31e5f39428393818257853b44b0b4915f4817eac
[cascardo/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 3
61 #define BUILD 0
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67                                 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69                                 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72         [board_82575] = &e1000_82575_info,
73 };
74
75 static const struct pci_device_id igb_pci_tbl[] = {
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111         /* required last entry */
112         {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140                                           struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static int igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159                           netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171                                int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174                                    bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176                                  struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 static int igb_disable_sriov(struct pci_dev *dev);
183 static int igb_pci_disable_sriov(struct pci_dev *dev);
184 #endif
185
186 #ifdef CONFIG_PM
187 #ifdef CONFIG_PM_SLEEP
188 static int igb_suspend(struct device *);
189 #endif
190 static int igb_resume(struct device *);
191 static int igb_runtime_suspend(struct device *dev);
192 static int igb_runtime_resume(struct device *dev);
193 static int igb_runtime_idle(struct device *dev);
194 static const struct dev_pm_ops igb_pm_ops = {
195         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197                         igb_runtime_idle)
198 };
199 #endif
200 static void igb_shutdown(struct pci_dev *);
201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202 #ifdef CONFIG_IGB_DCA
203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204 static struct notifier_block dca_notifier = {
205         .notifier_call  = igb_notify_dca,
206         .next           = NULL,
207         .priority       = 0
208 };
209 #endif
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void igb_netpoll(struct net_device *);
213 #endif
214 #ifdef CONFIG_PCI_IOV
215 static unsigned int max_vfs;
216 module_param(max_vfs, uint, 0);
217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 #endif /* CONFIG_PCI_IOV */
219
220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221                      pci_channel_state_t);
222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223 static void igb_io_resume(struct pci_dev *);
224
225 static const struct pci_error_handlers igb_err_handler = {
226         .error_detected = igb_io_error_detected,
227         .slot_reset = igb_io_slot_reset,
228         .resume = igb_io_resume,
229 };
230
231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232
233 static struct pci_driver igb_driver = {
234         .name     = igb_driver_name,
235         .id_table = igb_pci_tbl,
236         .probe    = igb_probe,
237         .remove   = igb_remove,
238 #ifdef CONFIG_PM
239         .driver.pm = &igb_pm_ops,
240 #endif
241         .shutdown = igb_shutdown,
242         .sriov_configure = igb_pci_sriov_configure,
243         .err_handler = &igb_err_handler
244 };
245
246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250
251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252 static int debug = -1;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 struct igb_reg_info {
257         u32 ofs;
258         char *name;
259 };
260
261 static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263         /* General Registers */
264         {E1000_CTRL, "CTRL"},
265         {E1000_STATUS, "STATUS"},
266         {E1000_CTRL_EXT, "CTRL_EXT"},
267
268         /* Interrupt Registers */
269         {E1000_ICR, "ICR"},
270
271         /* RX Registers */
272         {E1000_RCTL, "RCTL"},
273         {E1000_RDLEN(0), "RDLEN"},
274         {E1000_RDH(0), "RDH"},
275         {E1000_RDT(0), "RDT"},
276         {E1000_RXDCTL(0), "RXDCTL"},
277         {E1000_RDBAL(0), "RDBAL"},
278         {E1000_RDBAH(0), "RDBAH"},
279
280         /* TX Registers */
281         {E1000_TCTL, "TCTL"},
282         {E1000_TDBAL(0), "TDBAL"},
283         {E1000_TDBAH(0), "TDBAH"},
284         {E1000_TDLEN(0), "TDLEN"},
285         {E1000_TDH(0), "TDH"},
286         {E1000_TDT(0), "TDT"},
287         {E1000_TXDCTL(0), "TXDCTL"},
288         {E1000_TDFH, "TDFH"},
289         {E1000_TDFT, "TDFT"},
290         {E1000_TDFHS, "TDFHS"},
291         {E1000_TDFPC, "TDFPC"},
292
293         /* List Terminator */
294         {}
295 };
296
297 /* igb_regdump - register printout routine */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300         int n = 0;
301         char rname[16];
302         u32 regs[8];
303
304         switch (reginfo->ofs) {
305         case E1000_RDLEN(0):
306                 for (n = 0; n < 4; n++)
307                         regs[n] = rd32(E1000_RDLEN(n));
308                 break;
309         case E1000_RDH(0):
310                 for (n = 0; n < 4; n++)
311                         regs[n] = rd32(E1000_RDH(n));
312                 break;
313         case E1000_RDT(0):
314                 for (n = 0; n < 4; n++)
315                         regs[n] = rd32(E1000_RDT(n));
316                 break;
317         case E1000_RXDCTL(0):
318                 for (n = 0; n < 4; n++)
319                         regs[n] = rd32(E1000_RXDCTL(n));
320                 break;
321         case E1000_RDBAL(0):
322                 for (n = 0; n < 4; n++)
323                         regs[n] = rd32(E1000_RDBAL(n));
324                 break;
325         case E1000_RDBAH(0):
326                 for (n = 0; n < 4; n++)
327                         regs[n] = rd32(E1000_RDBAH(n));
328                 break;
329         case E1000_TDBAL(0):
330                 for (n = 0; n < 4; n++)
331                         regs[n] = rd32(E1000_RDBAL(n));
332                 break;
333         case E1000_TDBAH(0):
334                 for (n = 0; n < 4; n++)
335                         regs[n] = rd32(E1000_TDBAH(n));
336                 break;
337         case E1000_TDLEN(0):
338                 for (n = 0; n < 4; n++)
339                         regs[n] = rd32(E1000_TDLEN(n));
340                 break;
341         case E1000_TDH(0):
342                 for (n = 0; n < 4; n++)
343                         regs[n] = rd32(E1000_TDH(n));
344                 break;
345         case E1000_TDT(0):
346                 for (n = 0; n < 4; n++)
347                         regs[n] = rd32(E1000_TDT(n));
348                 break;
349         case E1000_TXDCTL(0):
350                 for (n = 0; n < 4; n++)
351                         regs[n] = rd32(E1000_TXDCTL(n));
352                 break;
353         default:
354                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355                 return;
356         }
357
358         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360                 regs[2], regs[3]);
361 }
362
363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
364 static void igb_dump(struct igb_adapter *adapter)
365 {
366         struct net_device *netdev = adapter->netdev;
367         struct e1000_hw *hw = &adapter->hw;
368         struct igb_reg_info *reginfo;
369         struct igb_ring *tx_ring;
370         union e1000_adv_tx_desc *tx_desc;
371         struct my_u0 { u64 a; u64 b; } *u0;
372         struct igb_ring *rx_ring;
373         union e1000_adv_rx_desc *rx_desc;
374         u32 staterr;
375         u16 i, n;
376
377         if (!netif_msg_hw(adapter))
378                 return;
379
380         /* Print netdevice Info */
381         if (netdev) {
382                 dev_info(&adapter->pdev->dev, "Net device Info\n");
383                 pr_info("Device Name     state            trans_start      last_rx\n");
384                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385                         netdev->state, netdev->trans_start, netdev->last_rx);
386         }
387
388         /* Print Registers */
389         dev_info(&adapter->pdev->dev, "Register Dump\n");
390         pr_info(" Register Name   Value\n");
391         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392              reginfo->name; reginfo++) {
393                 igb_regdump(hw, reginfo);
394         }
395
396         /* Print TX Ring Summary */
397         if (!netdev || !netif_running(netdev))
398                 goto exit;
399
400         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
402         for (n = 0; n < adapter->num_tx_queues; n++) {
403                 struct igb_tx_buffer *buffer_info;
404                 tx_ring = adapter->tx_ring[n];
405                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
408                         (u64)dma_unmap_addr(buffer_info, dma),
409                         dma_unmap_len(buffer_info, len),
410                         buffer_info->next_to_watch,
411                         (u64)buffer_info->time_stamp);
412         }
413
414         /* Print TX Rings */
415         if (!netif_msg_tx_done(adapter))
416                 goto rx_ring_summary;
417
418         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420         /* Transmit Descriptor Formats
421          *
422          * Advanced Transmit Descriptor
423          *   +--------------------------------------------------------------+
424          * 0 |         Buffer Address [63:0]                                |
425          *   +--------------------------------------------------------------+
426          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
427          *   +--------------------------------------------------------------+
428          *   63      46 45    40 39 38 36 35 32 31   24             15       0
429          */
430
431         for (n = 0; n < adapter->num_tx_queues; n++) {
432                 tx_ring = adapter->tx_ring[n];
433                 pr_info("------------------------------------\n");
434                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435                 pr_info("------------------------------------\n");
436                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
437
438                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439                         const char *next_desc;
440                         struct igb_tx_buffer *buffer_info;
441                         tx_desc = IGB_TX_DESC(tx_ring, i);
442                         buffer_info = &tx_ring->tx_buffer_info[i];
443                         u0 = (struct my_u0 *)tx_desc;
444                         if (i == tx_ring->next_to_use &&
445                             i == tx_ring->next_to_clean)
446                                 next_desc = " NTC/U";
447                         else if (i == tx_ring->next_to_use)
448                                 next_desc = " NTU";
449                         else if (i == tx_ring->next_to_clean)
450                                 next_desc = " NTC";
451                         else
452                                 next_desc = "";
453
454                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
455                                 i, le64_to_cpu(u0->a),
456                                 le64_to_cpu(u0->b),
457                                 (u64)dma_unmap_addr(buffer_info, dma),
458                                 dma_unmap_len(buffer_info, len),
459                                 buffer_info->next_to_watch,
460                                 (u64)buffer_info->time_stamp,
461                                 buffer_info->skb, next_desc);
462
463                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
464                                 print_hex_dump(KERN_INFO, "",
465                                         DUMP_PREFIX_ADDRESS,
466                                         16, 1, buffer_info->skb->data,
467                                         dma_unmap_len(buffer_info, len),
468                                         true);
469                 }
470         }
471
472         /* Print RX Rings Summary */
473 rx_ring_summary:
474         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475         pr_info("Queue [NTU] [NTC]\n");
476         for (n = 0; n < adapter->num_rx_queues; n++) {
477                 rx_ring = adapter->rx_ring[n];
478                 pr_info(" %5d %5X %5X\n",
479                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
480         }
481
482         /* Print RX Rings */
483         if (!netif_msg_rx_status(adapter))
484                 goto exit;
485
486         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488         /* Advanced Receive Descriptor (Read) Format
489          *    63                                           1        0
490          *    +-----------------------------------------------------+
491          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
492          *    +----------------------------------------------+------+
493          *  8 |       Header Buffer Address [63:1]           |  DD  |
494          *    +-----------------------------------------------------+
495          *
496          *
497          * Advanced Receive Descriptor (Write-Back) Format
498          *
499          *   63       48 47    32 31  30      21 20 17 16   4 3     0
500          *   +------------------------------------------------------+
501          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
502          *   | Checksum   Ident  |   |           |    | Type | Type |
503          *   +------------------------------------------------------+
504          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505          *   +------------------------------------------------------+
506          *   63       48 47    32 31            20 19               0
507          */
508
509         for (n = 0; n < adapter->num_rx_queues; n++) {
510                 rx_ring = adapter->rx_ring[n];
511                 pr_info("------------------------------------\n");
512                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513                 pr_info("------------------------------------\n");
514                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
515                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516
517                 for (i = 0; i < rx_ring->count; i++) {
518                         const char *next_desc;
519                         struct igb_rx_buffer *buffer_info;
520                         buffer_info = &rx_ring->rx_buffer_info[i];
521                         rx_desc = IGB_RX_DESC(rx_ring, i);
522                         u0 = (struct my_u0 *)rx_desc;
523                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524
525                         if (i == rx_ring->next_to_use)
526                                 next_desc = " NTU";
527                         else if (i == rx_ring->next_to_clean)
528                                 next_desc = " NTC";
529                         else
530                                 next_desc = "";
531
532                         if (staterr & E1000_RXD_STAT_DD) {
533                                 /* Descriptor Done */
534                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
535                                         "RWB", i,
536                                         le64_to_cpu(u0->a),
537                                         le64_to_cpu(u0->b),
538                                         next_desc);
539                         } else {
540                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
541                                         "R  ", i,
542                                         le64_to_cpu(u0->a),
543                                         le64_to_cpu(u0->b),
544                                         (u64)buffer_info->dma,
545                                         next_desc);
546
547                                 if (netif_msg_pktdata(adapter) &&
548                                     buffer_info->dma && buffer_info->page) {
549                                         print_hex_dump(KERN_INFO, "",
550                                           DUMP_PREFIX_ADDRESS,
551                                           16, 1,
552                                           page_address(buffer_info->page) +
553                                                       buffer_info->page_offset,
554                                           IGB_RX_BUFSZ, true);
555                                 }
556                         }
557                 }
558         }
559
560 exit:
561         return;
562 }
563
564 /**
565  *  igb_get_i2c_data - Reads the I2C SDA data bit
566  *  @hw: pointer to hardware structure
567  *  @i2cctl: Current value of I2CCTL register
568  *
569  *  Returns the I2C data bit value
570  **/
571 static int igb_get_i2c_data(void *data)
572 {
573         struct igb_adapter *adapter = (struct igb_adapter *)data;
574         struct e1000_hw *hw = &adapter->hw;
575         s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577         return !!(i2cctl & E1000_I2C_DATA_IN);
578 }
579
580 /**
581  *  igb_set_i2c_data - Sets the I2C data bit
582  *  @data: pointer to hardware structure
583  *  @state: I2C data value (0 or 1) to set
584  *
585  *  Sets the I2C data bit
586  **/
587 static void igb_set_i2c_data(void *data, int state)
588 {
589         struct igb_adapter *adapter = (struct igb_adapter *)data;
590         struct e1000_hw *hw = &adapter->hw;
591         s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593         if (state)
594                 i2cctl |= E1000_I2C_DATA_OUT;
595         else
596                 i2cctl &= ~E1000_I2C_DATA_OUT;
597
598         i2cctl &= ~E1000_I2C_DATA_OE_N;
599         i2cctl |= E1000_I2C_CLK_OE_N;
600         wr32(E1000_I2CPARAMS, i2cctl);
601         wrfl();
602
603 }
604
605 /**
606  *  igb_set_i2c_clk - Sets the I2C SCL clock
607  *  @data: pointer to hardware structure
608  *  @state: state to set clock
609  *
610  *  Sets the I2C clock line to state
611  **/
612 static void igb_set_i2c_clk(void *data, int state)
613 {
614         struct igb_adapter *adapter = (struct igb_adapter *)data;
615         struct e1000_hw *hw = &adapter->hw;
616         s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618         if (state) {
619                 i2cctl |= E1000_I2C_CLK_OUT;
620                 i2cctl &= ~E1000_I2C_CLK_OE_N;
621         } else {
622                 i2cctl &= ~E1000_I2C_CLK_OUT;
623                 i2cctl &= ~E1000_I2C_CLK_OE_N;
624         }
625         wr32(E1000_I2CPARAMS, i2cctl);
626         wrfl();
627 }
628
629 /**
630  *  igb_get_i2c_clk - Gets the I2C SCL clock state
631  *  @data: pointer to hardware structure
632  *
633  *  Gets the I2C clock state
634  **/
635 static int igb_get_i2c_clk(void *data)
636 {
637         struct igb_adapter *adapter = (struct igb_adapter *)data;
638         struct e1000_hw *hw = &adapter->hw;
639         s32 i2cctl = rd32(E1000_I2CPARAMS);
640
641         return !!(i2cctl & E1000_I2C_CLK_IN);
642 }
643
644 static const struct i2c_algo_bit_data igb_i2c_algo = {
645         .setsda         = igb_set_i2c_data,
646         .setscl         = igb_set_i2c_clk,
647         .getsda         = igb_get_i2c_data,
648         .getscl         = igb_get_i2c_clk,
649         .udelay         = 5,
650         .timeout        = 20,
651 };
652
653 /**
654  *  igb_get_hw_dev - return device
655  *  @hw: pointer to hardware structure
656  *
657  *  used by hardware layer to print debugging information
658  **/
659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660 {
661         struct igb_adapter *adapter = hw->back;
662         return adapter->netdev;
663 }
664
665 /**
666  *  igb_init_module - Driver Registration Routine
667  *
668  *  igb_init_module is the first routine called when the driver is
669  *  loaded. All it does is register with the PCI subsystem.
670  **/
671 static int __init igb_init_module(void)
672 {
673         int ret;
674
675         pr_info("%s - version %s\n",
676                igb_driver_string, igb_driver_version);
677         pr_info("%s\n", igb_copyright);
678
679 #ifdef CONFIG_IGB_DCA
680         dca_register_notify(&dca_notifier);
681 #endif
682         ret = pci_register_driver(&igb_driver);
683         return ret;
684 }
685
686 module_init(igb_init_module);
687
688 /**
689  *  igb_exit_module - Driver Exit Cleanup Routine
690  *
691  *  igb_exit_module is called just before the driver is removed
692  *  from memory.
693  **/
694 static void __exit igb_exit_module(void)
695 {
696 #ifdef CONFIG_IGB_DCA
697         dca_unregister_notify(&dca_notifier);
698 #endif
699         pci_unregister_driver(&igb_driver);
700 }
701
702 module_exit(igb_exit_module);
703
704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705 /**
706  *  igb_cache_ring_register - Descriptor ring to register mapping
707  *  @adapter: board private structure to initialize
708  *
709  *  Once we know the feature-set enabled for the device, we'll cache
710  *  the register offset the descriptor ring is assigned to.
711  **/
712 static void igb_cache_ring_register(struct igb_adapter *adapter)
713 {
714         int i = 0, j = 0;
715         u32 rbase_offset = adapter->vfs_allocated_count;
716
717         switch (adapter->hw.mac.type) {
718         case e1000_82576:
719                 /* The queues are allocated for virtualization such that VF 0
720                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721                  * In order to avoid collision we start at the first free queue
722                  * and continue consuming queues in the same sequence
723                  */
724                 if (adapter->vfs_allocated_count) {
725                         for (; i < adapter->rss_queues; i++)
726                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
727                                                                Q_IDX_82576(i);
728                 }
729                 /* Fall through */
730         case e1000_82575:
731         case e1000_82580:
732         case e1000_i350:
733         case e1000_i354:
734         case e1000_i210:
735         case e1000_i211:
736                 /* Fall through */
737         default:
738                 for (; i < adapter->num_rx_queues; i++)
739                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740                 for (; j < adapter->num_tx_queues; j++)
741                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742                 break;
743         }
744 }
745
746 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747 {
748         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750         u32 value = 0;
751
752         if (E1000_REMOVED(hw_addr))
753                 return ~value;
754
755         value = readl(&hw_addr[reg]);
756
757         /* reads should not return all F's */
758         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759                 struct net_device *netdev = igb->netdev;
760                 hw->hw_addr = NULL;
761                 netif_device_detach(netdev);
762                 netdev_err(netdev, "PCIe link lost, device now detached\n");
763         }
764
765         return value;
766 }
767
768 /**
769  *  igb_write_ivar - configure ivar for given MSI-X vector
770  *  @hw: pointer to the HW structure
771  *  @msix_vector: vector number we are allocating to a given ring
772  *  @index: row index of IVAR register to write within IVAR table
773  *  @offset: column offset of in IVAR, should be multiple of 8
774  *
775  *  This function is intended to handle the writing of the IVAR register
776  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
777  *  each containing an cause allocation for an Rx and Tx ring, and a
778  *  variable number of rows depending on the number of queues supported.
779  **/
780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781                            int index, int offset)
782 {
783         u32 ivar = array_rd32(E1000_IVAR0, index);
784
785         /* clear any bits that are currently set */
786         ivar &= ~((u32)0xFF << offset);
787
788         /* write vector and valid bit */
789         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790
791         array_wr32(E1000_IVAR0, index, ivar);
792 }
793
794 #define IGB_N0_QUEUE -1
795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796 {
797         struct igb_adapter *adapter = q_vector->adapter;
798         struct e1000_hw *hw = &adapter->hw;
799         int rx_queue = IGB_N0_QUEUE;
800         int tx_queue = IGB_N0_QUEUE;
801         u32 msixbm = 0;
802
803         if (q_vector->rx.ring)
804                 rx_queue = q_vector->rx.ring->reg_idx;
805         if (q_vector->tx.ring)
806                 tx_queue = q_vector->tx.ring->reg_idx;
807
808         switch (hw->mac.type) {
809         case e1000_82575:
810                 /* The 82575 assigns vectors using a bitmask, which matches the
811                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
812                  * or more queues to a vector, we write the appropriate bits
813                  * into the MSIXBM register for that vector.
814                  */
815                 if (rx_queue > IGB_N0_QUEUE)
816                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817                 if (tx_queue > IGB_N0_QUEUE)
818                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820                         msixbm |= E1000_EIMS_OTHER;
821                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822                 q_vector->eims_value = msixbm;
823                 break;
824         case e1000_82576:
825                 /* 82576 uses a table that essentially consists of 2 columns
826                  * with 8 rows.  The ordering is column-major so we use the
827                  * lower 3 bits as the row index, and the 4th bit as the
828                  * column offset.
829                  */
830                 if (rx_queue > IGB_N0_QUEUE)
831                         igb_write_ivar(hw, msix_vector,
832                                        rx_queue & 0x7,
833                                        (rx_queue & 0x8) << 1);
834                 if (tx_queue > IGB_N0_QUEUE)
835                         igb_write_ivar(hw, msix_vector,
836                                        tx_queue & 0x7,
837                                        ((tx_queue & 0x8) << 1) + 8);
838                 q_vector->eims_value = 1 << msix_vector;
839                 break;
840         case e1000_82580:
841         case e1000_i350:
842         case e1000_i354:
843         case e1000_i210:
844         case e1000_i211:
845                 /* On 82580 and newer adapters the scheme is similar to 82576
846                  * however instead of ordering column-major we have things
847                  * ordered row-major.  So we traverse the table by using
848                  * bit 0 as the column offset, and the remaining bits as the
849                  * row index.
850                  */
851                 if (rx_queue > IGB_N0_QUEUE)
852                         igb_write_ivar(hw, msix_vector,
853                                        rx_queue >> 1,
854                                        (rx_queue & 0x1) << 4);
855                 if (tx_queue > IGB_N0_QUEUE)
856                         igb_write_ivar(hw, msix_vector,
857                                        tx_queue >> 1,
858                                        ((tx_queue & 0x1) << 4) + 8);
859                 q_vector->eims_value = 1 << msix_vector;
860                 break;
861         default:
862                 BUG();
863                 break;
864         }
865
866         /* add q_vector eims value to global eims_enable_mask */
867         adapter->eims_enable_mask |= q_vector->eims_value;
868
869         /* configure q_vector to set itr on first interrupt */
870         q_vector->set_itr = 1;
871 }
872
873 /**
874  *  igb_configure_msix - Configure MSI-X hardware
875  *  @adapter: board private structure to initialize
876  *
877  *  igb_configure_msix sets up the hardware to properly
878  *  generate MSI-X interrupts.
879  **/
880 static void igb_configure_msix(struct igb_adapter *adapter)
881 {
882         u32 tmp;
883         int i, vector = 0;
884         struct e1000_hw *hw = &adapter->hw;
885
886         adapter->eims_enable_mask = 0;
887
888         /* set vector for other causes, i.e. link changes */
889         switch (hw->mac.type) {
890         case e1000_82575:
891                 tmp = rd32(E1000_CTRL_EXT);
892                 /* enable MSI-X PBA support*/
893                 tmp |= E1000_CTRL_EXT_PBA_CLR;
894
895                 /* Auto-Mask interrupts upon ICR read. */
896                 tmp |= E1000_CTRL_EXT_EIAME;
897                 tmp |= E1000_CTRL_EXT_IRCA;
898
899                 wr32(E1000_CTRL_EXT, tmp);
900
901                 /* enable msix_other interrupt */
902                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903                 adapter->eims_other = E1000_EIMS_OTHER;
904
905                 break;
906
907         case e1000_82576:
908         case e1000_82580:
909         case e1000_i350:
910         case e1000_i354:
911         case e1000_i210:
912         case e1000_i211:
913                 /* Turn on MSI-X capability first, or our settings
914                  * won't stick.  And it will take days to debug.
915                  */
916                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
918                      E1000_GPIE_NSICR);
919
920                 /* enable msix_other interrupt */
921                 adapter->eims_other = 1 << vector;
922                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
923
924                 wr32(E1000_IVAR_MISC, tmp);
925                 break;
926         default:
927                 /* do nothing, since nothing else supports MSI-X */
928                 break;
929         } /* switch (hw->mac.type) */
930
931         adapter->eims_enable_mask |= adapter->eims_other;
932
933         for (i = 0; i < adapter->num_q_vectors; i++)
934                 igb_assign_vector(adapter->q_vector[i], vector++);
935
936         wrfl();
937 }
938
939 /**
940  *  igb_request_msix - Initialize MSI-X interrupts
941  *  @adapter: board private structure to initialize
942  *
943  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
944  *  kernel.
945  **/
946 static int igb_request_msix(struct igb_adapter *adapter)
947 {
948         struct net_device *netdev = adapter->netdev;
949         int i, err = 0, vector = 0, free_vector = 0;
950
951         err = request_irq(adapter->msix_entries[vector].vector,
952                           igb_msix_other, 0, netdev->name, adapter);
953         if (err)
954                 goto err_out;
955
956         for (i = 0; i < adapter->num_q_vectors; i++) {
957                 struct igb_q_vector *q_vector = adapter->q_vector[i];
958
959                 vector++;
960
961                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
962
963                 if (q_vector->rx.ring && q_vector->tx.ring)
964                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
965                                 q_vector->rx.ring->queue_index);
966                 else if (q_vector->tx.ring)
967                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
968                                 q_vector->tx.ring->queue_index);
969                 else if (q_vector->rx.ring)
970                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
971                                 q_vector->rx.ring->queue_index);
972                 else
973                         sprintf(q_vector->name, "%s-unused", netdev->name);
974
975                 err = request_irq(adapter->msix_entries[vector].vector,
976                                   igb_msix_ring, 0, q_vector->name,
977                                   q_vector);
978                 if (err)
979                         goto err_free;
980         }
981
982         igb_configure_msix(adapter);
983         return 0;
984
985 err_free:
986         /* free already assigned IRQs */
987         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
988
989         vector--;
990         for (i = 0; i < vector; i++) {
991                 free_irq(adapter->msix_entries[free_vector++].vector,
992                          adapter->q_vector[i]);
993         }
994 err_out:
995         return err;
996 }
997
998 /**
999  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1000  *  @adapter: board private structure to initialize
1001  *  @v_idx: Index of vector to be freed
1002  *
1003  *  This function frees the memory allocated to the q_vector.
1004  **/
1005 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1006 {
1007         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1008
1009         adapter->q_vector[v_idx] = NULL;
1010
1011         /* igb_get_stats64() might access the rings on this vector,
1012          * we must wait a grace period before freeing it.
1013          */
1014         if (q_vector)
1015                 kfree_rcu(q_vector, rcu);
1016 }
1017
1018 /**
1019  *  igb_reset_q_vector - Reset config for interrupt vector
1020  *  @adapter: board private structure to initialize
1021  *  @v_idx: Index of vector to be reset
1022  *
1023  *  If NAPI is enabled it will delete any references to the
1024  *  NAPI struct. This is preparation for igb_free_q_vector.
1025  **/
1026 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027 {
1028         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029
1030         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1031          * allocated. So, q_vector is NULL so we should stop here.
1032          */
1033         if (!q_vector)
1034                 return;
1035
1036         if (q_vector->tx.ring)
1037                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038
1039         if (q_vector->rx.ring)
1040                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1041
1042         netif_napi_del(&q_vector->napi);
1043
1044 }
1045
1046 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047 {
1048         int v_idx = adapter->num_q_vectors;
1049
1050         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051                 pci_disable_msix(adapter->pdev);
1052         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053                 pci_disable_msi(adapter->pdev);
1054
1055         while (v_idx--)
1056                 igb_reset_q_vector(adapter, v_idx);
1057 }
1058
1059 /**
1060  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1061  *  @adapter: board private structure to initialize
1062  *
1063  *  This function frees the memory allocated to the q_vectors.  In addition if
1064  *  NAPI is enabled it will delete any references to the NAPI struct prior
1065  *  to freeing the q_vector.
1066  **/
1067 static void igb_free_q_vectors(struct igb_adapter *adapter)
1068 {
1069         int v_idx = adapter->num_q_vectors;
1070
1071         adapter->num_tx_queues = 0;
1072         adapter->num_rx_queues = 0;
1073         adapter->num_q_vectors = 0;
1074
1075         while (v_idx--) {
1076                 igb_reset_q_vector(adapter, v_idx);
1077                 igb_free_q_vector(adapter, v_idx);
1078         }
1079 }
1080
1081 /**
1082  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083  *  @adapter: board private structure to initialize
1084  *
1085  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1086  *  MSI-X interrupts allocated.
1087  */
1088 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089 {
1090         igb_free_q_vectors(adapter);
1091         igb_reset_interrupt_capability(adapter);
1092 }
1093
1094 /**
1095  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1096  *  @adapter: board private structure to initialize
1097  *  @msix: boolean value of MSIX capability
1098  *
1099  *  Attempt to configure interrupts using the best available
1100  *  capabilities of the hardware and kernel.
