Merge tag 'iio-for-3.13a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[cascardo/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 5
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71                                 "Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73                                 "Copyright (c) 2007-2013 Intel Corporation.";
74
75 static const struct e1000_info *igb_info_tbl[] = {
76         [board_82575] = &e1000_82575_info,
77 };
78
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
112         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
113         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
114         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
115         /* required last entry */
116         {0, }
117 };
118
119 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
120
121 void igb_reset(struct igb_adapter *);
122 static int igb_setup_all_tx_resources(struct igb_adapter *);
123 static int igb_setup_all_rx_resources(struct igb_adapter *);
124 static void igb_free_all_tx_resources(struct igb_adapter *);
125 static void igb_free_all_rx_resources(struct igb_adapter *);
126 static void igb_setup_mrqc(struct igb_adapter *);
127 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
128 static void igb_remove(struct pci_dev *pdev);
129 static int igb_sw_init(struct igb_adapter *);
130 static int igb_open(struct net_device *);
131 static int igb_close(struct net_device *);
132 static void igb_configure(struct igb_adapter *);
133 static void igb_configure_tx(struct igb_adapter *);
134 static void igb_configure_rx(struct igb_adapter *);
135 static void igb_clean_all_tx_rings(struct igb_adapter *);
136 static void igb_clean_all_rx_rings(struct igb_adapter *);
137 static void igb_clean_tx_ring(struct igb_ring *);
138 static void igb_clean_rx_ring(struct igb_ring *);
139 static void igb_set_rx_mode(struct net_device *);
140 static void igb_update_phy_info(unsigned long);
141 static void igb_watchdog(unsigned long);
142 static void igb_watchdog_task(struct work_struct *);
143 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
144 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
145                                                  struct rtnl_link_stats64 *stats);
146 static int igb_change_mtu(struct net_device *, int);
147 static int igb_set_mac(struct net_device *, void *);
148 static void igb_set_uta(struct igb_adapter *adapter);
149 static irqreturn_t igb_intr(int irq, void *);
150 static irqreturn_t igb_intr_msi(int irq, void *);
151 static irqreturn_t igb_msix_other(int irq, void *);
152 static irqreturn_t igb_msix_ring(int irq, void *);
153 #ifdef CONFIG_IGB_DCA
154 static void igb_update_dca(struct igb_q_vector *);
155 static void igb_setup_dca(struct igb_adapter *);
156 #endif /* CONFIG_IGB_DCA */
157 static int igb_poll(struct napi_struct *, int);
158 static bool igb_clean_tx_irq(struct igb_q_vector *);
159 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
160 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
161 static void igb_tx_timeout(struct net_device *);
162 static void igb_reset_task(struct work_struct *);
163 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
164 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
165 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
166 static void igb_restore_vlan(struct igb_adapter *);
167 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
168 static void igb_ping_all_vfs(struct igb_adapter *);
169 static void igb_msg_task(struct igb_adapter *);
170 static void igb_vmm_control(struct igb_adapter *);
171 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
172 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
173 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
174 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
175                                int vf, u16 vlan, u8 qos);
176 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
177 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
178                                    bool setting);
179 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
180                                  struct ifla_vf_info *ivi);
181 static void igb_check_vf_rate_limit(struct igb_adapter *);
182
183 #ifdef CONFIG_PCI_IOV
184 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 #ifdef CONFIG_PM_RUNTIME
193 static int igb_runtime_suspend(struct device *dev);
194 static int igb_runtime_resume(struct device *dev);
195 static int igb_runtime_idle(struct device *dev);
196 #endif
197 static const struct dev_pm_ops igb_pm_ops = {
198         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200                         igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208         .notifier_call  = igb_notify_dca,
209         .next           = NULL,
210         .priority       = 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs = 0;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221                  "per physical function");
222 #endif /* CONFIG_PCI_IOV */
223
224 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225                      pci_channel_state_t);
226 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227 static void igb_io_resume(struct pci_dev *);
228
229 static const struct pci_error_handlers igb_err_handler = {
230         .error_detected = igb_io_error_detected,
231         .slot_reset = igb_io_slot_reset,
232         .resume = igb_io_resume,
233 };
234
235 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236
237 static struct pci_driver igb_driver = {
238         .name     = igb_driver_name,
239         .id_table = igb_pci_tbl,
240         .probe    = igb_probe,
241         .remove   = igb_remove,
242 #ifdef CONFIG_PM
243         .driver.pm = &igb_pm_ops,
244 #endif
245         .shutdown = igb_shutdown,
246         .sriov_configure = igb_pci_sriov_configure,
247         .err_handler = &igb_err_handler
248 };
249
250 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252 MODULE_LICENSE("GPL");
253 MODULE_VERSION(DRV_VERSION);
254
255 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256 static int debug = -1;
257 module_param(debug, int, 0);
258 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
260 struct igb_reg_info {
261         u32 ofs;
262         char *name;
263 };
264
265 static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267         /* General Registers */
268         {E1000_CTRL, "CTRL"},
269         {E1000_STATUS, "STATUS"},
270         {E1000_CTRL_EXT, "CTRL_EXT"},
271
272         /* Interrupt Registers */
273         {E1000_ICR, "ICR"},
274
275         /* RX Registers */
276         {E1000_RCTL, "RCTL"},
277         {E1000_RDLEN(0), "RDLEN"},
278         {E1000_RDH(0), "RDH"},
279         {E1000_RDT(0), "RDT"},
280         {E1000_RXDCTL(0), "RXDCTL"},
281         {E1000_RDBAL(0), "RDBAL"},
282         {E1000_RDBAH(0), "RDBAH"},
283
284         /* TX Registers */
285         {E1000_TCTL, "TCTL"},
286         {E1000_TDBAL(0), "TDBAL"},
287         {E1000_TDBAH(0), "TDBAH"},
288         {E1000_TDLEN(0), "TDLEN"},
289         {E1000_TDH(0), "TDH"},
290         {E1000_TDT(0), "TDT"},
291         {E1000_TXDCTL(0), "TXDCTL"},
292         {E1000_TDFH, "TDFH"},
293         {E1000_TDFT, "TDFT"},
294         {E1000_TDFHS, "TDFHS"},
295         {E1000_TDFPC, "TDFPC"},
296
297         /* List Terminator */
298         {}
299 };
300
301 /* igb_regdump - register printout routine */
302 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303 {
304         int n = 0;
305         char rname[16];
306         u32 regs[8];
307
308         switch (reginfo->ofs) {
309         case E1000_RDLEN(0):
310                 for (n = 0; n < 4; n++)
311                         regs[n] = rd32(E1000_RDLEN(n));
312                 break;
313         case E1000_RDH(0):
314                 for (n = 0; n < 4; n++)
315                         regs[n] = rd32(E1000_RDH(n));
316                 break;
317         case E1000_RDT(0):
318                 for (n = 0; n < 4; n++)
319                         regs[n] = rd32(E1000_RDT(n));
320                 break;
321         case E1000_RXDCTL(0):
322                 for (n = 0; n < 4; n++)
323                         regs[n] = rd32(E1000_RXDCTL(n));
324                 break;
325         case E1000_RDBAL(0):
326                 for (n = 0; n < 4; n++)
327                         regs[n] = rd32(E1000_RDBAL(n));
328                 break;
329         case E1000_RDBAH(0):
330                 for (n = 0; n < 4; n++)
331                         regs[n] = rd32(E1000_RDBAH(n));
332                 break;
333         case E1000_TDBAL(0):
334                 for (n = 0; n < 4; n++)
335                         regs[n] = rd32(E1000_RDBAL(n));
336                 break;
337         case E1000_TDBAH(0):
338                 for (n = 0; n < 4; n++)
339                         regs[n] = rd32(E1000_TDBAH(n));
340                 break;
341         case E1000_TDLEN(0):
342                 for (n = 0; n < 4; n++)
343                         regs[n] = rd32(E1000_TDLEN(n));
344                 break;
345         case E1000_TDH(0):
346                 for (n = 0; n < 4; n++)
347                         regs[n] = rd32(E1000_TDH(n));
348                 break;
349         case E1000_TDT(0):
350                 for (n = 0; n < 4; n++)
351                         regs[n] = rd32(E1000_TDT(n));
352                 break;
353         case E1000_TXDCTL(0):
354                 for (n = 0; n < 4; n++)
355                         regs[n] = rd32(E1000_TXDCTL(n));
356                 break;
357         default:
358                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359                 return;
360         }
361
362         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364                 regs[2], regs[3]);
365 }
366
367 /* igb_dump - Print registers, Tx-rings and Rx-rings */
368 static void igb_dump(struct igb_adapter *adapter)
369 {
370         struct net_device *netdev = adapter->netdev;
371         struct e1000_hw *hw = &adapter->hw;
372         struct igb_reg_info *reginfo;
373         struct igb_ring *tx_ring;
374         union e1000_adv_tx_desc *tx_desc;
375         struct my_u0 { u64 a; u64 b; } *u0;
376         struct igb_ring *rx_ring;
377         union e1000_adv_rx_desc *rx_desc;
378         u32 staterr;
379         u16 i, n;
380
381         if (!netif_msg_hw(adapter))
382                 return;
383
384         /* Print netdevice Info */
385         if (netdev) {
386                 dev_info(&adapter->pdev->dev, "Net device Info\n");
387                 pr_info("Device Name     state            trans_start      "
388                         "last_rx\n");
389                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390                         netdev->state, netdev->trans_start, netdev->last_rx);
391         }
392
393         /* Print Registers */
394         dev_info(&adapter->pdev->dev, "Register Dump\n");
395         pr_info(" Register Name   Value\n");
396         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397              reginfo->name; reginfo++) {
398                 igb_regdump(hw, reginfo);
399         }
400
401         /* Print TX Ring Summary */
402         if (!netdev || !netif_running(netdev))
403                 goto exit;
404
405         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
406         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
407         for (n = 0; n < adapter->num_tx_queues; n++) {
408                 struct igb_tx_buffer *buffer_info;
409                 tx_ring = adapter->tx_ring[n];
410                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
411                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
413                         (u64)dma_unmap_addr(buffer_info, dma),
414                         dma_unmap_len(buffer_info, len),
415                         buffer_info->next_to_watch,
416                         (u64)buffer_info->time_stamp);
417         }
418
419         /* Print TX Rings */
420         if (!netif_msg_tx_done(adapter))
421                 goto rx_ring_summary;
422
423         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424
425         /* Transmit Descriptor Formats
426          *
427          * Advanced Transmit Descriptor
428          *   +--------------------------------------------------------------+
429          * 0 |         Buffer Address [63:0]                                |
430          *   +--------------------------------------------------------------+
431          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
432          *   +--------------------------------------------------------------+
433          *   63      46 45    40 39 38 36 35 32 31   24             15       0
434          */
435
436         for (n = 0; n < adapter->num_tx_queues; n++) {
437                 tx_ring = adapter->tx_ring[n];
438                 pr_info("------------------------------------\n");
439                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440                 pr_info("------------------------------------\n");
441                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
442                         "[bi->dma       ] leng  ntw timestamp        "
443                         "bi->skb\n");
444
445                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
446                         const char *next_desc;
447                         struct igb_tx_buffer *buffer_info;
448                         tx_desc = IGB_TX_DESC(tx_ring, i);
449                         buffer_info = &tx_ring->tx_buffer_info[i];
450                         u0 = (struct my_u0 *)tx_desc;
451                         if (i == tx_ring->next_to_use &&
452                             i == tx_ring->next_to_clean)
453                                 next_desc = " NTC/U";
454                         else if (i == tx_ring->next_to_use)
455                                 next_desc = " NTU";
456                         else if (i == tx_ring->next_to_clean)
457                                 next_desc = " NTC";
458                         else
459                                 next_desc = "";
460
461                         pr_info("T [0x%03X]    %016llX %016llX %016llX"
462                                 " %04X  %p %016llX %p%s\n", i,
463                                 le64_to_cpu(u0->a),
464                                 le64_to_cpu(u0->b),
465                                 (u64)dma_unmap_addr(buffer_info, dma),
466                                 dma_unmap_len(buffer_info, len),
467                                 buffer_info->next_to_watch,
468                                 (u64)buffer_info->time_stamp,
469                                 buffer_info->skb, next_desc);
470
471                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
472                                 print_hex_dump(KERN_INFO, "",
473                                         DUMP_PREFIX_ADDRESS,
474                                         16, 1, buffer_info->skb->data,
475                                         dma_unmap_len(buffer_info, len),
476                                         true);
477                 }
478         }
479
480         /* Print RX Rings Summary */
481 rx_ring_summary:
482         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
483         pr_info("Queue [NTU] [NTC]\n");
484         for (n = 0; n < adapter->num_rx_queues; n++) {
485                 rx_ring = adapter->rx_ring[n];
486                 pr_info(" %5d %5X %5X\n",
487                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
488         }
489
490         /* Print RX Rings */
491         if (!netif_msg_rx_status(adapter))
492                 goto exit;
493
494         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495
496         /* Advanced Receive Descriptor (Read) Format
497          *    63                                           1        0
498          *    +-----------------------------------------------------+
499          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
500          *    +----------------------------------------------+------+
501          *  8 |       Header Buffer Address [63:1]           |  DD  |
502          *    +-----------------------------------------------------+
503          *
504          *
505          * Advanced Receive Descriptor (Write-Back) Format
506          *
507          *   63       48 47    32 31  30      21 20 17 16   4 3     0
508          *   +------------------------------------------------------+
509          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
510          *   | Checksum   Ident  |   |           |    | Type | Type |
511          *   +------------------------------------------------------+
512          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513          *   +------------------------------------------------------+
514          *   63       48 47    32 31            20 19               0
515          */
516
517         for (n = 0; n < adapter->num_rx_queues; n++) {
518                 rx_ring = adapter->rx_ring[n];
519                 pr_info("------------------------------------\n");
520                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521                 pr_info("------------------------------------\n");
522                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
523                         "[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
524                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525                         "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526
527                 for (i = 0; i < rx_ring->count; i++) {
528                         const char *next_desc;
529                         struct igb_rx_buffer *buffer_info;
530                         buffer_info = &rx_ring->rx_buffer_info[i];
531                         rx_desc = IGB_RX_DESC(rx_ring, i);
532                         u0 = (struct my_u0 *)rx_desc;
533                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
534
535                         if (i == rx_ring->next_to_use)
536                                 next_desc = " NTU";
537                         else if (i == rx_ring->next_to_clean)
538                                 next_desc = " NTC";
539                         else
540                                 next_desc = "";
541
542                         if (staterr & E1000_RXD_STAT_DD) {
543                                 /* Descriptor Done */
544                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
545                                         "RWB", i,
546                                         le64_to_cpu(u0->a),
547                                         le64_to_cpu(u0->b),
548                                         next_desc);
549                         } else {
550                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
551                                         "R  ", i,
552                                         le64_to_cpu(u0->a),
553                                         le64_to_cpu(u0->b),
554                                         (u64)buffer_info->dma,
555                                         next_desc);
556
557                                 if (netif_msg_pktdata(adapter) &&
558                                     buffer_info->dma && buffer_info->page) {
559                                         print_hex_dump(KERN_INFO, "",
560                                           DUMP_PREFIX_ADDRESS,
561                                           16, 1,
562                                           page_address(buffer_info->page) +
563                                                       buffer_info->page_offset,
564                                           IGB_RX_BUFSZ, true);
565                                 }
566                         }
567                 }
568         }
569
570 exit:
571         return;
572 }
573
574 /**
575  *  igb_get_i2c_data - Reads the I2C SDA data bit
576  *  @hw: pointer to hardware structure
577  *  @i2cctl: Current value of I2CCTL register
578  *
579  *  Returns the I2C data bit value
580  **/
581 static int igb_get_i2c_data(void *data)
582 {
583         struct igb_adapter *adapter = (struct igb_adapter *)data;
584         struct e1000_hw *hw = &adapter->hw;
585         s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587         return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588 }
589
590 /**
591  *  igb_set_i2c_data - Sets the I2C data bit
592  *  @data: pointer to hardware structure
593  *  @state: I2C data value (0 or 1) to set
594  *
595  *  Sets the I2C data bit
596  **/
597 static void igb_set_i2c_data(void *data, int state)
598 {
599         struct igb_adapter *adapter = (struct igb_adapter *)data;
600         struct e1000_hw *hw = &adapter->hw;
601         s32 i2cctl = rd32(E1000_I2CPARAMS);
602
603         if (state)
604                 i2cctl |= E1000_I2C_DATA_OUT;
605         else
606                 i2cctl &= ~E1000_I2C_DATA_OUT;
607
608         i2cctl &= ~E1000_I2C_DATA_OE_N;
609         i2cctl |= E1000_I2C_CLK_OE_N;
610         wr32(E1000_I2CPARAMS, i2cctl);
611         wrfl();
612
613 }
614
615 /**
616  *  igb_set_i2c_clk - Sets the I2C SCL clock
617  *  @data: pointer to hardware structure
618  *  @state: state to set clock
619  *
620  *  Sets the I2C clock line to state
621  **/
622 static void igb_set_i2c_clk(void *data, int state)
623 {
624         struct igb_adapter *adapter = (struct igb_adapter *)data;
625         struct e1000_hw *hw = &adapter->hw;
626         s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628         if (state) {
629                 i2cctl |= E1000_I2C_CLK_OUT;
630                 i2cctl &= ~E1000_I2C_CLK_OE_N;
631         } else {
632                 i2cctl &= ~E1000_I2C_CLK_OUT;
633                 i2cctl &= ~E1000_I2C_CLK_OE_N;
634         }
635         wr32(E1000_I2CPARAMS, i2cctl);
636         wrfl();
637 }
638
639 /**
640  *  igb_get_i2c_clk - Gets the I2C SCL clock state
641  *  @data: pointer to hardware structure
642  *
643  *  Gets the I2C clock state
644  **/
645 static int igb_get_i2c_clk(void *data)
646 {
647         struct igb_adapter *adapter = (struct igb_adapter *)data;
648         struct e1000_hw *hw = &adapter->hw;
649         s32 i2cctl = rd32(E1000_I2CPARAMS);
650
651         return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652 }
653
654 static const struct i2c_algo_bit_data igb_i2c_algo = {
655         .setsda         = igb_set_i2c_data,
656         .setscl         = igb_set_i2c_clk,
657         .getsda         = igb_get_i2c_data,
658         .getscl         = igb_get_i2c_clk,
659         .udelay         = 5,
660         .timeout        = 20,
661 };
662
663 /**
664  *  igb_get_hw_dev - return device
665  *  @hw: pointer to hardware structure
666  *
667  *  used by hardware layer to print debugging information
668  **/
669 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670 {
671         struct igb_adapter *adapter = hw->back;
672         return adapter->netdev;
673 }
674
675 /**
676  *  igb_init_module - Driver Registration Routine
677  *
678  *  igb_init_module is the first routine called when the driver is
679  *  loaded. All it does is register with the PCI subsystem.
680  **/
681 static int __init igb_init_module(void)
682 {
683         int ret;
684         pr_info("%s - version %s\n",
685                igb_driver_string, igb_driver_version);
686
687         pr_info("%s\n", igb_copyright);
688
689 #ifdef CONFIG_IGB_DCA
690         dca_register_notify(&dca_notifier);
691 #endif
692         ret = pci_register_driver(&igb_driver);
693         return ret;
694 }
695
696 module_init(igb_init_module);
697
698 /**
699  *  igb_exit_module - Driver Exit Cleanup Routine
700  *
701  *  igb_exit_module is called just before the driver is removed
702  *  from memory.
703  **/
704 static void __exit igb_exit_module(void)
705 {
706 #ifdef CONFIG_IGB_DCA
707         dca_unregister_notify(&dca_notifier);
708 #endif
709         pci_unregister_driver(&igb_driver);
710 }
711
712 module_exit(igb_exit_module);
713
714 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715 /**
716  *  igb_cache_ring_register - Descriptor ring to register mapping
717  *  @adapter: board private structure to initialize
718  *
719  *  Once we know the feature-set enabled for the device, we'll cache
720  *  the register offset the descriptor ring is assigned to.
721  **/
722 static void igb_cache_ring_register(struct igb_adapter *adapter)
723 {
724         int i = 0, j = 0;
725         u32 rbase_offset = adapter->vfs_allocated_count;
726
727         switch (adapter->hw.mac.type) {
728         case e1000_82576:
729                 /* The queues are allocated for virtualization such that VF 0
730                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731                  * In order to avoid collision we start at the first free queue
732                  * and continue consuming queues in the same sequence
733                  */
734                 if (adapter->vfs_allocated_count) {
735                         for (; i < adapter->rss_queues; i++)
736                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
737                                                                Q_IDX_82576(i);
738                 }
739         case e1000_82575:
740         case e1000_82580:
741         case e1000_i350:
742         case e1000_i354:
743         case e1000_i210:
744         case e1000_i211:
745         default:
746                 for (; i < adapter->num_rx_queues; i++)
747                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748                 for (; j < adapter->num_tx_queues; j++)
749                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750                 break;
751         }
752 }
753
754 /**
755  *  igb_write_ivar - configure ivar for given MSI-X vector
756  *  @hw: pointer to the HW structure
757  *  @msix_vector: vector number we are allocating to a given ring
758  *  @index: row index of IVAR register to write within IVAR table
759  *  @offset: column offset of in IVAR, should be multiple of 8
760  *
761  *  This function is intended to handle the writing of the IVAR register
762  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763  *  each containing an cause allocation for an Rx and Tx ring, and a
764  *  variable number of rows depending on the number of queues supported.
765  **/
766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767                            int index, int offset)
768 {
769         u32 ivar = array_rd32(E1000_IVAR0, index);
770
771         /* clear any bits that are currently set */
772         ivar &= ~((u32)0xFF << offset);
773
774         /* write vector and valid bit */
775         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777         array_wr32(E1000_IVAR0, index, ivar);
778 }
779
780 #define IGB_N0_QUEUE -1
781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783         struct igb_adapter *adapter = q_vector->adapter;
784         struct e1000_hw *hw = &adapter->hw;
785         int rx_queue = IGB_N0_QUEUE;
786         int tx_queue = IGB_N0_QUEUE;
787         u32 msixbm = 0;
788
789         if (q_vector->rx.ring)
790                 rx_queue = q_vector->rx.ring->reg_idx;
791         if (q_vector->tx.ring)
792                 tx_queue = q_vector->tx.ring->reg_idx;
793
794         switch (hw->mac.type) {
795         case e1000_82575:
796                 /* The 82575 assigns vectors using a bitmask, which matches the
797                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798                  * or more queues to a vector, we write the appropriate bits
799                  * into the MSIXBM register for that vector.
800                  */
801                 if (rx_queue > IGB_N0_QUEUE)
802                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803                 if (tx_queue > IGB_N0_QUEUE)
804                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805                 if (!adapter->msix_entries && msix_vector == 0)
806                         msixbm |= E1000_EIMS_OTHER;
807                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808                 q_vector->eims_value = msixbm;
809                 break;
810         case e1000_82576:
811                 /* 82576 uses a table that essentially consists of 2 columns
812                  * with 8 rows.  The ordering is column-major so we use the
813                  * lower 3 bits as the row index, and the 4th bit as the
814                  * column offset.
815                  */
816                 if (rx_queue > IGB_N0_QUEUE)
817                         igb_write_ivar(hw, msix_vector,
818                                        rx_queue & 0x7,
819                                        (rx_queue & 0x8) << 1);
820                 if (tx_queue > IGB_N0_QUEUE)
821                         igb_write_ivar(hw, msix_vector,
822                                        tx_queue & 0x7,
823                                        ((tx_queue & 0x8) << 1) + 8);
824                 q_vector->eims_value = 1 << msix_vector;
825                 break;
826         case e1000_82580:
827         case e1000_i350:
828         case e1000_i354:
829         case e1000_i210:
830         case e1000_i211:
831                 /* On 82580 and newer adapters the scheme is similar to 82576
832                  * however instead of ordering column-major we have things
833                  * ordered row-major.  So we traverse the table by using
834                  * bit 0 as the column offset, and the remaining bits as the
835                  * row index.
836                  */
837                 if (rx_queue > IGB_N0_QUEUE)
838                         igb_write_ivar(hw, msix_vector,
839                                        rx_queue >> 1,
840                                        (rx_queue & 0x1) << 4);
841                 if (tx_queue > IGB_N0_QUEUE)
842                         igb_write_ivar(hw, msix_vector,
843                                        tx_queue >> 1,
844                                        ((tx_queue & 0x1) << 4) + 8);
845                 q_vector->eims_value = 1 << msix_vector;
846                 break;
847         default:
848                 BUG();
849                 break;
850         }
851
852         /* add q_vector eims value to global eims_enable_mask */
853         adapter->eims_enable_mask |= q_vector->eims_value;
854
855         /* configure q_vector to set itr on first interrupt */
856         q_vector->set_itr = 1;
857 }
858
859 /**
860  *  igb_configure_msix - Configure MSI-X hardware
861  *  @adapter: board private structure to initialize
862  *
863  *  igb_configure_msix sets up the hardware to properly
864  *  generate MSI-X interrupts.
865  **/
866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868         u32 tmp;
869         int i, vector = 0;
870         struct e1000_hw *hw = &adapter->hw;
871
872         adapter->eims_enable_mask = 0;
873
874         /* set vector for other causes, i.e. link changes */
875         switch (hw->mac.type) {
876         case e1000_82575:
877                 tmp = rd32(E1000_CTRL_EXT);
878                 /* enable MSI-X PBA support*/
879                 tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881                 /* Auto-Mask interrupts upon ICR read. */
882                 tmp |= E1000_CTRL_EXT_EIAME;
883                 tmp |= E1000_CTRL_EXT_IRCA;
884
885                 wr32(E1000_CTRL_EXT, tmp);
886
887                 /* enable msix_other interrupt */
888                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889                 adapter->eims_other = E1000_EIMS_OTHER;
890
891                 break;
892
893         case e1000_82576:
894         case e1000_82580:
895         case e1000_i350:
896         case e1000_i354:
897         case e1000_i210:
898         case e1000_i211:
899                 /* Turn on MSI-X capability first, or our settings
900                  * won't stick.  And it will take days to debug.
901                  */
902                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
904                      E1000_GPIE_NSICR);
905
906                 /* enable msix_other interrupt */
907                 adapter->eims_other = 1 << vector;
908                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910                 wr32(E1000_IVAR_MISC, tmp);
911                 break;
912         default:
913                 /* do nothing, since nothing else supports MSI-X */
914                 break;
915         } /* switch (hw->mac.type) */
916
917         adapter->eims_enable_mask |= adapter->eims_other;
918
919         for (i = 0; i < adapter->num_q_vectors; i++)
920                 igb_assign_vector(adapter->q_vector[i], vector++);
921
922         wrfl();
923 }
924
925 /**
926  *  igb_request_msix - Initialize MSI-X interrupts
927  *  @adapter: board private structure to initialize
928  *
929  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930  *  kernel.
931  **/
932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934         struct net_device *netdev = adapter->netdev;
935         struct e1000_hw *hw = &adapter->hw;
936         int i, err = 0, vector = 0, free_vector = 0;
937
938         err = request_irq(adapter->msix_entries[vector].vector,
939                           igb_msix_other, 0, netdev->name, adapter);
940         if (err)
941                 goto err_out;
942
943         for (i = 0; i < adapter->num_q_vectors; i++) {
944                 struct igb_q_vector *q_vector = adapter->q_vector[i];
945
946                 vector++;
947
948                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
949
950                 if (q_vector->rx.ring && q_vector->tx.ring)
951                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
952                                 q_vector->rx.ring->queue_index);
953                 else if (q_vector->tx.ring)
954                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
955                                 q_vector->tx.ring->queue_index);
956                 else if (q_vector->rx.ring)
957                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
958                                 q_vector->rx.ring->queue_index);
959                 else
960                         sprintf(q_vector->name, "%s-unused", netdev->name);
961
962                 err = request_irq(adapter->msix_entries[vector].vector,
963                                   igb_msix_ring, 0, q_vector->name,
964                                   q_vector);
965                 if (err)
966                         goto err_free;
967         }
968
969         igb_configure_msix(adapter);
970         return 0;
971
972 err_free:
973         /* free already assigned IRQs */
974         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
975
976         vector--;
977         for (i = 0; i < vector; i++) {
978                 free_irq(adapter->msix_entries[free_vector++].vector,
979                          adapter->q_vector[i]);
980         }
981 err_out:
982         return err;
983 }
984
985 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
986 {
987         if (adapter->msix_entries) {
988                 pci_disable_msix(adapter->pdev);
989                 kfree(adapter->msix_entries);
990                 adapter->msix_entries = NULL;
991         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
992                 pci_disable_msi(adapter->pdev);
993         }
994 }
995
996 /**
997  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
998  *  @adapter: board private structure to initialize
999  *  @v_idx: Index of vector to be freed
1000  *
1001  *  This function frees the memory allocated to the q_vector.  In addition if
1002  *  NAPI is enabled it will delete any references to the NAPI struct prior
1003  *  to freeing the q_vector.
1004  **/
1005 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1006 {
1007         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1008
1009         if (q_vector->tx.ring)
1010                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1011
1012         if (q_vector->rx.ring)
1013                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1014
1015         adapter->q_vector[v_idx] = NULL;
1016         netif_napi_del(&q_vector->napi);
1017
1018         /* igb_get_stats64() might access the rings on this vector,
1019          * we must wait a grace period before freeing it.
1020          */
1021         kfree_rcu(q_vector, rcu);
1022 }
1023
1024 /**
1025  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1026  *  @adapter: board private structure to initialize
1027  *
1028  *  This function frees the memory allocated to the q_vectors.  In addition if
1029  *  NAPI is enabled it will delete any references to the NAPI struct prior
1030  *  to freeing the q_vector.
1031  **/
1032 static void igb_free_q_vectors(struct igb_adapter *adapter)
1033 {
1034         int v_idx = adapter->num_q_vectors;
1035
1036         adapter->num_tx_queues = 0;
1037         adapter->num_rx_queues = 0;
1038         adapter->num_q_vectors = 0;
1039
1040         while (v_idx--)
1041                 igb_free_q_vector(adapter, v_idx);
1042 }
1043
1044 /**
1045  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1046  *  @adapter: board private structure to initialize
1047  *
1048  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1049  *  MSI-X interrupts allocated.
1050  */
1051 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1052 {
1053         igb_free_q_vectors(adapter);
1054         igb_reset_interrupt_capability(adapter);
1055 }
1056
1057 /**
1058  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1059  *  @adapter: board private structure to initialize
1060  *  @msix: boolean value of MSIX capability
1061  *
1062  *  Attempt to configure interrupts using the best available
1063  *  capabilities of the hardware and kernel.
