Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/cooloney...
[cascardo/linux.git] / drivers / net / ethernet / marvell / pxa168_eth.c
1 /*
2  * PXA168 ethernet driver.
3  * Most of the code is derived from mv643xx ethernet driver.
4  *
5  * Copyright (C) 2010 Marvell International Ltd.
6  *              Sachin Sanap <ssanap@marvell.com>
7  *              Zhangfei Gao <zgao6@marvell.com>
8  *              Philip Rakity <prakity@marvell.com>
9  *              Mark Brown <markb@marvell.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version 2
14  * of the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24
25 #include <linux/bitops.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/in.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/ip.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/of_net.h>
39 #include <linux/phy.h>
40 #include <linux/platform_device.h>
41 #include <linux/pxa168_eth.h>
42 #include <linux/tcp.h>
43 #include <linux/types.h>
44 #include <linux/udp.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/pgtable.h>
48 #include <asm/cacheflush.h>
49
50 #define DRIVER_NAME     "pxa168-eth"
51 #define DRIVER_VERSION  "0.3"
52
53 /*
54  * Registers
55  */
56
57 #define PHY_ADDRESS             0x0000
58 #define SMI                     0x0010
59 #define PORT_CONFIG             0x0400
60 #define PORT_CONFIG_EXT         0x0408
61 #define PORT_COMMAND            0x0410
62 #define PORT_STATUS             0x0418
63 #define HTPR                    0x0428
64 #define MAC_ADDR_LOW            0x0430
65 #define MAC_ADDR_HIGH           0x0438
66 #define SDMA_CONFIG             0x0440
67 #define SDMA_CMD                0x0448
68 #define INT_CAUSE               0x0450
69 #define INT_W_CLEAR             0x0454
70 #define INT_MASK                0x0458
71 #define ETH_F_RX_DESC_0         0x0480
72 #define ETH_C_RX_DESC_0         0x04A0
73 #define ETH_C_TX_DESC_1         0x04E4
74
75 /* smi register */
76 #define SMI_BUSY                (1 << 28)       /* 0 - Write, 1 - Read  */
77 #define SMI_R_VALID             (1 << 27)       /* 0 - Write, 1 - Read  */
78 #define SMI_OP_W                (0 << 26)       /* Write operation      */
79 #define SMI_OP_R                (1 << 26)       /* Read operation */
80
81 #define PHY_WAIT_ITERATIONS     10
82
83 #define PXA168_ETH_PHY_ADDR_DEFAULT     0
84 /* RX & TX descriptor command */
85 #define BUF_OWNED_BY_DMA        (1 << 31)
86
87 /* RX descriptor status */
88 #define RX_EN_INT               (1 << 23)
89 #define RX_FIRST_DESC           (1 << 17)
90 #define RX_LAST_DESC            (1 << 16)
91 #define RX_ERROR                (1 << 15)
92
93 /* TX descriptor command */
94 #define TX_EN_INT               (1 << 23)
95 #define TX_GEN_CRC              (1 << 22)
96 #define TX_ZERO_PADDING         (1 << 18)
97 #define TX_FIRST_DESC           (1 << 17)
98 #define TX_LAST_DESC            (1 << 16)
99 #define TX_ERROR                (1 << 15)
100
101 /* SDMA_CMD */
102 #define SDMA_CMD_AT             (1 << 31)
