Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[cascardo/linux.git] / drivers / net / ethernet / marvell / pxa168_eth.c
1 /*
2  * PXA168 ethernet driver.
3  * Most of the code is derived from mv643xx ethernet driver.
4  *
5  * Copyright (C) 2010 Marvell International Ltd.
6  *              Sachin Sanap <ssanap@marvell.com>
7  *              Zhangfei Gao <zgao6@marvell.com>
8  *              Philip Rakity <prakity@marvell.com>
9  *              Mark Brown <markb@marvell.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version 2
14  * of the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24
25 #include <linux/bitops.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/in.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/ip.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/of_net.h>
39 #include <linux/phy.h>
40 #include <linux/platform_device.h>
41 #include <linux/pxa168_eth.h>
42 #include <linux/tcp.h>
43 #include <linux/types.h>
44 #include <linux/udp.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/pgtable.h>
48 #include <asm/cacheflush.h>
49
50 #define DRIVER_NAME     "pxa168-eth"
51 #define DRIVER_VERSION  "0.3"
52
53 /*
54  * Registers
55  */
56
57 #define PHY_ADDRESS             0x0000
58 #define SMI                     0x0010
59 #define PORT_CONFIG             0x0400
60 #define PORT_CONFIG_EXT         0x0408
61 #define PORT_COMMAND            0x0410
62 #define PORT_STATUS             0x0418
63 #define HTPR                    0x0428
64 #define MAC_ADDR_LOW            0x0430
65 #define MAC_ADDR_HIGH           0x0438
66 #define SDMA_CONFIG             0x0440
67 #define SDMA_CMD                0x0448
68 #define INT_CAUSE               0x0450
69 #define INT_W_CLEAR             0x0454
70 #define INT_MASK                0x0458
71 #define ETH_F_RX_DESC_0         0x0480
72 #define ETH_C_RX_DESC_0         0x04A0
73 #define ETH_C_TX_DESC_1         0x04E4
74
75 /* smi register */
76 #define SMI_BUSY                (1 << 28)       /* 0 - Write, 1 - Read  */
77 #define SMI_R_VALID             (1 << 27)       /* 0 - Write, 1 - Read  */
78 #define SMI_OP_W                (0 << 26)       /* Write operation      */
79 #define SMI_OP_R                (1 << 26)       /* Read operation */
80
81 #define PHY_WAIT_ITERATIONS     10
82
83 #define PXA168_ETH_PHY_ADDR_DEFAULT     0
84 /* RX & TX descriptor command */
85 #define BUF_OWNED_BY_DMA        (1 << 31)
86
87 /* RX descriptor status */
88 #define RX_EN_INT               (1 << 23)
89 #define RX_FIRST_DESC           (1 << 17)
90 #define RX_LAST_DESC            (1 << 16)
91 #define RX_ERROR                (1 << 15)
92
93 /* TX descriptor command */
94 #define TX_EN_INT               (1 << 23)
95 #define TX_GEN_CRC              (1 << 22)
96 #define TX_ZERO_PADDING         (1 << 18)
97 #define TX_FIRST_DESC           (1 << 17)
98 #define TX_LAST_DESC            (1 << 16)
99 #define TX_ERROR                (1 << 15)
100
101 /* SDMA_CMD */
102 #define SDMA_CMD_AT             (1 << 31)
103 #define SDMA_CMD_TXDL           (1 << 24)
104 #define SDMA_CMD_TXDH           (1 << 23)
105 #define SDMA_CMD_AR             (1 << 15)
106 #define SDMA_CMD_ERD            (1 << 7)
107
108 /* Bit definitions of the Port Config Reg */
109 #define PCR_DUPLEX_FULL         (1 << 15)
110 #define PCR_HS                  (1 << 12)
111 #define PCR_EN                  (1 << 7)
112 #define PCR_PM                  (1 << 0)
113
114 /* Bit definitions of the Port Config Extend Reg */
115 #define PCXR_2BSM               (1 << 28)
116 #define PCXR_DSCP_EN            (1 << 21)
117 #define PCXR_RMII_EN            (1 << 20)
118 #define PCXR_AN_SPEED_DIS       (1 << 19)
119 #define PCXR_SPEED_100          (1 << 18)
120 #define PCXR_MFL_1518           (0 << 14)
121 #define PCXR_MFL_1536           (1 << 14)
122 #define PCXR_MFL_2048           (2 << 14)
123 #define PCXR_MFL_64K            (3 << 14)
124 #define PCXR_FLOWCTL_DIS        (1 << 12)
125 #define PCXR_FLP                (1 << 11)
126 #define PCXR_AN_FLOWCTL_DIS     (1 << 10)
127 #define PCXR_AN_DUPLEX_DIS      (1 << 9)
128 #define PCXR_PRIO_TX_OFF        3
129 #define PCXR_TX_HIGH_PRI        (7 << PCXR_PRIO_TX_OFF)
130
131 /* Bit definitions of the SDMA Config Reg */
132 #define SDCR_BSZ_OFF            12
133 #define SDCR_BSZ8               (3 << SDCR_BSZ_OFF)
134 #define SDCR_BSZ4               (2 << SDCR_BSZ_OFF)
135 #define SDCR_BSZ2               (1 << SDCR_BSZ_OFF)
136 #define SDCR_BSZ1               (0 << SDCR_BSZ_OFF)
137 #define SDCR_BLMR               (1 << 6)
138 #define SDCR_BLMT               (1 << 7)
139 #define SDCR_RIFB               (1 << 9)
140 #define SDCR_RC_OFF             2
141 #define SDCR_RC_MAX_RETRANS     (0xf << SDCR_RC_OFF)
142
143 /*
144  * Bit definitions of the Interrupt Cause Reg
145  * and Interrupt MASK Reg is the same
146  */
147 #define ICR_RXBUF               (1 << 0)
148 #define ICR_TXBUF_H             (1 << 2)
149 #define ICR_TXBUF_L             (1 << 3)
150 #define ICR_TXEND_H             (1 << 6)
151 #define ICR_TXEND_L             (1 << 7)
152 #define ICR_RXERR               (1 << 8)
153 #define ICR_TXERR_H             (1 << 10)
154 #define ICR_TXERR_L             (1 << 11)
155 #define ICR_TX_UDR              (1 << 13)
156 #define ICR_MII_CH              (1 << 28)
157
158 #define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
159                                 ICR_TXERR_H  | ICR_TXERR_L |\
160                                 ICR_TXEND_H  | ICR_TXEND_L |\
161                                 ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
162
163 #define ETH_HW_IP_ALIGN         2       /* hw aligns IP header */
164
165 #define NUM_RX_DESCS            64
166 #define NUM_TX_DESCS            64
167
168 #define HASH_ADD                0
169 #define HASH_DELETE             1
170 #define HASH_ADDR_TABLE_SIZE    0x4000  /* 16K (1/2K address - PCR_HS == 1) */
171 #define HOP_NUMBER              12
172
173 /* Bit definitions for Port status */
174 #define PORT_SPEED_100          (1 << 0)
175 #define FULL_DUPLEX             (1 << 1)
176 #define FLOW_CONTROL_DISABLED   (1 << 2)
177 #define LINK_UP                 (1 << 3)
178
179 /* Bit definitions for work to be done */
180 #define WORK_TX_DONE            (1 << 1)
181
182 /*
183  * Misc definitions.
