ASoC: max98371 Remove duplicate entry in max98371_reg
[cascardo/linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29
30 #include "i40evf.h"
31 #include "i40e_prototype.h"
32
33 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34                                 u32 td_tag)
35 {
36         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
38                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
41 }
42
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45 /**
46  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47  * @ring:      the ring that owns the buffer
48  * @tx_buffer: the buffer to free
49  **/
50 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51                                             struct i40e_tx_buffer *tx_buffer)
52 {
53         if (tx_buffer->skb) {
54                 dev_kfree_skb_any(tx_buffer->skb);
55                 if (dma_unmap_len(tx_buffer, len))
56                         dma_unmap_single(ring->dev,
57                                          dma_unmap_addr(tx_buffer, dma),
58                                          dma_unmap_len(tx_buffer, len),
59                                          DMA_TO_DEVICE);
60         } else if (dma_unmap_len(tx_buffer, len)) {
61                 dma_unmap_page(ring->dev,
62                                dma_unmap_addr(tx_buffer, dma),
63                                dma_unmap_len(tx_buffer, len),
64                                DMA_TO_DEVICE);
65         }
66
67         if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
68                 kfree(tx_buffer->raw_buf);
69
70         tx_buffer->next_to_watch = NULL;
71         tx_buffer->skb = NULL;
72         dma_unmap_len_set(tx_buffer, len, 0);
73         /* tx_buffer must be completely set up in the transmit path */
74 }
75
76 /**
77  * i40evf_clean_tx_ring - Free any empty Tx buffers
78  * @tx_ring: ring to be cleaned
79  **/
80 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81 {
82         unsigned long bi_size;
83         u16 i;
84
85         /* ring already cleared, nothing to do */
86         if (!tx_ring->tx_bi)
87                 return;
88
89         /* Free all the Tx ring sk_buffs */
90         for (i = 0; i < tx_ring->count; i++)
91                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94         memset(tx_ring->tx_bi, 0, bi_size);
95
96         /* Zero out the descriptor ring */
97         memset(tx_ring->desc, 0, tx_ring->size);
98
99         tx_ring->next_to_use = 0;
100         tx_ring->next_to_clean = 0;
101
102         if (!tx_ring->netdev)
103                 return;
104
105         /* cleanup Tx queue statistics */
106         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107                                                   tx_ring->queue_index));
108 }
109
110 /**
111  * i40evf_free_tx_resources - Free Tx resources per queue
112  * @tx_ring: Tx descriptor ring for a specific queue
113  *
114  * Free all transmit software resources
115  **/
116 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117 {
118         i40evf_clean_tx_ring(tx_ring);
119         kfree(tx_ring->tx_bi);
120         tx_ring->tx_bi = NULL;
121
122         if (tx_ring->desc) {
123                 dma_free_coherent(tx_ring->dev, tx_ring->size,
124                                   tx_ring->desc, tx_ring->dma);
125                 tx_ring->desc = NULL;
126         }
127 }
128
129 /**
130  * i40evf_get_tx_pending - how many Tx descriptors not processed
131  * @tx_ring: the ring of descriptors
132  * @in_sw: is tx_pending being checked in SW or HW
133  *
134  * Since there is no access to the ring head register
135  * in XL710, we need to use our local copies
136  **/
137 u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
138 {
139         u32 head, tail;
140
141         if (!in_sw)
142                 head = i40e_get_head(ring);
143         else
144                 head = ring->next_to_clean;
145         tail = readl(ring->tail);
146
147         if (head != tail)
148                 return (head < tail) ?
149                         tail - head : (tail + ring->count - head);
150
151         return 0;
152 }
153
154 #define WB_STRIDE 0x3
155
156 /**
157  * i40e_clean_tx_irq - Reclaim resources after transmit completes
158  * @tx_ring:  tx ring to clean
159  * @budget:   how many cleans we're allowed
160  *
161  * Returns true if there's any budget left (e.g. the clean is finished)
162  **/
163 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
164 {
165         u16 i = tx_ring->next_to_clean;
166         struct i40e_tx_buffer *tx_buf;
167         struct i40e_tx_desc *tx_head;
168         struct i40e_tx_desc *tx_desc;
169         unsigned int total_packets = 0;
170         unsigned int total_bytes = 0;
171
172         tx_buf = &tx_ring->tx_bi[i];
173         tx_desc = I40E_TX_DESC(tx_ring, i);
174         i -= tx_ring->count;
175
176         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
177
178         do {
179                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
180
181                 /* if next_to_watch is not set then there is no work pending */
182                 if (!eop_desc)
183                         break;
184
185                 /* prevent any other reads prior to eop_desc */
186                 read_barrier_depends();
187
188                 /* we have caught up to head, no work left to do */
189                 if (tx_head == tx_desc)
190                         break;
191
192                 /* clear next_to_watch to prevent false hangs */
193                 tx_buf->next_to_watch = NULL;
194
195                 /* update the statistics for this packet */
196                 total_bytes += tx_buf->bytecount;
197                 total_packets += tx_buf->gso_segs;
198
199                 /* free the skb */
200                 dev_kfree_skb_any(tx_buf->skb);
201
202                 /* unmap skb header data */
203                 dma_unmap_single(tx_ring->dev,
204                                  dma_unmap_addr(tx_buf, dma),
205                                  dma_unmap_len(tx_buf, len),
206                                  DMA_TO_DEVICE);
207
208                 /* clear tx_buffer data */
209                 tx_buf->skb = NULL;
210                 dma_unmap_len_set(tx_buf, len, 0);
211
212                 /* unmap remaining buffers */
213                 while (tx_desc != eop_desc) {
214
215                         tx_buf++;
216                         tx_desc++;
217                         i++;
218                         if (unlikely(!i)) {
219                                 i -= tx_ring->count;
220                                 tx_buf = tx_ring->tx_bi;
221                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
222                         }
223
224                         /* unmap any remaining paged data */
225                         if (dma_unmap_len(tx_buf, len)) {
226                                 dma_unmap_page(tx_ring->dev,
227                                                dma_unmap_addr(tx_buf, dma),
228                                                dma_unmap_len(tx_buf, len),
229                                                DMA_TO_DEVICE);
230                                 dma_unmap_len_set(tx_buf, len, 0);
231                         }
232                 }
233
234                 /* move us one more past the eop_desc for start of next pkt */
235                 tx_buf++;
236                 tx_desc++;
237                 i++;
238                 if (unlikely(!i)) {
239                         i -= tx_ring->count;
240                         tx_buf = tx_ring->tx_bi;
241                         tx_desc = I40E_TX_DESC(tx_ring, 0);
242                 }
243
244                 prefetch(tx_desc);
245
246                 /* update budget accounting */
247                 budget--;
248         } while (likely(budget));
249
250         i += tx_ring->count;
251         tx_ring->next_to_clean = i;
252         u64_stats_update_begin(&tx_ring->syncp);
253         tx_ring->stats.bytes += total_bytes;
254         tx_ring->stats.packets += total_packets;
255         u64_stats_update_end(&tx_ring->syncp);
256         tx_ring->q_vector->tx.total_bytes += total_bytes;
257         tx_ring->q_vector->tx.total_packets += total_packets;
258
259         if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
260                 unsigned int j = 0;
261                 /* check to see if there are < 4 descriptors
262                  * waiting to be written back, then kick the hardware to force
263                  * them to be written back in case we stay in NAPI.
264                  * In this mode on X722 we do not enable Interrupt.
265                  */
266                 j = i40evf_get_tx_pending(tx_ring, false);
267
268                 if (budget &&
269                     ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
270                     !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
271                     (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
272                         tx_ring->arm_wb = true;
273         }
274
275         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
276                                                       tx_ring->queue_index),
277                                   total_packets, total_bytes);
278
279 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
280         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
281                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
282                 /* Make sure that anybody stopping the queue after this
283                  * sees the new next_to_clean.
