - Find new ITR level
822  * @rc: structure containing ring performance data
823  *
824  * Returns true if ITR changed, false if not
825  *
826  * Stores a new ITR value based on packets and byte counts during
827  * the last interrupt.  The advantage of per interrupt computation
828  * is faster updates and more accurate ITR for the current traffic
829  * pattern.  Constants in this function were computed based on
830  * theoretical maximum wire speed and thresholds were set based on
831  * testing data as well as attempting to minimize response time
832  * while increasing bulk throughput.
833  **/
834 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
835 {
836         enum i40e_latency_range new_latency_range = rc->latency_range;
837         struct i40e_q_vector *qv = rc->ring->q_vector;
838         u32 new_itr = rc->itr;
839         int bytes_per_int;
840         int usecs;
841
842         if (rc->total_packets == 0 || !rc->itr)
843                 return false;
844
845         /* simple throttlerate management
846          *   0-10MB/s   lowest (50000 ints/s)
847          *  10-20MB/s   low    (20000 ints/s)
848          *  20-1249MB/s bulk   (18000 ints/s)
849          *  > 40000 Rx packets per second (8000 ints/s)
850          *
851          * The math works out because the divisor is in 10^(-6) which
852          * turns the bytes/us input value into MB/s values, but
853          * make sure to use usecs, as the register values written
854          * are in 2 usec increments in the ITR registers, and make sure
855          * to use the smoothed values that the countdown timer gives us.
856          */
857         usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
858         bytes_per_int = rc->total_bytes / usecs;
859
860         switch (new_latency_range) {
861         case I40E_LOWEST_LATENCY:
862                 if (bytes_per_int > 10)
863                         new_latency_range = I40E_LOW_LATENCY;
864                 break;
865         case I40E_LOW_LATENCY:
866                 if (bytes_per_int > 20)
867                         new_latency_range = I40E_BULK_LATENCY;
868                 else if (bytes_per_int <= 10)
869                         new_latency_range = I40E_LOWEST_LATENCY;
870                 break;
871         case I40E_BULK_LATENCY:
872         case I40E_ULTRA_LATENCY:
873         default:
874                 if (bytes_per_int <= 20)
875                         new_latency_range = I40E_LOW_LATENCY;
876                 break;
877         }
878
879         /* this is to adjust RX more aggressively when streaming small
880          * packets.  The value of 40000 was picked as it is just beyond
881          * what the hardware can receive per second if in low latency
882          * mode.
883          */
884 #define RX_ULTRA_PACKET_RATE 40000
885
886         if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
887             (&qv->rx == rc))
888                 new_latency_range = I40E_ULTRA_LATENCY;
889
890         rc->latency_range = new_latency_range;
891
892         switch (new_latency_range) {
893         case I40E_LOWEST_LATENCY:
894                 new_itr = I40E_ITR_50K;
895                 break;
896         case I40E_LOW_LATENCY:
897                 new_itr = I40E_ITR_20K;
898                 break;
899         case I40E_BULK_LATENCY:
900                 new_itr = I40E_ITR_18K;
901                 break;
902         case I40E_ULTRA_LATENCY:
903                 new_itr = I40E_ITR_8K;
904                 break;
905         default:
906                 break;
907         }
908
909         rc->total_bytes = 0;
910         rc->total_packets = 0;
911
912         if (new_itr != rc->itr) {
913                 rc->itr = new_itr;
914                 return true;
915         }
916
917         return false;
918 }
919
920 /**
921  * i40e_clean_programming_status - clean the programming status descriptor
922  * @rx_ring: the rx ring that has this descriptor
923  * @rx_desc: the rx descriptor written back by HW
924  *
925  * Flow director should handle FD_FILTER_STATUS to check its filter programming
926  * status being successful or not and take actions accordingly. FCoE should
927  * handle its context/filter programming/invalidation status and take actions.
928  *
929  **/
930 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
931                                           union i40e_rx_desc *rx_desc)
932 {
933         u64 qw;
934         u8 id;
935
936         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
937         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
938                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
939
940         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
941                 i40e_fd_handle_status(rx_ring, rx_desc, id);
942 #ifdef I40E_FCOE
943         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
944                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
945                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
946 #endif
947 }
948
949 /**
950  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
951  * @tx_ring: the tx ring to set up
952  *
953  * Return 0 on success, negative on error
954  **/
955 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
956 {
957         struct device *dev = tx_ring->dev;
958         int bi_size;
959
960         if (!dev)
961                 return -ENOMEM;
962
963         /* warn if we are about to overwrite the pointer */
964         WARN_ON(tx_ring->tx_bi);
965         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
966         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
967         if (!tx_ring->tx_bi)
968                 goto err;
969
970         /* round up to nearest 4K */
971         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
972         /* add u32 for head writeback, align after this takes care of
973          * guaranteeing this is at least one cache line in size
974          */
975         tx_ring->size += sizeof(u32);
976         tx_ring->size = ALIGN(tx_ring->size, 4096);
977         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
978                                            &tx_ring->dma, GFP_KERNEL);
979         if (!tx_ring->desc) {
980                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
981                          tx_ring->size);
982                 goto err;
983         }
984
985         tx_ring->next_to_use = 0;
986         tx_ring->next_to_clean = 0;
987         return 0;
988
989 err:
990         kfree(tx_ring->tx_bi);
991         tx_ring->tx_bi = NULL;
992         return -ENOMEM;
993 }
994
995 /**
996  * i40e_clean_rx_ring - Free Rx buffers
997  * @rx_ring: ring to be cleaned
998  **/
999 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1000 {
1001         struct device *dev = rx_ring->dev;
1002         struct i40e_rx_buffer *rx_bi;
1003         unsigned long bi_size;
1004         u16 i;
1005
1006         /* ring already cleared, nothing to do */
1007         if (!rx_ring->rx_bi)
1008                 return;
1009
1010         if (ring_is_ps_enabled(rx_ring)) {
1011                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1012
1013                 rx_bi = &rx_ring->rx_bi[0];
1014                 if (rx_bi->hdr_buf) {
1015                         dma_free_coherent(dev,
1016                                           bufsz,
1017                                           rx_bi->hdr_buf,
1018                                           rx_bi->dma);
1019                         for (i = 0; i < rx_ring->count; i++) {
1020                                 rx_bi = &rx_ring->rx_bi[i];
1021                                 rx_bi->dma = 0;
1022                                 rx_bi->hdr_buf = NULL;
1023                         }
1024                 }
1025         }
1026         /* Free all the Rx ring sk_buffs */
1027         for (i = 0; i < rx_ring->count; i++) {
1028                 rx_bi = &rx_ring->rx_bi[i];
1029                 if (rx_bi->dma) {
1030                         dma_unmap_single(dev,
1031                                          rx_bi->dma,
1032                                          rx_ring->rx_buf_len,
1033                                          DMA_FROM_DEVICE);
1034                         rx_bi->dma = 0;
1035                 }
1036                 if (rx_bi->skb) {
1037                         dev_kfree_skb(rx_bi->skb);
1038                         rx_bi->skb = NULL;
1039                 }
1040                 if (rx_bi->page) {
1041                         if (rx_bi->page_dma) {
1042                                 dma_unmap_page(dev,
1043                                                rx_bi->page_dma,
1044                                                PAGE_SIZE / 2,
1045                                                DMA_FROM_DEVICE);
1046                                 rx_bi->page_dma = 0;
1047                         }
1048                         __free_page(rx_bi->page);
1049                         rx_bi->page = NULL;
1050                         rx_bi->page_offset = 0;
1051                 }
1052         }
1053
1054         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1055         memset(rx_ring->rx_bi, 0, bi_size);
1056
1057         /* Zero out the descriptor ring */
1058         memset(rx_ring->desc, 0, rx_ring->size);
1059
1060         rx_ring->next_to_clean = 0;
1061         rx_ring->next_to_use = 0;
1062 }
1063
1064 /**
1065  * i40e_free_rx_resources - Free Rx resources
1066  * @rx_ring: ring to clean the resources from
1067  *
1068  * Free all receive software resources
1069  **/
1070 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1071 {
1072         i40e_clean_rx_ring(rx_ring);
1073         kfree(rx_ring->rx_bi);
1074         rx_ring->rx_bi = NULL;
1075
1076         if (rx_ring->desc) {
1077                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1078                                   rx_ring->desc, rx_ring->dma);
1079                 rx_ring->desc = NULL;
1080         }
1081 }
1082
1083 /**
1084  * i40e_alloc_rx_headers - allocate rx header buffers
1085  * @rx_ring: ring to alloc buffers
1086  *
1087  * Allocate rx header buffers for the entire ring. As these are static,
1088  * this is only called when setting up a new ring.