1064  **/
1065 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1066 {
1067         int err;
1068         int numvecs, i;
1069
1070         if (!msix)
1071                 goto msi_only;
1072
1073         /* Number of supported queues. */
1074         adapter->num_rx_queues = adapter->rss_queues;
1075         if (adapter->vfs_allocated_count)
1076                 adapter->num_tx_queues = 1;
1077         else
1078                 adapter->num_tx_queues = adapter->rss_queues;
1079
1080         /* start with one vector for every Rx queue */
1081         numvecs = adapter->num_rx_queues;
1082
1083         /* if Tx handler is separate add 1 for every Tx queue */
1084         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1085                 numvecs += adapter->num_tx_queues;
1086
1087         /* store the number of vectors reserved for queues */
1088         adapter->num_q_vectors = numvecs;
1089
1090         /* add 1 vector for link status interrupts */
1091         numvecs++;
1092         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1093                                         GFP_KERNEL);
1094
1095         if (!adapter->msix_entries)
1096                 goto msi_only;
1097
1098         for (i = 0; i < numvecs; i++)
1099                 adapter->msix_entries[i].entry = i;
1100
1101         err = pci_enable_msix(adapter->pdev,
1102                               adapter->msix_entries,
1103                               numvecs);
1104         if (err == 0)
1105                 return;
1106
1107         igb_reset_interrupt_capability(adapter);
1108
1109         /* If we can't do MSI-X, try MSI */
1110 msi_only:
1111 #ifdef CONFIG_PCI_IOV
1112         /* disable SR-IOV for non MSI-X configurations */
1113         if (adapter->vf_data) {
1114                 struct e1000_hw *hw = &adapter->hw;
1115                 /* disable iov and allow time for transactions to clear */
1116                 pci_disable_sriov(adapter->pdev);
1117                 msleep(500);
1118
1119                 kfree(adapter->vf_data);
1120                 adapter->vf_data = NULL;
1121                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1122                 wrfl();
1123                 msleep(100);
1124                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1125         }
1126 #endif
1127         adapter->vfs_allocated_count = 0;
1128         adapter->rss_queues = 1;
1129         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1130         adapter->num_rx_queues = 1;
1131         adapter->num_tx_queues = 1;
1132         adapter->num_q_vectors = 1;
1133         if (!pci_enable_msi(adapter->pdev))
1134                 adapter->flags |= IGB_FLAG_HAS_MSI;
1135 }
1136
1137 static void igb_add_ring(struct igb_ring *ring,
1138                          struct igb_ring_container *head)
1139 {
1140         head->ring = ring;
1141         head->count++;
1142 }
1143
1144 /**
1145  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1146  *  @adapter: board private structure to initialize
1147  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1148  *  @v_idx: index of vector in adapter struct
1149  *  @txr_count: total number of Tx rings to allocate
1150  *  @txr_idx: index of first Tx ring to allocate
1151  *  @rxr_count: total number of Rx rings to allocate
1152  *  @rxr_idx: index of first Rx ring to allocate
1153  *
1154  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1155  **/
1156 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1157                               int v_count, int v_idx,
1158                               int txr_count, int txr_idx,
1159                               int rxr_count, int rxr_idx)
1160 {
1161         struct igb_q_vector *q_vector;
1162         struct igb_ring *ring;
1163         int ring_count, size;
1164
1165         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1166         if (txr_count > 1 || rxr_count > 1)
1167                 return -ENOMEM;
1168
1169         ring_count = txr_count + rxr_count;
1170         size = sizeof(struct igb_q_vector) +
1171                (sizeof(struct igb_ring) * ring_count);
1172
1173         /* allocate q_vector and rings */
1174         q_vector = kzalloc(size, GFP_KERNEL);
1175         if (!q_vector)
1176                 return -ENOMEM;
1177
1178         /* initialize NAPI */
1179         netif_napi_add(adapter->netdev, &q_vector->napi,
1180                        igb_poll, 64);
1181
1182         /* tie q_vector and adapter together */
1183         adapter->q_vector[v_idx] = q_vector;
1184         q_vector->adapter = adapter;
1185
1186         /* initialize work limits */
1187         q_vector->tx.work_limit = adapter->tx_work_limit;
1188
1189         /* initialize ITR configuration */
1190         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1191         q_vector->itr_val = IGB_START_ITR;
1192
1193         /* initialize pointer to rings */
1194         ring = q_vector->ring;
1195
1196         /* intialize ITR */
1197         if (rxr_count) {
1198                 /* rx or rx/tx vector */
1199                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1200                         q_vector->itr_val = adapter->rx_itr_setting;
1201         } else {
1202                 /* tx only vector */
1203                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1204                         q_vector->itr_val = adapter->tx_itr_setting;
1205         }
1206
1207         if (txr_count) {
1208                 /* assign generic ring traits */
1209                 ring->dev = &adapter->pdev->dev;
1210                 ring->netdev = adapter->netdev;
1211
1212                 /* configure backlink on ring */
1213                 ring->q_vector = q_vector;
1214
1215                 /* update q_vector Tx values */
1216                 igb_add_ring(ring, &q_vector->tx);
1217
1218                 /* For 82575, context index must be unique per ring. */
1219                 if (adapter->hw.mac.type == e1000_82575)
1220                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1221
1222                 /* apply Tx specific ring traits */
1223                 ring->count = adapter->tx_ring_count;
1224                 ring->queue_index = txr_idx;
1225
1226                 /* assign ring to adapter */
1227                 adapter->tx_ring[txr_idx] = ring;
1228
1229                 /* push pointer to next ring */
1230                 ring++;
1231         }
1232
1233         if (rxr_count) {
1234                 /* assign generic ring traits */
1235                 ring->dev = &adapter->pdev->dev;
1236                 ring->netdev = adapter->netdev;
1237
1238                 /* configure backlink on ring */
1239                 ring->q_vector = q_vector;
1240
1241                 /* update q_vector Rx values */
1242                 igb_add_ring(ring, &q_vector->rx);
1243
1244                 /* set flag indicating ring supports SCTP checksum offload */
1245                 if (adapter->hw.mac.type >= e1000_82576)
1246                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1247
1248                 /*
1249                  * On i350, i354, i210, and i211, loopback VLAN packets
1250                  * have the tag byte-swapped.
1251                  */
1252                 if (adapter->hw.mac.type >= e1000_i350)
1253                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1254
1255                 /* apply Rx specific ring traits */
1256                 ring->count = adapter->rx_ring_count;
1257                 ring->queue_index = rxr_idx;
1258
1259                 /* assign ring to adapter */
1260                 adapter->rx_ring[rxr_idx] = ring;
1261         }
1262
1263         return 0;
1264 }
1265
1266
1267 /**
1268  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1269  *  @adapter: board private structure to initialize
1270  *
1271  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1272  *  return -ENOMEM.
1273  **/
1274 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1275 {
1276         int q_vectors = adapter->num_q_vectors;
1277         int rxr_remaining = adapter->num_rx_queues;
1278         int txr_remaining = adapter->num_tx_queues;
1279         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1280         int err;
1281
1282         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1283                 for (; rxr_remaining; v_idx++) {
1284                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1285                                                  0, 0, 1, rxr_idx);
1286
1287                         if (err)
1288                                 goto err_out;
1289
1290                         /* update counts and index */
1291                         rxr_remaining--;
1292                         rxr_idx++;
1293                 }
1294         }
1295
1296         for (; v_idx < q_vectors; v_idx++) {
1297                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1298                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1299                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1300                                          tqpv, txr_idx, rqpv, rxr_idx);
1301
1302                 if (err)
1303                         goto err_out;
1304
1305                 /* update counts and index */
1306                 rxr_remaining -= rqpv;
1307                 txr_remaining -= tqpv;
1308                 rxr_idx++;
1309                 txr_idx++;
1310         }
1311
1312         return 0;
1313
1314 err_out:
1315         adapter->num_tx_queues = 0;
1316         adapter->num_rx_queues = 0;
1317         adapter->num_q_vectors = 0;
1318
1319         while (v_idx--)
1320                 igb_free_q_vector(adapter, v_idx);
1321
1322         return -ENOMEM;
1323 }
1324
1325 /**
1326  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1327  *  @adapter: board private structure to initialize
1328  *  @msix: boolean value of MSIX capability
1329  *
1330  *  This function initializes the interrupts and allocates all of the queues.
1331  **/
1332 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1333 {
1334         struct pci_dev *pdev = adapter->pdev;
1335         int err;
1336
1337         igb_set_interrupt_capability(adapter, msix);
1338
1339         err = igb_alloc_q_vectors(adapter);
1340         if (err) {
1341                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1342                 goto err_alloc_q_vectors;
1343         }
1344
1345         igb_cache_ring_register(adapter);
1346
1347         return 0;
1348
1349 err_alloc_q_vectors:
1350         igb_reset_interrupt_capability(adapter);
1351         return err;
1352 }
1353
1354 /**
1355  *  igb_request_irq - initialize interrupts
1356  *  @adapter: board private structure to initialize
1357  *
1358  *  Attempts to configure interrupts using the best available
1359  *  capabilities of the hardware and kernel.
1360  **/
1361 static int igb_request_irq(struct igb_adapter *adapter)
1362 {
1363         struct net_device *netdev = adapter->netdev;
1364         struct pci_dev *pdev = adapter->pdev;
1365         int err = 0;
1366
1367         if (adapter->msix_entries) {
1368                 err = igb_request_msix(adapter);
1369                 if (!err)
1370                         goto request_done;
1371                 /* fall back to MSI */
1372                 igb_free_all_tx_resources(adapter);
1373                 igb_free_all_rx_resources(adapter);
1374
1375                 igb_clear_interrupt_scheme(adapter);
1376                 err = igb_init_interrupt_scheme(adapter, false);
1377                 if (err)
1378                         goto request_done;
1379
1380                 igb_setup_all_tx_resources(adapter);
1381                 igb_setup_all_rx_resources(adapter);
1382                 igb_configure(adapter);
1383         }
1384
1385         igb_assign_vector(adapter->q_vector[0], 0);
1386
1387         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1388                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1389                                   netdev->name, adapter);
1390                 if (!err)
1391                         goto request_done;
1392
1393                 /* fall back to legacy interrupts */
1394                 igb_reset_interrupt_capability(adapter);
1395                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1396         }
1397
1398         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1399                           netdev->name, adapter);
1400
1401         if (err)
1402                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1403                         err);
1404
1405 request_done:
1406         return err;
1407 }
1408
1409 static void igb_free_irq(struct igb_adapter *adapter)
1410 {
1411         if (adapter->msix_entries) {
1412                 int vector = 0, i;
1413
1414                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1415
1416                 for (i = 0; i < adapter->num_q_vectors; i++)
1417                         free_irq(adapter->msix_entries[vector++].vector,
1418                                  adapter->q_vector[i]);
1419         } else {
1420                 free_irq(adapter->pdev->irq, adapter);
1421         }
1422 }
1423
1424 /**
1425  *  igb_irq_disable - Mask off interrupt generation on the NIC
1426  *  @adapter: board private structure
1427  **/
1428 static void igb_irq_disable(struct igb_adapter *adapter)
1429 {
1430         struct e1000_hw *hw = &adapter->hw;
1431
1432         /* we need to be careful when disabling interrupts.  The VFs are also
1433          * mapped into these registers and so clearing the bits can cause
1434          * issues on the VF drivers so we only need to clear what we set
1435          */
1436         if (adapter->msix_entries) {
1437                 u32 regval = rd32(E1000_EIAM);
1438                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1439                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1440                 regval = rd32(E1000_EIAC);
1441                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1442         }
1443
1444         wr32(E1000_IAM, 0);
1445         wr32(E1000_IMC, ~0);
1446         wrfl();
1447         if (adapter->msix_entries) {
1448                 int i;
1449                 for (i = 0; i < adapter->num_q_vectors; i++)
1450                         synchronize_irq(adapter->msix_entries[i].vector);
1451         } else {
1452                 synchronize_irq(adapter->pdev->irq);
1453         }
1454 }
1455
1456 /**
1457  *  igb_irq_enable - Enable default interrupt generation settings
1458  *  @adapter: board private structure
1459  **/
1460 static void igb_irq_enable(struct igb_adapter *adapter)
1461 {
1462         struct e1000_hw *hw = &adapter->hw;
1463
1464         if (adapter->msix_entries) {
1465                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1466                 u32 regval = rd32(E1000_EIAC);
1467                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1468                 regval = rd32(E1000_EIAM);
1469                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1470                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1471                 if (adapter->vfs_allocated_count) {
1472                         wr32(E1000_MBVFIMR, 0xFF);
1473                         ims |= E1000_IMS_VMMB;
1474                 }
1475                 wr32(E1000_IMS, ims);
1476         } else {
1477                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1478                                 E1000_IMS_DRSTA);
1479                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1480                                 E1000_IMS_DRSTA);
1481         }
1482 }
1483
1484 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1485 {
1486         struct e1000_hw *hw = &adapter->hw;
1487         u16 vid = adapter->hw.mng_cookie.vlan_id;
1488         u16 old_vid = adapter->mng_vlan_id;
1489
1490         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1491                 /* add VID to filter table */
1492                 igb_vfta_set(hw, vid, true);
1493                 adapter->mng_vlan_id = vid;
1494         } else {
1495                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1496         }
1497
1498         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1499             (vid != old_vid) &&
1500             !test_bit(old_vid, adapter->active_vlans)) {
1501                 /* remove VID from filter table */
1502                 igb_vfta_set(hw, old_vid, false);
1503         }
1504 }
1505
1506 /**
1507  *  igb_release_hw_control - release control of the h/w to f/w
1508  *  @adapter: address of board private structure
1509  *
1510  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1511  *  For ASF and Pass Through versions of f/w this means that the
1512  *  driver is no longer loaded.
1513  **/
1514 static void igb_release_hw_control(struct igb_adapter *adapter)
1515 {
1516         struct e1000_hw *hw = &adapter->hw;
1517         u32 ctrl_ext;
1518
1519         /* Let firmware take over control of h/w */
1520         ctrl_ext = rd32(E1000_CTRL_EXT);
1521         wr32(E1000_CTRL_EXT,
1522                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1523 }
1524
1525 /**
1526  *  igb_get_hw_control - get control of the h/w from f/w
1527  *  @adapter: address of board private structure
1528  *
1529  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1530  *  For ASF and Pass Through versions of f/w this means that
1531  *  the driver is loaded.
1532  **/
1533 static void igb_get_hw_control(struct igb_adapter *adapter)
1534 {
1535         struct e1000_hw *hw = &adapter->hw;
1536         u32 ctrl_ext;
1537
1538         /* Let firmware know the driver has taken over */
1539         ctrl_ext = rd32(E1000_CTRL_EXT);
1540         wr32(E1000_CTRL_EXT,
1541                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1542 }
1543
1544 /**
1545  *  igb_configure - configure the hardware for RX and TX
1546  *  @adapter: private board structure
1547  **/
1548 static void igb_configure(struct igb_adapter *adapter)
1549 {
1550         struct net_device *netdev = adapter->netdev;
1551         int i;
1552
1553         igb_get_hw_control(adapter);
1554         igb_set_rx_mode(netdev);
1555
1556         igb_restore_vlan(adapter);
1557
1558         igb_setup_tctl(adapter);
1559         igb_setup_mrqc(adapter);
1560         igb_setup_rctl(adapter);
1561
1562         igb_configure_tx(adapter);
1563         igb_configure_rx(adapter);
1564
1565         igb_rx_fifo_flush_82575(&adapter->hw);
1566
1567         /* call igb_desc_unused which always leaves
1568          * at least 1 descriptor unused to make sure
1569          * next_to_use != next_to_clean
1570          */
1571         for (i = 0; i < adapter->num_rx_queues; i++) {
1572                 struct igb_ring *ring = adapter->rx_ring[i];
1573                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1574         }
1575 }
1576
1577 /**
1578  *  igb_power_up_link - Power up the phy/serdes link
1579  *  @adapter: address of board private structure
1580  **/
1581 void igb_power_up_link(struct igb_adapter *adapter)
1582 {
1583         igb_reset_phy(&adapter->hw);
1584
1585         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1586                 igb_power_up_phy_copper(&adapter->hw);
1587         else
1588                 igb_power_up_serdes_link_82575(&adapter->hw);
1589 }
1590
1591 /**
1592  *  igb_power_down_link - Power down the phy/serdes link
1593  *  @adapter: address of board private structure
1594  */
1595 static void igb_power_down_link(struct igb_adapter *adapter)
1596 {
1597         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1598                 igb_power_down_phy_copper_82575(&adapter->hw);
1599         else
1600                 igb_shutdown_serdes_link_82575(&adapter->hw);
1601 }
1602
1603 /**
1604  *  igb_up - Open the interface and prepare it to handle traffic
1605  *  @adapter: board private structure
1606  **/
1607 int igb_up(struct igb_adapter *adapter)
1608 {
1609         struct e1000_hw *hw = &adapter->hw;
1610         int i;
1611
1612         /* hardware has been reset, we need to reload some things */
1613         igb_configure(adapter);
1614
1615         clear_bit(__IGB_DOWN, &adapter->state);
1616
1617         for (i = 0; i < adapter->num_q_vectors; i++)
1618                 napi_enable(&(adapter->q_vector[i]->napi));
1619
1620         if (adapter->msix_entries)
1621                 igb_configure_msix(adapter);
1622         else
1623                 igb_assign_vector(adapter->q_vector[0], 0);
1624
1625         /* Clear any pending interrupts. */
1626         rd32(E1000_ICR);
1627         igb_irq_enable(adapter);
1628
1629         /* notify VFs that reset has been completed */
1630         if (adapter->vfs_allocated_count) {
1631                 u32 reg_data = rd32(E1000_CTRL_EXT);
1632                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1633                 wr32(E1000_CTRL_EXT, reg_data);
1634         }
1635
1636         netif_tx_start_all_queues(adapter->netdev);
1637
1638         /* start the watchdog. */
1639         hw->mac.get_link_status = 1;
1640         schedule_work(&adapter->watchdog_task);
1641
1642         return 0;
1643 }
1644
1645 void igb_down(struct igb_adapter *adapter)
1646 {
1647         struct net_device *netdev = adapter->netdev;
1648         struct e1000_hw *hw = &adapter->hw;
1649         u32 tctl, rctl;
1650         int i;
1651
1652         /* signal that we're down so the interrupt handler does not
1653          * reschedule our watchdog timer
1654          */
1655         set_bit(__IGB_DOWN, &adapter->state);
1656
1657         /* disable receives in the hardware */
1658         rctl = rd32(E1000_RCTL);
1659         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1660         /* flush and sleep below */
1661
1662         netif_tx_stop_all_queues(netdev);
1663
1664         /* disable transmits in the hardware */
1665         tctl = rd32(E1000_TCTL);
1666         tctl &= ~E1000_TCTL_EN;
1667         wr32(E1000_TCTL, tctl);
1668         /* flush both disables and wait for them to finish */
1669         wrfl();
1670         msleep(10);
1671
1672         igb_irq_disable(adapter);
1673
1674         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1675
1676         for (i = 0; i < adapter->num_q_vectors; i++) {
1677                 napi_synchronize(&(adapter->q_vector[i]->napi));
1678                 napi_disable(&(adapter->q_vector[i]->napi));
1679         }
1680
1681
1682         del_timer_sync(&adapter->watchdog_timer);
1683         del_timer_sync(&adapter->phy_info_timer);
1684
1685         netif_carrier_off(netdev);
1686
1687         /* record the stats before reset*/
1688         spin_lock(&adapter->stats64_lock);
1689         igb_update_stats(adapter, &adapter->stats64);
1690         spin_unlock(&adapter->stats64_lock);
1691
1692         adapter->link_speed = 0;
1693         adapter->link_duplex = 0;
1694
1695         if (!pci_channel_offline(adapter->pdev))
1696                 igb_reset(adapter);
1697         igb_clean_all_tx_rings(adapter);
1698         igb_clean_all_rx_rings(adapter);
1699 #ifdef CONFIG_IGB_DCA
1700
1701         /* since we reset the hardware DCA settings were cleared */
1702         igb_setup_dca(adapter);
1703 #endif
1704 }
1705
1706 void igb_reinit_locked(struct igb_adapter *adapter)
1707 {
1708         WARN_ON(in_interrupt());
1709         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1710                 msleep(1);
1711         igb_down(adapter);
1712         igb_up(adapter);
1713         clear_bit(__IGB_RESETTING, &adapter->state);
1714 }
1715
1716 void igb_reset(struct igb_adapter *adapter)
1717 {
1718         struct pci_dev *pdev = adapter->pdev;
1719         struct e1000_hw *hw = &adapter->hw;
1720         struct e1000_mac_info *mac = &hw->mac;
1721         struct e1000_fc_info *fc = &hw->fc;
1722         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1723
1724         /* Repartition Pba for greater than 9k mtu
1725          * To take effect CTRL.RST is required.
1726          */
1727         switch (mac->type) {
1728         case e1000_i350:
1729         case e1000_i354:
1730         case e1000_82580:
1731                 pba = rd32(E1000_RXPBS);
1732                 pba = igb_rxpbs_adjust_82580(pba);
1733                 break;
1734         case e1000_82576:
1735                 pba = rd32(E1000_RXPBS);
1736                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1737                 break;
1738         case e1000_82575:
1739         case e1000_i210:
1740         case e1000_i211:
1741         default:
1742                 pba = E1000_PBA_34K;
1743                 break;
1744         }
1745
1746         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1747             (mac->type < e1000_82576)) {
1748                 /* adjust PBA for jumbo frames */
1749                 wr32(E1000_PBA, pba);
1750
1751                 /* To maintain wire speed transmits, the Tx FIFO should be
1752                  * large enough to accommodate two full transmit packets,
1753                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1754                  * the Rx FIFO should be large enough to accommodate at least
1755                  * one full receive packet and is similarly rounded up and
1756                  * expressed in KB.
1757                  */
1758                 pba = rd32(E1000_PBA);
1759                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1760                 tx_space = pba >> 16;
1761                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1762                 pba &= 0xffff;
1763                 /* the Tx fifo also stores 16 bytes of information about the Tx
1764                  * but don't include ethernet FCS because hardware appends it
1765                  */
1766                 min_tx_space = (adapter->max_frame_size +
1767                                 sizeof(union e1000_adv_tx_desc) -
1768                                 ETH_FCS_LEN) * 2;
1769                 min_tx_space = ALIGN(min_tx_space, 1024);
1770                 min_tx_space >>= 10;
1771                 /* software strips receive CRC, so leave room for it */
1772                 min_rx_space = adapter->max_frame_size;
1773                 min_rx_space = ALIGN(min_rx_space, 1024);
1774                 min_rx_space >>= 10;
1775
1776                 /* If current Tx allocation is less than the min Tx FIFO size,
1777                  * and the min Tx FIFO size is less than the current Rx FIFO
1778                  * allocation, take space away from current Rx allocation
1779                  */
1780                 if (tx_space < min_tx_space &&
1781                     ((min_tx_space - tx_space) < pba)) {
1782                         pba = pba - (min_tx_space - tx_space);
1783
1784                         /* if short on Rx space, Rx wins and must trump Tx
1785                          * adjustment
1786                          */
1787                         if (pba < min_rx_space)
1788                                 pba = min_rx_space;
1789                 }
1790                 wr32(E1000_PBA, pba);
1791         }
1792
1793         /* flow control settings */
1794         /* The high water mark must be low enough to fit one full frame
1795          * (or the size used for early receive) above it in the Rx FIFO.
1796          * Set it to the lower of:
1797          * - 90% of the Rx FIFO size, or
1798          * - the full Rx FIFO size minus one full frame
1799          */
1800         hwm = min(((pba << 10) * 9 / 10),
1801                         ((pba << 10) - 2 * adapter->max_frame_size));
1802
1803         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1804         fc->low_water = fc->high_water - 16;
1805         fc->pause_time = 0xFFFF;
1806         fc->send_xon = 1;
1807         fc->current_mode = fc->requested_mode;
1808
1809         /* disable receive for all VFs and wait one second */
1810         if (adapter->vfs_allocated_count) {
1811                 int i;
1812                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1813                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1814
1815                 /* ping all the active vfs to let them know we are going down */
1816                 igb_ping_all_vfs(adapter);
1817
1818                 /* disable transmits and receives */
1819                 wr32(E1000_VFRE, 0);
1820                 wr32(E1000_VFTE, 0);
1821         }
1822
1823         /* Allow time for pending master requests to run */
1824         hw->mac.ops.reset_hw(hw);
1825         wr32(E1000_WUC, 0);
1826
1827         if (hw->mac.ops.init_hw(hw))
1828                 dev_err(&pdev->dev, "Hardware Error\n");
1829
1830         /* Flow control settings reset on hardware reset, so guarantee flow
1831          * control is off when forcing speed.
1832          */
1833         if (!hw->mac.autoneg)
1834                 igb_force_mac_fc(hw);
1835
1836         igb_init_dmac(adapter, pba);
1837 #ifdef CONFIG_IGB_HWMON
1838         /* Re-initialize the thermal sensor on i350 devices. */
1839         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1840                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1841                         /* If present, re-initialize the external thermal sensor
1842                          * interface.
1843                          */
1844                         if (adapter->ets)
1845                                 mac->ops.init_thermal_sensor_thresh(hw);
1846                 }
1847         }
1848 #endif
1849         if (!netif_running(adapter->netdev))
1850                 igb_power_down_link(adapter);
1851
1852         igb_update_mng_vlan(adapter);
1853
1854         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1855         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1856
1857         /* Re-enable PTP, where applicable. */
1858         igb_ptp_reset(adapter);
1859
1860         igb_get_phy_info(hw);
1861 }
1862
1863 static netdev_features_t igb_fix_features(struct net_device *netdev,
1864         netdev_features_t features)
1865 {
1866         /* Since there is no support for separate Rx/Tx vlan accel
1867          * enable/disable make sure Tx flag is always in same state as Rx.
1868          */
1869         if (features & NETIF_F_HW_VLAN_CTAG_RX)
1870                 features |= NETIF_F_HW_VLAN_CTAG_TX;
1871         else
1872                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1873
1874         return features;
1875 }
1876
1877 static int igb_set_features(struct net_device *netdev,
1878         netdev_features_t features)
1879 {
1880         netdev_features_t changed = netdev->features ^ features;
1881         struct igb_adapter *adapter = netdev_priv(netdev);
1882
1883         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1884                 igb_vlan_mode(netdev, features);
1885
1886         if (!(changed & NETIF_F_RXALL))
1887                 return 0;
1888
1889         netdev->features = features;
1890
1891         if (netif_running(netdev))
1892                 igb_reinit_locked(adapter);
1893         else
1894                 igb_reset(adapter);
1895
1896         return 0;
1897 }
1898
1899 static const struct net_device_ops igb_netdev_ops = {
1900         .ndo_open               = igb_open,
1901         .ndo_stop               = igb_close,
1902         .ndo_start_xmit         = igb_xmit_frame,
1903         .ndo_get_stats64        = igb_get_stats64,
1904         .ndo_set_rx_mode        = igb_set_rx_mode,
1905         .ndo_set_mac_address    = igb_set_mac,
1906         .ndo_change_mtu         = igb_change_mtu,
1907         .ndo_do_ioctl           = igb_ioctl,
1908         .ndo_tx_timeout         = igb_tx_timeout,
1909         .ndo_validate_addr      = eth_validate_addr,
1910         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1911         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1912         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
1913         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
1914         .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
1915         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
1916         .ndo_get_vf_config      = igb_ndo_get_vf_config,
1917 #ifdef CONFIG_NET_POLL_CONTROLLER
1918         .ndo_poll_controller    = igb_netpoll,
1919 #endif
1920         .ndo_fix_features       = igb_fix_features,
1921         .ndo_set_features       = igb_set_features,
1922 };
1923
1924 /**
1925  * igb_set_fw_version - Configure version string for ethtool
1926  * @adapter: adapter struct
1927  **/
1928 void igb_set_fw_version(struct igb_adapter *adapter)
1929 {
1930         struct e1000_hw *hw = &adapter->hw;
1931         struct e1000_fw_version fw;
1932
1933         igb_get_fw_version(hw, &fw);
1934
1935         switch (hw->mac.type) {
1936         case e1000_i210:
1937         case e1000_i211:
1938                 if (!(igb_get_flash_presence_i210(hw))) {
1939                         snprintf(adapter->fw_version,
1940                                  sizeof(adapter->fw_version),
1941                                  "%2d.%2d-%d",
1942                                  fw.invm_major, fw.invm_minor,
1943                                  fw.invm_img_type);
1944                         break;
1945                 }
1946                 /* fall through */
1947         default:
1948                 /* if option is rom valid, display its version too */
1949                 if (fw.or_valid) {
1950                         snprintf(adapter->fw_version,
1951                                  sizeof(adapter->fw_version),
1952                                  "%d.%d, 0x%08x, %d.%d.%d",
1953                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
1954                                  fw.or_major, fw.or_build, fw.or_patch);
1955                 /* no option rom */
1956                 } else if (fw.etrack_id != 0X0000) {
1957                         snprintf(adapter->fw_version,
1958                             sizeof(adapter->fw_version),
1959                             "%d.%d, 0x%08x",
1960                             fw.eep_major, fw.eep_minor, fw.etrack_id);
1961                 } else {
1962                 snprintf(adapter->fw_version,
1963                     sizeof(adapter->fw_version),
1964                     "%d.%d.%d",
1965                     fw.eep_major, fw.eep_minor, fw.eep_build);
1966                 }
1967                 break;
1968         }
1969         return;
1970 }
1971
1972 /**
1973  *  igb_init_i2c - Init I2C interface
1974  *  @adapter: pointer to adapter structure
1975  **/
1976 static s32 igb_init_i2c(struct igb_adapter *adapter)
1977 {
1978         s32 status = E1000_SUCCESS;
1979
1980         /* I2C interface supported on i350 devices */
1981         if (adapter->hw.mac.type != e1000_i350)
1982                 return E1000_SUCCESS;
1983
1984         /* Initialize the i2c bus which is controlled by the registers.
1985          * This bus will use the i2c_algo_bit structue that implements
1986          * the protocol through toggling of the 4 bits in the register.
1987          */
1988         adapter->i2c_adap.owner = THIS_MODULE;
1989         adapter->i2c_algo = igb_i2c_algo;
1990         adapter->i2c_algo.data = adapter;
1991         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1992         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1993         strlcpy(adapter->i2c_adap.name, "igb BB",
1994                 sizeof(adapter->i2c_adap.name));
1995         status = i2c_bit_add_bus(&adapter->i2c_adap);
1996         return status;
1997 }
1998
1999 /**
2000  *  igb_probe - Device Initialization Routine
2001  *  @pdev: PCI device information struct
2002  *  @ent: entry in igb_pci_tbl
2003  *
2004  *  Returns 0 on success, negative on failure
2005  *
2006  *  igb_probe initializes an adapter identified by a pci_dev structure.
2007  *  The OS initialization, configuring of the adapter private structure,
2008  *  and a hardware reset occur.