284                  */
285                 smp_mb();
286                 if (__netif_subqueue_stopped(tx_ring->netdev,
287                                              tx_ring->queue_index) &&
288                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
289                         netif_wake_subqueue(tx_ring->netdev,
290                                             tx_ring->queue_index);
291                         ++tx_ring->tx_stats.restart_queue;
292                 }
293         }
294
295         return !!budget;
296 }
297
298 /**
299  * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
300  * @vsi: the VSI we care about
301  * @q_vector: the vector on which to enable writeback
302  *
303  **/
304 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
305                                   struct i40e_q_vector *q_vector)
306 {
307         u16 flags = q_vector->tx.ring[0].flags;
308         u32 val;
309
310         if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
311                 return;
312
313         if (q_vector->arm_wb_state)
314                 return;
315
316         val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
317               I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
318
319         wr32(&vsi->back->hw,
320              I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
321                                   vsi->base_vector - 1), val);
322         q_vector->arm_wb_state = true;
323 }
324
325 /**
326  * i40evf_force_wb - Issue SW Interrupt so HW does a wb
327  * @vsi: the VSI we care about
328  * @q_vector: the vector  on which to force writeback
329  *
330  **/
331 void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
332 {
333         u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
334                   I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
335                   I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
336                   I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
337                   /* allow 00 to be written to the index */;
338
339         wr32(&vsi->back->hw,
340              I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
341              val);
342 }
343
344 /**
345  * i40e_set_new_dynamic_itr - Find new ITR level
346  * @rc: structure containing ring performance data
347  *
348  * Returns true if ITR changed, false if not
349  *
350  * Stores a new ITR value based on packets and byte counts during
351  * the last interrupt.  The advantage of per interrupt computation
352  * is faster updates and more accurate ITR for the current traffic
353  * pattern.  Constants in this function were computed based on
354  * theoretical maximum wire speed and thresholds were set based on
355  * testing data as well as attempting to minimize response time
356  * while increasing bulk throughput.
357  **/
358 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
359 {
360         enum i40e_latency_range new_latency_range = rc->latency_range;
361         struct i40e_q_vector *qv = rc->ring->q_vector;
362         u32 new_itr = rc->itr;
363         int bytes_per_int;
364         int usecs;
365
366         if (rc->total_packets == 0 || !rc->itr)
367                 return false;
368
369         /* simple throttlerate management
370          *   0-10MB/s   lowest (50000 ints/s)
371          *  10-20MB/s   low    (20000 ints/s)
372          *  20-1249MB/s bulk   (18000 ints/s)
373          *  > 40000 Rx packets per second (8000 ints/s)
374          *
375          * The math works out because the divisor is in 10^(-6) which
376          * turns the bytes/us input value into MB/s values, but
377          * make sure to use usecs, as the register values written
378          * are in 2 usec increments in the ITR registers, and make sure
379          * to use the smoothed values that the countdown timer gives us.
380          */
381         usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
382         bytes_per_int = rc->total_bytes / usecs;
383
384         switch (new_latency_range) {
385         case I40E_LOWEST_LATENCY:
386                 if (bytes_per_int > 10)
387                         new_latency_range = I40E_LOW_LATENCY;
388                 break;
389         case I40E_LOW_LATENCY:
390                 if (bytes_per_int > 20)
391                         new_latency_range = I40E_BULK_LATENCY;
392                 else if (bytes_per_int <= 10)
393                         new_latency_range = I40E_LOWEST_LATENCY;
394                 break;
395         case I40E_BULK_LATENCY:
396         case I40E_ULTRA_LATENCY:
397         default:
398                 if (bytes_per_int <= 20)
399                         new_latency_range = I40E_LOW_LATENCY;
400                 break;
401         }
402
403         /* this is to adjust RX more aggressively when streaming small
404          * packets.  The value of 40000 was picked as it is just beyond
405          * what the hardware can receive per second if in low latency
406          * mode.
407          */
408 #define RX_ULTRA_PACKET_RATE 40000
409
410         if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
411             (&qv->rx == rc))
412                 new_latency_range = I40E_ULTRA_LATENCY;
413
414         rc->latency_range = new_latency_range;
415
416         switch (new_latency_range) {
417         case I40E_LOWEST_LATENCY:
418                 new_itr = I40E_ITR_50K;
419                 break;
420         case I40E_LOW_LATENCY:
421                 new_itr = I40E_ITR_20K;
422                 break;
423         case I40E_BULK_LATENCY:
424                 new_itr = I40E_ITR_18K;
425                 break;
426         case I40E_ULTRA_LATENCY:
427                 new_itr = I40E_ITR_8K;
428                 break;
429         default:
430                 break;
431         }
432
433         rc->total_bytes = 0;
434         rc->total_packets = 0;
435
436         if (new_itr != rc->itr) {
437                 rc->itr = new_itr;
438                 return true;
439         }
440
441         return false;
442 }
443
444 /**
445  * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
446  * @tx_ring: the tx ring to set up
447  *
448  * Return 0 on success, negative on error
449  **/
450 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
451 {
452         struct device *dev = tx_ring->dev;
453         int bi_size;
454
455         if (!dev)
456                 return -ENOMEM;
457
458         /* warn if we are about to overwrite the pointer */
459         WARN_ON(tx_ring->tx_bi);
460         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
461         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
462         if (!tx_ring->tx_bi)
463                 goto err;
464
465         /* round up to nearest 4K */
466         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
467         /* add u32 for head writeback, align after this takes care of
468          * guaranteeing this is at least one cache line in size
469          */
470         tx_ring->size += sizeof(u32);
471         tx_ring->size = ALIGN(tx_ring->size, 4096);
472         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
473                                            &tx_ring->dma, GFP_KERNEL);
474         if (!tx_ring->desc) {
475                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
476                          tx_ring->size);
477                 goto err;
478         }
479
480         tx_ring->next_to_use = 0;
481         tx_ring->next_to_clean = 0;
482         return 0;
483
484 err:
485         kfree(tx_ring->tx_bi);
486         tx_ring->tx_bi = NULL;
487         return -ENOMEM;
488 }
489
490 /**
491  * i40evf_clean_rx_ring - Free Rx buffers
492  * @rx_ring: ring to be cleaned
493  **/
494 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
495 {
496         struct device *dev = rx_ring->dev;
497         struct i40e_rx_buffer *rx_bi;
498         unsigned long bi_size;
499         u16 i;
500
501         /* ring already cleared, nothing to do */
502         if (!rx_ring->rx_bi)
503                 return;
504
505         if (ring_is_ps_enabled(rx_ring)) {
506                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
507
508                 rx_bi = &rx_ring->rx_bi[0];
509                 if (rx_bi->hdr_buf) {
510                         dma_free_coherent(dev,
511                                           bufsz,
512                                           rx_bi->hdr_buf,
513                                           rx_bi->dma);
514                         for (i = 0; i < rx_ring->count; i++) {
515                                 rx_bi = &rx_ring->rx_bi[i];
516                                 rx_bi->dma = 0;
517                                 rx_bi->hdr_buf = NULL;
518                         }
519                 }
520         }
521         /* Free all the Rx ring sk_buffs */
522         for (i = 0; i < rx_ring->count; i++) {
523                 rx_bi = &rx_ring->rx_bi[i];
524                 if (rx_bi->dma) {
525                         dma_unmap_single(dev,
526                                          rx_bi->dma,
527                                          rx_ring->rx_buf_len,
528                                          DMA_FROM_DEVICE);
529                         rx_bi->dma = 0;
530                 }
531                 if (rx_bi->skb) {
532                         dev_kfree_skb(rx_bi->skb);
533                         rx_bi->skb = NULL;
534                 }
535                 if (rx_bi->page) {
536                         if (rx_bi->page_dma) {
537                                 dma_unmap_page(dev,
538                                                rx_bi->page_dma,
539                                                PAGE_SIZE,
540                                                DMA_FROM_DEVICE);
541                                 rx_bi->page_dma = 0;
542                         }
543                         __free_page(rx_bi->page);
544                         rx_bi->page = NULL;
545                         rx_bi->page_offset = 0;
546                 }
547         }
548
549         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
550         memset(rx_ring->rx_bi, 0, bi_size);
551
552         /* Zero out the descriptor ring */
553         memset(rx_ring->desc, 0, rx_ring->size);
554
555         rx_ring->next_to_clean = 0;
556         rx_ring->next_to_use = 0;
557 }
558
559 /**
560  * i40evf_free_rx_resources - Free Rx resources
561  * @rx_ring: ring to clean the resources from
562  *
563  * Free all receive software resources
564  **/
565 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
566 {
567         i40evf_clean_rx_ring(rx_ring);
568         kfree(rx_ring->rx_bi);
569         rx_ring->rx_bi = NULL;
570
571         if (rx_ring->desc) {
572                 dma_free_coherent(rx_ring->dev, rx_ring->size,
573                                   rx_ring->desc, rx_ring->dma);
574                 rx_ring->desc = NULL;
575         }
576 }
577
578 /**
579  * i40evf_alloc_rx_headers - allocate rx header buffers
580  * @rx_ring: ring to alloc buffers
581  *
582  * Allocate rx header buffers for the entire ring. As these are static,
583  * this is only called when setting up a new ring.
