Merge branch 'timecounter-next'
[cascardo/linux.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2  *
3  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
22
23 #include "igb.h"
24
25 #define INCVALUE_MASK           0x7fffffff
26 #define ISGN                    0x80000000
27
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29  * and this update value cannot be reprogrammed.
30  *
31  * Neither the 82576 nor the 82580 offer registers wide enough to hold
32  * nanoseconds time values for very long. For the 82580, SYSTIM always
33  * counts nanoseconds, but the upper 24 bits are not availible. The
34  * frequency is adjusted by changing the 32 bit fractional nanoseconds
35  * register, TIMINCA.
36  *
37  * For the 82576, the SYSTIM register time unit is affect by the
38  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39  * field are needed to provide the nominal 16 nanosecond period,
40  * leaving 19 bits for fractional nanoseconds.
41  *
42  * We scale the NIC clock cycle by a large factor so that relatively
43  * small clock corrections can be added or subtracted at each clock
44  * tick. The drawbacks of a large factor are a) that the clock
45  * register overflows more quickly (not such a big deal) and b) that
46  * the increment per tick has to fit into 24 bits.  As a result we
47  * need to use a shift of 19 so we can fit a value of 16 into the
48  * TIMINCA register.
49  *
50  *
51  *             SYSTIMH            SYSTIML
52  *        +--------------+   +---+---+------+
53  *  82576 |      32      |   | 8 | 5 |  19  |
54  *        +--------------+   +---+---+------+
55  *         \________ 45 bits _______/  fract
56  *
57  *        +----------+---+   +--------------+
58  *  82580 |    24    | 8 |   |      32      |
59  *        +----------+---+   +--------------+
60  *          reserved  \______ 40 bits _____/
61  *
62  *
63  * The 45 bit 82576 SYSTIM overflows every
64  *   2^45 * 10^-9 / 3600 = 9.77 hours.
65  *
66  * The 40 bit 82580 SYSTIM overflows every
67  *   2^40 * 10^-9 /  60  = 18.3 minutes.
68  */
69
70 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 9)
71 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
72 #define INCPERIOD_82576                 (1 << E1000_TIMINCA_16NS_SHIFT)
73 #define INCVALUE_82576_MASK             ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74 #define INCVALUE_82576                  (16 << IGB_82576_TSYNC_SHIFT)
75 #define IGB_NBITS_82580                 40
76
77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
79 /* SYSTIM read access for the 82576 */
80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 {
82         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83         struct e1000_hw *hw = &igb->hw;
84         u64 val;
85         u32 lo, hi;
86
87         lo = rd32(E1000_SYSTIML);
88         hi = rd32(E1000_SYSTIMH);
89
90         val = ((u64) hi) << 32;
91         val |= lo;
92
93         return val;
94 }
95
96 /* SYSTIM read access for the 82580 */
97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 {
99         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100         struct e1000_hw *hw = &igb->hw;
101         u32 lo, hi;
102         u64 val;
103
104         /* The timestamp latches on lowest register read. For the 82580
105          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
106          * need to provide nanosecond resolution, so we just ignore it.
107          */
108         rd32(E1000_SYSTIMR);
109         lo = rd32(E1000_SYSTIML);
110         hi = rd32(E1000_SYSTIMH);
111
112         val = ((u64) hi) << 32;
113         val |= lo;
114
115         return val;
116 }
117
118 /* SYSTIM read access for I210/I211 */
119 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
120 {
121         struct e1000_hw *hw = &adapter->hw;
122         u32 sec, nsec;
123
124         /* The timestamp latches on lowest register read. For I210/I211, the
125          * lowest register is SYSTIMR. Since we only need to provide nanosecond
126          * resolution, we can ignore it.