103 #define SDMA_CMD_TXDL           (1 << 24)
104 #define SDMA_CMD_TXDH           (1 << 23)
105 #define SDMA_CMD_AR             (1 << 15)
106 #define SDMA_CMD_ERD            (1 << 7)
107
108 /* Bit definitions of the Port Config Reg */
109 #define PCR_HS                  (1 << 12)
110 #define PCR_EN                  (1 << 7)
111 #define PCR_PM                  (1 << 0)
112
113 /* Bit definitions of the Port Config Extend Reg */
114 #define PCXR_2BSM               (1 << 28)
115 #define PCXR_DSCP_EN            (1 << 21)
116 #define PCXR_MFL_1518           (0 << 14)
117 #define PCXR_MFL_1536           (1 << 14)
118 #define PCXR_MFL_2048           (2 << 14)
119 #define PCXR_MFL_64K            (3 << 14)
120 #define PCXR_FLP                (1 << 11)
121 #define PCXR_PRIO_TX_OFF        3
122 #define PCXR_TX_HIGH_PRI        (7 << PCXR_PRIO_TX_OFF)
123
124 /* Bit definitions of the SDMA Config Reg */
125 #define SDCR_BSZ_OFF            12
126 #define SDCR_BSZ8               (3 << SDCR_BSZ_OFF)
127 #define SDCR_BSZ4               (2 << SDCR_BSZ_OFF)
128 #define SDCR_BSZ2               (1 << SDCR_BSZ_OFF)
129 #define SDCR_BSZ1               (0 << SDCR_BSZ_OFF)
130 #define SDCR_BLMR               (1 << 6)
131 #define SDCR_BLMT               (1 << 7)
132 #define SDCR_RIFB               (1 << 9)
133 #define SDCR_RC_OFF             2
134 #define SDCR_RC_MAX_RETRANS     (0xf << SDCR_RC_OFF)
135
136 /*
137  * Bit definitions of the Interrupt Cause Reg
138  * and Interrupt MASK Reg is the same
139  */
140 #define ICR_RXBUF               (1 << 0)
141 #define ICR_TXBUF_H             (1 << 2)
142 #define ICR_TXBUF_L             (1 << 3)
143 #define ICR_TXEND_H             (1 << 6)
144 #define ICR_TXEND_L             (1 << 7)
145 #define ICR_RXERR               (1 << 8)
146 #define ICR_TXERR_H             (1 << 10)
147 #define ICR_TXERR_L             (1 << 11)
148 #define ICR_TX_UDR              (1 << 13)
149 #define ICR_MII_CH              (1 << 28)
150
151 #define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
152                                 ICR_TXERR_H  | ICR_TXERR_L |\
153                                 ICR_TXEND_H  | ICR_TXEND_L |\
154                                 ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
155
156 #define ETH_HW_IP_ALIGN         2       /* hw aligns IP header */
157
158 #define NUM_RX_DESCS            64
159 #define NUM_TX_DESCS            64
160
161 #define HASH_ADD                0
162 #define HASH_DELETE             1
163 #define HASH_ADDR_TABLE_SIZE    0x4000  /* 16K (1/2K address - PCR_HS == 1) */
164 #define HOP_NUMBER              12
165
166 /* Bit definitions for Port status */
167 #define PORT_SPEED_100          (1 << 0)
168 #define FULL_DUPLEX             (1 << 1)
169 #define FLOW_CONTROL_DISABLED   (1 << 2)
170 #define LINK_UP                 (1 << 3)
171
172 /* Bit definitions for work to be done */
173 #define WORK_LINK               (1 << 0)
174 #define WORK_TX_DONE            (1 << 1)
175
176 /*
177  * Misc definitions.