584  **/
585 void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
586 {
587         struct device *dev = rx_ring->dev;
588         struct i40e_rx_buffer *rx_bi;
589         dma_addr_t dma;
590         void *buffer;
591         int buf_size;
592         int i;
593
594         if (rx_ring->rx_bi[0].hdr_buf)
595                 return;
596         /* Make sure the buffers don't cross cache line boundaries. */
597         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
598         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
599                                     &dma, GFP_KERNEL);
600         if (!buffer)
601                 return;
602         for (i = 0; i < rx_ring->count; i++) {
603                 rx_bi = &rx_ring->rx_bi[i];
604                 rx_bi->dma = dma + (i * buf_size);
605                 rx_bi->hdr_buf = buffer + (i * buf_size);
606         }
607 }
608
609 /**
610  * i40evf_setup_rx_descriptors - Allocate Rx descriptors
611  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
612  *
613  * Returns 0 on success, negative on failure
614  **/
615 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
616 {
617         struct device *dev = rx_ring->dev;
618         int bi_size;
619
620         /* warn if we are about to overwrite the pointer */
621         WARN_ON(rx_ring->rx_bi);
622         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
623         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
624         if (!rx_ring->rx_bi)
625                 goto err;
626
627         u64_stats_init(&rx_ring->syncp);
628
629         /* Round up to nearest 4K */
630         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
631                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
632                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
633         rx_ring->size = ALIGN(rx_ring->size, 4096);
634         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
635                                            &rx_ring->dma, GFP_KERNEL);
636
637         if (!rx_ring->desc) {
638                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
639                          rx_ring->size);
640                 goto err;
641         }
642
643         rx_ring->next_to_clean = 0;
644         rx_ring->next_to_use = 0;
645
646         return 0;
647 err:
648         kfree(rx_ring->rx_bi);
649         rx_ring->rx_bi = NULL;
650         return -ENOMEM;
651 }
652
653 /**
654  * i40e_release_rx_desc - Store the new tail and head values
655  * @rx_ring: ring to bump
656  * @val: new head index
657  **/
658 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
659 {
660         rx_ring->next_to_use = val;
661         /* Force memory writes to complete before letting h/w
662          * know there are new descriptors to fetch.  (Only
663          * applicable for weak-ordered memory model archs,
664          * such as IA-64).
665          */
666         wmb();
667         writel(val, rx_ring->tail);
668 }
669
670 /**
671  * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
672  * @rx_ring: ring to place buffers on
673  * @cleaned_count: number of buffers to replace
674  *
675  * Returns true if any errors on allocation
676  **/
677 bool i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
678 {
679         u16 i = rx_ring->next_to_use;
680         union i40e_rx_desc *rx_desc;
681         struct i40e_rx_buffer *bi;
682         const int current_node = numa_node_id();
683
684         /* do nothing if no valid netdev defined */
685         if (!rx_ring->netdev || !cleaned_count)
686                 return false;
687
688         while (cleaned_count--) {
689                 rx_desc = I40E_RX_DESC(rx_ring, i);
690                 bi = &rx_ring->rx_bi[i];
691
692                 if (bi->skb) /* desc is in use */
693                         goto no_buffers;
694
695         /* If we've been moved to a different NUMA node, release the
696          * page so we can get a new one on the current node.
697          */
698                 if (bi->page &&  page_to_nid(bi->page) != current_node) {
699                         dma_unmap_page(rx_ring->dev,
700                                        bi->page_dma,
701                                        PAGE_SIZE,
702                                        DMA_FROM_DEVICE);
703                         __free_page(bi->page);
704                         bi->page = NULL;
705                         bi->page_dma = 0;
706                         rx_ring->rx_stats.realloc_count++;
707                 } else if (bi->page) {
708                         rx_ring->rx_stats.page_reuse_count++;
709                 }
710
711                 if (!bi->page) {
712                         bi->page = alloc_page(GFP_ATOMIC);
713                         if (!bi->page) {
714                                 rx_ring->rx_stats.alloc_page_failed++;
715                                 goto no_buffers;
716                         }
717                         bi->page_dma = dma_map_page(rx_ring->dev,
718                                                     bi->page,
719                                                     0,
720                                                     PAGE_SIZE,
721                                                     DMA_FROM_DEVICE);
722                         if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
723                                 rx_ring->rx_stats.alloc_page_failed++;
724                                 __free_page(bi->page);
725                                 bi->page = NULL;
726                                 bi->page_dma = 0;
727                                 bi->page_offset = 0;
728                                 goto no_buffers;
729                         }
730                         bi->page_offset = 0;
731                 }
732
733                 /* Refresh the desc even if buffer_addrs didn't change
734                  * because each write-back erases this info.
735                  */
736                 rx_desc->read.pkt_addr =
737                                 cpu_to_le64(bi->page_dma + bi->page_offset);
738                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
739                 i++;
740                 if (i == rx_ring->count)
741                         i = 0;
742         }
743
744         if (rx_ring->next_to_use != i)
745                 i40e_release_rx_desc(rx_ring, i);
746
747         return false;
748
749 no_buffers:
750         if (rx_ring->next_to_use != i)
751                 i40e_release_rx_desc(rx_ring, i);
752
753         /* make sure to come back via polling to try again after
754          * allocation failure
755          */
756         return true;
757 }
758
759 /**
760  * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
761  * @rx_ring: ring to place buffers on
762  * @cleaned_count: number of buffers to replace
763  *
764  * Returns true if any errors on allocation
765  **/
766 bool i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
767 {
768         u16 i = rx_ring->next_to_use;
769         union i40e_rx_desc *rx_desc;
770         struct i40e_rx_buffer *bi;
771         struct sk_buff *skb;
772
773         /* do nothing if no valid netdev defined */
774         if (!rx_ring->netdev || !cleaned_count)
775                 return false;
776
777         while (cleaned_count--) {
778                 rx_desc = I40E_RX_DESC(rx_ring, i);
779                 bi = &rx_ring->rx_bi[i];
780                 skb = bi->skb;
781
782                 if (!skb) {
783                         skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
784                                                           rx_ring->rx_buf_len,
785                                                           GFP_ATOMIC |
786                                                           __GFP_NOWARN);
787                         if (!skb) {
788                                 rx_ring->rx_stats.alloc_buff_failed++;
789                                 goto no_buffers;
790                         }
791                         /* initialize queue mapping */
792                         skb_record_rx_queue(skb, rx_ring->queue_index);
793                         bi->skb = skb;
794                 }
795
796                 if (!bi->dma) {
797                         bi->dma = dma_map_single(rx_ring->dev,
798                                                  skb->data,
799                                                  rx_ring->rx_buf_len,
800                                                  DMA_FROM_DEVICE);
801                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
802                                 rx_ring->rx_stats.alloc_buff_failed++;
803                                 bi->dma = 0;
804                                 dev_kfree_skb(bi->skb);
805                                 bi->skb = NULL;
806                                 goto no_buffers;
807                         }
808                 }
809
810                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
811                 rx_desc->read.hdr_addr = 0;
812                 i++;
813                 if (i == rx_ring->count)
814                         i = 0;
815         }
816
817         if (rx_ring->next_to_use != i)
818                 i40e_release_rx_desc(rx_ring, i);
819
820         return false;
821
822 no_buffers:
823         if (rx_ring->next_to_use != i)
824                 i40e_release_rx_desc(rx_ring, i);
825
826         /* make sure to come back via polling to try again after
827          * allocation failure
828          */
829         return true;
830 }
831
832 /**
833  * i40e_receive_skb - Send a completed packet up the stack
834  * @rx_ring:  rx ring in play
835  * @skb: packet to send up
836  * @vlan_tag: vlan tag for packet
837  **/
838 static void i40e_receive_skb(struct i40e_ring *rx_ring,
839                              struct sk_buff *skb, u16 vlan_tag)
840 {
841         struct i40e_q_vector *q_vector = rx_ring->q_vector;
842
843         if (vlan_tag & VLAN_VID_MASK)
844                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
845
846         napi_gro_receive(&q_vector->napi, skb);
847 }
848
849 /**
850  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
851  * @vsi: the VSI we care about
852  * @skb: skb currently being received and modified
853  * @rx_status: status value of last descriptor in packet
854  * @rx_error: error value of last descriptor in packet
855  * @rx_ptype: ptype value of last descriptor in packet
856  **/
857 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
858                                     struct sk_buff *skb,
859                                     u32 rx_status,
860                                     u32 rx_error,
861                                     u16 rx_ptype)
862 {
863         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
864         bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel;
865
866         skb->ip_summed = CHECKSUM_NONE;
867
868         /* Rx csum enabled and ip headers found? */
869         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
870                 return;
871
872         /* did the hardware decode the packet and checksum? */
873         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
874                 return;
875
876         /* both known and outer_ip must be set for the below code to work */
877         if (!(decoded.known && decoded.outer_ip))
878                 return;
879
880         ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
881                (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
882         ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
883                (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
884
885         if (ipv4 &&
886             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
887                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
888                 goto checksum_fail;
889
890         /* likely incorrect csum if alternate IP extension headers found */
891         if (ipv6 &&
892             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
893                 /* don't increment checksum err here, non-fatal err */
894                 return;
895
896         /* there was some L4 error, count error and punt packet to the stack */
897         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
898                 goto checksum_fail;
899
900         /* handle packets that were not able to be checksummed due
901          * to arrival speed, in this case the stack can compute
902          * the csum.