1101  **/
1102 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103 {
1104         int err;
1105         int numvecs, i;
1106
1107         if (!msix)
1108                 goto msi_only;
1109         adapter->flags |= IGB_FLAG_HAS_MSIX;
1110
1111         /* Number of supported queues. */
1112         adapter->num_rx_queues = adapter->rss_queues;
1113         if (adapter->vfs_allocated_count)
1114                 adapter->num_tx_queues = 1;
1115         else
1116                 adapter->num_tx_queues = adapter->rss_queues;
1117
1118         /* start with one vector for every Rx queue */
1119         numvecs = adapter->num_rx_queues;
1120
1121         /* if Tx handler is separate add 1 for every Tx queue */
1122         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123                 numvecs += adapter->num_tx_queues;
1124
1125         /* store the number of vectors reserved for queues */
1126         adapter->num_q_vectors = numvecs;
1127
1128         /* add 1 vector for link status interrupts */
1129         numvecs++;
1130         for (i = 0; i < numvecs; i++)
1131                 adapter->msix_entries[i].entry = i;
1132
1133         err = pci_enable_msix_range(adapter->pdev,
1134                                     adapter->msix_entries,
1135                                     numvecs,
1136                                     numvecs);
1137         if (err > 0)
1138                 return;
1139
1140         igb_reset_interrupt_capability(adapter);
1141
1142         /* If we can't do MSI-X, try MSI */
1143 msi_only:
1144         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145 #ifdef CONFIG_PCI_IOV
1146         /* disable SR-IOV for non MSI-X configurations */
1147         if (adapter->vf_data) {
1148                 struct e1000_hw *hw = &adapter->hw;
1149                 /* disable iov and allow time for transactions to clear */
1150                 pci_disable_sriov(adapter->pdev);
1151                 msleep(500);
1152
1153                 kfree(adapter->vf_data);
1154                 adapter->vf_data = NULL;
1155                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156                 wrfl();
1157                 msleep(100);
1158                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159         }
1160 #endif
1161         adapter->vfs_allocated_count = 0;
1162         adapter->rss_queues = 1;
1163         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164         adapter->num_rx_queues = 1;
1165         adapter->num_tx_queues = 1;
1166         adapter->num_q_vectors = 1;
1167         if (!pci_enable_msi(adapter->pdev))
1168                 adapter->flags |= IGB_FLAG_HAS_MSI;
1169 }
1170
1171 static void igb_add_ring(struct igb_ring *ring,
1172                          struct igb_ring_container *head)
1173 {
1174         head->ring = ring;
1175         head->count++;
1176 }
1177
1178 /**
1179  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180  *  @adapter: board private structure to initialize
1181  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1182  *  @v_idx: index of vector in adapter struct
1183  *  @txr_count: total number of Tx rings to allocate
1184  *  @txr_idx: index of first Tx ring to allocate
1185  *  @rxr_count: total number of Rx rings to allocate
1186  *  @rxr_idx: index of first Rx ring to allocate
1187  *
1188  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1189  **/
1190 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191                               int v_count, int v_idx,
1192                               int txr_count, int txr_idx,
1193                               int rxr_count, int rxr_idx)
1194 {
1195         struct igb_q_vector *q_vector;
1196         struct igb_ring *ring;
1197         int ring_count, size;
1198
1199         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200         if (txr_count > 1 || rxr_count > 1)
1201                 return -ENOMEM;
1202
1203         ring_count = txr_count + rxr_count;
1204         size = sizeof(struct igb_q_vector) +
1205                (sizeof(struct igb_ring) * ring_count);
1206
1207         /* allocate q_vector and rings */
1208         q_vector = adapter->q_vector[v_idx];
1209         if (!q_vector) {
1210                 q_vector = kzalloc(size, GFP_KERNEL);
1211         } else if (size > ksize(q_vector)) {
1212                 kfree_rcu(q_vector, rcu);
1213                 q_vector = kzalloc(size, GFP_KERNEL);
1214         } else {
1215                 memset(q_vector, 0, size);
1216         }
1217         if (!q_vector)
1218                 return -ENOMEM;
1219
1220         /* initialize NAPI */
1221         netif_napi_add(adapter->netdev, &q_vector->napi,
1222                        igb_poll, 64);
1223
1224         /* tie q_vector and adapter together */
1225         adapter->q_vector[v_idx] = q_vector;
1226         q_vector->adapter = adapter;
1227
1228         /* initialize work limits */
1229         q_vector->tx.work_limit = adapter->tx_work_limit;
1230
1231         /* initialize ITR configuration */
1232         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1233         q_vector->itr_val = IGB_START_ITR;
1234
1235         /* initialize pointer to rings */
1236         ring = q_vector->ring;
1237
1238         /* intialize ITR */
1239         if (rxr_count) {
1240                 /* rx or rx/tx vector */
1241                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1242                         q_vector->itr_val = adapter->rx_itr_setting;
1243         } else {
1244                 /* tx only vector */
1245                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1246                         q_vector->itr_val = adapter->tx_itr_setting;
1247         }
1248
1249         if (txr_count) {
1250                 /* assign generic ring traits */
1251                 ring->dev = &adapter->pdev->dev;
1252                 ring->netdev = adapter->netdev;
1253
1254                 /* configure backlink on ring */
1255                 ring->q_vector = q_vector;
1256
1257                 /* update q_vector Tx values */
1258                 igb_add_ring(ring, &q_vector->tx);
1259
1260                 /* For 82575, context index must be unique per ring. */
1261                 if (adapter->hw.mac.type == e1000_82575)
1262                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1263
1264                 /* apply Tx specific ring traits */
1265                 ring->count = adapter->tx_ring_count;
1266                 ring->queue_index = txr_idx;
1267
1268                 u64_stats_init(&ring->tx_syncp);
1269                 u64_stats_init(&ring->tx_syncp2);
1270
1271                 /* assign ring to adapter */
1272                 adapter->tx_ring[txr_idx] = ring;
1273
1274                 /* push pointer to next ring */
1275                 ring++;
1276         }
1277
1278         if (rxr_count) {
1279                 /* assign generic ring traits */
1280                 ring->dev = &adapter->pdev->dev;
1281                 ring->netdev = adapter->netdev;
1282
1283                 /* configure backlink on ring */
1284                 ring->q_vector = q_vector;
1285
1286                 /* update q_vector Rx values */
1287                 igb_add_ring(ring, &q_vector->rx);
1288
1289                 /* set flag indicating ring supports SCTP checksum offload */
1290                 if (adapter->hw.mac.type >= e1000_82576)
1291                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1292
1293                 /* On i350, i354, i210, and i211, loopback VLAN packets
1294                  * have the tag byte-swapped.
1295                  */
1296                 if (adapter->hw.mac.type >= e1000_i350)
1297                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1298
1299                 /* apply Rx specific ring traits */
1300                 ring->count = adapter->rx_ring_count;
1301                 ring->queue_index = rxr_idx;
1302
1303                 u64_stats_init(&ring->rx_syncp);
1304
1305                 /* assign ring to adapter */
1306                 adapter->rx_ring[rxr_idx] = ring;
1307         }
1308
1309         return 0;
1310 }
1311
1312
1313 /**
1314  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1315  *  @adapter: board private structure to initialize
1316  *
1317  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1318  *  return -ENOMEM.
1319  **/
1320 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1321 {
1322         int q_vectors = adapter->num_q_vectors;
1323         int rxr_remaining = adapter->num_rx_queues;
1324         int txr_remaining = adapter->num_tx_queues;
1325         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1326         int err;
1327
1328         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1329                 for (; rxr_remaining; v_idx++) {
1330                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1331                                                  0, 0, 1, rxr_idx);
1332
1333                         if (err)
1334                                 goto err_out;
1335
1336                         /* update counts and index */
1337                         rxr_remaining--;
1338                         rxr_idx++;
1339                 }
1340         }
1341
1342         for (; v_idx < q_vectors; v_idx++) {
1343                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1344                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1345
1346                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1347                                          tqpv, txr_idx, rqpv, rxr_idx);
1348
1349                 if (err)
1350                         goto err_out;
1351
1352                 /* update counts and index */
1353                 rxr_remaining -= rqpv;
1354                 txr_remaining -= tqpv;
1355                 rxr_idx++;
1356                 txr_idx++;
1357         }
1358
1359         return 0;
1360
1361 err_out:
1362         adapter->num_tx_queues = 0;
1363         adapter->num_rx_queues = 0;
1364         adapter->num_q_vectors = 0;
1365
1366         while (v_idx--)
1367                 igb_free_q_vector(adapter, v_idx);
1368
1369         return -ENOMEM;
1370 }
1371
1372 /**
1373  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1374  *  @adapter: board private structure to initialize
1375  *  @msix: boolean value of MSIX capability
1376  *
1377  *  This function initializes the interrupts and allocates all of the queues.
1378  **/
1379 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1380 {
1381         struct pci_dev *pdev = adapter->pdev;
1382         int err;
1383
1384         igb_set_interrupt_capability(adapter, msix);
1385
1386         err = igb_alloc_q_vectors(adapter);
1387         if (err) {
1388                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1389                 goto err_alloc_q_vectors;
1390         }
1391
1392         igb_cache_ring_register(adapter);
1393
1394         return 0;
1395
1396 err_alloc_q_vectors:
1397         igb_reset_interrupt_capability(adapter);
1398         return err;
1399 }
1400
1401 /**
1402  *  igb_request_irq - initialize interrupts
1403  *  @adapter: board private structure to initialize
1404  *
1405  *  Attempts to configure interrupts using the best available
1406  *  capabilities of the hardware and kernel.
1407  **/
1408 static int igb_request_irq(struct igb_adapter *adapter)
1409 {
1410         struct net_device *netdev = adapter->netdev;
1411         struct pci_dev *pdev = adapter->pdev;
1412         int err = 0;
1413
1414         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1415                 err = igb_request_msix(adapter);
1416                 if (!err)
1417                         goto request_done;
1418                 /* fall back to MSI */
1419                 igb_free_all_tx_resources(adapter);
1420                 igb_free_all_rx_resources(adapter);
1421
1422                 igb_clear_interrupt_scheme(adapter);
1423                 err = igb_init_interrupt_scheme(adapter, false);
1424                 if (err)
1425                         goto request_done;
1426
1427                 igb_setup_all_tx_resources(adapter);
1428                 igb_setup_all_rx_resources(adapter);
1429                 igb_configure(adapter);
1430         }
1431
1432         igb_assign_vector(adapter->q_vector[0], 0);
1433
1434         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1435                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1436                                   netdev->name, adapter);
1437                 if (!err)
1438                         goto request_done;
1439
1440                 /* fall back to legacy interrupts */
1441                 igb_reset_interrupt_capability(adapter);
1442                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1443         }
1444
1445         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1446                           netdev->name, adapter);
1447
1448         if (err)
1449                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1450                         err);
1451
1452 request_done:
1453         return err;
1454 }
1455
1456 static void igb_free_irq(struct igb_adapter *adapter)
1457 {
1458         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1459                 int vector = 0, i;
1460
1461                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1462
1463                 for (i = 0; i < adapter->num_q_vectors; i++)
1464                         free_irq(adapter->msix_entries[vector++].vector,
1465                                  adapter->q_vector[i]);
1466         } else {
1467                 free_irq(adapter->pdev->irq, adapter);
1468         }
1469 }
1470
1471 /**
1472  *  igb_irq_disable - Mask off interrupt generation on the NIC
1473  *  @adapter: board private structure
1474  **/
1475 static void igb_irq_disable(struct igb_adapter *adapter)
1476 {
1477         struct e1000_hw *hw = &adapter->hw;
1478
1479         /* we need to be careful when disabling interrupts.  The VFs are also
1480          * mapped into these registers and so clearing the bits can cause
1481          * issues on the VF drivers so we only need to clear what we set
1482          */
1483         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1484                 u32 regval = rd32(E1000_EIAM);
1485
1486                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1487                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1488                 regval = rd32(E1000_EIAC);
1489                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1490         }
1491
1492         wr32(E1000_IAM, 0);
1493         wr32(E1000_IMC, ~0);
1494         wrfl();
1495         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1496                 int i;
1497
1498                 for (i = 0; i < adapter->num_q_vectors; i++)
1499                         synchronize_irq(adapter->msix_entries[i].vector);
1500         } else {
1501                 synchronize_irq(adapter->pdev->irq);
1502         }
1503 }
1504
1505 /**
1506  *  igb_irq_enable - Enable default interrupt generation settings
1507  *  @adapter: board private structure
1508  **/
1509 static void igb_irq_enable(struct igb_adapter *adapter)
1510 {
1511         struct e1000_hw *hw = &adapter->hw;
1512
1513         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1514                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1515                 u32 regval = rd32(E1000_EIAC);
1516
1517                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1518                 regval = rd32(E1000_EIAM);
1519                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1520                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1521                 if (adapter->vfs_allocated_count) {
1522                         wr32(E1000_MBVFIMR, 0xFF);
1523                         ims |= E1000_IMS_VMMB;
1524                 }
1525                 wr32(E1000_IMS, ims);
1526         } else {
1527                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1528                                 E1000_IMS_DRSTA);
1529                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1530                                 E1000_IMS_DRSTA);
1531         }
1532 }
1533
1534 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1535 {
1536         struct e1000_hw *hw = &adapter->hw;
1537         u16 vid = adapter->hw.mng_cookie.vlan_id;
1538         u16 old_vid = adapter->mng_vlan_id;
1539
1540         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1541                 /* add VID to filter table */
1542                 igb_vfta_set(hw, vid, true);
1543                 adapter->mng_vlan_id = vid;
1544         } else {
1545                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1546         }
1547
1548         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1549             (vid != old_vid) &&
1550             !test_bit(old_vid, adapter->active_vlans)) {
1551                 /* remove VID from filter table */
1552                 igb_vfta_set(hw, old_vid, false);
1553         }
1554 }
1555
1556 /**
1557  *  igb_release_hw_control - release control of the h/w to f/w
1558  *  @adapter: address of board private structure
1559  *
1560  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1561  *  For ASF and Pass Through versions of f/w this means that the
1562  *  driver is no longer loaded.
1563  **/
1564 static void igb_release_hw_control(struct igb_adapter *adapter)
1565 {
1566         struct e1000_hw *hw = &adapter->hw;
1567         u32 ctrl_ext;
1568
1569         /* Let firmware take over control of h/w */
1570         ctrl_ext = rd32(E1000_CTRL_EXT);
1571         wr32(E1000_CTRL_EXT,
1572                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1573 }
1574
1575 /**
1576  *  igb_get_hw_control - get control of the h/w from f/w
1577  *  @adapter: address of board private structure
1578  *
1579  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1580  *  For ASF and Pass Through versions of f/w this means that
1581  *  the driver is loaded.
1582  **/
1583 static void igb_get_hw_control(struct igb_adapter *adapter)
1584 {
1585         struct e1000_hw *hw = &adapter->hw;
1586         u32 ctrl_ext;
1587
1588         /* Let firmware know the driver has taken over */
1589         ctrl_ext = rd32(E1000_CTRL_EXT);
1590         wr32(E1000_CTRL_EXT,
1591                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1592 }
1593
1594 /**
1595  *  igb_configure - configure the hardware for RX and TX
1596  *  @adapter: private board structure
1597  **/
1598 static void igb_configure(struct igb_adapter *adapter)
1599 {
1600         struct net_device *netdev = adapter->netdev;
1601         int i;
1602
1603         igb_get_hw_control(adapter);
1604         igb_set_rx_mode(netdev);
1605
1606         igb_restore_vlan(adapter);
1607
1608         igb_setup_tctl(adapter);
1609         igb_setup_mrqc(adapter);
1610         igb_setup_rctl(adapter);
1611
1612         igb_configure_tx(adapter);
1613         igb_configure_rx(adapter);
1614
1615         igb_rx_fifo_flush_82575(&adapter->hw);
1616
1617         /* call igb_desc_unused which always leaves
1618          * at least 1 descriptor unused to make sure
1619          * next_to_use != next_to_clean
1620          */
1621         for (i = 0; i < adapter->num_rx_queues; i++) {
1622                 struct igb_ring *ring = adapter->rx_ring[i];
1623                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1624         }
1625 }
1626
1627 /**
1628  *  igb_power_up_link - Power up the phy/serdes link
1629  *  @adapter: address of board private structure
1630  **/
1631 void igb_power_up_link(struct igb_adapter *adapter)
1632 {
1633         igb_reset_phy(&adapter->hw);
1634
1635         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1636                 igb_power_up_phy_copper(&adapter->hw);
1637         else
1638                 igb_power_up_serdes_link_82575(&adapter->hw);
1639
1640         igb_setup_link(&adapter->hw);
1641 }
1642
1643 /**
1644  *  igb_power_down_link - Power down the phy/serdes link
1645  *  @adapter: address of board private structure
1646  */
1647 static void igb_power_down_link(struct igb_adapter *adapter)
1648 {
1649         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1650                 igb_power_down_phy_copper_82575(&adapter->hw);
1651         else
1652                 igb_shutdown_serdes_link_82575(&adapter->hw);
1653 }
1654
1655 /**
1656  * Detect and switch function for Media Auto Sense
1657  * @adapter: address of the board private structure
1658  **/
1659 static void igb_check_swap_media(struct igb_adapter *adapter)
1660 {
1661         struct e1000_hw *hw = &adapter->hw;
1662         u32 ctrl_ext, connsw;
1663         bool swap_now = false;
1664
1665         ctrl_ext = rd32(E1000_CTRL_EXT);
1666         connsw = rd32(E1000_CONNSW);
1667
1668         /* need to live swap if current media is copper and we have fiber/serdes
1669          * to go to.
1670          */
1671
1672         if ((hw->phy.media_type == e1000_media_type_copper) &&
1673             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1674                 swap_now = true;
1675         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1676                 /* copper signal takes time to appear */
1677                 if (adapter->copper_tries < 4) {
1678                         adapter->copper_tries++;
1679                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1680                         wr32(E1000_CONNSW, connsw);
1681                         return;
1682                 } else {
1683                         adapter->copper_tries = 0;
1684                         if ((connsw & E1000_CONNSW_PHYSD) &&
1685                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1686                                 swap_now = true;
1687                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1688                                 wr32(E1000_CONNSW, connsw);
1689                         }
1690                 }
1691         }
1692
1693         if (!swap_now)
1694                 return;
1695
1696         switch (hw->phy.media_type) {
1697         case e1000_media_type_copper:
1698                 netdev_info(adapter->netdev,
1699                         "MAS: changing media to fiber/serdes\n");
1700                 ctrl_ext |=
1701                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1702                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1703                 adapter->copper_tries = 0;
1704                 break;
1705         case e1000_media_type_internal_serdes:
1706         case e1000_media_type_fiber:
1707                 netdev_info(adapter->netdev,
1708                         "MAS: changing media to copper\n");
1709                 ctrl_ext &=
1710                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1711                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1712                 break;
1713         default:
1714                 /* shouldn't get here during regular operation */
1715                 netdev_err(adapter->netdev,
1716                         "AMS: Invalid media type found, returning\n");
1717                 break;
1718         }
1719         wr32(E1000_CTRL_EXT, ctrl_ext);
1720 }
1721
1722 /**
1723  *  igb_up - Open the interface and prepare it to handle traffic
1724  *  @adapter: board private structure
1725  **/
1726 int igb_up(struct igb_adapter *adapter)
1727 {
1728         struct e1000_hw *hw = &adapter->hw;
1729         int i;
1730
1731         /* hardware has been reset, we need to reload some things */
1732         igb_configure(adapter);
1733
1734         clear_bit(__IGB_DOWN, &adapter->state);
1735
1736         for (i = 0; i < adapter->num_q_vectors; i++)
1737                 napi_enable(&(adapter->q_vector[i]->napi));
1738
1739         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1740                 igb_configure_msix(adapter);
1741         else
1742                 igb_assign_vector(adapter->q_vector[0], 0);
1743
1744         /* Clear any pending interrupts. */
1745         rd32(E1000_ICR);
1746         igb_irq_enable(adapter);
1747
1748         /* notify VFs that reset has been completed */
1749         if (adapter->vfs_allocated_count) {
1750                 u32 reg_data = rd32(E1000_CTRL_EXT);
1751
1752                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1753                 wr32(E1000_CTRL_EXT, reg_data);
1754         }
1755
1756         netif_tx_start_all_queues(adapter->netdev);
1757
1758         /* start the watchdog. */
1759         hw->mac.get_link_status = 1;
1760         schedule_work(&adapter->watchdog_task);
1761
1762         if ((adapter->flags & IGB_FLAG_EEE) &&
1763             (!hw->dev_spec._82575.eee_disable))
1764                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1765
1766         return 0;
1767 }
1768
1769 void igb_down(struct igb_adapter *adapter)
1770 {
1771         struct net_device *netdev = adapter->netdev;
1772         struct e1000_hw *hw = &adapter->hw;
1773         u32 tctl, rctl;
1774         int i;
1775
1776         /* signal that we're down so the interrupt handler does not
1777          * reschedule our watchdog timer
1778          */
1779         set_bit(__IGB_DOWN, &adapter->state);
1780
1781         /* disable receives in the hardware */
1782         rctl = rd32(E1000_RCTL);
1783         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1784         /* flush and sleep below */
1785
1786         netif_carrier_off(netdev);
1787         netif_tx_stop_all_queues(netdev);
1788
1789         /* disable transmits in the hardware */
1790         tctl = rd32(E1000_TCTL);
1791         tctl &= ~E1000_TCTL_EN;
1792         wr32(E1000_TCTL, tctl);
1793         /* flush both disables and wait for them to finish */
1794         wrfl();
1795         usleep_range(10000, 11000);
1796
1797         igb_irq_disable(adapter);
1798
1799         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1800
1801         for (i = 0; i < adapter->num_q_vectors; i++) {
1802                 if (adapter->q_vector[i]) {
1803                         napi_synchronize(&adapter->q_vector[i]->napi);
1804                         napi_disable(&adapter->q_vector[i]->napi);
1805                 }
1806         }
1807
1808         del_timer_sync(&adapter->watchdog_timer);
1809         del_timer_sync(&adapter->phy_info_timer);
1810
1811         /* record the stats before reset*/
1812         spin_lock(&adapter->stats64_lock);
1813         igb_update_stats(adapter, &adapter->stats64);
1814         spin_unlock(&adapter->stats64_lock);
1815
1816         adapter->link_speed = 0;
1817         adapter->link_duplex = 0;
1818
1819         if (!pci_channel_offline(adapter->pdev))
1820                 igb_reset(adapter);
1821         igb_clean_all_tx_rings(adapter);
1822         igb_clean_all_rx_rings(adapter);
1823 #ifdef CONFIG_IGB_DCA
1824
1825         /* since we reset the hardware DCA settings were cleared */
1826         igb_setup_dca(adapter);
1827 #endif
1828 }
1829
1830 void igb_reinit_locked(struct igb_adapter *adapter)
1831 {
1832         WARN_ON(in_interrupt());
1833         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1834                 usleep_range(1000, 2000);
1835         igb_down(adapter);
1836         igb_up(adapter);
1837         clear_bit(__IGB_RESETTING, &adapter->state);
1838 }
1839
1840 /** igb_enable_mas - Media Autosense re-enable after swap
1841  *
1842  * @adapter: adapter struct
1843  **/
1844 static void igb_enable_mas(struct igb_adapter *adapter)
1845 {
1846         struct e1000_hw *hw = &adapter->hw;
1847         u32 connsw = rd32(E1000_CONNSW);
1848
1849         /* configure for SerDes media detect */
1850         if ((hw->phy.media_type == e1000_media_type_copper) &&
1851             (!(connsw & E1000_CONNSW_SERDESD))) {
1852                 connsw |= E1000_CONNSW_ENRGSRC;
1853                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1854                 wr32(E1000_CONNSW, connsw);
1855                 wrfl();
1856         }
1857 }
1858
1859 void igb_reset(struct igb_adapter *adapter)
1860 {
1861         struct pci_dev *pdev = adapter->pdev;
1862         struct e1000_hw *hw = &adapter->hw;
1863         struct e1000_mac_info *mac = &hw->mac;
1864         struct e1000_fc_info *fc = &hw->fc;
1865         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1866
1867         /* Repartition Pba for greater than 9k mtu
1868          * To take effect CTRL.RST is required.
1869          */
1870         switch (mac->type) {
1871         case e1000_i350:
1872         case e1000_i354:
1873         case e1000_82580:
1874                 pba = rd32(E1000_RXPBS);
1875                 pba = igb_rxpbs_adjust_82580(pba);
1876                 break;
1877         case e1000_82576:
1878                 pba = rd32(E1000_RXPBS);
1879                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1880                 break;
1881         case e1000_82575:
1882         case e1000_i210:
1883         case e1000_i211:
1884         default:
1885                 pba = E1000_PBA_34K;
1886                 break;
1887         }
1888
1889         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1890             (mac->type < e1000_82576)) {
1891                 /* adjust PBA for jumbo frames */
1892                 wr32(E1000_PBA, pba);
1893
1894                 /* To maintain wire speed transmits, the Tx FIFO should be
1895                  * large enough to accommodate two full transmit packets,
1896                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1897                  * the Rx FIFO should be large enough to accommodate at least
1898                  * one full receive packet and is similarly rounded up and
1899                  * expressed in KB.
1900                  */
1901                 pba = rd32(E1000_PBA);
1902                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1903                 tx_space = pba >> 16;
1904                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1905                 pba &= 0xffff;
1906                 /* the Tx fifo also stores 16 bytes of information about the Tx
1907                  * but don't include ethernet FCS because hardware appends it
1908                  */
1909                 min_tx_space = (adapter->max_frame_size +
1910                                 sizeof(union e1000_adv_tx_desc) -
1911                                 ETH_FCS_LEN) * 2;
1912                 min_tx_space = ALIGN(min_tx_space, 1024);
1913                 min_tx_space >>= 10;
1914                 /* software strips receive CRC, so leave room for it */
1915                 min_rx_space = adapter->max_frame_size;
1916                 min_rx_space = ALIGN(min_rx_space, 1024);
1917                 min_rx_space >>= 10;
1918
1919                 /* If current Tx allocation is less than the min Tx FIFO size,
1920                  * and the min Tx FIFO size is less than the current Rx FIFO
1921                  * allocation, take space away from current Rx allocation
1922                  */
1923                 if (tx_space < min_tx_space &&
1924                     ((min_tx_space - tx_space) < pba)) {
1925                         pba = pba - (min_tx_space - tx_space);
1926
1927                         /* if short on Rx space, Rx wins and must trump Tx
1928                          * adjustment
1929                          */
1930                         if (pba < min_rx_space)
1931                                 pba = min_rx_space;
1932                 }
1933                 wr32(E1000_PBA, pba);
1934         }
1935
1936         /* flow control settings */
1937         /* The high water mark must be low enough to fit one full frame
1938          * (or the size used for early receive) above it in the Rx FIFO.
1939          * Set it to the lower of:
1940          * - 90% of the Rx FIFO size, or
1941          * - the full Rx FIFO size minus one full frame
1942          */
1943         hwm = min(((pba << 10) * 9 / 10),
1944                         ((pba << 10) - 2 * adapter->max_frame_size));
1945
1946         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1947         fc->low_water = fc->high_water - 16;
1948         fc->pause_time = 0xFFFF;
1949         fc->send_xon = 1;
1950         fc->current_mode = fc->requested_mode;
1951
1952         /* disable receive for all VFs and wait one second */
1953         if (adapter->vfs_allocated_count) {
1954                 int i;
1955
1956                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1957                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1958
1959                 /* ping all the active vfs to let them know we are going down */
1960                 igb_ping_all_vfs(adapter);
1961
1962                 /* disable transmits and receives */
1963                 wr32(E1000_VFRE, 0);
1964                 wr32(E1000_VFTE, 0);
1965         }
1966
1967         /* Allow time for pending master requests to run */
1968         hw->mac.ops.reset_hw(hw);
1969         wr32(E1000_WUC, 0);
1970
1971         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1972                 /* need to resetup here after media swap */
1973                 adapter->ei.get_invariants(hw);
1974                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1975         }
1976         if ((mac->type == e1000_82575) &&
1977             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1978                 igb_enable_mas(adapter);
1979         }
1980         if (hw->mac.ops.init_hw(hw))
1981                 dev_err(&pdev->dev, "Hardware Error\n");
1982
1983         /* Flow control settings reset on hardware reset, so guarantee flow
1984          * control is off when forcing speed.
1985          */
1986         if (!hw->mac.autoneg)
1987                 igb_force_mac_fc(hw);
1988
1989         igb_init_dmac(adapter, pba);
1990 #ifdef CONFIG_IGB_HWMON
1991         /* Re-initialize the thermal sensor on i350 devices. */
1992         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1993                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1994                         /* If present, re-initialize the external thermal sensor
1995                          * interface.
1996                          */
1997                         if (adapter->ets)
1998                                 mac->ops.init_thermal_sensor_thresh(hw);
1999                 }
2000         }
2001 #endif
2002         /* Re-establish EEE setting */
2003         if (hw->phy.media_type == e1000_media_type_copper) {
2004                 switch (mac->type) {
2005                 case e1000_i350:
2006                 case e1000_i210:
2007                 case e1000_i211:
2008                         igb_set_eee_i350(hw, true, true);
2009                         break;
2010                 case e1000_i354:
2011                         igb_set_eee_i354(hw, true, true);
2012                         break;
2013                 default:
2014                         break;
2015                 }
2016         }
2017         if (!netif_running(adapter->netdev))
2018                 igb_power_down_link(adapter);
2019
2020         igb_update_mng_vlan(adapter);
2021
2022         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2023         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2024
2025         /* Re-enable PTP, where applicable. */
2026         igb_ptp_reset(adapter);
2027
2028         igb_get_phy_info(hw);
2029 }
2030
2031 static netdev_features_t igb_fix_features(struct net_device *netdev,
2032         netdev_features_t features)
2033 {
2034         /* Since there is no support for separate Rx/Tx vlan accel
2035          * enable/disable make sure Tx flag is always in same state as Rx.
2036          */
2037         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2038                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2039         else
2040                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2041
2042         return features;
2043 }
2044
2045 static int igb_set_features(struct net_device *netdev,
2046         netdev_features_t features)
2047 {
2048         netdev_features_t changed = netdev->features ^ features;
2049         struct igb_adapter *adapter = netdev_priv(netdev);
2050
2051         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2052                 igb_vlan_mode(netdev, features);
2053
2054         if (!(changed & NETIF_F_RXALL))
2055                 return 0;
2056
2057         netdev->features = features;
2058
2059         if (netif_running(netdev))
2060                 igb_reinit_locked(adapter);
2061         else
2062                 igb_reset(adapter);
2063
2064         return 0;
2065 }
2066
2067 static const struct net_device_ops igb_netdev_ops = {
2068         .ndo_open               = igb_open,
2069         .ndo_stop               = igb_close,
2070         .ndo_start_xmit         = igb_xmit_frame,
2071         .ndo_get_stats64        = igb_get_stats64,
2072         .ndo_set_rx_mode        = igb_set_rx_mode,
2073         .ndo_set_mac_address    = igb_set_mac,
2074         .ndo_change_mtu         = igb_change_mtu,
2075         .ndo_do_ioctl           = igb_ioctl,
2076         .ndo_tx_timeout         = igb_tx_timeout,
2077         .ndo_validate_addr      = eth_validate_addr,
2078         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2079         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2080         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2081         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2082         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2083         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2084         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2085 #ifdef CONFIG_NET_POLL_CONTROLLER
2086         .ndo_poll_controller    = igb_netpoll,
2087 #endif
2088         .ndo_fix_features       = igb_fix_features,
2089         .ndo_set_features       = igb_set_features,
2090         .ndo_features_check     = passthru_features_check,
2091 };
2092
2093 /**
2094  * igb_set_fw_version - Configure version string for ethtool
2095  * @adapter: adapter struct
2096  **/
2097 void igb_set_fw_version(struct igb_adapter *adapter)
2098 {
2099         struct e1000_hw *hw = &adapter->hw;
2100         struct e1000_fw_version fw;
2101
2102         igb_get_fw_version(hw, &fw);
2103
2104         switch (hw->mac.type) {
2105         case e1000_i210:
2106         case e1000_i211:
2107                 if (!(igb_get_flash_presence_i210(hw))) {
2108                         snprintf(adapter->fw_version,
2109                                  sizeof(adapter->fw_version),
2110                                  "%2d.%2d-%d",
2111                                  fw.invm_major, fw.invm_minor,
2112                                  fw.invm_img_type);
2113                         break;
2114                 }
2115                 /* fall through */
2116         default:
2117                 /* if option is rom valid, display its version too */
2118                 if (fw.or_valid) {
2119                         snprintf(adapter->fw_version,
2120                                  sizeof(adapter->fw_version),
2121                                  "%d.%d, 0x%08x, %d.%d.%d",
2122                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2123                                  fw.or_major, fw.or_build, fw.or_patch);
2124                 /* no option rom */
2125                 } else if (fw.etrack_id != 0X0000) {
2126                         snprintf(adapter->fw_version,
2127                             sizeof(adapter->fw_version),
2128                             "%d.%d, 0x%08x",
2129                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2130                 } else {
2131                 snprintf(adapter->fw_version,
2132                     sizeof(adapter->fw_version),
2133                     "%d.%d.%d",
2134                     fw.eep_major, fw.eep_minor, fw.eep_build);
2135                 }
2136                 break;
2137         }
2138 }
2139
2140 /**
2141  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2142  *
2143  * @adapter: adapter struct
2144  **/
2145 static void igb_init_mas(struct igb_adapter *adapter)
2146 {
2147         struct e1000_hw *hw = &adapter->hw;
2148         u16 eeprom_data;
2149
2150         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2151         switch (hw->bus.func) {
2152         case E1000_FUNC_0:
2153                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2154                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2155                         netdev_info(adapter->netdev,
2156                                 "MAS: Enabling Media Autosense for port %d\n",
2157                                 hw->bus.func);
2158                 }
2159                 break;
2160         case E1000_FUNC_1:
2161                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2162                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2163                         netdev_info(adapter->netdev,
2164                                 "MAS: Enabling Media Autosense for port %d\n",
2165                                 hw->bus.func);
2166                 }
2167                 break;
2168         case E1000_FUNC_2:
2169                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2170                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2171                         netdev_info(adapter->netdev,
2172                                 "MAS: Enabling Media Autosense for port %d\n",
2173                                 hw->bus.func);
2174                 }
2175                 break;
2176         case E1000_FUNC_3:
2177                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2178                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2179                         netdev_info(adapter->netdev,
2180                                 "MAS: Enabling Media Autosense for port %d\n",
2181                                 hw->bus.func);
2182                 }
2183                 break;
2184         default:
2185                 /* Shouldn't get here */
2186                 netdev_err(adapter->netdev,
2187                         "MAS: Invalid port configuration, returning\n");
2188                 break;
2189         }
2190 }
2191
2192 /**
2193  *  igb_init_i2c - Init I2C interface
2194  *  @adapter: pointer to adapter structure
2195  **/
2196 static s32 igb_init_i2c(struct igb_adapter *adapter)
2197 {
2198         s32 status = 0;
2199
2200         /* I2C interface supported on i350 devices */
2201         if (adapter->hw.mac.type != e1000_i350)
2202                 return 0;
2203
2204         /* Initialize the i2c bus which is controlled by the registers.