178  */
179 #define SKB_DMA_REALIGN         ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
180
181 struct rx_desc {
182         u32 cmd_sts;            /* Descriptor command status            */
183         u16 byte_cnt;           /* Descriptor buffer byte count         */
184         u16 buf_size;           /* Buffer size                          */
185         u32 buf_ptr;            /* Descriptor buffer pointer            */
186         u32 next_desc_ptr;      /* Next descriptor pointer              */
187 };
188
189 struct tx_desc {
190         u32 cmd_sts;            /* Command/status field                 */
191         u16 reserved;
192         u16 byte_cnt;           /* buffer byte count                    */
193         u32 buf_ptr;            /* pointer to buffer for this descriptor */
194         u32 next_desc_ptr;      /* Pointer to next descriptor           */
195 };
196
197 struct pxa168_eth_private {
198         int port_num;           /* User Ethernet port number    */
199         int phy_addr;
200
201         int rx_resource_err;    /* Rx ring resource error flag */
202
203         /* Next available and first returning Rx resource */
204         int rx_curr_desc_q, rx_used_desc_q;
205
206         /* Next available and first returning Tx resource */
207         int tx_curr_desc_q, tx_used_desc_q;
208
209         struct rx_desc *p_rx_desc_area;
210         dma_addr_t rx_desc_dma;
211         int rx_desc_area_size;
212         struct sk_buff **rx_skb;
213
214         struct tx_desc *p_tx_desc_area;
215         dma_addr_t tx_desc_dma;
216         int tx_desc_area_size;
217         struct sk_buff **tx_skb;
218
219         struct work_struct tx_timeout_task;
220
221         struct net_device *dev;
222         struct napi_struct napi;
223         u8 work_todo;
224         int skb_size;
225
226         /* Size of Tx Ring per queue */
227         int tx_ring_size;
228         /* Number of tx descriptors in use */
229         int tx_desc_count;
230         /* Size of Rx Ring per queue */
231         int rx_ring_size;
232         /* Number of rx descriptors in use */
233         int rx_desc_count;
234
235         /*
236          * Used in case RX Ring is empty, which can occur when
237          * system does not have resources (skb's)
238          */
239         struct timer_list timeout;
240         struct mii_bus *smi_bus;
241         struct phy_device *phy;
242
243         /* clock */
244         struct clk *clk;
245         struct pxa168_eth_platform_data *pd;
246         /*
247          * Ethernet controller base address.
248          */
249         void __iomem *base;
250
251         /* Pointer to the hardware address filter table */
252         void *htpr;
253         dma_addr_t htpr_dma;
254 };
255
256 struct addr_table_entry {
257         __le32 lo;
258         __le32 hi;
259 };
260
261 /* Bit fields of a Hash Table Entry */
262 enum hash_table_entry {
263         HASH_ENTRY_VALID = 1,
264         SKIP = 2,
265         HASH_ENTRY_RECEIVE_DISCARD = 4,
266         HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
267 };
268
269 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
270 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
271 static int pxa168_init_hw(struct pxa168_eth_private *pep);
272 static void eth_port_reset(struct net_device *dev);
273 static void eth_port_start(struct net_device *dev);
274 static int pxa168_eth_open(struct net_device *dev);
275 static int pxa168_eth_stop(struct net_device *dev);
276 static int ethernet_phy_setup(struct net_device *dev);
277
278 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
279 {
280         return readl(pep->base + offset);
281 }
282
283 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
284 {
285         writel(data, pep->base + offset);
286 }
287
288 static void abort_dma(struct pxa168_eth_private *pep)
289 {
290         int delay;
291         int max_retries = 40;
292
293         do {
294                 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
295                 udelay(100);
296
297                 delay = 10;
298                 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
299                        && delay-- > 0) {
300                         udelay(10);
301                 }
302         } while (max_retries-- > 0 && delay <= 0);
303
304         if (max_retries <= 0)
305                 netdev_err(pep->dev, "%s : DMA Stuck\n", __func__);
306 }
307
308 static int ethernet_phy_get(struct pxa168_eth_private *pep)
309 {
310         unsigned int reg_data;
311
312         reg_data = rdl(pep, PHY_ADDRESS);
313
314         return (reg_data >> (5 * pep->port_num)) & 0x1f;
315 }
316
317 static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
318 {
319         u32 reg_data;
320         int addr_shift = 5 * pep->port_num;
321
322         reg_data = rdl(pep, PHY_ADDRESS);
323         reg_data &= ~(0x1f << addr_shift);
324         reg_data |= (phy_addr & 0x1f) << addr_shift;
325         wrl(pep, PHY_ADDRESS, reg_data);
326 }
327
328 static void rxq_refill(struct net_device *dev)
329 {
330         struct pxa168_eth_private *pep = netdev_priv(dev);
331         struct sk_buff *skb;
332         struct rx_desc *p_used_rx_desc;
333         int used_rx_desc;
334
335         while (pep->rx_desc_count < pep->rx_ring_size) {
336                 int size;
337
338                 skb = netdev_alloc_skb(dev, pep->skb_size);
339                 if (!skb)
340                         break;
341                 if (SKB_DMA_REALIGN)
342                         skb_reserve(skb, SKB_DMA_REALIGN);
343                 pep->rx_desc_count++;
344                 /* Get 'used' Rx descriptor */
345                 used_rx_desc = pep->rx_used_desc_q;
346                 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
347                 size = skb_end_pointer(skb) - skb->data;
348                 p_used_rx_desc->buf_ptr = dma_map_single(NULL,
349                                                          skb->data,
350                                                          size,
351                                                          DMA_FROM_DEVICE);
352                 p_used_rx_desc->buf_size = size;
353                 pep->rx_skb[used_rx_desc] = skb;
354
355                 /* Return the descriptor to DMA ownership */
356                 wmb();
357                 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
358                 wmb();
359
360                 /* Move the used descriptor pointer to the next descriptor */
361                 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
362
363                 /* Any Rx return cancels the Rx resource error status */
364                 pep->rx_resource_err = 0;
365
366                 skb_reserve(skb, ETH_HW_IP_ALIGN);
367         }
368
369         /*
370          * If RX ring is empty of SKB, set a timer to try allocating
371          * again at a later time.