1089  **/
1090 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1091 {
1092         struct device *dev = rx_ring->dev;
1093         struct i40e_rx_buffer *rx_bi;
1094         dma_addr_t dma;
1095         void *buffer;
1096         int buf_size;
1097         int i;
1098
1099         if (rx_ring->rx_bi[0].hdr_buf)
1100                 return;
1101         /* Make sure the buffers don't cross cache line boundaries. */
1102         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1103         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1104                                     &dma, GFP_KERNEL);
1105         if (!buffer)
1106                 return;
1107         for (i = 0; i < rx_ring->count; i++) {
1108                 rx_bi = &rx_ring->rx_bi[i];
1109                 rx_bi->dma = dma + (i * buf_size);
1110                 rx_bi->hdr_buf = buffer + (i * buf_size);
1111         }
1112 }
1113
1114 /**
1115  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1116  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1117  *
1118  * Returns 0 on success, negative on failure
1119  **/
1120 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1121 {
1122         struct device *dev = rx_ring->dev;
1123         int bi_size;
1124
1125         /* warn if we are about to overwrite the pointer */
1126         WARN_ON(rx_ring->rx_bi);
1127         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1128         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1129         if (!rx_ring->rx_bi)
1130                 goto err;
1131
1132         u64_stats_init(&rx_ring->syncp);
1133
1134         /* Round up to nearest 4K */
1135         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1136                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1137                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1138         rx_ring->size = ALIGN(rx_ring->size, 4096);
1139         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1140                                            &rx_ring->dma, GFP_KERNEL);
1141
1142         if (!rx_ring->desc) {
1143                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1144                          rx_ring->size);
1145                 goto err;
1146         }
1147
1148         rx_ring->next_to_clean = 0;
1149         rx_ring->next_to_use = 0;
1150
1151         return 0;
1152 err:
1153         kfree(rx_ring->rx_bi);
1154         rx_ring->rx_bi = NULL;
1155         return -ENOMEM;
1156 }
1157
1158 /**
1159  * i40e_release_rx_desc - Store the new tail and head values
1160  * @rx_ring: ring to bump
1161  * @val: new head index
1162  **/
1163 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1164 {
1165         rx_ring->next_to_use = val;
1166         /* Force memory writes to complete before letting h/w
1167          * know there are new descriptors to fetch.  (Only
1168          * applicable for weak-ordered memory model archs,
1169          * such as IA-64).
1170          */
1171         wmb();
1172         writel(val, rx_ring->tail);
1173 }
1174
1175 /**
1176  * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1177  * @rx_ring: ring to place buffers on
1178  * @cleaned_count: number of buffers to replace
1179  **/
1180 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1181 {
1182         u16 i = rx_ring->next_to_use;
1183         union i40e_rx_desc *rx_desc;
1184         struct i40e_rx_buffer *bi;
1185
1186         /* do nothing if no valid netdev defined */
1187         if (!rx_ring->netdev || !cleaned_count)
1188                 return;
1189
1190         while (cleaned_count--) {
1191                 rx_desc = I40E_RX_DESC(rx_ring, i);
1192                 bi = &rx_ring->rx_bi[i];
1193
1194                 if (bi->skb) /* desc is in use */
1195                         goto no_buffers;
1196                 if (!bi->page) {
1197                         bi->page = alloc_page(GFP_ATOMIC);
1198                         if (!bi->page) {
1199                                 rx_ring->rx_stats.alloc_page_failed++;
1200                                 goto no_buffers;
1201                         }
1202                 }
1203
1204                 if (!bi->page_dma) {
1205                         /* use a half page if we're re-using */
1206                         bi->page_offset ^= PAGE_SIZE / 2;
1207                         bi->page_dma = dma_map_page(rx_ring->dev,
1208                                                     bi->page,
1209                                                     bi->page_offset,
1210                                                     PAGE_SIZE / 2,
1211                                                     DMA_FROM_DEVICE);
1212                         if (dma_mapping_error(rx_ring->dev,
1213                                               bi->page_dma)) {
1214                                 rx_ring->rx_stats.alloc_page_failed++;
1215                                 bi->page_dma = 0;
1216                                 goto no_buffers;
1217                         }
1218                 }
1219
1220                 dma_sync_single_range_for_device(rx_ring->dev,
1221                                                  bi->dma,
1222                                                  0,
1223                                                  rx_ring->rx_hdr_len,
1224                                                  DMA_FROM_DEVICE);
1225                 /* Refresh the desc even if buffer_addrs didn't change
1226                  * because each write-back erases this info.
1227                  */
1228                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1229                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1230                 i++;
1231                 if (i == rx_ring->count)
1232                         i = 0;
1233         }
1234
1235 no_buffers:
1236         if (rx_ring->next_to_use != i)
1237                 i40e_release_rx_desc(rx_ring, i);
1238 }
1239
1240 /**
1241  * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1242  * @rx_ring: ring to place buffers on
1243  * @cleaned_count: number of buffers to replace
1244  **/
1245 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1246 {
1247         u16 i = rx_ring->next_to_use;
1248         union i40e_rx_desc *rx_desc;
1249         struct i40e_rx_buffer *bi;
1250         struct sk_buff *skb;
1251
1252         /* do nothing if no valid netdev defined */
1253         if (!rx_ring->netdev || !cleaned_count)
1254                 return;
1255
1256         while (cleaned_count--) {
1257                 rx_desc = I40E_RX_DESC(rx_ring, i);
1258                 bi = &rx_ring->rx_bi[i];
1259                 skb = bi->skb;
1260
1261                 if (!skb) {
1262                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1263                                                         rx_ring->rx_buf_len);
1264                         if (!skb) {
1265                                 rx_ring->rx_stats.alloc_buff_failed++;
1266                                 goto no_buffers;
1267                         }
1268                         /* initialize queue mapping */
1269                         skb_record_rx_queue(skb, rx_ring->queue_index);
1270                         bi->skb = skb;
1271                 }
1272
1273                 if (!bi->dma) {
1274                         bi->dma = dma_map_single(rx_ring->dev,
1275                                                  skb->data,
1276                                                  rx_ring->rx_buf_len,
1277                                                  DMA_FROM_DEVICE);
1278                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1279                                 rx_ring->rx_stats.alloc_buff_failed++;
1280                                 bi->dma = 0;
1281                                 goto no_buffers;
1282                         }
1283                 }
1284
1285                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1286                 rx_desc->read.hdr_addr = 0;
1287                 i++;
1288                 if (i == rx_ring->count)
1289                         i = 0;
1290         }
1291
1292 no_buffers:
1293         if (rx_ring->next_to_use != i)
1294                 i40e_release_rx_desc(rx_ring, i);
1295 }
1296
1297 /**
1298  * i40e_receive_skb - Send a completed packet up the stack
1299  * @rx_ring:  rx ring in play
1300  * @skb: packet to send up
1301  * @vlan_tag: vlan tag for packet
1302  **/
1303 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1304                              struct sk_buff *skb, u16 vlan_tag)
1305 {
1306         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1307
1308         if (vlan_tag & VLAN_VID_MASK)
1309                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1310
1311         napi_gro_receive(&q_vector->napi, skb);
1312 }
1313
1314 /**
1315  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1316  * @vsi: the VSI we care about
1317  * @skb: skb currently being received and modified
1318  * @rx_status: status value of last descriptor in packet
1319  * @rx_error: error value of last descriptor in packet
1320  * @rx_ptype: ptype value of last descriptor in packet
1321  **/
1322 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1323                                     struct sk_buff *skb,
1324                                     u32 rx_status,
1325                                     u32 rx_error,
1326                                     u16 rx_ptype)
1327 {
1328         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1329         bool ipv4 = false, ipv6 = false;
1330         bool ipv4_tunnel, ipv6_tunnel;
1331         __wsum rx_udp_csum;
1332         struct iphdr *iph;
1333         __sum16 csum;
1334
1335         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1336                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1337         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1338                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1339
1340         skb->ip_summed = CHECKSUM_NONE;
1341
1342         /* Rx csum enabled and ip headers found? */
1343         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1344                 return;
1345
1346         /* did the hardware decode the packet and checksum? */
1347         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1348                 return;
1349
1350         /* both known and outer_ip must be set for the below code to work */
1351         if (!(decoded.known && decoded.outer_ip))
1352                 return;
1353
1354         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1355             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1356                 ipv4 = true;
1357         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1358                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1359                 ipv6 = true;
1360
1361         if (ipv4 &&
1362             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1363                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1364                 goto checksum_fail;
1365
1366         /* likely incorrect csum if alternate IP extension headers found */
1367         if (ipv6 &&
1368             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1369                 /* don't increment checksum err here, non-fatal err */
1370                 return;
1371
1372         /* there was some L4 error, count error and punt packet to the stack */
1373         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1374                 goto checksum_fail;
1375
1376         /* handle packets that were not able to be checksummed due
1377          * to arrival speed, in this case the stack can compute
1378          * the csum.