2205          * This bus will use the i2c_algo_bit structue that implements
2206          * the protocol through toggling of the 4 bits in the register.
2207          */
2208         adapter->i2c_adap.owner = THIS_MODULE;
2209         adapter->i2c_algo = igb_i2c_algo;
2210         adapter->i2c_algo.data = adapter;
2211         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2212         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2213         strlcpy(adapter->i2c_adap.name, "igb BB",
2214                 sizeof(adapter->i2c_adap.name));
2215         status = i2c_bit_add_bus(&adapter->i2c_adap);
2216         return status;
2217 }
2218
2219 /**
2220  *  igb_probe - Device Initialization Routine
2221  *  @pdev: PCI device information struct
2222  *  @ent: entry in igb_pci_tbl
2223  *
2224  *  Returns 0 on success, negative on failure
2225  *
2226  *  igb_probe initializes an adapter identified by a pci_dev structure.
2227  *  The OS initialization, configuring of the adapter private structure,
2228  *  and a hardware reset occur.
2229  **/
2230 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2231 {
2232         struct net_device *netdev;
2233         struct igb_adapter *adapter;
2234         struct e1000_hw *hw;
2235         u16 eeprom_data = 0;
2236         s32 ret_val;
2237         static int global_quad_port_a; /* global quad port a indication */
2238         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2239         int err, pci_using_dac;
2240         u8 part_str[E1000_PBANUM_LENGTH];
2241
2242         /* Catch broken hardware that put the wrong VF device ID in
2243          * the PCIe SR-IOV capability.
2244          */
2245         if (pdev->is_virtfn) {
2246                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2247                         pci_name(pdev), pdev->vendor, pdev->device);
2248                 return -EINVAL;
2249         }
2250
2251         err = pci_enable_device_mem(pdev);
2252         if (err)
2253                 return err;
2254
2255         pci_using_dac = 0;
2256         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2257         if (!err) {
2258                 pci_using_dac = 1;
2259         } else {
2260                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2261                 if (err) {
2262                         dev_err(&pdev->dev,
2263                                 "No usable DMA configuration, aborting\n");
2264                         goto err_dma;
2265                 }
2266         }
2267
2268         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2269                                            IORESOURCE_MEM),
2270                                            igb_driver_name);
2271         if (err)
2272                 goto err_pci_reg;
2273
2274         pci_enable_pcie_error_reporting(pdev);
2275
2276         pci_set_master(pdev);
2277         pci_save_state(pdev);
2278
2279         err = -ENOMEM;
2280         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2281                                    IGB_MAX_TX_QUEUES);
2282         if (!netdev)
2283                 goto err_alloc_etherdev;
2284
2285         SET_NETDEV_DEV(netdev, &pdev->dev);
2286
2287         pci_set_drvdata(pdev, netdev);
2288         adapter = netdev_priv(netdev);
2289         adapter->netdev = netdev;
2290         adapter->pdev = pdev;
2291         hw = &adapter->hw;
2292         hw->back = adapter;
2293         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2294
2295         err = -EIO;
2296         adapter->io_addr = pci_iomap(pdev, 0, 0);
2297         if (!adapter->io_addr)
2298                 goto err_ioremap;
2299         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2300         hw->hw_addr = adapter->io_addr;
2301
2302         netdev->netdev_ops = &igb_netdev_ops;
2303         igb_set_ethtool_ops(netdev);
2304         netdev->watchdog_timeo = 5 * HZ;
2305
2306         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2307
2308         netdev->mem_start = pci_resource_start(pdev, 0);
2309         netdev->mem_end = pci_resource_end(pdev, 0);
2310
2311         /* PCI config space info */
2312         hw->vendor_id = pdev->vendor;
2313         hw->device_id = pdev->device;
2314         hw->revision_id = pdev->revision;
2315         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2316         hw->subsystem_device_id = pdev->subsystem_device;
2317
2318         /* Copy the default MAC, PHY and NVM function pointers */
2319         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2320         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2321         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2322         /* Initialize skew-specific constants */
2323         err = ei->get_invariants(hw);
2324         if (err)
2325                 goto err_sw_init;
2326
2327         /* setup the private structure */
2328         err = igb_sw_init(adapter);
2329         if (err)
2330                 goto err_sw_init;
2331
2332         igb_get_bus_info_pcie(hw);
2333
2334         hw->phy.autoneg_wait_to_complete = false;
2335
2336         /* Copper options */
2337         if (hw->phy.media_type == e1000_media_type_copper) {
2338                 hw->phy.mdix = AUTO_ALL_MODES;
2339                 hw->phy.disable_polarity_correction = false;
2340                 hw->phy.ms_type = e1000_ms_hw_default;
2341         }
2342
2343         if (igb_check_reset_block(hw))
2344                 dev_info(&pdev->dev,
2345                         "PHY reset is blocked due to SOL/IDER session.\n");
2346
2347         /* features is initialized to 0 in allocation, it might have bits
2348          * set by igb_sw_init so we should use an or instead of an
2349          * assignment.
2350          */
2351         netdev->features |= NETIF_F_SG |
2352                             NETIF_F_IP_CSUM |
2353                             NETIF_F_IPV6_CSUM |
2354                             NETIF_F_TSO |
2355                             NETIF_F_TSO6 |
2356                             NETIF_F_RXHASH |
2357                             NETIF_F_RXCSUM |
2358                             NETIF_F_HW_VLAN_CTAG_RX |
2359                             NETIF_F_HW_VLAN_CTAG_TX;
2360
2361         /* copy netdev features into list of user selectable features */
2362         netdev->hw_features |= netdev->features;
2363         netdev->hw_features |= NETIF_F_RXALL;
2364
2365         /* set this bit last since it cannot be part of hw_features */
2366         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2367
2368         netdev->vlan_features |= NETIF_F_TSO |
2369                                  NETIF_F_TSO6 |
2370                                  NETIF_F_IP_CSUM |
2371                                  NETIF_F_IPV6_CSUM |
2372                                  NETIF_F_SG;
2373
2374         netdev->priv_flags |= IFF_SUPP_NOFCS;
2375
2376         if (pci_using_dac) {
2377                 netdev->features |= NETIF_F_HIGHDMA;
2378                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2379         }
2380
2381         if (hw->mac.type >= e1000_82576) {
2382                 netdev->hw_features |= NETIF_F_SCTP_CRC;
2383                 netdev->features |= NETIF_F_SCTP_CRC;
2384         }
2385
2386         netdev->priv_flags |= IFF_UNICAST_FLT;
2387
2388         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2389
2390         /* before reading the NVM, reset the controller to put the device in a
2391          * known good starting state
2392          */
2393         hw->mac.ops.reset_hw(hw);
2394
2395         /* make sure the NVM is good , i211/i210 parts can have special NVM
2396          * that doesn't contain a checksum
2397          */
2398         switch (hw->mac.type) {
2399         case e1000_i210:
2400         case e1000_i211:
2401                 if (igb_get_flash_presence_i210(hw)) {
2402                         if (hw->nvm.ops.validate(hw) < 0) {
2403                                 dev_err(&pdev->dev,
2404                                         "The NVM Checksum Is Not Valid\n");
2405                                 err = -EIO;
2406                                 goto err_eeprom;
2407                         }
2408                 }
2409                 break;
2410         default:
2411                 if (hw->nvm.ops.validate(hw) < 0) {
2412                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2413                         err = -EIO;
2414                         goto err_eeprom;
2415                 }
2416                 break;
2417         }
2418
2419         /* copy the MAC address out of the NVM */
2420         if (hw->mac.ops.read_mac_addr(hw))
2421                 dev_err(&pdev->dev, "NVM Read Error\n");
2422
2423         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2424
2425         if (!is_valid_ether_addr(netdev->dev_addr)) {
2426                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2427                 err = -EIO;
2428                 goto err_eeprom;
2429         }
2430
2431         /* get firmware version for ethtool -i */
2432         igb_set_fw_version(adapter);
2433
2434         /* configure RXPBSIZE and TXPBSIZE */
2435         if (hw->mac.type == e1000_i210) {
2436                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2437                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2438         }
2439
2440         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2441                     (unsigned long) adapter);
2442         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2443                     (unsigned long) adapter);
2444
2445         INIT_WORK(&adapter->reset_task, igb_reset_task);
2446         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2447
2448         /* Initialize link properties that are user-changeable */
2449         adapter->fc_autoneg = true;
2450         hw->mac.autoneg = true;
2451         hw->phy.autoneg_advertised = 0x2f;
2452
2453         hw->fc.requested_mode = e1000_fc_default;
2454         hw->fc.current_mode = e1000_fc_default;
2455
2456         igb_validate_mdi_setting(hw);
2457
2458         /* By default, support wake on port A */
2459         if (hw->bus.func == 0)
2460                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2461
2462         /* Check the NVM for wake support on non-port A ports */
2463         if (hw->mac.type >= e1000_82580)
2464                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2465                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2466                                  &eeprom_data);
2467         else if (hw->bus.func == 1)
2468                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2469
2470         if (eeprom_data & IGB_EEPROM_APME)
2471                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2472
2473         /* now that we have the eeprom settings, apply the special cases where
2474          * the eeprom may be wrong or the board simply won't support wake on
2475          * lan on a particular port
2476          */
2477         switch (pdev->device) {
2478         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2479                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2480                 break;
2481         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2482         case E1000_DEV_ID_82576_FIBER:
2483         case E1000_DEV_ID_82576_SERDES:
2484                 /* Wake events only supported on port A for dual fiber
2485                  * regardless of eeprom setting
2486                  */
2487                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2488                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2489                 break;
2490         case E1000_DEV_ID_82576_QUAD_COPPER:
2491         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2492                 /* if quad port adapter, disable WoL on all but port A */
2493                 if (global_quad_port_a != 0)
2494                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2495                 else
2496                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2497                 /* Reset for multiple quad port adapters */
2498                 if (++global_quad_port_a == 4)
2499                         global_quad_port_a = 0;
2500                 break;
2501         default:
2502                 /* If the device can't wake, don't set software support */
2503                 if (!device_can_wakeup(&adapter->pdev->dev))
2504                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2505         }
2506
2507         /* initialize the wol settings based on the eeprom settings */
2508         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2509                 adapter->wol |= E1000_WUFC_MAG;
2510
2511         /* Some vendors want WoL disabled by default, but still supported */
2512         if ((hw->mac.type == e1000_i350) &&
2513             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2514                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2515                 adapter->wol = 0;
2516         }
2517
2518         device_set_wakeup_enable(&adapter->pdev->dev,
2519                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2520
2521         /* reset the hardware with the new settings */
2522         igb_reset(adapter);
2523
2524         /* Init the I2C interface */
2525         err = igb_init_i2c(adapter);
2526         if (err) {
2527                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2528                 goto err_eeprom;
2529         }
2530
2531         /* let the f/w know that the h/w is now under the control of the
2532          * driver.
2533          */
2534         igb_get_hw_control(adapter);
2535
2536         strcpy(netdev->name, "eth%d");
2537         err = register_netdev(netdev);
2538         if (err)
2539                 goto err_register;
2540
2541         /* carrier off reporting is important to ethtool even BEFORE open */
2542         netif_carrier_off(netdev);
2543
2544 #ifdef CONFIG_IGB_DCA
2545         if (dca_add_requester(&pdev->dev) == 0) {
2546                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2547                 dev_info(&pdev->dev, "DCA enabled\n");
2548                 igb_setup_dca(adapter);
2549         }
2550
2551 #endif
2552 #ifdef CONFIG_IGB_HWMON
2553         /* Initialize the thermal sensor on i350 devices. */
2554         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2555                 u16 ets_word;
2556
2557                 /* Read the NVM to determine if this i350 device supports an
2558                  * external thermal sensor.
2559                  */
2560                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2561                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2562                         adapter->ets = true;
2563                 else
2564                         adapter->ets = false;
2565                 if (igb_sysfs_init(adapter))
2566                         dev_err(&pdev->dev,
2567                                 "failed to allocate sysfs resources\n");
2568         } else {
2569                 adapter->ets = false;
2570         }
2571 #endif
2572         /* Check if Media Autosense is enabled */
2573         adapter->ei = *ei;
2574         if (hw->dev_spec._82575.mas_capable)
2575                 igb_init_mas(adapter);
2576
2577         /* do hw tstamp init after resetting */
2578         igb_ptp_init(adapter);
2579
2580         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2581         /* print bus type/speed/width info, not applicable to i354 */
2582         if (hw->mac.type != e1000_i354) {
2583                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2584                          netdev->name,
2585                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2586                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2587                            "unknown"),
2588                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2589                           "Width x4" :
2590                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2591                           "Width x2" :
2592                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2593                           "Width x1" : "unknown"), netdev->dev_addr);
2594         }
2595
2596         if ((hw->mac.type >= e1000_i210 ||
2597              igb_get_flash_presence_i210(hw))) {
2598                 ret_val = igb_read_part_string(hw, part_str,
2599                                                E1000_PBANUM_LENGTH);
2600         } else {
2601                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2602         }
2603
2604         if (ret_val)
2605                 strcpy(part_str, "Unknown");
2606         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2607         dev_info(&pdev->dev,
2608                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2609                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2610                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2611                 adapter->num_rx_queues, adapter->num_tx_queues);
2612         if (hw->phy.media_type == e1000_media_type_copper) {
2613                 switch (hw->mac.type) {
2614                 case e1000_i350:
2615                 case e1000_i210:
2616                 case e1000_i211:
2617                         /* Enable EEE for internal copper PHY devices */
2618                         err = igb_set_eee_i350(hw, true, true);
2619                         if ((!err) &&
2620                             (!hw->dev_spec._82575.eee_disable)) {
2621                                 adapter->eee_advert =
2622                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2623                                 adapter->flags |= IGB_FLAG_EEE;
2624                         }
2625                         break;
2626                 case e1000_i354:
2627                         if ((rd32(E1000_CTRL_EXT) &
2628                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2629                                 err = igb_set_eee_i354(hw, true, true);
2630                                 if ((!err) &&
2631                                         (!hw->dev_spec._82575.eee_disable)) {
2632                                         adapter->eee_advert =
2633                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2634                                         adapter->flags |= IGB_FLAG_EEE;
2635                                 }
2636                         }
2637                         break;
2638                 default:
2639                         break;
2640                 }
2641         }
2642         pm_runtime_put_noidle(&pdev->dev);
2643         return 0;
2644
2645 err_register:
2646         igb_release_hw_control(adapter);
2647         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2648 err_eeprom:
2649         if (!igb_check_reset_block(hw))
2650                 igb_reset_phy(hw);
2651
2652         if (hw->flash_address)
2653                 iounmap(hw->flash_address);
2654 err_sw_init:
2655         kfree(adapter->shadow_vfta);
2656         igb_clear_interrupt_scheme(adapter);
2657 #ifdef CONFIG_PCI_IOV
2658         igb_disable_sriov(pdev);
2659 #endif
2660         pci_iounmap(pdev, adapter->io_addr);
2661 err_ioremap:
2662         free_netdev(netdev);
2663 err_alloc_etherdev:
2664         pci_release_selected_regions(pdev,
2665                                      pci_select_bars(pdev, IORESOURCE_MEM));
2666 err_pci_reg:
2667 err_dma:
2668         pci_disable_device(pdev);
2669         return err;
2670 }
2671
2672 #ifdef CONFIG_PCI_IOV
2673 static int igb_disable_sriov(struct pci_dev *pdev)
2674 {
2675         struct net_device *netdev = pci_get_drvdata(pdev);
2676         struct igb_adapter *adapter = netdev_priv(netdev);
2677         struct e1000_hw *hw = &adapter->hw;
2678
2679         /* reclaim resources allocated to VFs */
2680         if (adapter->vf_data) {
2681                 /* disable iov and allow time for transactions to clear */
2682                 if (pci_vfs_assigned(pdev)) {
2683                         dev_warn(&pdev->dev,
2684                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2685                         return -EPERM;
2686                 } else {
2687                         pci_disable_sriov(pdev);
2688                         msleep(500);
2689                 }
2690
2691                 kfree(adapter->vf_data);
2692                 adapter->vf_data = NULL;
2693                 adapter->vfs_allocated_count = 0;
2694                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2695                 wrfl();
2696                 msleep(100);
2697                 dev_info(&pdev->dev, "IOV Disabled\n");
2698
2699                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2700                 adapter->flags |= IGB_FLAG_DMAC;
2701         }
2702
2703         return 0;
2704 }
2705
2706 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2707 {
2708         struct net_device *netdev = pci_get_drvdata(pdev);
2709         struct igb_adapter *adapter = netdev_priv(netdev);
2710         int old_vfs = pci_num_vf(pdev);
2711         int err = 0;
2712         int i;
2713
2714         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2715                 err = -EPERM;
2716                 goto out;
2717         }
2718         if (!num_vfs)
2719                 goto out;
2720
2721         if (old_vfs) {
2722                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2723                          old_vfs, max_vfs);
2724                 adapter->vfs_allocated_count = old_vfs;
2725         } else
2726                 adapter->vfs_allocated_count = num_vfs;
2727
2728         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2729                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2730
2731         /* if allocation failed then we do not support SR-IOV */
2732         if (!adapter->vf_data) {
2733                 adapter->vfs_allocated_count = 0;
2734                 dev_err(&pdev->dev,
2735                         "Unable to allocate memory for VF Data Storage\n");
2736                 err = -ENOMEM;
2737                 goto out;
2738         }
2739
2740         /* only call pci_enable_sriov() if no VFs are allocated already */
2741         if (!old_vfs) {
2742                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2743                 if (err)
2744                         goto err_out;
2745         }
2746         dev_info(&pdev->dev, "%d VFs allocated\n",
2747                  adapter->vfs_allocated_count);
2748         for (i = 0; i < adapter->vfs_allocated_count; i++)
2749                 igb_vf_configure(adapter, i);
2750
2751         /* DMA Coalescing is not supported in IOV mode. */
2752         adapter->flags &= ~IGB_FLAG_DMAC;
2753         goto out;
2754
2755 err_out:
2756         kfree(adapter->vf_data);
2757         adapter->vf_data = NULL;
2758         adapter->vfs_allocated_count = 0;
2759 out:
2760         return err;
2761 }
2762
2763 #endif
2764 /**
2765  *  igb_remove_i2c - Cleanup  I2C interface
2766  *  @adapter: pointer to adapter structure
2767  **/
2768 static void igb_remove_i2c(struct igb_adapter *adapter)
2769 {
2770         /* free the adapter bus structure */
2771         i2c_del_adapter(&adapter->i2c_adap);
2772 }
2773
2774 /**
2775  *  igb_remove - Device Removal Routine
2776  *  @pdev: PCI device information struct
2777  *
2778  *  igb_remove is called by the PCI subsystem to alert the driver
2779  *  that it should release a PCI device.  The could be caused by a
2780  *  Hot-Plug event, or because the driver is going to be removed from
2781  *  memory.
2782  **/
2783 static void igb_remove(struct pci_dev *pdev)
2784 {
2785         struct net_device *netdev = pci_get_drvdata(pdev);
2786         struct igb_adapter *adapter = netdev_priv(netdev);
2787         struct e1000_hw *hw = &adapter->hw;
2788
2789         pm_runtime_get_noresume(&pdev->dev);
2790 #ifdef CONFIG_IGB_HWMON
2791         igb_sysfs_exit(adapter);
2792 #endif
2793         igb_remove_i2c(adapter);
2794         igb_ptp_stop(adapter);
2795         /* The watchdog timer may be rescheduled, so explicitly
2796          * disable watchdog from being rescheduled.
2797          */
2798         set_bit(__IGB_DOWN, &adapter->state);
2799         del_timer_sync(&adapter->watchdog_timer);
2800         del_timer_sync(&adapter->phy_info_timer);
2801
2802         cancel_work_sync(&adapter->reset_task);
2803         cancel_work_sync(&adapter->watchdog_task);
2804
2805 #ifdef CONFIG_IGB_DCA
2806         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2807                 dev_info(&pdev->dev, "DCA disabled\n");
2808                 dca_remove_requester(&pdev->dev);
2809                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2810                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2811         }
2812 #endif
2813
2814         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2815          * would have already happened in close and is redundant.
2816          */
2817         igb_release_hw_control(adapter);
2818
2819 #ifdef CONFIG_PCI_IOV
2820         igb_disable_sriov(pdev);
2821 #endif
2822
2823         unregister_netdev(netdev);
2824
2825         igb_clear_interrupt_scheme(adapter);
2826
2827         pci_iounmap(pdev, adapter->io_addr);
2828         if (hw->flash_address)
2829                 iounmap(hw->flash_address);
2830         pci_release_selected_regions(pdev,
2831                                      pci_select_bars(pdev, IORESOURCE_MEM));
2832
2833         kfree(adapter->shadow_vfta);
2834         free_netdev(netdev);
2835
2836         pci_disable_pcie_error_reporting(pdev);
2837
2838         pci_disable_device(pdev);
2839 }
2840
2841 /**
2842  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2843  *  @adapter: board private structure to initialize
2844  *
2845  *  This function initializes the vf specific data storage and then attempts to
2846  *  allocate the VFs.  The reason for ordering it this way is because it is much
2847  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2848  *  the memory for the VFs.
2849  **/
2850 static void igb_probe_vfs(struct igb_adapter *adapter)
2851 {
2852 #ifdef CONFIG_PCI_IOV
2853         struct pci_dev *pdev = adapter->pdev;
2854         struct e1000_hw *hw = &adapter->hw;
2855
2856         /* Virtualization features not supported on i210 family. */
2857         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2858                 return;
2859
2860         /* Of the below we really only want the effect of getting
2861          * IGB_FLAG_HAS_MSIX set (if available), without which
2862          * igb_enable_sriov() has no effect.
2863          */
2864         igb_set_interrupt_capability(adapter, true);
2865         igb_reset_interrupt_capability(adapter);
2866
2867         pci_sriov_set_totalvfs(pdev, 7);
2868         igb_enable_sriov(pdev, max_vfs);
2869
2870 #endif /* CONFIG_PCI_IOV */
2871 }
2872
2873 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2874 {
2875         struct e1000_hw *hw = &adapter->hw;
2876         u32 max_rss_queues;
2877
2878         /* Determine the maximum number of RSS queues supported. */
2879         switch (hw->mac.type) {
2880         case e1000_i211:
2881                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2882                 break;
2883         case e1000_82575:
2884         case e1000_i210:
2885                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2886                 break;
2887         case e1000_i350:
2888                 /* I350 cannot do RSS and SR-IOV at the same time */
2889                 if (!!adapter->vfs_allocated_count) {
2890                         max_rss_queues = 1;
2891                         break;
2892                 }
2893                 /* fall through */
2894         case e1000_82576:
2895                 if (!!adapter->vfs_allocated_count) {
2896                         max_rss_queues = 2;
2897                         break;
2898                 }
2899                 /* fall through */
2900         case e1000_82580:
2901         case e1000_i354:
2902         default:
2903                 max_rss_queues = IGB_MAX_RX_QUEUES;
2904                 break;
2905         }
2906
2907         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2908
2909         igb_set_flag_queue_pairs(adapter, max_rss_queues);
2910 }
2911
2912 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2913                               const u32 max_rss_queues)
2914 {
2915         struct e1000_hw *hw = &adapter->hw;
2916
2917         /* Determine if we need to pair queues. */
2918         switch (hw->mac.type) {
2919         case e1000_82575:
2920         case e1000_i211:
2921                 /* Device supports enough interrupts without queue pairing. */
2922                 break;
2923         case e1000_82576:
2924                 /* If VFs are going to be allocated with RSS queues then we
2925                  * should pair the queues in order to conserve interrupts due
2926                  * to limited supply.
2927                  */
2928                 if ((adapter->rss_queues > 1) &&
2929                     (adapter->vfs_allocated_count > 6))
2930                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2931                 /* fall through */
2932         case e1000_82580:
2933         case e1000_i350:
2934         case e1000_i354:
2935         case e1000_i210:
2936         default:
2937                 /* If rss_queues > half of max_rss_queues, pair the queues in
2938                  * order to conserve interrupts due to limited supply.
2939                  */
2940                 if (adapter->rss_queues > (max_rss_queues / 2))
2941                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2942                 break;
2943         }
2944 }
2945
2946 /**
2947  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2948  *  @adapter: board private structure to initialize
2949  *
2950  *  igb_sw_init initializes the Adapter private data structure.
2951  *  Fields are initialized based on PCI device information and
2952  *  OS network device settings (MTU size).
2953  **/
2954 static int igb_sw_init(struct igb_adapter *adapter)
2955 {
2956         struct e1000_hw *hw = &adapter->hw;
2957         struct net_device *netdev = adapter->netdev;
2958         struct pci_dev *pdev = adapter->pdev;
2959
2960         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2961
2962         /* set default ring sizes */
2963         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2964         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2965
2966         /* set default ITR values */
2967         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2968         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2969
2970         /* set default work limits */
2971         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2972
2973         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2974                                   VLAN_HLEN;
2975         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2976
2977         spin_lock_init(&adapter->stats64_lock);
2978 #ifdef CONFIG_PCI_IOV
2979         switch (hw->mac.type) {
2980         case e1000_82576:
2981         case e1000_i350:
2982                 if (max_vfs > 7) {
2983                         dev_warn(&pdev->dev,
2984                                  "Maximum of 7 VFs per PF, using max\n");
2985                         max_vfs = adapter->vfs_allocated_count = 7;
2986                 } else
2987                         adapter->vfs_allocated_count = max_vfs;
2988                 if (adapter->vfs_allocated_count)
2989                         dev_warn(&pdev->dev,
2990                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2991                 break;
2992         default:
2993                 break;
2994         }
2995 #endif /* CONFIG_PCI_IOV */
2996
2997         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
2998         adapter->flags |= IGB_FLAG_HAS_MSIX;
2999
3000         igb_probe_vfs(adapter);
3001
3002         igb_init_queue_configuration(adapter);
3003
3004         /* Setup and initialize a copy of the hw vlan table array */
3005         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3006                                        GFP_ATOMIC);
3007
3008         /* This call may decrease the number of queues */
3009         if (igb_init_interrupt_scheme(adapter, true)) {
3010                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3011                 return -ENOMEM;
3012         }
3013
3014         /* Explicitly disable IRQ since the NIC can be in any state. */
3015         igb_irq_disable(adapter);
3016
3017         if (hw->mac.type >= e1000_i350)
3018                 adapter->flags &= ~IGB_FLAG_DMAC;
3019
3020         set_bit(__IGB_DOWN, &adapter->state);
3021         return 0;
3022 }
3023
3024 /**
3025  *  igb_open - Called when a network interface is made active
3026  *  @netdev: network interface device structure
3027  *
3028  *  Returns 0 on success, negative value on failure
3029  *
3030  *  The open entry point is called when a network interface is made
3031  *  active by the system (IFF_UP).  At this point all resources needed
3032  *  for transmit and receive operations are allocated, the interrupt
3033  *  handler is registered with the OS, the watchdog timer is started,
3034  *  and the stack is notified that the interface is ready.
3035  **/
3036 static int __igb_open(struct net_device *netdev, bool resuming)
3037 {
3038         struct igb_adapter *adapter = netdev_priv(netdev);
3039         struct e1000_hw *hw = &adapter->hw;
3040         struct pci_dev *pdev = adapter->pdev;
3041         int err;
3042         int i;
3043
3044         /* disallow open during test */
3045         if (test_bit(__IGB_TESTING, &adapter->state)) {
3046                 WARN_ON(resuming);
3047                 return -EBUSY;
3048         }
3049
3050         if (!resuming)
3051                 pm_runtime_get_sync(&pdev->dev);
3052
3053         netif_carrier_off(netdev);
3054
3055         /* allocate transmit descriptors */
3056         err = igb_setup_all_tx_resources(adapter);
3057         if (err)
3058                 goto err_setup_tx;
3059
3060         /* allocate receive descriptors */
3061         err = igb_setup_all_rx_resources(adapter);
3062         if (err)
3063                 goto err_setup_rx;
3064
3065         igb_power_up_link(adapter);
3066
3067         /* before we allocate an interrupt, we must be ready to handle it.
3068          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3069          * as soon as we call pci_request_irq, so we have to setup our
3070          * clean_rx handler before we do so.
3071          */
3072         igb_configure(adapter);
3073
3074         err = igb_request_irq(adapter);
3075         if (err)
3076                 goto err_req_irq;
3077
3078         /* Notify the stack of the actual queue counts. */
3079         err = netif_set_real_num_tx_queues(adapter->netdev,
3080                                            adapter->num_tx_queues);
3081         if (err)
3082                 goto err_set_queues;
3083
3084         err = netif_set_real_num_rx_queues(adapter->netdev,
3085                                            adapter->num_rx_queues);
3086         if (err)
3087                 goto err_set_queues;
3088
3089         /* From here on the code is the same as igb_up() */
3090         clear_bit(__IGB_DOWN, &adapter->state);
3091
3092         for (i = 0; i < adapter->num_q_vectors; i++)
3093                 napi_enable(&(adapter->q_vector[i]->napi));
3094
3095         /* Clear any pending interrupts. */
3096         rd32(E1000_ICR);
3097
3098         igb_irq_enable(adapter);
3099
3100         /* notify VFs that reset has been completed */
3101         if (adapter->vfs_allocated_count) {
3102                 u32 reg_data = rd32(E1000_CTRL_EXT);
3103
3104                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3105                 wr32(E1000_CTRL_EXT, reg_data);
3106         }
3107
3108         netif_tx_start_all_queues(netdev);
3109
3110         if (!resuming)
3111                 pm_runtime_put(&pdev->dev);
3112
3113         /* start the watchdog. */
3114         hw->mac.get_link_status = 1;
3115         schedule_work(&adapter->watchdog_task);
3116
3117         return 0;
3118
3119 err_set_queues:
3120         igb_free_irq(adapter);
3121 err_req_irq:
3122         igb_release_hw_control(adapter);
3123         igb_power_down_link(adapter);
3124         igb_free_all_rx_resources(adapter);
3125 err_setup_rx:
3126         igb_free_all_tx_resources(adapter);
3127 err_setup_tx:
3128         igb_reset(adapter);
3129         if (!resuming)
3130                 pm_runtime_put(&pdev->dev);
3131
3132         return err;
3133 }
3134
3135 static int igb_open(struct net_device *netdev)
3136 {
3137         return __igb_open(netdev, false);
3138 }
3139
3140 /**
3141  *  igb_close - Disables a network interface
3142  *  @netdev: network interface device structure
3143  *
3144  *  Returns 0, this is not allowed to fail
3145  *
3146  *  The close entry point is called when an interface is de-activated
3147  *  by the OS.  The hardware is still under the driver's control, but
3148  *  needs to be disabled.  A global MAC reset is issued to stop the
3149  *  hardware, and all transmit and receive resources are freed.