372          */
373         if (pep->rx_desc_count == 0) {
374                 pep->timeout.expires = jiffies + (HZ / 10);
375                 add_timer(&pep->timeout);
376         }
377 }
378
379 static inline void rxq_refill_timer_wrapper(unsigned long data)
380 {
381         struct pxa168_eth_private *pep = (void *)data;
382         napi_schedule(&pep->napi);
383 }
384
385 static inline u8 flip_8_bits(u8 x)
386 {
387         return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
388             | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
389             | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
390             | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
391 }
392
393 static void nibble_swap_every_byte(unsigned char *mac_addr)
394 {
395         int i;
396         for (i = 0; i < ETH_ALEN; i++) {
397                 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
398                                 ((mac_addr[i] & 0xf0) >> 4);
399         }
400 }
401
402 static void inverse_every_nibble(unsigned char *mac_addr)
403 {
404         int i;
405         for (i = 0; i < ETH_ALEN; i++)
406                 mac_addr[i] = flip_8_bits(mac_addr[i]);
407 }
408
409 /*
410  * ----------------------------------------------------------------------------
411  * This function will calculate the hash function of the address.
412  * Inputs
413  * mac_addr_orig    - MAC address.
414  * Outputs
415  * return the calculated entry.
416  */
417 static u32 hash_function(unsigned char *mac_addr_orig)
418 {
419         u32 hash_result;
420         u32 addr0;
421         u32 addr1;
422         u32 addr2;
423         u32 addr3;
424         unsigned char mac_addr[ETH_ALEN];
425
426         /* Make a copy of MAC address since we are going to performe bit
427          * operations on it
428          */
429         memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
430
431         nibble_swap_every_byte(mac_addr);
432         inverse_every_nibble(mac_addr);
433
434         addr0 = (mac_addr[5] >> 2) & 0x3f;
435         addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
436         addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
437         addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
438
439         hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
440         hash_result = hash_result & 0x07ff;
441         return hash_result;
442 }
443
444 /*
445  * ----------------------------------------------------------------------------
446  * This function will add/del an entry to the address table.
447  * Inputs
448  * pep - ETHERNET .
449  * mac_addr - MAC address.
450  * skip - if 1, skip this address.Used in case of deleting an entry which is a
451  *        part of chain in the hash table.We can't just delete the entry since
452  *        that will break the chain.We need to defragment the tables time to
453  *        time.
454  * rd   - 0 Discard packet upon match.
455  *      - 1 Receive packet upon match.
456  * Outputs
457  * address table entry is added/deleted.
458  * 0 if success.