127          */
128         rd32(E1000_SYSTIMR);
129         nsec = rd32(E1000_SYSTIML);
130         sec = rd32(E1000_SYSTIMH);
131
132         ts->tv_sec = sec;
133         ts->tv_nsec = nsec;
134 }
135
136 static void igb_ptp_write_i210(struct igb_adapter *adapter,
137                                const struct timespec *ts)
138 {
139         struct e1000_hw *hw = &adapter->hw;
140
141         /* Writing the SYSTIMR register is not necessary as it only provides
142          * sub-nanosecond resolution.
143          */
144         wr32(E1000_SYSTIML, ts->tv_nsec);
145         wr32(E1000_SYSTIMH, ts->tv_sec);
146 }
147
148 /**
149  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
150  * @adapter: board private structure
151  * @hwtstamps: timestamp structure to update
152  * @systim: unsigned 64bit system time value.
153  *
154  * We need to convert the system time value stored in the RX/TXSTMP registers
155  * into a hwtstamp which can be used by the upper level timestamping functions.
156  *
157  * The 'tmreg_lock' spinlock is used to protect the consistency of the
158  * system time value. This is needed because reading the 64 bit time
159  * value involves reading two (or three) 32 bit registers. The first
160  * read latches the value. Ditto for writing.
161  *
162  * In addition, here have extended the system time with an overflow
163  * counter in software.
164  **/
165 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
166                                        struct skb_shared_hwtstamps *hwtstamps,
167                                        u64 systim)
168 {
169         unsigned long flags;
170         u64 ns;
171
172         switch (adapter->hw.mac.type) {
173         case e1000_82576:
174         case e1000_82580:
175         case e1000_i354:
176         case e1000_i350:
177                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
178
179                 ns = timecounter_cyc2time(&adapter->tc, systim);
180
181                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
182
183                 memset(hwtstamps, 0, sizeof(*hwtstamps));
184                 hwtstamps->hwtstamp = ns_to_ktime(ns);
185                 break;
186         case e1000_i210:
187         case e1000_i211:
188                 memset(hwtstamps, 0, sizeof(*hwtstamps));
189                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
190                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
191                                                 systim & 0xFFFFFFFF);
192                 break;
193         default:
194                 break;
195         }
196 }
197
198 /* PTP clock operations */
199 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200 {
201         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
202                                                ptp_caps);
203         struct e1000_hw *hw = &igb->hw;
204         int neg_adj = 0;
205         u64 rate;
206         u32 incvalue;
207
208         if (ppb < 0) {
209                 neg_adj = 1;
210                 ppb = -ppb;
211         }
212         rate = ppb;
213         rate <<= 14;
214         rate = div_u64(rate, 1953125);
215
216         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
217
218         if (neg_adj)
219                 incvalue -= rate;
220         else
221                 incvalue += rate;
222
223         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
224
225         return 0;
226 }
227
228 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229 {
230         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231                                                ptp_caps);
232         struct e1000_hw *hw = &igb->hw;
233         int neg_adj = 0;
234         u64 rate;
235         u32 inca;
236
237         if (ppb < 0) {
238                 neg_adj = 1;
239                 ppb = -ppb;
240         }
241         rate = ppb;
242         rate <<= 26;
243         rate = div_u64(rate, 1953125);
244
245         inca = rate & INCVALUE_MASK;
246         if (neg_adj)
247                 inca |= ISGN;
248
249         wr32(E1000_TIMINCA, inca);
250
251         return 0;
252 }
253
254 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255 {
256         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257                                                ptp_caps);
258         unsigned long flags;
259
260         spin_lock_irqsave(&igb->tmreg_lock, flags);
261         timecounter_adjtime(&igb->tc, delta);
262         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
263
264         return 0;
265 }
266
267 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
268 {
269         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
270                                                ptp_caps);
271         unsigned long flags;
272         struct timespec now, then = ns_to_timespec(delta);
273
274         spin_lock_irqsave(&igb->tmreg_lock, flags);