2009  **/
2010 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2011 {
2012         struct net_device *netdev;
2013         struct igb_adapter *adapter;
2014         struct e1000_hw *hw;
2015         u16 eeprom_data = 0;
2016         s32 ret_val;
2017         static int global_quad_port_a; /* global quad port a indication */
2018         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2019         unsigned long mmio_start, mmio_len;
2020         int err, pci_using_dac;
2021         u8 part_str[E1000_PBANUM_LENGTH];
2022
2023         /* Catch broken hardware that put the wrong VF device ID in
2024          * the PCIe SR-IOV capability.
2025          */
2026         if (pdev->is_virtfn) {
2027                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2028                         pci_name(pdev), pdev->vendor, pdev->device);
2029                 return -EINVAL;
2030         }
2031
2032         err = pci_enable_device_mem(pdev);
2033         if (err)
2034                 return err;
2035
2036         pci_using_dac = 0;
2037         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2038         if (!err) {
2039                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2040                 if (!err)
2041                         pci_using_dac = 1;
2042         } else {
2043                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2044                 if (err) {
2045                         err = dma_set_coherent_mask(&pdev->dev,
2046                                                     DMA_BIT_MASK(32));
2047                         if (err) {
2048                                 dev_err(&pdev->dev,
2049                                         "No usable DMA configuration, aborting\n");
2050                                 goto err_dma;
2051                         }
2052                 }
2053         }
2054
2055         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2056                                            IORESOURCE_MEM),
2057                                            igb_driver_name);
2058         if (err)
2059                 goto err_pci_reg;
2060
2061         pci_enable_pcie_error_reporting(pdev);
2062
2063         pci_set_master(pdev);
2064         pci_save_state(pdev);
2065
2066         err = -ENOMEM;
2067         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2068                                    IGB_MAX_TX_QUEUES);
2069         if (!netdev)
2070                 goto err_alloc_etherdev;
2071
2072         SET_NETDEV_DEV(netdev, &pdev->dev);
2073
2074         pci_set_drvdata(pdev, netdev);
2075         adapter = netdev_priv(netdev);
2076         adapter->netdev = netdev;
2077         adapter->pdev = pdev;
2078         hw = &adapter->hw;
2079         hw->back = adapter;
2080         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2081
2082         mmio_start = pci_resource_start(pdev, 0);
2083         mmio_len = pci_resource_len(pdev, 0);
2084
2085         err = -EIO;
2086         hw->hw_addr = ioremap(mmio_start, mmio_len);
2087         if (!hw->hw_addr)
2088                 goto err_ioremap;
2089
2090         netdev->netdev_ops = &igb_netdev_ops;
2091         igb_set_ethtool_ops(netdev);
2092         netdev->watchdog_timeo = 5 * HZ;
2093
2094         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2095
2096         netdev->mem_start = mmio_start;
2097         netdev->mem_end = mmio_start + mmio_len;
2098
2099         /* PCI config space info */
2100         hw->vendor_id = pdev->vendor;
2101         hw->device_id = pdev->device;
2102         hw->revision_id = pdev->revision;
2103         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2104         hw->subsystem_device_id = pdev->subsystem_device;
2105
2106         /* Copy the default MAC, PHY and NVM function pointers */
2107         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2108         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2109         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2110         /* Initialize skew-specific constants */
2111         err = ei->get_invariants(hw);
2112         if (err)
2113                 goto err_sw_init;
2114
2115         /* setup the private structure */
2116         err = igb_sw_init(adapter);
2117         if (err)
2118                 goto err_sw_init;
2119
2120         igb_get_bus_info_pcie(hw);
2121
2122         hw->phy.autoneg_wait_to_complete = false;
2123
2124         /* Copper options */
2125         if (hw->phy.media_type == e1000_media_type_copper) {
2126                 hw->phy.mdix = AUTO_ALL_MODES;
2127                 hw->phy.disable_polarity_correction = false;
2128                 hw->phy.ms_type = e1000_ms_hw_default;
2129         }
2130
2131         if (igb_check_reset_block(hw))
2132                 dev_info(&pdev->dev,
2133                         "PHY reset is blocked due to SOL/IDER session.\n");
2134
2135         /* features is initialized to 0 in allocation, it might have bits
2136          * set by igb_sw_init so we should use an or instead of an
2137          * assignment.
2138          */
2139         netdev->features |= NETIF_F_SG |
2140                             NETIF_F_IP_CSUM |
2141                             NETIF_F_IPV6_CSUM |
2142                             NETIF_F_TSO |
2143                             NETIF_F_TSO6 |
2144                             NETIF_F_RXHASH |
2145                             NETIF_F_RXCSUM |
2146                             NETIF_F_HW_VLAN_CTAG_RX |
2147                             NETIF_F_HW_VLAN_CTAG_TX;
2148
2149         /* copy netdev features into list of user selectable features */
2150         netdev->hw_features |= netdev->features;
2151         netdev->hw_features |= NETIF_F_RXALL;
2152
2153         /* set this bit last since it cannot be part of hw_features */
2154         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2155
2156         netdev->vlan_features |= NETIF_F_TSO |
2157                                  NETIF_F_TSO6 |
2158                                  NETIF_F_IP_CSUM |
2159                                  NETIF_F_IPV6_CSUM |
2160                                  NETIF_F_SG;
2161
2162         netdev->priv_flags |= IFF_SUPP_NOFCS;
2163
2164         if (pci_using_dac) {
2165                 netdev->features |= NETIF_F_HIGHDMA;
2166                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2167         }
2168
2169         if (hw->mac.type >= e1000_82576) {
2170                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2171                 netdev->features |= NETIF_F_SCTP_CSUM;
2172         }
2173
2174         netdev->priv_flags |= IFF_UNICAST_FLT;
2175
2176         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2177
2178         /* before reading the NVM, reset the controller to put the device in a
2179          * known good starting state
2180          */
2181         hw->mac.ops.reset_hw(hw);
2182
2183         /* make sure the NVM is good , i211/i210 parts can have special NVM
2184          * that doesn't contain a checksum
2185          */
2186         switch (hw->mac.type) {
2187         case e1000_i210:
2188         case e1000_i211:
2189                 if (igb_get_flash_presence_i210(hw)) {
2190                         if (hw->nvm.ops.validate(hw) < 0) {
2191                                 dev_err(&pdev->dev,
2192                                         "The NVM Checksum Is Not Valid\n");
2193                                 err = -EIO;
2194                                 goto err_eeprom;
2195                         }
2196                 }
2197                 break;
2198         default:
2199                 if (hw->nvm.ops.validate(hw) < 0) {
2200                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2201                         err = -EIO;
2202                         goto err_eeprom;
2203                 }
2204                 break;
2205         }
2206
2207         /* copy the MAC address out of the NVM */
2208         if (hw->mac.ops.read_mac_addr(hw))
2209                 dev_err(&pdev->dev, "NVM Read Error\n");
2210
2211         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2212
2213         if (!is_valid_ether_addr(netdev->dev_addr)) {
2214                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2215                 err = -EIO;
2216                 goto err_eeprom;
2217         }
2218
2219         /* get firmware version for ethtool -i */
2220         igb_set_fw_version(adapter);
2221
2222         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2223                     (unsigned long) adapter);
2224         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2225                     (unsigned long) adapter);
2226
2227         INIT_WORK(&adapter->reset_task, igb_reset_task);
2228         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2229
2230         /* Initialize link properties that are user-changeable */
2231         adapter->fc_autoneg = true;
2232         hw->mac.autoneg = true;
2233         hw->phy.autoneg_advertised = 0x2f;
2234
2235         hw->fc.requested_mode = e1000_fc_default;
2236         hw->fc.current_mode = e1000_fc_default;
2237
2238         igb_validate_mdi_setting(hw);
2239
2240         /* By default, support wake on port A */
2241         if (hw->bus.func == 0)
2242                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2243
2244         /* Check the NVM for wake support on non-port A ports */
2245         if (hw->mac.type >= e1000_82580)
2246                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2247                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2248                                  &eeprom_data);
2249         else if (hw->bus.func == 1)
2250                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2251
2252         if (eeprom_data & IGB_EEPROM_APME)
2253                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2254
2255         /* now that we have the eeprom settings, apply the special cases where
2256          * the eeprom may be wrong or the board simply won't support wake on
2257          * lan on a particular port
2258          */
2259         switch (pdev->device) {
2260         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2261                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2262                 break;
2263         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2264         case E1000_DEV_ID_82576_FIBER:
2265         case E1000_DEV_ID_82576_SERDES:
2266                 /* Wake events only supported on port A for dual fiber
2267                  * regardless of eeprom setting
2268                  */
2269                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2270                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2271                 break;
2272         case E1000_DEV_ID_82576_QUAD_COPPER:
2273         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2274                 /* if quad port adapter, disable WoL on all but port A */
2275                 if (global_quad_port_a != 0)
2276                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2277                 else
2278                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2279                 /* Reset for multiple quad port adapters */
2280                 if (++global_quad_port_a == 4)
2281                         global_quad_port_a = 0;
2282                 break;
2283         default:
2284                 /* If the device can't wake, don't set software support */
2285                 if (!device_can_wakeup(&adapter->pdev->dev))
2286                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2287         }
2288
2289         /* initialize the wol settings based on the eeprom settings */
2290         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2291                 adapter->wol |= E1000_WUFC_MAG;
2292
2293         /* Some vendors want WoL disabled by default, but still supported */
2294         if ((hw->mac.type == e1000_i350) &&
2295             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2296                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2297                 adapter->wol = 0;
2298         }
2299
2300         device_set_wakeup_enable(&adapter->pdev->dev,
2301                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2302
2303         /* reset the hardware with the new settings */
2304         igb_reset(adapter);
2305
2306         /* Init the I2C interface */
2307         err = igb_init_i2c(adapter);
2308         if (err) {
2309                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2310                 goto err_eeprom;
2311         }
2312
2313         /* let the f/w know that the h/w is now under the control of the
2314          * driver. */
2315         igb_get_hw_control(adapter);
2316
2317         strcpy(netdev->name, "eth%d");
2318         err = register_netdev(netdev);
2319         if (err)
2320                 goto err_register;
2321
2322         /* carrier off reporting is important to ethtool even BEFORE open */
2323         netif_carrier_off(netdev);
2324
2325 #ifdef CONFIG_IGB_DCA
2326         if (dca_add_requester(&pdev->dev) == 0) {
2327                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2328                 dev_info(&pdev->dev, "DCA enabled\n");
2329                 igb_setup_dca(adapter);
2330         }
2331
2332 #endif
2333 #ifdef CONFIG_IGB_HWMON
2334         /* Initialize the thermal sensor on i350 devices. */
2335         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2336                 u16 ets_word;
2337
2338                 /* Read the NVM to determine if this i350 device supports an
2339                  * external thermal sensor.
2340                  */
2341                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2342                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2343                         adapter->ets = true;
2344                 else
2345                         adapter->ets = false;
2346                 if (igb_sysfs_init(adapter))
2347                         dev_err(&pdev->dev,
2348                                 "failed to allocate sysfs resources\n");
2349         } else {
2350                 adapter->ets = false;
2351         }
2352 #endif
2353         /* do hw tstamp init after resetting */
2354         igb_ptp_init(adapter);
2355
2356         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2357         /* print bus type/speed/width info, not applicable to i354 */
2358         if (hw->mac.type != e1000_i354) {
2359                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2360                          netdev->name,
2361                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2362                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2363                            "unknown"),
2364                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2365                           "Width x4" :
2366                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2367                           "Width x2" :
2368                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2369                           "Width x1" : "unknown"), netdev->dev_addr);
2370         }
2371
2372         if ((hw->mac.type >= e1000_i210 ||
2373              igb_get_flash_presence_i210(hw))) {
2374                 ret_val = igb_read_part_string(hw, part_str,
2375                                                E1000_PBANUM_LENGTH);
2376         } else {
2377                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2378         }
2379
2380         if (ret_val)
2381                 strcpy(part_str, "Unknown");
2382         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2383         dev_info(&pdev->dev,
2384                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2385                 adapter->msix_entries ? "MSI-X" :
2386                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2387                 adapter->num_rx_queues, adapter->num_tx_queues);
2388         switch (hw->mac.type) {
2389         case e1000_i350:
2390         case e1000_i210:
2391         case e1000_i211:
2392                 igb_set_eee_i350(hw);
2393                 break;
2394         case e1000_i354:
2395                 if (hw->phy.media_type == e1000_media_type_copper) {
2396                         if ((rd32(E1000_CTRL_EXT) &
2397                             E1000_CTRL_EXT_LINK_MODE_SGMII))
2398                                 igb_set_eee_i354(hw);
2399                 }
2400                 break;
2401         default:
2402                 break;
2403         }
2404
2405         pm_runtime_put_noidle(&pdev->dev);
2406         return 0;
2407
2408 err_register:
2409         igb_release_hw_control(adapter);
2410         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2411 err_eeprom:
2412         if (!igb_check_reset_block(hw))
2413                 igb_reset_phy(hw);
2414
2415         if (hw->flash_address)
2416                 iounmap(hw->flash_address);
2417 err_sw_init:
2418         igb_clear_interrupt_scheme(adapter);
2419         iounmap(hw->hw_addr);
2420 err_ioremap:
2421         free_netdev(netdev);
2422 err_alloc_etherdev:
2423         pci_release_selected_regions(pdev,
2424                                      pci_select_bars(pdev, IORESOURCE_MEM));
2425 err_pci_reg:
2426 err_dma:
2427         pci_disable_device(pdev);
2428         return err;
2429 }
2430
2431 #ifdef CONFIG_PCI_IOV
2432 static int  igb_disable_sriov(struct pci_dev *pdev)
2433 {
2434         struct net_device *netdev = pci_get_drvdata(pdev);
2435         struct igb_adapter *adapter = netdev_priv(netdev);
2436         struct e1000_hw *hw = &adapter->hw;
2437
2438         /* reclaim resources allocated to VFs */
2439         if (adapter->vf_data) {
2440                 /* disable iov and allow time for transactions to clear */
2441                 if (pci_vfs_assigned(pdev)) {
2442                         dev_warn(&pdev->dev,
2443                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2444                         return -EPERM;
2445                 } else {
2446                         pci_disable_sriov(pdev);
2447                         msleep(500);
2448                 }
2449
2450                 kfree(adapter->vf_data);
2451                 adapter->vf_data = NULL;
2452                 adapter->vfs_allocated_count = 0;
2453                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2454                 wrfl();
2455                 msleep(100);
2456                 dev_info(&pdev->dev, "IOV Disabled\n");
2457
2458                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2459                 adapter->flags |= IGB_FLAG_DMAC;
2460         }
2461
2462         return 0;
2463 }
2464
2465 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2466 {
2467         struct net_device *netdev = pci_get_drvdata(pdev);
2468         struct igb_adapter *adapter = netdev_priv(netdev);
2469         int old_vfs = pci_num_vf(pdev);
2470         int err = 0;
2471         int i;
2472
2473         if (!adapter->msix_entries) {
2474                 err = -EPERM;
2475                 goto out;
2476         }
2477
2478         if (!num_vfs)
2479                 goto out;
2480         else if (old_vfs && old_vfs == num_vfs)
2481                 goto out;
2482         else if (old_vfs && old_vfs != num_vfs)
2483                 err = igb_disable_sriov(pdev);
2484
2485         if (err)
2486                 goto out;
2487
2488         if (num_vfs > 7) {
2489                 err = -EPERM;
2490                 goto out;
2491         }
2492
2493         adapter->vfs_allocated_count = num_vfs;
2494
2495         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2496                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2497
2498         /* if allocation failed then we do not support SR-IOV */
2499         if (!adapter->vf_data) {
2500                 adapter->vfs_allocated_count = 0;
2501                 dev_err(&pdev->dev,
2502                         "Unable to allocate memory for VF Data Storage\n");
2503                 err = -ENOMEM;
2504                 goto out;
2505         }
2506
2507         err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2508         if (err)
2509                 goto err_out;
2510
2511         dev_info(&pdev->dev, "%d VFs allocated\n",
2512                  adapter->vfs_allocated_count);
2513         for (i = 0; i < adapter->vfs_allocated_count; i++)
2514                 igb_vf_configure(adapter, i);
2515
2516         /* DMA Coalescing is not supported in IOV mode. */
2517         adapter->flags &= ~IGB_FLAG_DMAC;
2518         goto out;
2519
2520 err_out:
2521         kfree(adapter->vf_data);
2522         adapter->vf_data = NULL;
2523         adapter->vfs_allocated_count = 0;
2524 out:
2525         return err;
2526 }
2527
2528 #endif
2529 /**
2530  *  igb_remove_i2c - Cleanup  I2C interface
2531  *  @adapter: pointer to adapter structure
2532  **/
2533 static void igb_remove_i2c(struct igb_adapter *adapter)
2534 {
2535         /* free the adapter bus structure */
2536         i2c_del_adapter(&adapter->i2c_adap);
2537 }
2538
2539 /**
2540  *  igb_remove - Device Removal Routine
2541  *  @pdev: PCI device information struct
2542  *
2543  *  igb_remove is called by the PCI subsystem to alert the driver
2544  *  that it should release a PCI device.  The could be caused by a
2545  *  Hot-Plug event, or because the driver is going to be removed from
2546  *  memory.
2547  **/
2548 static void igb_remove(struct pci_dev *pdev)
2549 {
2550         struct net_device *netdev = pci_get_drvdata(pdev);
2551         struct igb_adapter *adapter = netdev_priv(netdev);
2552         struct e1000_hw *hw = &adapter->hw;
2553
2554         pm_runtime_get_noresume(&pdev->dev);
2555 #ifdef CONFIG_IGB_HWMON
2556         igb_sysfs_exit(adapter);
2557 #endif
2558         igb_remove_i2c(adapter);
2559         igb_ptp_stop(adapter);
2560         /* The watchdog timer may be rescheduled, so explicitly
2561          * disable watchdog from being rescheduled.
2562          */
2563         set_bit(__IGB_DOWN, &adapter->state);
2564         del_timer_sync(&adapter->watchdog_timer);
2565         del_timer_sync(&adapter->phy_info_timer);
2566
2567         cancel_work_sync(&adapter->reset_task);
2568         cancel_work_sync(&adapter->watchdog_task);
2569
2570 #ifdef CONFIG_IGB_DCA
2571         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2572                 dev_info(&pdev->dev, "DCA disabled\n");
2573                 dca_remove_requester(&pdev->dev);
2574                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2575                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2576         }
2577 #endif
2578
2579         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2580          * would have already happened in close and is redundant.
2581          */
2582         igb_release_hw_control(adapter);
2583
2584         unregister_netdev(netdev);
2585
2586         igb_clear_interrupt_scheme(adapter);
2587
2588 #ifdef CONFIG_PCI_IOV
2589         igb_disable_sriov(pdev);
2590 #endif
2591
2592         iounmap(hw->hw_addr);
2593         if (hw->flash_address)
2594                 iounmap(hw->flash_address);
2595         pci_release_selected_regions(pdev,
2596                                      pci_select_bars(pdev, IORESOURCE_MEM));
2597
2598         kfree(adapter->shadow_vfta);
2599         free_netdev(netdev);
2600
2601         pci_disable_pcie_error_reporting(pdev);
2602
2603         pci_disable_device(pdev);
2604 }
2605
2606 /**
2607  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2608  *  @adapter: board private structure to initialize
2609  *
2610  *  This function initializes the vf specific data storage and then attempts to
2611  *  allocate the VFs.  The reason for ordering it this way is because it is much
2612  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2613  *  the memory for the VFs.
2614  **/
2615 static void igb_probe_vfs(struct igb_adapter *adapter)
2616 {
2617 #ifdef CONFIG_PCI_IOV
2618         struct pci_dev *pdev = adapter->pdev;
2619         struct e1000_hw *hw = &adapter->hw;
2620
2621         /* Virtualization features not supported on i210 family. */
2622         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2623                 return;
2624
2625         pci_sriov_set_totalvfs(pdev, 7);
2626         igb_enable_sriov(pdev, max_vfs);
2627
2628 #endif /* CONFIG_PCI_IOV */
2629 }
2630
2631 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2632 {
2633         struct e1000_hw *hw = &adapter->hw;
2634         u32 max_rss_queues;
2635
2636         /* Determine the maximum number of RSS queues supported. */
2637         switch (hw->mac.type) {
2638         case e1000_i211:
2639                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2640                 break;
2641         case e1000_82575:
2642         case e1000_i210:
2643                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2644                 break;
2645         case e1000_i350:
2646                 /* I350 cannot do RSS and SR-IOV at the same time */
2647                 if (!!adapter->vfs_allocated_count) {
2648                         max_rss_queues = 1;
2649                         break;
2650                 }
2651                 /* fall through */
2652         case e1000_82576:
2653                 if (!!adapter->vfs_allocated_count) {
2654                         max_rss_queues = 2;
2655                         break;
2656                 }
2657                 /* fall through */
2658         case e1000_82580:
2659         case e1000_i354:
2660         default:
2661                 max_rss_queues = IGB_MAX_RX_QUEUES;
2662                 break;
2663         }
2664
2665         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2666
2667         /* Determine if we need to pair queues. */
2668         switch (hw->mac.type) {
2669         case e1000_82575:
2670         case e1000_i211:
2671                 /* Device supports enough interrupts without queue pairing. */
2672                 break;
2673         case e1000_82576:
2674                 /* If VFs are going to be allocated with RSS queues then we
2675                  * should pair the queues in order to conserve interrupts due
2676                  * to limited supply.
2677                  */
2678                 if ((adapter->rss_queues > 1) &&
2679                     (adapter->vfs_allocated_count > 6))
2680                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2681                 /* fall through */
2682         case e1000_82580:
2683         case e1000_i350:
2684         case e1000_i354:
2685         case e1000_i210:
2686         default:
2687                 /* If rss_queues > half of max_rss_queues, pair the queues in
2688                  * order to conserve interrupts due to limited supply.
2689                  */
2690                 if (adapter->rss_queues > (max_rss_queues / 2))
2691                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2692                 break;
2693         }
2694 }
2695
2696 /**
2697  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2698  *  @adapter: board private structure to initialize
2699  *
2700  *  igb_sw_init initializes the Adapter private data structure.
2701  *  Fields are initialized based on PCI device information and
2702  *  OS network device settings (MTU size).
2703  **/
2704 static int igb_sw_init(struct igb_adapter *adapter)
2705 {
2706         struct e1000_hw *hw = &adapter->hw;
2707         struct net_device *netdev = adapter->netdev;
2708         struct pci_dev *pdev = adapter->pdev;
2709
2710         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2711
2712         /* set default ring sizes */
2713         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2714         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2715
2716         /* set default ITR values */
2717         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2718         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2719
2720         /* set default work limits */
2721         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2722
2723         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2724                                   VLAN_HLEN;
2725         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2726
2727         spin_lock_init(&adapter->stats64_lock);
2728 #ifdef CONFIG_PCI_IOV
2729         switch (hw->mac.type) {
2730         case e1000_82576:
2731         case e1000_i350:
2732                 if (max_vfs > 7) {
2733                         dev_warn(&pdev->dev,
2734                                  "Maximum of 7 VFs per PF, using max\n");
2735                         max_vfs = adapter->vfs_allocated_count = 7;
2736                 } else
2737                         adapter->vfs_allocated_count = max_vfs;
2738                 if (adapter->vfs_allocated_count)
2739                         dev_warn(&pdev->dev,
2740                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2741                 break;
2742         default:
2743                 break;
2744         }
2745 #endif /* CONFIG_PCI_IOV */
2746
2747         igb_init_queue_configuration(adapter);
2748
2749         /* Setup and initialize a copy of the hw vlan table array */
2750         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2751                                        GFP_ATOMIC);
2752
2753         /* This call may decrease the number of queues */
2754         if (igb_init_interrupt_scheme(adapter, true)) {
2755                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2756                 return -ENOMEM;
2757         }
2758
2759         igb_probe_vfs(adapter);
2760
2761         /* Explicitly disable IRQ since the NIC can be in any state. */
2762         igb_irq_disable(adapter);
2763
2764         if (hw->mac.type >= e1000_i350)
2765                 adapter->flags &= ~IGB_FLAG_DMAC;
2766
2767         set_bit(__IGB_DOWN, &adapter->state);
2768         return 0;
2769 }
2770
2771 /**
2772  *  igb_open - Called when a network interface is made active
2773  *  @netdev: network interface device structure
2774  *
2775  *  Returns 0 on success, negative value on failure
2776  *
2777  *  The open entry point is called when a network interface is made
2778  *  active by the system (IFF_UP).  At this point all resources needed
2779  *  for transmit and receive operations are allocated, the interrupt
2780  *  handler is registered with the OS, the watchdog timer is started,
2781  *  and the stack is notified that the interface is ready.
2782  **/
2783 static int __igb_open(struct net_device *netdev, bool resuming)
2784 {
2785         struct igb_adapter *adapter = netdev_priv(netdev);
2786         struct e1000_hw *hw = &adapter->hw;
2787         struct pci_dev *pdev = adapter->pdev;
2788         int err;
2789         int i;
2790
2791         /* disallow open during test */
2792         if (test_bit(__IGB_TESTING, &adapter->state)) {
2793                 WARN_ON(resuming);
2794                 return -EBUSY;
2795         }
2796
2797         if (!resuming)
2798                 pm_runtime_get_sync(&pdev->dev);
2799
2800         netif_carrier_off(netdev);
2801
2802         /* allocate transmit descriptors */
2803         err = igb_setup_all_tx_resources(adapter);
2804         if (err)
2805                 goto err_setup_tx;
2806
2807         /* allocate receive descriptors */
2808         err = igb_setup_all_rx_resources(adapter);
2809         if (err)
2810                 goto err_setup_rx;
2811
2812         igb_power_up_link(adapter);
2813
2814         /* before we allocate an interrupt, we must be ready to handle it.
2815          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2816          * as soon as we call pci_request_irq, so we have to setup our
2817          * clean_rx handler before we do so.
2818          */
2819         igb_configure(adapter);
2820
2821         err = igb_request_irq(adapter);
2822         if (err)
2823                 goto err_req_irq;
2824
2825         /* Notify the stack of the actual queue counts. */
2826         err = netif_set_real_num_tx_queues(adapter->netdev,
2827                                            adapter->num_tx_queues);
2828         if (err)
2829                 goto err_set_queues;
2830
2831         err = netif_set_real_num_rx_queues(adapter->netdev,
2832                                            adapter->num_rx_queues);
2833         if (err)
2834                 goto err_set_queues;
2835
2836         /* From here on the code is the same as igb_up() */
2837         clear_bit(__IGB_DOWN, &adapter->state);
2838
2839         for (i = 0; i < adapter->num_q_vectors; i++)
2840                 napi_enable(&(adapter->q_vector[i]->napi));
2841
2842         /* Clear any pending interrupts. */
2843         rd32(E1000_ICR);
2844
2845         igb_irq_enable(adapter);
2846
2847         /* notify VFs that reset has been completed */
2848         if (adapter->vfs_allocated_count) {
2849                 u32 reg_data = rd32(E1000_CTRL_EXT);
2850                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2851                 wr32(E1000_CTRL_EXT, reg_data);
2852         }
2853
2854         netif_tx_start_all_queues(netdev);
2855
2856         if (!resuming)
2857                 pm_runtime_put(&pdev->dev);
2858
2859         /* start the watchdog. */
2860         hw->mac.get_link_status = 1;
2861         schedule_work(&adapter->watchdog_task);
2862
2863         return 0;
2864
2865 err_set_queues:
2866         igb_free_irq(adapter);
2867 err_req_irq:
2868         igb_release_hw_control(adapter);
2869         igb_power_down_link(adapter);
2870         igb_free_all_rx_resources(adapter);
2871 err_setup_rx:
2872         igb_free_all_tx_resources(adapter);
2873 err_setup_tx:
2874         igb_reset(adapter);
2875         if (!resuming)
2876                 pm_runtime_put(&pdev->dev);
2877
2878         return err;
2879 }
2880
2881 static int igb_open(struct net_device *netdev)
2882 {
2883         return __igb_open(netdev, false);
2884 }
2885
2886 /**
2887  *  igb_close - Disables a network interface
2888  *  @netdev: network interface device structure
2889  *
2890  *  Returns 0, this is not allowed to fail
2891  *
2892  *  The close entry point is called when an interface is de-activated
2893  *  by the OS.  The hardware is still under the driver's control, but
2894  *  needs to be disabled.  A global MAC reset is issued to stop the
2895  *  hardware, and all transmit and receive resources are freed.
2896  **/
2897 static int __igb_close(struct net_device *netdev, bool suspending)
2898 {
2899         struct igb_adapter *adapter = netdev_priv(netdev);
2900         struct pci_dev *pdev = adapter->pdev;
2901
2902         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2903
2904         if (!suspending)
2905                 pm_runtime_get_sync(&pdev->dev);
2906
2907         igb_down(adapter);
2908         igb_free_irq(adapter);
2909
2910         igb_free_all_tx_resources(adapter);
2911         igb_free_all_rx_resources(adapter);
2912
2913         if (!suspending)
2914                 pm_runtime_put_sync(&pdev->dev);
2915         return 0;
2916 }
2917
2918 static int igb_close(struct net_device *netdev)
2919 {
2920         return __igb_close(netdev, false);
2921 }
2922
2923 /**
2924  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2925  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2926  *
2927  *  Return 0 on success, negative on failure
2928  **/
2929 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2930 {
2931         struct device *dev = tx_ring->dev;
2932         int size;
2933
2934         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2935
2936         tx_ring->tx_buffer_info = vzalloc(size);
2937         if (!tx_ring->tx_buffer_info)
2938                 goto err;
2939
2940         /* round up to nearest 4K */
2941         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2942         tx_ring->size = ALIGN(tx_ring->size, 4096);
2943
2944         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2945                                            &tx_ring->dma, GFP_KERNEL);
2946         if (!tx_ring->desc)
2947                 goto err;
2948
2949         tx_ring->next_to_use = 0;
2950         tx_ring->next_to_clean = 0;
2951
2952         return 0;
2953
2954 err:
2955         vfree(tx_ring->tx_buffer_info);
2956         tx_ring->tx_buffer_info = NULL;
2957         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2958         return -ENOMEM;
2959 }
2960
2961 /**
2962  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2963  *                               (Descriptors) for all queues
2964  *  @adapter: board private structure
2965  *
2966  *  Return 0 on success, negative on failure
2967  **/
2968 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2969 {
2970         struct pci_dev *pdev = adapter->pdev;
2971         int i, err = 0;
2972
2973         for (i = 0; i < adapter->num_tx_queues; i++) {
2974                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2975                 if (err) {
2976                         dev_err(&pdev->dev,
2977                                 "Allocation for Tx Queue %u failed\n", i);
2978                         for (i--; i >= 0; i--)
2979                                 igb_free_tx_resources(adapter->tx_ring[i]);
2980                         break;
2981                 }
2982         }
2983
2984         return err;
2985 }
2986
2987 /**
2988  *  igb_setup_tctl - configure the transmit control registers
2989  *  @adapter: Board private structure
2990  **/
2991 void igb_setup_tctl(struct igb_adapter *adapter)
2992 {
2993         struct e1000_hw *hw = &adapter->hw;
2994         u32 tctl;
2995
2996         /* disable queue 0 which is enabled by default on 82575 and 82576 */
2997         wr32(E1000_TXDCTL(0), 0);
2998
2999         /* Program the Transmit Control Register */
3000         tctl = rd32(E1000_TCTL);
3001         tctl &= ~E1000_TCTL_CT;
3002         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3003                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3004
3005         igb_config_collision_dist(hw);
3006
3007         /* Enable transmits */
3008         tctl |= E1000_TCTL_EN;
3009
3010         wr32(E1000_TCTL, tctl);
3011 }
3012
3013 /**
3014  *  igb_configure_tx_ring - Configure transmit ring after Reset
3015  *  @adapter: board private structure
3016  *  @ring: tx ring to configure
3017  *
3018  *  Configure a transmit ring after a reset.