903          */
904         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
905                 return;
906
907         /* The hardware supported by this driver does not validate outer
908          * checksums for tunneled VXLAN or GENEVE frames.  I don't agree
909          * with it but the specification states that you "MAY validate", it
910          * doesn't make it a hard requirement so if we have validated the
911          * inner checksum report CHECKSUM_UNNECESSARY.
912          */
913
914         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
915                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
916         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
917                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
918
919         skb->ip_summed = CHECKSUM_UNNECESSARY;
920         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
921
922         return;
923
924 checksum_fail:
925         vsi->back->hw_csum_rx_error++;
926 }
927
928 /**
929  * i40e_ptype_to_htype - get a hash type
930  * @ptype: the ptype value from the descriptor
931  *
932  * Returns a hash type to be used by skb_set_hash
933  **/
934 static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
935 {
936         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
937
938         if (!decoded.known)
939                 return PKT_HASH_TYPE_NONE;
940
941         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
942             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
943                 return PKT_HASH_TYPE_L4;
944         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
945                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
946                 return PKT_HASH_TYPE_L3;
947         else
948                 return PKT_HASH_TYPE_L2;
949 }
950
951 /**
952  * i40e_rx_hash - set the hash value in the skb
953  * @ring: descriptor ring
954  * @rx_desc: specific descriptor
955  **/
956 static inline void i40e_rx_hash(struct i40e_ring *ring,
957                                 union i40e_rx_desc *rx_desc,
958                                 struct sk_buff *skb,
959                                 u8 rx_ptype)
960 {
961         u32 hash;
962         const __le64 rss_mask  =
963                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
964                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
965
966         if (ring->netdev->features & NETIF_F_RXHASH)
967                 return;
968
969         if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
970                 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
971                 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
972         }
973 }
974
975 /**
976  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
977  * @rx_ring:  rx ring to clean
978  * @budget:   how many cleans we're allowed
979  *
980  * Returns true if there's any budget left (e.g. the clean is finished)
981  **/
982 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
983 {
984         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
985         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
986         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
987         struct i40e_vsi *vsi = rx_ring->vsi;
988         u16 i = rx_ring->next_to_clean;
989         union i40e_rx_desc *rx_desc;
990         u32 rx_error, rx_status;
991         bool failure = false;
992         u8 rx_ptype;
993         u64 qword;
994         u32 copysize;
995
996         do {
997                 struct i40e_rx_buffer *rx_bi;
998                 struct sk_buff *skb;
999                 u16 vlan_tag;
1000                 /* return some buffers to hardware, one at a time is too slow */
1001                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1002                         failure = failure ||
1003                                   i40evf_alloc_rx_buffers_ps(rx_ring,
1004                                                              cleaned_count);
1005                         cleaned_count = 0;
1006                 }
1007
1008                 i = rx_ring->next_to_clean;
1009                 rx_desc = I40E_RX_DESC(rx_ring, i);
1010                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1011                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1012                         I40E_RXD_QW1_STATUS_SHIFT;
1013
1014                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1015                         break;
1016
1017                 /* This memory barrier is needed to keep us from reading
1018                  * any other fields out of the rx_desc until we know the
1019                  * DD bit is set.
1020                  */
1021                 dma_rmb();
1022                 /* sync header buffer for reading */
1023                 dma_sync_single_range_for_cpu(rx_ring->dev,
1024                                               rx_ring->rx_bi[0].dma,
1025                                               i * rx_ring->rx_hdr_len,
1026                                               rx_ring->rx_hdr_len,
1027                                               DMA_FROM_DEVICE);
1028                 rx_bi = &rx_ring->rx_bi[i];
1029                 skb = rx_bi->skb;
1030                 if (likely(!skb)) {
1031                         skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1032                                                           rx_ring->rx_hdr_len,
1033                                                           GFP_ATOMIC |
1034                                                           __GFP_NOWARN);
1035                         if (!skb) {
1036                                 rx_ring->rx_stats.alloc_buff_failed++;
1037                                 failure = true;
1038                                 break;
1039                         }
1040
1041                         /* initialize queue mapping */
1042                         skb_record_rx_queue(skb, rx_ring->queue_index);
1043                         /* we are reusing so sync this buffer for CPU use */
1044                         dma_sync_single_range_for_cpu(rx_ring->dev,
1045                                                       rx_ring->rx_bi[0].dma,
1046                                                       i * rx_ring->rx_hdr_len,
1047                                                       rx_ring->rx_hdr_len,
1048                                                       DMA_FROM_DEVICE);
1049                 }
1050                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1051                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1052                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1053                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1054                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1055                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1056
1057                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1058                            I40E_RXD_QW1_ERROR_SHIFT;
1059                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1060                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1061
1062                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1063                            I40E_RXD_QW1_PTYPE_SHIFT;
1064                 /* sync half-page for reading */
1065                 dma_sync_single_range_for_cpu(rx_ring->dev,
1066                                               rx_bi->page_dma,
1067                                               rx_bi->page_offset,
1068                                               PAGE_SIZE / 2,
1069                                               DMA_FROM_DEVICE);
1070                 prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
1071                 rx_bi->skb = NULL;
1072                 cleaned_count++;
1073                 copysize = 0;
1074                 if (rx_hbo || rx_sph) {
1075                         int len;
1076
1077                         if (rx_hbo)
1078                                 len = I40E_RX_HDR_SIZE;
1079                         else
1080                                 len = rx_header_len;
1081                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1082                 } else if (skb->len == 0) {
1083                         int len;
1084                         unsigned char *va = page_address(rx_bi->page) +
1085                                             rx_bi->page_offset;
1086
1087                         len = min(rx_packet_len, rx_ring->rx_hdr_len);
1088                         memcpy(__skb_put(skb, len), va, len);
1089                         copysize = len;
1090                         rx_packet_len -= len;
1091                 }
1092                 /* Get the rest of the data if this was a header split */
1093                 if (rx_packet_len) {
1094                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1095                                         rx_bi->page,
1096                                         rx_bi->page_offset + copysize,
1097                                         rx_packet_len, I40E_RXBUFFER_2048);
1098
1099                         /* If the page count is more than 2, then both halves
1100                          * of the page are used and we need to free it. Do it
1101                          * here instead of in the alloc code. Otherwise one
1102                          * of the half-pages might be released between now and
1103                          * then, and we wouldn't know which one to use.
1104                          * Don't call get_page and free_page since those are
1105                          * both expensive atomic operations that just change
1106                          * the refcount in opposite directions. Just give the
1107                          * page to the stack; he can have our refcount.
1108                          */
1109                         if (page_count(rx_bi->page) > 2) {
1110                                 dma_unmap_page(rx_ring->dev,
1111                                                rx_bi->page_dma,
1112                                                PAGE_SIZE,
1113                                                DMA_FROM_DEVICE);
1114                                 rx_bi->page = NULL;
1115                                 rx_bi->page_dma = 0;
1116                                 rx_ring->rx_stats.realloc_count++;
1117                         } else {
1118                                 get_page(rx_bi->page);
1119                                 /* switch to the other half-page here; the
1120                                  * allocation code programs the right addr
1121                                  * into HW. If we haven't used this half-page,
1122                                  * the address won't be changed, and HW can
1123                                  * just use it next time through.