1379          */
1380         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1381                 return;
1382
1383         /* If VXLAN/GENEVE traffic has an outer UDPv4 checksum we need to check
1384          * it in the driver, hardware does not do it for us.
1385          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1386          * so the total length of IPv4 header is IHL*4 bytes
1387          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1388          */
1389         if (!(vsi->back->flags & I40E_FLAG_OUTER_UDP_CSUM_CAPABLE) &&
1390             (ipv4_tunnel)) {
1391                 skb->transport_header = skb->mac_header +
1392                                         sizeof(struct ethhdr) +
1393                                         (ip_hdr(skb)->ihl * 4);
1394
1395                 /* Add 4 bytes for VLAN tagged packets */
1396                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1397                                           skb->protocol == htons(ETH_P_8021AD))
1398                                           ? VLAN_HLEN : 0;
1399
1400                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1401                     (udp_hdr(skb)->check != 0)) {
1402                         rx_udp_csum = udp_csum(skb);
1403                         iph = ip_hdr(skb);
1404                         csum = csum_tcpudp_magic(
1405                                         iph->saddr, iph->daddr,
1406                                         (skb->len - skb_transport_offset(skb)),
1407                                         IPPROTO_UDP, rx_udp_csum);
1408
1409                         if (udp_hdr(skb)->check != csum)
1410                                 goto checksum_fail;
1411
1412                 } /* else its GRE and so no outer UDP header */
1413         }
1414
1415         skb->ip_summed = CHECKSUM_UNNECESSARY;
1416         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1417
1418         return;
1419
1420 checksum_fail:
1421         vsi->back->hw_csum_rx_error++;
1422 }
1423
1424 /**
1425  * i40e_ptype_to_htype - get a hash type
1426  * @ptype: the ptype value from the descriptor
1427  *
1428  * Returns a hash type to be used by skb_set_hash
1429  **/
1430 static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
1431 {
1432         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1433
1434         if (!decoded.known)
1435                 return PKT_HASH_TYPE_NONE;
1436
1437         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1438             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1439                 return PKT_HASH_TYPE_L4;
1440         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1441                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1442                 return PKT_HASH_TYPE_L3;
1443         else
1444                 return PKT_HASH_TYPE_L2;
1445 }
1446
1447 /**
1448  * i40e_rx_hash - set the hash value in the skb
1449  * @ring: descriptor ring
1450  * @rx_desc: specific descriptor
1451  **/
1452 static inline void i40e_rx_hash(struct i40e_ring *ring,
1453                                 union i40e_rx_desc *rx_desc,
1454                                 struct sk_buff *skb,
1455                                 u8 rx_ptype)
1456 {
1457         u32 hash;
1458         const __le64 rss_mask  =
1459                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1460                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1461
1462         if (ring->netdev->features & NETIF_F_RXHASH)
1463                 return;
1464
1465         if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1466                 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1467                 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1468         }
1469 }
1470
1471 /**
1472  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1473  * @rx_ring:  rx ring to clean
1474  * @budget:   how many cleans we're allowed
1475  *
1476  * Returns true if there's any budget left (e.g. the clean is finished)
1477  **/
1478 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1479 {
1480         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1481         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1482         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1483         const int current_node = numa_mem_id();
1484         struct i40e_vsi *vsi = rx_ring->vsi;
1485         u16 i = rx_ring->next_to_clean;
1486         union i40e_rx_desc *rx_desc;
1487         u32 rx_error, rx_status;
1488         u8 rx_ptype;
1489         u64 qword;
1490
1491         if (budget <= 0)
1492                 return 0;
1493
1494         do {
1495                 struct i40e_rx_buffer *rx_bi;
1496                 struct sk_buff *skb;
1497                 u16 vlan_tag;
1498                 /* return some buffers to hardware, one at a time is too slow */
1499                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1500                         i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1501                         cleaned_count = 0;
1502                 }
1503
1504                 i = rx_ring->next_to_clean;
1505                 rx_desc = I40E_RX_DESC(rx_ring, i);
1506                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1507                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1508                         I40E_RXD_QW1_STATUS_SHIFT;
1509
1510                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1511                         break;
1512
1513                 /* This memory barrier is needed to keep us from reading
1514                  * any other fields out of the rx_desc until we know the
1515                  * DD bit is set.
1516                  */
1517                 dma_rmb();
1518                 if (i40e_rx_is_programming_status(qword)) {
1519                         i40e_clean_programming_status(rx_ring, rx_desc);
1520                         I40E_RX_INCREMENT(rx_ring, i);
1521                         continue;
1522                 }
1523                 rx_bi = &rx_ring->rx_bi[i];
1524                 skb = rx_bi->skb;
1525                 if (likely(!skb)) {
1526                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1527                                                         rx_ring->rx_hdr_len);
1528                         if (!skb) {
1529                                 rx_ring->rx_stats.alloc_buff_failed++;
1530                                 break;
1531                         }
1532
1533                         /* initialize queue mapping */
1534                         skb_record_rx_queue(skb, rx_ring->queue_index);
1535                         /* we are reusing so sync this buffer for CPU use */
1536                         dma_sync_single_range_for_cpu(rx_ring->dev,
1537                                                       rx_bi->dma,
1538                                                       0,
1539                                                       rx_ring->rx_hdr_len,
1540                                                       DMA_FROM_DEVICE);
1541                 }
1542                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1543                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1544                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1545                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1546                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1547                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1548
1549                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1550                            I40E_RXD_QW1_ERROR_SHIFT;
1551                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1552                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1553
1554                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1555                            I40E_RXD_QW1_PTYPE_SHIFT;
1556                 prefetch(rx_bi->page);
1557                 rx_bi->skb = NULL;
1558                 cleaned_count++;
1559                 if (rx_hbo || rx_sph) {
1560                         int len;
1561
1562                         if (rx_hbo)
1563                                 len = I40E_RX_HDR_SIZE;
1564                         else
1565                                 len = rx_header_len;
1566                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1567                 } else if (skb->len == 0) {
1568                         int len;
1569
1570                         len = (rx_packet_len > skb_headlen(skb) ?