275
276         igb_ptp_read_i210(igb, &now);
277         now = timespec_add(now, then);
278         igb_ptp_write_i210(igb, (const struct timespec *)&now);
279
280         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
281
282         return 0;
283 }
284
285 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
286                                  struct timespec *ts)
287 {
288         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
289                                                ptp_caps);
290         unsigned long flags;
291         u64 ns;
292         u32 remainder;
293
294         spin_lock_irqsave(&igb->tmreg_lock, flags);
295
296         ns = timecounter_read(&igb->tc);
297
298         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299
300         ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
301         ts->tv_nsec = remainder;
302
303         return 0;
304 }
305
306 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
307                                 struct timespec *ts)
308 {
309         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
310                                                ptp_caps);
311         unsigned long flags;
312
313         spin_lock_irqsave(&igb->tmreg_lock, flags);
314
315         igb_ptp_read_i210(igb, ts);
316
317         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
318
319         return 0;
320 }
321
322 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
323                                  const struct timespec *ts)
324 {
325         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
326                                                ptp_caps);
327         unsigned long flags;
328         u64 ns;
329
330         ns = ts->tv_sec * 1000000000ULL;
331         ns += ts->tv_nsec;
332
333         spin_lock_irqsave(&igb->tmreg_lock, flags);
334
335         timecounter_init(&igb->tc, &igb->cc, ns);
336
337         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
338
339         return 0;
340 }
341
342 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
343                                 const struct timespec *ts)
344 {
345         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
346                                                ptp_caps);
347         unsigned long flags;
348
349         spin_lock_irqsave(&igb->tmreg_lock, flags);
350
351         igb_ptp_write_i210(igb, ts);
352
353         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
354
355         return 0;
356 }
357
358 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
359                                   struct ptp_clock_request *rq, int on)
360 {
361         return -EOPNOTSUPP;
362 }
363
364 /**
365  * igb_ptp_tx_work
366  * @work: pointer to work struct
367  *
368  * This work function polls the TSYNCTXCTL valid bit to determine when a
369  * timestamp has been taken for the current stored skb.
370  **/
371 static void igb_ptp_tx_work(struct work_struct *work)
372 {
373         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
374                                                    ptp_tx_work);
375         struct e1000_hw *hw = &adapter->hw;
376         u32 tsynctxctl;
377
378         if (!adapter->ptp_tx_skb)
379                 return;
380
381         if (time_is_before_jiffies(adapter->ptp_tx_start +
382                                    IGB_PTP_TX_TIMEOUT)) {
383                 dev_kfree_skb_any(adapter->ptp_tx_skb);
384                 adapter->ptp_tx_skb = NULL;
385                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
386                 adapter->tx_hwtstamp_timeouts++;
387                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
388                 return;
389         }
390
391         tsynctxctl = rd32(E1000_TSYNCTXCTL);
392         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
393                 igb_ptp_tx_hwtstamp(adapter);
394         else
395                 /* reschedule to check later */
396                 schedule_work(&adapter->ptp_tx_work);
397 }
398
399 static void igb_ptp_overflow_check(struct work_struct *work)
400 {
401         struct igb_adapter *igb =
402                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
403         struct timespec ts;
404
405         igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
406
407         pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
408
409         schedule_delayed_work(&igb->ptp_overflow_work,
410                               IGB_SYSTIM_OVERFLOW_PERIOD);
411 }
412
413 /**
414  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
415  * @adapter: private network adapter structure
416  *
417  * This watchdog task is scheduled to detect error case where hardware has
418  * dropped an Rx packet that was timestamped when the ring is full. The
419  * particular error is rare but leaves the device in a state unable to timestamp
420  * any future packets.