184  */
185 #define SKB_DMA_REALIGN         ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
186
187 struct rx_desc {
188         u32 cmd_sts;            /* Descriptor command status            */
189         u16 byte_cnt;           /* Descriptor buffer byte count         */
190         u16 buf_size;           /* Buffer size                          */
191         u32 buf_ptr;            /* Descriptor buffer pointer            */
192         u32 next_desc_ptr;      /* Next descriptor pointer              */
193 };
194
195 struct tx_desc {
196         u32 cmd_sts;            /* Command/status field                 */
197         u16 reserved;
198         u16 byte_cnt;           /* buffer byte count                    */
199         u32 buf_ptr;            /* pointer to buffer for this descriptor */
200         u32 next_desc_ptr;      /* Pointer to next descriptor           */
201 };
202
203 struct pxa168_eth_private {
204         int port_num;           /* User Ethernet port number    */
205         int phy_addr;
206         int phy_speed;
207         int phy_duplex;
208         phy_interface_t phy_intf;
209
210         int rx_resource_err;    /* Rx ring resource error flag */
211
212         /* Next available and first returning Rx resource */
213         int rx_curr_desc_q, rx_used_desc_q;
214
215         /* Next available and first returning Tx resource */
216         int tx_curr_desc_q, tx_used_desc_q;
217
218         struct rx_desc *p_rx_desc_area;
219         dma_addr_t rx_desc_dma;
220         int rx_desc_area_size;
221         struct sk_buff **rx_skb;
222
223         struct tx_desc *p_tx_desc_area;
224         dma_addr_t tx_desc_dma;
225         int tx_desc_area_size;
226         struct sk_buff **tx_skb;
227
228         struct work_struct tx_timeout_task;
229
230         struct net_device *dev;
231         struct napi_struct napi;
232         u8 work_todo;
233         int skb_size;
234
235         /* Size of Tx Ring per queue */
236         int tx_ring_size;
237         /* Number of tx descriptors in use */
238         int tx_desc_count;
239         /* Size of Rx Ring per queue */
240         int rx_ring_size;
241         /* Number of rx descriptors in use */
242         int rx_desc_count;
243
244         /*
245          * Used in case RX Ring is empty, which can occur when
246          * system does not have resources (skb's)
247          */
248         struct timer_list timeout;
249         struct mii_bus *smi_bus;
250         struct phy_device *phy;
251
252         /* clock */
253         struct clk *clk;
254         struct pxa168_eth_platform_data *pd;
255         /*
256          * Ethernet controller base address.
257          */
258         void __iomem *base;
259
260         /* Pointer to the hardware address filter table */
261         void *htpr;
262         dma_addr_t htpr_dma;
263 };
264
265 struct addr_table_entry {
266         __le32 lo;
267         __le32 hi;
268 };
269
270 /* Bit fields of a Hash Table Entry */
271 enum hash_table_entry {
272         HASH_ENTRY_VALID = 1,
273         SKIP = 2,
274         HASH_ENTRY_RECEIVE_DISCARD = 4,
275         HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
276 };
277
278 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
279 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
280 static int pxa168_init_hw(struct pxa168_eth_private *pep);
281 static int pxa168_init_phy(struct net_device *dev);
282 static void eth_port_reset(struct net_device *dev);
283 static void eth_port_start(struct net_device *dev);
284 static int pxa168_eth_open(struct net_device *dev);
285 static int pxa168_eth_stop(struct net_device *dev);
286
287 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
288 {
289         return readl(pep->base + offset);
290 }
291
292 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
293 {
294         writel(data, pep->base + offset);
295 }
296
297 static void abort_dma(struct pxa168_eth_private *pep)
298 {
299         int delay;
300         int max_retries = 40;
301
302         do {
303                 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
304                 udelay(100);
305
306                 delay = 10;
307                 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
308                        && delay-- > 0) {
309                         udelay(10);
310                 }
311         } while (max_retries-- > 0 && delay <= 0);
312
313         if (max_retries <= 0)
314                 netdev_err(pep->dev, "%s : DMA Stuck\n", __func__);
315 }
316
317 static void rxq_refill(struct net_device *dev)
318 {
319         struct pxa168_eth_private *pep = netdev_priv(dev);
320         struct sk_buff *skb;
321         struct rx_desc *p_used_rx_desc;
322         int used_rx_desc;
323
324         while (pep->rx_desc_count < pep->rx_ring_size) {
325                 int size;
326
327                 skb = netdev_alloc_skb(dev, pep->skb_size);
328                 if (!skb)
329                         break;
330                 if (SKB_DMA_REALIGN)
331                         skb_reserve(skb, SKB_DMA_REALIGN);
332                 pep->rx_desc_count++;
333                 /* Get 'used' Rx descriptor */
334                 used_rx_desc = pep->rx_used_desc_q;
335                 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
336                 size = skb_end_pointer(skb) - skb->data;
337                 p_used_rx_desc->buf_ptr = dma_map_single(NULL,
338                                                          skb->data,
339                                                          size,
340                                                          DMA_FROM_DEVICE);
341                 p_used_rx_desc->buf_size = size;
342                 pep->rx_skb[used_rx_desc] = skb;
343
344                 /* Return the descriptor to DMA ownership */
345                 wmb();
346                 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
347                 wmb();
348
349                 /* Move the used descriptor pointer to the next descriptor */
350                 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
351
352                 /* Any Rx return cancels the Rx resource error status */
353                 pep->rx_resource_err = 0;
354
355                 skb_reserve(skb, ETH_HW_IP_ALIGN);
356         }
357
358         /*
359          * If RX ring is empty of SKB, set a timer to try allocating
360          * again at a later time.
361          */
362         if (pep->rx_desc_count == 0) {
363                 pep->timeout.expires = jiffies + (HZ / 10);
364                 add_timer(&pep->timeout);
365         }
366 }
367
368 static inline void rxq_refill_timer_wrapper(unsigned long data)
369 {
370         struct pxa168_eth_private *pep = (void *)data;
371         napi_schedule(&pep->napi);
372 }
373
374 static inline u8 flip_8_bits(u8 x)
375 {
376         return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
377             | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
378             | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
379             | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
380 }
381
382 static void nibble_swap_every_byte(unsigned char *mac_addr)
383 {
384         int i;
385         for (i = 0; i < ETH_ALEN; i++) {
386                 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
387                                 ((mac_addr[i] & 0xf0) >> 4);
388         }
389 }
390
391 static void inverse_every_nibble(unsigned char *mac_addr)
392 {
393         int i;
394         for (i = 0; i < ETH_ALEN; i++)
395                 mac_addr[i] = flip_8_bits(mac_addr[i]);
396 }
397
398 /*
399  * ----------------------------------------------------------------------------
400  * This function will calculate the hash function of the address.
401  * Inputs
402  * mac_addr_orig    - MAC address.