1571                                 skb_headlen(skb) : rx_packet_len);
1572                         memcpy(__skb_put(skb, len),
1573                                rx_bi->page + rx_bi->page_offset,
1574                                len);
1575                         rx_bi->page_offset += len;
1576                         rx_packet_len -= len;
1577                 }
1578
1579                 /* Get the rest of the data if this was a header split */
1580                 if (rx_packet_len) {
1581                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1582                                            rx_bi->page,
1583                                            rx_bi->page_offset,
1584                                            rx_packet_len);
1585
1586                         skb->len += rx_packet_len;
1587                         skb->data_len += rx_packet_len;
1588                         skb->truesize += rx_packet_len;
1589
1590                         if ((page_count(rx_bi->page) == 1) &&
1591                             (page_to_nid(rx_bi->page) == current_node))
1592                                 get_page(rx_bi->page);
1593                         else
1594                                 rx_bi->page = NULL;
1595
1596                         dma_unmap_page(rx_ring->dev,
1597                                        rx_bi->page_dma,
1598                                        PAGE_SIZE / 2,
1599                                        DMA_FROM_DEVICE);
1600                         rx_bi->page_dma = 0;
1601                 }
1602                 I40E_RX_INCREMENT(rx_ring, i);
1603
1604                 if (unlikely(
1605                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1606                         struct i40e_rx_buffer *next_buffer;
1607
1608                         next_buffer = &rx_ring->rx_bi[i];
1609                         next_buffer->skb = skb;
1610                         rx_ring->rx_stats.non_eop_descs++;
1611                         continue;
1612                 }
1613
1614                 /* ERR_MASK will only have valid bits if EOP set */
1615                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1616                         dev_kfree_skb_any(skb);
1617                         continue;
1618                 }
1619
1620                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1621
1622                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1623                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1624                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1625                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1626                         rx_ring->last_rx_timestamp = jiffies;
1627                 }
1628
1629                 /* probably a little skewed due to removing CRC */
1630                 total_rx_bytes += skb->len;
1631                 total_rx_packets++;
1632
1633                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1634
1635                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1636
1637                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1638                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1639                          : 0;
1640 #ifdef I40E_FCOE
1641                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1642                         dev_kfree_skb_any(skb);
1643                         continue;
1644                 }
1645 #endif
1646                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1647
1648                 rx_desc->wb.qword1.status_error_len = 0;
1649
1650         } while (likely(total_rx_packets < budget));
1651
1652         u64_stats_update_begin(&rx_ring->syncp);
1653         rx_ring->stats.packets += total_rx_packets;
1654         rx_ring->stats.bytes += total_rx_bytes;
1655         u64_stats_update_end(&rx_ring->syncp);
1656         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1657         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1658
1659         return total_rx_packets;
1660 }
1661
1662 /**
1663  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1664  * @rx_ring:  rx ring to clean
1665  * @budget:   how many cleans we're allowed
1666  *
1667  * Returns number of packets cleaned
1668  **/
1669 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1670 {
1671         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1672         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1673         struct i40e_vsi *vsi = rx_ring->vsi;
1674         union i40e_rx_desc *rx_desc;
1675         u32 rx_error, rx_status;
1676         u16 rx_packet_len;
1677         u8 rx_ptype;
1678         u64 qword;
1679         u16 i;
1680
1681         do {
1682                 struct i40e_rx_buffer *rx_bi;
1683                 struct sk_buff *skb;
1684                 u16 vlan_tag;
1685                 /* return some buffers to hardware, one at a time is too slow */
1686                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1687                         i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1688                         cleaned_count = 0;
1689                 }
1690
1691                 i = rx_ring->next_to_clean;
1692                 rx_desc = I40E_RX_DESC(rx_ring, i);
1693                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1694                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1695                         I40E_RXD_QW1_STATUS_SHIFT;
1696
1697                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1698                         break;
1699
1700                 /* This memory barrier is needed to keep us from reading
1701                  * any other fields out of the rx_desc until we know the
1702                  * DD bit is set.
1703                  */
1704                 dma_rmb();
1705
1706                 if (i40e_rx_is_programming_status(qword)) {
1707                         i40e_clean_programming_status(rx_ring, rx_desc);
1708                         I40E_RX_INCREMENT(rx_ring, i);
1709                         continue;
1710                 }
1711                 rx_bi = &rx_ring->rx_bi[i];
1712                 skb = rx_bi->skb;
1713                 prefetch(skb->data);
1714
1715                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1716                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1717
1718                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1719                            I40E_RXD_QW1_ERROR_SHIFT;
1720                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1721
1722                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1723                            I40E_RXD_QW1_PTYPE_SHIFT;
1724                 rx_bi->skb = NULL;
1725                 cleaned_count++;
1726
1727                 /* Get the header and possibly the whole packet
1728                  * If this is an skb from previous receive dma will be 0
1729                  */
1730                 skb_put(skb, rx_packet_len);
1731                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1732                                  DMA_FROM_DEVICE);
1733                 rx_bi->dma = 0;
1734
1735                 I40E_RX_INCREMENT(rx_ring, i);
1736
1737                 if (unlikely(
1738                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1739                         rx_ring->rx_stats.non_eop_descs++;
1740                         continue;
1741                 }
1742
1743                 /* ERR_MASK will only have valid bits if EOP set */
1744                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1745                         dev_kfree_skb_any(skb);
1746                         continue;
1747                 }
1748
1749                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1750                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1751                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1752                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1753                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1754                         rx_ring->last_rx_timestamp = jiffies;
1755                 }
1756
1757                 /* probably a little skewed due to removing CRC */
1758                 total_rx_bytes += skb->len;
1759                 total_rx_packets++;
1760
1761                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1762
1763                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1764
1765                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1766                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1767                          : 0;
1768 #ifdef I40E_FCOE
1769                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1770                         dev_kfree_skb_any(skb);
1771                         continue;
1772                 }
1773 #endif
1774                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1775
1776                 rx_desc->wb.qword1.status_error_len = 0;
1777         } while (likely(total_rx_packets < budget));
1778
1779         u64_stats_update_begin(&rx_ring->syncp);
1780         rx_ring->stats.packets += total_rx_packets;
1781         rx_ring->stats.bytes += total_rx_bytes;
1782         u64_stats_update_end(&rx_ring->syncp);
1783         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1784         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1785
1786         return total_rx_packets;
1787 }
1788
1789 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1790 {
1791         u32 val;
1792
1793         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1794               I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1795               (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1796               (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1797
1798         return val;
1799 }
1800
1801 /* a small macro to shorten up some long lines */
1802 #define INTREG I40E_PFINT_DYN_CTLN
1803
1804 /**
1805  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1806  * @vsi: the VSI we care about
1807  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1808  *
1809  **/
1810 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1811                                           struct i40e_q_vector *q_vector)
1812 {
1813         struct i40e_hw *hw = &vsi->back->hw;
1814         bool rx = false, tx = false;
1815         u32 rxval, txval;
1816         int vector;
1817
1818         vector = (q_vector->v_idx + vsi->base_vector);
1819
1820         /* avoid dynamic calculation if in countdown mode OR if
1821          * all dynamic is disabled
1822          */
1823         rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1824
1825         if (q_vector->itr_countdown > 0 ||
1826             (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1827              !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1828                 goto enable_int;
1829         }
1830
1831         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1832                 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1833                 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1834         }
1835
1836         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1837                 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1838                 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1839         }
1840
1841         if (rx || tx) {
1842                 /* get the higher of the two ITR adjustments and
1843                  * use the same value for both ITR registers
1844                  * when in adaptive mode (Rx and/or Tx)
1845                  */
1846                 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1847
1848                 q_vector->tx.itr = q_vector->rx.itr = itr;
1849                 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1850                 tx = true;
1851                 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1852                 rx = true;
1853         }
1854
1855         /* only need to enable the interrupt once, but need
1856          * to possibly update both ITR values
1857          */
1858         if (rx) {
1859                 /* set the INTENA_MSK_MASK so that this first write
1860                  * won't actually enable the interrupt, instead just
1861                  * updating the ITR (it's bit 31 PF and VF)
1862                  */
1863                 rxval |= BIT(31);
1864                 /* don't check _DOWN because interrupt isn't being enabled */
1865                 wr32(hw, INTREG(vector - 1), rxval);
1866         }
1867
1868 enable_int:
1869         if (!test_bit(__I40E_DOWN, &vsi->state))
1870                 wr32(hw, INTREG(vector - 1), txval);
1871
1872         if (q_vector->itr_countdown)
1873                 q_vector->itr_countdown--;
1874         else
1875                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1876 }
1877
1878 /**
1879  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1880  * @napi: napi struct with our devices info in it
1881  * @budget: amount of work driver is allowed to do this pass, in packets
1882  *
1883  * This function will clean all queues associated with a q_vector.