3019  **/
3020 void igb_configure_tx_ring(struct igb_adapter *adapter,
3021                            struct igb_ring *ring)
3022 {
3023         struct e1000_hw *hw = &adapter->hw;
3024         u32 txdctl = 0;
3025         u64 tdba = ring->dma;
3026         int reg_idx = ring->reg_idx;
3027
3028         /* disable the queue */
3029         wr32(E1000_TXDCTL(reg_idx), 0);
3030         wrfl();
3031         mdelay(10);
3032
3033         wr32(E1000_TDLEN(reg_idx),
3034              ring->count * sizeof(union e1000_adv_tx_desc));
3035         wr32(E1000_TDBAL(reg_idx),
3036              tdba & 0x00000000ffffffffULL);
3037         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3038
3039         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3040         wr32(E1000_TDH(reg_idx), 0);
3041         writel(0, ring->tail);
3042
3043         txdctl |= IGB_TX_PTHRESH;
3044         txdctl |= IGB_TX_HTHRESH << 8;
3045         txdctl |= IGB_TX_WTHRESH << 16;
3046
3047         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3048         wr32(E1000_TXDCTL(reg_idx), txdctl);
3049 }
3050
3051 /**
3052  *  igb_configure_tx - Configure transmit Unit after Reset
3053  *  @adapter: board private structure
3054  *
3055  *  Configure the Tx unit of the MAC after a reset.
3056  **/
3057 static void igb_configure_tx(struct igb_adapter *adapter)
3058 {
3059         int i;
3060
3061         for (i = 0; i < adapter->num_tx_queues; i++)
3062                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3063 }
3064
3065 /**
3066  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3067  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3068  *
3069  *  Returns 0 on success, negative on failure
3070  **/
3071 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3072 {
3073         struct device *dev = rx_ring->dev;
3074         int size;
3075
3076         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3077
3078         rx_ring->rx_buffer_info = vzalloc(size);
3079         if (!rx_ring->rx_buffer_info)
3080                 goto err;
3081
3082         /* Round up to nearest 4K */
3083         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3084         rx_ring->size = ALIGN(rx_ring->size, 4096);
3085
3086         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3087                                            &rx_ring->dma, GFP_KERNEL);
3088         if (!rx_ring->desc)
3089                 goto err;
3090
3091         rx_ring->next_to_alloc = 0;
3092         rx_ring->next_to_clean = 0;
3093         rx_ring->next_to_use = 0;
3094
3095         return 0;
3096
3097 err:
3098         vfree(rx_ring->rx_buffer_info);
3099         rx_ring->rx_buffer_info = NULL;
3100         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3101         return -ENOMEM;
3102 }
3103
3104 /**
3105  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3106  *                               (Descriptors) for all queues
3107  *  @adapter: board private structure
3108  *
3109  *  Return 0 on success, negative on failure
3110  **/
3111 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3112 {
3113         struct pci_dev *pdev = adapter->pdev;
3114         int i, err = 0;
3115
3116         for (i = 0; i < adapter->num_rx_queues; i++) {
3117                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3118                 if (err) {
3119                         dev_err(&pdev->dev,
3120                                 "Allocation for Rx Queue %u failed\n", i);
3121                         for (i--; i >= 0; i--)
3122                                 igb_free_rx_resources(adapter->rx_ring[i]);
3123                         break;
3124                 }
3125         }
3126
3127         return err;
3128 }
3129
3130 /**
3131  *  igb_setup_mrqc - configure the multiple receive queue control registers
3132  *  @adapter: Board private structure
3133  **/
3134 static void igb_setup_mrqc(struct igb_adapter *adapter)
3135 {
3136         struct e1000_hw *hw = &adapter->hw;
3137         u32 mrqc, rxcsum;
3138         u32 j, num_rx_queues;
3139         static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3140                                         0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3141                                         0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3142                                         0xFA01ACBE };
3143
3144         /* Fill out hash function seeds */
3145         for (j = 0; j < 10; j++)
3146                 wr32(E1000_RSSRK(j), rsskey[j]);
3147
3148         num_rx_queues = adapter->rss_queues;
3149
3150         switch (hw->mac.type) {
3151         case e1000_82576:
3152                 /* 82576 supports 2 RSS queues for SR-IOV */
3153                 if (adapter->vfs_allocated_count)
3154                         num_rx_queues = 2;
3155                 break;
3156         default:
3157                 break;
3158         }
3159
3160         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3161                 for (j = 0; j < IGB_RETA_SIZE; j++)
3162                         adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3163                 adapter->rss_indir_tbl_init = num_rx_queues;
3164         }
3165         igb_write_rss_indir_tbl(adapter);
3166
3167         /* Disable raw packet checksumming so that RSS hash is placed in
3168          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3169          * offloads as they are enabled by default
3170          */
3171         rxcsum = rd32(E1000_RXCSUM);
3172         rxcsum |= E1000_RXCSUM_PCSD;
3173
3174         if (adapter->hw.mac.type >= e1000_82576)
3175                 /* Enable Receive Checksum Offload for SCTP */
3176                 rxcsum |= E1000_RXCSUM_CRCOFL;
3177
3178         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3179         wr32(E1000_RXCSUM, rxcsum);
3180
3181         /* Generate RSS hash based on packet types, TCP/UDP
3182          * port numbers and/or IPv4/v6 src and dst addresses
3183          */
3184         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3185                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3186                E1000_MRQC_RSS_FIELD_IPV6 |
3187                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3188                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3189
3190         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3191                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3192         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3193                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3194
3195         /* If VMDq is enabled then we set the appropriate mode for that, else
3196          * we default to RSS so that an RSS hash is calculated per packet even
3197          * if we are only using one queue
3198          */
3199         if (adapter->vfs_allocated_count) {
3200                 if (hw->mac.type > e1000_82575) {
3201                         /* Set the default pool for the PF's first queue */
3202                         u32 vtctl = rd32(E1000_VT_CTL);
3203                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3204                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3205                         vtctl |= adapter->vfs_allocated_count <<
3206                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3207                         wr32(E1000_VT_CTL, vtctl);
3208                 }
3209                 if (adapter->rss_queues > 1)
3210                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3211                 else
3212                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3213         } else {
3214                 if (hw->mac.type != e1000_i211)
3215                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3216         }
3217         igb_vmm_control(adapter);
3218
3219         wr32(E1000_MRQC, mrqc);
3220 }
3221
3222 /**
3223  *  igb_setup_rctl - configure the receive control registers
3224  *  @adapter: Board private structure
3225  **/
3226 void igb_setup_rctl(struct igb_adapter *adapter)
3227 {
3228         struct e1000_hw *hw = &adapter->hw;
3229         u32 rctl;
3230
3231         rctl = rd32(E1000_RCTL);
3232
3233         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3234         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3235
3236         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3237                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3238
3239         /* enable stripping of CRC. It's unlikely this will break BMC
3240          * redirection as it did with e1000. Newer features require
3241          * that the HW strips the CRC.
3242          */
3243         rctl |= E1000_RCTL_SECRC;
3244
3245         /* disable store bad packets and clear size bits. */
3246         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3247
3248         /* enable LPE to prevent packets larger than max_frame_size */
3249         rctl |= E1000_RCTL_LPE;
3250
3251         /* disable queue 0 to prevent tail write w/o re-config */
3252         wr32(E1000_RXDCTL(0), 0);
3253
3254         /* Attention!!!  For SR-IOV PF driver operations you must enable
3255          * queue drop for all VF and PF queues to prevent head of line blocking
3256          * if an un-trusted VF does not provide descriptors to hardware.
3257          */
3258         if (adapter->vfs_allocated_count) {
3259                 /* set all queue drop enable bits */
3260                 wr32(E1000_QDE, ALL_QUEUES);
3261         }
3262
3263         /* This is useful for sniffing bad packets. */
3264         if (adapter->netdev->features & NETIF_F_RXALL) {
3265                 /* UPE and MPE will be handled by normal PROMISC logic
3266                  * in e1000e_set_rx_mode
3267                  */
3268                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3269                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3270                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3271
3272                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3273                           E1000_RCTL_DPF | /* Allow filtered pause */
3274                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3275                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3276                  * and that breaks VLANs.
3277                  */
3278         }
3279
3280         wr32(E1000_RCTL, rctl);
3281 }
3282
3283 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3284                                    int vfn)
3285 {
3286         struct e1000_hw *hw = &adapter->hw;
3287         u32 vmolr;
3288
3289         /* if it isn't the PF check to see if VFs are enabled and
3290          * increase the size to support vlan tags
3291          */
3292         if (vfn < adapter->vfs_allocated_count &&
3293             adapter->vf_data[vfn].vlans_enabled)
3294                 size += VLAN_TAG_SIZE;
3295
3296         vmolr = rd32(E1000_VMOLR(vfn));
3297         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3298         vmolr |= size | E1000_VMOLR_LPE;
3299         wr32(E1000_VMOLR(vfn), vmolr);
3300
3301         return 0;
3302 }
3303
3304 /**
3305  *  igb_rlpml_set - set maximum receive packet size
3306  *  @adapter: board private structure
3307  *
3308  *  Configure maximum receivable packet size.
3309  **/
3310 static void igb_rlpml_set(struct igb_adapter *adapter)
3311 {
3312         u32 max_frame_size = adapter->max_frame_size;
3313         struct e1000_hw *hw = &adapter->hw;
3314         u16 pf_id = adapter->vfs_allocated_count;
3315
3316         if (pf_id) {
3317                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3318                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3319                  * to our max jumbo frame size, in case we need to enable
3320                  * jumbo frames on one of the rings later.
3321                  * This will not pass over-length frames into the default
3322                  * queue because it's gated by the VMOLR.RLPML.
3323                  */
3324                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3325         }
3326
3327         wr32(E1000_RLPML, max_frame_size);
3328 }
3329
3330 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3331                                  int vfn, bool aupe)
3332 {
3333         struct e1000_hw *hw = &adapter->hw;
3334         u32 vmolr;
3335
3336         /* This register exists only on 82576 and newer so if we are older then
3337          * we should exit and do nothing
3338          */
3339         if (hw->mac.type < e1000_82576)
3340                 return;
3341
3342         vmolr = rd32(E1000_VMOLR(vfn));
3343         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3344         if (aupe)
3345                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3346         else
3347                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3348
3349         /* clear all bits that might not be set */
3350         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3351
3352         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3353                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3354         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3355          * multicast packets
3356          */
3357         if (vfn <= adapter->vfs_allocated_count)
3358                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3359
3360         wr32(E1000_VMOLR(vfn), vmolr);
3361 }
3362
3363 /**
3364  *  igb_configure_rx_ring - Configure a receive ring after Reset
3365  *  @adapter: board private structure
3366  *  @ring: receive ring to be configured
3367  *
3368  *  Configure the Rx unit of the MAC after a reset.
3369  **/
3370 void igb_configure_rx_ring(struct igb_adapter *adapter,
3371                            struct igb_ring *ring)
3372 {
3373         struct e1000_hw *hw = &adapter->hw;
3374         u64 rdba = ring->dma;
3375         int reg_idx = ring->reg_idx;
3376         u32 srrctl = 0, rxdctl = 0;
3377
3378         /* disable the queue */
3379         wr32(E1000_RXDCTL(reg_idx), 0);
3380
3381         /* Set DMA base address registers */
3382         wr32(E1000_RDBAL(reg_idx),
3383              rdba & 0x00000000ffffffffULL);
3384         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3385         wr32(E1000_RDLEN(reg_idx),
3386              ring->count * sizeof(union e1000_adv_rx_desc));
3387
3388         /* initialize head and tail */
3389         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3390         wr32(E1000_RDH(reg_idx), 0);
3391         writel(0, ring->tail);
3392
3393         /* set descriptor configuration */
3394         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3395         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3396         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3397         if (hw->mac.type >= e1000_82580)
3398                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3399         /* Only set Drop Enable if we are supporting multiple queues */
3400         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3401                 srrctl |= E1000_SRRCTL_DROP_EN;
3402
3403         wr32(E1000_SRRCTL(reg_idx), srrctl);
3404
3405         /* set filtering for VMDQ pools */
3406         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3407
3408         rxdctl |= IGB_RX_PTHRESH;
3409         rxdctl |= IGB_RX_HTHRESH << 8;
3410         rxdctl |= IGB_RX_WTHRESH << 16;
3411
3412         /* enable receive descriptor fetching */
3413         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3414         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3415 }
3416
3417 /**
3418  *  igb_configure_rx - Configure receive Unit after Reset
3419  *  @adapter: board private structure
3420  *
3421  *  Configure the Rx unit of the MAC after a reset.
3422  **/
3423 static void igb_configure_rx(struct igb_adapter *adapter)
3424 {
3425         int i;
3426
3427         /* set UTA to appropriate mode */
3428         igb_set_uta(adapter);
3429
3430         /* set the correct pool for the PF default MAC address in entry 0 */
3431         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3432                          adapter->vfs_allocated_count);
3433
3434         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3435          * the Base and Length of the Rx Descriptor Ring
3436          */
3437         for (i = 0; i < adapter->num_rx_queues; i++)
3438                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3439 }
3440
3441 /**
3442  *  igb_free_tx_resources - Free Tx Resources per Queue
3443  *  @tx_ring: Tx descriptor ring for a specific queue
3444  *
3445  *  Free all transmit software resources
3446  **/
3447 void igb_free_tx_resources(struct igb_ring *tx_ring)
3448 {
3449         igb_clean_tx_ring(tx_ring);
3450
3451         vfree(tx_ring->tx_buffer_info);
3452         tx_ring->tx_buffer_info = NULL;
3453
3454         /* if not set, then don't free */
3455         if (!tx_ring->desc)
3456                 return;
3457
3458         dma_free_coherent(tx_ring->dev, tx_ring->size,
3459                           tx_ring->desc, tx_ring->dma);
3460
3461         tx_ring->desc = NULL;
3462 }
3463
3464 /**
3465  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3466  *  @adapter: board private structure
3467  *
3468  *  Free all transmit software resources
3469  **/
3470 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3471 {
3472         int i;
3473
3474         for (i = 0; i < adapter->num_tx_queues; i++)
3475                 igb_free_tx_resources(adapter->tx_ring[i]);
3476 }
3477
3478 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3479                                     struct igb_tx_buffer *tx_buffer)
3480 {
3481         if (tx_buffer->skb) {
3482                 dev_kfree_skb_any(tx_buffer->skb);
3483                 if (dma_unmap_len(tx_buffer, len))
3484                         dma_unmap_single(ring->dev,
3485                                          dma_unmap_addr(tx_buffer, dma),
3486                                          dma_unmap_len(tx_buffer, len),
3487                                          DMA_TO_DEVICE);
3488         } else if (dma_unmap_len(tx_buffer, len)) {
3489                 dma_unmap_page(ring->dev,
3490                                dma_unmap_addr(tx_buffer, dma),
3491                                dma_unmap_len(tx_buffer, len),
3492                                DMA_TO_DEVICE);
3493         }
3494         tx_buffer->next_to_watch = NULL;
3495         tx_buffer->skb = NULL;
3496         dma_unmap_len_set(tx_buffer, len, 0);
3497         /* buffer_info must be completely set up in the transmit path */
3498 }
3499
3500 /**
3501  *  igb_clean_tx_ring - Free Tx Buffers
3502  *  @tx_ring: ring to be cleaned
3503  **/
3504 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3505 {
3506         struct igb_tx_buffer *buffer_info;
3507         unsigned long size;
3508         u16 i;
3509
3510         if (!tx_ring->tx_buffer_info)
3511                 return;
3512         /* Free all the Tx ring sk_buffs */
3513
3514         for (i = 0; i < tx_ring->count; i++) {
3515                 buffer_info = &tx_ring->tx_buffer_info[i];
3516                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3517         }
3518
3519         netdev_tx_reset_queue(txring_txq(tx_ring));
3520
3521         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3522         memset(tx_ring->tx_buffer_info, 0, size);
3523
3524         /* Zero out the descriptor ring */
3525         memset(tx_ring->desc, 0, tx_ring->size);
3526
3527         tx_ring->next_to_use = 0;
3528         tx_ring->next_to_clean = 0;
3529 }
3530
3531 /**
3532  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3533  *  @adapter: board private structure
3534  **/
3535 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3536 {
3537         int i;
3538
3539         for (i = 0; i < adapter->num_tx_queues; i++)
3540                 igb_clean_tx_ring(adapter->tx_ring[i]);
3541 }
3542
3543 /**
3544  *  igb_free_rx_resources - Free Rx Resources
3545  *  @rx_ring: ring to clean the resources from
3546  *
3547  *  Free all receive software resources
3548  **/
3549 void igb_free_rx_resources(struct igb_ring *rx_ring)
3550 {
3551         igb_clean_rx_ring(rx_ring);
3552
3553         vfree(rx_ring->rx_buffer_info);
3554         rx_ring->rx_buffer_info = NULL;
3555
3556         /* if not set, then don't free */
3557         if (!rx_ring->desc)
3558                 return;
3559
3560         dma_free_coherent(rx_ring->dev, rx_ring->size,
3561                           rx_ring->desc, rx_ring->dma);
3562
3563         rx_ring->desc = NULL;
3564 }
3565
3566 /**
3567  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3568  *  @adapter: board private structure
3569  *
3570  *  Free all receive software resources
3571  **/
3572 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3573 {
3574         int i;
3575
3576         for (i = 0; i < adapter->num_rx_queues; i++)
3577                 igb_free_rx_resources(adapter->rx_ring[i]);
3578 }
3579
3580 /**
3581  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3582  *  @rx_ring: ring to free buffers from
3583  **/
3584 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3585 {
3586         unsigned long size;
3587         u16 i;
3588
3589         if (rx_ring->skb)
3590                 dev_kfree_skb(rx_ring->skb);
3591         rx_ring->skb = NULL;
3592
3593         if (!rx_ring->rx_buffer_info)
3594                 return;
3595
3596         /* Free all the Rx ring sk_buffs */
3597         for (i = 0; i < rx_ring->count; i++) {
3598                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3599
3600                 if (!buffer_info->page)
3601                         continue;
3602
3603                 dma_unmap_page(rx_ring->dev,
3604                                buffer_info->dma,
3605                                PAGE_SIZE,
3606                                DMA_FROM_DEVICE);
3607                 __free_page(buffer_info->page);
3608
3609                 buffer_info->page = NULL;
3610         }
3611
3612         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3613         memset(rx_ring->rx_buffer_info, 0, size);
3614
3615         /* Zero out the descriptor ring */
3616         memset(rx_ring->desc, 0, rx_ring->size);
3617
3618         rx_ring->next_to_alloc = 0;
3619         rx_ring->next_to_clean = 0;
3620         rx_ring->next_to_use = 0;
3621 }
3622
3623 /**
3624  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3625  *  @adapter: board private structure
3626  **/
3627 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3628 {
3629         int i;
3630
3631         for (i = 0; i < adapter->num_rx_queues; i++)
3632                 igb_clean_rx_ring(adapter->rx_ring[i]);
3633 }
3634
3635 /**
3636  *  igb_set_mac - Change the Ethernet Address of the NIC
3637  *  @netdev: network interface device structure
3638  *  @p: pointer to an address structure
3639  *
3640  *  Returns 0 on success, negative on failure
3641  **/
3642 static int igb_set_mac(struct net_device *netdev, void *p)
3643 {
3644         struct igb_adapter *adapter = netdev_priv(netdev);
3645         struct e1000_hw *hw = &adapter->hw;
3646         struct sockaddr *addr = p;
3647
3648         if (!is_valid_ether_addr(addr->sa_data))
3649                 return -EADDRNOTAVAIL;
3650
3651         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3652         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3653
3654         /* set the correct pool for the new PF MAC address in entry 0 */
3655         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3656                          adapter->vfs_allocated_count);
3657
3658         return 0;
3659 }
3660
3661 /**
3662  *  igb_write_mc_addr_list - write multicast addresses to MTA
3663  *  @netdev: network interface device structure
3664  *
3665  *  Writes multicast address list to the MTA hash table.
3666  *  Returns: -ENOMEM on failure
3667  *           0 on no addresses written
3668  *           X on writing X addresses to MTA
3669  **/
3670 static int igb_write_mc_addr_list(struct net_device *netdev)
3671 {
3672         struct igb_adapter *adapter = netdev_priv(netdev);
3673         struct e1000_hw *hw = &adapter->hw;
3674         struct netdev_hw_addr *ha;
3675         u8  *mta_list;
3676         int i;
3677
3678         if (netdev_mc_empty(netdev)) {
3679                 /* nothing to program, so clear mc list */
3680                 igb_update_mc_addr_list(hw, NULL, 0);
3681                 igb_restore_vf_multicasts(adapter);
3682                 return 0;
3683         }
3684
3685         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3686         if (!mta_list)
3687                 return -ENOMEM;
3688
3689         /* The shared function expects a packed array of only addresses. */
3690         i = 0;
3691         netdev_for_each_mc_addr(ha, netdev)
3692                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3693
3694         igb_update_mc_addr_list(hw, mta_list, i);
3695         kfree(mta_list);
3696
3697         return netdev_mc_count(netdev);
3698 }
3699
3700 /**
3701  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3702  *  @netdev: network interface device structure
3703  *
3704  *  Writes unicast address list to the RAR table.
3705  *  Returns: -ENOMEM on failure/insufficient address space
3706  *           0 on no addresses written
3707  *           X on writing X addresses to the RAR table
3708  **/
3709 static int igb_write_uc_addr_list(struct net_device *netdev)
3710 {
3711         struct igb_adapter *adapter = netdev_priv(netdev);
3712         struct e1000_hw *hw = &adapter->hw;
3713         unsigned int vfn = adapter->vfs_allocated_count;
3714         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3715         int count = 0;
3716
3717         /* return ENOMEM indicating insufficient memory for addresses */
3718         if (netdev_uc_count(netdev) > rar_entries)
3719                 return -ENOMEM;
3720
3721         if (!netdev_uc_empty(netdev) && rar_entries) {
3722                 struct netdev_hw_addr *ha;
3723
3724                 netdev_for_each_uc_addr(ha, netdev) {
3725                         if (!rar_entries)
3726                                 break;
3727                         igb_rar_set_qsel(adapter, ha->addr,
3728                                          rar_entries--,
3729                                          vfn);
3730                         count++;
3731                 }
3732         }
3733         /* write the addresses in reverse order to avoid write combining */
3734         for (; rar_entries > 0 ; rar_entries--) {
3735                 wr32(E1000_RAH(rar_entries), 0);
3736                 wr32(E1000_RAL(rar_entries), 0);
3737         }
3738         wrfl();
3739
3740         return count;
3741 }
3742
3743 /**
3744  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3745  *  @netdev: network interface device structure
3746  *
3747  *  The set_rx_mode entry point is called whenever the unicast or multicast
3748  *  address lists or the network interface flags are updated.  This routine is
3749  *  responsible for configuring the hardware for proper unicast, multicast,
3750  *  promiscuous mode, and all-multi behavior.
3751  **/
3752 static void igb_set_rx_mode(struct net_device *netdev)
3753 {
3754         struct igb_adapter *adapter = netdev_priv(netdev);
3755         struct e1000_hw *hw = &adapter->hw;
3756         unsigned int vfn = adapter->vfs_allocated_count;
3757         u32 rctl, vmolr = 0;
3758         int count;
3759
3760         /* Check for Promiscuous and All Multicast modes */
3761         rctl = rd32(E1000_RCTL);
3762
3763         /* clear the effected bits */
3764         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3765
3766         if (netdev->flags & IFF_PROMISC) {
3767                 /* retain VLAN HW filtering if in VT mode */
3768                 if (adapter->vfs_allocated_count)
3769                         rctl |= E1000_RCTL_VFE;
3770                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3771                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3772         } else {
3773                 if (netdev->flags & IFF_ALLMULTI) {
3774                         rctl |= E1000_RCTL_MPE;
3775                         vmolr |= E1000_VMOLR_MPME;
3776                 } else {
3777                         /* Write addresses to the MTA, if the attempt fails
3778                          * then we should just turn on promiscuous mode so
3779                          * that we can at least receive multicast traffic
3780                          */
3781                         count = igb_write_mc_addr_list(netdev);
3782                         if (count < 0) {
3783                                 rctl |= E1000_RCTL_MPE;
3784                                 vmolr |= E1000_VMOLR_MPME;
3785                         } else if (count) {
3786                                 vmolr |= E1000_VMOLR_ROMPE;
3787                         }
3788                 }
3789                 /* Write addresses to available RAR registers, if there is not
3790                  * sufficient space to store all the addresses then enable
3791                  * unicast promiscuous mode
3792                  */
3793                 count = igb_write_uc_addr_list(netdev);
3794                 if (count < 0) {
3795                         rctl |= E1000_RCTL_UPE;
3796                         vmolr |= E1000_VMOLR_ROPE;
3797                 }
3798                 rctl |= E1000_RCTL_VFE;
3799         }
3800         wr32(E1000_RCTL, rctl);
3801
3802         /* In order to support SR-IOV and eventually VMDq it is necessary to set
3803          * the VMOLR to enable the appropriate modes.  Without this workaround
3804          * we will have issues with VLAN tag stripping not being done for frames
3805          * that are only arriving because we are the default pool
3806          */
3807         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3808                 return;
3809
3810         vmolr |= rd32(E1000_VMOLR(vfn)) &
3811                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3812         wr32(E1000_VMOLR(vfn), vmolr);
3813         igb_restore_vf_multicasts(adapter);
3814 }
3815
3816 static void igb_check_wvbr(struct igb_adapter *adapter)
3817 {
3818         struct e1000_hw *hw = &adapter->hw;
3819         u32 wvbr = 0;
3820
3821         switch (hw->mac.type) {
3822         case e1000_82576:
3823         case e1000_i350:
3824                 if (!(wvbr = rd32(E1000_WVBR)))
3825                         return;
3826                 break;
3827         default:
3828                 break;
3829         }
3830
3831         adapter->wvbr |= wvbr;
3832 }
3833
3834 #define IGB_STAGGERED_QUEUE_OFFSET 8
3835
3836 static void igb_spoof_check(struct igb_adapter *adapter)
3837 {
3838         int j;
3839
3840         if (!adapter->wvbr)
3841                 return;
3842
3843         for(j = 0; j < adapter->vfs_allocated_count; j++) {
3844                 if (adapter->wvbr & (1 << j) ||
3845                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3846                         dev_warn(&adapter->pdev->dev,
3847                                 "Spoof event(s) detected on VF %d\n", j);
3848                         adapter->wvbr &=
3849                                 ~((1 << j) |
3850                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3851                 }
3852         }
3853 }
3854
3855 /* Need to wait a few seconds after link up to get diagnostic information from
3856  * the phy
3857  */
3858 static void igb_update_phy_info(unsigned long data)
3859 {
3860         struct igb_adapter *adapter = (struct igb_adapter *) data;
3861         igb_get_phy_info(&adapter->hw);
3862 }
3863
3864 /**
3865  *  igb_has_link - check shared code for link and determine up/down
3866  *  @adapter: pointer to driver private info
3867  **/
3868 bool igb_has_link(struct igb_adapter *adapter)
3869 {
3870         struct e1000_hw *hw = &adapter->hw;
3871         bool link_active = false;
3872
3873         /* get_link_status is set on LSC (link status) interrupt or
3874          * rx sequence error interrupt.  get_link_status will stay
3875          * false until the e1000_check_for_link establishes link
3876          * for copper adapters ONLY
3877          */
3878         switch (hw->phy.media_type) {
3879         case e1000_media_type_copper:
3880                 if (!hw->mac.get_link_status)
3881                         return true;
3882         case e1000_media_type_internal_serdes:
3883                 hw->mac.ops.check_for_link(hw);
3884                 link_active = !hw->mac.get_link_status;
3885                 break;
3886         default:
3887         case e1000_media_type_unknown:
3888                 break;
3889         }
3890
3891         if (((hw->mac.type == e1000_i210) ||
3892              (hw->mac.type == e1000_i211)) &&
3893              (hw->phy.id == I210_I_PHY_ID)) {
3894                 if (!netif_carrier_ok(adapter->netdev)) {
3895                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
3896                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
3897                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
3898                         adapter->link_check_timeout = jiffies;
3899                 }
3900         }
3901
3902         return link_active;
3903 }
3904
3905 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3906 {
3907         bool ret = false;
3908         u32 ctrl_ext, thstat;
3909
3910         /* check for thermal sensor event on i350 copper only */
3911         if (hw->mac.type == e1000_i350) {
3912                 thstat = rd32(E1000_THSTAT);
3913                 ctrl_ext = rd32(E1000_CTRL_EXT);
3914
3915                 if ((hw->phy.media_type == e1000_media_type_copper) &&
3916                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3917                         ret = !!(thstat & event);
3918         }
3919
3920         return ret;
3921 }
3922
3923 /**
3924  *  igb_watchdog - Timer Call-back
3925  *  @data: pointer to adapter cast into an unsigned long
3926  **/
3927 static void igb_watchdog(unsigned long data)
3928 {
3929         struct igb_adapter *adapter = (struct igb_adapter *)data;
3930         /* Do the rest outside of interrupt context */
3931         schedule_work(&adapter->watchdog_task);
3932 }
3933
3934 static void igb_watchdog_task(struct work_struct *work)
3935 {
3936         struct igb_adapter *adapter = container_of(work,
3937                                                    struct igb_adapter,
3938                                                    watchdog_task);
3939         struct e1000_hw *hw = &adapter->hw;
3940         struct e1000_phy_info *phy = &hw->phy;
3941         struct net_device *netdev = adapter->netdev;
3942         u32 link;
3943         int i;
3944
3945         link = igb_has_link(adapter);
3946
3947         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
3948                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
3949                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
3950                 else
3951                         link = false;
3952         }
3953
3954         if (link) {
3955                 /* Cancel scheduled suspend requests. */
3956                 pm_runtime_resume(netdev->dev.parent);
3957
3958                 if (!netif_carrier_ok(netdev)) {
3959                         u32 ctrl;
3960                         hw->mac.ops.get_speed_and_duplex(hw,
3961                                                          &adapter->link_speed,
3962                                                          &adapter->link_duplex);
3963
3964                         ctrl = rd32(E1000_CTRL);
3965                         /* Links status message must follow this format */
3966                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3967                                "Duplex, Flow Control: %s\n",
3968                                netdev->name,
3969                                adapter->link_speed,
3970                                adapter->link_duplex == FULL_DUPLEX ?