403  * Outputs
404  * return the calculated entry.
405  */
406 static u32 hash_function(unsigned char *mac_addr_orig)
407 {
408         u32 hash_result;
409         u32 addr0;
410         u32 addr1;
411         u32 addr2;
412         u32 addr3;
413         unsigned char mac_addr[ETH_ALEN];
414
415         /* Make a copy of MAC address since we are going to performe bit
416          * operations on it
417          */
418         memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
419
420         nibble_swap_every_byte(mac_addr);
421         inverse_every_nibble(mac_addr);
422
423         addr0 = (mac_addr[5] >> 2) & 0x3f;
424         addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
425         addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
426         addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
427
428         hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
429         hash_result = hash_result & 0x07ff;
430         return hash_result;
431 }
432
433 /*
434  * ----------------------------------------------------------------------------
435  * This function will add/del an entry to the address table.
436  * Inputs
437  * pep - ETHERNET .
438  * mac_addr - MAC address.
439  * skip - if 1, skip this address.Used in case of deleting an entry which is a
440  *        part of chain in the hash table.We can't just delete the entry since
441  *        that will break the chain.We need to defragment the tables time to
442  *        time.
443  * rd   - 0 Discard packet upon match.
444  *      - 1 Receive packet upon match.
445  * Outputs
446  * address table entry is added/deleted.
447  * 0 if success.
448  * -ENOSPC if table full
449  */
450 static int add_del_hash_entry(struct pxa168_eth_private *pep,
451                               unsigned char *mac_addr,
452                               u32 rd, u32 skip, int del)
453 {
454         struct addr_table_entry *entry, *start;
455         u32 new_high;
456         u32 new_low;
457         u32 i;
458
459         new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
460             | (((mac_addr[1] >> 0) & 0xf) << 11)
461             | (((mac_addr[0] >> 4) & 0xf) << 7)
462             | (((mac_addr[0] >> 0) & 0xf) << 3)
463             | (((mac_addr[3] >> 4) & 0x1) << 31)
464             | (((mac_addr[3] >> 0) & 0xf) << 27)
465             | (((mac_addr[2] >> 4) & 0xf) << 23)
466             | (((mac_addr[2] >> 0) & 0xf) << 19)
467             | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
468             | HASH_ENTRY_VALID;
469
470         new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
471             | (((mac_addr[5] >> 0) & 0xf) << 11)
472             | (((mac_addr[4] >> 4) & 0xf) << 7)
473             | (((mac_addr[4] >> 0) & 0xf) << 3)
474             | (((mac_addr[3] >> 5) & 0x7) << 0);
475
476         /*
477          * Pick the appropriate table, start scanning for free/reusable
478          * entries at the index obtained by hashing the specified MAC address
479          */
480         start = pep->htpr;
481         entry = start + hash_function(mac_addr);
482         for (i = 0; i < HOP_NUMBER; i++) {
483                 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
484                         break;
485                 } else {
486                         /* if same address put in same position */
487                         if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
488                                 (new_low & 0xfffffff8)) &&
489                                 (le32_to_cpu(entry->hi) == new_high)) {
490                                 break;
491                         }
492                 }
493                 if (entry == start + 0x7ff)
494                         entry = start;
495                 else
496                         entry++;
497         }
498
499         if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
500             (le32_to_cpu(entry->hi) != new_high) && del)
501                 return 0;
502
503         if (i == HOP_NUMBER) {
504                 if (!del) {
505                         netdev_info(pep->dev,
506                                     "%s: table section is full, need to "
507                                     "move to 16kB implementation?\n",
508                                     __FILE__);
509                         return -ENOSPC;
510                 } else
511                         return 0;
512         }
513
514         /*
515          * Update the selected entry
516          */
517         if (del) {
518                 entry->hi = 0;
519                 entry->lo = 0;
520         } else {
521                 entry->hi = cpu_to_le32(new_high);
522                 entry->lo = cpu_to_le32(new_low);
523         }
524
525         return 0;
526 }
527
528 /*
529  * ----------------------------------------------------------------------------
530  *  Create an addressTable entry from MAC address info
531  *  found in the specifed net_device struct
532  *
533  *  Input : pointer to ethernet interface network device structure
534  *  Output : N/A
535  */
536 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
537                                           unsigned char *oaddr,
538                                           unsigned char *addr)
539 {
540         /* Delete old entry */
541         if (oaddr)
542                 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
543         /* Add new entry */
544         add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
545 }
546
547 static int init_hash_table(struct pxa168_eth_private *pep)
548 {
549         /*
550          * Hardware expects CPU to build a hash table based on a predefined
551          * hash function and populate it based on hardware address. The
552          * location of the hash table is identified by 32-bit pointer stored
553          * in HTPR internal register. Two possible sizes exists for the hash
554          * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
555          * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
556          * 1/2kB.
557          */
558         /* TODO: Add support for 8kB hash table and alternative hash
559          * function.Driver can dynamically switch to them if the 1/2kB hash
560          * table is full.
561          */
562         if (pep->htpr == NULL) {
563                 pep->htpr = dma_zalloc_coherent(pep->dev->dev.parent,
564                                                 HASH_ADDR_TABLE_SIZE,
565                                                 &pep->htpr_dma, GFP_KERNEL);
566                 if (pep->htpr == NULL)
567                         return -ENOMEM;
568         } else {
569                 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
570         }
571         wrl(pep, HTPR, pep->htpr_dma);
572         return 0;
573 }
574
575 static void pxa168_eth_set_rx_mode(struct net_device *dev)
576 {
577         struct pxa168_eth_private *pep = netdev_priv(dev);
578         struct netdev_hw_addr *ha;
579         u32 val;
580
581         val = rdl(pep, PORT_CONFIG);
582         if (dev->flags & IFF_PROMISC)
583                 val |= PCR_PM;
584         else
585                 val &= ~PCR_PM;
586         wrl(pep, PORT_CONFIG, val);
587
588         /*
589          * Remove the old list of MAC address and add dev->addr
590          * and multicast address.