421  **/
422 void igb_ptp_rx_hang(struct igb_adapter *adapter)
423 {
424         struct e1000_hw *hw = &adapter->hw;
425         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
426         unsigned long rx_event;
427
428         if (hw->mac.type != e1000_82576)
429                 return;
430
431         /* If we don't have a valid timestamp in the registers, just update the
432          * timeout counter and exit
433          */
434         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
435                 adapter->last_rx_ptp_check = jiffies;
436                 return;
437         }
438
439         /* Determine the most recent watchdog or rx_timestamp event */
440         rx_event = adapter->last_rx_ptp_check;
441         if (time_after(adapter->last_rx_timestamp, rx_event))
442                 rx_event = adapter->last_rx_timestamp;
443
444         /* Only need to read the high RXSTMP register to clear the lock */
445         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
446                 rd32(E1000_RXSTMPH);
447                 adapter->last_rx_ptp_check = jiffies;
448                 adapter->rx_hwtstamp_cleared++;
449                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
450         }
451 }
452
453 /**
454  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
455  * @adapter: Board private structure.
456  *
457  * If we were asked to do hardware stamping and such a time stamp is
458  * available, then it must have been for this skb here because we only
459  * allow only one such packet into the queue.
460  **/
461 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
462 {
463         struct e1000_hw *hw = &adapter->hw;
464         struct skb_shared_hwtstamps shhwtstamps;
465         u64 regval;
466
467         regval = rd32(E1000_TXSTMPL);
468         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
469
470         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
471         skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
472         dev_kfree_skb_any(adapter->ptp_tx_skb);
473         adapter->ptp_tx_skb = NULL;
474         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
475 }
476
477 /**
478  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
479  * @q_vector: Pointer to interrupt specific structure
480  * @va: Pointer to address containing Rx buffer
481  * @skb: Buffer containing timestamp and packet
482  *
483  * This function is meant to retrieve a timestamp from the first buffer of an
484  * incoming frame.  The value is stored in little endian format starting on
485  * byte 8.
486  **/
487 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
488                          unsigned char *va,
489                          struct sk_buff *skb)
490 {
491         __le64 *regval = (__le64 *)va;
492
493         /* The timestamp is recorded in little endian format.
494          * DWORD: 0        1        2        3
495          * Field: Reserved Reserved SYSTIML  SYSTIMH
496          */
497         igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
498                                    le64_to_cpu(regval[1]));
499 }
500
501 /**
502  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
503  * @q_vector: Pointer to interrupt specific structure
504  * @skb: Buffer containing timestamp and packet
505  *
506  * This function is meant to retrieve a timestamp from the internal registers
507  * of the adapter and store it in the skb.
508  **/
509 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
510                          struct sk_buff *skb)
511 {
512         struct igb_adapter *adapter = q_vector->adapter;
513         struct e1000_hw *hw = &adapter->hw;
514         u64 regval;
515
516         /* If this bit is set, then the RX registers contain the time stamp. No
517          * other packet will be time stamped until we read these registers, so
518          * read the registers to make them available again. Because only one
519          * packet can be time stamped at a time, we know that the register
520          * values must belong to this one here and therefore we don't need to
521          * compare any of the additional attributes stored for it.
522          *
523          * If nothing went wrong, then it should have a shared tx_flags that we
524          * can turn into a skb_shared_hwtstamps.
525          */
526         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
527                 return;
528
529         regval = rd32(E1000_RXSTMPL);
530         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
531
532         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
533
534         /* Update the last_rx_timestamp timer in order to enable watchdog check
535          * for error case of latched timestamp on a dropped packet.
536          */
537         adapter->last_rx_timestamp = jiffies;
538 }
539
540 /**
541  * igb_ptp_get_ts_config - get hardware time stamping config
542  * @netdev:
543  * @ifreq:
544  *
545  * Get the hwtstamp_config settings to return to the user. Rather than attempt
546  * to deconstruct the settings from the registers, just return a shadow copy
547  * of the last known settings.