1884  *
1885  * Returns the amount of work done
1886  **/
1887 int i40e_napi_poll(struct napi_struct *napi, int budget)
1888 {
1889         struct i40e_q_vector *q_vector =
1890                                container_of(napi, struct i40e_q_vector, napi);
1891         struct i40e_vsi *vsi = q_vector->vsi;
1892         struct i40e_ring *ring;
1893         bool clean_complete = true;
1894         bool arm_wb = false;
1895         int budget_per_ring;
1896         int work_done = 0;
1897
1898         if (test_bit(__I40E_DOWN, &vsi->state)) {
1899                 napi_complete(napi);
1900                 return 0;
1901         }
1902
1903         /* Clear hung_detected bit */
1904         clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1905         /* Since the actual Tx work is minimal, we can give the Tx a larger
1906          * budget and be more aggressive about cleaning up the Tx descriptors.
1907          */
1908         i40e_for_each_ring(ring, q_vector->tx) {
1909                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1910                 arm_wb = arm_wb || ring->arm_wb;
1911                 ring->arm_wb = false;
1912         }
1913
1914         /* Handle case where we are called by netpoll with a budget of 0 */
1915         if (budget <= 0)
1916                 goto tx_only;
1917
1918         /* We attempt to distribute budget to each Rx queue fairly, but don't
1919          * allow the budget to go below 1 because that would exit polling early.
1920          */
1921         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1922
1923         i40e_for_each_ring(ring, q_vector->rx) {
1924                 int cleaned;
1925
1926                 if (ring_is_ps_enabled(ring))
1927                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1928                 else
1929                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1930
1931                 work_done += cleaned;
1932                 /* if we didn't clean as many as budgeted, we must be done */
1933                 clean_complete &= (budget_per_ring != cleaned);
1934         }
1935
1936         /* If work not completed, return budget and polling will return */
1937         if (!clean_complete) {
1938 tx_only:
1939                 if (arm_wb) {
1940                         q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1941                         i40e_force_wb(vsi, q_vector);
1942                 }
1943                 return budget;
1944         }
1945
1946         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1947                 q_vector->arm_wb_state = false;
1948
1949         /* Work is done so exit the polling mode and re-enable the interrupt */
1950         napi_complete_done(napi, work_done);
1951         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1952                 i40e_update_enable_itr(vsi, q_vector);
1953         } else { /* Legacy mode */
1954                 struct i40e_hw *hw = &vsi->back->hw;
1955                 /* We re-enable the queue 0 cause, but
1956                  * don't worry about dynamic_enable
1957                  * because we left it on for the other
1958                  * possible interrupts during napi
1959                  */
1960                 u32 qval = rd32(hw, I40E_QINT_RQCTL(0)) |
1961                            I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1962
1963                 wr32(hw, I40E_QINT_RQCTL(0), qval);
1964                 qval = rd32(hw, I40E_QINT_TQCTL(0)) |
1965                        I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1966                 wr32(hw, I40E_QINT_TQCTL(0), qval);
1967                 i40e_irq_dynamic_enable_icr0(vsi->back);
1968         }
1969         return 0;
1970 }
1971
1972 /**
1973  * i40e_atr - Add a Flow Director ATR filter
1974  * @tx_ring:  ring to add programming descriptor to
1975  * @skb:      send buffer
1976  * @tx_flags: send tx flags
1977  * @protocol: wire protocol
1978  **/
1979 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1980                      u32 tx_flags, __be16 protocol)
1981 {
1982         struct i40e_filter_program_desc *fdir_desc;
1983         struct i40e_pf *pf = tx_ring->vsi->back;
1984         union {
1985                 unsigned char *network;
1986                 struct iphdr *ipv4;
1987                 struct ipv6hdr *ipv6;
1988         } hdr;
1989         struct tcphdr *th;
1990         unsigned int hlen;
1991         u32 flex_ptype, dtype_cmd;
1992         u16 i;
1993
1994         /* make sure ATR is enabled */
1995         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1996                 return;
1997
1998         if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1999                 return;
2000
2001         /* if sampling is disabled do nothing */
2002         if (!tx_ring->atr_sample_rate)
2003                 return;
2004
2005         if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2006                 return;
2007
2008         if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) {
2009                 /* snag network header to get L4 type and address */
2010                 hdr.network = skb_network_header(skb);
2011
2012                 /* Currently only IPv4/IPv6 with TCP is supported
2013                  * access ihl as u8 to avoid unaligned access on ia64
2014                  */
2015                 if (tx_flags & I40E_TX_FLAGS_IPV4)
2016                         hlen = (hdr.network[0] & 0x0F) << 2;
2017                 else if (protocol == htons(ETH_P_IPV6))
2018                         hlen = sizeof(struct ipv6hdr);
2019                 else
2020                         return;
2021         } else {
2022                 hdr.network = skb_inner_network_header(skb);
2023                 hlen = skb_inner_network_header_len(skb);
2024         }
2025
2026         /* Currently only IPv4/IPv6 with TCP is supported
2027          * Note: tx_flags gets modified to reflect inner protocols in
2028          * tx_enable_csum function if encap is enabled.
2029          */
2030         if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
2031             (hdr.ipv4->protocol != IPPROTO_TCP))
2032                 return;
2033         else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
2034                  (hdr.ipv6->nexthdr != IPPROTO_TCP))
2035                 return;
2036
2037         th = (struct tcphdr *)(hdr.network + hlen);
2038
2039         /* Due to lack of space, no more new filters can be programmed */
2040         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2041                 return;
2042         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
2043                 /* HW ATR eviction will take care of removing filters on FIN
2044                  * and RST packets.
2045                  */
2046                 if (th->fin || th->rst)
2047                         return;
2048         }
2049
2050         tx_ring->atr_count++;
2051
2052         /* sample on all syn/fin/rst packets or once every atr sample rate */
2053         if (!th->fin &&
2054             !th->syn &&
2055             !th->rst &&
2056             (tx_ring->atr_count < tx_ring->atr_sample_rate))
2057                 return;
2058
2059         tx_ring->atr_count = 0;
2060
2061         /* grab the next descriptor */
2062         i = tx_ring->next_to_use;
2063         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2064
2065         i++;
2066         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2067
2068         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2069                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
2070         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2071                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2072                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2073                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2074                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2075
2076         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2077
2078         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2079
2080         dtype_cmd |= (th->fin || th->rst) ?
2081                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2082                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2083                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2084                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2085
2086         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2087                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2088
2089         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2090                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2091
2092         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2093         if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2094                 dtype_cmd |=
2095                         ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2096                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2097                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2098         else
2099                 dtype_cmd |=
2100                         ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2101                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2102                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2103
2104         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
2105                 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2106
2107         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2108         fdir_desc->rsvd = cpu_to_le32(0);
2109         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2110         fdir_desc->fd_id = cpu_to_le32(0);
2111 }
2112
2113 /**
2114  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2115  * @skb:     send buffer
2116  * @tx_ring: ring to send buffer on
2117  * @flags:   the tx flags to be set
2118  *
2119  * Checks the skb and set up correspondingly several generic transmit flags
2120  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2121  *
2122  * Returns error code indicate the frame should be dropped upon error and the
2123  * otherwise  returns 0 to indicate the flags has been set properly.