591          */
592         memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
593         update_hash_table_mac_address(pep, NULL, dev->dev_addr);
594
595         netdev_for_each_mc_addr(ha, dev)
596                 update_hash_table_mac_address(pep, NULL, ha->addr);
597 }
598
599 static void pxa168_eth_get_mac_address(struct net_device *dev,
600                                        unsigned char *addr)
601 {
602         struct pxa168_eth_private *pep = netdev_priv(dev);
603         unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH);
604         unsigned int mac_l = rdl(pep, MAC_ADDR_LOW);
605
606         addr[0] = (mac_h >> 24) & 0xff;
607         addr[1] = (mac_h >> 16) & 0xff;
608         addr[2] = (mac_h >> 8) & 0xff;
609         addr[3] = mac_h & 0xff;
610         addr[4] = (mac_l >> 8) & 0xff;
611         addr[5] = mac_l & 0xff;
612 }
613
614 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
615 {
616         struct sockaddr *sa = addr;
617         struct pxa168_eth_private *pep = netdev_priv(dev);
618         unsigned char oldMac[ETH_ALEN];
619         u32 mac_h, mac_l;
620
621         if (!is_valid_ether_addr(sa->sa_data))
622                 return -EADDRNOTAVAIL;
623         memcpy(oldMac, dev->dev_addr, ETH_ALEN);
624         memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
625
626         mac_h = dev->dev_addr[0] << 24;
627         mac_h |= dev->dev_addr[1] << 16;
628         mac_h |= dev->dev_addr[2] << 8;
629         mac_h |= dev->dev_addr[3];
630         mac_l = dev->dev_addr[4] << 8;
631         mac_l |= dev->dev_addr[5];
632         wrl(pep, MAC_ADDR_HIGH, mac_h);
633         wrl(pep, MAC_ADDR_LOW, mac_l);
634
635         netif_addr_lock_bh(dev);
636         update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
637         netif_addr_unlock_bh(dev);
638         return 0;
639 }
640
641 static void eth_port_start(struct net_device *dev)
642 {
643         unsigned int val = 0;
644         struct pxa168_eth_private *pep = netdev_priv(dev);
645         int tx_curr_desc, rx_curr_desc;
646
647         phy_start(pep->phy);
648
649         /* Assignment of Tx CTRP of given queue */
650         tx_curr_desc = pep->tx_curr_desc_q;
651         wrl(pep, ETH_C_TX_DESC_1,
652             (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
653
654         /* Assignment of Rx CRDP of given queue */
655         rx_curr_desc = pep->rx_curr_desc_q;
656         wrl(pep, ETH_C_RX_DESC_0,
657             (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
658
659         wrl(pep, ETH_F_RX_DESC_0,
660             (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
661
662         /* Clear all interrupts */
663         wrl(pep, INT_CAUSE, 0);
664
665         /* Enable all interrupts for receive, transmit and error. */
666         wrl(pep, INT_MASK, ALL_INTS);
667
668         val = rdl(pep, PORT_CONFIG);
669         val |= PCR_EN;
670         wrl(pep, PORT_CONFIG, val);
671
672         /* Start RX DMA engine */
673         val = rdl(pep, SDMA_CMD);
674         val |= SDMA_CMD_ERD;
675         wrl(pep, SDMA_CMD, val);
676 }
677
678 static void eth_port_reset(struct net_device *dev)
679 {
680         struct pxa168_eth_private *pep = netdev_priv(dev);
681         unsigned int val = 0;
682
683         /* Stop all interrupts for receive, transmit and error. */
684         wrl(pep, INT_MASK, 0);
685
686         /* Clear all interrupts */
687         wrl(pep, INT_CAUSE, 0);
688
689         /* Stop RX DMA */
690         val = rdl(pep, SDMA_CMD);
691         val &= ~SDMA_CMD_ERD;   /* abort dma command */
692
693         /* Abort any transmit and receive operations and put DMA
694          * in idle state.
695          */
696         abort_dma(pep);
697
698         /* Disable port */
699         val = rdl(pep, PORT_CONFIG);
700         val &= ~PCR_EN;
701         wrl(pep, PORT_CONFIG, val);
702
703         phy_stop(pep->phy);
704 }
705
706 /*
707  * txq_reclaim - Free the tx desc data for completed descriptors
708  * If force is non-zero, frees uncompleted descriptors as well
709  */
710 static int txq_reclaim(struct net_device *dev, int force)
711 {
712         struct pxa168_eth_private *pep = netdev_priv(dev);
713         struct tx_desc *desc;
714         u32 cmd_sts;
715         struct sk_buff *skb;
716         int tx_index;
717         dma_addr_t addr;
718         int count;
719         int released = 0;
720
721         netif_tx_lock(dev);
722
723         pep->work_todo &= ~WORK_TX_DONE;
724         while (pep->tx_desc_count > 0) {
725                 tx_index = pep->tx_used_desc_q;
726                 desc = &pep->p_tx_desc_area[tx_index];
727                 cmd_sts = desc->cmd_sts;
728                 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
729                         if (released > 0) {
730                                 goto txq_reclaim_end;
731                         } else {
732                                 released = -1;
733                                 goto txq_reclaim_end;
734                         }
735                 }
736                 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
737                 pep->tx_desc_count--;
738                 addr = desc->buf_ptr;
739                 count = desc->byte_cnt;
740                 skb = pep->tx_skb[tx_index];
741                 if (skb)
742                         pep->tx_skb[tx_index] = NULL;
743
744                 if (cmd_sts & TX_ERROR) {
745                         if (net_ratelimit())
746                                 netdev_err(dev, "Error in TX\n");
747                         dev->stats.tx_errors++;
748                 }
749                 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
750                 if (skb)
751                         dev_kfree_skb_irq(skb);
752                 released++;
753         }
754 txq_reclaim_end:
755         netif_tx_unlock(dev);
756         return released;
757 }
758
759 static void pxa168_eth_tx_timeout(struct net_device *dev)
760 {
761         struct pxa168_eth_private *pep = netdev_priv(dev);
762
763         netdev_info(dev, "TX timeout  desc_count %d\n", pep->tx_desc_count);
764
765         schedule_work(&pep->tx_timeout_task);
766 }
767
768 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
769 {
770         struct pxa168_eth_private *pep = container_of(work,
771                                                  struct pxa168_eth_private,
772                                                  tx_timeout_task);
773         struct net_device *dev = pep->dev;
774         pxa168_eth_stop(dev);
775         pxa168_eth_open(dev);
776 }
777
778 static int rxq_process(struct net_device *dev, int budget)
779 {
780         struct pxa168_eth_private *pep = netdev_priv(dev);
781         struct net_device_stats *stats = &dev->stats;
782         unsigned int received_packets = 0;
783         struct sk_buff *skb;
784
785         while (budget-- > 0) {
786                 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
787                 struct rx_desc *rx_desc;
788                 unsigned int cmd_sts;
789
790                 /* Do not process Rx ring in case of Rx ring resource error */
791                 if (pep->rx_resource_err)
792                         break;
793                 rx_curr_desc = pep->rx_curr_desc_q;
794                 rx_used_desc = pep->rx_used_desc_q;
795                 rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
796                 cmd_sts = rx_desc->cmd_sts;
797                 rmb();
798                 if (cmd_sts & (BUF_OWNED_BY_DMA))
799                         break;
800                 skb = pep->rx_skb[rx_curr_desc];
801                 pep->rx_skb[rx_curr_desc] = NULL;
802
803                 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
804                 pep->rx_curr_desc_q = rx_next_curr_desc;
805
806                 /* Rx descriptors exhausted. */
807                 /* Set the Rx ring resource error flag */
808                 if (rx_next_curr_desc == rx_used_desc)
809                         pep->rx_resource_err = 1;
810                 pep->rx_desc_count--;
811                 dma_unmap_single(NULL, rx_desc->buf_ptr,
812                                  rx_desc->buf_size,
813                                  DMA_FROM_DEVICE);
814                 received_packets++;
815                 /*
816                  * Update statistics.