3150  **/
3151 static int __igb_close(struct net_device *netdev, bool suspending)
3152 {
3153         struct igb_adapter *adapter = netdev_priv(netdev);
3154         struct pci_dev *pdev = adapter->pdev;
3155
3156         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3157
3158         if (!suspending)
3159                 pm_runtime_get_sync(&pdev->dev);
3160
3161         igb_down(adapter);
3162         igb_free_irq(adapter);
3163
3164         igb_free_all_tx_resources(adapter);
3165         igb_free_all_rx_resources(adapter);
3166
3167         if (!suspending)
3168                 pm_runtime_put_sync(&pdev->dev);
3169         return 0;
3170 }
3171
3172 static int igb_close(struct net_device *netdev)
3173 {
3174         return __igb_close(netdev, false);
3175 }
3176
3177 /**
3178  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3179  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3180  *
3181  *  Return 0 on success, negative on failure
3182  **/
3183 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3184 {
3185         struct device *dev = tx_ring->dev;
3186         int size;
3187
3188         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3189
3190         tx_ring->tx_buffer_info = vzalloc(size);
3191         if (!tx_ring->tx_buffer_info)
3192                 goto err;
3193
3194         /* round up to nearest 4K */
3195         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3196         tx_ring->size = ALIGN(tx_ring->size, 4096);
3197
3198         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3199                                            &tx_ring->dma, GFP_KERNEL);
3200         if (!tx_ring->desc)
3201                 goto err;
3202
3203         tx_ring->next_to_use = 0;
3204         tx_ring->next_to_clean = 0;
3205
3206         return 0;
3207
3208 err:
3209         vfree(tx_ring->tx_buffer_info);
3210         tx_ring->tx_buffer_info = NULL;
3211         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3212         return -ENOMEM;
3213 }
3214
3215 /**
3216  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3217  *                               (Descriptors) for all queues
3218  *  @adapter: board private structure
3219  *
3220  *  Return 0 on success, negative on failure
3221  **/
3222 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3223 {
3224         struct pci_dev *pdev = adapter->pdev;
3225         int i, err = 0;
3226
3227         for (i = 0; i < adapter->num_tx_queues; i++) {
3228                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3229                 if (err) {
3230                         dev_err(&pdev->dev,
3231                                 "Allocation for Tx Queue %u failed\n", i);
3232                         for (i--; i >= 0; i--)
3233                                 igb_free_tx_resources(adapter->tx_ring[i]);
3234                         break;
3235                 }
3236         }
3237
3238         return err;
3239 }
3240
3241 /**
3242  *  igb_setup_tctl - configure the transmit control registers
3243  *  @adapter: Board private structure
3244  **/
3245 void igb_setup_tctl(struct igb_adapter *adapter)
3246 {
3247         struct e1000_hw *hw = &adapter->hw;
3248         u32 tctl;
3249
3250         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3251         wr32(E1000_TXDCTL(0), 0);
3252
3253         /* Program the Transmit Control Register */
3254         tctl = rd32(E1000_TCTL);
3255         tctl &= ~E1000_TCTL_CT;
3256         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3257                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3258
3259         igb_config_collision_dist(hw);
3260
3261         /* Enable transmits */
3262         tctl |= E1000_TCTL_EN;
3263
3264         wr32(E1000_TCTL, tctl);
3265 }
3266
3267 /**
3268  *  igb_configure_tx_ring - Configure transmit ring after Reset
3269  *  @adapter: board private structure
3270  *  @ring: tx ring to configure
3271  *
3272  *  Configure a transmit ring after a reset.
3273  **/
3274 void igb_configure_tx_ring(struct igb_adapter *adapter,
3275                            struct igb_ring *ring)
3276 {
3277         struct e1000_hw *hw = &adapter->hw;
3278         u32 txdctl = 0;
3279         u64 tdba = ring->dma;
3280         int reg_idx = ring->reg_idx;
3281
3282         /* disable the queue */
3283         wr32(E1000_TXDCTL(reg_idx), 0);
3284         wrfl();
3285         mdelay(10);
3286
3287         wr32(E1000_TDLEN(reg_idx),
3288              ring->count * sizeof(union e1000_adv_tx_desc));
3289         wr32(E1000_TDBAL(reg_idx),
3290              tdba & 0x00000000ffffffffULL);
3291         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3292
3293         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3294         wr32(E1000_TDH(reg_idx), 0);
3295         writel(0, ring->tail);
3296
3297         txdctl |= IGB_TX_PTHRESH;
3298         txdctl |= IGB_TX_HTHRESH << 8;
3299         txdctl |= IGB_TX_WTHRESH << 16;
3300
3301         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3302         wr32(E1000_TXDCTL(reg_idx), txdctl);
3303 }
3304
3305 /**
3306  *  igb_configure_tx - Configure transmit Unit after Reset
3307  *  @adapter: board private structure
3308  *
3309  *  Configure the Tx unit of the MAC after a reset.
3310  **/
3311 static void igb_configure_tx(struct igb_adapter *adapter)
3312 {
3313         int i;
3314
3315         for (i = 0; i < adapter->num_tx_queues; i++)
3316                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3317 }
3318
3319 /**
3320  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3321  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3322  *
3323  *  Returns 0 on success, negative on failure
3324  **/
3325 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3326 {
3327         struct device *dev = rx_ring->dev;
3328         int size;
3329
3330         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3331
3332         rx_ring->rx_buffer_info = vzalloc(size);
3333         if (!rx_ring->rx_buffer_info)
3334                 goto err;
3335
3336         /* Round up to nearest 4K */
3337         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3338         rx_ring->size = ALIGN(rx_ring->size, 4096);
3339
3340         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3341                                            &rx_ring->dma, GFP_KERNEL);
3342         if (!rx_ring->desc)
3343                 goto err;
3344
3345         rx_ring->next_to_alloc = 0;
3346         rx_ring->next_to_clean = 0;
3347         rx_ring->next_to_use = 0;
3348
3349         return 0;
3350
3351 err:
3352         vfree(rx_ring->rx_buffer_info);
3353         rx_ring->rx_buffer_info = NULL;
3354         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3355         return -ENOMEM;
3356 }
3357
3358 /**
3359  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3360  *                               (Descriptors) for all queues
3361  *  @adapter: board private structure
3362  *
3363  *  Return 0 on success, negative on failure
3364  **/
3365 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3366 {
3367         struct pci_dev *pdev = adapter->pdev;
3368         int i, err = 0;
3369
3370         for (i = 0; i < adapter->num_rx_queues; i++) {
3371                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3372                 if (err) {
3373                         dev_err(&pdev->dev,
3374                                 "Allocation for Rx Queue %u failed\n", i);
3375                         for (i--; i >= 0; i--)
3376                                 igb_free_rx_resources(adapter->rx_ring[i]);
3377                         break;
3378                 }
3379         }
3380
3381         return err;
3382 }
3383
3384 /**
3385  *  igb_setup_mrqc - configure the multiple receive queue control registers
3386  *  @adapter: Board private structure
3387  **/
3388 static void igb_setup_mrqc(struct igb_adapter *adapter)
3389 {
3390         struct e1000_hw *hw = &adapter->hw;
3391         u32 mrqc, rxcsum;
3392         u32 j, num_rx_queues;
3393         u32 rss_key[10];
3394
3395         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3396         for (j = 0; j < 10; j++)
3397                 wr32(E1000_RSSRK(j), rss_key[j]);
3398
3399         num_rx_queues = adapter->rss_queues;
3400
3401         switch (hw->mac.type) {
3402         case e1000_82576:
3403                 /* 82576 supports 2 RSS queues for SR-IOV */
3404                 if (adapter->vfs_allocated_count)
3405                         num_rx_queues = 2;
3406                 break;
3407         default:
3408                 break;
3409         }
3410
3411         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3412                 for (j = 0; j < IGB_RETA_SIZE; j++)
3413                         adapter->rss_indir_tbl[j] =
3414                         (j * num_rx_queues) / IGB_RETA_SIZE;
3415                 adapter->rss_indir_tbl_init = num_rx_queues;
3416         }
3417         igb_write_rss_indir_tbl(adapter);
3418
3419         /* Disable raw packet checksumming so that RSS hash is placed in
3420          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3421          * offloads as they are enabled by default
3422          */
3423         rxcsum = rd32(E1000_RXCSUM);
3424         rxcsum |= E1000_RXCSUM_PCSD;
3425
3426         if (adapter->hw.mac.type >= e1000_82576)
3427                 /* Enable Receive Checksum Offload for SCTP */
3428                 rxcsum |= E1000_RXCSUM_CRCOFL;
3429
3430         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3431         wr32(E1000_RXCSUM, rxcsum);
3432
3433         /* Generate RSS hash based on packet types, TCP/UDP
3434          * port numbers and/or IPv4/v6 src and dst addresses
3435          */
3436         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3437                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3438                E1000_MRQC_RSS_FIELD_IPV6 |
3439                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3440                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3441
3442         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3443                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3444         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3445                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3446
3447         /* If VMDq is enabled then we set the appropriate mode for that, else
3448          * we default to RSS so that an RSS hash is calculated per packet even
3449          * if we are only using one queue
3450          */
3451         if (adapter->vfs_allocated_count) {
3452                 if (hw->mac.type > e1000_82575) {
3453                         /* Set the default pool for the PF's first queue */
3454                         u32 vtctl = rd32(E1000_VT_CTL);
3455
3456                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3457                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3458                         vtctl |= adapter->vfs_allocated_count <<
3459                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3460                         wr32(E1000_VT_CTL, vtctl);
3461                 }
3462                 if (adapter->rss_queues > 1)
3463                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3464                 else
3465                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3466         } else {
3467                 if (hw->mac.type != e1000_i211)
3468                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3469         }
3470         igb_vmm_control(adapter);
3471
3472         wr32(E1000_MRQC, mrqc);
3473 }
3474
3475 /**
3476  *  igb_setup_rctl - configure the receive control registers
3477  *  @adapter: Board private structure
3478  **/
3479 void igb_setup_rctl(struct igb_adapter *adapter)
3480 {
3481         struct e1000_hw *hw = &adapter->hw;
3482         u32 rctl;
3483
3484         rctl = rd32(E1000_RCTL);
3485
3486         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3487         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3488
3489         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3490                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3491
3492         /* enable stripping of CRC. It's unlikely this will break BMC
3493          * redirection as it did with e1000. Newer features require
3494          * that the HW strips the CRC.
3495          */
3496         rctl |= E1000_RCTL_SECRC;
3497
3498         /* disable store bad packets and clear size bits. */
3499         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3500
3501         /* enable LPE to prevent packets larger than max_frame_size */
3502         rctl |= E1000_RCTL_LPE;
3503
3504         /* disable queue 0 to prevent tail write w/o re-config */
3505         wr32(E1000_RXDCTL(0), 0);
3506
3507         /* Attention!!!  For SR-IOV PF driver operations you must enable
3508          * queue drop for all VF and PF queues to prevent head of line blocking
3509          * if an un-trusted VF does not provide descriptors to hardware.
3510          */
3511         if (adapter->vfs_allocated_count) {
3512                 /* set all queue drop enable bits */
3513                 wr32(E1000_QDE, ALL_QUEUES);
3514         }
3515
3516         /* This is useful for sniffing bad packets. */
3517         if (adapter->netdev->features & NETIF_F_RXALL) {
3518                 /* UPE and MPE will be handled by normal PROMISC logic
3519                  * in e1000e_set_rx_mode
3520                  */
3521                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3522                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3523                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3524
3525                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3526                           E1000_RCTL_DPF | /* Allow filtered pause */
3527                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3528                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3529                  * and that breaks VLANs.
3530                  */
3531         }
3532
3533         wr32(E1000_RCTL, rctl);
3534 }
3535
3536 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3537                                    int vfn)
3538 {
3539         struct e1000_hw *hw = &adapter->hw;
3540         u32 vmolr;
3541
3542         /* if it isn't the PF check to see if VFs are enabled and
3543          * increase the size to support vlan tags
3544          */
3545         if (vfn < adapter->vfs_allocated_count &&
3546             adapter->vf_data[vfn].vlans_enabled)
3547                 size += VLAN_TAG_SIZE;
3548
3549         vmolr = rd32(E1000_VMOLR(vfn));
3550         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3551         vmolr |= size | E1000_VMOLR_LPE;
3552         wr32(E1000_VMOLR(vfn), vmolr);
3553
3554         return 0;
3555 }
3556
3557 /**
3558  *  igb_rlpml_set - set maximum receive packet size
3559  *  @adapter: board private structure
3560  *
3561  *  Configure maximum receivable packet size.
3562  **/
3563 static void igb_rlpml_set(struct igb_adapter *adapter)
3564 {
3565         u32 max_frame_size = adapter->max_frame_size;
3566         struct e1000_hw *hw = &adapter->hw;
3567         u16 pf_id = adapter->vfs_allocated_count;
3568
3569         if (pf_id) {
3570                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3571                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3572                  * to our max jumbo frame size, in case we need to enable
3573                  * jumbo frames on one of the rings later.
3574                  * This will not pass over-length frames into the default
3575                  * queue because it's gated by the VMOLR.RLPML.
3576                  */
3577                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3578         }
3579
3580         wr32(E1000_RLPML, max_frame_size);
3581 }
3582
3583 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3584                                  int vfn, bool aupe)
3585 {
3586         struct e1000_hw *hw = &adapter->hw;
3587         u32 vmolr;
3588
3589         /* This register exists only on 82576 and newer so if we are older then
3590          * we should exit and do nothing
3591          */
3592         if (hw->mac.type < e1000_82576)
3593                 return;
3594
3595         vmolr = rd32(E1000_VMOLR(vfn));
3596         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3597         if (hw->mac.type == e1000_i350) {
3598                 u32 dvmolr;
3599
3600                 dvmolr = rd32(E1000_DVMOLR(vfn));
3601                 dvmolr |= E1000_DVMOLR_STRVLAN;
3602                 wr32(E1000_DVMOLR(vfn), dvmolr);
3603         }
3604         if (aupe)
3605                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3606         else
3607                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3608
3609         /* clear all bits that might not be set */
3610         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3611
3612         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3613                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3614         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3615          * multicast packets
3616          */
3617         if (vfn <= adapter->vfs_allocated_count)
3618                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3619
3620         wr32(E1000_VMOLR(vfn), vmolr);
3621 }
3622
3623 /**
3624  *  igb_configure_rx_ring - Configure a receive ring after Reset
3625  *  @adapter: board private structure
3626  *  @ring: receive ring to be configured
3627  *
3628  *  Configure the Rx unit of the MAC after a reset.
3629  **/
3630 void igb_configure_rx_ring(struct igb_adapter *adapter,
3631                            struct igb_ring *ring)
3632 {
3633         struct e1000_hw *hw = &adapter->hw;
3634         u64 rdba = ring->dma;
3635         int reg_idx = ring->reg_idx;
3636         u32 srrctl = 0, rxdctl = 0;
3637
3638         /* disable the queue */
3639         wr32(E1000_RXDCTL(reg_idx), 0);
3640
3641         /* Set DMA base address registers */
3642         wr32(E1000_RDBAL(reg_idx),
3643              rdba & 0x00000000ffffffffULL);
3644         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3645         wr32(E1000_RDLEN(reg_idx),
3646              ring->count * sizeof(union e1000_adv_rx_desc));
3647
3648         /* initialize head and tail */
3649         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3650         wr32(E1000_RDH(reg_idx), 0);
3651         writel(0, ring->tail);
3652
3653         /* set descriptor configuration */
3654         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3655         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3656         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3657         if (hw->mac.type >= e1000_82580)
3658                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3659         /* Only set Drop Enable if we are supporting multiple queues */
3660         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3661                 srrctl |= E1000_SRRCTL_DROP_EN;
3662
3663         wr32(E1000_SRRCTL(reg_idx), srrctl);
3664
3665         /* set filtering for VMDQ pools */
3666         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3667
3668         rxdctl |= IGB_RX_PTHRESH;
3669         rxdctl |= IGB_RX_HTHRESH << 8;
3670         rxdctl |= IGB_RX_WTHRESH << 16;
3671
3672         /* enable receive descriptor fetching */
3673         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3674         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3675 }
3676
3677 /**
3678  *  igb_configure_rx - Configure receive Unit after Reset
3679  *  @adapter: board private structure
3680  *
3681  *  Configure the Rx unit of the MAC after a reset.
3682  **/
3683 static void igb_configure_rx(struct igb_adapter *adapter)
3684 {
3685         int i;
3686
3687         /* set UTA to appropriate mode */
3688         igb_set_uta(adapter);
3689
3690         /* set the correct pool for the PF default MAC address in entry 0 */
3691         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3692                          adapter->vfs_allocated_count);
3693
3694         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3695          * the Base and Length of the Rx Descriptor Ring
3696          */
3697         for (i = 0; i < adapter->num_rx_queues; i++)
3698                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3699 }
3700
3701 /**
3702  *  igb_free_tx_resources - Free Tx Resources per Queue
3703  *  @tx_ring: Tx descriptor ring for a specific queue
3704  *
3705  *  Free all transmit software resources
3706  **/
3707 void igb_free_tx_resources(struct igb_ring *tx_ring)
3708 {
3709         igb_clean_tx_ring(tx_ring);
3710
3711         vfree(tx_ring->tx_buffer_info);
3712         tx_ring->tx_buffer_info = NULL;
3713
3714         /* if not set, then don't free */
3715         if (!tx_ring->desc)
3716                 return;
3717
3718         dma_free_coherent(tx_ring->dev, tx_ring->size,
3719                           tx_ring->desc, tx_ring->dma);
3720
3721         tx_ring->desc = NULL;
3722 }
3723
3724 /**
3725  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3726  *  @adapter: board private structure
3727  *
3728  *  Free all transmit software resources
3729  **/
3730 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3731 {
3732         int i;
3733
3734         for (i = 0; i < adapter->num_tx_queues; i++)
3735                 if (adapter->tx_ring[i])
3736                         igb_free_tx_resources(adapter->tx_ring[i]);
3737 }
3738
3739 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3740                                     struct igb_tx_buffer *tx_buffer)
3741 {
3742         if (tx_buffer->skb) {
3743                 dev_kfree_skb_any(tx_buffer->skb);
3744                 if (dma_unmap_len(tx_buffer, len))
3745                         dma_unmap_single(ring->dev,
3746                                          dma_unmap_addr(tx_buffer, dma),
3747                                          dma_unmap_len(tx_buffer, len),
3748                                          DMA_TO_DEVICE);
3749         } else if (dma_unmap_len(tx_buffer, len)) {
3750                 dma_unmap_page(ring->dev,
3751                                dma_unmap_addr(tx_buffer, dma),
3752                                dma_unmap_len(tx_buffer, len),
3753                                DMA_TO_DEVICE);
3754         }
3755         tx_buffer->next_to_watch = NULL;
3756         tx_buffer->skb = NULL;
3757         dma_unmap_len_set(tx_buffer, len, 0);
3758         /* buffer_info must be completely set up in the transmit path */
3759 }
3760
3761 /**
3762  *  igb_clean_tx_ring - Free Tx Buffers
3763  *  @tx_ring: ring to be cleaned
3764  **/
3765 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3766 {
3767         struct igb_tx_buffer *buffer_info;
3768         unsigned long size;
3769         u16 i;
3770
3771         if (!tx_ring->tx_buffer_info)
3772                 return;
3773         /* Free all the Tx ring sk_buffs */
3774
3775         for (i = 0; i < tx_ring->count; i++) {
3776                 buffer_info = &tx_ring->tx_buffer_info[i];
3777                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3778         }
3779
3780         netdev_tx_reset_queue(txring_txq(tx_ring));
3781
3782         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3783         memset(tx_ring->tx_buffer_info, 0, size);
3784
3785         /* Zero out the descriptor ring */
3786         memset(tx_ring->desc, 0, tx_ring->size);
3787
3788         tx_ring->next_to_use = 0;
3789         tx_ring->next_to_clean = 0;
3790 }
3791
3792 /**
3793  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3794  *  @adapter: board private structure
3795  **/
3796 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3797 {
3798         int i;
3799
3800         for (i = 0; i < adapter->num_tx_queues; i++)
3801                 if (adapter->tx_ring[i])
3802                         igb_clean_tx_ring(adapter->tx_ring[i]);
3803 }
3804
3805 /**
3806  *  igb_free_rx_resources - Free Rx Resources
3807  *  @rx_ring: ring to clean the resources from
3808  *
3809  *  Free all receive software resources
3810  **/
3811 void igb_free_rx_resources(struct igb_ring *rx_ring)
3812 {
3813         igb_clean_rx_ring(rx_ring);
3814
3815         vfree(rx_ring->rx_buffer_info);
3816         rx_ring->rx_buffer_info = NULL;
3817
3818         /* if not set, then don't free */
3819         if (!rx_ring->desc)
3820                 return;
3821
3822         dma_free_coherent(rx_ring->dev, rx_ring->size,
3823                           rx_ring->desc, rx_ring->dma);
3824
3825         rx_ring->desc = NULL;
3826 }
3827
3828 /**
3829  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3830  *  @adapter: board private structure
3831  *
3832  *  Free all receive software resources
3833  **/
3834 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3835 {
3836         int i;
3837
3838         for (i = 0; i < adapter->num_rx_queues; i++)
3839                 if (adapter->rx_ring[i])
3840                         igb_free_rx_resources(adapter->rx_ring[i]);
3841 }
3842
3843 /**
3844  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3845  *  @rx_ring: ring to free buffers from
3846  **/
3847 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3848 {
3849         unsigned long size;
3850         u16 i;
3851
3852         if (rx_ring->skb)
3853                 dev_kfree_skb(rx_ring->skb);
3854         rx_ring->skb = NULL;
3855
3856         if (!rx_ring->rx_buffer_info)
3857                 return;
3858
3859         /* Free all the Rx ring sk_buffs */
3860         for (i = 0; i < rx_ring->count; i++) {
3861                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3862
3863                 if (!buffer_info->page)
3864                         continue;
3865
3866                 dma_unmap_page(rx_ring->dev,
3867                                buffer_info->dma,
3868                                PAGE_SIZE,
3869                                DMA_FROM_DEVICE);
3870                 __free_page(buffer_info->page);
3871
3872                 buffer_info->page = NULL;
3873         }
3874
3875         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3876         memset(rx_ring->rx_buffer_info, 0, size);
3877
3878         /* Zero out the descriptor ring */
3879         memset(rx_ring->desc, 0, rx_ring->size);
3880
3881         rx_ring->next_to_alloc = 0;
3882         rx_ring->next_to_clean = 0;
3883         rx_ring->next_to_use = 0;
3884 }
3885
3886 /**
3887  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3888  *  @adapter: board private structure
3889  **/
3890 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3891 {
3892         int i;
3893
3894         for (i = 0; i < adapter->num_rx_queues; i++)
3895                 if (adapter->rx_ring[i])
3896                         igb_clean_rx_ring(adapter->rx_ring[i]);
3897 }
3898
3899 /**
3900  *  igb_set_mac - Change the Ethernet Address of the NIC
3901  *  @netdev: network interface device structure
3902  *  @p: pointer to an address structure
3903  *
3904  *  Returns 0 on success, negative on failure
3905  **/
3906 static int igb_set_mac(struct net_device *netdev, void *p)
3907 {
3908         struct igb_adapter *adapter = netdev_priv(netdev);
3909         struct e1000_hw *hw = &adapter->hw;
3910         struct sockaddr *addr = p;
3911
3912         if (!is_valid_ether_addr(addr->sa_data))
3913                 return -EADDRNOTAVAIL;
3914
3915         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3916         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3917
3918         /* set the correct pool for the new PF MAC address in entry 0 */
3919         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3920                          adapter->vfs_allocated_count);
3921
3922         return 0;
3923 }
3924
3925 /**
3926  *  igb_write_mc_addr_list - write multicast addresses to MTA
3927  *  @netdev: network interface device structure
3928  *
3929  *  Writes multicast address list to the MTA hash table.
3930  *  Returns: -ENOMEM on failure
3931  *           0 on no addresses written
3932  *           X on writing X addresses to MTA
3933  **/
3934 static int igb_write_mc_addr_list(struct net_device *netdev)
3935 {
3936         struct igb_adapter *adapter = netdev_priv(netdev);
3937         struct e1000_hw *hw = &adapter->hw;
3938         struct netdev_hw_addr *ha;
3939         u8  *mta_list;
3940         int i;
3941
3942         if (netdev_mc_empty(netdev)) {
3943                 /* nothing to program, so clear mc list */
3944                 igb_update_mc_addr_list(hw, NULL, 0);
3945                 igb_restore_vf_multicasts(adapter);
3946                 return 0;
3947         }
3948
3949         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3950         if (!mta_list)
3951                 return -ENOMEM;
3952
3953         /* The shared function expects a packed array of only addresses. */
3954         i = 0;
3955         netdev_for_each_mc_addr(ha, netdev)
3956                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3957
3958         igb_update_mc_addr_list(hw, mta_list, i);
3959         kfree(mta_list);
3960
3961         return netdev_mc_count(netdev);
3962 }
3963
3964 /**
3965  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3966  *  @netdev: network interface device structure
3967  *
3968  *  Writes unicast address list to the RAR table.
3969  *  Returns: -ENOMEM on failure/insufficient address space
3970  *           0 on no addresses written
3971  *           X on writing X addresses to the RAR table
3972  **/
3973 static int igb_write_uc_addr_list(struct net_device *netdev)
3974 {
3975         struct igb_adapter *adapter = netdev_priv(netdev);
3976         struct e1000_hw *hw = &adapter->hw;
3977         unsigned int vfn = adapter->vfs_allocated_count;
3978         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3979         int count = 0;
3980
3981         /* return ENOMEM indicating insufficient memory for addresses */
3982         if (netdev_uc_count(netdev) > rar_entries)
3983                 return -ENOMEM;
3984
3985         if (!netdev_uc_empty(netdev) && rar_entries) {
3986                 struct netdev_hw_addr *ha;
3987
3988                 netdev_for_each_uc_addr(ha, netdev) {
3989                         if (!rar_entries)
3990                                 break;
3991                         igb_rar_set_qsel(adapter, ha->addr,
3992                                          rar_entries--,
3993                                          vfn);
3994                         count++;
3995                 }
3996         }
3997         /* write the addresses in reverse order to avoid write combining */
3998         for (; rar_entries > 0 ; rar_entries--) {
3999                 wr32(E1000_RAH(rar_entries), 0);
4000                 wr32(E1000_RAL(rar_entries), 0);
4001         }
4002         wrfl();
4003
4004         return count;
4005 }
4006
4007 /**
4008  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4009  *  @netdev: network interface device structure
4010  *
4011  *  The set_rx_mode entry point is called whenever the unicast or multicast
4012  *  address lists or the network interface flags are updated.  This routine is
4013  *  responsible for configuring the hardware for proper unicast, multicast,
4014  *  promiscuous mode, and all-multi behavior.