548  **/
549 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
550 {
551         struct igb_adapter *adapter = netdev_priv(netdev);
552         struct hwtstamp_config *config = &adapter->tstamp_config;
553
554         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
555                 -EFAULT : 0;
556 }
557
558 /**
559  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
560  * @adapter: networking device structure
561  * @config: hwtstamp configuration
562  *
563  * Outgoing time stamping can be enabled and disabled. Play nice and
564  * disable it when requested, although it shouldn't case any overhead
565  * when no packet needs it. At most one packet in the queue may be
566  * marked for time stamping, otherwise it would be impossible to tell
567  * for sure to which packet the hardware time stamp belongs.
568  *
569  * Incoming time stamping has to be configured via the hardware
570  * filters. Not all combinations are supported, in particular event
571  * type has to be specified. Matching the kind of event packet is
572  * not supported, with the exception of "all V2 events regardless of
573  * level 2 or 4".
574  */
575 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
576                                       struct hwtstamp_config *config)
577 {
578         struct e1000_hw *hw = &adapter->hw;
579         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
580         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
581         u32 tsync_rx_cfg = 0;
582         bool is_l4 = false;
583         bool is_l2 = false;
584         u32 regval;
585
586         /* reserved for future extensions */
587         if (config->flags)
588                 return -EINVAL;
589
590         switch (config->tx_type) {
591         case HWTSTAMP_TX_OFF:
592                 tsync_tx_ctl = 0;
593         case HWTSTAMP_TX_ON:
594                 break;
595         default:
596                 return -ERANGE;
597         }
598
599         switch (config->rx_filter) {
600         case HWTSTAMP_FILTER_NONE:
601                 tsync_rx_ctl = 0;
602                 break;
603         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
604                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
605                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
606                 is_l4 = true;
607                 break;
608         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
609                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
610                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
611                 is_l4 = true;
612                 break;
613         case HWTSTAMP_FILTER_PTP_V2_EVENT:
614         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
615         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
616         case HWTSTAMP_FILTER_PTP_V2_SYNC:
617         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
618         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
619         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
620         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
621         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
622                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
623                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
624                 is_l2 = true;
625                 is_l4 = true;
626                 break;
627         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
628         case HWTSTAMP_FILTER_ALL:
629                 /* 82576 cannot timestamp all packets, which it needs to do to
630                  * support both V1 Sync and Delay_Req messages
631                  */
632                 if (hw->mac.type != e1000_82576) {
633                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
634                         config->rx_filter = HWTSTAMP_FILTER_ALL;
635                         break;
636                 }
637                 /* fall through */
638         default:
639                 config->rx_filter = HWTSTAMP_FILTER_NONE;
640                 return -ERANGE;
641         }
642
643         if (hw->mac.type == e1000_82575) {
644                 if (tsync_rx_ctl | tsync_tx_ctl)
645                         return -EINVAL;
646                 return 0;
647         }
648
649         /* Per-packet timestamping only works if all packets are
650          * timestamped, so enable timestamping in all packets as
651          * long as one Rx filter was configured.