817                  * Note byte count includes 4 byte CRC count
818                  */
819                 stats->rx_packets++;
820                 stats->rx_bytes += rx_desc->byte_cnt;
821                 /*
822                  * In case received a packet without first / last bits on OR
823                  * the error summary bit is on, the packets needs to be droped.
824                  */
825                 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
826                      (RX_FIRST_DESC | RX_LAST_DESC))
827                     || (cmd_sts & RX_ERROR)) {
828
829                         stats->rx_dropped++;
830                         if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
831                             (RX_FIRST_DESC | RX_LAST_DESC)) {
832                                 if (net_ratelimit())
833                                         netdev_err(dev,
834                                                    "Rx pkt on multiple desc\n");
835                         }
836                         if (cmd_sts & RX_ERROR)
837                                 stats->rx_errors++;
838                         dev_kfree_skb_irq(skb);
839                 } else {
840                         /*
841                          * The -4 is for the CRC in the trailer of the
842                          * received packet
843                          */
844                         skb_put(skb, rx_desc->byte_cnt - 4);
845                         skb->protocol = eth_type_trans(skb, dev);
846                         netif_receive_skb(skb);
847                 }
848         }
849         /* Fill RX ring with skb's */
850         rxq_refill(dev);
851         return received_packets;
852 }
853
854 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
855                                      struct net_device *dev)
856 {
857         u32 icr;
858         int ret = 0;
859
860         icr = rdl(pep, INT_CAUSE);
861         if (icr == 0)
862                 return IRQ_NONE;
863
864         wrl(pep, INT_CAUSE, ~icr);
865         if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
866                 pep->work_todo |= WORK_TX_DONE;
867                 ret = 1;
868         }
869         if (icr & ICR_RXBUF)
870                 ret = 1;
871         return ret;
872 }
873
874 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
875 {
876         struct net_device *dev = (struct net_device *)dev_id;
877         struct pxa168_eth_private *pep = netdev_priv(dev);
878
879         if (unlikely(!pxa168_eth_collect_events(pep, dev)))
880                 return IRQ_NONE;
881         /* Disable interrupts */
882         wrl(pep, INT_MASK, 0);
883         napi_schedule(&pep->napi);
884         return IRQ_HANDLED;
885 }
886
887 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
888 {
889         int skb_size;
890
891         /*
892          * Reserve 2+14 bytes for an ethernet header (the hardware
893          * automatically prepends 2 bytes of dummy data to each
894          * received packet), 16 bytes for up to four VLAN tags, and
895          * 4 bytes for the trailing FCS -- 36 bytes total.
896          */
897         skb_size = pep->dev->mtu + 36;
898
899         /*
900          * Make sure that the skb size is a multiple of 8 bytes, as
901          * the lower three bits of the receive descriptor's buffer
902          * size field are ignored by the hardware.
903          */
904         pep->skb_size = (skb_size + 7) & ~7;
905
906         /*
907          * If NET_SKB_PAD is smaller than a cache line,
908          * netdev_alloc_skb() will cause skb->data to be misaligned
909          * to a cache line boundary.  If this is the case, include
910          * some extra space to allow re-aligning the data area.
911          */
912         pep->skb_size += SKB_DMA_REALIGN;
913
914 }
915
916 static int set_port_config_ext(struct pxa168_eth_private *pep)
917 {
918         int skb_size;
919
920         pxa168_eth_recalc_skb_size(pep);
921         if  (pep->skb_size <= 1518)
922                 skb_size = PCXR_MFL_1518;
923         else if (pep->skb_size <= 1536)
924                 skb_size = PCXR_MFL_1536;
925         else if (pep->skb_size <= 2048)
926                 skb_size = PCXR_MFL_2048;
927         else
928                 skb_size = PCXR_MFL_64K;
929
930         /* Extended Port Configuration */
931         wrl(pep, PORT_CONFIG_EXT,
932             PCXR_AN_SPEED_DIS |          /* Disable HW AN */
933             PCXR_AN_DUPLEX_DIS |
934             PCXR_AN_FLOWCTL_DIS |
935             PCXR_2BSM |                  /* Two byte prefix aligns IP hdr */
936             PCXR_DSCP_EN |               /* Enable DSCP in IP */
937             skb_size | PCXR_FLP |        /* do not force link pass */
938             PCXR_TX_HIGH_PRI);           /* Transmit - high priority queue */
939
940         return 0;
941 }
942
943 static void pxa168_eth_adjust_link(struct net_device *dev)
944 {
945         struct pxa168_eth_private *pep = netdev_priv(dev);
946         struct phy_device *phy = pep->phy;
947         u32 cfg, cfg_o = rdl(pep, PORT_CONFIG);
948         u32 cfgext, cfgext_o = rdl(pep, PORT_CONFIG_EXT);
949
950         cfg = cfg_o & ~PCR_DUPLEX_FULL;
951         cfgext = cfgext_o & ~(PCXR_SPEED_100 | PCXR_FLOWCTL_DIS | PCXR_RMII_EN);
952
953         if (phy->interface == PHY_INTERFACE_MODE_RMII)
954                 cfgext |= PCXR_RMII_EN;
955         if (phy->speed == SPEED_100)
956                 cfgext |= PCXR_SPEED_100;
957         if (phy->duplex)
958                 cfg |= PCR_DUPLEX_FULL;
959         if (!phy->pause)
960                 cfgext |= PCXR_FLOWCTL_DIS;
961
962         /* Bail out if there has nothing changed */
963         if (cfg == cfg_o && cfgext == cfgext_o)
964                 return;
965
966         wrl(pep, PORT_CONFIG, cfg);
967         wrl(pep, PORT_CONFIG_EXT, cfgext);
968
969         phy_print_status(phy);
970 }
971
972 static int pxa168_init_phy(struct net_device *dev)
973 {
974         struct pxa168_eth_private *pep = netdev_priv(dev);
975         struct ethtool_cmd cmd;
976         int err;
977
978         if (pep->phy)
979                 return 0;
980
981         pep->phy = mdiobus_scan(pep->smi_bus, pep->phy_addr);
982         if (!pep->phy)
983                 return -ENODEV;
984
985         err = phy_connect_direct(dev, pep->phy, pxa168_eth_adjust_link,
986                                  pep->phy_intf);
987         if (err)
988                 return err;
989
990         err = pxa168_get_settings(dev, &cmd);
991         if (err)
992                 return err;
993
994         cmd.phy_address = pep->phy_addr;
995         cmd.speed = pep->phy_speed;
996         cmd.duplex = pep->phy_duplex;
997         cmd.advertising = PHY_BASIC_FEATURES;
998         cmd.autoneg = AUTONEG_ENABLE;
999
1000         if (cmd.speed != 0)
1001                 cmd.autoneg = AUTONEG_DISABLE;
1002
1003         return pxa168_set_settings(dev, &cmd);
1004 }
1005
1006 static int pxa168_init_hw(struct pxa168_eth_private *pep)
1007 {
1008         int err = 0;
1009
1010         /* Disable interrupts */
1011         wrl(pep, INT_MASK, 0);
1012         wrl(pep, INT_CAUSE, 0);
1013         /* Write to ICR to clear interrupts. */
1014         wrl(pep, INT_W_CLEAR, 0);
1015         /* Abort any transmit and receive operations and put DMA
1016          * in idle state.