4015  **/
4016 static void igb_set_rx_mode(struct net_device *netdev)
4017 {
4018         struct igb_adapter *adapter = netdev_priv(netdev);
4019         struct e1000_hw *hw = &adapter->hw;
4020         unsigned int vfn = adapter->vfs_allocated_count;
4021         u32 rctl, vmolr = 0;
4022         int count;
4023
4024         /* Check for Promiscuous and All Multicast modes */
4025         rctl = rd32(E1000_RCTL);
4026
4027         /* clear the effected bits */
4028         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4029
4030         if (netdev->flags & IFF_PROMISC) {
4031                 /* retain VLAN HW filtering if in VT mode */
4032                 if (adapter->vfs_allocated_count)
4033                         rctl |= E1000_RCTL_VFE;
4034                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4035                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4036         } else {
4037                 if (netdev->flags & IFF_ALLMULTI) {
4038                         rctl |= E1000_RCTL_MPE;
4039                         vmolr |= E1000_VMOLR_MPME;
4040                 } else {
4041                         /* Write addresses to the MTA, if the attempt fails
4042                          * then we should just turn on promiscuous mode so
4043                          * that we can at least receive multicast traffic
4044                          */
4045                         count = igb_write_mc_addr_list(netdev);
4046                         if (count < 0) {
4047                                 rctl |= E1000_RCTL_MPE;
4048                                 vmolr |= E1000_VMOLR_MPME;
4049                         } else if (count) {
4050                                 vmolr |= E1000_VMOLR_ROMPE;
4051                         }
4052                 }
4053                 /* Write addresses to available RAR registers, if there is not
4054                  * sufficient space to store all the addresses then enable
4055                  * unicast promiscuous mode
4056                  */
4057                 count = igb_write_uc_addr_list(netdev);
4058                 if (count < 0) {
4059                         rctl |= E1000_RCTL_UPE;
4060                         vmolr |= E1000_VMOLR_ROPE;
4061                 }
4062                 rctl |= E1000_RCTL_VFE;
4063         }
4064         wr32(E1000_RCTL, rctl);
4065
4066         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4067          * the VMOLR to enable the appropriate modes.  Without this workaround
4068          * we will have issues with VLAN tag stripping not being done for frames
4069          * that are only arriving because we are the default pool
4070          */
4071         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4072                 return;
4073
4074         vmolr |= rd32(E1000_VMOLR(vfn)) &
4075                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4076         wr32(E1000_VMOLR(vfn), vmolr);
4077         igb_restore_vf_multicasts(adapter);
4078 }
4079
4080 static void igb_check_wvbr(struct igb_adapter *adapter)
4081 {
4082         struct e1000_hw *hw = &adapter->hw;
4083         u32 wvbr = 0;
4084
4085         switch (hw->mac.type) {
4086         case e1000_82576:
4087         case e1000_i350:
4088                 wvbr = rd32(E1000_WVBR);
4089                 if (!wvbr)
4090                         return;
4091                 break;
4092         default:
4093                 break;
4094         }
4095
4096         adapter->wvbr |= wvbr;
4097 }
4098
4099 #define IGB_STAGGERED_QUEUE_OFFSET 8
4100
4101 static void igb_spoof_check(struct igb_adapter *adapter)
4102 {
4103         int j;
4104
4105         if (!adapter->wvbr)
4106                 return;
4107
4108         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4109                 if (adapter->wvbr & (1 << j) ||
4110                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4111                         dev_warn(&adapter->pdev->dev,
4112                                 "Spoof event(s) detected on VF %d\n", j);
4113                         adapter->wvbr &=
4114                                 ~((1 << j) |
4115                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4116                 }
4117         }
4118 }
4119
4120 /* Need to wait a few seconds after link up to get diagnostic information from
4121  * the phy
4122  */
4123 static void igb_update_phy_info(unsigned long data)
4124 {
4125         struct igb_adapter *adapter = (struct igb_adapter *) data;
4126         igb_get_phy_info(&adapter->hw);
4127 }
4128
4129 /**
4130  *  igb_has_link - check shared code for link and determine up/down
4131  *  @adapter: pointer to driver private info
4132  **/
4133 bool igb_has_link(struct igb_adapter *adapter)
4134 {
4135         struct e1000_hw *hw = &adapter->hw;
4136         bool link_active = false;
4137
4138         /* get_link_status is set on LSC (link status) interrupt or
4139          * rx sequence error interrupt.  get_link_status will stay
4140          * false until the e1000_check_for_link establishes link
4141          * for copper adapters ONLY
4142          */
4143         switch (hw->phy.media_type) {
4144         case e1000_media_type_copper:
4145                 if (!hw->mac.get_link_status)
4146                         return true;
4147         case e1000_media_type_internal_serdes:
4148                 hw->mac.ops.check_for_link(hw);
4149                 link_active = !hw->mac.get_link_status;
4150                 break;
4151         default:
4152         case e1000_media_type_unknown:
4153                 break;
4154         }
4155
4156         if (((hw->mac.type == e1000_i210) ||
4157              (hw->mac.type == e1000_i211)) &&
4158              (hw->phy.id == I210_I_PHY_ID)) {
4159                 if (!netif_carrier_ok(adapter->netdev)) {
4160                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4161                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4162                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4163                         adapter->link_check_timeout = jiffies;
4164                 }
4165         }
4166
4167         return link_active;
4168 }
4169
4170 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4171 {
4172         bool ret = false;
4173         u32 ctrl_ext, thstat;
4174
4175         /* check for thermal sensor event on i350 copper only */
4176         if (hw->mac.type == e1000_i350) {
4177                 thstat = rd32(E1000_THSTAT);
4178                 ctrl_ext = rd32(E1000_CTRL_EXT);
4179
4180                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4181                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4182                         ret = !!(thstat & event);
4183         }
4184
4185         return ret;
4186 }
4187
4188 /**
4189  *  igb_check_lvmmc - check for malformed packets received
4190  *  and indicated in LVMMC register
4191  *  @adapter: pointer to adapter
4192  **/
4193 static void igb_check_lvmmc(struct igb_adapter *adapter)
4194 {
4195         struct e1000_hw *hw = &adapter->hw;
4196         u32 lvmmc;
4197
4198         lvmmc = rd32(E1000_LVMMC);
4199         if (lvmmc) {
4200                 if (unlikely(net_ratelimit())) {
4201                         netdev_warn(adapter->netdev,
4202                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4203                                     lvmmc);
4204                 }
4205         }
4206 }
4207
4208 /**
4209  *  igb_watchdog - Timer Call-back
4210  *  @data: pointer to adapter cast into an unsigned long
4211  **/
4212 static void igb_watchdog(unsigned long data)
4213 {
4214         struct igb_adapter *adapter = (struct igb_adapter *)data;
4215         /* Do the rest outside of interrupt context */
4216         schedule_work(&adapter->watchdog_task);
4217 }
4218
4219 static void igb_watchdog_task(struct work_struct *work)
4220 {
4221         struct igb_adapter *adapter = container_of(work,
4222                                                    struct igb_adapter,
4223                                                    watchdog_task);
4224         struct e1000_hw *hw = &adapter->hw;
4225         struct e1000_phy_info *phy = &hw->phy;
4226         struct net_device *netdev = adapter->netdev;
4227         u32 link;
4228         int i;
4229         u32 connsw;
4230
4231         link = igb_has_link(adapter);
4232
4233         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4234                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4235                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4236                 else
4237                         link = false;
4238         }
4239
4240         /* Force link down if we have fiber to swap to */
4241         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4242                 if (hw->phy.media_type == e1000_media_type_copper) {
4243                         connsw = rd32(E1000_CONNSW);
4244                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4245                                 link = 0;
4246                 }
4247         }
4248         if (link) {
4249                 /* Perform a reset if the media type changed. */
4250                 if (hw->dev_spec._82575.media_changed) {
4251                         hw->dev_spec._82575.media_changed = false;
4252                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4253                         igb_reset(adapter);
4254                 }
4255                 /* Cancel scheduled suspend requests. */
4256                 pm_runtime_resume(netdev->dev.parent);
4257
4258                 if (!netif_carrier_ok(netdev)) {
4259                         u32 ctrl;
4260
4261                         hw->mac.ops.get_speed_and_duplex(hw,
4262                                                          &adapter->link_speed,
4263                                                          &adapter->link_duplex);
4264
4265                         ctrl = rd32(E1000_CTRL);
4266                         /* Links status message must follow this format */
4267                         netdev_info(netdev,
4268                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4269                                netdev->name,
4270                                adapter->link_speed,
4271                                adapter->link_duplex == FULL_DUPLEX ?
4272                                "Full" : "Half",
4273                                (ctrl & E1000_CTRL_TFCE) &&
4274                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4275                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4276                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4277
4278                         /* disable EEE if enabled */
4279                         if ((adapter->flags & IGB_FLAG_EEE) &&
4280                                 (adapter->link_duplex == HALF_DUPLEX)) {
4281                                 dev_info(&adapter->pdev->dev,
4282                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4283                                 adapter->hw.dev_spec._82575.eee_disable = true;
4284                                 adapter->flags &= ~IGB_FLAG_EEE;
4285                         }
4286
4287                         /* check if SmartSpeed worked */
4288                         igb_check_downshift(hw);
4289                         if (phy->speed_downgraded)
4290                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4291
4292                         /* check for thermal sensor event */
4293                         if (igb_thermal_sensor_event(hw,
4294                             E1000_THSTAT_LINK_THROTTLE))
4295                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4296
4297                         /* adjust timeout factor according to speed/duplex */
4298                         adapter->tx_timeout_factor = 1;
4299                         switch (adapter->link_speed) {
4300                         case SPEED_10:
4301                                 adapter->tx_timeout_factor = 14;
4302                                 break;
4303                         case SPEED_100:
4304                                 /* maybe add some timeout factor ? */
4305                                 break;
4306                         }
4307
4308                         netif_carrier_on(netdev);
4309
4310                         igb_ping_all_vfs(adapter);
4311                         igb_check_vf_rate_limit(adapter);
4312
4313                         /* link state has changed, schedule phy info update */
4314                         if (!test_bit(__IGB_DOWN, &adapter->state))
4315                                 mod_timer(&adapter->phy_info_timer,
4316                                           round_jiffies(jiffies + 2 * HZ));
4317                 }
4318         } else {
4319                 if (netif_carrier_ok(netdev)) {
4320                         adapter->link_speed = 0;
4321                         adapter->link_duplex = 0;
4322
4323                         /* check for thermal sensor event */
4324                         if (igb_thermal_sensor_event(hw,
4325                             E1000_THSTAT_PWR_DOWN)) {
4326                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4327                         }
4328
4329                         /* Links status message must follow this format */
4330                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4331                                netdev->name);
4332                         netif_carrier_off(netdev);
4333
4334                         igb_ping_all_vfs(adapter);
4335
4336                         /* link state has changed, schedule phy info update */
4337                         if (!test_bit(__IGB_DOWN, &adapter->state))
4338                                 mod_timer(&adapter->phy_info_timer,
4339                                           round_jiffies(jiffies + 2 * HZ));
4340
4341                         /* link is down, time to check for alternate media */
4342                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4343                                 igb_check_swap_media(adapter);
4344                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4345                                         schedule_work(&adapter->reset_task);
4346                                         /* return immediately */
4347                                         return;
4348                                 }
4349                         }
4350                         pm_schedule_suspend(netdev->dev.parent,
4351                                             MSEC_PER_SEC * 5);
4352
4353                 /* also check for alternate media here */
4354                 } else if (!netif_carrier_ok(netdev) &&
4355                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4356                         igb_check_swap_media(adapter);
4357                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4358                                 schedule_work(&adapter->reset_task);
4359                                 /* return immediately */
4360                                 return;
4361                         }
4362                 }
4363         }
4364
4365         spin_lock(&adapter->stats64_lock);
4366         igb_update_stats(adapter, &adapter->stats64);
4367         spin_unlock(&adapter->stats64_lock);
4368
4369         for (i = 0; i < adapter->num_tx_queues; i++) {
4370                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4371                 if (!netif_carrier_ok(netdev)) {
4372                         /* We've lost link, so the controller stops DMA,
4373                          * but we've got queued Tx work that's never going
4374                          * to get done, so reset controller to flush Tx.
4375                          * (Do the reset outside of interrupt context).
4376                          */
4377                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4378                                 adapter->tx_timeout_count++;
4379                                 schedule_work(&adapter->reset_task);
4380                                 /* return immediately since reset is imminent */
4381                                 return;
4382                         }
4383                 }
4384
4385                 /* Force detection of hung controller every watchdog period */
4386                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4387         }
4388
4389         /* Cause software interrupt to ensure Rx ring is cleaned */
4390         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4391                 u32 eics = 0;
4392
4393                 for (i = 0; i < adapter->num_q_vectors; i++)
4394                         eics |= adapter->q_vector[i]->eims_value;
4395                 wr32(E1000_EICS, eics);
4396         } else {
4397                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4398         }
4399
4400         igb_spoof_check(adapter);
4401         igb_ptp_rx_hang(adapter);
4402
4403         /* Check LVMMC register on i350/i354 only */
4404         if ((adapter->hw.mac.type == e1000_i350) ||
4405             (adapter->hw.mac.type == e1000_i354))
4406                 igb_check_lvmmc(adapter);
4407
4408         /* Reset the timer */
4409         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4410                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4411                         mod_timer(&adapter->watchdog_timer,
4412                                   round_jiffies(jiffies +  HZ));
4413                 else
4414                         mod_timer(&adapter->watchdog_timer,
4415                                   round_jiffies(jiffies + 2 * HZ));
4416         }
4417 }
4418
4419 enum latency_range {
4420         lowest_latency = 0,
4421         low_latency = 1,
4422         bulk_latency = 2,
4423         latency_invalid = 255
4424 };
4425
4426 /**
4427  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4428  *  @q_vector: pointer to q_vector
4429  *
4430  *  Stores a new ITR value based on strictly on packet size.  This
4431  *  algorithm is less sophisticated than that used in igb_update_itr,
4432  *  due to the difficulty of synchronizing statistics across multiple
4433  *  receive rings.  The divisors and thresholds used by this function
4434  *  were determined based on theoretical maximum wire speed and testing
4435  *  data, in order to minimize response time while increasing bulk
4436  *  throughput.
4437  *  This functionality is controlled by ethtool's coalescing settings.
4438  *  NOTE:  This function is called only when operating in a multiqueue
4439  *         receive environment.
4440  **/
4441 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4442 {
4443         int new_val = q_vector->itr_val;
4444         int avg_wire_size = 0;
4445         struct igb_adapter *adapter = q_vector->adapter;
4446         unsigned int packets;
4447
4448         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4449          * ints/sec - ITR timer value of 120 ticks.
4450          */
4451         if (adapter->link_speed != SPEED_1000) {
4452                 new_val = IGB_4K_ITR;
4453                 goto set_itr_val;
4454         }
4455
4456         packets = q_vector->rx.total_packets;
4457         if (packets)
4458                 avg_wire_size = q_vector->rx.total_bytes / packets;
4459
4460         packets = q_vector->tx.total_packets;
4461         if (packets)
4462                 avg_wire_size = max_t(u32, avg_wire_size,
4463                                       q_vector->tx.total_bytes / packets);
4464
4465         /* if avg_wire_size isn't set no work was done */
4466         if (!avg_wire_size)
4467                 goto clear_counts;
4468
4469         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4470         avg_wire_size += 24;
4471
4472         /* Don't starve jumbo frames */
4473         avg_wire_size = min(avg_wire_size, 3000);
4474
4475         /* Give a little boost to mid-size frames */
4476         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4477                 new_val = avg_wire_size / 3;
4478         else
4479                 new_val = avg_wire_size / 2;
4480
4481         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4482         if (new_val < IGB_20K_ITR &&
4483             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4484              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4485                 new_val = IGB_20K_ITR;
4486
4487 set_itr_val:
4488         if (new_val != q_vector->itr_val) {
4489                 q_vector->itr_val = new_val;
4490                 q_vector->set_itr = 1;
4491         }
4492 clear_counts:
4493         q_vector->rx.total_bytes = 0;
4494         q_vector->rx.total_packets = 0;
4495         q_vector->tx.total_bytes = 0;
4496         q_vector->tx.total_packets = 0;
4497 }
4498
4499 /**
4500  *  igb_update_itr - update the dynamic ITR value based on statistics
4501  *  @q_vector: pointer to q_vector
4502  *  @ring_container: ring info to update the itr for
4503  *
4504  *  Stores a new ITR value based on packets and byte
4505  *  counts during the last interrupt.  The advantage of per interrupt
4506  *  computation is faster updates and more accurate ITR for the current
4507  *  traffic pattern.  Constants in this function were computed
4508  *  based on theoretical maximum wire speed and thresholds were set based
4509  *  on testing data as well as attempting to minimize response time
4510  *  while increasing bulk throughput.
4511  *  This functionality is controlled by ethtool's coalescing settings.
4512  *  NOTE:  These calculations are only valid when operating in a single-
4513  *         queue environment.
4514  **/
4515 static void igb_update_itr(struct igb_q_vector *q_vector,
4516                            struct igb_ring_container *ring_container)
4517 {
4518         unsigned int packets = ring_container->total_packets;
4519         unsigned int bytes = ring_container->total_bytes;
4520         u8 itrval = ring_container->itr;
4521
4522         /* no packets, exit with status unchanged */
4523         if (packets == 0)
4524                 return;
4525
4526         switch (itrval) {
4527         case lowest_latency:
4528                 /* handle TSO and jumbo frames */
4529                 if (bytes/packets > 8000)
4530                         itrval = bulk_latency;
4531                 else if ((packets < 5) && (bytes > 512))
4532                         itrval = low_latency;
4533                 break;
4534         case low_latency:  /* 50 usec aka 20000 ints/s */
4535                 if (bytes > 10000) {
4536                         /* this if handles the TSO accounting */
4537                         if (bytes/packets > 8000)
4538                                 itrval = bulk_latency;
4539                         else if ((packets < 10) || ((bytes/packets) > 1200))
4540                                 itrval = bulk_latency;
4541                         else if ((packets > 35))
4542                                 itrval = lowest_latency;
4543                 } else if (bytes/packets > 2000) {
4544                         itrval = bulk_latency;
4545                 } else if (packets <= 2 && bytes < 512) {
4546                         itrval = lowest_latency;
4547                 }
4548                 break;
4549         case bulk_latency: /* 250 usec aka 4000 ints/s */
4550                 if (bytes > 25000) {
4551                         if (packets > 35)
4552                                 itrval = low_latency;
4553                 } else if (bytes < 1500) {
4554                         itrval = low_latency;
4555                 }
4556                 break;
4557         }
4558
4559         /* clear work counters since we have the values we need */
4560         ring_container->total_bytes = 0;
4561         ring_container->total_packets = 0;
4562
4563         /* write updated itr to ring container */
4564         ring_container->itr = itrval;
4565 }
4566
4567 static void igb_set_itr(struct igb_q_vector *q_vector)
4568 {
4569         struct igb_adapter *adapter = q_vector->adapter;
4570         u32 new_itr = q_vector->itr_val;
4571         u8 current_itr = 0;
4572
4573         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4574         if (adapter->link_speed != SPEED_1000) {
4575                 current_itr = 0;
4576                 new_itr = IGB_4K_ITR;
4577                 goto set_itr_now;
4578         }
4579
4580         igb_update_itr(q_vector, &q_vector->tx);
4581         igb_update_itr(q_vector, &q_vector->rx);
4582
4583         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4584
4585         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4586         if (current_itr == lowest_latency &&
4587             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4588              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4589                 current_itr = low_latency;
4590
4591         switch (current_itr) {
4592         /* counts and packets in update_itr are dependent on these numbers */
4593         case lowest_latency:
4594                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4595                 break;
4596         case low_latency:
4597                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4598                 break;
4599         case bulk_latency:
4600                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4601                 break;
4602         default:
4603                 break;
4604         }
4605
4606 set_itr_now:
4607         if (new_itr != q_vector->itr_val) {
4608                 /* this attempts to bias the interrupt rate towards Bulk
4609                  * by adding intermediate steps when interrupt rate is
4610                  * increasing
4611                  */
4612                 new_itr = new_itr > q_vector->itr_val ?
4613                           max((new_itr * q_vector->itr_val) /
4614                           (new_itr + (q_vector->itr_val >> 2)),
4615                           new_itr) : new_itr;
4616                 /* Don't write the value here; it resets the adapter's
4617                  * internal timer, and causes us to delay far longer than
4618                  * we should between interrupts.  Instead, we write the ITR
4619                  * value at the beginning of the next interrupt so the timing
4620                  * ends up being correct.
4621                  */
4622                 q_vector->itr_val = new_itr;
4623                 q_vector->set_itr = 1;
4624         }
4625 }
4626
4627 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4628                             u32 type_tucmd, u32 mss_l4len_idx)
4629 {
4630         struct e1000_adv_tx_context_desc *context_desc;
4631         u16 i = tx_ring->next_to_use;
4632
4633         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4634
4635         i++;
4636         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4637
4638         /* set bits to identify this as an advanced context descriptor */
4639         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4640
4641         /* For 82575, context index must be unique per ring. */
4642         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4643                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4644
4645         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4646         context_desc->seqnum_seed       = 0;
4647         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4648         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4649 }
4650
4651 static int igb_tso(struct igb_ring *tx_ring,
4652                    struct igb_tx_buffer *first,
4653                    u8 *hdr_len)
4654 {
4655         struct sk_buff *skb = first->skb;
4656         u32 vlan_macip_lens, type_tucmd;
4657         u32 mss_l4len_idx, l4len;
4658         int err;
4659
4660         if (skb->ip_summed != CHECKSUM_PARTIAL)
4661                 return 0;
4662
4663         if (!skb_is_gso(skb))
4664                 return 0;
4665
4666         err = skb_cow_head(skb, 0);
4667         if (err < 0)
4668                 return err;
4669
4670         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4671         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4672
4673         if (first->protocol == htons(ETH_P_IP)) {
4674                 struct iphdr *iph = ip_hdr(skb);
4675                 iph->tot_len = 0;
4676                 iph->check = 0;
4677                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4678                                                          iph->daddr, 0,
4679                                                          IPPROTO_TCP,
4680                                                          0);
4681                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4682                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4683                                    IGB_TX_FLAGS_CSUM |
4684                                    IGB_TX_FLAGS_IPV4;
4685         } else if (skb_is_gso_v6(skb)) {
4686                 ipv6_hdr(skb)->payload_len = 0;
4687                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4688                                                        &ipv6_hdr(skb)->daddr,
4689                                                        0, IPPROTO_TCP, 0);
4690                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4691                                    IGB_TX_FLAGS_CSUM;
4692         }
4693
4694         /* compute header lengths */
4695         l4len = tcp_hdrlen(skb);
4696         *hdr_len = skb_transport_offset(skb) + l4len;
4697
4698         /* update gso size and bytecount with header size */
4699         first->gso_segs = skb_shinfo(skb)->gso_segs;
4700         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4701
4702         /* MSS L4LEN IDX */
4703         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4704         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4705
4706         /* VLAN MACLEN IPLEN */
4707         vlan_macip_lens = skb_network_header_len(skb);
4708         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4709         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4710
4711         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4712
4713         return 1;
4714 }
4715
4716 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4717 {
4718         struct sk_buff *skb = first->skb;
4719         u32 vlan_macip_lens = 0;
4720         u32 mss_l4len_idx = 0;
4721         u32 type_tucmd = 0;
4722
4723         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4724                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4725                         return;
4726         } else {
4727                 u8 l4_hdr = 0;
4728
4729                 switch (first->protocol) {
4730                 case htons(ETH_P_IP):
4731                         vlan_macip_lens |= skb_network_header_len(skb);
4732                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4733                         l4_hdr = ip_hdr(skb)->protocol;
4734                         break;
4735                 case htons(ETH_P_IPV6):
4736                         vlan_macip_lens |= skb_network_header_len(skb);
4737                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4738                         break;
4739                 default:
4740                         if (unlikely(net_ratelimit())) {
4741                                 dev_warn(tx_ring->dev,
4742                                          "partial checksum but proto=%x!\n",
4743                                          first->protocol);
4744                         }
4745                         break;
4746                 }
4747
4748                 switch (l4_hdr) {
4749                 case IPPROTO_TCP:
4750                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4751                         mss_l4len_idx = tcp_hdrlen(skb) <<
4752                                         E1000_ADVTXD_L4LEN_SHIFT;
4753                         break;
4754                 case IPPROTO_SCTP:
4755                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4756                         mss_l4len_idx = sizeof(struct sctphdr) <<
4757                                         E1000_ADVTXD_L4LEN_SHIFT;
4758                         break;
4759                 case IPPROTO_UDP:
4760                         mss_l4len_idx = sizeof(struct udphdr) <<
4761                                         E1000_ADVTXD_L4LEN_SHIFT;
4762                         break;
4763                 default:
4764                         if (unlikely(net_ratelimit())) {
4765                                 dev_warn(tx_ring->dev,
4766                                          "partial checksum but l4 proto=%x!\n",
4767                                          l4_hdr);
4768                         }
4769                         break;
4770                 }
4771
4772                 /* update TX checksum flag */
4773                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4774         }
4775
4776         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4777         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4778
4779         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4780 }
4781
4782 #define IGB_SET_FLAG(_input, _flag, _result) \
4783         ((_flag <= _result) ? \
4784          ((u32)(_input & _flag) * (_result / _flag)) : \
4785          ((u32)(_input & _flag) / (_flag / _result)))
4786
4787 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4788 {
4789         /* set type for advanced descriptor with frame checksum insertion */
4790         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4791                        E1000_ADVTXD_DCMD_DEXT |
4792                        E1000_ADVTXD_DCMD_IFCS;
4793
4794         /* set HW vlan bit if vlan is present */
4795         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4796                                  (E1000_ADVTXD_DCMD_VLE));
4797
4798         /* set segmentation bits for TSO */
4799         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4800                                  (E1000_ADVTXD_DCMD_TSE));
4801
4802         /* set timestamp bit if present */
4803         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4804                                  (E1000_ADVTXD_MAC_TSTAMP));
4805
4806         /* insert frame checksum */
4807         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4808
4809         return cmd_type;
4810 }
4811
4812 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4813                                  union e1000_adv_tx_desc *tx_desc,
4814                                  u32 tx_flags, unsigned int paylen)
4815 {
4816         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4817
4818         /* 82575 requires a unique index per ring */
4819         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4820                 olinfo_status |= tx_ring->reg_idx << 4;
4821
4822         /* insert L4 checksum */
4823         olinfo_status |= IGB_SET_FLAG(tx_flags,
4824                                       IGB_TX_FLAGS_CSUM,
4825                                       (E1000_TXD_POPTS_TXSM << 8));
4826
4827         /* insert IPv4 checksum */
4828         olinfo_status |= IGB_SET_FLAG(tx_flags,
4829                                       IGB_TX_FLAGS_IPV4,
4830                                       (E1000_TXD_POPTS_IXSM << 8));
4831
4832         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4833 }
4834
4835 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4836 {
4837         struct net_device *netdev = tx_ring->netdev;
4838
4839         netif_stop_subqueue(netdev, tx_ring->queue_index);
4840
4841         /* Herbert's original patch had:
4842          *  smp_mb__after_netif_stop_queue();
4843          * but since that doesn't exist yet, just open code it.
4844          */
4845         smp_mb();
4846
4847         /* We need to check again in a case another CPU has just
4848          * made room available.
4849          */
4850         if (igb_desc_unused(tx_ring) < size)
4851                 return -EBUSY;
4852
4853         /* A reprieve! */
4854         netif_wake_subqueue(netdev, tx_ring->queue_index);
4855
4856         u64_stats_update_begin(&tx_ring->tx_syncp2);
4857         tx_ring->tx_stats.restart_queue2++;
4858         u64_stats_update_end(&tx_ring->tx_syncp2);
4859
4860         return 0;
4861 }
4862
4863 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4864 {
4865         if (igb_desc_unused(tx_ring) >= size)
4866                 return 0;
4867         return __igb_maybe_stop_tx(tx_ring, size);
4868 }
4869
4870 static void igb_tx_map(struct igb_ring *tx_ring,
4871                        struct igb_tx_buffer *first,
4872                        const u8 hdr_len)
4873 {
4874         struct sk_buff *skb = first->skb;
4875         struct igb_tx_buffer *tx_buffer;
4876         union e1000_adv_tx_desc *tx_desc;
4877         struct skb_frag_struct *frag;
4878         dma_addr_t dma;
4879         unsigned int data_len, size;
4880         u32 tx_flags = first->tx_flags;
4881         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4882         u16 i = tx_ring->next_to_use;
4883
4884         tx_desc = IGB_TX_DESC(tx_ring, i);
4885
4886         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4887
4888         size = skb_headlen(skb);
4889         data_len = skb->data_len;
4890
4891         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4892
4893         tx_buffer = first;
4894
4895         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4896                 if (dma_mapping_error(tx_ring->dev, dma))
4897                         goto dma_error;
4898
4899                 /* record length, and DMA address */
4900                 dma_unmap_len_set(tx_buffer, len, size);
4901                 dma_unmap_addr_set(tx_buffer, dma, dma);
4902
4903                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4904
4905                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4906                         tx_desc->read.cmd_type_len =
4907                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4908
4909                         i++;
4910                         tx_desc++;
4911                         if (i == tx_ring->count) {
4912                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4913                                 i = 0;
4914                         }
4915                         tx_desc->read.olinfo_status = 0;
4916
4917                         dma += IGB_MAX_DATA_PER_TXD;
4918                         size -= IGB_MAX_DATA_PER_TXD;
4919
4920                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4921                 }
4922
4923                 if (likely(!data_len))
4924                         break;
4925
4926                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4927
4928                 i++;
4929                 tx_desc++;
4930                 if (i == tx_ring->count) {
4931                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4932                         i = 0;
4933                 }
4934                 tx_desc->read.olinfo_status = 0;
4935
4936                 size = skb_frag_size(frag);
4937                 data_len -= size;
4938
4939                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4940                                        size, DMA_TO_DEVICE);
4941
4942                 tx_buffer = &tx_ring->tx_buffer_info[i];
4943         }
4944
4945         /* write last descriptor with RS and EOP bits */
4946         cmd_type |= size | IGB_TXD_DCMD;
4947         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4948
4949         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4950
4951         /* set the timestamp */
4952         first->time_stamp = jiffies;
4953
4954         /* Force memory writes to complete before letting h/w know there
4955          * are new descriptors to fetch.  (Only applicable for weak-ordered
4956          * memory model archs, such as IA-64).
4957          *
4958          * We also need this memory barrier to make certain all of the
4959          * status bits have been updated before next_to_watch is written.
4960          */
4961         wmb();
4962
4963         /* set next_to_watch value indicating a packet is present */
4964         first->next_to_watch = tx_desc;
4965
4966         i++;
4967         if (i == tx_ring->count)
4968                 i = 0;
4969
4970         tx_ring->next_to_use = i;
4971
4972         /* Make sure there is space in the ring for the next send. */
4973         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4974
4975         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4976                 writel(i, tx_ring->tail);
4977
4978                 /* we need this if more than one processor can write to our tail
4979                  * at a time, it synchronizes IO on IA64/Altix systems
4980                  */
4981                 mmiowb();
4982         }
4983         return;
4984
4985 dma_error:
4986         dev_err(tx_ring->dev, "TX DMA map failed\n");
4987
4988         /* clear dma mappings for failed tx_buffer_info map */
4989         for (;;) {
4990                 tx_buffer = &tx_ring->tx_buffer_info[i];
4991                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4992                 if (tx_buffer == first)
4993                         break;
4994                 if (i == 0)
4995                         i = tx_ring->count;
4996                 i--;
4997         }
4998
4999         tx_ring->next_to_use = i;
5000 }
5001
5002 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5003                                 struct igb_ring *tx_ring)
5004 {
5005         struct igb_tx_buffer *first;
5006         int tso;
5007         u32 tx_flags = 0;
5008         unsigned short f;
5009         u16 count = TXD_USE_COUNT(skb_headlen(skb));
5010         __be16 protocol = vlan_get_protocol(skb);
5011         u8 hdr_len = 0;
5012
5013         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5014          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5015          *       + 2 desc gap to keep tail from touching head,
5016          *       + 1 desc for context descriptor,
5017          * otherwise try next time
5018          */
5019         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5020                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5021
5022         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5023                 /* this is a hard error */
5024                 return NETDEV_TX_BUSY;
5025         }
5026
5027         /* record the location of the first descriptor for this packet */
5028         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5029         first->skb = skb;
5030         first->bytecount = skb->len;
5031         first->gso_segs = 1;
5032
5033         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5034                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5035
5036                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5037                                            &adapter->state)) {
5038                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5039                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5040
5041                         adapter->ptp_tx_skb = skb_get(skb);
5042                         adapter->ptp_tx_start = jiffies;
5043                         if (adapter->hw.mac.type == e1000_82576)
5044                                 schedule_work(&adapter->ptp_tx_work);
5045                 }
5046         }
5047
5048         skb_tx_timestamp(skb);
5049
5050         if (skb_vlan_tag_present(skb)) {
5051                 tx_flags |= IGB_TX_FLAGS_VLAN;
5052                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5053         }
5054
5055         /* record initial flags and protocol */
5056         first->tx_flags = tx_flags;
5057         first->protocol = protocol;
5058
5059         tso = igb_tso(tx_ring, first, &hdr_len);
5060         if (tso < 0)
5061                 goto out_drop;
5062         else if (!tso)
5063                 igb_tx_csum(tx_ring, first);
5064
5065         igb_tx_map(tx_ring, first, hdr_len);
5066
5067         return NETDEV_TX_OK;
5068
5069 out_drop:
5070         igb_unmap_and_free_tx_resource(tx_ring, first);
5071
5072         return NETDEV_TX_OK;
5073 }
5074
5075 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5076                                                     struct sk_buff *skb)
5077 {
5078         unsigned int r_idx = skb->queue_mapping;
5079
5080         if (r_idx >= adapter->num_tx_queues)
5081                 r_idx = r_idx % adapter->num_tx_queues;
5082
5083         return adapter->tx_ring[r_idx];
5084 }
5085
5086 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5087                                   struct net_device *netdev)
5088 {
5089         struct igb_adapter *adapter = netdev_priv(netdev);
5090
5091         if (test_bit(__IGB_DOWN, &adapter->state)) {
5092                 dev_kfree_skb_any(skb);
5093                 return NETDEV_TX_OK;
5094         }
5095
5096         if (skb->len <= 0) {
5097                 dev_kfree_skb_any(skb);
5098                 return NETDEV_TX_OK;
5099         }
5100
5101         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5102          * in order to meet this minimum size requirement.