3971                                "Full" : "Half",
3972                                (ctrl & E1000_CTRL_TFCE) &&
3973                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3974                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3975                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3976
3977                         /* check if SmartSpeed worked */
3978                         igb_check_downshift(hw);
3979                         if (phy->speed_downgraded)
3980                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3981
3982                         /* check for thermal sensor event */
3983                         if (igb_thermal_sensor_event(hw,
3984                             E1000_THSTAT_LINK_THROTTLE)) {
3985                                 netdev_info(netdev, "The network adapter link "
3986                                             "speed was downshifted because it "
3987                                             "overheated\n");
3988                         }
3989
3990                         /* adjust timeout factor according to speed/duplex */
3991                         adapter->tx_timeout_factor = 1;
3992                         switch (adapter->link_speed) {
3993                         case SPEED_10:
3994                                 adapter->tx_timeout_factor = 14;
3995                                 break;
3996                         case SPEED_100:
3997                                 /* maybe add some timeout factor ? */
3998                                 break;
3999                         }
4000
4001                         netif_carrier_on(netdev);
4002
4003                         igb_ping_all_vfs(adapter);
4004                         igb_check_vf_rate_limit(adapter);
4005
4006                         /* link state has changed, schedule phy info update */
4007                         if (!test_bit(__IGB_DOWN, &adapter->state))
4008                                 mod_timer(&adapter->phy_info_timer,
4009                                           round_jiffies(jiffies + 2 * HZ));
4010                 }
4011         } else {
4012                 if (netif_carrier_ok(netdev)) {
4013                         adapter->link_speed = 0;
4014                         adapter->link_duplex = 0;
4015
4016                         /* check for thermal sensor event */
4017                         if (igb_thermal_sensor_event(hw,
4018                             E1000_THSTAT_PWR_DOWN)) {
4019                                 netdev_err(netdev, "The network adapter was "
4020                                            "stopped because it overheated\n");
4021                         }
4022
4023                         /* Links status message must follow this format */
4024                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
4025                                netdev->name);
4026                         netif_carrier_off(netdev);
4027
4028                         igb_ping_all_vfs(adapter);
4029
4030                         /* link state has changed, schedule phy info update */
4031                         if (!test_bit(__IGB_DOWN, &adapter->state))
4032                                 mod_timer(&adapter->phy_info_timer,
4033                                           round_jiffies(jiffies + 2 * HZ));
4034
4035                         pm_schedule_suspend(netdev->dev.parent,
4036                                             MSEC_PER_SEC * 5);
4037                 }
4038         }
4039
4040         spin_lock(&adapter->stats64_lock);
4041         igb_update_stats(adapter, &adapter->stats64);
4042         spin_unlock(&adapter->stats64_lock);
4043
4044         for (i = 0; i < adapter->num_tx_queues; i++) {
4045                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4046                 if (!netif_carrier_ok(netdev)) {
4047                         /* We've lost link, so the controller stops DMA,
4048                          * but we've got queued Tx work that's never going
4049                          * to get done, so reset controller to flush Tx.
4050                          * (Do the reset outside of interrupt context).
4051                          */
4052                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4053                                 adapter->tx_timeout_count++;
4054                                 schedule_work(&adapter->reset_task);
4055                                 /* return immediately since reset is imminent */
4056                                 return;
4057                         }
4058                 }
4059
4060                 /* Force detection of hung controller every watchdog period */
4061                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4062         }
4063
4064         /* Cause software interrupt to ensure Rx ring is cleaned */
4065         if (adapter->msix_entries) {
4066                 u32 eics = 0;
4067                 for (i = 0; i < adapter->num_q_vectors; i++)
4068                         eics |= adapter->q_vector[i]->eims_value;
4069                 wr32(E1000_EICS, eics);
4070         } else {
4071                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4072         }
4073
4074         igb_spoof_check(adapter);
4075         igb_ptp_rx_hang(adapter);
4076
4077         /* Reset the timer */
4078         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4079                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4080                         mod_timer(&adapter->watchdog_timer,
4081                                   round_jiffies(jiffies +  HZ));
4082                 else
4083                         mod_timer(&adapter->watchdog_timer,
4084                                   round_jiffies(jiffies + 2 * HZ));
4085         }
4086 }
4087
4088 enum latency_range {
4089         lowest_latency = 0,
4090         low_latency = 1,
4091         bulk_latency = 2,
4092         latency_invalid = 255
4093 };
4094
4095 /**
4096  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4097  *  @q_vector: pointer to q_vector
4098  *
4099  *  Stores a new ITR value based on strictly on packet size.  This
4100  *  algorithm is less sophisticated than that used in igb_update_itr,
4101  *  due to the difficulty of synchronizing statistics across multiple
4102  *  receive rings.  The divisors and thresholds used by this function
4103  *  were determined based on theoretical maximum wire speed and testing
4104  *  data, in order to minimize response time while increasing bulk
4105  *  throughput.
4106  *  This functionality is controlled by the InterruptThrottleRate module
4107  *  parameter (see igb_param.c)
4108  *  NOTE:  This function is called only when operating in a multiqueue
4109  *         receive environment.
4110  **/
4111 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4112 {
4113         int new_val = q_vector->itr_val;
4114         int avg_wire_size = 0;
4115         struct igb_adapter *adapter = q_vector->adapter;
4116         unsigned int packets;
4117
4118         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4119          * ints/sec - ITR timer value of 120 ticks.
4120          */
4121         if (adapter->link_speed != SPEED_1000) {
4122                 new_val = IGB_4K_ITR;
4123                 goto set_itr_val;
4124         }
4125
4126         packets = q_vector->rx.total_packets;
4127         if (packets)
4128                 avg_wire_size = q_vector->rx.total_bytes / packets;
4129
4130         packets = q_vector->tx.total_packets;
4131         if (packets)
4132                 avg_wire_size = max_t(u32, avg_wire_size,
4133                                       q_vector->tx.total_bytes / packets);
4134
4135         /* if avg_wire_size isn't set no work was done */
4136         if (!avg_wire_size)
4137                 goto clear_counts;
4138
4139         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4140         avg_wire_size += 24;
4141
4142         /* Don't starve jumbo frames */
4143         avg_wire_size = min(avg_wire_size, 3000);
4144
4145         /* Give a little boost to mid-size frames */
4146         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4147                 new_val = avg_wire_size / 3;
4148         else
4149                 new_val = avg_wire_size / 2;
4150
4151         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4152         if (new_val < IGB_20K_ITR &&
4153             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4154              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4155                 new_val = IGB_20K_ITR;
4156
4157 set_itr_val:
4158         if (new_val != q_vector->itr_val) {
4159                 q_vector->itr_val = new_val;
4160                 q_vector->set_itr = 1;
4161         }
4162 clear_counts:
4163         q_vector->rx.total_bytes = 0;
4164         q_vector->rx.total_packets = 0;
4165         q_vector->tx.total_bytes = 0;
4166         q_vector->tx.total_packets = 0;
4167 }
4168
4169 /**
4170  *  igb_update_itr - update the dynamic ITR value based on statistics
4171  *  @q_vector: pointer to q_vector
4172  *  @ring_container: ring info to update the itr for
4173  *
4174  *  Stores a new ITR value based on packets and byte
4175  *  counts during the last interrupt.  The advantage of per interrupt
4176  *  computation is faster updates and more accurate ITR for the current
4177  *  traffic pattern.  Constants in this function were computed
4178  *  based on theoretical maximum wire speed and thresholds were set based
4179  *  on testing data as well as attempting to minimize response time
4180  *  while increasing bulk throughput.
4181  *  this functionality is controlled by the InterruptThrottleRate module
4182  *  parameter (see igb_param.c)
4183  *  NOTE:  These calculations are only valid when operating in a single-
4184  *         queue environment.
4185  **/
4186 static void igb_update_itr(struct igb_q_vector *q_vector,
4187                            struct igb_ring_container *ring_container)
4188 {
4189         unsigned int packets = ring_container->total_packets;
4190         unsigned int bytes = ring_container->total_bytes;
4191         u8 itrval = ring_container->itr;
4192
4193         /* no packets, exit with status unchanged */
4194         if (packets == 0)
4195                 return;
4196
4197         switch (itrval) {
4198         case lowest_latency:
4199                 /* handle TSO and jumbo frames */
4200                 if (bytes/packets > 8000)
4201                         itrval = bulk_latency;
4202                 else if ((packets < 5) && (bytes > 512))
4203                         itrval = low_latency;
4204                 break;
4205         case low_latency:  /* 50 usec aka 20000 ints/s */
4206                 if (bytes > 10000) {
4207                         /* this if handles the TSO accounting */
4208                         if (bytes/packets > 8000) {
4209                                 itrval = bulk_latency;
4210                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4211                                 itrval = bulk_latency;
4212                         } else if ((packets > 35)) {
4213                                 itrval = lowest_latency;
4214                         }
4215                 } else if (bytes/packets > 2000) {
4216                         itrval = bulk_latency;
4217                 } else if (packets <= 2 && bytes < 512) {
4218                         itrval = lowest_latency;
4219                 }
4220                 break;
4221         case bulk_latency: /* 250 usec aka 4000 ints/s */
4222                 if (bytes > 25000) {
4223                         if (packets > 35)
4224                                 itrval = low_latency;
4225                 } else if (bytes < 1500) {
4226                         itrval = low_latency;
4227                 }
4228                 break;
4229         }
4230
4231         /* clear work counters since we have the values we need */
4232         ring_container->total_bytes = 0;
4233         ring_container->total_packets = 0;
4234
4235         /* write updated itr to ring container */
4236         ring_container->itr = itrval;
4237 }
4238
4239 static void igb_set_itr(struct igb_q_vector *q_vector)
4240 {
4241         struct igb_adapter *adapter = q_vector->adapter;
4242         u32 new_itr = q_vector->itr_val;
4243         u8 current_itr = 0;
4244
4245         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4246         if (adapter->link_speed != SPEED_1000) {
4247                 current_itr = 0;
4248                 new_itr = IGB_4K_ITR;
4249                 goto set_itr_now;
4250         }
4251
4252         igb_update_itr(q_vector, &q_vector->tx);
4253         igb_update_itr(q_vector, &q_vector->rx);
4254
4255         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4256
4257         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4258         if (current_itr == lowest_latency &&
4259             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4260              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4261                 current_itr = low_latency;
4262
4263         switch (current_itr) {
4264         /* counts and packets in update_itr are dependent on these numbers */
4265         case lowest_latency:
4266                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4267                 break;
4268         case low_latency:
4269                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4270                 break;
4271         case bulk_latency:
4272                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4273                 break;
4274         default:
4275                 break;
4276         }
4277
4278 set_itr_now:
4279         if (new_itr != q_vector->itr_val) {
4280                 /* this attempts to bias the interrupt rate towards Bulk
4281                  * by adding intermediate steps when interrupt rate is
4282                  * increasing
4283                  */
4284                 new_itr = new_itr > q_vector->itr_val ?
4285                           max((new_itr * q_vector->itr_val) /
4286                           (new_itr + (q_vector->itr_val >> 2)),
4287                           new_itr) : new_itr;
4288                 /* Don't write the value here; it resets the adapter's
4289                  * internal timer, and causes us to delay far longer than
4290                  * we should between interrupts.  Instead, we write the ITR
4291                  * value at the beginning of the next interrupt so the timing
4292                  * ends up being correct.
4293                  */
4294                 q_vector->itr_val = new_itr;
4295                 q_vector->set_itr = 1;
4296         }
4297 }
4298
4299 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4300                             u32 type_tucmd, u32 mss_l4len_idx)
4301 {
4302         struct e1000_adv_tx_context_desc *context_desc;
4303         u16 i = tx_ring->next_to_use;
4304
4305         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4306
4307         i++;
4308         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4309
4310         /* set bits to identify this as an advanced context descriptor */
4311         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4312
4313         /* For 82575, context index must be unique per ring. */
4314         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4315                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4316
4317         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4318         context_desc->seqnum_seed       = 0;
4319         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4320         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4321 }
4322
4323 static int igb_tso(struct igb_ring *tx_ring,
4324                    struct igb_tx_buffer *first,
4325                    u8 *hdr_len)
4326 {
4327         struct sk_buff *skb = first->skb;
4328         u32 vlan_macip_lens, type_tucmd;
4329         u32 mss_l4len_idx, l4len;
4330
4331         if (skb->ip_summed != CHECKSUM_PARTIAL)
4332                 return 0;
4333
4334         if (!skb_is_gso(skb))
4335                 return 0;
4336
4337         if (skb_header_cloned(skb)) {
4338                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4339                 if (err)
4340                         return err;
4341         }
4342
4343         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4344         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4345
4346         if (first->protocol == __constant_htons(ETH_P_IP)) {
4347                 struct iphdr *iph = ip_hdr(skb);
4348                 iph->tot_len = 0;
4349                 iph->check = 0;
4350                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4351                                                          iph->daddr, 0,
4352                                                          IPPROTO_TCP,
4353                                                          0);
4354                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4355                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4356                                    IGB_TX_FLAGS_CSUM |
4357                                    IGB_TX_FLAGS_IPV4;
4358         } else if (skb_is_gso_v6(skb)) {
4359                 ipv6_hdr(skb)->payload_len = 0;
4360                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4361                                                        &ipv6_hdr(skb)->daddr,
4362                                                        0, IPPROTO_TCP, 0);
4363                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4364                                    IGB_TX_FLAGS_CSUM;
4365         }
4366
4367         /* compute header lengths */
4368         l4len = tcp_hdrlen(skb);
4369         *hdr_len = skb_transport_offset(skb) + l4len;
4370
4371         /* update gso size and bytecount with header size */
4372         first->gso_segs = skb_shinfo(skb)->gso_segs;
4373         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4374
4375         /* MSS L4LEN IDX */
4376         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4377         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4378
4379         /* VLAN MACLEN IPLEN */
4380         vlan_macip_lens = skb_network_header_len(skb);
4381         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4382         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4383
4384         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4385
4386         return 1;
4387 }
4388
4389 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4390 {
4391         struct sk_buff *skb = first->skb;
4392         u32 vlan_macip_lens = 0;
4393         u32 mss_l4len_idx = 0;
4394         u32 type_tucmd = 0;
4395
4396         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4397                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4398                         return;
4399         } else {
4400                 u8 l4_hdr = 0;
4401                 switch (first->protocol) {
4402                 case __constant_htons(ETH_P_IP):
4403                         vlan_macip_lens |= skb_network_header_len(skb);
4404                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4405                         l4_hdr = ip_hdr(skb)->protocol;
4406                         break;
4407                 case __constant_htons(ETH_P_IPV6):
4408                         vlan_macip_lens |= skb_network_header_len(skb);
4409                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4410                         break;
4411                 default:
4412                         if (unlikely(net_ratelimit())) {
4413                                 dev_warn(tx_ring->dev,
4414                                          "partial checksum but proto=%x!\n",
4415                                          first->protocol);
4416                         }
4417                         break;
4418                 }
4419
4420                 switch (l4_hdr) {
4421                 case IPPROTO_TCP:
4422                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4423                         mss_l4len_idx = tcp_hdrlen(skb) <<
4424                                         E1000_ADVTXD_L4LEN_SHIFT;
4425                         break;
4426                 case IPPROTO_SCTP:
4427                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4428                         mss_l4len_idx = sizeof(struct sctphdr) <<
4429                                         E1000_ADVTXD_L4LEN_SHIFT;
4430                         break;
4431                 case IPPROTO_UDP:
4432                         mss_l4len_idx = sizeof(struct udphdr) <<
4433                                         E1000_ADVTXD_L4LEN_SHIFT;
4434                         break;
4435                 default:
4436                         if (unlikely(net_ratelimit())) {
4437                                 dev_warn(tx_ring->dev,
4438                                          "partial checksum but l4 proto=%x!\n",
4439                                          l4_hdr);
4440                         }
4441                         break;
4442                 }
4443
4444                 /* update TX checksum flag */
4445                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4446         }
4447
4448         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4449         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4450
4451         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4452 }
4453
4454 #define IGB_SET_FLAG(_input, _flag, _result) \
4455         ((_flag <= _result) ? \
4456          ((u32)(_input & _flag) * (_result / _flag)) : \
4457          ((u32)(_input & _flag) / (_flag / _result)))
4458
4459 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4460 {
4461         /* set type for advanced descriptor with frame checksum insertion */
4462         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4463                        E1000_ADVTXD_DCMD_DEXT |
4464                        E1000_ADVTXD_DCMD_IFCS;
4465
4466         /* set HW vlan bit if vlan is present */
4467         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4468                                  (E1000_ADVTXD_DCMD_VLE));
4469
4470         /* set segmentation bits for TSO */
4471         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4472                                  (E1000_ADVTXD_DCMD_TSE));
4473
4474         /* set timestamp bit if present */
4475         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4476                                  (E1000_ADVTXD_MAC_TSTAMP));
4477
4478         /* insert frame checksum */
4479         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4480
4481         return cmd_type;
4482 }
4483
4484 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4485                                  union e1000_adv_tx_desc *tx_desc,
4486                                  u32 tx_flags, unsigned int paylen)
4487 {
4488         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4489
4490         /* 82575 requires a unique index per ring */
4491         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4492                 olinfo_status |= tx_ring->reg_idx << 4;
4493
4494         /* insert L4 checksum */
4495         olinfo_status |= IGB_SET_FLAG(tx_flags,
4496                                       IGB_TX_FLAGS_CSUM,
4497                                       (E1000_TXD_POPTS_TXSM << 8));
4498
4499         /* insert IPv4 checksum */
4500         olinfo_status |= IGB_SET_FLAG(tx_flags,
4501                                       IGB_TX_FLAGS_IPV4,
4502                                       (E1000_TXD_POPTS_IXSM << 8));
4503
4504         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4505 }
4506
4507 static void igb_tx_map(struct igb_ring *tx_ring,
4508                        struct igb_tx_buffer *first,
4509                        const u8 hdr_len)
4510 {
4511         struct sk_buff *skb = first->skb;
4512         struct igb_tx_buffer *tx_buffer;
4513         union e1000_adv_tx_desc *tx_desc;
4514         struct skb_frag_struct *frag;
4515         dma_addr_t dma;
4516         unsigned int data_len, size;
4517         u32 tx_flags = first->tx_flags;
4518         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4519         u16 i = tx_ring->next_to_use;
4520
4521         tx_desc = IGB_TX_DESC(tx_ring, i);
4522
4523         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4524
4525         size = skb_headlen(skb);
4526         data_len = skb->data_len;
4527
4528         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4529
4530         tx_buffer = first;
4531
4532         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4533                 if (dma_mapping_error(tx_ring->dev, dma))
4534                         goto dma_error;
4535
4536                 /* record length, and DMA address */
4537                 dma_unmap_len_set(tx_buffer, len, size);
4538                 dma_unmap_addr_set(tx_buffer, dma, dma);
4539
4540                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4541
4542                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4543                         tx_desc->read.cmd_type_len =
4544                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4545
4546                         i++;
4547                         tx_desc++;
4548                         if (i == tx_ring->count) {
4549                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4550                                 i = 0;
4551                         }
4552                         tx_desc->read.olinfo_status = 0;
4553
4554                         dma += IGB_MAX_DATA_PER_TXD;
4555                         size -= IGB_MAX_DATA_PER_TXD;
4556
4557                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4558                 }
4559
4560                 if (likely(!data_len))
4561                         break;
4562
4563                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4564
4565                 i++;
4566                 tx_desc++;
4567                 if (i == tx_ring->count) {
4568                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4569                         i = 0;
4570                 }
4571                 tx_desc->read.olinfo_status = 0;
4572
4573                 size = skb_frag_size(frag);
4574                 data_len -= size;
4575
4576                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4577                                        size, DMA_TO_DEVICE);
4578
4579                 tx_buffer = &tx_ring->tx_buffer_info[i];
4580         }
4581
4582         /* write last descriptor with RS and EOP bits */
4583         cmd_type |= size | IGB_TXD_DCMD;
4584         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4585
4586         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4587
4588         /* set the timestamp */
4589         first->time_stamp = jiffies;
4590
4591         /* Force memory writes to complete before letting h/w know there
4592          * are new descriptors to fetch.  (Only applicable for weak-ordered
4593          * memory model archs, such as IA-64).
4594          *
4595          * We also need this memory barrier to make certain all of the
4596          * status bits have been updated before next_to_watch is written.
4597          */
4598         wmb();
4599
4600         /* set next_to_watch value indicating a packet is present */
4601         first->next_to_watch = tx_desc;
4602
4603         i++;
4604         if (i == tx_ring->count)
4605                 i = 0;
4606
4607         tx_ring->next_to_use = i;
4608
4609         writel(i, tx_ring->tail);
4610
4611         /* we need this if more than one processor can write to our tail
4612          * at a time, it synchronizes IO on IA64/Altix systems
4613          */
4614         mmiowb();
4615
4616         return;
4617
4618 dma_error:
4619         dev_err(tx_ring->dev, "TX DMA map failed\n");
4620
4621         /* clear dma mappings for failed tx_buffer_info map */
4622         for (;;) {
4623                 tx_buffer = &tx_ring->tx_buffer_info[i];
4624                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4625                 if (tx_buffer == first)
4626                         break;
4627                 if (i == 0)
4628                         i = tx_ring->count;
4629                 i--;
4630         }
4631
4632         tx_ring->next_to_use = i;
4633 }
4634
4635 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4636 {
4637         struct net_device *netdev = tx_ring->netdev;
4638
4639         netif_stop_subqueue(netdev, tx_ring->queue_index);
4640
4641         /* Herbert's original patch had:
4642          *  smp_mb__after_netif_stop_queue();
4643          * but since that doesn't exist yet, just open code it.
4644          */
4645         smp_mb();
4646
4647         /* We need to check again in a case another CPU has just
4648          * made room available.
4649          */
4650         if (igb_desc_unused(tx_ring) < size)
4651                 return -EBUSY;
4652
4653         /* A reprieve! */
4654         netif_wake_subqueue(netdev, tx_ring->queue_index);
4655
4656         u64_stats_update_begin(&tx_ring->tx_syncp2);
4657         tx_ring->tx_stats.restart_queue2++;
4658         u64_stats_update_end(&tx_ring->tx_syncp2);
4659
4660         return 0;
4661 }
4662
4663 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4664 {
4665         if (igb_desc_unused(tx_ring) >= size)
4666                 return 0;
4667         return __igb_maybe_stop_tx(tx_ring, size);
4668 }
4669
4670 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4671                                 struct igb_ring *tx_ring)
4672 {
4673         struct igb_tx_buffer *first;
4674         int tso;
4675         u32 tx_flags = 0;
4676         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4677         __be16 protocol = vlan_get_protocol(skb);
4678         u8 hdr_len = 0;
4679
4680         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4681          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4682          *       + 2 desc gap to keep tail from touching head,
4683          *       + 1 desc for context descriptor,
4684          * otherwise try next time
4685          */
4686         if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4687                 unsigned short f;
4688                 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4689                         count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4690         } else {
4691                 count += skb_shinfo(skb)->nr_frags;
4692         }
4693
4694         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4695                 /* this is a hard error */
4696                 return NETDEV_TX_BUSY;
4697         }
4698
4699         /* record the location of the first descriptor for this packet */
4700         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4701         first->skb = skb;
4702         first->bytecount = skb->len;
4703         first->gso_segs = 1;
4704
4705         skb_tx_timestamp(skb);
4706
4707         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4708                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4709
4710                 if (!(adapter->ptp_tx_skb)) {
4711                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4712                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
4713
4714                         adapter->ptp_tx_skb = skb_get(skb);
4715                         adapter->ptp_tx_start = jiffies;
4716                         if (adapter->hw.mac.type == e1000_82576)
4717                                 schedule_work(&adapter->ptp_tx_work);
4718                 }
4719         }
4720
4721         if (vlan_tx_tag_present(skb)) {
4722                 tx_flags |= IGB_TX_FLAGS_VLAN;
4723                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4724         }
4725
4726         /* record initial flags and protocol */
4727         first->tx_flags = tx_flags;
4728         first->protocol = protocol;
4729
4730         tso = igb_tso(tx_ring, first, &hdr_len);
4731         if (tso < 0)
4732                 goto out_drop;
4733         else if (!tso)
4734                 igb_tx_csum(tx_ring, first);
4735
4736         igb_tx_map(tx_ring, first, hdr_len);
4737
4738         /* Make sure there is space in the ring for the next send. */
4739         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4740
4741         return NETDEV_TX_OK;
4742
4743 out_drop:
4744         igb_unmap_and_free_tx_resource(tx_ring, first);
4745
4746         return NETDEV_TX_OK;
4747 }
4748
4749 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4750                                                     struct sk_buff *skb)
4751 {
4752         unsigned int r_idx = skb->queue_mapping;
4753
4754         if (r_idx >= adapter->num_tx_queues)
4755                 r_idx = r_idx % adapter->num_tx_queues;
4756
4757         return adapter->tx_ring[r_idx];
4758 }
4759
4760 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4761                                   struct net_device *netdev)
4762 {
4763         struct igb_adapter *adapter = netdev_priv(netdev);
4764
4765         if (test_bit(__IGB_DOWN, &adapter->state)) {
4766                 dev_kfree_skb_any(skb);
4767                 return NETDEV_TX_OK;
4768         }
4769
4770         if (skb->len <= 0) {
4771                 dev_kfree_skb_any(skb);
4772                 return NETDEV_TX_OK;
4773         }
4774
4775         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4776          * in order to meet this minimum size requirement.
4777          */
4778         if (unlikely(skb->len < 17)) {
4779                 if (skb_pad(skb, 17 - skb->len))
4780                         return NETDEV_TX_OK;
4781                 skb->len = 17;
4782                 skb_set_tail_pointer(skb, 17);
4783         }
4784
4785         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4786 }
4787
4788 /**
4789  *  igb_tx_timeout - Respond to a Tx Hang
4790  *  @netdev: network interface device structure
4791  **/
4792 static void igb_tx_timeout(struct net_device *netdev)
4793 {
4794         struct igb_adapter *adapter = netdev_priv(netdev);
4795         struct e1000_hw *hw = &adapter->hw;
4796
4797         /* Do the reset outside of interrupt context */
4798         adapter->tx_timeout_count++;
4799
4800         if (hw->mac.type >= e1000_82580)
4801                 hw->dev_spec._82575.global_device_reset = true;
4802
4803         schedule_work(&adapter->reset_task);
4804         wr32(E1000_EICS,
4805              (adapter->eims_enable_mask & ~adapter->eims_other));
4806 }
4807
4808 static void igb_reset_task(struct work_struct *work)
4809 {
4810         struct igb_adapter *adapter;
4811         adapter = container_of(work, struct igb_adapter, reset_task);
4812
4813         igb_dump(adapter);
4814         netdev_err(adapter->netdev, "Reset adapter\n");
4815         igb_reinit_locked(adapter);
4816 }
4817
4818 /**
4819  *  igb_get_stats64 - Get System Network Statistics
4820  *  @netdev: network interface device structure
4821  *  @stats: rtnl_link_stats64 pointer
4822  **/
4823 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4824                                                 struct rtnl_link_stats64 *stats)
4825 {
4826         struct igb_adapter *adapter = netdev_priv(netdev);
4827
4828         spin_lock(&adapter->stats64_lock);
4829         igb_update_stats(adapter, &adapter->stats64);
4830         memcpy(stats, &adapter->stats64, sizeof(*stats));
4831         spin_unlock(&adapter->stats64_lock);
4832
4833         return stats;
4834 }
4835
4836 /**
4837  *  igb_change_mtu - Change the Maximum Transfer Unit
4838  *  @netdev: network interface device structure
4839  *  @new_mtu: new value for maximum frame size
4840  *
4841  *  Returns 0 on success, negative on failure
4842  **/
4843 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4844 {
4845         struct igb_adapter *adapter = netdev_priv(netdev);
4846         struct pci_dev *pdev = adapter->pdev;
4847         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4848
4849         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4850                 dev_err(&pdev->dev, "Invalid MTU setting\n");
4851                 return -EINVAL;
4852         }
4853
4854 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4855         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4856                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4857                 return -EINVAL;
4858         }
4859
4860         /* adjust max frame to be at least the size of a standard frame */
4861         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4862                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4863
4864         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4865                 msleep(1);
4866
4867         /* igb_down has a dependency on max_frame_size */
4868         adapter->max_frame_size = max_frame;
4869
4870         if (netif_running(netdev))
4871                 igb_down(adapter);
4872
4873         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4874                  netdev->mtu, new_mtu);
4875         netdev->mtu = new_mtu;
4876
4877         if (netif_running(netdev))
4878                 igb_up(adapter);
4879         else
4880                 igb_reset(adapter);
4881
4882         clear_bit(__IGB_RESETTING, &adapter->state);
4883
4884         return 0;
4885 }
4886
4887 /**
4888  *  igb_update_stats - Update the board statistics counters
4889  *  @adapter: board private structure
4890  **/
4891 void igb_update_stats(struct igb_adapter *adapter,
4892                       struct rtnl_link_stats64 *net_stats)
4893 {
4894         struct e1000_hw *hw = &adapter->hw;
4895         struct pci_dev *pdev = adapter->pdev;
4896         u32 reg, mpc;
4897         u16 phy_tmp;
4898         int i;
4899         u64 bytes, packets;
4900         unsigned int start;
4901         u64 _bytes, _packets;
4902
4903 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4904
4905         /* Prevent stats update while adapter is being reset, or if the pci
4906          * connection is down.