2124  **/
2125 #ifdef I40E_FCOE
2126 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2127                                       struct i40e_ring *tx_ring,
2128                                       u32 *flags)
2129 #else
2130 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2131                                              struct i40e_ring *tx_ring,
2132                                              u32 *flags)
2133 #endif
2134 {
2135         __be16 protocol = skb->protocol;
2136         u32  tx_flags = 0;
2137
2138         if (protocol == htons(ETH_P_8021Q) &&
2139             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2140                 /* When HW VLAN acceleration is turned off by the user the
2141                  * stack sets the protocol to 8021q so that the driver
2142                  * can take any steps required to support the SW only
2143                  * VLAN handling.  In our case the driver doesn't need
2144                  * to take any further steps so just set the protocol
2145                  * to the encapsulated ethertype.
2146                  */
2147                 skb->protocol = vlan_get_protocol(skb);
2148                 goto out;
2149         }
2150
2151         /* if we have a HW VLAN tag being added, default to the HW one */
2152         if (skb_vlan_tag_present(skb)) {
2153                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2154                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2155         /* else if it is a SW VLAN, check the next protocol and store the tag */
2156         } else if (protocol == htons(ETH_P_8021Q)) {
2157                 struct vlan_hdr *vhdr, _vhdr;
2158
2159                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2160                 if (!vhdr)
2161                         return -EINVAL;
2162
2163                 protocol = vhdr->h_vlan_encapsulated_proto;
2164                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2165                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2166         }
2167
2168         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2169                 goto out;
2170
2171         /* Insert 802.1p priority into VLAN header */
2172         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2173             (skb->priority != TC_PRIO_CONTROL)) {
2174                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2175                 tx_flags |= (skb->priority & 0x7) <<
2176                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2177                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2178                         struct vlan_ethhdr *vhdr;
2179                         int rc;
2180
2181                         rc = skb_cow_head(skb, 0);
2182                         if (rc < 0)
2183                                 return rc;
2184                         vhdr = (struct vlan_ethhdr *)skb->data;
2185                         vhdr->h_vlan_TCI = htons(tx_flags >>
2186                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2187                 } else {
2188                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2189                 }
2190         }
2191
2192 out:
2193         *flags = tx_flags;
2194         return 0;
2195 }
2196
2197 /**
2198  * i40e_tso - set up the tso context descriptor
2199  * @tx_ring:  ptr to the ring to send
2200  * @skb:      ptr to the skb we're sending
2201  * @hdr_len:  ptr to the size of the packet header
2202  * @cd_type_cmd_tso_mss: Quad Word 1
2203  *
2204  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2205  **/
2206 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2207                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
2208 {
2209         u32 cd_cmd, cd_tso_len, cd_mss;
2210         struct ipv6hdr *ipv6h;
2211         struct tcphdr *tcph;
2212         struct iphdr *iph;
2213         u32 l4len;
2214         int err;
2215
2216         if (!skb_is_gso(skb))
2217                 return 0;
2218
2219         err = skb_cow_head(skb, 0);
2220         if (err < 0)
2221                 return err;
2222
2223         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2224         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2225
2226         if (iph->version == 4) {
2227                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2228                 iph->tot_len = 0;
2229                 iph->check = 0;
2230                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2231                                                  0, IPPROTO_TCP, 0);
2232         } else if (ipv6h->version == 6) {
2233                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2234                 ipv6h->payload_len = 0;
2235                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2236                                                0, IPPROTO_TCP, 0);
2237         }
2238
2239         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2240         *hdr_len = (skb->encapsulation
2241                     ? (skb_inner_transport_header(skb) - skb->data)
2242                     : skb_transport_offset(skb)) + l4len;
2243
2244         /* find the field values */
2245         cd_cmd = I40E_TX_CTX_DESC_TSO;
2246         cd_tso_len = skb->len - *hdr_len;
2247         cd_mss = skb_shinfo(skb)->gso_size;
2248         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2249                                 ((u64)cd_tso_len <<
2250                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2251                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2252         return 1;
2253 }
2254
2255 /**
2256  * i40e_tsyn - set up the tsyn context descriptor
2257  * @tx_ring:  ptr to the ring to send
2258  * @skb:      ptr to the skb we're sending
2259  * @tx_flags: the collected send information
2260  * @cd_type_cmd_tso_mss: Quad Word 1
2261  *
2262  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2263  **/
2264 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2265                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2266 {
2267         struct i40e_pf *pf;
2268
2269         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2270                 return 0;
2271
2272         /* Tx timestamps cannot be sampled when doing TSO */
2273         if (tx_flags & I40E_TX_FLAGS_TSO)
2274                 return 0;
2275
2276         /* only timestamp the outbound packet if the user has requested it and
2277          * we are not already transmitting a packet to be timestamped
2278          */
2279         pf = i40e_netdev_to_pf(tx_ring->netdev);
2280         if (!(pf->flags & I40E_FLAG_PTP))
2281                 return 0;
2282
2283         if (pf->ptp_tx &&
2284             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2285                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2286                 pf->ptp_tx_skb = skb_get(skb);
2287         } else {
2288                 return 0;
2289         }
2290
2291         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2292                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
2293
2294         return 1;
2295 }
2296
2297 /**
2298  * i40e_tx_enable_csum - Enable Tx checksum offloads
2299  * @skb: send buffer
2300  * @tx_flags: pointer to Tx flags currently set
2301  * @td_cmd: Tx descriptor command bits to set
2302  * @td_offset: Tx descriptor header offsets to set
2303  * @tx_ring: Tx descriptor ring
2304  * @cd_tunneling: ptr to context desc bits
2305  **/
2306 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2307                                 u32 *td_cmd, u32 *td_offset,
2308                                 struct i40e_ring *tx_ring,
2309                                 u32 *cd_tunneling)
2310 {
2311         struct ipv6hdr *this_ipv6_hdr;
2312         unsigned int this_tcp_hdrlen;
2313         struct iphdr *this_ip_hdr;
2314         u32 network_hdr_len;
2315         u8 l4_hdr = 0;
2316         struct udphdr *oudph = NULL;
2317         struct iphdr *oiph = NULL;
2318         u32 l4_tunnel = 0;
2319
2320         if (skb->encapsulation) {
2321                 switch (ip_hdr(skb)->protocol) {
2322                 case IPPROTO_UDP:
2323                         oudph = udp_hdr(skb);
2324                         oiph = ip_hdr(skb);
2325                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2326                         *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2327                         break;
2328                 case IPPROTO_GRE:
2329                         l4_tunnel = I40E_TXD_CTX_GRE_TUNNELING;
2330                         break;
2331                 default:
2332                         return;
2333                 }
2334                 network_hdr_len = skb_inner_network_header_len(skb);
2335                 this_ip_hdr = inner_ip_hdr(skb);
2336                 this_ipv6_hdr = inner_ipv6_hdr(skb);
2337                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2338
2339                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2340                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
2341                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2342                                 ip_hdr(skb)->check = 0;
2343                         } else {
2344                                 *cd_tunneling |=
2345                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2346                         }
2347                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2348                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2349                         if (*tx_flags & I40E_TX_FLAGS_TSO)
2350                                 ip_hdr(skb)->check = 0;
2351                 }
2352
2353                 /* Now set the ctx descriptor fields */
2354                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2355                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
2356                                    l4_tunnel                             |
2357                                    ((skb_inner_network_offset(skb) -
2358                                         skb_transport_offset(skb)) >> 1) <<
2359                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2360                 if (this_ip_hdr->version == 6) {
2361                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
2362                         *tx_flags |= I40E_TX_FLAGS_IPV6;
2363                 }
2364                 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
2365                     (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
2366                     (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
2367                         oudph->check = ~csum_tcpudp_magic(oiph->saddr,
2368                                         oiph->daddr,
2369                                         (skb->len - skb_transport_offset(skb)),
2370                                         IPPROTO_UDP, 0);
2371                         *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2372                 }
2373         } else {
2374                 network_hdr_len = skb_network_header_len(skb);
2375                 this_ip_hdr = ip_hdr(skb);
2376                 this_ipv6_hdr = ipv6_hdr(skb);
2377                 this_tcp_hdrlen = tcp_hdrlen(skb);
2378         }
2379
2380         /* Enable IP checksum offloads */
2381         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2382                 l4_hdr = this_ip_hdr->protocol;
2383                 /* the stack computes the IP header already, the only time we
2384                  * need the hardware to recompute it is in the case of TSO.