652          */
653         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
654                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
655                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
656                 config->rx_filter = HWTSTAMP_FILTER_ALL;
657                 is_l2 = true;
658                 is_l4 = true;
659
660                 if ((hw->mac.type == e1000_i210) ||
661                     (hw->mac.type == e1000_i211)) {
662                         regval = rd32(E1000_RXPBS);
663                         regval |= E1000_RXPBS_CFG_TS_EN;
664                         wr32(E1000_RXPBS, regval);
665                 }
666         }
667
668         /* enable/disable TX */
669         regval = rd32(E1000_TSYNCTXCTL);
670         regval &= ~E1000_TSYNCTXCTL_ENABLED;
671         regval |= tsync_tx_ctl;
672         wr32(E1000_TSYNCTXCTL, regval);
673
674         /* enable/disable RX */
675         regval = rd32(E1000_TSYNCRXCTL);
676         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
677         regval |= tsync_rx_ctl;
678         wr32(E1000_TSYNCRXCTL, regval);
679
680         /* define which PTP packets are time stamped */
681         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
682
683         /* define ethertype filter for timestamped packets */
684         if (is_l2)
685                 wr32(E1000_ETQF(3),
686                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
687                       E1000_ETQF_1588 | /* enable timestamping */
688                       ETH_P_1588));     /* 1588 eth protocol type */
689         else
690                 wr32(E1000_ETQF(3), 0);
691
692         /* L4 Queue Filter[3]: filter by destination port and protocol */
693         if (is_l4) {
694                 u32 ftqf = (IPPROTO_UDP /* UDP */
695                         | E1000_FTQF_VF_BP /* VF not compared */
696                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
697                         | E1000_FTQF_MASK); /* mask all inputs */
698                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
699
700                 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
701                 wr32(E1000_IMIREXT(3),
702                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
703                 if (hw->mac.type == e1000_82576) {
704                         /* enable source port check */
705                         wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
706                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
707                 }
708                 wr32(E1000_FTQF(3), ftqf);
709         } else {
710                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
711         }
712         wrfl();
713
714         /* clear TX/RX time stamp registers, just to be sure */
715         regval = rd32(E1000_TXSTMPL);
716         regval = rd32(E1000_TXSTMPH);
717         regval = rd32(E1000_RXSTMPL);
718         regval = rd32(E1000_RXSTMPH);
719
720         return 0;
721 }
722
723 /**
724  * igb_ptp_set_ts_config - set hardware time stamping config
725  * @netdev:
726  * @ifreq:
727  *
728  **/
729 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
730 {
731         struct igb_adapter *adapter = netdev_priv(netdev);
732         struct hwtstamp_config config;
733         int err;
734
735         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
736                 return -EFAULT;
737
738         err = igb_ptp_set_timestamp_mode(adapter, &config);
739         if (err)
740                 return err;
741
742         /* save these settings for future reference */
743         memcpy(&adapter->tstamp_config, &config,
744                sizeof(adapter->tstamp_config));
745
746         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
747                 -EFAULT : 0;
748 }
749
750 void igb_ptp_init(struct igb_adapter *adapter)
751 {
752         struct e1000_hw *hw = &adapter->hw;
753         struct net_device *netdev = adapter->netdev;
754
755         switch (hw->mac.type) {
756         case e1000_82576:
757                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
758                 adapter->ptp_caps.owner = THIS_MODULE;
759                 adapter->ptp_caps.max_adj = 999999881;
760                 adapter->ptp_caps.n_ext_ts = 0;
761                 adapter->ptp_caps.pps = 0;
762                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
763                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
764                 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
765                 adapter->ptp_caps.settime = igb_ptp_settime_82576;
766                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
767                 adapter->cc.read = igb_ptp_read_82576;
768                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
769                 adapter->cc.mult = 1;
770                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
771                 /* Dial the nominal frequency. */
772                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
773                 break;
774         case e1000_82580:
775         case e1000_i354:
776         case e1000_i350:
777                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
778                 adapter->ptp_caps.owner = THIS_MODULE;
779                 adapter->ptp_caps.max_adj = 62499999;
780                 adapter->ptp_caps.n_ext_ts = 0;
781                 adapter->ptp_caps.pps = 0;
782                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
783                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
784                 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
785                 adapter->ptp_caps.settime = igb_ptp_settime_82576;
786                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
787                 adapter->cc.read = igb_ptp_read_82580;
788                 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
789                 adapter->cc.mult = 1;