5103          */
5104         if (skb_put_padto(skb, 17))
5105                 return NETDEV_TX_OK;
5106
5107         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5108 }
5109
5110 /**
5111  *  igb_tx_timeout - Respond to a Tx Hang
5112  *  @netdev: network interface device structure
5113  **/
5114 static void igb_tx_timeout(struct net_device *netdev)
5115 {
5116         struct igb_adapter *adapter = netdev_priv(netdev);
5117         struct e1000_hw *hw = &adapter->hw;
5118
5119         /* Do the reset outside of interrupt context */
5120         adapter->tx_timeout_count++;
5121
5122         if (hw->mac.type >= e1000_82580)
5123                 hw->dev_spec._82575.global_device_reset = true;
5124
5125         schedule_work(&adapter->reset_task);
5126         wr32(E1000_EICS,
5127              (adapter->eims_enable_mask & ~adapter->eims_other));
5128 }
5129
5130 static void igb_reset_task(struct work_struct *work)
5131 {
5132         struct igb_adapter *adapter;
5133         adapter = container_of(work, struct igb_adapter, reset_task);
5134
5135         igb_dump(adapter);
5136         netdev_err(adapter->netdev, "Reset adapter\n");
5137         igb_reinit_locked(adapter);
5138 }
5139
5140 /**
5141  *  igb_get_stats64 - Get System Network Statistics
5142  *  @netdev: network interface device structure
5143  *  @stats: rtnl_link_stats64 pointer
5144  **/
5145 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5146                                                 struct rtnl_link_stats64 *stats)
5147 {
5148         struct igb_adapter *adapter = netdev_priv(netdev);
5149
5150         spin_lock(&adapter->stats64_lock);
5151         igb_update_stats(adapter, &adapter->stats64);
5152         memcpy(stats, &adapter->stats64, sizeof(*stats));
5153         spin_unlock(&adapter->stats64_lock);
5154
5155         return stats;
5156 }
5157
5158 /**
5159  *  igb_change_mtu - Change the Maximum Transfer Unit
5160  *  @netdev: network interface device structure
5161  *  @new_mtu: new value for maximum frame size
5162  *
5163  *  Returns 0 on success, negative on failure
5164  **/
5165 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5166 {
5167         struct igb_adapter *adapter = netdev_priv(netdev);
5168         struct pci_dev *pdev = adapter->pdev;
5169         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5170
5171         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5172                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5173                 return -EINVAL;
5174         }
5175
5176 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5177         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5178                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5179                 return -EINVAL;
5180         }
5181
5182         /* adjust max frame to be at least the size of a standard frame */
5183         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5184                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5185
5186         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5187                 usleep_range(1000, 2000);
5188
5189         /* igb_down has a dependency on max_frame_size */
5190         adapter->max_frame_size = max_frame;
5191
5192         if (netif_running(netdev))
5193                 igb_down(adapter);
5194
5195         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5196                  netdev->mtu, new_mtu);
5197         netdev->mtu = new_mtu;
5198
5199         if (netif_running(netdev))
5200                 igb_up(adapter);
5201         else
5202                 igb_reset(adapter);
5203
5204         clear_bit(__IGB_RESETTING, &adapter->state);
5205
5206         return 0;
5207 }
5208
5209 /**
5210  *  igb_update_stats - Update the board statistics counters
5211  *  @adapter: board private structure
5212  **/
5213 void igb_update_stats(struct igb_adapter *adapter,
5214                       struct rtnl_link_stats64 *net_stats)
5215 {
5216         struct e1000_hw *hw = &adapter->hw;
5217         struct pci_dev *pdev = adapter->pdev;
5218         u32 reg, mpc;
5219         int i;
5220         u64 bytes, packets;
5221         unsigned int start;
5222         u64 _bytes, _packets;
5223
5224         /* Prevent stats update while adapter is being reset, or if the pci
5225          * connection is down.
5226          */
5227         if (adapter->link_speed == 0)
5228                 return;
5229         if (pci_channel_offline(pdev))
5230                 return;
5231
5232         bytes = 0;
5233         packets = 0;
5234
5235         rcu_read_lock();
5236         for (i = 0; i < adapter->num_rx_queues; i++) {
5237                 struct igb_ring *ring = adapter->rx_ring[i];
5238                 u32 rqdpc = rd32(E1000_RQDPC(i));
5239                 if (hw->mac.type >= e1000_i210)
5240                         wr32(E1000_RQDPC(i), 0);
5241
5242                 if (rqdpc) {
5243                         ring->rx_stats.drops += rqdpc;
5244                         net_stats->rx_fifo_errors += rqdpc;
5245                 }
5246
5247                 do {
5248                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5249                         _bytes = ring->rx_stats.bytes;
5250                         _packets = ring->rx_stats.packets;
5251                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5252                 bytes += _bytes;
5253                 packets += _packets;
5254         }
5255
5256         net_stats->rx_bytes = bytes;
5257         net_stats->rx_packets = packets;
5258
5259         bytes = 0;
5260         packets = 0;
5261         for (i = 0; i < adapter->num_tx_queues; i++) {
5262                 struct igb_ring *ring = adapter->tx_ring[i];
5263                 do {
5264                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5265                         _bytes = ring->tx_stats.bytes;
5266                         _packets = ring->tx_stats.packets;
5267                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5268                 bytes += _bytes;
5269                 packets += _packets;
5270         }
5271         net_stats->tx_bytes = bytes;
5272         net_stats->tx_packets = packets;
5273         rcu_read_unlock();
5274
5275         /* read stats registers */
5276         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5277         adapter->stats.gprc += rd32(E1000_GPRC);
5278         adapter->stats.gorc += rd32(E1000_GORCL);
5279         rd32(E1000_GORCH); /* clear GORCL */
5280         adapter->stats.bprc += rd32(E1000_BPRC);
5281         adapter->stats.mprc += rd32(E1000_MPRC);
5282         adapter->stats.roc += rd32(E1000_ROC);
5283
5284         adapter->stats.prc64 += rd32(E1000_PRC64);
5285         adapter->stats.prc127 += rd32(E1000_PRC127);
5286         adapter->stats.prc255 += rd32(E1000_PRC255);
5287         adapter->stats.prc511 += rd32(E1000_PRC511);
5288         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5289         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5290         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5291         adapter->stats.sec += rd32(E1000_SEC);
5292
5293         mpc = rd32(E1000_MPC);
5294         adapter->stats.mpc += mpc;
5295         net_stats->rx_fifo_errors += mpc;
5296         adapter->stats.scc += rd32(E1000_SCC);
5297         adapter->stats.ecol += rd32(E1000_ECOL);
5298         adapter->stats.mcc += rd32(E1000_MCC);
5299         adapter->stats.latecol += rd32(E1000_LATECOL);
5300         adapter->stats.dc += rd32(E1000_DC);
5301         adapter->stats.rlec += rd32(E1000_RLEC);
5302         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5303         adapter->stats.xontxc += rd32(E1000_XONTXC);
5304         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5305         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5306         adapter->stats.fcruc += rd32(E1000_FCRUC);
5307         adapter->stats.gptc += rd32(E1000_GPTC);
5308         adapter->stats.gotc += rd32(E1000_GOTCL);
5309         rd32(E1000_GOTCH); /* clear GOTCL */
5310         adapter->stats.rnbc += rd32(E1000_RNBC);
5311         adapter->stats.ruc += rd32(E1000_RUC);
5312         adapter->stats.rfc += rd32(E1000_RFC);
5313         adapter->stats.rjc += rd32(E1000_RJC);
5314         adapter->stats.tor += rd32(E1000_TORH);
5315         adapter->stats.tot += rd32(E1000_TOTH);
5316         adapter->stats.tpr += rd32(E1000_TPR);
5317
5318         adapter->stats.ptc64 += rd32(E1000_PTC64);
5319         adapter->stats.ptc127 += rd32(E1000_PTC127);
5320         adapter->stats.ptc255 += rd32(E1000_PTC255);
5321         adapter->stats.ptc511 += rd32(E1000_PTC511);
5322         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5323         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5324
5325         adapter->stats.mptc += rd32(E1000_MPTC);
5326         adapter->stats.bptc += rd32(E1000_BPTC);
5327
5328         adapter->stats.tpt += rd32(E1000_TPT);
5329         adapter->stats.colc += rd32(E1000_COLC);
5330
5331         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5332         /* read internal phy specific stats */
5333         reg = rd32(E1000_CTRL_EXT);
5334         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5335                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5336
5337                 /* this stat has invalid values on i210/i211 */
5338                 if ((hw->mac.type != e1000_i210) &&
5339                     (hw->mac.type != e1000_i211))
5340                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5341         }
5342
5343         adapter->stats.tsctc += rd32(E1000_TSCTC);
5344         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5345
5346         adapter->stats.iac += rd32(E1000_IAC);
5347         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5348         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5349         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5350         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5351         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5352         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5353         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5354         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5355
5356         /* Fill out the OS statistics structure */
5357         net_stats->multicast = adapter->stats.mprc;
5358         net_stats->collisions = adapter->stats.colc;
5359
5360         /* Rx Errors */
5361
5362         /* RLEC on some newer hardware can be incorrect so build
5363          * our own version based on RUC and ROC
5364          */
5365         net_stats->rx_errors = adapter->stats.rxerrc +
5366                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5367                 adapter->stats.ruc + adapter->stats.roc +
5368                 adapter->stats.cexterr;
5369         net_stats->rx_length_errors = adapter->stats.ruc +
5370                                       adapter->stats.roc;
5371         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5372         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5373         net_stats->rx_missed_errors = adapter->stats.mpc;
5374
5375         /* Tx Errors */
5376         net_stats->tx_errors = adapter->stats.ecol +
5377                                adapter->stats.latecol;
5378         net_stats->tx_aborted_errors = adapter->stats.ecol;
5379         net_stats->tx_window_errors = adapter->stats.latecol;
5380         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5381
5382         /* Tx Dropped needs to be maintained elsewhere */
5383
5384         /* Management Stats */
5385         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5386         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5387         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5388
5389         /* OS2BMC Stats */
5390         reg = rd32(E1000_MANC);
5391         if (reg & E1000_MANC_EN_BMC2OS) {
5392                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5393                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5394                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5395                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5396         }
5397 }
5398
5399 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5400 {
5401         struct e1000_hw *hw = &adapter->hw;
5402         struct ptp_clock_event event;
5403         struct timespec64 ts;
5404         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5405
5406         if (tsicr & TSINTR_SYS_WRAP) {
5407                 event.type = PTP_CLOCK_PPS;
5408                 if (adapter->ptp_caps.pps)
5409                         ptp_clock_event(adapter->ptp_clock, &event);
5410                 else
5411                         dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5412                 ack |= TSINTR_SYS_WRAP;
5413         }
5414
5415         if (tsicr & E1000_TSICR_TXTS) {
5416                 /* retrieve hardware timestamp */
5417                 schedule_work(&adapter->ptp_tx_work);
5418                 ack |= E1000_TSICR_TXTS;
5419         }
5420
5421         if (tsicr & TSINTR_TT0) {
5422                 spin_lock(&adapter->tmreg_lock);
5423                 ts = timespec64_add(adapter->perout[0].start,
5424                                     adapter->perout[0].period);
5425                 /* u32 conversion of tv_sec is safe until y2106 */
5426                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5427                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5428                 tsauxc = rd32(E1000_TSAUXC);
5429                 tsauxc |= TSAUXC_EN_TT0;
5430                 wr32(E1000_TSAUXC, tsauxc);
5431                 adapter->perout[0].start = ts;
5432                 spin_unlock(&adapter->tmreg_lock);
5433                 ack |= TSINTR_TT0;
5434         }
5435
5436         if (tsicr & TSINTR_TT1) {
5437                 spin_lock(&adapter->tmreg_lock);
5438                 ts = timespec64_add(adapter->perout[1].start,
5439                                     adapter->perout[1].period);
5440                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5441                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5442                 tsauxc = rd32(E1000_TSAUXC);
5443                 tsauxc |= TSAUXC_EN_TT1;
5444                 wr32(E1000_TSAUXC, tsauxc);
5445                 adapter->perout[1].start = ts;
5446                 spin_unlock(&adapter->tmreg_lock);
5447                 ack |= TSINTR_TT1;
5448         }
5449
5450         if (tsicr & TSINTR_AUTT0) {
5451                 nsec = rd32(E1000_AUXSTMPL0);
5452                 sec  = rd32(E1000_AUXSTMPH0);
5453                 event.type = PTP_CLOCK_EXTTS;
5454                 event.index = 0;
5455                 event.timestamp = sec * 1000000000ULL + nsec;
5456                 ptp_clock_event(adapter->ptp_clock, &event);
5457                 ack |= TSINTR_AUTT0;
5458         }
5459
5460         if (tsicr & TSINTR_AUTT1) {
5461                 nsec = rd32(E1000_AUXSTMPL1);
5462                 sec  = rd32(E1000_AUXSTMPH1);
5463                 event.type = PTP_CLOCK_EXTTS;
5464                 event.index = 1;
5465                 event.timestamp = sec * 1000000000ULL + nsec;
5466                 ptp_clock_event(adapter->ptp_clock, &event);
5467                 ack |= TSINTR_AUTT1;
5468         }
5469
5470         /* acknowledge the interrupts */
5471         wr32(E1000_TSICR, ack);
5472 }
5473
5474 static irqreturn_t igb_msix_other(int irq, void *data)
5475 {
5476         struct igb_adapter *adapter = data;
5477         struct e1000_hw *hw = &adapter->hw;
5478         u32 icr = rd32(E1000_ICR);
5479         /* reading ICR causes bit 31 of EICR to be cleared */
5480
5481         if (icr & E1000_ICR_DRSTA)
5482                 schedule_work(&adapter->reset_task);
5483
5484         if (icr & E1000_ICR_DOUTSYNC) {
5485                 /* HW is reporting DMA is out of sync */
5486                 adapter->stats.doosync++;
5487                 /* The DMA Out of Sync is also indication of a spoof event
5488                  * in IOV mode. Check the Wrong VM Behavior register to
5489                  * see if it is really a spoof event.
5490                  */
5491                 igb_check_wvbr(adapter);
5492         }
5493
5494         /* Check for a mailbox event */
5495         if (icr & E1000_ICR_VMMB)
5496                 igb_msg_task(adapter);
5497
5498         if (icr & E1000_ICR_LSC) {
5499                 hw->mac.get_link_status = 1;
5500                 /* guard against interrupt when we're going down */
5501                 if (!test_bit(__IGB_DOWN, &adapter->state))
5502                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5503         }
5504
5505         if (icr & E1000_ICR_TS)
5506                 igb_tsync_interrupt(adapter);
5507
5508         wr32(E1000_EIMS, adapter->eims_other);
5509
5510         return IRQ_HANDLED;
5511 }
5512
5513 static void igb_write_itr(struct igb_q_vector *q_vector)
5514 {
5515         struct igb_adapter *adapter = q_vector->adapter;
5516         u32 itr_val = q_vector->itr_val & 0x7FFC;
5517
5518         if (!q_vector->set_itr)
5519                 return;
5520
5521         if (!itr_val)
5522                 itr_val = 0x4;
5523
5524         if (adapter->hw.mac.type == e1000_82575)
5525                 itr_val |= itr_val << 16;
5526         else
5527                 itr_val |= E1000_EITR_CNT_IGNR;
5528
5529         writel(itr_val, q_vector->itr_register);
5530         q_vector->set_itr = 0;
5531 }
5532
5533 static irqreturn_t igb_msix_ring(int irq, void *data)
5534 {
5535         struct igb_q_vector *q_vector = data;
5536
5537         /* Write the ITR value calculated from the previous interrupt. */
5538         igb_write_itr(q_vector);
5539
5540         napi_schedule(&q_vector->napi);
5541
5542         return IRQ_HANDLED;
5543 }
5544
5545 #ifdef CONFIG_IGB_DCA
5546 static void igb_update_tx_dca(struct igb_adapter *adapter,
5547                               struct igb_ring *tx_ring,
5548                               int cpu)
5549 {
5550         struct e1000_hw *hw = &adapter->hw;
5551         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5552
5553         if (hw->mac.type != e1000_82575)
5554                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5555
5556         /* We can enable relaxed ordering for reads, but not writes when
5557          * DCA is enabled.  This is due to a known issue in some chipsets
5558          * which will cause the DCA tag to be cleared.
5559          */
5560         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5561                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5562                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5563
5564         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5565 }
5566
5567 static void igb_update_rx_dca(struct igb_adapter *adapter,
5568                               struct igb_ring *rx_ring,
5569                               int cpu)
5570 {
5571         struct e1000_hw *hw = &adapter->hw;
5572         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5573
5574         if (hw->mac.type != e1000_82575)
5575                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5576
5577         /* We can enable relaxed ordering for reads, but not writes when
5578          * DCA is enabled.  This is due to a known issue in some chipsets
5579          * which will cause the DCA tag to be cleared.
5580          */
5581         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5582                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5583
5584         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5585 }
5586
5587 static void igb_update_dca(struct igb_q_vector *q_vector)
5588 {
5589         struct igb_adapter *adapter = q_vector->adapter;
5590         int cpu = get_cpu();
5591
5592         if (q_vector->cpu == cpu)
5593                 goto out_no_update;
5594
5595         if (q_vector->tx.ring)
5596                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5597
5598         if (q_vector->rx.ring)
5599                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5600
5601         q_vector->cpu = cpu;
5602 out_no_update:
5603         put_cpu();
5604 }
5605
5606 static void igb_setup_dca(struct igb_adapter *adapter)
5607 {
5608         struct e1000_hw *hw = &adapter->hw;
5609         int i;
5610
5611         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5612                 return;
5613
5614         /* Always use CB2 mode, difference is masked in the CB driver. */
5615         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5616
5617         for (i = 0; i < adapter->num_q_vectors; i++) {
5618                 adapter->q_vector[i]->cpu = -1;
5619                 igb_update_dca(adapter->q_vector[i]);
5620         }
5621 }
5622
5623 static int __igb_notify_dca(struct device *dev, void *data)
5624 {
5625         struct net_device *netdev = dev_get_drvdata(dev);
5626         struct igb_adapter *adapter = netdev_priv(netdev);
5627         struct pci_dev *pdev = adapter->pdev;
5628         struct e1000_hw *hw = &adapter->hw;
5629         unsigned long event = *(unsigned long *)data;
5630
5631         switch (event) {
5632         case DCA_PROVIDER_ADD:
5633                 /* if already enabled, don't do it again */
5634                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5635                         break;
5636                 if (dca_add_requester(dev) == 0) {
5637                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5638                         dev_info(&pdev->dev, "DCA enabled\n");
5639                         igb_setup_dca(adapter);
5640                         break;
5641                 }
5642                 /* Fall Through since DCA is disabled. */
5643         case DCA_PROVIDER_REMOVE:
5644                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5645                         /* without this a class_device is left
5646                          * hanging around in the sysfs model
5647                          */
5648                         dca_remove_requester(dev);
5649                         dev_info(&pdev->dev, "DCA disabled\n");
5650                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5651                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5652                 }
5653                 break;
5654         }
5655
5656         return 0;
5657 }
5658
5659 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5660                           void *p)
5661 {
5662         int ret_val;
5663
5664         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5665                                          __igb_notify_dca);
5666
5667         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5668 }
5669 #endif /* CONFIG_IGB_DCA */
5670
5671 #ifdef CONFIG_PCI_IOV
5672 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5673 {
5674         unsigned char mac_addr[ETH_ALEN];
5675
5676         eth_zero_addr(mac_addr);
5677         igb_set_vf_mac(adapter, vf, mac_addr);
5678
5679         /* By default spoof check is enabled for all VFs */
5680         adapter->vf_data[vf].spoofchk_enabled = true;
5681
5682         return 0;
5683 }
5684
5685 #endif
5686 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5687 {
5688         struct e1000_hw *hw = &adapter->hw;
5689         u32 ping;
5690         int i;
5691
5692         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5693                 ping = E1000_PF_CONTROL_MSG;
5694                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5695                         ping |= E1000_VT_MSGTYPE_CTS;
5696                 igb_write_mbx(hw, &ping, 1, i);
5697         }
5698 }
5699
5700 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5701 {
5702         struct e1000_hw *hw = &adapter->hw;
5703         u32 vmolr = rd32(E1000_VMOLR(vf));
5704         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5705
5706         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5707                             IGB_VF_FLAG_MULTI_PROMISC);
5708         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5709
5710         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5711                 vmolr |= E1000_VMOLR_MPME;
5712                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5713                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5714         } else {
5715                 /* if we have hashes and we are clearing a multicast promisc
5716                  * flag we need to write the hashes to the MTA as this step
5717                  * was previously skipped
5718                  */
5719                 if (vf_data->num_vf_mc_hashes > 30) {
5720                         vmolr |= E1000_VMOLR_MPME;
5721                 } else if (vf_data->num_vf_mc_hashes) {
5722                         int j;
5723
5724                         vmolr |= E1000_VMOLR_ROMPE;
5725                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5726                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5727                 }
5728         }
5729
5730         wr32(E1000_VMOLR(vf), vmolr);
5731
5732         /* there are flags left unprocessed, likely not supported */
5733         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5734                 return -EINVAL;
5735
5736         return 0;
5737 }
5738
5739 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5740                                   u32 *msgbuf, u32 vf)
5741 {
5742         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5743         u16 *hash_list = (u16 *)&msgbuf[1];
5744         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5745         int i;
5746
5747         /* salt away the number of multicast addresses assigned
5748          * to this VF for later use to restore when the PF multi cast
5749          * list changes
5750          */
5751         vf_data->num_vf_mc_hashes = n;
5752
5753         /* only up to 30 hash values supported */
5754         if (n > 30)
5755                 n = 30;
5756
5757         /* store the hashes for later use */
5758         for (i = 0; i < n; i++)
5759                 vf_data->vf_mc_hashes[i] = hash_list[i];
5760
5761         /* Flush and reset the mta with the new values */
5762         igb_set_rx_mode(adapter->netdev);
5763
5764         return 0;
5765 }
5766
5767 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5768 {
5769         struct e1000_hw *hw = &adapter->hw;
5770         struct vf_data_storage *vf_data;
5771         int i, j;
5772
5773         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5774                 u32 vmolr = rd32(E1000_VMOLR(i));
5775
5776                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5777
5778                 vf_data = &adapter->vf_data[i];
5779
5780                 if ((vf_data->num_vf_mc_hashes > 30) ||
5781                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5782                         vmolr |= E1000_VMOLR_MPME;
5783                 } else if (vf_data->num_vf_mc_hashes) {
5784                         vmolr |= E1000_VMOLR_ROMPE;
5785                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5786                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5787                 }
5788                 wr32(E1000_VMOLR(i), vmolr);
5789         }
5790 }
5791
5792 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5793 {
5794         struct e1000_hw *hw = &adapter->hw;
5795         u32 pool_mask, reg, vid;
5796         int i;
5797
5798         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5799
5800         /* Find the vlan filter for this id */
5801         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5802                 reg = rd32(E1000_VLVF(i));
5803
5804                 /* remove the vf from the pool */
5805                 reg &= ~pool_mask;
5806
5807                 /* if pool is empty then remove entry from vfta */
5808                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5809                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5810                         reg = 0;
5811                         vid = reg & E1000_VLVF_VLANID_MASK;
5812                         igb_vfta_set(hw, vid, false);
5813                 }
5814
5815                 wr32(E1000_VLVF(i), reg);
5816         }
5817
5818         adapter->vf_data[vf].vlans_enabled = 0;
5819 }
5820
5821 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5822 {
5823         struct e1000_hw *hw = &adapter->hw;
5824         u32 reg, i;
5825
5826         /* The vlvf table only exists on 82576 hardware and newer */
5827         if (hw->mac.type < e1000_82576)
5828                 return -1;
5829
5830         /* we only need to do this if VMDq is enabled */
5831         if (!adapter->vfs_allocated_count)
5832                 return -1;
5833
5834         /* Find the vlan filter for this id */
5835         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5836                 reg = rd32(E1000_VLVF(i));
5837                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5838                     vid == (reg & E1000_VLVF_VLANID_MASK))
5839                         break;
5840         }
5841
5842         if (add) {
5843                 if (i == E1000_VLVF_ARRAY_SIZE) {
5844                         /* Did not find a matching VLAN ID entry that was
5845                          * enabled.  Search for a free filter entry, i.e.
5846                          * one without the enable bit set
5847                          */
5848                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5849                                 reg = rd32(E1000_VLVF(i));
5850                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5851                                         break;
5852                         }
5853                 }
5854                 if (i < E1000_VLVF_ARRAY_SIZE) {
5855                         /* Found an enabled/available entry */
5856                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5857
5858                         /* if !enabled we need to set this up in vfta */
5859                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5860                                 /* add VID to filter table */
5861                                 igb_vfta_set(hw, vid, true);
5862                                 reg |= E1000_VLVF_VLANID_ENABLE;
5863                         }
5864                         reg &= ~E1000_VLVF_VLANID_MASK;
5865                         reg |= vid;
5866                         wr32(E1000_VLVF(i), reg);
5867
5868                         /* do not modify RLPML for PF devices */
5869                         if (vf >= adapter->vfs_allocated_count)
5870                                 return 0;
5871
5872                         if (!adapter->vf_data[vf].vlans_enabled) {
5873                                 u32 size;
5874
5875                                 reg = rd32(E1000_VMOLR(vf));
5876                                 size = reg & E1000_VMOLR_RLPML_MASK;
5877                                 size += 4;
5878                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5879                                 reg |= size;
5880                                 wr32(E1000_VMOLR(vf), reg);
5881                         }
5882
5883                         adapter->vf_data[vf].vlans_enabled++;
5884                 }
5885         } else {
5886                 if (i < E1000_VLVF_ARRAY_SIZE) {
5887                         /* remove vf from the pool */
5888                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5889                         /* if pool is empty then remove entry from vfta */
5890                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5891                                 reg = 0;
5892                                 igb_vfta_set(hw, vid, false);
5893                         }
5894                         wr32(E1000_VLVF(i), reg);
5895
5896                         /* do not modify RLPML for PF devices */
5897                         if (vf >= adapter->vfs_allocated_count)
5898                                 return 0;
5899
5900                         adapter->vf_data[vf].vlans_enabled--;
5901                         if (!adapter->vf_data[vf].vlans_enabled) {
5902                                 u32 size;
5903
5904                                 reg = rd32(E1000_VMOLR(vf));
5905                                 size = reg & E1000_VMOLR_RLPML_MASK;
5906                                 size -= 4;
5907                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5908                                 reg |= size;
5909                                 wr32(E1000_VMOLR(vf), reg);
5910                         }
5911                 }
5912         }
5913         return 0;
5914 }
5915
5916 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5917 {
5918         struct e1000_hw *hw = &adapter->hw;
5919
5920         if (vid)
5921                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5922         else
5923                 wr32(E1000_VMVIR(vf), 0);
5924 }
5925
5926 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5927                                int vf, u16 vlan, u8 qos)
5928 {
5929         int err = 0;
5930         struct igb_adapter *adapter = netdev_priv(netdev);
5931
5932         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5933                 return -EINVAL;
5934         if (vlan || qos) {
5935                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5936                 if (err)
5937                         goto out;
5938                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5939                 igb_set_vmolr(adapter, vf, !vlan);
5940                 adapter->vf_data[vf].pf_vlan = vlan;
5941                 adapter->vf_data[vf].pf_qos = qos;
5942                 dev_info(&adapter->pdev->dev,
5943                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5944                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5945                         dev_warn(&adapter->pdev->dev,
5946                                  "The VF VLAN has been set, but the PF device is not up.\n");
5947                         dev_warn(&adapter->pdev->dev,
5948                                  "Bring the PF device up before attempting to use the VF device.\n");
5949                 }
5950         } else {
5951                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5952                              false, vf);
5953                 igb_set_vmvir(adapter, vlan, vf);
5954                 igb_set_vmolr(adapter, vf, true);
5955                 adapter->vf_data[vf].pf_vlan = 0;
5956                 adapter->vf_data[vf].pf_qos = 0;
5957         }
5958 out:
5959         return err;
5960 }
5961
5962 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5963 {
5964         struct e1000_hw *hw = &adapter->hw;
5965         int i;
5966         u32 reg;
5967
5968         /* Find the vlan filter for this id */
5969         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5970                 reg = rd32(E1000_VLVF(i));
5971                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5972                     vid == (reg & E1000_VLVF_VLANID_MASK))
5973                         break;
5974         }
5975
5976         if (i >= E1000_VLVF_ARRAY_SIZE)
5977                 i = -1;
5978
5979         return i;
5980 }
5981
5982 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5983 {
5984         struct e1000_hw *hw = &adapter->hw;
5985         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5986         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5987         int err = 0;
5988
5989         /* If in promiscuous mode we need to make sure the PF also has
5990          * the VLAN filter set.
5991          */
5992         if (add && (adapter->netdev->flags & IFF_PROMISC))
5993                 err = igb_vlvf_set(adapter, vid, add,
5994                                    adapter->vfs_allocated_count);
5995         if (err)
5996                 goto out;
5997
5998         err = igb_vlvf_set(adapter, vid, add, vf);
5999
6000         if (err)
6001                 goto out;
6002
6003         /* Go through all the checks to see if the VLAN filter should
6004          * be wiped completely.
6005          */
6006         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
6007                 u32 vlvf, bits;
6008                 int regndx = igb_find_vlvf_entry(adapter, vid);
6009
6010                 if (regndx < 0)
6011                         goto out;
6012                 /* See if any other pools are set for this VLAN filter
6013                  * entry other than the PF.
6014                  */
6015                 vlvf = bits = rd32(E1000_VLVF(regndx));
6016                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
6017                               adapter->vfs_allocated_count);
6018                 /* If the filter was removed then ensure PF pool bit
6019                  * is cleared if the PF only added itself to the pool
6020                  * because the PF is in promiscuous mode.