1017          */
1018         abort_dma(pep);
1019         /* Initialize address hash table */
1020         err = init_hash_table(pep);
1021         if (err)
1022                 return err;
1023         /* SDMA configuration */
1024         wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |       /* Burst size = 32 bytes */
1025             SDCR_RIFB |                         /* Rx interrupt on frame */
1026             SDCR_BLMT |                         /* Little endian transmit */
1027             SDCR_BLMR |                         /* Little endian receive */
1028             SDCR_RC_MAX_RETRANS);               /* Max retransmit count */
1029         /* Port Configuration */
1030         wrl(pep, PORT_CONFIG, PCR_HS);          /* Hash size is 1/2kb */
1031         set_port_config_ext(pep);
1032
1033         return err;
1034 }
1035
1036 static int rxq_init(struct net_device *dev)
1037 {
1038         struct pxa168_eth_private *pep = netdev_priv(dev);
1039         struct rx_desc *p_rx_desc;
1040         int size = 0, i = 0;
1041         int rx_desc_num = pep->rx_ring_size;
1042
1043         /* Allocate RX skb rings */
1044         pep->rx_skb = kzalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1045                              GFP_KERNEL);
1046         if (!pep->rx_skb)
1047                 return -ENOMEM;
1048
1049         /* Allocate RX ring */
1050         pep->rx_desc_count = 0;
1051         size = pep->rx_ring_size * sizeof(struct rx_desc);
1052         pep->rx_desc_area_size = size;
1053         pep->p_rx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1054                                                   &pep->rx_desc_dma,
1055                                                   GFP_KERNEL);
1056         if (!pep->p_rx_desc_area)
1057                 goto out;
1058
1059         /* initialize the next_desc_ptr links in the Rx descriptors ring */
1060         p_rx_desc = pep->p_rx_desc_area;
1061         for (i = 0; i < rx_desc_num; i++) {
1062                 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1063                     ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1064         }
1065         /* Save Rx desc pointer to driver struct. */
1066         pep->rx_curr_desc_q = 0;
1067         pep->rx_used_desc_q = 0;
1068         pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1069         return 0;
1070 out:
1071         kfree(pep->rx_skb);
1072         return -ENOMEM;
1073 }
1074
1075 static void rxq_deinit(struct net_device *dev)
1076 {
1077         struct pxa168_eth_private *pep = netdev_priv(dev);
1078         int curr;
1079
1080         /* Free preallocated skb's on RX rings */
1081         for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1082                 if (pep->rx_skb[curr]) {
1083                         dev_kfree_skb(pep->rx_skb[curr]);
1084                         pep->rx_desc_count--;
1085                 }
1086         }
1087         if (pep->rx_desc_count)
1088                 netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n",
1089                            pep->rx_desc_count);
1090         /* Free RX ring */
1091         if (pep->p_rx_desc_area)
1092                 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1093                                   pep->p_rx_desc_area, pep->rx_desc_dma);
1094         kfree(pep->rx_skb);
1095 }
1096
1097 static int txq_init(struct net_device *dev)
1098 {
1099         struct pxa168_eth_private *pep = netdev_priv(dev);
1100         struct tx_desc *p_tx_desc;
1101         int size = 0, i = 0;
1102         int tx_desc_num = pep->tx_ring_size;
1103
1104         pep->tx_skb = kzalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1105                              GFP_KERNEL);
1106         if (!pep->tx_skb)
1107                 return -ENOMEM;
1108
1109         /* Allocate TX ring */
1110         pep->tx_desc_count = 0;
1111         size = pep->tx_ring_size * sizeof(struct tx_desc);
1112         pep->tx_desc_area_size = size;
1113         pep->p_tx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1114                                                   &pep->tx_desc_dma,
1115                                                   GFP_KERNEL);
1116         if (!pep->p_tx_desc_area)
1117                 goto out;
1118         /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1119         p_tx_desc = pep->p_tx_desc_area;
1120         for (i = 0; i < tx_desc_num; i++) {
1121                 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1122                     ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1123         }
1124         pep->tx_curr_desc_q = 0;
1125         pep->tx_used_desc_q = 0;
1126         pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1127         return 0;
1128 out:
1129         kfree(pep->tx_skb);
1130         return -ENOMEM;
1131 }
1132
1133 static void txq_deinit(struct net_device *dev)
1134 {
1135         struct pxa168_eth_private *pep = netdev_priv(dev);
1136
1137         /* Free outstanding skb's on TX ring */
1138         txq_reclaim(dev, 1);
1139         BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1140         /* Free TX ring */
1141         if (pep->p_tx_desc_area)
1142                 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1143                                   pep->p_tx_desc_area, pep->tx_desc_dma);
1144         kfree(pep->tx_skb);
1145 }
1146
1147 static int pxa168_eth_open(struct net_device *dev)
1148 {
1149         struct pxa168_eth_private *pep = netdev_priv(dev);
1150         int err;
1151
1152         err = pxa168_init_phy(dev);
1153         if (err)
1154                 return err;
1155
1156         err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1157         if (err) {
1158                 dev_err(&dev->dev, "can't assign irq\n");
1159                 return -EAGAIN;
1160         }
1161         pep->rx_resource_err = 0;
1162         err = rxq_init(dev);
1163         if (err != 0)
1164                 goto out_free_irq;
1165         err = txq_init(dev);
1166         if (err != 0)
1167                 goto out_free_rx_skb;
1168         pep->rx_used_desc_q = 0;
1169         pep->rx_curr_desc_q = 0;
1170
1171         /* Fill RX ring with skb's */
1172         rxq_refill(dev);
1173         pep->rx_used_desc_q = 0;
1174         pep->rx_curr_desc_q = 0;
1175         netif_carrier_off(dev);
1176         napi_enable(&pep->napi);
1177         eth_port_start(dev);
1178         return 0;
1179 out_free_rx_skb:
1180         rxq_deinit(dev);
1181 out_free_irq:
1182         free_irq(dev->irq, dev);
1183         return err;
1184 }
1185
1186 static int pxa168_eth_stop(struct net_device *dev)
1187 {
1188         struct pxa168_eth_private *pep = netdev_priv(dev);
1189         eth_port_reset(dev);
1190
1191         /* Disable interrupts */
1192         wrl(pep, INT_MASK, 0);
1193         wrl(pep, INT_CAUSE, 0);
1194         /* Write to ICR to clear interrupts. */
1195         wrl(pep, INT_W_CLEAR, 0);
1196         napi_disable(&pep->napi);
1197         del_timer_sync(&pep->timeout);
1198         netif_carrier_off(dev);
1199         free_irq(dev->irq, dev);
1200         rxq_deinit(dev);
1201         txq_deinit(dev);
1202
1203         return 0;
1204 }
1205
1206 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1207 {
1208         int retval;
1209         struct pxa168_eth_private *pep = netdev_priv(dev);
1210
1211         if ((mtu > 9500) || (mtu < 68))
1212                 return -EINVAL;
1213
1214         dev->mtu = mtu;
1215         retval = set_port_config_ext(pep);
1216
1217         if (!netif_running(dev))
1218                 return 0;
1219
1220         /*
1221          * Stop and then re-open the interface. This will allocate RX
1222          * skbs of the new MTU.