4907          */
4908         if (adapter->link_speed == 0)
4909                 return;
4910         if (pci_channel_offline(pdev))
4911                 return;
4912
4913         bytes = 0;
4914         packets = 0;
4915
4916         rcu_read_lock();
4917         for (i = 0; i < adapter->num_rx_queues; i++) {
4918                 u32 rqdpc = rd32(E1000_RQDPC(i));
4919                 struct igb_ring *ring = adapter->rx_ring[i];
4920
4921                 if (rqdpc) {
4922                         ring->rx_stats.drops += rqdpc;
4923                         net_stats->rx_fifo_errors += rqdpc;
4924                 }
4925
4926                 do {
4927                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4928                         _bytes = ring->rx_stats.bytes;
4929                         _packets = ring->rx_stats.packets;
4930                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4931                 bytes += _bytes;
4932                 packets += _packets;
4933         }
4934
4935         net_stats->rx_bytes = bytes;
4936         net_stats->rx_packets = packets;
4937
4938         bytes = 0;
4939         packets = 0;
4940         for (i = 0; i < adapter->num_tx_queues; i++) {
4941                 struct igb_ring *ring = adapter->tx_ring[i];
4942                 do {
4943                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4944                         _bytes = ring->tx_stats.bytes;
4945                         _packets = ring->tx_stats.packets;
4946                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4947                 bytes += _bytes;
4948                 packets += _packets;
4949         }
4950         net_stats->tx_bytes = bytes;
4951         net_stats->tx_packets = packets;
4952         rcu_read_unlock();
4953
4954         /* read stats registers */
4955         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4956         adapter->stats.gprc += rd32(E1000_GPRC);
4957         adapter->stats.gorc += rd32(E1000_GORCL);
4958         rd32(E1000_GORCH); /* clear GORCL */
4959         adapter->stats.bprc += rd32(E1000_BPRC);
4960         adapter->stats.mprc += rd32(E1000_MPRC);
4961         adapter->stats.roc += rd32(E1000_ROC);
4962
4963         adapter->stats.prc64 += rd32(E1000_PRC64);
4964         adapter->stats.prc127 += rd32(E1000_PRC127);
4965         adapter->stats.prc255 += rd32(E1000_PRC255);
4966         adapter->stats.prc511 += rd32(E1000_PRC511);
4967         adapter->stats.prc1023 += rd32(E1000_PRC1023);
4968         adapter->stats.prc1522 += rd32(E1000_PRC1522);
4969         adapter->stats.symerrs += rd32(E1000_SYMERRS);
4970         adapter->stats.sec += rd32(E1000_SEC);
4971
4972         mpc = rd32(E1000_MPC);
4973         adapter->stats.mpc += mpc;
4974         net_stats->rx_fifo_errors += mpc;
4975         adapter->stats.scc += rd32(E1000_SCC);
4976         adapter->stats.ecol += rd32(E1000_ECOL);
4977         adapter->stats.mcc += rd32(E1000_MCC);
4978         adapter->stats.latecol += rd32(E1000_LATECOL);
4979         adapter->stats.dc += rd32(E1000_DC);
4980         adapter->stats.rlec += rd32(E1000_RLEC);
4981         adapter->stats.xonrxc += rd32(E1000_XONRXC);
4982         adapter->stats.xontxc += rd32(E1000_XONTXC);
4983         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4984         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4985         adapter->stats.fcruc += rd32(E1000_FCRUC);
4986         adapter->stats.gptc += rd32(E1000_GPTC);
4987         adapter->stats.gotc += rd32(E1000_GOTCL);
4988         rd32(E1000_GOTCH); /* clear GOTCL */
4989         adapter->stats.rnbc += rd32(E1000_RNBC);
4990         adapter->stats.ruc += rd32(E1000_RUC);
4991         adapter->stats.rfc += rd32(E1000_RFC);
4992         adapter->stats.rjc += rd32(E1000_RJC);
4993         adapter->stats.tor += rd32(E1000_TORH);
4994         adapter->stats.tot += rd32(E1000_TOTH);
4995         adapter->stats.tpr += rd32(E1000_TPR);
4996
4997         adapter->stats.ptc64 += rd32(E1000_PTC64);
4998         adapter->stats.ptc127 += rd32(E1000_PTC127);
4999         adapter->stats.ptc255 += rd32(E1000_PTC255);
5000         adapter->stats.ptc511 += rd32(E1000_PTC511);
5001         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5002         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5003
5004         adapter->stats.mptc += rd32(E1000_MPTC);
5005         adapter->stats.bptc += rd32(E1000_BPTC);
5006
5007         adapter->stats.tpt += rd32(E1000_TPT);
5008         adapter->stats.colc += rd32(E1000_COLC);
5009
5010         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5011         /* read internal phy specific stats */
5012         reg = rd32(E1000_CTRL_EXT);
5013         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5014                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5015
5016                 /* this stat has invalid values on i210/i211 */
5017                 if ((hw->mac.type != e1000_i210) &&
5018                     (hw->mac.type != e1000_i211))
5019                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5020         }
5021
5022         adapter->stats.tsctc += rd32(E1000_TSCTC);
5023         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5024
5025         adapter->stats.iac += rd32(E1000_IAC);
5026         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5027         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5028         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5029         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5030         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5031         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5032         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5033         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5034
5035         /* Fill out the OS statistics structure */
5036         net_stats->multicast = adapter->stats.mprc;
5037         net_stats->collisions = adapter->stats.colc;
5038
5039         /* Rx Errors */
5040
5041         /* RLEC on some newer hardware can be incorrect so build
5042          * our own version based on RUC and ROC
5043          */
5044         net_stats->rx_errors = adapter->stats.rxerrc +
5045                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5046                 adapter->stats.ruc + adapter->stats.roc +
5047                 adapter->stats.cexterr;
5048         net_stats->rx_length_errors = adapter->stats.ruc +
5049                                       adapter->stats.roc;
5050         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5051         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5052         net_stats->rx_missed_errors = adapter->stats.mpc;
5053
5054         /* Tx Errors */
5055         net_stats->tx_errors = adapter->stats.ecol +
5056                                adapter->stats.latecol;
5057         net_stats->tx_aborted_errors = adapter->stats.ecol;
5058         net_stats->tx_window_errors = adapter->stats.latecol;
5059         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5060
5061         /* Tx Dropped needs to be maintained elsewhere */
5062
5063         /* Phy Stats */
5064         if (hw->phy.media_type == e1000_media_type_copper) {
5065                 if ((adapter->link_speed == SPEED_1000) &&
5066                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5067                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5068                         adapter->phy_stats.idle_errors += phy_tmp;
5069                 }
5070         }
5071
5072         /* Management Stats */
5073         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5074         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5075         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5076
5077         /* OS2BMC Stats */
5078         reg = rd32(E1000_MANC);
5079         if (reg & E1000_MANC_EN_BMC2OS) {
5080                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5081                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5082                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5083                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5084         }
5085 }
5086
5087 static irqreturn_t igb_msix_other(int irq, void *data)
5088 {
5089         struct igb_adapter *adapter = data;
5090         struct e1000_hw *hw = &adapter->hw;
5091         u32 icr = rd32(E1000_ICR);
5092         /* reading ICR causes bit 31 of EICR to be cleared */
5093
5094         if (icr & E1000_ICR_DRSTA)
5095                 schedule_work(&adapter->reset_task);
5096
5097         if (icr & E1000_ICR_DOUTSYNC) {
5098                 /* HW is reporting DMA is out of sync */
5099                 adapter->stats.doosync++;
5100                 /* The DMA Out of Sync is also indication of a spoof event
5101                  * in IOV mode. Check the Wrong VM Behavior register to
5102                  * see if it is really a spoof event.
5103                  */
5104                 igb_check_wvbr(adapter);
5105         }
5106
5107         /* Check for a mailbox event */
5108         if (icr & E1000_ICR_VMMB)
5109                 igb_msg_task(adapter);
5110
5111         if (icr & E1000_ICR_LSC) {
5112                 hw->mac.get_link_status = 1;
5113                 /* guard against interrupt when we're going down */
5114                 if (!test_bit(__IGB_DOWN, &adapter->state))
5115                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5116         }
5117
5118         if (icr & E1000_ICR_TS) {
5119                 u32 tsicr = rd32(E1000_TSICR);
5120
5121                 if (tsicr & E1000_TSICR_TXTS) {
5122                         /* acknowledge the interrupt */
5123                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5124                         /* retrieve hardware timestamp */
5125                         schedule_work(&adapter->ptp_tx_work);
5126                 }
5127         }
5128
5129         wr32(E1000_EIMS, adapter->eims_other);
5130
5131         return IRQ_HANDLED;
5132 }
5133
5134 static void igb_write_itr(struct igb_q_vector *q_vector)
5135 {
5136         struct igb_adapter *adapter = q_vector->adapter;
5137         u32 itr_val = q_vector->itr_val & 0x7FFC;
5138
5139         if (!q_vector->set_itr)
5140                 return;
5141
5142         if (!itr_val)
5143                 itr_val = 0x4;
5144
5145         if (adapter->hw.mac.type == e1000_82575)
5146                 itr_val |= itr_val << 16;
5147         else
5148                 itr_val |= E1000_EITR_CNT_IGNR;
5149
5150         writel(itr_val, q_vector->itr_register);
5151         q_vector->set_itr = 0;
5152 }
5153
5154 static irqreturn_t igb_msix_ring(int irq, void *data)
5155 {
5156         struct igb_q_vector *q_vector = data;
5157
5158         /* Write the ITR value calculated from the previous interrupt. */
5159         igb_write_itr(q_vector);
5160
5161         napi_schedule(&q_vector->napi);
5162
5163         return IRQ_HANDLED;
5164 }
5165
5166 #ifdef CONFIG_IGB_DCA
5167 static void igb_update_tx_dca(struct igb_adapter *adapter,
5168                               struct igb_ring *tx_ring,
5169                               int cpu)
5170 {
5171         struct e1000_hw *hw = &adapter->hw;
5172         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5173
5174         if (hw->mac.type != e1000_82575)
5175                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5176
5177         /* We can enable relaxed ordering for reads, but not writes when
5178          * DCA is enabled.  This is due to a known issue in some chipsets
5179          * which will cause the DCA tag to be cleared.
5180          */
5181         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5182                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5183                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5184
5185         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5186 }
5187
5188 static void igb_update_rx_dca(struct igb_adapter *adapter,
5189                               struct igb_ring *rx_ring,
5190                               int cpu)
5191 {
5192         struct e1000_hw *hw = &adapter->hw;
5193         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5194
5195         if (hw->mac.type != e1000_82575)
5196                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5197
5198         /* We can enable relaxed ordering for reads, but not writes when
5199          * DCA is enabled.  This is due to a known issue in some chipsets
5200          * which will cause the DCA tag to be cleared.
5201          */
5202         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5203                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5204
5205         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5206 }
5207
5208 static void igb_update_dca(struct igb_q_vector *q_vector)
5209 {
5210         struct igb_adapter *adapter = q_vector->adapter;
5211         int cpu = get_cpu();
5212
5213         if (q_vector->cpu == cpu)
5214                 goto out_no_update;
5215
5216         if (q_vector->tx.ring)
5217                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5218
5219         if (q_vector->rx.ring)
5220                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5221
5222         q_vector->cpu = cpu;
5223 out_no_update:
5224         put_cpu();
5225 }
5226
5227 static void igb_setup_dca(struct igb_adapter *adapter)
5228 {
5229         struct e1000_hw *hw = &adapter->hw;
5230         int i;
5231
5232         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5233                 return;
5234
5235         /* Always use CB2 mode, difference is masked in the CB driver. */
5236         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5237
5238         for (i = 0; i < adapter->num_q_vectors; i++) {
5239                 adapter->q_vector[i]->cpu = -1;
5240                 igb_update_dca(adapter->q_vector[i]);
5241         }
5242 }
5243
5244 static int __igb_notify_dca(struct device *dev, void *data)
5245 {
5246         struct net_device *netdev = dev_get_drvdata(dev);
5247         struct igb_adapter *adapter = netdev_priv(netdev);
5248         struct pci_dev *pdev = adapter->pdev;
5249         struct e1000_hw *hw = &adapter->hw;
5250         unsigned long event = *(unsigned long *)data;
5251
5252         switch (event) {
5253         case DCA_PROVIDER_ADD:
5254                 /* if already enabled, don't do it again */
5255                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5256                         break;
5257                 if (dca_add_requester(dev) == 0) {
5258                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5259                         dev_info(&pdev->dev, "DCA enabled\n");
5260                         igb_setup_dca(adapter);
5261                         break;
5262                 }
5263                 /* Fall Through since DCA is disabled. */
5264         case DCA_PROVIDER_REMOVE:
5265                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5266                         /* without this a class_device is left
5267                          * hanging around in the sysfs model
5268                          */
5269                         dca_remove_requester(dev);
5270                         dev_info(&pdev->dev, "DCA disabled\n");
5271                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5272                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5273                 }
5274                 break;
5275         }
5276
5277         return 0;
5278 }
5279
5280 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5281                           void *p)
5282 {
5283         int ret_val;
5284
5285         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5286                                          __igb_notify_dca);
5287
5288         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5289 }
5290 #endif /* CONFIG_IGB_DCA */
5291
5292 #ifdef CONFIG_PCI_IOV
5293 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5294 {
5295         unsigned char mac_addr[ETH_ALEN];
5296
5297         eth_zero_addr(mac_addr);
5298         igb_set_vf_mac(adapter, vf, mac_addr);
5299
5300         /* By default spoof check is enabled for all VFs */
5301         adapter->vf_data[vf].spoofchk_enabled = true;
5302
5303         return 0;
5304 }
5305
5306 #endif
5307 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5308 {
5309         struct e1000_hw *hw = &adapter->hw;
5310         u32 ping;
5311         int i;
5312
5313         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5314                 ping = E1000_PF_CONTROL_MSG;
5315                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5316                         ping |= E1000_VT_MSGTYPE_CTS;
5317                 igb_write_mbx(hw, &ping, 1, i);
5318         }
5319 }
5320
5321 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5322 {
5323         struct e1000_hw *hw = &adapter->hw;
5324         u32 vmolr = rd32(E1000_VMOLR(vf));
5325         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5326
5327         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5328                             IGB_VF_FLAG_MULTI_PROMISC);
5329         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5330
5331         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5332                 vmolr |= E1000_VMOLR_MPME;
5333                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5334                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5335         } else {
5336                 /* if we have hashes and we are clearing a multicast promisc
5337                  * flag we need to write the hashes to the MTA as this step
5338                  * was previously skipped
5339                  */
5340                 if (vf_data->num_vf_mc_hashes > 30) {
5341                         vmolr |= E1000_VMOLR_MPME;
5342                 } else if (vf_data->num_vf_mc_hashes) {
5343                         int j;
5344                         vmolr |= E1000_VMOLR_ROMPE;
5345                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5346                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5347                 }
5348         }
5349
5350         wr32(E1000_VMOLR(vf), vmolr);
5351
5352         /* there are flags left unprocessed, likely not supported */
5353         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5354                 return -EINVAL;
5355
5356         return 0;
5357 }
5358
5359 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5360                                   u32 *msgbuf, u32 vf)
5361 {
5362         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5363         u16 *hash_list = (u16 *)&msgbuf[1];
5364         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5365         int i;
5366
5367         /* salt away the number of multicast addresses assigned
5368          * to this VF for later use to restore when the PF multi cast
5369          * list changes
5370          */
5371         vf_data->num_vf_mc_hashes = n;
5372
5373         /* only up to 30 hash values supported */
5374         if (n > 30)
5375                 n = 30;
5376
5377         /* store the hashes for later use */
5378         for (i = 0; i < n; i++)
5379                 vf_data->vf_mc_hashes[i] = hash_list[i];
5380
5381         /* Flush and reset the mta with the new values */
5382         igb_set_rx_mode(adapter->netdev);
5383
5384         return 0;
5385 }
5386
5387 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5388 {
5389         struct e1000_hw *hw = &adapter->hw;
5390         struct vf_data_storage *vf_data;
5391         int i, j;
5392
5393         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5394                 u32 vmolr = rd32(E1000_VMOLR(i));
5395                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5396
5397                 vf_data = &adapter->vf_data[i];
5398
5399                 if ((vf_data->num_vf_mc_hashes > 30) ||
5400                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5401                         vmolr |= E1000_VMOLR_MPME;
5402                 } else if (vf_data->num_vf_mc_hashes) {
5403                         vmolr |= E1000_VMOLR_ROMPE;
5404                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5405                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5406                 }
5407                 wr32(E1000_VMOLR(i), vmolr);
5408         }
5409 }
5410
5411 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5412 {
5413         struct e1000_hw *hw = &adapter->hw;
5414         u32 pool_mask, reg, vid;
5415         int i;
5416
5417         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5418
5419         /* Find the vlan filter for this id */
5420         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5421                 reg = rd32(E1000_VLVF(i));
5422
5423                 /* remove the vf from the pool */
5424                 reg &= ~pool_mask;
5425
5426                 /* if pool is empty then remove entry from vfta */
5427                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5428                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5429                         reg = 0;
5430                         vid = reg & E1000_VLVF_VLANID_MASK;
5431                         igb_vfta_set(hw, vid, false);
5432                 }
5433
5434                 wr32(E1000_VLVF(i), reg);
5435         }
5436
5437         adapter->vf_data[vf].vlans_enabled = 0;
5438 }
5439
5440 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5441 {
5442         struct e1000_hw *hw = &adapter->hw;
5443         u32 reg, i;
5444
5445         /* The vlvf table only exists on 82576 hardware and newer */
5446         if (hw->mac.type < e1000_82576)
5447                 return -1;
5448
5449         /* we only need to do this if VMDq is enabled */
5450         if (!adapter->vfs_allocated_count)
5451                 return -1;
5452
5453         /* Find the vlan filter for this id */
5454         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5455                 reg = rd32(E1000_VLVF(i));
5456                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5457                     vid == (reg & E1000_VLVF_VLANID_MASK))
5458                         break;
5459         }
5460
5461         if (add) {
5462                 if (i == E1000_VLVF_ARRAY_SIZE) {
5463                         /* Did not find a matching VLAN ID entry that was
5464                          * enabled.  Search for a free filter entry, i.e.
5465                          * one without the enable bit set
5466                          */
5467                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5468                                 reg = rd32(E1000_VLVF(i));
5469                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5470                                         break;
5471                         }
5472                 }
5473                 if (i < E1000_VLVF_ARRAY_SIZE) {
5474                         /* Found an enabled/available entry */
5475                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5476
5477                         /* if !enabled we need to set this up in vfta */
5478                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5479                                 /* add VID to filter table */
5480                                 igb_vfta_set(hw, vid, true);
5481                                 reg |= E1000_VLVF_VLANID_ENABLE;
5482                         }
5483                         reg &= ~E1000_VLVF_VLANID_MASK;
5484                         reg |= vid;
5485                         wr32(E1000_VLVF(i), reg);
5486
5487                         /* do not modify RLPML for PF devices */
5488                         if (vf >= adapter->vfs_allocated_count)
5489                                 return 0;
5490
5491                         if (!adapter->vf_data[vf].vlans_enabled) {
5492                                 u32 size;
5493                                 reg = rd32(E1000_VMOLR(vf));
5494                                 size = reg & E1000_VMOLR_RLPML_MASK;
5495                                 size += 4;
5496                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5497                                 reg |= size;
5498                                 wr32(E1000_VMOLR(vf), reg);
5499                         }
5500
5501                         adapter->vf_data[vf].vlans_enabled++;
5502                 }
5503         } else {
5504                 if (i < E1000_VLVF_ARRAY_SIZE) {
5505                         /* remove vf from the pool */
5506                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5507                         /* if pool is empty then remove entry from vfta */
5508                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5509                                 reg = 0;
5510                                 igb_vfta_set(hw, vid, false);
5511                         }
5512                         wr32(E1000_VLVF(i), reg);
5513
5514                         /* do not modify RLPML for PF devices */
5515                         if (vf >= adapter->vfs_allocated_count)
5516                                 return 0;
5517
5518                         adapter->vf_data[vf].vlans_enabled--;
5519                         if (!adapter->vf_data[vf].vlans_enabled) {
5520                                 u32 size;
5521                                 reg = rd32(E1000_VMOLR(vf));
5522                                 size = reg & E1000_VMOLR_RLPML_MASK;
5523                                 size -= 4;
5524                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5525                                 reg |= size;
5526                                 wr32(E1000_VMOLR(vf), reg);
5527                         }
5528                 }
5529         }
5530         return 0;
5531 }
5532
5533 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5534 {
5535         struct e1000_hw *hw = &adapter->hw;
5536
5537         if (vid)
5538                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5539         else
5540                 wr32(E1000_VMVIR(vf), 0);
5541 }
5542
5543 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5544                                int vf, u16 vlan, u8 qos)
5545 {
5546         int err = 0;
5547         struct igb_adapter *adapter = netdev_priv(netdev);
5548
5549         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5550                 return -EINVAL;
5551         if (vlan || qos) {
5552                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5553                 if (err)
5554                         goto out;
5555                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5556                 igb_set_vmolr(adapter, vf, !vlan);
5557                 adapter->vf_data[vf].pf_vlan = vlan;
5558                 adapter->vf_data[vf].pf_qos = qos;
5559                 dev_info(&adapter->pdev->dev,
5560                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5561                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5562                         dev_warn(&adapter->pdev->dev,
5563                                  "The VF VLAN has been set, but the PF device is not up.\n");
5564                         dev_warn(&adapter->pdev->dev,
5565                                  "Bring the PF device up before attempting to use the VF device.\n");
5566                 }
5567         } else {
5568                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5569                              false, vf);
5570                 igb_set_vmvir(adapter, vlan, vf);
5571                 igb_set_vmolr(adapter, vf, true);
5572                 adapter->vf_data[vf].pf_vlan = 0;
5573                 adapter->vf_data[vf].pf_qos = 0;
5574         }
5575 out:
5576         return err;
5577 }
5578
5579 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5580 {
5581         struct e1000_hw *hw = &adapter->hw;
5582         int i;
5583         u32 reg;
5584
5585         /* Find the vlan filter for this id */
5586         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5587                 reg = rd32(E1000_VLVF(i));
5588                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5589                     vid == (reg & E1000_VLVF_VLANID_MASK))
5590                         break;
5591         }
5592
5593         if (i >= E1000_VLVF_ARRAY_SIZE)
5594                 i = -1;
5595
5596         return i;
5597 }
5598
5599 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5600 {
5601         struct e1000_hw *hw = &adapter->hw;
5602         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5603         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5604         int err = 0;
5605
5606         /* If in promiscuous mode we need to make sure the PF also has
5607          * the VLAN filter set.
5608          */
5609         if (add && (adapter->netdev->flags & IFF_PROMISC))
5610                 err = igb_vlvf_set(adapter, vid, add,
5611                                    adapter->vfs_allocated_count);
5612         if (err)
5613                 goto out;
5614
5615         err = igb_vlvf_set(adapter, vid, add, vf);
5616
5617         if (err)
5618                 goto out;
5619
5620         /* Go through all the checks to see if the VLAN filter should
5621          * be wiped completely.
5622          */
5623         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5624                 u32 vlvf, bits;
5625
5626                 int regndx = igb_find_vlvf_entry(adapter, vid);
5627                 if (regndx < 0)
5628                         goto out;
5629                 /* See if any other pools are set for this VLAN filter
5630                  * entry other than the PF.
5631                  */
5632                 vlvf = bits = rd32(E1000_VLVF(regndx));
5633                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5634                               adapter->vfs_allocated_count);
5635                 /* If the filter was removed then ensure PF pool bit
5636                  * is cleared if the PF only added itself to the pool
5637                  * because the PF is in promiscuous mode.
5638                  */
5639                 if ((vlvf & VLAN_VID_MASK) == vid &&
5640                     !test_bit(vid, adapter->active_vlans) &&
5641                     !bits)
5642                         igb_vlvf_set(adapter, vid, add,
5643                                      adapter->vfs_allocated_count);
5644         }
5645
5646 out:
5647         return err;
5648 }
5649
5650 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5651 {
5652         /* clear flags - except flag that indicates PF has set the MAC */
5653         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5654         adapter->vf_data[vf].last_nack = jiffies;
5655
5656         /* reset offloads to defaults */
5657         igb_set_vmolr(adapter, vf, true);
5658
5659         /* reset vlans for device */
5660         igb_clear_vf_vfta(adapter, vf);
5661         if (adapter->vf_data[vf].pf_vlan)
5662                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5663                                     adapter->vf_data[vf].pf_vlan,
5664                                     adapter->vf_data[vf].pf_qos);
5665         else
5666                 igb_clear_vf_vfta(adapter, vf);
5667
5668         /* reset multicast table array for vf */
5669         adapter->vf_data[vf].num_vf_mc_hashes = 0;
5670
5671         /* Flush and reset the mta with the new values */
5672         igb_set_rx_mode(adapter->netdev);
5673 }
5674
5675 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5676 {
5677         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5678
5679         /* clear mac address as we were hotplug removed/added */
5680         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5681                 eth_zero_addr(vf_mac);
5682
5683         /* process remaining reset events */
5684         igb_vf_reset(adapter, vf);
5685 }
5686
5687 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5688 {
5689         struct e1000_hw *hw = &adapter->hw;
5690         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5691         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5692         u32 reg, msgbuf[3];
5693         u8 *addr = (u8 *)(&msgbuf[1]);
5694
5695         /* process all the same items cleared in a function level reset */
5696         igb_vf_reset(adapter, vf);
5697
5698         /* set vf mac address */
5699         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5700
5701         /* enable transmit and receive for vf */
5702         reg = rd32(E1000_VFTE);
5703         wr32(E1000_VFTE, reg | (1 << vf));
5704         reg = rd32(E1000_VFRE);
5705         wr32(E1000_VFRE, reg | (1 << vf));
5706
5707         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5708
5709         /* reply to reset with ack and vf mac address */
5710         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5711         memcpy(addr, vf_mac, 6);
5712         igb_write_mbx(hw, msgbuf, 3, vf);
5713 }
5714
5715 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5716 {
5717         /* The VF MAC Address is stored in a packed array of bytes
5718          * starting at the second 32 bit word of the msg array
5719          */
5720         unsigned char *addr = (char *)&msg[1];
5721         int err = -1;
5722
5723         if (is_valid_ether_addr(addr))
5724                 err = igb_set_vf_mac(adapter, vf, addr);
5725
5726         return err;
5727 }
5728
5729 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5730 {
5731         struct e1000_hw *hw = &adapter->hw;
5732         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5733         u32 msg = E1000_VT_MSGTYPE_NACK;
5734
5735         /* if device isn't clear to send it shouldn't be reading either */
5736         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5737             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5738                 igb_write_mbx(hw, &msg, 1, vf);
5739                 vf_data->last_nack = jiffies;
5740         }
5741 }
5742
5743 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5744 {
5745         struct pci_dev *pdev = adapter->pdev;
5746         u32 msgbuf[E1000_VFMAILBOX_SIZE];
5747         struct e1000_hw *hw = &adapter->hw;
5748         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5749         s32 retval;
5750
5751         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5752
5753         if (retval) {
5754                 /* if receive failed revoke VF CTS stats and restart init */
5755                 dev_err(&pdev->dev, "Error receiving message from VF\n");
5756                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5757                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5758                         return;
5759                 goto out;
5760         }
5761
5762         /* this is a message we already processed, do nothing */
5763         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5764                 return;
5765
5766         /* until the vf completes a reset it should not be
5767          * allowed to start any configuration.
5768          */
5769         if (msgbuf[0] == E1000_VF_RESET) {
5770                 igb_vf_reset_msg(adapter, vf);
5771                 return;
5772         }
5773
5774         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5775                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5776                         return;
5777                 retval = -1;
5778                 goto out;
5779         }
5780
5781         switch ((msgbuf[0] & 0xFFFF)) {
5782         case E1000_VF_SET_MAC_ADDR:
5783                 retval = -EINVAL;
5784                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5785                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5786                 else
5787                         dev_warn(&pdev->dev,
5788                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5789                                  vf);
5790                 break;
5791         case E1000_VF_SET_PROMISC:
5792                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5793                 break;
5794         case E1000_VF_SET_MULTICAST:
5795                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5796                 break;
5797         case E1000_VF_SET_LPE:
5798                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5799                 break;
5800         case E1000_VF_SET_VLAN:
5801                 retval = -1;
5802                 if (vf_data->pf_vlan)
5803                         dev_warn(&pdev->dev,
5804                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5805                                  vf);
5806                 else
5807                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5808                 break;
5809         default:
5810                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5811                 retval = -1;
5812                 break;
5813         }
5814
5815         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5816 out:
5817         /* notify the VF of the results of what it sent us */
5818         if (retval)
5819                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5820         else
5821                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5822
5823         igb_write_mbx(hw, msgbuf, 1, vf);
5824 }
5825
5826 static void igb_msg_task(struct igb_adapter *adapter)
5827 {
5828         struct e1000_hw *hw = &adapter->hw;
5829         u32 vf;
5830
5831         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5832                 /* process any reset requests */
5833                 if (!igb_check_for_rst(hw, vf))
5834                         igb_vf_reset_event(adapter, vf);
5835
5836                 /* process any messages pending */
5837                 if (!igb_check_for_msg(hw, vf))
5838                         igb_rcv_msg_from_vf(adapter, vf);
5839
5840                 /* process any acks */
5841                 if (!igb_check_for_ack(hw, vf))
5842                         igb_rcv_ack_from_vf(adapter, vf);
5843         }
5844 }
5845
5846 /**
5847  *  igb_set_uta - Set unicast filter table address
5848  *  @adapter: board private structure
5849  *
5850  *  The unicast table address is a register array of 32-bit registers.