790                 adapter->cc.shift = 0;
791                 /* Enable the timer functions by clearing bit 31. */
792                 wr32(E1000_TSAUXC, 0x0);
793                 break;
794         case e1000_i210:
795         case e1000_i211:
796                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
797                 adapter->ptp_caps.owner = THIS_MODULE;
798                 adapter->ptp_caps.max_adj = 62499999;
799                 adapter->ptp_caps.n_ext_ts = 0;
800                 adapter->ptp_caps.pps = 0;
801                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
802                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
803                 adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
804                 adapter->ptp_caps.settime = igb_ptp_settime_i210;
805                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
806                 /* Enable the timer functions by clearing bit 31. */
807                 wr32(E1000_TSAUXC, 0x0);
808                 break;
809         default:
810                 adapter->ptp_clock = NULL;
811                 return;
812         }
813
814         wrfl();
815
816         spin_lock_init(&adapter->tmreg_lock);
817         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
818
819         /* Initialize the clock and overflow work for devices that need it. */
820         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
821                 struct timespec ts = ktime_to_timespec(ktime_get_real());
822
823                 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
824         } else {
825                 timecounter_init(&adapter->tc, &adapter->cc,
826                                  ktime_to_ns(ktime_get_real()));
827
828                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
829                                   igb_ptp_overflow_check);
830
831                 schedule_delayed_work(&adapter->ptp_overflow_work,
832                                       IGB_SYSTIM_OVERFLOW_PERIOD);
833         }
834
835         /* Initialize the time sync interrupts for devices that support it. */
836         if (hw->mac.type >= e1000_82580) {
837                 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
838                 wr32(E1000_IMS, E1000_IMS_TS);
839         }
840
841         adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
842         adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
843
844         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
845                                                 &adapter->pdev->dev);
846         if (IS_ERR(adapter->ptp_clock)) {
847                 adapter->ptp_clock = NULL;
848                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
849         } else {
850                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
851                          adapter->netdev->name);
852                 adapter->flags |= IGB_FLAG_PTP;
853         }
854 }
855
856 /**
857  * igb_ptp_stop - Disable PTP device and stop the overflow check.
858  * @adapter: Board private structure.
859  *
860  * This function stops the PTP support and cancels the delayed work.
861  **/
862 void igb_ptp_stop(struct igb_adapter *adapter)
863 {
864         switch (adapter->hw.mac.type) {
865         case e1000_82576:
866         case e1000_82580:
867         case e1000_i354:
868         case e1000_i350:
869                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
870                 break;
871         case e1000_i210:
872         case e1000_i211:
873                 /* No delayed work to cancel. */
874                 break;
875         default:
876                 return;
877         }
878
879         cancel_work_sync(&adapter->ptp_tx_work);
880         if (adapter->ptp_tx_skb) {
881                 dev_kfree_skb_any(adapter->ptp_tx_skb);
882                 adapter->ptp_tx_skb = NULL;
883                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
884         }
885
886         if (adapter->ptp_clock) {
887                 ptp_clock_unregister(adapter->ptp_clock);
888                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
889                          adapter->netdev->name);
890                 adapter->flags &= ~IGB_FLAG_PTP;
891         }
892 }
893
894 /**
895  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
896  * @adapter: Board private structure.
897  *
898  * This function handles the reset work required to re-enable the PTP device.
899  **/
900 void igb_ptp_reset(struct igb_adapter *adapter)
901 {
902         struct e1000_hw *hw = &adapter->hw;
903
904         if (!(adapter->flags & IGB_FLAG_PTP))
905                 return;
906
907         /* reset the tstamp_config */
908         igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
909
910         switch (adapter->hw.mac.type) {
911         case e1000_82576:
912                 /* Dial the nominal frequency. */
913                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
914                 break;
915         case e1000_82580:
916         case e1000_i354:
917         case e1000_i350:
918         case e1000_i210:
919         case e1000_i211:
920                 /* Enable the timer functions and interrupts. */
921                 wr32(E1000_TSAUXC, 0x0);
922                 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
923                 wr32(E1000_IMS, E1000_IMS_TS);
924                 break;
925         default:
926                 /* No work to do. */
927                 return;
928         }
929
930         /* Re-initialize the timer. */
931         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
932                 struct timespec ts = ktime_to_timespec(ktime_get_real());
933
934                 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
935         } else {
936                 timecounter_init(&adapter->tc, &adapter->cc,
937                                  ktime_to_ns(ktime_get_real()));
938         }
939 }