1223          * There is a possible danger that the open will not succeed,
1224          * due to memory being full.
1225          */
1226         pxa168_eth_stop(dev);
1227         if (pxa168_eth_open(dev)) {
1228                 dev_err(&dev->dev,
1229                         "fatal error on re-opening device after MTU change\n");
1230         }
1231
1232         return 0;
1233 }
1234
1235 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1236 {
1237         int tx_desc_curr;
1238
1239         tx_desc_curr = pep->tx_curr_desc_q;
1240         pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1241         BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1242         pep->tx_desc_count++;
1243
1244         return tx_desc_curr;
1245 }
1246
1247 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1248 {
1249         struct pxa168_eth_private *pep =
1250             container_of(napi, struct pxa168_eth_private, napi);
1251         struct net_device *dev = pep->dev;
1252         int work_done = 0;
1253
1254         /*
1255          * We call txq_reclaim every time since in NAPI interupts are disabled
1256          * and due to this we miss the TX_DONE interrupt,which is not updated in
1257          * interrupt status register.
1258          */
1259         txq_reclaim(dev, 0);
1260         if (netif_queue_stopped(dev)
1261             && pep->tx_ring_size - pep->tx_desc_count > 1) {
1262                 netif_wake_queue(dev);
1263         }
1264         work_done = rxq_process(dev, budget);
1265         if (work_done < budget) {
1266                 napi_complete(napi);
1267                 wrl(pep, INT_MASK, ALL_INTS);
1268         }
1269
1270         return work_done;
1271 }
1272
1273 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1274 {
1275         struct pxa168_eth_private *pep = netdev_priv(dev);
1276         struct net_device_stats *stats = &dev->stats;
1277         struct tx_desc *desc;
1278         int tx_index;
1279         int length;
1280
1281         tx_index = eth_alloc_tx_desc_index(pep);
1282         desc = &pep->p_tx_desc_area[tx_index];
1283         length = skb->len;
1284         pep->tx_skb[tx_index] = skb;
1285         desc->byte_cnt = length;
1286         desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1287
1288         skb_tx_timestamp(skb);
1289
1290         wmb();
1291         desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1292                         TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1293         wmb();
1294         wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1295
1296         stats->tx_bytes += length;
1297         stats->tx_packets++;
1298         dev->trans_start = jiffies;
1299         if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1300                 /* We handled the current skb, but now we are out of space.*/
1301                 netif_stop_queue(dev);
1302         }
1303
1304         return NETDEV_TX_OK;
1305 }
1306
1307 static int smi_wait_ready(struct pxa168_eth_private *pep)
1308 {
1309         int i = 0;
1310
1311         /* wait for the SMI register to become available */
1312         for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1313                 if (i == PHY_WAIT_ITERATIONS)
1314                         return -ETIMEDOUT;
1315                 msleep(10);
1316         }
1317
1318         return 0;
1319 }
1320
1321 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1322 {
1323         struct pxa168_eth_private *pep = bus->priv;
1324         int i = 0;
1325         int val;
1326
1327         if (smi_wait_ready(pep)) {
1328                 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1329                 return -ETIMEDOUT;
1330         }
1331         wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1332         /* now wait for the data to be valid */
1333         for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1334                 if (i == PHY_WAIT_ITERATIONS) {
1335                         netdev_warn(pep->dev,
1336                                     "pxa168_eth: SMI bus read not valid\n");
1337                         return -ENODEV;
1338                 }
1339                 msleep(10);
1340         }
1341
1342         return val & 0xffff;
1343 }
1344
1345 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1346                             u16 value)
1347 {
1348         struct pxa168_eth_private *pep = bus->priv;
1349
1350         if (smi_wait_ready(pep)) {
1351                 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1352                 return -ETIMEDOUT;
1353         }
1354
1355         wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1356             SMI_OP_W | (value & 0xffff));
1357
1358         if (smi_wait_ready(pep)) {
1359                 netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1360                 return -ETIMEDOUT;
1361         }
1362
1363         return 0;
1364 }
1365
1366 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1367                                int cmd)
1368 {
1369         struct pxa168_eth_private *pep = netdev_priv(dev);
1370         if (pep->phy != NULL)
1371                 return phy_mii_ioctl(pep->phy, ifr, cmd);
1372
1373         return -EOPNOTSUPP;
1374 }
1375
1376 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1377 {
1378         struct pxa168_eth_private *pep = netdev_priv(dev);
1379         int err;
1380
1381         err = phy_read_status(pep->phy);
1382         if (err == 0)
1383                 err = phy_ethtool_gset(pep->phy, cmd);
1384
1385         return err;
1386 }
1387
1388 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1389 {
1390         struct pxa168_eth_private *pep = netdev_priv(dev);
1391
1392         return phy_ethtool_sset(pep->phy, cmd);
1393 }
1394
1395 static void pxa168_get_drvinfo(struct net_device *dev,
1396                                struct ethtool_drvinfo *info)
1397 {
1398         strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1399         strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1400         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1401         strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1402 }
1403
1404 static const struct ethtool_ops pxa168_ethtool_ops = {
1405         .get_settings   = pxa168_get_settings,
1406         .set_settings   = pxa168_set_settings,
1407         .get_drvinfo    = pxa168_get_drvinfo,
1408         .get_link       = ethtool_op_get_link,
1409         .get_ts_info    = ethtool_op_get_ts_info,
1410 };
1411
1412 static const struct net_device_ops pxa168_eth_netdev_ops = {
1413         .ndo_open               = pxa168_eth_open,
1414         .ndo_stop               = pxa168_eth_stop,
1415         .ndo_start_xmit         = pxa168_eth_start_xmit,
1416         .ndo_set_rx_mode        = pxa168_eth_set_rx_mode,
1417         .ndo_set_mac_address    = pxa168_eth_set_mac_address,
1418         .ndo_validate_addr      = eth_validate_addr,
1419         .ndo_do_ioctl           = pxa168_eth_do_ioctl,
1420         .ndo_change_mtu         = pxa168_eth_change_mtu,
1421         .ndo_tx_timeout         = pxa168_eth_tx_timeout,
1422 };
1423
1424 static int pxa168_eth_probe(struct platform_device *pdev)
1425 {
1426         struct pxa168_eth_private *pep = NULL;
1427         struct net_device *dev = NULL;
1428         struct resource *res;
1429         struct clk *clk;