2385                  */
2386                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2387                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2388                         this_ip_hdr->check = 0;
2389                 } else {
2390                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2391                 }
2392                 /* Now set the td_offset for IP header length */
2393                 *td_offset = (network_hdr_len >> 2) <<
2394                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2395         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2396                 l4_hdr = this_ipv6_hdr->nexthdr;
2397                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2398                 /* Now set the td_offset for IP header length */
2399                 *td_offset = (network_hdr_len >> 2) <<
2400                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2401         }
2402         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2403         *td_offset |= (skb_network_offset(skb) >> 1) <<
2404                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2405
2406         /* Enable L4 checksum offloads */
2407         switch (l4_hdr) {
2408         case IPPROTO_TCP:
2409                 /* enable checksum offloads */
2410                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2411                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2412                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2413                 break;
2414         case IPPROTO_SCTP:
2415                 /* enable SCTP checksum offload */
2416                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2417                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2418                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2419                 break;
2420         case IPPROTO_UDP:
2421                 /* enable UDP checksum offload */
2422                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2423                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2424                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2425                 break;
2426         default:
2427                 break;
2428         }
2429 }
2430
2431 /**
2432  * i40e_create_tx_ctx Build the Tx context descriptor
2433  * @tx_ring:  ring to create the descriptor on
2434  * @cd_type_cmd_tso_mss: Quad Word 1
2435  * @cd_tunneling: Quad Word 0 - bits 0-31
2436  * @cd_l2tag2: Quad Word 0 - bits 32-63
2437  **/
2438 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2439                                const u64 cd_type_cmd_tso_mss,
2440                                const u32 cd_tunneling, const u32 cd_l2tag2)
2441 {
2442         struct i40e_tx_context_desc *context_desc;
2443         int i = tx_ring->next_to_use;
2444
2445         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2446             !cd_tunneling && !cd_l2tag2)
2447                 return;
2448
2449         /* grab the next descriptor */
2450         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2451
2452         i++;
2453         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2454
2455         /* cpu_to_le32 and assign to struct fields */
2456         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2457         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2458         context_desc->rsvd = cpu_to_le16(0);
2459         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2460 }
2461
2462 /**
2463  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2464  * @tx_ring: the ring to be checked
2465  * @size:    the size buffer we want to assure is available
2466  *
2467  * Returns -EBUSY if a stop is needed, else 0
2468  **/
2469 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2470 {
2471         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2472         /* Memory barrier before checking head and tail */
2473         smp_mb();
2474
2475         /* Check again in a case another CPU has just made room available. */
2476         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2477                 return -EBUSY;
2478
2479         /* A reprieve! - use start_queue because it doesn't call schedule */
2480         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2481         ++tx_ring->tx_stats.restart_queue;
2482         return 0;
2483 }
2484
2485 /**
2486  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2487  * @tx_ring: the ring to be checked
2488  * @size:    the size buffer we want to assure is available
2489  *
2490  * Returns 0 if stop is not needed
2491  **/
2492 #ifdef I40E_FCOE
2493 inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2494 #else
2495 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2496 #endif
2497 {
2498         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2499                 return 0;
2500         return __i40e_maybe_stop_tx(tx_ring, size);
2501 }
2502
2503 /**
2504  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2505  * @skb:      send buffer
2506  * @tx_flags: collected send information
2507  *
2508  * Note: Our HW can't scatter-gather more than 8 fragments to build
2509  * a packet on the wire and so we need to figure out the cases where we
2510  * need to linearize the skb.
2511  **/
2512 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
2513 {
2514         struct skb_frag_struct *frag;
2515         bool linearize = false;
2516         unsigned int size = 0;
2517         u16 num_frags;
2518         u16 gso_segs;
2519
2520         num_frags = skb_shinfo(skb)->nr_frags;
2521         gso_segs = skb_shinfo(skb)->gso_segs;
2522
2523         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2524                 u16 j = 0;
2525
2526                 if (num_frags < (I40E_MAX_BUFFER_TXD))
2527                         goto linearize_chk_done;
2528                 /* try the simple math, if we have too many frags per segment */
2529                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2530                     I40E_MAX_BUFFER_TXD) {
2531                         linearize = true;
2532                         goto linearize_chk_done;
2533                 }
2534                 frag = &skb_shinfo(skb)->frags[0];
2535                 /* we might still have more fragments per segment */
2536                 do {
2537                         size += skb_frag_size(frag);
2538                         frag++; j++;
2539                         if ((size >= skb_shinfo(skb)->gso_size) &&
2540                             (j < I40E_MAX_BUFFER_TXD)) {
2541                                 size = (size % skb_shinfo(skb)->gso_size);
2542                                 j = (size) ? 1 : 0;
2543                         }
2544                         if (j == I40E_MAX_BUFFER_TXD) {
2545                                 linearize = true;
2546                                 break;
2547                         }
2548                         num_frags--;
2549                 } while (num_frags);
2550         } else {
2551                 if (num_frags >= I40E_MAX_BUFFER_TXD)
2552                         linearize = true;
2553         }
2554
2555 linearize_chk_done:
2556         return linearize;
2557 }
2558
2559 /**
2560  * i40e_tx_map - Build the Tx descriptor
2561  * @tx_ring:  ring to send buffer on
2562  * @skb:      send buffer
2563  * @first:    first buffer info buffer to use
2564  * @tx_flags: collected send information
2565  * @hdr_len:  size of the packet header
2566  * @td_cmd:   the command field in the descriptor
2567  * @td_offset: offset for checksum or crc
2568  **/
2569 #ifdef I40E_FCOE
2570 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2571                         struct i40e_tx_buffer *first, u32 tx_flags,
2572                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2573 #else
2574 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2575                                struct i40e_tx_buffer *first, u32 tx_flags,
2576                                const u8 hdr_len, u32 td_cmd, u32 td_offset)
2577 #endif
2578 {
2579         unsigned int data_len = skb->data_len;
2580         unsigned int size = skb_headlen(skb);
2581         struct skb_frag_struct *frag;
2582         struct i40e_tx_buffer *tx_bi;
2583         struct i40e_tx_desc *tx_desc;
2584         u16 i = tx_ring->next_to_use;
2585         u32 td_tag = 0;
2586         dma_addr_t dma;
2587         u16 gso_segs;
2588         u16 desc_count = 0;
2589         bool tail_bump = true;
2590         bool do_rs = false;
2591
2592         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2593                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2594                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2595                          I40E_TX_FLAGS_VLAN_SHIFT;
2596         }
2597
2598         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2599                 gso_segs = skb_shinfo(skb)->gso_segs;
2600         else
2601                 gso_segs = 1;
2602
2603         /* multiply data chunks by size of headers */
2604         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2605         first->gso_segs = gso_segs;
2606         first->skb = skb;
2607         first->tx_flags = tx_flags;
2608
2609         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2610
2611         tx_desc = I40E_TX_DESC(tx_ring, i);
2612         tx_bi = first;
2613
2614         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2615                 if (dma_mapping_error(tx_ring->dev, dma))
2616                         goto dma_error;
2617
2618                 /* record length, and DMA address */
2619                 dma_unmap_len_set(tx_bi, len, size);
2620                 dma_unmap_addr_set(tx_bi, dma, dma);
2621
2622                 tx_desc->buffer_addr = cpu_to_le64(dma);
2623
2624                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2625                         tx_desc->cmd_type_offset_bsz =
2626                                 build_ctob(td_cmd, td_offset,
2627                                            I40E_MAX_DATA_PER_TXD, td_tag);
2628
2629                         tx_desc++;
2630                         i++;
2631                         desc_count++;
2632
2633                         if (i == tx_ring->count) {
2634                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2635                                 i = 0;
2636                         }
2637
2638                         dma += I40E_MAX_DATA_PER_TXD;
2639                         size -= I40E_MAX_DATA_PER_TXD;
2640
2641                         tx_desc->buffer_addr = cpu_to_le64(dma);
2642                 }
2643
2644                 if (likely(!data_len))
2645                         break;
2646
2647                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2648                                                           size, td_tag);
2649
2650                 tx_desc++;
2651                 i++;
2652                 desc_count++;
2653
2654                 if (i == tx_ring->count) {
2655                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2656                         i = 0;
2657                 }
2658
2659                 size = skb_frag_size(frag);
2660                 data_len -= size;
2661
2662                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2663                                        DMA_TO_DEVICE);
2664
2665                 tx_bi = &tx_ring->tx_bi[i];
2666         }
2667
2668         /* set next_to_watch value indicating a packet is present */
2669         first->next_to_watch = tx_desc;
2670
2671         i++;
2672         if (i == tx_ring->count)
2673                 i = 0;
2674
2675         tx_ring->next_to_use = i;
2676
2677         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2678                                                  tx_ring->queue_index),
2679                                                  first->bytecount);
2680         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2681
2682         /* Algorithm to optimize tail and RS bit setting:
2683          * if xmit_more is supported
2684          *      if xmit_more is true
2685          *              do not update tail and do not mark RS bit.