6021                  */
6022                 if ((vlvf & VLAN_VID_MASK) == vid &&
6023                     !test_bit(vid, adapter->active_vlans) &&
6024                     !bits)
6025                         igb_vlvf_set(adapter, vid, add,
6026                                      adapter->vfs_allocated_count);
6027         }
6028
6029 out:
6030         return err;
6031 }
6032
6033 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6034 {
6035         /* clear flags - except flag that indicates PF has set the MAC */
6036         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6037         adapter->vf_data[vf].last_nack = jiffies;
6038
6039         /* reset offloads to defaults */
6040         igb_set_vmolr(adapter, vf, true);
6041
6042         /* reset vlans for device */
6043         igb_clear_vf_vfta(adapter, vf);
6044         if (adapter->vf_data[vf].pf_vlan)
6045                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
6046                                     adapter->vf_data[vf].pf_vlan,
6047                                     adapter->vf_data[vf].pf_qos);
6048         else
6049                 igb_clear_vf_vfta(adapter, vf);
6050
6051         /* reset multicast table array for vf */
6052         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6053
6054         /* Flush and reset the mta with the new values */
6055         igb_set_rx_mode(adapter->netdev);
6056 }
6057
6058 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6059 {
6060         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6061
6062         /* clear mac address as we were hotplug removed/added */
6063         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6064                 eth_zero_addr(vf_mac);
6065
6066         /* process remaining reset events */
6067         igb_vf_reset(adapter, vf);
6068 }
6069
6070 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6071 {
6072         struct e1000_hw *hw = &adapter->hw;
6073         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6074         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6075         u32 reg, msgbuf[3];
6076         u8 *addr = (u8 *)(&msgbuf[1]);
6077
6078         /* process all the same items cleared in a function level reset */
6079         igb_vf_reset(adapter, vf);
6080
6081         /* set vf mac address */
6082         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6083
6084         /* enable transmit and receive for vf */
6085         reg = rd32(E1000_VFTE);
6086         wr32(E1000_VFTE, reg | (1 << vf));
6087         reg = rd32(E1000_VFRE);
6088         wr32(E1000_VFRE, reg | (1 << vf));
6089
6090         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6091
6092         /* reply to reset with ack and vf mac address */
6093         if (!is_zero_ether_addr(vf_mac)) {
6094                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6095                 memcpy(addr, vf_mac, ETH_ALEN);
6096         } else {
6097                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6098         }
6099         igb_write_mbx(hw, msgbuf, 3, vf);
6100 }
6101
6102 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6103 {
6104         /* The VF MAC Address is stored in a packed array of bytes
6105          * starting at the second 32 bit word of the msg array
6106          */
6107         unsigned char *addr = (char *)&msg[1];
6108         int err = -1;
6109
6110         if (is_valid_ether_addr(addr))
6111                 err = igb_set_vf_mac(adapter, vf, addr);
6112
6113         return err;
6114 }
6115
6116 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6117 {
6118         struct e1000_hw *hw = &adapter->hw;
6119         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6120         u32 msg = E1000_VT_MSGTYPE_NACK;
6121
6122         /* if device isn't clear to send it shouldn't be reading either */
6123         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6124             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6125                 igb_write_mbx(hw, &msg, 1, vf);
6126                 vf_data->last_nack = jiffies;
6127         }
6128 }
6129
6130 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6131 {
6132         struct pci_dev *pdev = adapter->pdev;
6133         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6134         struct e1000_hw *hw = &adapter->hw;
6135         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6136         s32 retval;
6137
6138         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6139
6140         if (retval) {
6141                 /* if receive failed revoke VF CTS stats and restart init */
6142                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6143                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6144                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6145                         return;
6146                 goto out;
6147         }
6148
6149         /* this is a message we already processed, do nothing */
6150         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6151                 return;
6152
6153         /* until the vf completes a reset it should not be
6154          * allowed to start any configuration.
6155          */
6156         if (msgbuf[0] == E1000_VF_RESET) {
6157                 igb_vf_reset_msg(adapter, vf);
6158                 return;
6159         }
6160
6161         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6162                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6163                         return;
6164                 retval = -1;
6165                 goto out;
6166         }
6167
6168         switch ((msgbuf[0] & 0xFFFF)) {
6169         case E1000_VF_SET_MAC_ADDR:
6170                 retval = -EINVAL;
6171                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6172                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6173                 else
6174                         dev_warn(&pdev->dev,
6175                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6176                                  vf);
6177                 break;
6178         case E1000_VF_SET_PROMISC:
6179                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6180                 break;
6181         case E1000_VF_SET_MULTICAST:
6182                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6183                 break;
6184         case E1000_VF_SET_LPE:
6185                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6186                 break;
6187         case E1000_VF_SET_VLAN:
6188                 retval = -1;
6189                 if (vf_data->pf_vlan)
6190                         dev_warn(&pdev->dev,
6191                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6192                                  vf);
6193                 else
6194                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6195                 break;
6196         default:
6197                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6198                 retval = -1;
6199                 break;
6200         }
6201
6202         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6203 out:
6204         /* notify the VF of the results of what it sent us */
6205         if (retval)
6206                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6207         else
6208                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6209
6210         igb_write_mbx(hw, msgbuf, 1, vf);
6211 }
6212
6213 static void igb_msg_task(struct igb_adapter *adapter)
6214 {
6215         struct e1000_hw *hw = &adapter->hw;
6216         u32 vf;
6217
6218         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6219                 /* process any reset requests */
6220                 if (!igb_check_for_rst(hw, vf))
6221                         igb_vf_reset_event(adapter, vf);
6222
6223                 /* process any messages pending */
6224                 if (!igb_check_for_msg(hw, vf))
6225                         igb_rcv_msg_from_vf(adapter, vf);
6226
6227                 /* process any acks */
6228                 if (!igb_check_for_ack(hw, vf))
6229                         igb_rcv_ack_from_vf(adapter, vf);
6230         }
6231 }
6232
6233 /**
6234  *  igb_set_uta - Set unicast filter table address
6235  *  @adapter: board private structure
6236  *
6237  *  The unicast table address is a register array of 32-bit registers.
6238  *  The table is meant to be used in a way similar to how the MTA is used
6239  *  however due to certain limitations in the hardware it is necessary to
6240  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6241  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6242  **/
6243 static void igb_set_uta(struct igb_adapter *adapter)
6244 {
6245         struct e1000_hw *hw = &adapter->hw;
6246         int i;
6247
6248         /* The UTA table only exists on 82576 hardware and newer */
6249         if (hw->mac.type < e1000_82576)
6250                 return;
6251
6252         /* we only need to do this if VMDq is enabled */
6253         if (!adapter->vfs_allocated_count)
6254                 return;
6255
6256         for (i = 0; i < hw->mac.uta_reg_count; i++)
6257                 array_wr32(E1000_UTA, i, ~0);
6258 }
6259
6260 /**
6261  *  igb_intr_msi - Interrupt Handler
6262  *  @irq: interrupt number
6263  *  @data: pointer to a network interface device structure
6264  **/
6265 static irqreturn_t igb_intr_msi(int irq, void *data)
6266 {
6267         struct igb_adapter *adapter = data;
6268         struct igb_q_vector *q_vector = adapter->q_vector[0];
6269         struct e1000_hw *hw = &adapter->hw;
6270         /* read ICR disables interrupts using IAM */
6271         u32 icr = rd32(E1000_ICR);
6272
6273         igb_write_itr(q_vector);
6274
6275         if (icr & E1000_ICR_DRSTA)
6276                 schedule_work(&adapter->reset_task);
6277
6278         if (icr & E1000_ICR_DOUTSYNC) {
6279                 /* HW is reporting DMA is out of sync */
6280                 adapter->stats.doosync++;
6281         }
6282
6283         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6284                 hw->mac.get_link_status = 1;
6285                 if (!test_bit(__IGB_DOWN, &adapter->state))
6286                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6287         }
6288
6289         if (icr & E1000_ICR_TS)
6290                 igb_tsync_interrupt(adapter);
6291
6292         napi_schedule(&q_vector->napi);
6293
6294         return IRQ_HANDLED;
6295 }
6296
6297 /**
6298  *  igb_intr - Legacy Interrupt Handler
6299  *  @irq: interrupt number
6300  *  @data: pointer to a network interface device structure
6301  **/
6302 static irqreturn_t igb_intr(int irq, void *data)
6303 {
6304         struct igb_adapter *adapter = data;
6305         struct igb_q_vector *q_vector = adapter->q_vector[0];
6306         struct e1000_hw *hw = &adapter->hw;
6307         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6308          * need for the IMC write
6309          */
6310         u32 icr = rd32(E1000_ICR);
6311
6312         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6313          * not set, then the adapter didn't send an interrupt
6314          */
6315         if (!(icr & E1000_ICR_INT_ASSERTED))
6316                 return IRQ_NONE;
6317
6318         igb_write_itr(q_vector);
6319
6320         if (icr & E1000_ICR_DRSTA)
6321                 schedule_work(&adapter->reset_task);
6322
6323         if (icr & E1000_ICR_DOUTSYNC) {
6324                 /* HW is reporting DMA is out of sync */
6325                 adapter->stats.doosync++;
6326         }
6327
6328         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6329                 hw->mac.get_link_status = 1;
6330                 /* guard against interrupt when we're going down */
6331                 if (!test_bit(__IGB_DOWN, &adapter->state))
6332                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6333         }
6334
6335         if (icr & E1000_ICR_TS)
6336                 igb_tsync_interrupt(adapter);
6337
6338         napi_schedule(&q_vector->napi);
6339
6340         return IRQ_HANDLED;
6341 }
6342
6343 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6344 {
6345         struct igb_adapter *adapter = q_vector->adapter;
6346         struct e1000_hw *hw = &adapter->hw;
6347
6348         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6349             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6350                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6351                         igb_set_itr(q_vector);
6352                 else
6353                         igb_update_ring_itr(q_vector);
6354         }
6355
6356         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6357                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6358                         wr32(E1000_EIMS, q_vector->eims_value);
6359                 else
6360                         igb_irq_enable(adapter);
6361         }
6362 }
6363
6364 /**
6365  *  igb_poll - NAPI Rx polling callback
6366  *  @napi: napi polling structure
6367  *  @budget: count of how many packets we should handle
6368  **/
6369 static int igb_poll(struct napi_struct *napi, int budget)
6370 {
6371         struct igb_q_vector *q_vector = container_of(napi,
6372                                                      struct igb_q_vector,
6373                                                      napi);
6374         bool clean_complete = true;
6375         int work_done = 0;
6376
6377 #ifdef CONFIG_IGB_DCA
6378         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6379                 igb_update_dca(q_vector);
6380 #endif
6381         if (q_vector->tx.ring)
6382                 clean_complete = igb_clean_tx_irq(q_vector);
6383
6384         if (q_vector->rx.ring) {
6385                 int cleaned = igb_clean_rx_irq(q_vector, budget);
6386
6387                 work_done += cleaned;
6388                 clean_complete &= (cleaned < budget);
6389         }
6390
6391         /* If all work not completed, return budget and keep polling */
6392         if (!clean_complete)
6393                 return budget;
6394
6395         /* If not enough Rx work done, exit the polling mode */
6396         napi_complete_done(napi, work_done);
6397         igb_ring_irq_enable(q_vector);
6398
6399         return 0;
6400 }
6401
6402 /**
6403  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6404  *  @q_vector: pointer to q_vector containing needed info
6405  *
6406  *  returns true if ring is completely cleaned
6407  **/
6408 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6409 {
6410         struct igb_adapter *adapter = q_vector->adapter;
6411         struct igb_ring *tx_ring = q_vector->tx.ring;
6412         struct igb_tx_buffer *tx_buffer;
6413         union e1000_adv_tx_desc *tx_desc;
6414         unsigned int total_bytes = 0, total_packets = 0;
6415         unsigned int budget = q_vector->tx.work_limit;
6416         unsigned int i = tx_ring->next_to_clean;
6417
6418         if (test_bit(__IGB_DOWN, &adapter->state))
6419                 return true;
6420
6421         tx_buffer = &tx_ring->tx_buffer_info[i];
6422         tx_desc = IGB_TX_DESC(tx_ring, i);
6423         i -= tx_ring->count;
6424
6425         do {
6426                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6427
6428                 /* if next_to_watch is not set then there is no work pending */
6429                 if (!eop_desc)
6430                         break;
6431
6432                 /* prevent any other reads prior to eop_desc */
6433                 read_barrier_depends();
6434
6435                 /* if DD is not set pending work has not been completed */
6436                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6437                         break;
6438
6439                 /* clear next_to_watch to prevent false hangs */
6440                 tx_buffer->next_to_watch = NULL;
6441
6442                 /* update the statistics for this packet */
6443                 total_bytes += tx_buffer->bytecount;
6444                 total_packets += tx_buffer->gso_segs;
6445
6446                 /* free the skb */
6447                 dev_consume_skb_any(tx_buffer->skb);
6448
6449                 /* unmap skb header data */
6450                 dma_unmap_single(tx_ring->dev,
6451                                  dma_unmap_addr(tx_buffer, dma),
6452                                  dma_unmap_len(tx_buffer, len),
6453                                  DMA_TO_DEVICE);
6454
6455                 /* clear tx_buffer data */
6456                 tx_buffer->skb = NULL;
6457                 dma_unmap_len_set(tx_buffer, len, 0);
6458
6459                 /* clear last DMA location and unmap remaining buffers */
6460                 while (tx_desc != eop_desc) {
6461                         tx_buffer++;
6462                         tx_desc++;
6463                         i++;
6464                         if (unlikely(!i)) {
6465                                 i -= tx_ring->count;
6466                                 tx_buffer = tx_ring->tx_buffer_info;
6467                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6468                         }
6469
6470                         /* unmap any remaining paged data */
6471                         if (dma_unmap_len(tx_buffer, len)) {
6472                                 dma_unmap_page(tx_ring->dev,
6473                                                dma_unmap_addr(tx_buffer, dma),
6474                                                dma_unmap_len(tx_buffer, len),
6475                                                DMA_TO_DEVICE);
6476                                 dma_unmap_len_set(tx_buffer, len, 0);
6477                         }
6478                 }
6479
6480                 /* move us one more past the eop_desc for start of next pkt */
6481                 tx_buffer++;
6482                 tx_desc++;
6483                 i++;
6484                 if (unlikely(!i)) {
6485                         i -= tx_ring->count;
6486                         tx_buffer = tx_ring->tx_buffer_info;
6487                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6488                 }
6489
6490                 /* issue prefetch for next Tx descriptor */
6491                 prefetch(tx_desc);
6492
6493                 /* update budget accounting */
6494                 budget--;
6495         } while (likely(budget));
6496
6497         netdev_tx_completed_queue(txring_txq(tx_ring),
6498                                   total_packets, total_bytes);
6499         i += tx_ring->count;
6500         tx_ring->next_to_clean = i;
6501         u64_stats_update_begin(&tx_ring->tx_syncp);
6502         tx_ring->tx_stats.bytes += total_bytes;
6503         tx_ring->tx_stats.packets += total_packets;
6504         u64_stats_update_end(&tx_ring->tx_syncp);
6505         q_vector->tx.total_bytes += total_bytes;
6506         q_vector->tx.total_packets += total_packets;
6507
6508         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6509                 struct e1000_hw *hw = &adapter->hw;
6510
6511                 /* Detect a transmit hang in hardware, this serializes the
6512                  * check with the clearing of time_stamp and movement of i
6513                  */
6514                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6515                 if (tx_buffer->next_to_watch &&
6516                     time_after(jiffies, tx_buffer->time_stamp +
6517                                (adapter->tx_timeout_factor * HZ)) &&
6518                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6519
6520                         /* detected Tx unit hang */
6521                         dev_err(tx_ring->dev,
6522                                 "Detected Tx Unit Hang\n"
6523                                 "  Tx Queue             <%d>\n"
6524                                 "  TDH                  <%x>\n"
6525                                 "  TDT                  <%x>\n"
6526                                 "  next_to_use          <%x>\n"
6527                                 "  next_to_clean        <%x>\n"
6528                                 "buffer_info[next_to_clean]\n"
6529                                 "  time_stamp           <%lx>\n"
6530                                 "  next_to_watch        <%p>\n"
6531                                 "  jiffies              <%lx>\n"
6532                                 "  desc.status          <%x>\n",
6533                                 tx_ring->queue_index,
6534                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6535                                 readl(tx_ring->tail),
6536                                 tx_ring->next_to_use,
6537                                 tx_ring->next_to_clean,
6538                                 tx_buffer->time_stamp,
6539                                 tx_buffer->next_to_watch,
6540                                 jiffies,
6541                                 tx_buffer->next_to_watch->wb.status);
6542                         netif_stop_subqueue(tx_ring->netdev,
6543                                             tx_ring->queue_index);
6544
6545                         /* we are about to reset, no point in enabling stuff */
6546                         return true;
6547                 }
6548         }
6549
6550 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6551         if (unlikely(total_packets &&
6552             netif_carrier_ok(tx_ring->netdev) &&
6553             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6554                 /* Make sure that anybody stopping the queue after this
6555                  * sees the new next_to_clean.
6556                  */
6557                 smp_mb();
6558                 if (__netif_subqueue_stopped(tx_ring->netdev,
6559                                              tx_ring->queue_index) &&
6560                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6561                         netif_wake_subqueue(tx_ring->netdev,
6562                                             tx_ring->queue_index);
6563
6564                         u64_stats_update_begin(&tx_ring->tx_syncp);
6565                         tx_ring->tx_stats.restart_queue++;
6566                         u64_stats_update_end(&tx_ring->tx_syncp);
6567                 }
6568         }
6569
6570         return !!budget;
6571 }
6572
6573 /**
6574  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6575  *  @rx_ring: rx descriptor ring to store buffers on
6576  *  @old_buff: donor buffer to have page reused
6577  *
6578  *  Synchronizes page for reuse by the adapter
6579  **/
6580 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6581                               struct igb_rx_buffer *old_buff)
6582 {
6583         struct igb_rx_buffer *new_buff;
6584         u16 nta = rx_ring->next_to_alloc;
6585
6586         new_buff = &rx_ring->rx_buffer_info[nta];
6587
6588         /* update, and store next to alloc */
6589         nta++;
6590         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6591
6592         /* transfer page from old buffer to new buffer */
6593         *new_buff = *old_buff;
6594
6595         /* sync the buffer for use by the device */
6596         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6597                                          old_buff->page_offset,
6598                                          IGB_RX_BUFSZ,
6599                                          DMA_FROM_DEVICE);
6600 }
6601
6602 static inline bool igb_page_is_reserved(struct page *page)
6603 {
6604         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6605 }
6606
6607 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6608                                   struct page *page,
6609                                   unsigned int truesize)
6610 {
6611         /* avoid re-using remote pages */
6612         if (unlikely(igb_page_is_reserved(page)))
6613                 return false;
6614
6615 #if (PAGE_SIZE < 8192)
6616         /* if we are only owner of page we can reuse it */
6617         if (unlikely(page_count(page) != 1))
6618                 return false;
6619
6620         /* flip page offset to other buffer */
6621         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6622 #else
6623         /* move offset up to the next cache line */
6624         rx_buffer->page_offset += truesize;
6625
6626         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6627                 return false;
6628 #endif
6629
6630         /* Even if we own the page, we are not allowed to use atomic_set()
6631          * This would break get_page_unless_zero() users.
6632          */
6633         atomic_inc(&page->_count);
6634
6635         return true;
6636 }
6637
6638 /**
6639  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6640  *  @rx_ring: rx descriptor ring to transact packets on
6641  *  @rx_buffer: buffer containing page to add
6642  *  @rx_desc: descriptor containing length of buffer written by hardware
6643  *  @skb: sk_buff to place the data into
6644  *
6645  *  This function will add the data contained in rx_buffer->page to the skb.
6646  *  This is done either through a direct copy if the data in the buffer is
6647  *  less than the skb header size, otherwise it will just attach the page as
6648  *  a frag to the skb.
6649  *
6650  *  The function will then update the page offset if necessary and return
6651  *  true if the buffer can be reused by the adapter.
6652  **/
6653 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6654                             struct igb_rx_buffer *rx_buffer,
6655                             union e1000_adv_rx_desc *rx_desc,
6656                             struct sk_buff *skb)
6657 {
6658         struct page *page = rx_buffer->page;
6659         unsigned char *va = page_address(page) + rx_buffer->page_offset;
6660         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6661 #if (PAGE_SIZE < 8192)
6662         unsigned int truesize = IGB_RX_BUFSZ;
6663 #else
6664         unsigned int truesize = SKB_DATA_ALIGN(size);
6665 #endif
6666         unsigned int pull_len;
6667
6668         if (unlikely(skb_is_nonlinear(skb)))
6669                 goto add_tail_frag;
6670
6671         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6672                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6673                 va += IGB_TS_HDR_LEN;
6674                 size -= IGB_TS_HDR_LEN;
6675         }
6676
6677         if (likely(size <= IGB_RX_HDR_LEN)) {
6678                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6679
6680                 /* page is not reserved, we can reuse buffer as-is */
6681                 if (likely(!igb_page_is_reserved(page)))
6682                         return true;
6683
6684                 /* this page cannot be reused so discard it */
6685                 __free_page(page);
6686                 return false;
6687         }
6688
6689         /* we need the header to contain the greater of either ETH_HLEN or
6690          * 60 bytes if the skb->len is less than 60 for skb_pad.
6691          */
6692         pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6693
6694         /* align pull length to size of long to optimize memcpy performance */
6695         memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6696
6697         /* update all of the pointers */
6698         va += pull_len;
6699         size -= pull_len;
6700
6701 add_tail_frag:
6702         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6703                         (unsigned long)va & ~PAGE_MASK, size, truesize);
6704
6705         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6706 }
6707
6708 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6709                                            union e1000_adv_rx_desc *rx_desc,
6710                                            struct sk_buff *skb)
6711 {
6712         struct igb_rx_buffer *rx_buffer;
6713         struct page *page;
6714
6715         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6716         page = rx_buffer->page;
6717         prefetchw(page);
6718
6719         if (likely(!skb)) {
6720                 void *page_addr = page_address(page) +
6721                                   rx_buffer->page_offset;
6722
6723                 /* prefetch first cache line of first page */
6724                 prefetch(page_addr);
6725 #if L1_CACHE_BYTES < 128
6726                 prefetch(page_addr + L1_CACHE_BYTES);
6727 #endif
6728
6729                 /* allocate a skb to store the frags */
6730                 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6731                 if (unlikely(!skb)) {
6732                         rx_ring->rx_stats.alloc_failed++;
6733                         return NULL;
6734                 }
6735
6736                 /* we will be copying header into skb->data in
6737                  * pskb_may_pull so it is in our interest to prefetch
6738                  * it now to avoid a possible cache miss
6739                  */
6740                 prefetchw(skb->data);
6741         }
6742
6743         /* we are reusing so sync this buffer for CPU use */
6744         dma_sync_single_range_for_cpu(rx_ring->dev,
6745                                       rx_buffer->dma,
6746                                       rx_buffer->page_offset,
6747                                       IGB_RX_BUFSZ,
6748                                       DMA_FROM_DEVICE);
6749
6750         /* pull page into skb */
6751         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6752                 /* hand second half of page back to the ring */
6753                 igb_reuse_rx_page(rx_ring, rx_buffer);
6754         } else {
6755                 /* we are not reusing the buffer so unmap it */
6756                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6757                                PAGE_SIZE, DMA_FROM_DEVICE);
6758         }
6759
6760         /* clear contents of rx_buffer */
6761         rx_buffer->page = NULL;
6762
6763         return skb;
6764 }
6765
6766 static inline void igb_rx_checksum(struct igb_ring *ring,
6767                                    union e1000_adv_rx_desc *rx_desc,
6768                                    struct sk_buff *skb)
6769 {
6770         skb_checksum_none_assert(skb);
6771
6772         /* Ignore Checksum bit is set */
6773         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6774                 return;
6775
6776         /* Rx checksum disabled via ethtool */
6777         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6778                 return;
6779
6780         /* TCP/UDP checksum error bit is set */
6781         if (igb_test_staterr(rx_desc,
6782                              E1000_RXDEXT_STATERR_TCPE |
6783                              E1000_RXDEXT_STATERR_IPE)) {
6784                 /* work around errata with sctp packets where the TCPE aka
6785                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6786                  * packets, (aka let the stack check the crc32c)
6787                  */
6788                 if (!((skb->len == 60) &&
6789                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6790                         u64_stats_update_begin(&ring->rx_syncp);
6791                         ring->rx_stats.csum_err++;
6792                         u64_stats_update_end(&ring->rx_syncp);
6793                 }
6794                 /* let the stack verify checksum errors */
6795                 return;
6796         }
6797         /* It must be a TCP or UDP packet with a valid checksum */
6798         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6799                                       E1000_RXD_STAT_UDPCS))
6800                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6801
6802         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6803                 le32_to_cpu(rx_desc->wb.upper.status_error));
6804 }
6805
6806 static inline void igb_rx_hash(struct igb_ring *ring,
6807                                union e1000_adv_rx_desc *rx_desc,
6808                                struct sk_buff *skb)
6809 {
6810         if (ring->netdev->features & NETIF_F_RXHASH)
6811                 skb_set_hash(skb,
6812                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6813                              PKT_HASH_TYPE_L3);
6814 }
6815
6816 /**
6817  *  igb_is_non_eop - process handling of non-EOP buffers
6818  *  @rx_ring: Rx ring being processed
6819  *  @rx_desc: Rx descriptor for current buffer
6820  *  @skb: current socket buffer containing buffer in progress
6821  *
6822  *  This function updates next to clean.  If the buffer is an EOP buffer
6823  *  this function exits returning false, otherwise it will place the
6824  *  sk_buff in the next buffer to be chained and return true indicating
6825  *  that this is in fact a non-EOP buffer.
6826  **/
6827 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6828                            union e1000_adv_rx_desc *rx_desc)
6829 {
6830         u32 ntc = rx_ring->next_to_clean + 1;
6831
6832         /* fetch, update, and store next to clean */
6833         ntc = (ntc < rx_ring->count) ? ntc : 0;
6834         rx_ring->next_to_clean = ntc;
6835
6836         prefetch(IGB_RX_DESC(rx_ring, ntc));
6837
6838         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6839                 return false;
6840
6841         return true;
6842 }
6843
6844 /**
6845  *  igb_cleanup_headers - Correct corrupted or empty headers
6846  *  @rx_ring: rx descriptor ring packet is being transacted on
6847  *  @rx_desc: pointer to the EOP Rx descriptor
6848  *  @skb: pointer to current skb being fixed
6849  *
6850  *  Address the case where we are pulling data in on pages only
6851  *  and as such no data is present in the skb header.
6852  *
6853  *  In addition if skb is not at least 60 bytes we need to pad it so that
6854  *  it is large enough to qualify as a valid Ethernet frame.
6855  *
6856  *  Returns true if an error was encountered and skb was freed.
6857  **/
6858 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6859                                 union e1000_adv_rx_desc *rx_desc,
6860                                 struct sk_buff *skb)
6861 {
6862         if (unlikely((igb_test_staterr(rx_desc,
6863                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6864                 struct net_device *netdev = rx_ring->netdev;
6865                 if (!(netdev->features & NETIF_F_RXALL)) {
6866                         dev_kfree_skb_any(skb);
6867                         return true;
6868                 }
6869         }
6870
6871         /* if eth_skb_pad returns an error the skb was freed */
6872         if (eth_skb_pad(skb))
6873                 return true;
6874
6875         return false;
6876 }
6877
6878 /**
6879  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6880  *  @rx_ring: rx descriptor ring packet is being transacted on
6881  *  @rx_desc: pointer to the EOP Rx descriptor
6882  *  @skb: pointer to current skb being populated
6883  *
6884  *  This function checks the ring, descriptor, and packet information in
6885  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6886  *  other fields within the skb.
6887  **/
6888 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6889                                    union e1000_adv_rx_desc *rx_desc,
6890                                    struct sk_buff *skb)
6891 {
6892         struct net_device *dev = rx_ring->netdev;
6893
6894         igb_rx_hash(rx_ring, rx_desc, skb);
6895
6896         igb_rx_checksum(rx_ring, rx_desc, skb);
6897
6898         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6899             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6900                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6901
6902         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6903             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6904                 u16 vid;
6905
6906                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6907                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6908                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6909                 else
6910                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6911
6912                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6913         }
6914
6915         skb_record_rx_queue(skb, rx_ring->queue_index);
6916
6917         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6918 }
6919
6920 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6921 {
6922         struct igb_ring *rx_ring = q_vector->rx.ring;
6923         struct sk_buff *skb = rx_ring->skb;
6924         unsigned int total_bytes = 0, total_packets = 0;
6925         u16 cleaned_count = igb_desc_unused(rx_ring);
6926
6927         while (likely(total_packets < budget)) {
6928                 union e1000_adv_rx_desc *rx_desc;
6929
6930                 /* return some buffers to hardware, one at a time is too slow */
6931                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6932                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6933                         cleaned_count = 0;
6934                 }
6935
6936                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6937
6938                 if (!rx_desc->wb.upper.status_error)
6939                         break;
6940
6941                 /* This memory barrier is needed to keep us from reading
6942                  * any other fields out of the rx_desc until we know the
6943                  * descriptor has been written back
6944                  */
6945                 dma_rmb();
6946
6947                 /* retrieve a buffer from the ring */
6948                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6949
6950                 /* exit if we failed to retrieve a buffer */
6951                 if (!skb)
6952                         break;
6953
6954                 cleaned_count++;
6955
6956                 /* fetch next buffer in frame if non-eop */
6957                 if (igb_is_non_eop(rx_ring, rx_desc))
6958                         continue;
6959
6960                 /* verify the packet layout is correct */
6961                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6962                         skb = NULL;
6963                         continue;
6964                 }
6965
6966                 /* probably a little skewed due to removing CRC */
6967                 total_bytes += skb->len;
6968
6969                 /* populate checksum, timestamp, VLAN, and protocol */
6970                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6971
6972                 napi_gro_receive(&q_vector->napi, skb);
6973
6974                 /* reset skb pointer */
6975                 skb = NULL;
6976
6977                 /* update budget accounting */
6978                 total_packets++;
6979         }
6980
6981         /* place incomplete frames back on ring for completion */
6982         rx_ring->skb = skb;
6983
6984         u64_stats_update_begin(&rx_ring->rx_syncp);
6985         rx_ring->rx_stats.packets += total_packets;
6986         rx_ring->rx_stats.bytes += total_bytes;
6987         u64_stats_update_end(&rx_ring->rx_syncp);
6988         q_vector->rx.total_packets += total_packets;
6989         q_vector->rx.total_bytes += total_bytes;
6990
6991         if (cleaned_count)
6992                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6993
6994         return total_packets;
6995 }
6996
6997 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6998                                   struct igb_rx_buffer *bi)
6999 {
7000         struct page *page = bi->page;
7001         dma_addr_t dma;
7002
7003         /* since we are recycling buffers we should seldom need to alloc */
7004         if (likely(page))
7005                 return true;
7006
7007         /* alloc new page for storage */
7008         page = dev_alloc_page();
7009         if (unlikely(!page)) {
7010                 rx_ring->rx_stats.alloc_failed++;
7011                 return false;
7012         }
7013
7014         /* map page for use */
7015         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7016
7017         /* if mapping failed free memory back to system since
7018          * there isn't much point in holding memory we can't use
7019          */
7020         if (dma_mapping_error(rx_ring->dev, dma)) {
7021                 __free_page(page);
7022
7023                 rx_ring->rx_stats.alloc_failed++;
7024                 return false;
7025         }
7026
7027         bi->dma = dma;
7028         bi->page = page;
7029         bi->page_offset = 0;
7030
7031         return true;
7032 }
7033
7034 /**
7035  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7036  *  @adapter: address of board private structure
7037  **/
7038 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7039 {
7040         union e1000_adv_rx_desc *rx_desc;
7041         struct igb_rx_buffer *bi;
7042         u16 i = rx_ring->next_to_use;
7043
7044         /* nothing to do */
7045         if (!cleaned_count)
7046                 return;
7047
7048         rx_desc = IGB_RX_DESC(rx_ring, i);
7049         bi = &rx_ring->rx_buffer_info[i];
7050         i -= rx_ring->count;
7051
7052         do {
7053                 if (!igb_alloc_mapped_page(rx_ring, bi))
7054                         break;
7055
7056                 /* Refresh the desc even if buffer_addrs didn't change
7057                  * because each write-back erases this info.
7058                  */
7059                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7060
7061                 rx_desc++;
7062                 bi++;
7063                 i++;
7064                 if (unlikely(!i)) {
7065                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7066                         bi = rx_ring->rx_buffer_info;
7067                         i -= rx_ring->count;
7068                 }
7069
7070                 /* clear the status bits for the next_to_use descriptor */
7071                 rx_desc->wb.upper.status_error = 0;
7072
7073                 cleaned_count--;
7074         } while (cleaned_count);
7075
7076         i += rx_ring->count;
7077
7078         if (rx_ring->next_to_use != i) {
7079                 /* record the next descriptor to use */
7080                 rx_ring->next_to_use = i;
7081
7082                 /* update next to alloc since we have filled the ring */
7083                 rx_ring->next_to_alloc = i;
7084
7085                 /* Force memory writes to complete before letting h/w
7086                  * know there are new descriptors to fetch.  (Only
7087                  * applicable for weak-ordered memory model archs,
7088                  * such as IA-64).