1124                                  */
1125                                 rx_bi->page_offset ^= PAGE_SIZE / 2;
1126                         }
1127
1128                 }
1129                 I40E_RX_INCREMENT(rx_ring, i);
1130
1131                 if (unlikely(
1132                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1133                         struct i40e_rx_buffer *next_buffer;
1134
1135                         next_buffer = &rx_ring->rx_bi[i];
1136                         next_buffer->skb = skb;
1137                         rx_ring->rx_stats.non_eop_descs++;
1138                         continue;
1139                 }
1140
1141                 /* ERR_MASK will only have valid bits if EOP set */
1142                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1143                         dev_kfree_skb_any(skb);
1144                         continue;
1145                 }
1146
1147                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1148
1149                 /* probably a little skewed due to removing CRC */
1150                 total_rx_bytes += skb->len;
1151                 total_rx_packets++;
1152
1153                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1154
1155                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1156
1157                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1158                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1159                          : 0;
1160 #ifdef I40E_FCOE
1161                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1162                         dev_kfree_skb_any(skb);
1163                         continue;
1164                 }
1165 #endif
1166                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1167
1168                 rx_desc->wb.qword1.status_error_len = 0;
1169
1170         } while (likely(total_rx_packets < budget));
1171
1172         u64_stats_update_begin(&rx_ring->syncp);
1173         rx_ring->stats.packets += total_rx_packets;
1174         rx_ring->stats.bytes += total_rx_bytes;
1175         u64_stats_update_end(&rx_ring->syncp);
1176         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1177         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1178
1179         return failure ? budget : total_rx_packets;
1180 }
1181
1182 /**
1183  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1184  * @rx_ring:  rx ring to clean
1185  * @budget:   how many cleans we're allowed
1186  *
1187  * Returns number of packets cleaned
1188  **/
1189 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1190 {
1191         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1192         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1193         struct i40e_vsi *vsi = rx_ring->vsi;
1194         union i40e_rx_desc *rx_desc;
1195         u32 rx_error, rx_status;
1196         u16 rx_packet_len;
1197         bool failure = false;
1198         u8 rx_ptype;
1199         u64 qword;
1200         u16 i;
1201
1202         do {
1203                 struct i40e_rx_buffer *rx_bi;
1204                 struct sk_buff *skb;
1205                 u16 vlan_tag;
1206                 /* return some buffers to hardware, one at a time is too slow */
1207                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1208                         failure = failure ||
1209                                   i40evf_alloc_rx_buffers_1buf(rx_ring,
1210                                                                cleaned_count);
1211                         cleaned_count = 0;
1212                 }
1213
1214                 i = rx_ring->next_to_clean;
1215                 rx_desc = I40E_RX_DESC(rx_ring, i);
1216                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1217                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1218                         I40E_RXD_QW1_STATUS_SHIFT;
1219
1220                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1221                         break;
1222
1223                 /* This memory barrier is needed to keep us from reading
1224                  * any other fields out of the rx_desc until we know the
1225                  * DD bit is set.
1226                  */
1227                 dma_rmb();
1228
1229                 rx_bi = &rx_ring->rx_bi[i];
1230                 skb = rx_bi->skb;
1231                 prefetch(skb->data);
1232
1233                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1234                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1235
1236                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1237                            I40E_RXD_QW1_ERROR_SHIFT;
1238                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1239
1240                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1241                            I40E_RXD_QW1_PTYPE_SHIFT;
1242                 rx_bi->skb = NULL;
1243                 cleaned_count++;
1244
1245                 /* Get the header and possibly the whole packet
1246                  * If this is an skb from previous receive dma will be 0
1247                  */
1248                 skb_put(skb, rx_packet_len);
1249                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1250                                  DMA_FROM_DEVICE);
1251                 rx_bi->dma = 0;
1252
1253                 I40E_RX_INCREMENT(rx_ring, i);
1254
1255                 if (unlikely(
1256                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1257                         rx_ring->rx_stats.non_eop_descs++;
1258                         continue;
1259                 }
1260
1261                 /* ERR_MASK will only have valid bits if EOP set */
1262                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1263                         dev_kfree_skb_any(skb);
1264                         continue;
1265                 }
1266
1267                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1268                 /* probably a little skewed due to removing CRC */
1269                 total_rx_bytes += skb->len;
1270                 total_rx_packets++;
1271
1272                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1273
1274                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1275
1276                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1277                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1278                          : 0;
1279                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1280
1281                 rx_desc->wb.qword1.status_error_len = 0;
1282         } while (likely(total_rx_packets < budget));
1283
1284         u64_stats_update_begin(&rx_ring->syncp);
1285         rx_ring->stats.packets += total_rx_packets;
1286         rx_ring->stats.bytes += total_rx_bytes;
1287         u64_stats_update_end(&rx_ring->syncp);
1288         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1289         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1290
1291         return failure ? budget : total_rx_packets;
1292 }
1293
1294 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1295 {
1296         u32 val;
1297
1298         val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1299               /* Don't clear PBA because that can cause lost interrupts that
1300                * came in while we were cleaning/polling
1301                */
1302               (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1303               (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1304
1305         return val;
1306 }
1307
1308 /* a small macro to shorten up some long lines */
1309 #define INTREG I40E_VFINT_DYN_CTLN1
1310
1311 /**
1312  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1313  * @vsi: the VSI we care about
1314  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1315  *
1316  **/
1317 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1318                                           struct i40e_q_vector *q_vector)
1319 {
1320         struct i40e_hw *hw = &vsi->back->hw;
1321         bool rx = false, tx = false;
1322         u32 rxval, txval;
1323         int vector;
1324
1325         vector = (q_vector->v_idx + vsi->base_vector);
1326
1327         /* avoid dynamic calculation if in countdown mode OR if
1328          * all dynamic is disabled
1329          */
1330         rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1331
1332         if (q_vector->itr_countdown > 0 ||
1333             (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1334              !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1335                 goto enable_int;
1336         }
1337
1338         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1339                 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1340                 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1341         }
1342
1343         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1344                 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1345                 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1346         }
1347
1348         if (rx || tx) {
1349                 /* get the higher of the two ITR adjustments and
1350                  * use the same value for both ITR registers
1351                  * when in adaptive mode (Rx and/or Tx)
1352                  */
1353                 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1354
1355                 q_vector->tx.itr = q_vector->rx.itr = itr;
1356                 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1357                 tx = true;
1358                 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1359                 rx = true;
1360         }
1361
1362         /* only need to enable the interrupt once, but need
1363          * to possibly update both ITR values
1364          */
1365         if (rx) {
1366                 /* set the INTENA_MSK_MASK so that this first write
1367                  * won't actually enable the interrupt, instead just
1368                  * updating the ITR (it's bit 31 PF and VF)
1369                  */
1370                 rxval |= BIT(31);
1371                 /* don't check _DOWN because interrupt isn't being enabled */
1372                 wr32(hw, INTREG(vector - 1), rxval);
1373         }
1374
1375 enable_int:
1376         if (!test_bit(__I40E_DOWN, &vsi->state))
1377                 wr32(hw, INTREG(vector - 1), txval);
1378
1379         if (q_vector->itr_countdown)
1380                 q_vector->itr_countdown--;
1381         else
1382                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1383 }
1384
1385 /**
1386  * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1387  * @napi: napi struct with our devices info in it
1388  * @budget: amount of work driver is allowed to do this pass, in packets
1389  *
1390  * This function will clean all queues associated with a q_vector.
1391  *
1392  * Returns the amount of work done
1393  **/
1394 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1395 {
1396         struct i40e_q_vector *q_vector =
1397                                container_of(napi, struct i40e_q_vector, napi);
1398         struct i40e_vsi *vsi = q_vector->vsi;
1399         struct i40e_ring *ring;
1400         bool clean_complete = true;
1401         bool arm_wb = false;
1402         int budget_per_ring;
1403         int work_done = 0;
1404
1405         if (test_bit(__I40E_DOWN, &vsi->state)) {
1406                 napi_complete(napi);
1407                 return 0;
1408         }
1409
1410         /* Since the actual Tx work is minimal, we can give the Tx a larger
1411          * budget and be more aggressive about cleaning up the Tx descriptors.