1430         struct device_node *np;
1431         const unsigned char *mac_addr = NULL;
1432         int err;
1433
1434         printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1435
1436         clk = devm_clk_get(&pdev->dev, NULL);
1437         if (IS_ERR(clk)) {
1438                 dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n");
1439                 return -ENODEV;
1440         }
1441         clk_prepare_enable(clk);
1442
1443         dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1444         if (!dev) {
1445                 err = -ENOMEM;
1446                 goto err_clk;
1447         }
1448
1449         platform_set_drvdata(pdev, dev);
1450         pep = netdev_priv(dev);
1451         pep->dev = dev;
1452         pep->clk = clk;
1453
1454         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1455         pep->base = devm_ioremap_resource(&pdev->dev, res);
1456         if (IS_ERR(pep->base)) {
1457                 err = -ENOMEM;
1458                 goto err_netdev;
1459         }
1460
1461         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1462         BUG_ON(!res);
1463         dev->irq = res->start;
1464         dev->netdev_ops = &pxa168_eth_netdev_ops;
1465         dev->watchdog_timeo = 2 * HZ;
1466         dev->base_addr = 0;
1467         dev->ethtool_ops = &pxa168_ethtool_ops;
1468
1469         INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1470
1471         if (pdev->dev.of_node)
1472                 mac_addr = of_get_mac_address(pdev->dev.of_node);
1473
1474         if (mac_addr && is_valid_ether_addr(mac_addr)) {
1475                 ether_addr_copy(dev->dev_addr, mac_addr);
1476         } else {
1477                 /* try reading the mac address, if set by the bootloader */
1478                 pxa168_eth_get_mac_address(dev, dev->dev_addr);
1479                 if (!is_valid_ether_addr(dev->dev_addr)) {
1480                         dev_info(&pdev->dev, "Using random mac address\n");
1481                         eth_hw_addr_random(dev);
1482                 }
1483         }
1484
1485         pep->rx_ring_size = NUM_RX_DESCS;
1486         pep->tx_ring_size = NUM_TX_DESCS;
1487
1488         pep->pd = dev_get_platdata(&pdev->dev);
1489         if (pep->pd) {
1490                 if (pep->pd->rx_queue_size)
1491                         pep->rx_ring_size = pep->pd->rx_queue_size;
1492
1493                 if (pep->pd->tx_queue_size)
1494                         pep->tx_ring_size = pep->pd->tx_queue_size;
1495
1496                 pep->port_num = pep->pd->port_number;
1497                 pep->phy_addr = pep->pd->phy_addr;
1498                 pep->phy_speed = pep->pd->speed;
1499                 pep->phy_duplex = pep->pd->duplex;
1500                 pep->phy_intf = pep->pd->intf;
1501
1502                 if (pep->pd->init)
1503                         pep->pd->init();
1504         } else if (pdev->dev.of_node) {
1505                 of_property_read_u32(pdev->dev.of_node, "port-id",
1506                                      &pep->port_num);
1507
1508                 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1509                 if (!np) {
1510                         dev_err(&pdev->dev, "missing phy-handle\n");
1511                         return -EINVAL;
1512                 }
1513                 of_property_read_u32(np, "reg", &pep->phy_addr);
1514                 pep->phy_intf = of_get_phy_mode(pdev->dev.of_node);
1515         }
1516
1517         /* Hardware supports only 3 ports */
1518         BUG_ON(pep->port_num > 2);
1519         netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1520
1521         memset(&pep->timeout, 0, sizeof(struct timer_list));
1522         init_timer(&pep->timeout);
1523         pep->timeout.function = rxq_refill_timer_wrapper;
1524         pep->timeout.data = (unsigned long)pep;
1525
1526         pep->smi_bus = mdiobus_alloc();
1527         if (pep->smi_bus == NULL) {
1528                 err = -ENOMEM;
1529                 goto err_base;
1530         }
1531         pep->smi_bus->priv = pep;
1532         pep->smi_bus->name = "pxa168_eth smi";
1533         pep->smi_bus->read = pxa168_smi_read;
1534         pep->smi_bus->write = pxa168_smi_write;
1535         snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1536                 pdev->name, pdev->id);
1537         pep->smi_bus->parent = &pdev->dev;
1538         pep->smi_bus->phy_mask = 0xffffffff;
1539         err = mdiobus_register(pep->smi_bus);
1540         if (err)
1541                 goto err_free_mdio;
1542
1543         SET_NETDEV_DEV(dev, &pdev->dev);
1544         pxa168_init_hw(pep);
1545         err = register_netdev(dev);
1546         if (err)
1547                 goto err_mdiobus;
1548         return 0;
1549
1550 err_mdiobus:
1551         mdiobus_unregister(pep->smi_bus);
1552 err_free_mdio:
1553         mdiobus_free(pep->smi_bus);
1554 err_base:
1555         iounmap(pep->base);
1556 err_netdev:
1557         free_netdev(dev);
1558 err_clk:
1559         clk_disable(clk);
1560         clk_put(clk);
1561         return err;
1562 }
1563
1564 static int pxa168_eth_remove(struct platform_device *pdev)
1565 {
1566         struct net_device *dev = platform_get_drvdata(pdev);
1567         struct pxa168_eth_private *pep = netdev_priv(dev);
1568
1569         if (pep->htpr) {
1570                 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1571                                   pep->htpr, pep->htpr_dma);
1572                 pep->htpr = NULL;
1573         }
1574         if (pep->phy)
1575                 phy_disconnect(pep->phy);
1576         if (pep->clk) {
1577                 clk_disable(pep->clk);
1578                 clk_put(pep->clk);
1579                 pep->clk = NULL;
1580         }
1581
1582         iounmap(pep->base);
1583         pep->base = NULL;
1584         mdiobus_unregister(pep->smi_bus);
1585         mdiobus_free(pep->smi_bus);
1586         unregister_netdev(dev);
1587         cancel_work_sync(&pep->tx_timeout_task);
1588         free_netdev(dev);
1589         return 0;
1590 }
1591
1592 static void pxa168_eth_shutdown(struct platform_device *pdev)
1593 {
1594         struct net_device *dev = platform_get_drvdata(pdev);
1595         eth_port_reset(dev);
1596 }
1597
1598 #ifdef CONFIG_PM
1599 static int pxa168_eth_resume(struct platform_device *pdev)
1600 {
1601         return -ENOSYS;
1602 }
1603
1604 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1605 {
1606         return -ENOSYS;
1607 }
1608
1609 #else
1610 #define pxa168_eth_resume NULL
1611 #define pxa168_eth_suspend NULL
1612 #endif
1613
1614 static const struct of_device_id pxa168_eth_of_match[] = {
1615         { .compatible = "marvell,pxa168-eth" },
1616         { },
1617 };
1618 MODULE_DEVICE_TABLE(of, pxa168_eth_of_match);
1619
1620 static struct platform_driver pxa168_eth_driver = {
1621         .probe = pxa168_eth_probe,
1622         .remove = pxa168_eth_remove,
1623         .shutdown = pxa168_eth_shutdown,
1624         .resume = pxa168_eth_resume,
1625         .suspend = pxa168_eth_suspend,
1626         .driver = {
1627                 .name           = DRIVER_NAME,
1628                 .of_match_table = of_match_ptr(pxa168_eth_of_match),
1629         },
1630 };
1631
1632 module_platform_driver(pxa168_eth_driver);
1633
1634 MODULE_LICENSE("GPL");
1635 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1636 MODULE_ALIAS("platform:pxa168_eth");