7089                  */
7090                 wmb();
7091                 writel(i, rx_ring->tail);
7092         }
7093 }
7094
7095 /**
7096  * igb_mii_ioctl -
7097  * @netdev:
7098  * @ifreq:
7099  * @cmd:
7100  **/
7101 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7102 {
7103         struct igb_adapter *adapter = netdev_priv(netdev);
7104         struct mii_ioctl_data *data = if_mii(ifr);
7105
7106         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7107                 return -EOPNOTSUPP;
7108
7109         switch (cmd) {
7110         case SIOCGMIIPHY:
7111                 data->phy_id = adapter->hw.phy.addr;
7112                 break;
7113         case SIOCGMIIREG:
7114                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7115                                      &data->val_out))
7116                         return -EIO;
7117                 break;
7118         case SIOCSMIIREG:
7119         default:
7120                 return -EOPNOTSUPP;
7121         }
7122         return 0;
7123 }
7124
7125 /**
7126  * igb_ioctl -
7127  * @netdev:
7128  * @ifreq:
7129  * @cmd:
7130  **/
7131 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7132 {
7133         switch (cmd) {
7134         case SIOCGMIIPHY:
7135         case SIOCGMIIREG:
7136         case SIOCSMIIREG:
7137                 return igb_mii_ioctl(netdev, ifr, cmd);
7138         case SIOCGHWTSTAMP:
7139                 return igb_ptp_get_ts_config(netdev, ifr);
7140         case SIOCSHWTSTAMP:
7141                 return igb_ptp_set_ts_config(netdev, ifr);
7142         default:
7143                 return -EOPNOTSUPP;
7144         }
7145 }
7146
7147 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7148 {
7149         struct igb_adapter *adapter = hw->back;
7150
7151         pci_read_config_word(adapter->pdev, reg, value);
7152 }
7153
7154 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7155 {
7156         struct igb_adapter *adapter = hw->back;
7157
7158         pci_write_config_word(adapter->pdev, reg, *value);
7159 }
7160
7161 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7162 {
7163         struct igb_adapter *adapter = hw->back;
7164
7165         if (pcie_capability_read_word(adapter->pdev, reg, value))
7166                 return -E1000_ERR_CONFIG;
7167
7168         return 0;
7169 }
7170
7171 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7172 {
7173         struct igb_adapter *adapter = hw->back;
7174
7175         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7176                 return -E1000_ERR_CONFIG;
7177
7178         return 0;
7179 }
7180
7181 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7182 {
7183         struct igb_adapter *adapter = netdev_priv(netdev);
7184         struct e1000_hw *hw = &adapter->hw;
7185         u32 ctrl, rctl;
7186         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7187
7188         if (enable) {
7189                 /* enable VLAN tag insert/strip */
7190                 ctrl = rd32(E1000_CTRL);
7191                 ctrl |= E1000_CTRL_VME;
7192                 wr32(E1000_CTRL, ctrl);
7193
7194                 /* Disable CFI check */
7195                 rctl = rd32(E1000_RCTL);
7196                 rctl &= ~E1000_RCTL_CFIEN;
7197                 wr32(E1000_RCTL, rctl);
7198         } else {
7199                 /* disable VLAN tag insert/strip */
7200                 ctrl = rd32(E1000_CTRL);
7201                 ctrl &= ~E1000_CTRL_VME;
7202                 wr32(E1000_CTRL, ctrl);
7203         }
7204
7205         igb_rlpml_set(adapter);
7206 }
7207
7208 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7209                                __be16 proto, u16 vid)
7210 {
7211         struct igb_adapter *adapter = netdev_priv(netdev);
7212         struct e1000_hw *hw = &adapter->hw;
7213         int pf_id = adapter->vfs_allocated_count;
7214
7215         /* attempt to add filter to vlvf array */
7216         igb_vlvf_set(adapter, vid, true, pf_id);
7217
7218         /* add the filter since PF can receive vlans w/o entry in vlvf */
7219         igb_vfta_set(hw, vid, true);
7220
7221         set_bit(vid, adapter->active_vlans);
7222
7223         return 0;
7224 }
7225
7226 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7227                                 __be16 proto, u16 vid)
7228 {
7229         struct igb_adapter *adapter = netdev_priv(netdev);
7230         struct e1000_hw *hw = &adapter->hw;
7231         int pf_id = adapter->vfs_allocated_count;
7232         s32 err;
7233
7234         /* remove vlan from VLVF table array */
7235         err = igb_vlvf_set(adapter, vid, false, pf_id);
7236
7237         /* if vid was not present in VLVF just remove it from table */
7238         if (err)
7239                 igb_vfta_set(hw, vid, false);
7240
7241         clear_bit(vid, adapter->active_vlans);
7242
7243         return 0;
7244 }
7245
7246 static void igb_restore_vlan(struct igb_adapter *adapter)
7247 {
7248         u16 vid;
7249
7250         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7251
7252         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7253                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7254 }
7255
7256 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7257 {
7258         struct pci_dev *pdev = adapter->pdev;
7259         struct e1000_mac_info *mac = &adapter->hw.mac;
7260
7261         mac->autoneg = 0;
7262
7263         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7264          * for the switch() below to work
7265          */
7266         if ((spd & 1) || (dplx & ~1))
7267                 goto err_inval;
7268
7269         /* Fiber NIC's only allow 1000 gbps Full duplex
7270          * and 100Mbps Full duplex for 100baseFx sfp
7271          */
7272         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7273                 switch (spd + dplx) {
7274                 case SPEED_10 + DUPLEX_HALF:
7275                 case SPEED_10 + DUPLEX_FULL:
7276                 case SPEED_100 + DUPLEX_HALF:
7277                         goto err_inval;
7278                 default:
7279                         break;
7280                 }
7281         }
7282
7283         switch (spd + dplx) {
7284         case SPEED_10 + DUPLEX_HALF:
7285                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7286                 break;
7287         case SPEED_10 + DUPLEX_FULL:
7288                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7289                 break;
7290         case SPEED_100 + DUPLEX_HALF:
7291                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7292                 break;
7293         case SPEED_100 + DUPLEX_FULL:
7294                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7295                 break;
7296         case SPEED_1000 + DUPLEX_FULL:
7297                 mac->autoneg = 1;
7298                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7299                 break;
7300         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7301         default:
7302                 goto err_inval;
7303         }
7304
7305         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7306         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7307
7308         return 0;
7309
7310 err_inval:
7311         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7312         return -EINVAL;
7313 }
7314
7315 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7316                           bool runtime)
7317 {
7318         struct net_device *netdev = pci_get_drvdata(pdev);
7319         struct igb_adapter *adapter = netdev_priv(netdev);
7320         struct e1000_hw *hw = &adapter->hw;
7321         u32 ctrl, rctl, status;
7322         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7323 #ifdef CONFIG_PM
7324         int retval = 0;
7325 #endif
7326
7327         netif_device_detach(netdev);
7328
7329         if (netif_running(netdev))
7330                 __igb_close(netdev, true);
7331
7332         igb_clear_interrupt_scheme(adapter);
7333
7334 #ifdef CONFIG_PM
7335         retval = pci_save_state(pdev);
7336         if (retval)
7337                 return retval;
7338 #endif
7339
7340         status = rd32(E1000_STATUS);
7341         if (status & E1000_STATUS_LU)
7342                 wufc &= ~E1000_WUFC_LNKC;
7343
7344         if (wufc) {
7345                 igb_setup_rctl(adapter);
7346                 igb_set_rx_mode(netdev);
7347
7348                 /* turn on all-multi mode if wake on multicast is enabled */
7349                 if (wufc & E1000_WUFC_MC) {
7350                         rctl = rd32(E1000_RCTL);
7351                         rctl |= E1000_RCTL_MPE;
7352                         wr32(E1000_RCTL, rctl);
7353                 }
7354
7355                 ctrl = rd32(E1000_CTRL);
7356                 /* advertise wake from D3Cold */
7357                 #define E1000_CTRL_ADVD3WUC 0x00100000
7358                 /* phy power management enable */
7359                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7360                 ctrl |= E1000_CTRL_ADVD3WUC;
7361                 wr32(E1000_CTRL, ctrl);
7362
7363                 /* Allow time for pending master requests to run */
7364                 igb_disable_pcie_master(hw);
7365
7366                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7367                 wr32(E1000_WUFC, wufc);
7368         } else {
7369                 wr32(E1000_WUC, 0);
7370                 wr32(E1000_WUFC, 0);
7371         }
7372
7373         *enable_wake = wufc || adapter->en_mng_pt;
7374         if (!*enable_wake)
7375                 igb_power_down_link(adapter);
7376         else
7377                 igb_power_up_link(adapter);
7378
7379         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7380          * would have already happened in close and is redundant.
7381          */
7382         igb_release_hw_control(adapter);
7383
7384         pci_disable_device(pdev);
7385
7386         return 0;
7387 }
7388
7389 #ifdef CONFIG_PM
7390 #ifdef CONFIG_PM_SLEEP
7391 static int igb_suspend(struct device *dev)
7392 {
7393         int retval;
7394         bool wake;
7395         struct pci_dev *pdev = to_pci_dev(dev);
7396
7397         retval = __igb_shutdown(pdev, &wake, 0);
7398         if (retval)
7399                 return retval;
7400
7401         if (wake) {
7402                 pci_prepare_to_sleep(pdev);
7403         } else {
7404                 pci_wake_from_d3(pdev, false);
7405                 pci_set_power_state(pdev, PCI_D3hot);
7406         }
7407
7408         return 0;
7409 }
7410 #endif /* CONFIG_PM_SLEEP */
7411
7412 static int igb_resume(struct device *dev)
7413 {
7414         struct pci_dev *pdev = to_pci_dev(dev);
7415         struct net_device *netdev = pci_get_drvdata(pdev);
7416         struct igb_adapter *adapter = netdev_priv(netdev);
7417         struct e1000_hw *hw = &adapter->hw;
7418         u32 err;
7419
7420         pci_set_power_state(pdev, PCI_D0);
7421         pci_restore_state(pdev);
7422         pci_save_state(pdev);
7423
7424         if (!pci_device_is_present(pdev))
7425                 return -ENODEV;
7426         err = pci_enable_device_mem(pdev);
7427         if (err) {
7428                 dev_err(&pdev->dev,
7429                         "igb: Cannot enable PCI device from suspend\n");
7430                 return err;
7431         }
7432         pci_set_master(pdev);
7433
7434         pci_enable_wake(pdev, PCI_D3hot, 0);
7435         pci_enable_wake(pdev, PCI_D3cold, 0);
7436
7437         if (igb_init_interrupt_scheme(adapter, true)) {
7438                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7439                 rtnl_unlock();
7440                 return -ENOMEM;
7441         }
7442
7443         igb_reset(adapter);
7444
7445         /* let the f/w know that the h/w is now under the control of the
7446          * driver.
7447          */
7448         igb_get_hw_control(adapter);
7449
7450         wr32(E1000_WUS, ~0);
7451
7452         if (netdev->flags & IFF_UP) {
7453                 rtnl_lock();
7454                 err = __igb_open(netdev, true);
7455                 rtnl_unlock();
7456                 if (err)
7457                         return err;
7458         }
7459
7460         netif_device_attach(netdev);
7461         return 0;
7462 }
7463
7464 static int igb_runtime_idle(struct device *dev)
7465 {
7466         struct pci_dev *pdev = to_pci_dev(dev);
7467         struct net_device *netdev = pci_get_drvdata(pdev);
7468         struct igb_adapter *adapter = netdev_priv(netdev);
7469
7470         if (!igb_has_link(adapter))
7471                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7472
7473         return -EBUSY;
7474 }
7475
7476 static int igb_runtime_suspend(struct device *dev)
7477 {
7478         struct pci_dev *pdev = to_pci_dev(dev);
7479         int retval;
7480         bool wake;
7481
7482         retval = __igb_shutdown(pdev, &wake, 1);
7483         if (retval)
7484                 return retval;
7485
7486         if (wake) {
7487                 pci_prepare_to_sleep(pdev);
7488         } else {
7489                 pci_wake_from_d3(pdev, false);
7490                 pci_set_power_state(pdev, PCI_D3hot);
7491         }
7492
7493         return 0;
7494 }
7495
7496 static int igb_runtime_resume(struct device *dev)
7497 {
7498         return igb_resume(dev);
7499 }
7500 #endif /* CONFIG_PM */
7501
7502 static void igb_shutdown(struct pci_dev *pdev)
7503 {
7504         bool wake;
7505
7506         __igb_shutdown(pdev, &wake, 0);
7507
7508         if (system_state == SYSTEM_POWER_OFF) {
7509                 pci_wake_from_d3(pdev, wake);
7510                 pci_set_power_state(pdev, PCI_D3hot);
7511         }
7512 }
7513
7514 #ifdef CONFIG_PCI_IOV
7515 static int igb_sriov_reinit(struct pci_dev *dev)
7516 {
7517         struct net_device *netdev = pci_get_drvdata(dev);
7518         struct igb_adapter *adapter = netdev_priv(netdev);
7519         struct pci_dev *pdev = adapter->pdev;
7520
7521         rtnl_lock();
7522
7523         if (netif_running(netdev))
7524                 igb_close(netdev);
7525         else
7526                 igb_reset(adapter);
7527
7528         igb_clear_interrupt_scheme(adapter);
7529
7530         igb_init_queue_configuration(adapter);
7531
7532         if (igb_init_interrupt_scheme(adapter, true)) {
7533                 rtnl_unlock();
7534                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7535                 return -ENOMEM;
7536         }
7537
7538         if (netif_running(netdev))
7539                 igb_open(netdev);
7540
7541         rtnl_unlock();
7542
7543         return 0;
7544 }
7545
7546 static int igb_pci_disable_sriov(struct pci_dev *dev)
7547 {
7548         int err = igb_disable_sriov(dev);
7549
7550         if (!err)
7551                 err = igb_sriov_reinit(dev);
7552
7553         return err;
7554 }
7555
7556 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7557 {
7558         int err = igb_enable_sriov(dev, num_vfs);
7559
7560         if (err)
7561                 goto out;
7562
7563         err = igb_sriov_reinit(dev);
7564         if (!err)
7565                 return num_vfs;
7566
7567 out:
7568         return err;
7569 }
7570
7571 #endif
7572 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7573 {
7574 #ifdef CONFIG_PCI_IOV
7575         if (num_vfs == 0)
7576                 return igb_pci_disable_sriov(dev);
7577         else
7578                 return igb_pci_enable_sriov(dev, num_vfs);
7579 #endif
7580         return 0;
7581 }
7582
7583 #ifdef CONFIG_NET_POLL_CONTROLLER
7584 /* Polling 'interrupt' - used by things like netconsole to send skbs
7585  * without having to re-enable interrupts. It's not called while
7586  * the interrupt routine is executing.
7587  */
7588 static void igb_netpoll(struct net_device *netdev)
7589 {
7590         struct igb_adapter *adapter = netdev_priv(netdev);
7591         struct e1000_hw *hw = &adapter->hw;
7592         struct igb_q_vector *q_vector;
7593         int i;
7594
7595         for (i = 0; i < adapter->num_q_vectors; i++) {
7596                 q_vector = adapter->q_vector[i];
7597                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7598                         wr32(E1000_EIMC, q_vector->eims_value);
7599                 else
7600                         igb_irq_disable(adapter);
7601                 napi_schedule(&q_vector->napi);
7602         }
7603 }
7604 #endif /* CONFIG_NET_POLL_CONTROLLER */
7605
7606 /**
7607  *  igb_io_error_detected - called when PCI error is detected
7608  *  @pdev: Pointer to PCI device
7609  *  @state: The current pci connection state
7610  *
7611  *  This function is called after a PCI bus error affecting
7612  *  this device has been detected.
7613  **/
7614 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7615                                               pci_channel_state_t state)
7616 {
7617         struct net_device *netdev = pci_get_drvdata(pdev);
7618         struct igb_adapter *adapter = netdev_priv(netdev);
7619
7620         netif_device_detach(netdev);
7621
7622         if (state == pci_channel_io_perm_failure)
7623                 return PCI_ERS_RESULT_DISCONNECT;
7624
7625         if (netif_running(netdev))
7626                 igb_down(adapter);
7627         pci_disable_device(pdev);
7628
7629         /* Request a slot slot reset. */
7630         return PCI_ERS_RESULT_NEED_RESET;
7631 }
7632
7633 /**
7634  *  igb_io_slot_reset - called after the pci bus has been reset.
7635  *  @pdev: Pointer to PCI device
7636  *
7637  *  Restart the card from scratch, as if from a cold-boot. Implementation
7638  *  resembles the first-half of the igb_resume routine.
7639  **/
7640 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7641 {
7642         struct net_device *netdev = pci_get_drvdata(pdev);
7643         struct igb_adapter *adapter = netdev_priv(netdev);
7644         struct e1000_hw *hw = &adapter->hw;
7645         pci_ers_result_t result;
7646         int err;
7647
7648         if (pci_enable_device_mem(pdev)) {
7649                 dev_err(&pdev->dev,
7650                         "Cannot re-enable PCI device after reset.\n");
7651                 result = PCI_ERS_RESULT_DISCONNECT;
7652         } else {
7653                 pci_set_master(pdev);
7654                 pci_restore_state(pdev);
7655                 pci_save_state(pdev);
7656
7657                 pci_enable_wake(pdev, PCI_D3hot, 0);
7658                 pci_enable_wake(pdev, PCI_D3cold, 0);
7659
7660                 igb_reset(adapter);
7661                 wr32(E1000_WUS, ~0);
7662                 result = PCI_ERS_RESULT_RECOVERED;
7663         }
7664
7665         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7666         if (err) {
7667                 dev_err(&pdev->dev,
7668                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7669                         err);
7670                 /* non-fatal, continue */
7671         }
7672
7673         return result;
7674 }
7675
7676 /**
7677  *  igb_io_resume - called when traffic can start flowing again.
7678  *  @pdev: Pointer to PCI device
7679  *
7680  *  This callback is called when the error recovery driver tells us that
7681  *  its OK to resume normal operation. Implementation resembles the
7682  *  second-half of the igb_resume routine.
7683  */
7684 static void igb_io_resume(struct pci_dev *pdev)
7685 {
7686         struct net_device *netdev = pci_get_drvdata(pdev);
7687         struct igb_adapter *adapter = netdev_priv(netdev);
7688
7689         if (netif_running(netdev)) {
7690                 if (igb_up(adapter)) {
7691                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7692                         return;
7693                 }
7694         }
7695
7696         netif_device_attach(netdev);
7697
7698         /* let the f/w know that the h/w is now under the control of the
7699          * driver.
7700          */
7701         igb_get_hw_control(adapter);
7702 }
7703
7704 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7705                              u8 qsel)
7706 {
7707         u32 rar_low, rar_high;
7708         struct e1000_hw *hw = &adapter->hw;
7709
7710         /* HW expects these in little endian so we reverse the byte order
7711          * from network order (big endian) to little endian
7712          */
7713         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7714                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7715         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7716
7717         /* Indicate to hardware the Address is Valid. */
7718         rar_high |= E1000_RAH_AV;
7719
7720         if (hw->mac.type == e1000_82575)
7721                 rar_high |= E1000_RAH_POOL_1 * qsel;
7722         else
7723                 rar_high |= E1000_RAH_POOL_1 << qsel;
7724
7725         wr32(E1000_RAL(index), rar_low);
7726         wrfl();
7727         wr32(E1000_RAH(index), rar_high);
7728         wrfl();
7729 }
7730
7731 static int igb_set_vf_mac(struct igb_adapter *adapter,
7732                           int vf, unsigned char *mac_addr)
7733 {
7734         struct e1000_hw *hw = &adapter->hw;
7735         /* VF MAC addresses start at end of receive addresses and moves
7736          * towards the first, as a result a collision should not be possible
7737          */
7738         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7739
7740         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7741
7742         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7743
7744         return 0;
7745 }
7746
7747 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7748 {
7749         struct igb_adapter *adapter = netdev_priv(netdev);
7750         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7751                 return -EINVAL;
7752         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7753         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7754         dev_info(&adapter->pdev->dev,
7755                  "Reload the VF driver to make this change effective.");
7756         if (test_bit(__IGB_DOWN, &adapter->state)) {
7757                 dev_warn(&adapter->pdev->dev,
7758                          "The VF MAC address has been set, but the PF device is not up.\n");
7759                 dev_warn(&adapter->pdev->dev,
7760                          "Bring the PF device up before attempting to use the VF device.\n");
7761         }
7762         return igb_set_vf_mac(adapter, vf, mac);
7763 }
7764
7765 static int igb_link_mbps(int internal_link_speed)
7766 {
7767         switch (internal_link_speed) {
7768         case SPEED_100:
7769                 return 100;
7770         case SPEED_1000:
7771                 return 1000;
7772         default:
7773                 return 0;
7774         }
7775 }
7776
7777 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7778                                   int link_speed)
7779 {
7780         int rf_dec, rf_int;
7781         u32 bcnrc_val;
7782
7783         if (tx_rate != 0) {
7784                 /* Calculate the rate factor values to set */
7785                 rf_int = link_speed / tx_rate;
7786                 rf_dec = (link_speed - (rf_int * tx_rate));
7787                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7788                          tx_rate;
7789
7790                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7791                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7792                               E1000_RTTBCNRC_RF_INT_MASK);
7793                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7794         } else {
7795                 bcnrc_val = 0;
7796         }
7797
7798         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7799         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7800          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7801          */
7802         wr32(E1000_RTTBCNRM, 0x14);
7803         wr32(E1000_RTTBCNRC, bcnrc_val);
7804 }
7805
7806 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7807 {
7808         int actual_link_speed, i;
7809         bool reset_rate = false;
7810
7811         /* VF TX rate limit was not set or not supported */
7812         if ((adapter->vf_rate_link_speed == 0) ||
7813             (adapter->hw.mac.type != e1000_82576))
7814                 return;
7815
7816         actual_link_speed = igb_link_mbps(adapter->link_speed);
7817         if (actual_link_speed != adapter->vf_rate_link_speed) {
7818                 reset_rate = true;
7819                 adapter->vf_rate_link_speed = 0;
7820                 dev_info(&adapter->pdev->dev,
7821                          "Link speed has been changed. VF Transmit rate is disabled\n");
7822         }
7823
7824         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7825                 if (reset_rate)
7826                         adapter->vf_data[i].tx_rate = 0;
7827
7828                 igb_set_vf_rate_limit(&adapter->hw, i,
7829                                       adapter->vf_data[i].tx_rate,
7830                                       actual_link_speed);
7831         }
7832 }
7833
7834 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7835                              int min_tx_rate, int max_tx_rate)
7836 {
7837         struct igb_adapter *adapter = netdev_priv(netdev);
7838         struct e1000_hw *hw = &adapter->hw;
7839         int actual_link_speed;
7840
7841         if (hw->mac.type != e1000_82576)
7842                 return -EOPNOTSUPP;
7843
7844         if (min_tx_rate)
7845                 return -EINVAL;
7846
7847         actual_link_speed = igb_link_mbps(adapter->link_speed);
7848         if ((vf >= adapter->vfs_allocated_count) ||
7849             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7850             (max_tx_rate < 0) ||
7851             (max_tx_rate > actual_link_speed))
7852                 return -EINVAL;
7853
7854         adapter->vf_rate_link_speed = actual_link_speed;
7855         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7856         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7857
7858         return 0;
7859 }
7860
7861 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7862                                    bool setting)
7863 {
7864         struct igb_adapter *adapter = netdev_priv(netdev);
7865         struct e1000_hw *hw = &adapter->hw;
7866         u32 reg_val, reg_offset;
7867
7868         if (!adapter->vfs_allocated_count)
7869                 return -EOPNOTSUPP;
7870
7871         if (vf >= adapter->vfs_allocated_count)
7872                 return -EINVAL;
7873
7874         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7875         reg_val = rd32(reg_offset);
7876         if (setting)
7877                 reg_val |= ((1 << vf) |
7878                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7879         else
7880                 reg_val &= ~((1 << vf) |
7881                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7882         wr32(reg_offset, reg_val);
7883
7884         adapter->vf_data[vf].spoofchk_enabled = setting;
7885         return 0;
7886 }
7887
7888 static int igb_ndo_get_vf_config(struct net_device *netdev,
7889                                  int vf, struct ifla_vf_info *ivi)
7890 {
7891         struct igb_adapter *adapter = netdev_priv(netdev);
7892         if (vf >= adapter->vfs_allocated_count)
7893                 return -EINVAL;
7894         ivi->vf = vf;
7895         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7896         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7897         ivi->min_tx_rate = 0;
7898         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7899         ivi->qos = adapter->vf_data[vf].pf_qos;
7900         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7901         return 0;
7902 }
7903
7904 static void igb_vmm_control(struct igb_adapter *adapter)
7905 {
7906         struct e1000_hw *hw = &adapter->hw;
7907         u32 reg;
7908
7909         switch (hw->mac.type) {
7910         case e1000_82575:
7911         case e1000_i210:
7912         case e1000_i211:
7913         case e1000_i354:
7914         default:
7915                 /* replication is not supported for 82575 */
7916                 return;
7917         case e1000_82576:
7918                 /* notify HW that the MAC is adding vlan tags */
7919                 reg = rd32(E1000_DTXCTL);
7920                 reg |= E1000_DTXCTL_VLAN_ADDED;
7921                 wr32(E1000_DTXCTL, reg);
7922                 /* Fall through */
7923         case e1000_82580:
7924                 /* enable replication vlan tag stripping */
7925                 reg = rd32(E1000_RPLOLR);
7926                 reg |= E1000_RPLOLR_STRVLAN;
7927                 wr32(E1000_RPLOLR, reg);
7928                 /* Fall through */
7929         case e1000_i350:
7930                 /* none of the above registers are supported by i350 */
7931                 break;
7932         }
7933
7934         if (adapter->vfs_allocated_count) {
7935                 igb_vmdq_set_loopback_pf(hw, true);
7936                 igb_vmdq_set_replication_pf(hw, true);
7937                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7938                                               adapter->vfs_allocated_count);
7939         } else {
7940                 igb_vmdq_set_loopback_pf(hw, false);
7941                 igb_vmdq_set_replication_pf(hw, false);
7942         }
7943 }
7944
7945 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7946 {
7947         struct e1000_hw *hw = &adapter->hw;
7948         u32 dmac_thr;
7949         u16 hwm;
7950
7951         if (hw->mac.type > e1000_82580) {
7952                 if (adapter->flags & IGB_FLAG_DMAC) {
7953                         u32 reg;
7954
7955                         /* force threshold to 0. */
7956                         wr32(E1000_DMCTXTH, 0);
7957
7958                         /* DMA Coalescing high water mark needs to be greater
7959                          * than the Rx threshold. Set hwm to PBA - max frame
7960                          * size in 16B units, capping it at PBA - 6KB.
7961                          */
7962                         hwm = 64 * pba - adapter->max_frame_size / 16;
7963                         if (hwm < 64 * (pba - 6))
7964                                 hwm = 64 * (pba - 6);
7965                         reg = rd32(E1000_FCRTC);
7966                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7967                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7968                                 & E1000_FCRTC_RTH_COAL_MASK);
7969                         wr32(E1000_FCRTC, reg);
7970
7971                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7972                          * frame size, capping it at PBA - 10KB.
7973                          */
7974                         dmac_thr = pba - adapter->max_frame_size / 512;
7975                         if (dmac_thr < pba - 10)
7976                                 dmac_thr = pba - 10;
7977                         reg = rd32(E1000_DMACR);
7978                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7979                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7980                                 & E1000_DMACR_DMACTHR_MASK);
7981
7982                         /* transition to L0x or L1 if available..*/
7983                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7984
7985                         /* watchdog timer= +-1000 usec in 32usec intervals */
7986                         reg |= (1000 >> 5);
7987
7988                         /* Disable BMC-to-OS Watchdog Enable */
7989                         if (hw->mac.type != e1000_i354)
7990                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7991
7992                         wr32(E1000_DMACR, reg);
7993
7994                         /* no lower threshold to disable
7995                          * coalescing(smart fifb)-UTRESH=0
7996                          */
7997                         wr32(E1000_DMCRTRH, 0);
7998
7999                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8000
8001                         wr32(E1000_DMCTLX, reg);
8002
8003                         /* free space in tx packet buffer to wake from
8004                          * DMA coal
8005                          */
8006                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8007                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8008
8009                         /* make low power state decision controlled
8010                          * by DMA coal
8011                          */
8012                         reg = rd32(E1000_PCIEMISC);
8013                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8014                         wr32(E1000_PCIEMISC, reg);
8015                 } /* endif adapter->dmac is not disabled */
8016         } else if (hw->mac.type == e1000_82580) {
8017                 u32 reg = rd32(E1000_PCIEMISC);
8018
8019                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8020                 wr32(E1000_DMACR, 0);
8021         }
8022 }
8023
8024 /**
8025  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8026  *  @hw: pointer to hardware structure
8027  *  @byte_offset: byte offset to read
8028  *  @dev_addr: device address
8029  *  @data: value read
8030  *
8031  *  Performs byte read operation over I2C interface at
8032  *  a specified device address.
8033  **/
8034 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8035                       u8 dev_addr, u8 *data)
8036 {
8037         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8038         struct i2c_client *this_client = adapter->i2c_client;
8039         s32 status;
8040         u16 swfw_mask = 0;
8041
8042         if (!this_client)
8043                 return E1000_ERR_I2C;
8044
8045         swfw_mask = E1000_SWFW_PHY0_SM;
8046
8047         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8048                 return E1000_ERR_SWFW_SYNC;
8049
8050         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8051         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8052
8053         if (status < 0)
8054                 return E1000_ERR_I2C;
8055         else {
8056                 *data = status;
8057                 return 0;
8058         }
8059 }
8060
8061 /**
8062  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8063  *  @hw: pointer to hardware structure
8064  *  @byte_offset: byte offset to write
8065  *  @dev_addr: device address
8066  *  @data: value to write
8067  *
8068  *  Performs byte write operation over I2C interface at
8069  *  a specified device address.
8070  **/
8071 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8072                        u8 dev_addr, u8 data)
8073 {
8074         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8075         struct i2c_client *this_client = adapter->i2c_client;
8076         s32 status;
8077         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8078
8079         if (!this_client)
8080                 return E1000_ERR_I2C;
8081
8082         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8083                 return E1000_ERR_SWFW_SYNC;
8084         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8085         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8086
8087         if (status)
8088                 return E1000_ERR_I2C;
8089         else
8090                 return 0;
8091
8092 }
8093
8094 int igb_reinit_queues(struct igb_adapter *adapter)
8095 {
8096         struct net_device *netdev = adapter->netdev;
8097         struct pci_dev *pdev = adapter->pdev;
8098         int err = 0;
8099
8100         if (netif_running(netdev))
8101                 igb_close(netdev);
8102
8103         igb_reset_interrupt_capability(adapter);
8104
8105         if (igb_init_interrupt_scheme(adapter, true)) {
8106                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8107                 return -ENOMEM;
8108         }
8109
8110         if (netif_running(netdev))
8111                 err = igb_open(netdev);
8112
8113         return err;
8114 }
8115 /* igb_main.c */