1412          */
1413         i40e_for_each_ring(ring, q_vector->tx) {
1414                 clean_complete = clean_complete &&
1415                                  i40e_clean_tx_irq(ring, vsi->work_limit);
1416                 arm_wb = arm_wb || ring->arm_wb;
1417                 ring->arm_wb = false;
1418         }
1419
1420         /* Handle case where we are called by netpoll with a budget of 0 */
1421         if (budget <= 0)
1422                 goto tx_only;
1423
1424         /* We attempt to distribute budget to each Rx queue fairly, but don't
1425          * allow the budget to go below 1 because that would exit polling early.
1426          */
1427         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1428
1429         i40e_for_each_ring(ring, q_vector->rx) {
1430                 int cleaned;
1431
1432                 if (ring_is_ps_enabled(ring))
1433                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1434                 else
1435                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1436
1437                 work_done += cleaned;
1438                 /* if we didn't clean as many as budgeted, we must be done */
1439                 clean_complete = clean_complete && (budget_per_ring > cleaned);
1440         }
1441
1442         /* If work not completed, return budget and polling will return */
1443         if (!clean_complete) {
1444 tx_only:
1445                 if (arm_wb) {
1446                         q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1447                         i40e_enable_wb_on_itr(vsi, q_vector);
1448                 }
1449                 return budget;
1450         }
1451
1452         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1453                 q_vector->arm_wb_state = false;
1454
1455         /* Work is done so exit the polling mode and re-enable the interrupt */
1456         napi_complete_done(napi, work_done);
1457         i40e_update_enable_itr(vsi, q_vector);
1458         return 0;
1459 }
1460
1461 /**
1462  * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1463  * @skb:     send buffer
1464  * @tx_ring: ring to send buffer on
1465  * @flags:   the tx flags to be set
1466  *
1467  * Checks the skb and set up correspondingly several generic transmit flags
1468  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1469  *
1470  * Returns error code indicate the frame should be dropped upon error and the
1471  * otherwise  returns 0 to indicate the flags has been set properly.
1472  **/
1473 static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1474                                                struct i40e_ring *tx_ring,
1475                                                u32 *flags)
1476 {
1477         __be16 protocol = skb->protocol;
1478         u32  tx_flags = 0;
1479
1480         if (protocol == htons(ETH_P_8021Q) &&
1481             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1482                 /* When HW VLAN acceleration is turned off by the user the
1483                  * stack sets the protocol to 8021q so that the driver
1484                  * can take any steps required to support the SW only
1485                  * VLAN handling.  In our case the driver doesn't need
1486                  * to take any further steps so just set the protocol
1487                  * to the encapsulated ethertype.
1488                  */
1489                 skb->protocol = vlan_get_protocol(skb);
1490                 goto out;
1491         }
1492
1493         /* if we have a HW VLAN tag being added, default to the HW one */
1494         if (skb_vlan_tag_present(skb)) {
1495                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1496                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1497         /* else if it is a SW VLAN, check the next protocol and store the tag */
1498         } else if (protocol == htons(ETH_P_8021Q)) {
1499                 struct vlan_hdr *vhdr, _vhdr;
1500
1501                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1502                 if (!vhdr)
1503                         return -EINVAL;
1504
1505                 protocol = vhdr->h_vlan_encapsulated_proto;
1506                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1507                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1508         }
1509
1510 out:
1511         *flags = tx_flags;
1512         return 0;
1513 }
1514
1515 /**
1516  * i40e_tso - set up the tso context descriptor
1517  * @tx_ring:  ptr to the ring to send
1518  * @skb:      ptr to the skb we're sending
1519  * @hdr_len:  ptr to the size of the packet header
1520  * @cd_type_cmd_tso_mss: Quad Word 1
1521  *
1522  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1523  **/
1524 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1525                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
1526 {
1527         u64 cd_cmd, cd_tso_len, cd_mss;
1528         union {
1529                 struct iphdr *v4;
1530                 struct ipv6hdr *v6;
1531                 unsigned char *hdr;
1532         } ip;
1533         union {
1534                 struct tcphdr *tcp;
1535                 struct udphdr *udp;
1536                 unsigned char *hdr;
1537         } l4;
1538         u32 paylen, l4_offset;
1539         int err;
1540
1541         if (skb->ip_summed != CHECKSUM_PARTIAL)
1542                 return 0;
1543
1544         if (!skb_is_gso(skb))
1545                 return 0;
1546
1547         err = skb_cow_head(skb, 0);
1548         if (err < 0)
1549                 return err;
1550
1551         ip.hdr = skb_network_header(skb);
1552         l4.hdr = skb_transport_header(skb);
1553
1554         /* initialize outer IP header fields */
1555         if (ip.v4->version == 4) {
1556                 ip.v4->tot_len = 0;
1557                 ip.v4->check = 0;
1558         } else {
1559                 ip.v6->payload_len = 0;
1560         }
1561
1562         if (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_GRE |
1563                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
1564                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) {
1565                         /* determine offset of outer transport header */
1566                         l4_offset = l4.hdr - skb->data;
1567
1568                         /* remove payload length from outer checksum */
1569                         paylen = (__force u16)l4.udp->check;
1570                         paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
1571                         l4.udp->check = ~csum_fold((__force __wsum)paylen);
1572                 }
1573
1574                 /* reset pointers to inner headers */
1575                 ip.hdr = skb_inner_network_header(skb);
1576                 l4.hdr = skb_inner_transport_header(skb);
1577
1578                 /* initialize inner IP header fields */
1579                 if (ip.v4->version == 4) {
1580                         ip.v4->tot_len = 0;
1581                         ip.v4->check = 0;
1582                 } else {
1583                         ip.v6->payload_len = 0;
1584                 }
1585         }
1586
1587         /* determine offset of inner transport header */
1588         l4_offset = l4.hdr - skb->data;
1589
1590         /* remove payload length from inner checksum */
1591         paylen = (__force u16)l4.tcp->check;
1592         paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
1593         l4.tcp->check = ~csum_fold((__force __wsum)paylen);
1594
1595         /* compute length of segmentation header */
1596         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1597
1598         /* find the field values */
1599         cd_cmd = I40E_TX_CTX_DESC_TSO;
1600         cd_tso_len = skb->len - *hdr_len;
1601         cd_mss = skb_shinfo(skb)->gso_size;
1602         *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1603                                 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1604                                 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1605         return 1;
1606 }
1607
1608 /**
1609  * i40e_tx_enable_csum - Enable Tx checksum offloads
1610  * @skb: send buffer
1611  * @tx_flags: pointer to Tx flags currently set
1612  * @td_cmd: Tx descriptor command bits to set
1613  * @td_offset: Tx descriptor header offsets to set
1614  * @tx_ring: Tx descriptor ring
1615  * @cd_tunneling: ptr to context desc bits
1616  **/
1617 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1618                                u32 *td_cmd, u32 *td_offset,
1619                                struct i40e_ring *tx_ring,
1620                                u32 *cd_tunneling)
1621 {
1622         union {
1623                 struct iphdr *v4;
1624                 struct ipv6hdr *v6;
1625                 unsigned char *hdr;
1626         } ip;
1627         union {
1628                 struct tcphdr *tcp;
1629                 struct udphdr *udp;
1630                 unsigned char *hdr;
1631         } l4;
1632         unsigned char *exthdr;
1633         u32 offset, cmd = 0, tunnel = 0;
1634         __be16 frag_off;
1635         u8 l4_proto = 0;
1636
1637         if (skb->ip_summed != CHECKSUM_PARTIAL)
1638                 return 0;
1639
1640         ip.hdr = skb_network_header(skb);
1641         l4.hdr = skb_transport_header(skb);
1642
1643         /* compute outer L2 header size */
1644         offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1645
1646         if (skb->encapsulation) {
1647                 /* define outer network header type */
1648                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1649                         tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1650                                   I40E_TX_CTX_EXT_IP_IPV4 :
1651                                   I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1652
1653                         l4_proto = ip.v4->protocol;
1654                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1655                         tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1656
1657                         exthdr = ip.hdr + sizeof(*ip.v6);
1658                         l4_proto = ip.v6->nexthdr;
1659                         if (l4.hdr != exthdr)
1660                                 ipv6_skip_exthdr(skb, exthdr - skb->data,
1661                                                  &l4_proto, &frag_off);
1662                 }
1663
1664                 /* compute outer L3 header size */
1665                 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1666                           I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1667
1668                 /* switch IP header pointer from outer to inner header */
1669                 ip.hdr = skb_inner_network_header(skb);
1670
1671                 /* define outer transport */
1672                 switch (l4_proto) {
1673                 case IPPROTO_UDP:
1674                         tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1675                         *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1676                         break;
1677                 case IPPROTO_GRE:
1678                         tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1679                         *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1680                         break;
1681                 default:
1682                         if (*tx_flags & I40E_TX_FLAGS_TSO)
1683                                 return -1;
1684
1685                         skb_checksum_help(skb);
1686                         return 0;
1687                 }
1688
1689                 /* compute tunnel header size */
1690                 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1691                           I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1692
1693                 /* indicate if we need to offload outer UDP header */
1694                 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1695                     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1696                         tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1697
1698                 /* record tunnel offload values */
1699                 *cd_tunneling |= tunnel;
1700
1701                 /* switch L4 header pointer from outer to inner */
1702                 l4.hdr = skb_inner_transport_header(skb);
1703                 l4_proto = 0;
1704
1705                 /* reset type as we transition from outer to inner headers */
1706                 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1707                 if (ip.v4->version == 4)
1708                         *tx_flags |= I40E_TX_FLAGS_IPV4;
1709                 if (ip.v6->version == 6)
1710                         *tx_flags |= I40E_TX_FLAGS_IPV6;
1711         }
1712
1713         /* Enable IP checksum offloads */
1714         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1715                 l4_proto = ip.v4->protocol;
1716                 /* the stack computes the IP header already, the only time we
1717                  * need the hardware to recompute it is in the case of TSO.