5851  *  The table is meant to be used in a way similar to how the MTA is used
5852  *  however due to certain limitations in the hardware it is necessary to
5853  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5854  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5855  **/
5856 static void igb_set_uta(struct igb_adapter *adapter)
5857 {
5858         struct e1000_hw *hw = &adapter->hw;
5859         int i;
5860
5861         /* The UTA table only exists on 82576 hardware and newer */
5862         if (hw->mac.type < e1000_82576)
5863                 return;
5864
5865         /* we only need to do this if VMDq is enabled */
5866         if (!adapter->vfs_allocated_count)
5867                 return;
5868
5869         for (i = 0; i < hw->mac.uta_reg_count; i++)
5870                 array_wr32(E1000_UTA, i, ~0);
5871 }
5872
5873 /**
5874  *  igb_intr_msi - Interrupt Handler
5875  *  @irq: interrupt number
5876  *  @data: pointer to a network interface device structure
5877  **/
5878 static irqreturn_t igb_intr_msi(int irq, void *data)
5879 {
5880         struct igb_adapter *adapter = data;
5881         struct igb_q_vector *q_vector = adapter->q_vector[0];
5882         struct e1000_hw *hw = &adapter->hw;
5883         /* read ICR disables interrupts using IAM */
5884         u32 icr = rd32(E1000_ICR);
5885
5886         igb_write_itr(q_vector);
5887
5888         if (icr & E1000_ICR_DRSTA)
5889                 schedule_work(&adapter->reset_task);
5890
5891         if (icr & E1000_ICR_DOUTSYNC) {
5892                 /* HW is reporting DMA is out of sync */
5893                 adapter->stats.doosync++;
5894         }
5895
5896         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5897                 hw->mac.get_link_status = 1;
5898                 if (!test_bit(__IGB_DOWN, &adapter->state))
5899                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5900         }
5901
5902         if (icr & E1000_ICR_TS) {
5903                 u32 tsicr = rd32(E1000_TSICR);
5904
5905                 if (tsicr & E1000_TSICR_TXTS) {
5906                         /* acknowledge the interrupt */
5907                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5908                         /* retrieve hardware timestamp */
5909                         schedule_work(&adapter->ptp_tx_work);
5910                 }
5911         }
5912
5913         napi_schedule(&q_vector->napi);
5914
5915         return IRQ_HANDLED;
5916 }
5917
5918 /**
5919  *  igb_intr - Legacy Interrupt Handler
5920  *  @irq: interrupt number
5921  *  @data: pointer to a network interface device structure
5922  **/
5923 static irqreturn_t igb_intr(int irq, void *data)
5924 {
5925         struct igb_adapter *adapter = data;
5926         struct igb_q_vector *q_vector = adapter->q_vector[0];
5927         struct e1000_hw *hw = &adapter->hw;
5928         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5929          * need for the IMC write
5930          */
5931         u32 icr = rd32(E1000_ICR);
5932
5933         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5934          * not set, then the adapter didn't send an interrupt
5935          */
5936         if (!(icr & E1000_ICR_INT_ASSERTED))
5937                 return IRQ_NONE;
5938
5939         igb_write_itr(q_vector);
5940
5941         if (icr & E1000_ICR_DRSTA)
5942                 schedule_work(&adapter->reset_task);
5943
5944         if (icr & E1000_ICR_DOUTSYNC) {
5945                 /* HW is reporting DMA is out of sync */
5946                 adapter->stats.doosync++;
5947         }
5948
5949         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5950                 hw->mac.get_link_status = 1;
5951                 /* guard against interrupt when we're going down */
5952                 if (!test_bit(__IGB_DOWN, &adapter->state))
5953                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5954         }
5955
5956         if (icr & E1000_ICR_TS) {
5957                 u32 tsicr = rd32(E1000_TSICR);
5958
5959                 if (tsicr & E1000_TSICR_TXTS) {
5960                         /* acknowledge the interrupt */
5961                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5962                         /* retrieve hardware timestamp */
5963                         schedule_work(&adapter->ptp_tx_work);
5964                 }
5965         }
5966
5967         napi_schedule(&q_vector->napi);
5968
5969         return IRQ_HANDLED;
5970 }
5971
5972 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5973 {
5974         struct igb_adapter *adapter = q_vector->adapter;
5975         struct e1000_hw *hw = &adapter->hw;
5976
5977         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5978             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5979                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5980                         igb_set_itr(q_vector);
5981                 else
5982                         igb_update_ring_itr(q_vector);
5983         }
5984
5985         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5986                 if (adapter->msix_entries)
5987                         wr32(E1000_EIMS, q_vector->eims_value);
5988                 else
5989                         igb_irq_enable(adapter);
5990         }
5991 }
5992
5993 /**
5994  *  igb_poll - NAPI Rx polling callback
5995  *  @napi: napi polling structure
5996  *  @budget: count of how many packets we should handle
5997  **/
5998 static int igb_poll(struct napi_struct *napi, int budget)
5999 {
6000         struct igb_q_vector *q_vector = container_of(napi,
6001                                                      struct igb_q_vector,
6002                                                      napi);
6003         bool clean_complete = true;
6004
6005 #ifdef CONFIG_IGB_DCA
6006         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6007                 igb_update_dca(q_vector);
6008 #endif
6009         if (q_vector->tx.ring)
6010                 clean_complete = igb_clean_tx_irq(q_vector);
6011
6012         if (q_vector->rx.ring)
6013                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6014
6015         /* If all work not completed, return budget and keep polling */
6016         if (!clean_complete)
6017                 return budget;
6018
6019         /* If not enough Rx work done, exit the polling mode */
6020         napi_complete(napi);
6021         igb_ring_irq_enable(q_vector);
6022
6023         return 0;
6024 }
6025
6026 /**
6027  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6028  *  @q_vector: pointer to q_vector containing needed info
6029  *
6030  *  returns true if ring is completely cleaned
6031  **/
6032 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6033 {
6034         struct igb_adapter *adapter = q_vector->adapter;
6035         struct igb_ring *tx_ring = q_vector->tx.ring;
6036         struct igb_tx_buffer *tx_buffer;
6037         union e1000_adv_tx_desc *tx_desc;
6038         unsigned int total_bytes = 0, total_packets = 0;
6039         unsigned int budget = q_vector->tx.work_limit;
6040         unsigned int i = tx_ring->next_to_clean;
6041
6042         if (test_bit(__IGB_DOWN, &adapter->state))
6043                 return true;
6044
6045         tx_buffer = &tx_ring->tx_buffer_info[i];
6046         tx_desc = IGB_TX_DESC(tx_ring, i);
6047         i -= tx_ring->count;
6048
6049         do {
6050                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6051
6052                 /* if next_to_watch is not set then there is no work pending */
6053                 if (!eop_desc)
6054                         break;
6055
6056                 /* prevent any other reads prior to eop_desc */
6057                 read_barrier_depends();
6058
6059                 /* if DD is not set pending work has not been completed */
6060                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6061                         break;
6062
6063                 /* clear next_to_watch to prevent false hangs */
6064                 tx_buffer->next_to_watch = NULL;
6065
6066                 /* update the statistics for this packet */
6067                 total_bytes += tx_buffer->bytecount;
6068                 total_packets += tx_buffer->gso_segs;
6069
6070                 /* free the skb */
6071                 dev_kfree_skb_any(tx_buffer->skb);
6072
6073                 /* unmap skb header data */
6074                 dma_unmap_single(tx_ring->dev,
6075                                  dma_unmap_addr(tx_buffer, dma),
6076                                  dma_unmap_len(tx_buffer, len),
6077                                  DMA_TO_DEVICE);
6078
6079                 /* clear tx_buffer data */
6080                 tx_buffer->skb = NULL;
6081                 dma_unmap_len_set(tx_buffer, len, 0);
6082
6083                 /* clear last DMA location and unmap remaining buffers */
6084                 while (tx_desc != eop_desc) {
6085                         tx_buffer++;
6086                         tx_desc++;
6087                         i++;
6088                         if (unlikely(!i)) {
6089                                 i -= tx_ring->count;
6090                                 tx_buffer = tx_ring->tx_buffer_info;
6091                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6092                         }
6093
6094                         /* unmap any remaining paged data */
6095                         if (dma_unmap_len(tx_buffer, len)) {
6096                                 dma_unmap_page(tx_ring->dev,
6097                                                dma_unmap_addr(tx_buffer, dma),
6098                                                dma_unmap_len(tx_buffer, len),
6099                                                DMA_TO_DEVICE);
6100                                 dma_unmap_len_set(tx_buffer, len, 0);
6101                         }
6102                 }
6103
6104                 /* move us one more past the eop_desc for start of next pkt */
6105                 tx_buffer++;
6106                 tx_desc++;
6107                 i++;
6108                 if (unlikely(!i)) {
6109                         i -= tx_ring->count;
6110                         tx_buffer = tx_ring->tx_buffer_info;
6111                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6112                 }
6113
6114                 /* issue prefetch for next Tx descriptor */
6115                 prefetch(tx_desc);
6116
6117                 /* update budget accounting */
6118                 budget--;
6119         } while (likely(budget));
6120
6121         netdev_tx_completed_queue(txring_txq(tx_ring),
6122                                   total_packets, total_bytes);
6123         i += tx_ring->count;
6124         tx_ring->next_to_clean = i;
6125         u64_stats_update_begin(&tx_ring->tx_syncp);
6126         tx_ring->tx_stats.bytes += total_bytes;
6127         tx_ring->tx_stats.packets += total_packets;
6128         u64_stats_update_end(&tx_ring->tx_syncp);
6129         q_vector->tx.total_bytes += total_bytes;
6130         q_vector->tx.total_packets += total_packets;
6131
6132         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6133                 struct e1000_hw *hw = &adapter->hw;
6134
6135                 /* Detect a transmit hang in hardware, this serializes the
6136                  * check with the clearing of time_stamp and movement of i
6137                  */
6138                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6139                 if (tx_buffer->next_to_watch &&
6140                     time_after(jiffies, tx_buffer->time_stamp +
6141                                (adapter->tx_timeout_factor * HZ)) &&
6142                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6143
6144                         /* detected Tx unit hang */
6145                         dev_err(tx_ring->dev,
6146                                 "Detected Tx Unit Hang\n"
6147                                 "  Tx Queue             <%d>\n"
6148                                 "  TDH                  <%x>\n"
6149                                 "  TDT                  <%x>\n"
6150                                 "  next_to_use          <%x>\n"
6151                                 "  next_to_clean        <%x>\n"
6152                                 "buffer_info[next_to_clean]\n"
6153                                 "  time_stamp           <%lx>\n"
6154                                 "  next_to_watch        <%p>\n"
6155                                 "  jiffies              <%lx>\n"
6156                                 "  desc.status          <%x>\n",
6157                                 tx_ring->queue_index,
6158                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6159                                 readl(tx_ring->tail),
6160                                 tx_ring->next_to_use,
6161                                 tx_ring->next_to_clean,
6162                                 tx_buffer->time_stamp,
6163                                 tx_buffer->next_to_watch,
6164                                 jiffies,
6165                                 tx_buffer->next_to_watch->wb.status);
6166                         netif_stop_subqueue(tx_ring->netdev,
6167                                             tx_ring->queue_index);
6168
6169                         /* we are about to reset, no point in enabling stuff */
6170                         return true;
6171                 }
6172         }
6173
6174 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6175         if (unlikely(total_packets &&
6176             netif_carrier_ok(tx_ring->netdev) &&
6177             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6178                 /* Make sure that anybody stopping the queue after this
6179                  * sees the new next_to_clean.
6180                  */
6181                 smp_mb();
6182                 if (__netif_subqueue_stopped(tx_ring->netdev,
6183                                              tx_ring->queue_index) &&
6184                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6185                         netif_wake_subqueue(tx_ring->netdev,
6186                                             tx_ring->queue_index);
6187
6188                         u64_stats_update_begin(&tx_ring->tx_syncp);
6189                         tx_ring->tx_stats.restart_queue++;
6190                         u64_stats_update_end(&tx_ring->tx_syncp);
6191                 }
6192         }
6193
6194         return !!budget;
6195 }
6196
6197 /**
6198  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6199  *  @rx_ring: rx descriptor ring to store buffers on
6200  *  @old_buff: donor buffer to have page reused
6201  *
6202  *  Synchronizes page for reuse by the adapter
6203  **/
6204 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6205                               struct igb_rx_buffer *old_buff)
6206 {
6207         struct igb_rx_buffer *new_buff;
6208         u16 nta = rx_ring->next_to_alloc;
6209
6210         new_buff = &rx_ring->rx_buffer_info[nta];
6211
6212         /* update, and store next to alloc */
6213         nta++;
6214         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6215
6216         /* transfer page from old buffer to new buffer */
6217         memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6218
6219         /* sync the buffer for use by the device */
6220         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6221                                          old_buff->page_offset,
6222                                          IGB_RX_BUFSZ,
6223                                          DMA_FROM_DEVICE);
6224 }
6225
6226 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6227                                   struct page *page,
6228                                   unsigned int truesize)
6229 {
6230         /* avoid re-using remote pages */
6231         if (unlikely(page_to_nid(page) != numa_node_id()))
6232                 return false;
6233
6234 #if (PAGE_SIZE < 8192)
6235         /* if we are only owner of page we can reuse it */
6236         if (unlikely(page_count(page) != 1))
6237                 return false;
6238
6239         /* flip page offset to other buffer */
6240         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6241
6242         /* since we are the only owner of the page and we need to
6243          * increment it, just set the value to 2 in order to avoid
6244          * an unnecessary locked operation
6245          */
6246         atomic_set(&page->_count, 2);
6247 #else
6248         /* move offset up to the next cache line */
6249         rx_buffer->page_offset += truesize;
6250
6251         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6252                 return false;
6253
6254         /* bump ref count on page before it is given to the stack */
6255         get_page(page);
6256 #endif
6257
6258         return true;
6259 }
6260
6261 /**
6262  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6263  *  @rx_ring: rx descriptor ring to transact packets on
6264  *  @rx_buffer: buffer containing page to add
6265  *  @rx_desc: descriptor containing length of buffer written by hardware
6266  *  @skb: sk_buff to place the data into
6267  *
6268  *  This function will add the data contained in rx_buffer->page to the skb.
6269  *  This is done either through a direct copy if the data in the buffer is
6270  *  less than the skb header size, otherwise it will just attach the page as
6271  *  a frag to the skb.
6272  *
6273  *  The function will then update the page offset if necessary and return
6274  *  true if the buffer can be reused by the adapter.
6275  **/
6276 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6277                             struct igb_rx_buffer *rx_buffer,
6278                             union e1000_adv_rx_desc *rx_desc,
6279                             struct sk_buff *skb)
6280 {
6281         struct page *page = rx_buffer->page;
6282         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6283 #if (PAGE_SIZE < 8192)
6284         unsigned int truesize = IGB_RX_BUFSZ;
6285 #else
6286         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6287 #endif
6288
6289         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6290                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6291
6292                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6293                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6294                         va += IGB_TS_HDR_LEN;
6295                         size -= IGB_TS_HDR_LEN;
6296                 }
6297
6298                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6299
6300                 /* we can reuse buffer as-is, just make sure it is local */
6301                 if (likely(page_to_nid(page) == numa_node_id()))
6302                         return true;
6303
6304                 /* this page cannot be reused so discard it */
6305                 put_page(page);
6306                 return false;
6307         }
6308
6309         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6310                         rx_buffer->page_offset, size, truesize);
6311
6312         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6313 }
6314
6315 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6316                                            union e1000_adv_rx_desc *rx_desc,
6317                                            struct sk_buff *skb)
6318 {
6319         struct igb_rx_buffer *rx_buffer;
6320         struct page *page;
6321
6322         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6323
6324         page = rx_buffer->page;
6325         prefetchw(page);
6326
6327         if (likely(!skb)) {
6328                 void *page_addr = page_address(page) +
6329                                   rx_buffer->page_offset;
6330
6331                 /* prefetch first cache line of first page */
6332                 prefetch(page_addr);
6333 #if L1_CACHE_BYTES < 128
6334                 prefetch(page_addr + L1_CACHE_BYTES);
6335 #endif
6336
6337                 /* allocate a skb to store the frags */
6338                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6339                                                 IGB_RX_HDR_LEN);
6340                 if (unlikely(!skb)) {
6341                         rx_ring->rx_stats.alloc_failed++;
6342                         return NULL;
6343                 }
6344
6345                 /* we will be copying header into skb->data in
6346                  * pskb_may_pull so it is in our interest to prefetch
6347                  * it now to avoid a possible cache miss
6348                  */
6349                 prefetchw(skb->data);
6350         }
6351
6352         /* we are reusing so sync this buffer for CPU use */
6353         dma_sync_single_range_for_cpu(rx_ring->dev,
6354                                       rx_buffer->dma,
6355                                       rx_buffer->page_offset,
6356                                       IGB_RX_BUFSZ,
6357                                       DMA_FROM_DEVICE);
6358
6359         /* pull page into skb */
6360         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6361                 /* hand second half of page back to the ring */
6362                 igb_reuse_rx_page(rx_ring, rx_buffer);
6363         } else {
6364                 /* we are not reusing the buffer so unmap it */
6365                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6366                                PAGE_SIZE, DMA_FROM_DEVICE);
6367         }
6368
6369         /* clear contents of rx_buffer */
6370         rx_buffer->page = NULL;
6371
6372         return skb;
6373 }
6374
6375 static inline void igb_rx_checksum(struct igb_ring *ring,
6376                                    union e1000_adv_rx_desc *rx_desc,
6377                                    struct sk_buff *skb)
6378 {
6379         skb_checksum_none_assert(skb);
6380
6381         /* Ignore Checksum bit is set */
6382         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6383                 return;
6384
6385         /* Rx checksum disabled via ethtool */
6386         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6387                 return;
6388
6389         /* TCP/UDP checksum error bit is set */
6390         if (igb_test_staterr(rx_desc,
6391                              E1000_RXDEXT_STATERR_TCPE |
6392                              E1000_RXDEXT_STATERR_IPE)) {
6393                 /* work around errata with sctp packets where the TCPE aka
6394                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6395                  * packets, (aka let the stack check the crc32c)
6396                  */
6397                 if (!((skb->len == 60) &&
6398                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6399                         u64_stats_update_begin(&ring->rx_syncp);
6400                         ring->rx_stats.csum_err++;
6401                         u64_stats_update_end(&ring->rx_syncp);
6402                 }
6403                 /* let the stack verify checksum errors */
6404                 return;
6405         }
6406         /* It must be a TCP or UDP packet with a valid checksum */
6407         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6408                                       E1000_RXD_STAT_UDPCS))
6409                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6410
6411         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6412                 le32_to_cpu(rx_desc->wb.upper.status_error));
6413 }
6414
6415 static inline void igb_rx_hash(struct igb_ring *ring,
6416                                union e1000_adv_rx_desc *rx_desc,
6417                                struct sk_buff *skb)
6418 {
6419         if (ring->netdev->features & NETIF_F_RXHASH)
6420                 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6421 }
6422
6423 /**
6424  *  igb_is_non_eop - process handling of non-EOP buffers
6425  *  @rx_ring: Rx ring being processed
6426  *  @rx_desc: Rx descriptor for current buffer
6427  *  @skb: current socket buffer containing buffer in progress
6428  *
6429  *  This function updates next to clean.  If the buffer is an EOP buffer
6430  *  this function exits returning false, otherwise it will place the
6431  *  sk_buff in the next buffer to be chained and return true indicating
6432  *  that this is in fact a non-EOP buffer.
6433  **/
6434 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6435                            union e1000_adv_rx_desc *rx_desc)
6436 {
6437         u32 ntc = rx_ring->next_to_clean + 1;
6438
6439         /* fetch, update, and store next to clean */
6440         ntc = (ntc < rx_ring->count) ? ntc : 0;
6441         rx_ring->next_to_clean = ntc;
6442
6443         prefetch(IGB_RX_DESC(rx_ring, ntc));
6444
6445         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6446                 return false;
6447
6448         return true;
6449 }
6450
6451 /**
6452  *  igb_get_headlen - determine size of header for LRO/GRO
6453  *  @data: pointer to the start of the headers
6454  *  @max_len: total length of section to find headers in
6455  *
6456  *  This function is meant to determine the length of headers that will
6457  *  be recognized by hardware for LRO, and GRO offloads.  The main
6458  *  motivation of doing this is to only perform one pull for IPv4 TCP
6459  *  packets so that we can do basic things like calculating the gso_size
6460  *  based on the average data per packet.
6461  **/
6462 static unsigned int igb_get_headlen(unsigned char *data,
6463                                     unsigned int max_len)
6464 {
6465         union {
6466                 unsigned char *network;
6467                 /* l2 headers */
6468                 struct ethhdr *eth;
6469                 struct vlan_hdr *vlan;
6470                 /* l3 headers */
6471                 struct iphdr *ipv4;
6472                 struct ipv6hdr *ipv6;
6473         } hdr;
6474         __be16 protocol;
6475         u8 nexthdr = 0; /* default to not TCP */
6476         u8 hlen;
6477
6478         /* this should never happen, but better safe than sorry */
6479         if (max_len < ETH_HLEN)
6480                 return max_len;
6481
6482         /* initialize network frame pointer */
6483         hdr.network = data;
6484
6485         /* set first protocol and move network header forward */
6486         protocol = hdr.eth->h_proto;
6487         hdr.network += ETH_HLEN;
6488
6489         /* handle any vlan tag if present */
6490         if (protocol == __constant_htons(ETH_P_8021Q)) {
6491                 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6492                         return max_len;
6493
6494                 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6495                 hdr.network += VLAN_HLEN;
6496         }
6497
6498         /* handle L3 protocols */
6499         if (protocol == __constant_htons(ETH_P_IP)) {
6500                 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6501                         return max_len;
6502
6503                 /* access ihl as a u8 to avoid unaligned access on ia64 */
6504                 hlen = (hdr.network[0] & 0x0F) << 2;
6505
6506                 /* verify hlen meets minimum size requirements */
6507                 if (hlen < sizeof(struct iphdr))
6508                         return hdr.network - data;
6509
6510                 /* record next protocol if header is present */
6511                 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6512                         nexthdr = hdr.ipv4->protocol;
6513         } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6514                 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6515                         return max_len;
6516
6517                 /* record next protocol */
6518                 nexthdr = hdr.ipv6->nexthdr;
6519                 hlen = sizeof(struct ipv6hdr);
6520         } else {
6521                 return hdr.network - data;
6522         }
6523
6524         /* relocate pointer to start of L4 header */
6525         hdr.network += hlen;
6526
6527         /* finally sort out TCP */
6528         if (nexthdr == IPPROTO_TCP) {
6529                 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6530                         return max_len;
6531
6532                 /* access doff as a u8 to avoid unaligned access on ia64 */
6533                 hlen = (hdr.network[12] & 0xF0) >> 2;
6534
6535                 /* verify hlen meets minimum size requirements */
6536                 if (hlen < sizeof(struct tcphdr))
6537                         return hdr.network - data;
6538
6539                 hdr.network += hlen;
6540         } else if (nexthdr == IPPROTO_UDP) {
6541                 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6542                         return max_len;
6543
6544                 hdr.network += sizeof(struct udphdr);
6545         }
6546
6547         /* If everything has gone correctly hdr.network should be the
6548          * data section of the packet and will be the end of the header.
6549          * If not then it probably represents the end of the last recognized
6550          * header.
6551          */
6552         if ((hdr.network - data) < max_len)
6553                 return hdr.network - data;
6554         else
6555                 return max_len;
6556 }
6557
6558 /**
6559  *  igb_pull_tail - igb specific version of skb_pull_tail
6560  *  @rx_ring: rx descriptor ring packet is being transacted on
6561  *  @rx_desc: pointer to the EOP Rx descriptor
6562  *  @skb: pointer to current skb being adjusted
6563  *
6564  *  This function is an igb specific version of __pskb_pull_tail.  The
6565  *  main difference between this version and the original function is that
6566  *  this function can make several assumptions about the state of things
6567  *  that allow for significant optimizations versus the standard function.
6568  *  As a result we can do things like drop a frag and maintain an accurate
6569  *  truesize for the skb.
6570  */
6571 static void igb_pull_tail(struct igb_ring *rx_ring,
6572                           union e1000_adv_rx_desc *rx_desc,
6573                           struct sk_buff *skb)
6574 {
6575         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6576         unsigned char *va;
6577         unsigned int pull_len;
6578
6579         /* it is valid to use page_address instead of kmap since we are
6580          * working with pages allocated out of the lomem pool per
6581          * alloc_page(GFP_ATOMIC)
6582          */
6583         va = skb_frag_address(frag);
6584
6585         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6586                 /* retrieve timestamp from buffer */
6587                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6588
6589                 /* update pointers to remove timestamp header */
6590                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6591                 frag->page_offset += IGB_TS_HDR_LEN;
6592                 skb->data_len -= IGB_TS_HDR_LEN;
6593                 skb->len -= IGB_TS_HDR_LEN;
6594
6595                 /* move va to start of packet data */
6596                 va += IGB_TS_HDR_LEN;
6597         }
6598
6599         /* we need the header to contain the greater of either ETH_HLEN or
6600          * 60 bytes if the skb->len is less than 60 for skb_pad.
6601          */
6602         pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6603
6604         /* align pull length to size of long to optimize memcpy performance */
6605         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6606
6607         /* update all of the pointers */
6608         skb_frag_size_sub(frag, pull_len);
6609         frag->page_offset += pull_len;
6610         skb->data_len -= pull_len;
6611         skb->tail += pull_len;
6612 }
6613
6614 /**
6615  *  igb_cleanup_headers - Correct corrupted or empty headers
6616  *  @rx_ring: rx descriptor ring packet is being transacted on
6617  *  @rx_desc: pointer to the EOP Rx descriptor
6618  *  @skb: pointer to current skb being fixed
6619  *
6620  *  Address the case where we are pulling data in on pages only
6621  *  and as such no data is present in the skb header.
6622  *
6623  *  In addition if skb is not at least 60 bytes we need to pad it so that
6624  *  it is large enough to qualify as a valid Ethernet frame.
6625  *
6626  *  Returns true if an error was encountered and skb was freed.
6627  **/
6628 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6629                                 union e1000_adv_rx_desc *rx_desc,
6630                                 struct sk_buff *skb)
6631 {
6632         if (unlikely((igb_test_staterr(rx_desc,
6633                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6634                 struct net_device *netdev = rx_ring->netdev;
6635                 if (!(netdev->features & NETIF_F_RXALL)) {
6636                         dev_kfree_skb_any(skb);
6637                         return true;
6638                 }
6639         }
6640
6641         /* place header in linear portion of buffer */
6642         if (skb_is_nonlinear(skb))
6643                 igb_pull_tail(rx_ring, rx_desc, skb);
6644
6645         /* if skb_pad returns an error the skb was freed */
6646         if (unlikely(skb->len < 60)) {
6647                 int pad_len = 60 - skb->len;
6648
6649                 if (skb_pad(skb, pad_len))
6650                         return true;
6651                 __skb_put(skb, pad_len);
6652         }
6653
6654         return false;
6655 }
6656
6657 /**
6658  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6659  *  @rx_ring: rx descriptor ring packet is being transacted on
6660  *  @rx_desc: pointer to the EOP Rx descriptor
6661  *  @skb: pointer to current skb being populated
6662  *
6663  *  This function checks the ring, descriptor, and packet information in
6664  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6665  *  other fields within the skb.
6666  **/
6667 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6668                                    union e1000_adv_rx_desc *rx_desc,
6669                                    struct sk_buff *skb)
6670 {
6671         struct net_device *dev = rx_ring->netdev;
6672
6673         igb_rx_hash(rx_ring, rx_desc, skb);
6674
6675         igb_rx_checksum(rx_ring, rx_desc, skb);
6676
6677         igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6678
6679         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6680             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6681                 u16 vid;
6682                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6683                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6684                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6685                 else
6686                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6687
6688                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6689         }
6690
6691         skb_record_rx_queue(skb, rx_ring->queue_index);
6692
6693         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6694 }
6695
6696 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6697 {
6698         struct igb_ring *rx_ring = q_vector->rx.ring;
6699         struct sk_buff *skb = rx_ring->skb;
6700         unsigned int total_bytes = 0, total_packets = 0;
6701         u16 cleaned_count = igb_desc_unused(rx_ring);
6702
6703         do {
6704                 union e1000_adv_rx_desc *rx_desc;
6705
6706                 /* return some buffers to hardware, one at a time is too slow */
6707                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6708                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6709                         cleaned_count = 0;
6710                 }
6711
6712                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6713
6714                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6715                         break;
6716
6717                 /* This memory barrier is needed to keep us from reading
6718                  * any other fields out of the rx_desc until we know the
6719                  * RXD_STAT_DD bit is set
6720                  */
6721                 rmb();
6722
6723                 /* retrieve a buffer from the ring */
6724                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6725
6726                 /* exit if we failed to retrieve a buffer */
6727                 if (!skb)
6728                         break;
6729
6730                 cleaned_count++;
6731
6732                 /* fetch next buffer in frame if non-eop */
6733                 if (igb_is_non_eop(rx_ring, rx_desc))
6734                         continue;
6735
6736                 /* verify the packet layout is correct */
6737                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6738                         skb = NULL;
6739                         continue;
6740                 }
6741
6742                 /* probably a little skewed due to removing CRC */
6743                 total_bytes += skb->len;
6744
6745                 /* populate checksum, timestamp, VLAN, and protocol */
6746                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6747
6748                 napi_gro_receive(&q_vector->napi, skb);
6749
6750                 /* reset skb pointer */
6751                 skb = NULL;
6752
6753                 /* update budget accounting */
6754                 total_packets++;
6755         } while (likely(total_packets < budget));
6756
6757         /* place incomplete frames back on ring for completion */
6758         rx_ring->skb = skb;
6759
6760         u64_stats_update_begin(&rx_ring->rx_syncp);
6761         rx_ring->rx_stats.packets += total_packets;
6762         rx_ring->rx_stats.bytes += total_bytes;
6763         u64_stats_update_end(&rx_ring->rx_syncp);
6764         q_vector->rx.total_packets += total_packets;
6765         q_vector->rx.total_bytes += total_bytes;
6766
6767         if (cleaned_count)
6768                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6769
6770         return (total_packets < budget);
6771 }
6772
6773 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6774                                   struct igb_rx_buffer *bi)
6775 {
6776         struct page *page = bi->page;
6777         dma_addr_t dma;
6778
6779         /* since we are recycling buffers we should seldom need to alloc */
6780         if (likely(page))
6781                 return true;
6782
6783         /* alloc new page for storage */
6784         page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6785         if (unlikely(!page)) {
6786                 rx_ring->rx_stats.alloc_failed++;
6787                 return false;
6788         }
6789
6790         /* map page for use */
6791         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6792
6793         /* if mapping failed free memory back to system since
6794          * there isn't much point in holding memory we can't use
6795          */
6796         if (dma_mapping_error(rx_ring->dev, dma)) {
6797                 __free_page(page);
6798
6799                 rx_ring->rx_stats.alloc_failed++;
6800                 return false;
6801         }
6802
6803         bi->dma = dma;
6804         bi->page = page;
6805         bi->page_offset = 0;
6806
6807         return true;
6808 }
6809
6810 /**
6811  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6812  *  @adapter: address of board private structure
6813  **/
6814 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6815 {
6816         union e1000_adv_rx_desc *rx_desc;
6817         struct igb_rx_buffer *bi;
6818         u16 i = rx_ring->next_to_use;
6819
6820         /* nothing to do */
6821         if (!cleaned_count)
6822                 return;
6823
6824         rx_desc = IGB_RX_DESC(rx_ring, i);
6825         bi = &rx_ring->rx_buffer_info[i];
6826         i -= rx_ring->count;
6827
6828         do {
6829                 if (!igb_alloc_mapped_page(rx_ring, bi))
6830                         break;
6831
6832                 /* Refresh the desc even if buffer_addrs didn't change
6833                  * because each write-back erases this info.