2686          *      if xmit_more is false and last xmit_more was false
2687          *              if every packet spanned less than 4 desc
2688          *                      then set RS bit on 4th packet and update tail
2689          *                      on every packet
2690          *              else
2691          *                      update tail and set RS bit on every packet.
2692          *      if xmit_more is false and last_xmit_more was true
2693          *              update tail and set RS bit.
2694          *
2695          * Optimization: wmb to be issued only in case of tail update.
2696          * Also optimize the Descriptor WB path for RS bit with the same
2697          * algorithm.
2698          *
2699          * Note: If there are less than 4 packets
2700          * pending and interrupts were disabled the service task will
2701          * trigger a force WB.
2702          */
2703         if (skb->xmit_more  &&
2704             !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2705                                                     tx_ring->queue_index))) {
2706                 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2707                 tail_bump = false;
2708         } else if (!skb->xmit_more &&
2709                    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2710                                                        tx_ring->queue_index)) &&
2711                    (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2712                    (tx_ring->packet_stride < WB_STRIDE) &&
2713                    (desc_count < WB_STRIDE)) {
2714                 tx_ring->packet_stride++;
2715         } else {
2716                 tx_ring->packet_stride = 0;
2717                 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2718                 do_rs = true;
2719         }
2720         if (do_rs)
2721                 tx_ring->packet_stride = 0;
2722
2723         tx_desc->cmd_type_offset_bsz =
2724                         build_ctob(td_cmd, td_offset, size, td_tag) |
2725                         cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2726                                                   I40E_TX_DESC_CMD_EOP) <<
2727                                                   I40E_TXD_QW1_CMD_SHIFT);
2728
2729         /* notify HW of packet */
2730         if (!tail_bump)
2731                 prefetchw(tx_desc + 1);
2732
2733         if (tail_bump) {
2734                 /* Force memory writes to complete before letting h/w
2735                  * know there are new descriptors to fetch.  (Only
2736                  * applicable for weak-ordered memory model archs,
2737                  * such as IA-64).
2738                  */
2739                 wmb();
2740                 writel(i, tx_ring->tail);
2741         }
2742
2743         return;
2744
2745 dma_error:
2746         dev_info(tx_ring->dev, "TX DMA map failed\n");
2747
2748         /* clear dma mappings for failed tx_bi map */
2749         for (;;) {
2750                 tx_bi = &tx_ring->tx_bi[i];
2751                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2752                 if (tx_bi == first)
2753                         break;
2754                 if (i == 0)
2755                         i = tx_ring->count;
2756                 i--;
2757         }
2758
2759         tx_ring->next_to_use = i;
2760 }
2761
2762 /**
2763  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2764  * @skb:     send buffer
2765  * @tx_ring: ring to send buffer on
2766  *
2767  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2768  * there is not enough descriptors available in this ring since we need at least
2769  * one descriptor.
2770  **/
2771 #ifdef I40E_FCOE
2772 inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2773                                       struct i40e_ring *tx_ring)
2774 #else
2775 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2776                                              struct i40e_ring *tx_ring)
2777 #endif
2778 {
2779         unsigned int f;
2780         int count = 0;
2781
2782         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2783          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2784          *       + 4 desc gap to avoid the cache line where head is,
2785          *       + 1 desc for context descriptor,
2786          * otherwise try next time
2787          */
2788         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2789                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2790
2791         count += TXD_USE_COUNT(skb_headlen(skb));
2792         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2793                 tx_ring->tx_stats.tx_busy++;
2794                 return 0;
2795         }
2796         return count;
2797 }
2798
2799 /**
2800  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2801  * @skb:     send buffer
2802  * @tx_ring: ring to send buffer on
2803  *
2804  * Returns NETDEV_TX_OK if sent, else an error code
2805  **/
2806 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2807                                         struct i40e_ring *tx_ring)
2808 {
2809         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2810         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2811         struct i40e_tx_buffer *first;
2812         u32 td_offset = 0;
2813         u32 tx_flags = 0;
2814         __be16 protocol;
2815         u32 td_cmd = 0;
2816         u8 hdr_len = 0;
2817         int tsyn;
2818         int tso;
2819
2820         /* prefetch the data, we'll need it later */
2821         prefetch(skb->data);
2822
2823         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2824                 return NETDEV_TX_BUSY;
2825
2826         /* prepare the xmit flags */
2827         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2828                 goto out_drop;
2829
2830         /* obtain protocol of skb */
2831         protocol = vlan_get_protocol(skb);
2832
2833         /* record the location of the first descriptor for this packet */
2834         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2835
2836         /* setup IPv4/IPv6 offloads */
2837         if (protocol == htons(ETH_P_IP))
2838                 tx_flags |= I40E_TX_FLAGS_IPV4;
2839         else if (protocol == htons(ETH_P_IPV6))
2840                 tx_flags |= I40E_TX_FLAGS_IPV6;
2841
2842         tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2843
2844         if (tso < 0)
2845                 goto out_drop;
2846         else if (tso)
2847                 tx_flags |= I40E_TX_FLAGS_TSO;
2848
2849         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2850
2851         if (tsyn)
2852                 tx_flags |= I40E_TX_FLAGS_TSYN;
2853
2854         if (i40e_chk_linearize(skb, tx_flags)) {
2855                 if (skb_linearize(skb))
2856                         goto out_drop;
2857                 tx_ring->tx_stats.tx_linearize++;
2858         }
2859         skb_tx_timestamp(skb);
2860
2861         /* always enable CRC insertion offload */
2862         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2863
2864         /* Always offload the checksum, since it's in the data descriptor */
2865         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2866                 tx_flags |= I40E_TX_FLAGS_CSUM;
2867
2868                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2869                                     tx_ring, &cd_tunneling);
2870         }
2871
2872         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2873                            cd_tunneling, cd_l2tag2);
2874
2875         /* Add Flow Director ATR if it's enabled.
2876          *
2877          * NOTE: this must always be directly before the data descriptor.
2878          */
2879         i40e_atr(tx_ring, skb, tx_flags, protocol);
2880
2881         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2882                     td_cmd, td_offset);
2883
2884         return NETDEV_TX_OK;
2885
2886 out_drop:
2887         dev_kfree_skb_any(skb);
2888         return NETDEV_TX_OK;
2889 }
2890
2891 /**
2892  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2893  * @skb:    send buffer
2894  * @netdev: network interface device structure
2895  *
2896  * Returns NETDEV_TX_OK if sent, else an error code
2897  **/
2898 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2899 {
2900         struct i40e_netdev_priv *np = netdev_priv(netdev);
2901         struct i40e_vsi *vsi = np->vsi;
2902         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2903
2904         /* hardware can't handle really short frames, hardware padding works
2905          * beyond this point
2906          */
2907         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2908                 return NETDEV_TX_OK;
2909
2910         return i40e_xmit_frame_ring(skb, tx_ring);
2911 }