1718                  */
1719                 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1720                        I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1721                        I40E_TX_DESC_CMD_IIPT_IPV4;
1722         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1723                 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1724
1725                 exthdr = ip.hdr + sizeof(*ip.v6);
1726                 l4_proto = ip.v6->nexthdr;
1727                 if (l4.hdr != exthdr)
1728                         ipv6_skip_exthdr(skb, exthdr - skb->data,
1729                                          &l4_proto, &frag_off);
1730         }
1731
1732         /* compute inner L3 header size */
1733         offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1734
1735         /* Enable L4 checksum offloads */
1736         switch (l4_proto) {
1737         case IPPROTO_TCP:
1738                 /* enable checksum offloads */
1739                 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1740                 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1741                 break;
1742         case IPPROTO_SCTP:
1743                 /* enable SCTP checksum offload */
1744                 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1745                 offset |= (sizeof(struct sctphdr) >> 2) <<
1746                           I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1747                 break;
1748         case IPPROTO_UDP:
1749                 /* enable UDP checksum offload */
1750                 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1751                 offset |= (sizeof(struct udphdr) >> 2) <<
1752                           I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1753                 break;
1754         default:
1755                 if (*tx_flags & I40E_TX_FLAGS_TSO)
1756                         return -1;
1757                 skb_checksum_help(skb);
1758                 return 0;
1759         }
1760
1761         *td_cmd |= cmd;
1762         *td_offset |= offset;
1763
1764         return 1;
1765 }
1766
1767 /**
1768  * i40e_create_tx_ctx Build the Tx context descriptor
1769  * @tx_ring:  ring to create the descriptor on
1770  * @cd_type_cmd_tso_mss: Quad Word 1
1771  * @cd_tunneling: Quad Word 0 - bits 0-31
1772  * @cd_l2tag2: Quad Word 0 - bits 32-63
1773  **/
1774 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1775                                const u64 cd_type_cmd_tso_mss,
1776                                const u32 cd_tunneling, const u32 cd_l2tag2)
1777 {
1778         struct i40e_tx_context_desc *context_desc;
1779         int i = tx_ring->next_to_use;
1780
1781         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1782             !cd_tunneling && !cd_l2tag2)
1783                 return;
1784
1785         /* grab the next descriptor */
1786         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1787
1788         i++;
1789         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1790
1791         /* cpu_to_le32 and assign to struct fields */
1792         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1793         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1794         context_desc->rsvd = cpu_to_le16(0);
1795         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1796 }
1797
1798 /**
1799  * __i40evf_chk_linearize - Check if there are more than 8 fragments per packet
1800  * @skb:      send buffer
1801  *
1802  * Note: Our HW can't scatter-gather more than 8 fragments to build
1803  * a packet on the wire and so we need to figure out the cases where we
1804  * need to linearize the skb.
1805  **/
1806 bool __i40evf_chk_linearize(struct sk_buff *skb)
1807 {
1808         const struct skb_frag_struct *frag, *stale;
1809         int gso_size, nr_frags, sum;
1810
1811         /* check to see if TSO is enabled, if so we may get a repreive */
1812         gso_size = skb_shinfo(skb)->gso_size;
1813         if (unlikely(!gso_size))
1814                 return true;
1815
1816         /* no need to check if number of frags is less than 8 */
1817         nr_frags = skb_shinfo(skb)->nr_frags;
1818         if (nr_frags < I40E_MAX_BUFFER_TXD)
1819                 return false;
1820
1821         /* We need to walk through the list and validate that each group
1822          * of 6 fragments totals at least gso_size.  However we don't need
1823          * to perform such validation on the first or last 6 since the first
1824          * 6 cannot inherit any data from a descriptor before them, and the
1825          * last 6 cannot inherit any data from a descriptor after them.
1826          */
1827         nr_frags -= I40E_MAX_BUFFER_TXD - 1;
1828         frag = &skb_shinfo(skb)->frags[0];
1829
1830         /* Initialize size to the negative value of gso_size minus 1.  We
1831          * use this as the worst case scenerio in which the frag ahead
1832          * of us only provides one byte which is why we are limited to 6
1833          * descriptors for a single transmit as the header and previous
1834          * fragment are already consuming 2 descriptors.
1835          */
1836         sum = 1 - gso_size;
1837
1838         /* Add size of frags 1 through 5 to create our initial sum */
1839         sum += skb_frag_size(++frag);
1840         sum += skb_frag_size(++frag);
1841         sum += skb_frag_size(++frag);
1842         sum += skb_frag_size(++frag);
1843         sum += skb_frag_size(++frag);
1844
1845         /* Walk through fragments adding latest fragment, testing it, and
1846          * then removing stale fragments from the sum.