6834                  */
6835                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6836
6837                 rx_desc++;
6838                 bi++;
6839                 i++;
6840                 if (unlikely(!i)) {
6841                         rx_desc = IGB_RX_DESC(rx_ring, 0);
6842                         bi = rx_ring->rx_buffer_info;
6843                         i -= rx_ring->count;
6844                 }
6845
6846                 /* clear the hdr_addr for the next_to_use descriptor */
6847                 rx_desc->read.hdr_addr = 0;
6848
6849                 cleaned_count--;
6850         } while (cleaned_count);
6851
6852         i += rx_ring->count;
6853
6854         if (rx_ring->next_to_use != i) {
6855                 /* record the next descriptor to use */
6856                 rx_ring->next_to_use = i;
6857
6858                 /* update next to alloc since we have filled the ring */
6859                 rx_ring->next_to_alloc = i;
6860
6861                 /* Force memory writes to complete before letting h/w
6862                  * know there are new descriptors to fetch.  (Only
6863                  * applicable for weak-ordered memory model archs,
6864                  * such as IA-64).
6865                  */
6866                 wmb();
6867                 writel(i, rx_ring->tail);
6868         }
6869 }
6870
6871 /**
6872  * igb_mii_ioctl -
6873  * @netdev:
6874  * @ifreq:
6875  * @cmd:
6876  **/
6877 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6878 {
6879         struct igb_adapter *adapter = netdev_priv(netdev);
6880         struct mii_ioctl_data *data = if_mii(ifr);
6881
6882         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6883                 return -EOPNOTSUPP;
6884
6885         switch (cmd) {
6886         case SIOCGMIIPHY:
6887                 data->phy_id = adapter->hw.phy.addr;
6888                 break;
6889         case SIOCGMIIREG:
6890                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6891                                      &data->val_out))
6892                         return -EIO;
6893                 break;
6894         case SIOCSMIIREG:
6895         default:
6896                 return -EOPNOTSUPP;
6897         }
6898         return 0;
6899 }
6900
6901 /**
6902  * igb_ioctl -
6903  * @netdev:
6904  * @ifreq:
6905  * @cmd:
6906  **/
6907 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6908 {
6909         switch (cmd) {
6910         case SIOCGMIIPHY:
6911         case SIOCGMIIREG:
6912         case SIOCSMIIREG:
6913                 return igb_mii_ioctl(netdev, ifr, cmd);
6914         case SIOCSHWTSTAMP:
6915                 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6916         default:
6917                 return -EOPNOTSUPP;
6918         }
6919 }
6920
6921 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6922 {
6923         struct igb_adapter *adapter = hw->back;
6924
6925         if (pcie_capability_read_word(adapter->pdev, reg, value))
6926                 return -E1000_ERR_CONFIG;
6927
6928         return 0;
6929 }
6930
6931 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6932 {
6933         struct igb_adapter *adapter = hw->back;
6934
6935         if (pcie_capability_write_word(adapter->pdev, reg, *value))
6936                 return -E1000_ERR_CONFIG;
6937
6938         return 0;
6939 }
6940
6941 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6942 {
6943         struct igb_adapter *adapter = netdev_priv(netdev);
6944         struct e1000_hw *hw = &adapter->hw;
6945         u32 ctrl, rctl;
6946         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6947
6948         if (enable) {
6949                 /* enable VLAN tag insert/strip */
6950                 ctrl = rd32(E1000_CTRL);
6951                 ctrl |= E1000_CTRL_VME;
6952                 wr32(E1000_CTRL, ctrl);
6953
6954                 /* Disable CFI check */
6955                 rctl = rd32(E1000_RCTL);
6956                 rctl &= ~E1000_RCTL_CFIEN;
6957                 wr32(E1000_RCTL, rctl);
6958         } else {
6959                 /* disable VLAN tag insert/strip */
6960                 ctrl = rd32(E1000_CTRL);
6961                 ctrl &= ~E1000_CTRL_VME;
6962                 wr32(E1000_CTRL, ctrl);
6963         }
6964
6965         igb_rlpml_set(adapter);
6966 }
6967
6968 static int igb_vlan_rx_add_vid(struct net_device *netdev,
6969                                __be16 proto, u16 vid)
6970 {
6971         struct igb_adapter *adapter = netdev_priv(netdev);
6972         struct e1000_hw *hw = &adapter->hw;
6973         int pf_id = adapter->vfs_allocated_count;
6974
6975         /* attempt to add filter to vlvf array */
6976         igb_vlvf_set(adapter, vid, true, pf_id);
6977
6978         /* add the filter since PF can receive vlans w/o entry in vlvf */
6979         igb_vfta_set(hw, vid, true);
6980
6981         set_bit(vid, adapter->active_vlans);
6982
6983         return 0;
6984 }
6985
6986 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6987                                 __be16 proto, u16 vid)
6988 {
6989         struct igb_adapter *adapter = netdev_priv(netdev);
6990         struct e1000_hw *hw = &adapter->hw;
6991         int pf_id = adapter->vfs_allocated_count;
6992         s32 err;
6993
6994         /* remove vlan from VLVF table array */
6995         err = igb_vlvf_set(adapter, vid, false, pf_id);
6996
6997         /* if vid was not present in VLVF just remove it from table */
6998         if (err)
6999                 igb_vfta_set(hw, vid, false);
7000
7001         clear_bit(vid, adapter->active_vlans);
7002
7003         return 0;
7004 }
7005
7006 static void igb_restore_vlan(struct igb_adapter *adapter)
7007 {
7008         u16 vid;
7009
7010         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7011
7012         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7013                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7014 }
7015
7016 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7017 {
7018         struct pci_dev *pdev = adapter->pdev;
7019         struct e1000_mac_info *mac = &adapter->hw.mac;
7020
7021         mac->autoneg = 0;
7022
7023         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7024          * for the switch() below to work
7025          */
7026         if ((spd & 1) || (dplx & ~1))
7027                 goto err_inval;
7028
7029         /* Fiber NIC's only allow 1000 gbps Full duplex
7030          * and 100Mbps Full duplex for 100baseFx sfp
7031          */
7032         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7033                 switch (spd + dplx) {
7034                 case SPEED_10 + DUPLEX_HALF:
7035                 case SPEED_10 + DUPLEX_FULL:
7036                 case SPEED_100 + DUPLEX_HALF:
7037                         goto err_inval;
7038                 default:
7039                         break;
7040                 }
7041         }
7042
7043         switch (spd + dplx) {
7044         case SPEED_10 + DUPLEX_HALF:
7045                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7046                 break;
7047         case SPEED_10 + DUPLEX_FULL:
7048                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7049                 break;
7050         case SPEED_100 + DUPLEX_HALF:
7051                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7052                 break;
7053         case SPEED_100 + DUPLEX_FULL:
7054                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7055                 break;
7056         case SPEED_1000 + DUPLEX_FULL:
7057                 mac->autoneg = 1;
7058                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7059                 break;
7060         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7061         default:
7062                 goto err_inval;
7063         }
7064
7065         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7066         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7067
7068         return 0;
7069
7070 err_inval:
7071         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7072         return -EINVAL;
7073 }
7074
7075 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7076                           bool runtime)
7077 {
7078         struct net_device *netdev = pci_get_drvdata(pdev);
7079         struct igb_adapter *adapter = netdev_priv(netdev);
7080         struct e1000_hw *hw = &adapter->hw;
7081         u32 ctrl, rctl, status;
7082         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7083 #ifdef CONFIG_PM
7084         int retval = 0;
7085 #endif
7086
7087         netif_device_detach(netdev);
7088
7089         if (netif_running(netdev))
7090                 __igb_close(netdev, true);
7091
7092         igb_clear_interrupt_scheme(adapter);
7093
7094 #ifdef CONFIG_PM
7095         retval = pci_save_state(pdev);
7096         if (retval)
7097                 return retval;
7098 #endif
7099
7100         status = rd32(E1000_STATUS);
7101         if (status & E1000_STATUS_LU)
7102                 wufc &= ~E1000_WUFC_LNKC;
7103
7104         if (wufc) {
7105                 igb_setup_rctl(adapter);
7106                 igb_set_rx_mode(netdev);
7107
7108                 /* turn on all-multi mode if wake on multicast is enabled */
7109                 if (wufc & E1000_WUFC_MC) {
7110                         rctl = rd32(E1000_RCTL);
7111                         rctl |= E1000_RCTL_MPE;
7112                         wr32(E1000_RCTL, rctl);
7113                 }
7114
7115                 ctrl = rd32(E1000_CTRL);
7116                 /* advertise wake from D3Cold */
7117                 #define E1000_CTRL_ADVD3WUC 0x00100000
7118                 /* phy power management enable */
7119                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7120                 ctrl |= E1000_CTRL_ADVD3WUC;
7121                 wr32(E1000_CTRL, ctrl);
7122
7123                 /* Allow time for pending master requests to run */
7124                 igb_disable_pcie_master(hw);
7125
7126                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7127                 wr32(E1000_WUFC, wufc);
7128         } else {
7129                 wr32(E1000_WUC, 0);
7130                 wr32(E1000_WUFC, 0);
7131         }
7132
7133         *enable_wake = wufc || adapter->en_mng_pt;
7134         if (!*enable_wake)
7135                 igb_power_down_link(adapter);
7136         else
7137                 igb_power_up_link(adapter);
7138
7139         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7140          * would have already happened in close and is redundant.
7141          */
7142         igb_release_hw_control(adapter);
7143
7144         pci_disable_device(pdev);
7145
7146         return 0;
7147 }
7148
7149 #ifdef CONFIG_PM
7150 #ifdef CONFIG_PM_SLEEP
7151 static int igb_suspend(struct device *dev)
7152 {
7153         int retval;
7154         bool wake;
7155         struct pci_dev *pdev = to_pci_dev(dev);
7156
7157         retval = __igb_shutdown(pdev, &wake, 0);
7158         if (retval)
7159                 return retval;
7160
7161         if (wake) {
7162                 pci_prepare_to_sleep(pdev);
7163         } else {
7164                 pci_wake_from_d3(pdev, false);
7165                 pci_set_power_state(pdev, PCI_D3hot);
7166         }
7167
7168         return 0;
7169 }
7170 #endif /* CONFIG_PM_SLEEP */
7171
7172 static int igb_resume(struct device *dev)
7173 {
7174         struct pci_dev *pdev = to_pci_dev(dev);
7175         struct net_device *netdev = pci_get_drvdata(pdev);
7176         struct igb_adapter *adapter = netdev_priv(netdev);
7177         struct e1000_hw *hw = &adapter->hw;
7178         u32 err;
7179
7180         pci_set_power_state(pdev, PCI_D0);
7181         pci_restore_state(pdev);
7182         pci_save_state(pdev);
7183
7184         err = pci_enable_device_mem(pdev);
7185         if (err) {
7186                 dev_err(&pdev->dev,
7187                         "igb: Cannot enable PCI device from suspend\n");
7188                 return err;
7189         }
7190         pci_set_master(pdev);
7191
7192         pci_enable_wake(pdev, PCI_D3hot, 0);
7193         pci_enable_wake(pdev, PCI_D3cold, 0);
7194
7195         if (igb_init_interrupt_scheme(adapter, true)) {
7196                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7197                 return -ENOMEM;
7198         }
7199
7200         igb_reset(adapter);
7201
7202         /* let the f/w know that the h/w is now under the control of the
7203          * driver.
7204          */
7205         igb_get_hw_control(adapter);
7206
7207         wr32(E1000_WUS, ~0);
7208
7209         if (netdev->flags & IFF_UP) {
7210                 rtnl_lock();
7211                 err = __igb_open(netdev, true);
7212                 rtnl_unlock();
7213                 if (err)
7214                         return err;
7215         }
7216
7217         netif_device_attach(netdev);
7218         return 0;
7219 }
7220
7221 #ifdef CONFIG_PM_RUNTIME
7222 static int igb_runtime_idle(struct device *dev)
7223 {
7224         struct pci_dev *pdev = to_pci_dev(dev);
7225         struct net_device *netdev = pci_get_drvdata(pdev);
7226         struct igb_adapter *adapter = netdev_priv(netdev);
7227
7228         if (!igb_has_link(adapter))
7229                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7230
7231         return -EBUSY;
7232 }
7233
7234 static int igb_runtime_suspend(struct device *dev)
7235 {
7236         struct pci_dev *pdev = to_pci_dev(dev);
7237         int retval;
7238         bool wake;
7239
7240         retval = __igb_shutdown(pdev, &wake, 1);
7241         if (retval)
7242                 return retval;
7243
7244         if (wake) {
7245                 pci_prepare_to_sleep(pdev);
7246         } else {
7247                 pci_wake_from_d3(pdev, false);
7248                 pci_set_power_state(pdev, PCI_D3hot);
7249         }
7250
7251         return 0;
7252 }
7253
7254 static int igb_runtime_resume(struct device *dev)
7255 {
7256         return igb_resume(dev);
7257 }
7258 #endif /* CONFIG_PM_RUNTIME */
7259 #endif
7260
7261 static void igb_shutdown(struct pci_dev *pdev)
7262 {
7263         bool wake;
7264
7265         __igb_shutdown(pdev, &wake, 0);
7266
7267         if (system_state == SYSTEM_POWER_OFF) {
7268                 pci_wake_from_d3(pdev, wake);
7269                 pci_set_power_state(pdev, PCI_D3hot);
7270         }
7271 }
7272
7273 #ifdef CONFIG_PCI_IOV
7274 static int igb_sriov_reinit(struct pci_dev *dev)
7275 {
7276         struct net_device *netdev = pci_get_drvdata(dev);
7277         struct igb_adapter *adapter = netdev_priv(netdev);
7278         struct pci_dev *pdev = adapter->pdev;
7279
7280         rtnl_lock();
7281
7282         if (netif_running(netdev))
7283                 igb_close(netdev);
7284
7285         igb_clear_interrupt_scheme(adapter);
7286
7287         igb_init_queue_configuration(adapter);
7288
7289         if (igb_init_interrupt_scheme(adapter, true)) {
7290                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7291                 return -ENOMEM;
7292         }
7293
7294         if (netif_running(netdev))
7295                 igb_open(netdev);
7296
7297         rtnl_unlock();
7298
7299         return 0;
7300 }
7301
7302 static int igb_pci_disable_sriov(struct pci_dev *dev)
7303 {
7304         int err = igb_disable_sriov(dev);
7305
7306         if (!err)
7307                 err = igb_sriov_reinit(dev);
7308
7309         return err;
7310 }
7311
7312 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7313 {
7314         int err = igb_enable_sriov(dev, num_vfs);
7315
7316         if (err)
7317                 goto out;
7318
7319         err = igb_sriov_reinit(dev);
7320         if (!err)
7321                 return num_vfs;
7322
7323 out:
7324         return err;
7325 }
7326
7327 #endif
7328 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7329 {
7330 #ifdef CONFIG_PCI_IOV
7331         if (num_vfs == 0)
7332                 return igb_pci_disable_sriov(dev);
7333         else
7334                 return igb_pci_enable_sriov(dev, num_vfs);
7335 #endif
7336         return 0;
7337 }
7338
7339 #ifdef CONFIG_NET_POLL_CONTROLLER
7340 /* Polling 'interrupt' - used by things like netconsole to send skbs
7341  * without having to re-enable interrupts. It's not called while
7342  * the interrupt routine is executing.
7343  */
7344 static void igb_netpoll(struct net_device *netdev)
7345 {
7346         struct igb_adapter *adapter = netdev_priv(netdev);
7347         struct e1000_hw *hw = &adapter->hw;
7348         struct igb_q_vector *q_vector;
7349         int i;
7350
7351         for (i = 0; i < adapter->num_q_vectors; i++) {
7352                 q_vector = adapter->q_vector[i];
7353                 if (adapter->msix_entries)
7354                         wr32(E1000_EIMC, q_vector->eims_value);
7355                 else
7356                         igb_irq_disable(adapter);
7357                 napi_schedule(&q_vector->napi);
7358         }
7359 }
7360 #endif /* CONFIG_NET_POLL_CONTROLLER */
7361
7362 /**
7363  *  igb_io_error_detected - called when PCI error is detected
7364  *  @pdev: Pointer to PCI device
7365  *  @state: The current pci connection state
7366  *
7367  *  This function is called after a PCI bus error affecting
7368  *  this device has been detected.
7369  **/
7370 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7371                                               pci_channel_state_t state)
7372 {
7373         struct net_device *netdev = pci_get_drvdata(pdev);
7374         struct igb_adapter *adapter = netdev_priv(netdev);
7375
7376         netif_device_detach(netdev);
7377
7378         if (state == pci_channel_io_perm_failure)
7379                 return PCI_ERS_RESULT_DISCONNECT;
7380
7381         if (netif_running(netdev))
7382                 igb_down(adapter);
7383         pci_disable_device(pdev);
7384
7385         /* Request a slot slot reset. */
7386         return PCI_ERS_RESULT_NEED_RESET;
7387 }
7388
7389 /**
7390  *  igb_io_slot_reset - called after the pci bus has been reset.
7391  *  @pdev: Pointer to PCI device
7392  *
7393  *  Restart the card from scratch, as if from a cold-boot. Implementation
7394  *  resembles the first-half of the igb_resume routine.
7395  **/
7396 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7397 {
7398         struct net_device *netdev = pci_get_drvdata(pdev);
7399         struct igb_adapter *adapter = netdev_priv(netdev);
7400         struct e1000_hw *hw = &adapter->hw;
7401         pci_ers_result_t result;
7402         int err;
7403
7404         if (pci_enable_device_mem(pdev)) {
7405                 dev_err(&pdev->dev,
7406                         "Cannot re-enable PCI device after reset.\n");
7407                 result = PCI_ERS_RESULT_DISCONNECT;
7408         } else {
7409                 pci_set_master(pdev);
7410                 pci_restore_state(pdev);
7411                 pci_save_state(pdev);
7412
7413                 pci_enable_wake(pdev, PCI_D3hot, 0);
7414                 pci_enable_wake(pdev, PCI_D3cold, 0);
7415
7416                 igb_reset(adapter);
7417                 wr32(E1000_WUS, ~0);
7418                 result = PCI_ERS_RESULT_RECOVERED;
7419         }
7420
7421         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7422         if (err) {
7423                 dev_err(&pdev->dev,
7424                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7425                         err);
7426                 /* non-fatal, continue */
7427         }
7428
7429         return result;
7430 }
7431
7432 /**
7433  *  igb_io_resume - called when traffic can start flowing again.
7434  *  @pdev: Pointer to PCI device
7435  *
7436  *  This callback is called when the error recovery driver tells us that
7437  *  its OK to resume normal operation. Implementation resembles the
7438  *  second-half of the igb_resume routine.
7439  */
7440 static void igb_io_resume(struct pci_dev *pdev)
7441 {
7442         struct net_device *netdev = pci_get_drvdata(pdev);
7443         struct igb_adapter *adapter = netdev_priv(netdev);
7444
7445         if (netif_running(netdev)) {
7446                 if (igb_up(adapter)) {
7447                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7448                         return;
7449                 }
7450         }
7451
7452         netif_device_attach(netdev);
7453
7454         /* let the f/w know that the h/w is now under the control of the
7455          * driver.
7456          */
7457         igb_get_hw_control(adapter);
7458 }
7459
7460 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7461                              u8 qsel)
7462 {
7463         u32 rar_low, rar_high;
7464         struct e1000_hw *hw = &adapter->hw;
7465
7466         /* HW expects these in little endian so we reverse the byte order
7467          * from network order (big endian) to little endian
7468          */
7469         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7470                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7471         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7472
7473         /* Indicate to hardware the Address is Valid. */
7474         rar_high |= E1000_RAH_AV;
7475
7476         if (hw->mac.type == e1000_82575)
7477                 rar_high |= E1000_RAH_POOL_1 * qsel;
7478         else
7479                 rar_high |= E1000_RAH_POOL_1 << qsel;
7480
7481         wr32(E1000_RAL(index), rar_low);
7482         wrfl();
7483         wr32(E1000_RAH(index), rar_high);
7484         wrfl();
7485 }
7486
7487 static int igb_set_vf_mac(struct igb_adapter *adapter,
7488                           int vf, unsigned char *mac_addr)
7489 {
7490         struct e1000_hw *hw = &adapter->hw;
7491         /* VF MAC addresses start at end of receive addresses and moves
7492          * towards the first, as a result a collision should not be possible
7493          */
7494         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7495
7496         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7497
7498         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7499
7500         return 0;
7501 }
7502
7503 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7504 {
7505         struct igb_adapter *adapter = netdev_priv(netdev);
7506         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7507                 return -EINVAL;
7508         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7509         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7510         dev_info(&adapter->pdev->dev,
7511                  "Reload the VF driver to make this change effective.");
7512         if (test_bit(__IGB_DOWN, &adapter->state)) {
7513                 dev_warn(&adapter->pdev->dev,
7514                          "The VF MAC address has been set, but the PF device is not up.\n");
7515                 dev_warn(&adapter->pdev->dev,
7516                          "Bring the PF device up before attempting to use the VF device.\n");
7517         }
7518         return igb_set_vf_mac(adapter, vf, mac);
7519 }
7520
7521 static int igb_link_mbps(int internal_link_speed)
7522 {
7523         switch (internal_link_speed) {
7524         case SPEED_100:
7525                 return 100;
7526         case SPEED_1000:
7527                 return 1000;
7528         default:
7529                 return 0;
7530         }
7531 }
7532
7533 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7534                                   int link_speed)
7535 {
7536         int rf_dec, rf_int;
7537         u32 bcnrc_val;
7538
7539         if (tx_rate != 0) {
7540                 /* Calculate the rate factor values to set */
7541                 rf_int = link_speed / tx_rate;
7542                 rf_dec = (link_speed - (rf_int * tx_rate));
7543                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7544                          tx_rate;
7545
7546                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7547                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7548                               E1000_RTTBCNRC_RF_INT_MASK);
7549                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7550         } else {
7551                 bcnrc_val = 0;
7552         }
7553
7554         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7555         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7556          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7557          */
7558         wr32(E1000_RTTBCNRM, 0x14);
7559         wr32(E1000_RTTBCNRC, bcnrc_val);
7560 }
7561
7562 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7563 {
7564         int actual_link_speed, i;
7565         bool reset_rate = false;
7566
7567         /* VF TX rate limit was not set or not supported */
7568         if ((adapter->vf_rate_link_speed == 0) ||
7569             (adapter->hw.mac.type != e1000_82576))
7570                 return;
7571
7572         actual_link_speed = igb_link_mbps(adapter->link_speed);
7573         if (actual_link_speed != adapter->vf_rate_link_speed) {
7574                 reset_rate = true;
7575                 adapter->vf_rate_link_speed = 0;
7576                 dev_info(&adapter->pdev->dev,
7577                          "Link speed has been changed. VF Transmit rate is disabled\n");
7578         }
7579
7580         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7581                 if (reset_rate)
7582                         adapter->vf_data[i].tx_rate = 0;
7583
7584                 igb_set_vf_rate_limit(&adapter->hw, i,
7585                                       adapter->vf_data[i].tx_rate,
7586                                       actual_link_speed);
7587         }
7588 }
7589
7590 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7591 {
7592         struct igb_adapter *adapter = netdev_priv(netdev);
7593         struct e1000_hw *hw = &adapter->hw;
7594         int actual_link_speed;
7595
7596         if (hw->mac.type != e1000_82576)
7597                 return -EOPNOTSUPP;
7598
7599         actual_link_speed = igb_link_mbps(adapter->link_speed);
7600         if ((vf >= adapter->vfs_allocated_count) ||
7601             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7602             (tx_rate < 0) || (tx_rate > actual_link_speed))
7603                 return -EINVAL;
7604
7605         adapter->vf_rate_link_speed = actual_link_speed;
7606         adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7607         igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7608
7609         return 0;
7610 }
7611
7612 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7613                                    bool setting)
7614 {
7615         struct igb_adapter *adapter = netdev_priv(netdev);
7616         struct e1000_hw *hw = &adapter->hw;
7617         u32 reg_val, reg_offset;
7618
7619         if (!adapter->vfs_allocated_count)
7620                 return -EOPNOTSUPP;
7621
7622         if (vf >= adapter->vfs_allocated_count)
7623                 return -EINVAL;
7624
7625         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7626         reg_val = rd32(reg_offset);
7627         if (setting)
7628                 reg_val |= ((1 << vf) |
7629                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7630         else
7631                 reg_val &= ~((1 << vf) |
7632                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7633         wr32(reg_offset, reg_val);
7634
7635         adapter->vf_data[vf].spoofchk_enabled = setting;
7636         return E1000_SUCCESS;
7637 }
7638
7639 static int igb_ndo_get_vf_config(struct net_device *netdev,
7640                                  int vf, struct ifla_vf_info *ivi)
7641 {
7642         struct igb_adapter *adapter = netdev_priv(netdev);
7643         if (vf >= adapter->vfs_allocated_count)
7644                 return -EINVAL;
7645         ivi->vf = vf;
7646         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7647         ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7648         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7649         ivi->qos = adapter->vf_data[vf].pf_qos;
7650         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7651         return 0;
7652 }
7653
7654 static void igb_vmm_control(struct igb_adapter *adapter)
7655 {
7656         struct e1000_hw *hw = &adapter->hw;
7657         u32 reg;
7658
7659         switch (hw->mac.type) {
7660         case e1000_82575:
7661         case e1000_i210:
7662         case e1000_i211:
7663         case e1000_i354:
7664         default:
7665                 /* replication is not supported for 82575 */
7666                 return;
7667         case e1000_82576:
7668                 /* notify HW that the MAC is adding vlan tags */
7669                 reg = rd32(E1000_DTXCTL);
7670                 reg |= E1000_DTXCTL_VLAN_ADDED;
7671                 wr32(E1000_DTXCTL, reg);
7672         case e1000_82580:
7673                 /* enable replication vlan tag stripping */
7674                 reg = rd32(E1000_RPLOLR);
7675                 reg |= E1000_RPLOLR_STRVLAN;
7676                 wr32(E1000_RPLOLR, reg);
7677         case e1000_i350:
7678                 /* none of the above registers are supported by i350 */
7679                 break;
7680         }
7681
7682         if (adapter->vfs_allocated_count) {
7683                 igb_vmdq_set_loopback_pf(hw, true);
7684                 igb_vmdq_set_replication_pf(hw, true);
7685                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7686                                               adapter->vfs_allocated_count);
7687         } else {
7688                 igb_vmdq_set_loopback_pf(hw, false);
7689                 igb_vmdq_set_replication_pf(hw, false);
7690         }
7691 }
7692
7693 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7694 {
7695         struct e1000_hw *hw = &adapter->hw;
7696         u32 dmac_thr;
7697         u16 hwm;
7698
7699         if (hw->mac.type > e1000_82580) {
7700                 if (adapter->flags & IGB_FLAG_DMAC) {
7701                         u32 reg;
7702
7703                         /* force threshold to 0. */
7704                         wr32(E1000_DMCTXTH, 0);
7705
7706                         /* DMA Coalescing high water mark needs to be greater
7707                          * than the Rx threshold. Set hwm to PBA - max frame
7708                          * size in 16B units, capping it at PBA - 6KB.
7709                          */
7710                         hwm = 64 * pba - adapter->max_frame_size / 16;
7711                         if (hwm < 64 * (pba - 6))
7712                                 hwm = 64 * (pba - 6);
7713                         reg = rd32(E1000_FCRTC);
7714                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7715                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7716                                 & E1000_FCRTC_RTH_COAL_MASK);
7717                         wr32(E1000_FCRTC, reg);
7718
7719                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7720                          * frame size, capping it at PBA - 10KB.
7721                          */
7722                         dmac_thr = pba - adapter->max_frame_size / 512;
7723                         if (dmac_thr < pba - 10)
7724                                 dmac_thr = pba - 10;
7725                         reg = rd32(E1000_DMACR);
7726                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7727                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7728                                 & E1000_DMACR_DMACTHR_MASK);
7729
7730                         /* transition to L0x or L1 if available..*/
7731                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7732
7733                         /* watchdog timer= +-1000 usec in 32usec intervals */
7734                         reg |= (1000 >> 5);
7735
7736                         /* Disable BMC-to-OS Watchdog Enable */
7737                         if (hw->mac.type != e1000_i354)
7738                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7739
7740                         wr32(E1000_DMACR, reg);
7741
7742                         /* no lower threshold to disable
7743                          * coalescing(smart fifb)-UTRESH=0
7744                          */
7745                         wr32(E1000_DMCRTRH, 0);
7746
7747                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7748
7749                         wr32(E1000_DMCTLX, reg);
7750
7751                         /* free space in tx packet buffer to wake from
7752                          * DMA coal
7753                          */
7754                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7755                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7756
7757                         /* make low power state decision controlled
7758                          * by DMA coal
7759                          */
7760                         reg = rd32(E1000_PCIEMISC);
7761                         reg &= ~E1000_PCIEMISC_LX_DECISION;
7762                         wr32(E1000_PCIEMISC, reg);
7763                 } /* endif adapter->dmac is not disabled */
7764         } else if (hw->mac.type == e1000_82580) {
7765                 u32 reg = rd32(E1000_PCIEMISC);
7766                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7767                 wr32(E1000_DMACR, 0);
7768         }
7769 }
7770
7771 /**
7772  *  igb_read_i2c_byte - Reads 8 bit word over I2C
7773  *  @hw: pointer to hardware structure
7774  *  @byte_offset: byte offset to read
7775  *  @dev_addr: device address
7776  *  @data: value read
7777  *
7778  *  Performs byte read operation over I2C interface at
7779  *  a specified device address.
7780  **/
7781 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7782                       u8 dev_addr, u8 *data)
7783 {
7784         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7785         struct i2c_client *this_client = adapter->i2c_client;
7786         s32 status;
7787         u16 swfw_mask = 0;
7788
7789         if (!this_client)
7790                 return E1000_ERR_I2C;
7791
7792         swfw_mask = E1000_SWFW_PHY0_SM;
7793
7794         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7795             != E1000_SUCCESS)
7796                 return E1000_ERR_SWFW_SYNC;
7797
7798         status = i2c_smbus_read_byte_data(this_client, byte_offset);
7799         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7800
7801         if (status < 0)
7802                 return E1000_ERR_I2C;
7803         else {
7804                 *data = status;
7805                 return E1000_SUCCESS;
7806         }
7807 }
7808
7809 /**
7810  *  igb_write_i2c_byte - Writes 8 bit word over I2C
7811  *  @hw: pointer to hardware structure
7812  *  @byte_offset: byte offset to write
7813  *  @dev_addr: device address
7814  *  @data: value to write
7815  *
7816  *  Performs byte write operation over I2C interface at
7817  *  a specified device address.
7818  **/
7819 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7820                        u8 dev_addr, u8 data)
7821 {
7822         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7823         struct i2c_client *this_client = adapter->i2c_client;
7824         s32 status;
7825         u16 swfw_mask = E1000_SWFW_PHY0_SM;
7826
7827         if (!this_client)
7828                 return E1000_ERR_I2C;
7829
7830         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7831                 return E1000_ERR_SWFW_SYNC;
7832         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7833         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7834
7835         if (status)
7836                 return E1000_ERR_I2C;
7837         else
7838                 return E1000_SUCCESS;
7839
7840 }
7841 /* igb_main.c */