1847          */
1848         stale = &skb_shinfo(skb)->frags[0];
1849         for (;;) {
1850                 sum += skb_frag_size(++frag);
1851
1852                 /* if sum is negative we failed to make sufficient progress */
1853                 if (sum < 0)
1854                         return true;
1855
1856                 /* use pre-decrement to avoid processing last fragment */
1857                 if (!--nr_frags)
1858                         break;
1859
1860                 sum -= skb_frag_size(++stale);
1861         }
1862
1863         return false;
1864 }
1865
1866 /**
1867  * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1868  * @tx_ring: the ring to be checked
1869  * @size:    the size buffer we want to assure is available
1870  *
1871  * Returns -EBUSY if a stop is needed, else 0
1872  **/
1873 int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1874 {
1875         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1876         /* Memory barrier before checking head and tail */
1877         smp_mb();
1878
1879         /* Check again in a case another CPU has just made room available. */
1880         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1881                 return -EBUSY;
1882
1883         /* A reprieve! - use start_queue because it doesn't call schedule */
1884         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1885         ++tx_ring->tx_stats.restart_queue;
1886         return 0;
1887 }
1888
1889 /**
1890  * i40evf_tx_map - Build the Tx descriptor
1891  * @tx_ring:  ring to send buffer on
1892  * @skb:      send buffer
1893  * @first:    first buffer info buffer to use
1894  * @tx_flags: collected send information
1895  * @hdr_len:  size of the packet header
1896  * @td_cmd:   the command field in the descriptor
1897  * @td_offset: offset for checksum or crc
1898  **/
1899 static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1900                                  struct i40e_tx_buffer *first, u32 tx_flags,
1901                                  const u8 hdr_len, u32 td_cmd, u32 td_offset)
1902 {
1903         unsigned int data_len = skb->data_len;
1904         unsigned int size = skb_headlen(skb);
1905         struct skb_frag_struct *frag;
1906         struct i40e_tx_buffer *tx_bi;
1907         struct i40e_tx_desc *tx_desc;
1908         u16 i = tx_ring->next_to_use;
1909         u32 td_tag = 0;
1910         dma_addr_t dma;
1911         u16 gso_segs;
1912         u16 desc_count = 0;
1913         bool tail_bump = true;
1914         bool do_rs = false;
1915
1916         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1917                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1918                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1919                          I40E_TX_FLAGS_VLAN_SHIFT;
1920         }
1921
1922         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1923                 gso_segs = skb_shinfo(skb)->gso_segs;
1924         else
1925                 gso_segs = 1;
1926
1927         /* multiply data chunks by size of headers */
1928         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1929         first->gso_segs = gso_segs;
1930         first->skb = skb;
1931         first->tx_flags = tx_flags;
1932
1933         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1934
1935         tx_desc = I40E_TX_DESC(tx_ring, i);
1936         tx_bi = first;
1937
1938         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1939                 if (dma_mapping_error(tx_ring->dev, dma))
1940                         goto dma_error;
1941
1942                 /* record length, and DMA address */
1943                 dma_unmap_len_set(tx_bi, len, size);
1944                 dma_unmap_addr_set(tx_bi, dma, dma);
1945
1946                 tx_desc->buffer_addr = cpu_to_le64(dma);
1947
1948                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1949                         tx_desc->cmd_type_offset_bsz =
1950                                 build_ctob(td_cmd, td_offset,
1951                                            I40E_MAX_DATA_PER_TXD, td_tag);
1952
1953                         tx_desc++;
1954                         i++;
1955                         desc_count++;
1956
1957                         if (i == tx_ring->count) {
1958                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
1959                                 i = 0;
1960                         }
1961
1962                         dma += I40E_MAX_DATA_PER_TXD;
1963                         size -= I40E_MAX_DATA_PER_TXD;
1964
1965                         tx_desc->buffer_addr = cpu_to_le64(dma);
1966                 }
1967
1968                 if (likely(!data_len))
1969                         break;
1970
1971                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1972                                                           size, td_tag);
1973
1974                 tx_desc++;
1975                 i++;
1976                 desc_count++;
1977
1978                 if (i == tx_ring->count) {
1979                         tx_desc = I40E_TX_DESC(tx_ring, 0);
1980                         i = 0;
1981                 }
1982
1983                 size = skb_frag_size(frag);
1984                 data_len -= size;
1985
1986                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1987                                        DMA_TO_DEVICE);
1988
1989                 tx_bi = &tx_ring->tx_bi[i];
1990         }
1991
1992         /* set next_to_watch value indicating a packet is present */
1993         first->next_to_watch = tx_desc;
1994
1995         i++;
1996         if (i == tx_ring->count)
1997                 i = 0;
1998
1999         tx_ring->next_to_use = i;
2000
2001         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2002                                                  tx_ring->queue_index),
2003                                                  first->bytecount);
2004         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2005
2006         /* Algorithm to optimize tail and RS bit setting:
2007          * if xmit_more is supported
2008          *      if xmit_more is true
2009          *              do not update tail and do not mark RS bit.
2010          *      if xmit_more is false and last xmit_more was false
2011          *              if every packet spanned less than 4 desc
2012          *                      then set RS bit on 4th packet and update tail
2013          *                      on every packet
2014          *              else
2015          *                      update tail and set RS bit on every packet.
2016          *      if xmit_more is false and last_xmit_more was true
2017          *              update tail and set RS bit.
2018          *
2019          * Optimization: wmb to be issued only in case of tail update.
2020          * Also optimize the Descriptor WB path for RS bit with the same
2021          * algorithm.
2022          *
2023          * Note: If there are less than 4 packets
2024          * pending and interrupts were disabled the service task will
2025          * trigger a force WB.
2026          */
2027         if (skb->xmit_more  &&
2028             !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2029                                                     tx_ring->queue_index))) {
2030                 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2031                 tail_bump = false;
2032         } else if (!skb->xmit_more &&
2033                    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2034                                                        tx_ring->queue_index)) &&
2035                    (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2036                    (tx_ring->packet_stride < WB_STRIDE) &&
2037                    (desc_count < WB_STRIDE)) {
2038                 tx_ring->packet_stride++;
2039         } else {
2040                 tx_ring->packet_stride = 0;
2041                 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2042                 do_rs = true;
2043         }
2044         if (do_rs)
2045                 tx_ring->packet_stride = 0;
2046
2047         tx_desc->cmd_type_offset_bsz =
2048                         build_ctob(td_cmd, td_offset, size, td_tag) |
2049                         cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2050                                                   I40E_TX_DESC_CMD_EOP) <<
2051                                                   I40E_TXD_QW1_CMD_SHIFT);
2052
2053         /* notify HW of packet */
2054         if (!tail_bump)
2055                 prefetchw(tx_desc + 1);
2056
2057         if (tail_bump) {
2058                 /* Force memory writes to complete before letting h/w
2059                  * know there are new descriptors to fetch.  (Only
2060                  * applicable for weak-ordered memory model archs,
2061                  * such as IA-64).
2062                  */
2063                 wmb();
2064                 writel(i, tx_ring->tail);
2065         }
2066
2067         return;
2068
2069 dma_error:
2070         dev_info(tx_ring->dev, "TX DMA map failed\n");
2071
2072         /* clear dma mappings for failed tx_bi map */
2073         for (;;) {
2074                 tx_bi = &tx_ring->tx_bi[i];
2075                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2076                 if (tx_bi == first)
2077                         break;
2078                 if (i == 0)
2079                         i = tx_ring->count;
2080                 i--;
2081         }
2082
2083         tx_ring->next_to_use = i;
2084 }
2085
2086 /**
2087  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2088  * @skb:     send buffer
2089  * @tx_ring: ring to send buffer on
2090  *
2091  * Returns NETDEV_TX_OK if sent, else an error code
2092  **/
2093 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2094                                         struct i40e_ring *tx_ring)
2095 {
2096         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2097         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2098         struct i40e_tx_buffer *first;
2099         u32 td_offset = 0;
2100         u32 tx_flags = 0;
2101         __be16 protocol;
2102         u32 td_cmd = 0;
2103         u8 hdr_len = 0;
2104         int tso, count;
2105
2106         /* prefetch the data, we'll need it later */
2107         prefetch(skb->data);
2108
2109         count = i40e_xmit_descriptor_count(skb);
2110         if (i40e_chk_linearize(skb, count)) {
2111                 if (__skb_linearize(skb))
2112                         goto out_drop;
2113                 count = TXD_USE_COUNT(skb->len);
2114                 tx_ring->tx_stats.tx_linearize++;
2115         }
2116
2117         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2118          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2119          *       + 4 desc gap to avoid the cache line where head is,
2120          *       + 1 desc for context descriptor,
2121          * otherwise try next time
2122          */
2123         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2124                 tx_ring->tx_stats.tx_busy++;
2125                 return NETDEV_TX_BUSY;
2126         }
2127
2128         /* prepare the xmit flags */
2129         if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2130                 goto out_drop;
2131
2132         /* obtain protocol of skb */
2133         protocol = vlan_get_protocol(skb);
2134
2135         /* record the location of the first descriptor for this packet */
2136         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2137
2138         /* setup IPv4/IPv6 offloads */
2139         if (protocol == htons(ETH_P_IP))
2140                 tx_flags |= I40E_TX_FLAGS_IPV4;
2141         else if (protocol == htons(ETH_P_IPV6))
2142                 tx_flags |= I40E_TX_FLAGS_IPV6;
2143
2144         tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2145
2146         if (tso < 0)
2147                 goto out_drop;
2148         else if (tso)
2149                 tx_flags |= I40E_TX_FLAGS_TSO;
2150
2151         /* Always offload the checksum, since it's in the data descriptor */
2152         tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2153                                   tx_ring, &cd_tunneling);
2154         if (tso < 0)
2155                 goto out_drop;
2156
2157         skb_tx_timestamp(skb);
2158
2159         /* always enable CRC insertion offload */
2160         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2161
2162         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2163                            cd_tunneling, cd_l2tag2);
2164
2165         i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2166                       td_cmd, td_offset);
2167
2168         return NETDEV_TX_OK;
2169
2170 out_drop:
2171         dev_kfree_skb_any(skb);
2172         return NETDEV_TX_OK;
2173 }
2174
2175 /**
2176  * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2177  * @skb:    send buffer
2178  * @netdev: network interface device structure
2179  *
2180  * Returns NETDEV_TX_OK if sent, else an error code
2181  **/
2182 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2183 {
2184         struct i40evf_adapter *adapter = netdev_priv(netdev);
2185         struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2186
2187         /* hardware can't handle really short frames, hardware padding works
2188          * beyond this point
2189          */
2190         if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2191                 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2192                         return NETDEV_TX_OK;
2193                 skb->len = I40E_MIN_TX_LEN;
2194                 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2195         }
2196
2197         return i40e_xmit_frame_ring(skb, tx_ring);
2198 }