459  * -ENOSPC if table full
460  */
461 static int add_del_hash_entry(struct pxa168_eth_private *pep,
462                               unsigned char *mac_addr,
463                               u32 rd, u32 skip, int del)
464 {
465         struct addr_table_entry *entry, *start;
466         u32 new_high;
467         u32 new_low;
468         u32 i;
469
470         new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
471             | (((mac_addr[1] >> 0) & 0xf) << 11)
472             | (((mac_addr[0] >> 4) & 0xf) << 7)
473             | (((mac_addr[0] >> 0) & 0xf) << 3)
474             | (((mac_addr[3] >> 4) & 0x1) << 31)
475             | (((mac_addr[3] >> 0) & 0xf) << 27)
476             | (((mac_addr[2] >> 4) & 0xf) << 23)
477             | (((mac_addr[2] >> 0) & 0xf) << 19)
478             | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
479             | HASH_ENTRY_VALID;
480
481         new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
482             | (((mac_addr[5] >> 0) & 0xf) << 11)
483             | (((mac_addr[4] >> 4) & 0xf) << 7)
484             | (((mac_addr[4] >> 0) & 0xf) << 3)
485             | (((mac_addr[3] >> 5) & 0x7) << 0);
486
487         /*
488          * Pick the appropriate table, start scanning for free/reusable
489          * entries at the index obtained by hashing the specified MAC address
490          */
491         start = pep->htpr;
492         entry = start + hash_function(mac_addr);
493         for (i = 0; i < HOP_NUMBER; i++) {
494                 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
495                         break;
496                 } else {
497                         /* if same address put in same position */
498                         if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
499                                 (new_low & 0xfffffff8)) &&
500                                 (le32_to_cpu(entry->hi) == new_high)) {
501                                 break;
502                         }
503                 }
504                 if (entry == start + 0x7ff)
505                         entry = start;
506                 else
507                         entry++;
508         }
509
510         if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
511             (le32_to_cpu(entry->hi) != new_high) && del)
512                 return 0;
513
514         if (i == HOP_NUMBER) {
515                 if (!del) {
516                         netdev_info(pep->dev,
517                                     "%s: table section is full, need to "
518                                     "move to 16kB implementation?\n",
519                                     __FILE__);
520                         return -ENOSPC;
521                 } else
522                         return 0;
523         }
524
525         /*
526          * Update the selected entry
527          */
528         if (del) {
529                 entry->hi = 0;
530                 entry->lo = 0;
531         } else {
532                 entry->hi = cpu_to_le32(new_high);
533                 entry->lo = cpu_to_le32(new_low);
534         }
535
536         return 0;
537 }
538
539 /*
540  * ----------------------------------------------------------------------------
541  *  Create an addressTable entry from MAC address info
542  *  found in the specifed net_device struct
543  *
544  *  Input : pointer to ethernet interface network device structure
545  *  Output : N/A
546  */
547 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
548                                           unsigned char *oaddr,
549                                           unsigned char *addr)
550 {
551         /* Delete old entry */
552         if (oaddr)
553                 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
554         /* Add new entry */
555         add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
556 }
557
558 static int init_hash_table(struct pxa168_eth_private *pep)
559 {
560         /*
561          * Hardware expects CPU to build a hash table based on a predefined
562          * hash function and populate it based on hardware address. The
563          * location of the hash table is identified by 32-bit pointer stored
564          * in HTPR internal register. Two possible sizes exists for the hash
565          * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
566          * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
567          * 1/2kB.
568          */
569         /* TODO: Add support for 8kB hash table and alternative hash
570          * function.Driver can dynamically switch to them if the 1/2kB hash
571          * table is full.
572          */
573         if (pep->htpr == NULL) {
574                 pep->htpr = dma_zalloc_coherent(pep->dev->dev.parent,
575                                                 HASH_ADDR_TABLE_SIZE,
576                                                 &pep->htpr_dma, GFP_KERNEL);
577                 if (pep->htpr == NULL)
578                         return -ENOMEM;
579         } else {
580                 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
581         }
582         wrl(pep, HTPR, pep->htpr_dma);
583         return 0;
584 }
585
586 static void pxa168_eth_set_rx_mode(struct net_device *dev)
587 {
588         struct pxa168_eth_private *pep = netdev_priv(dev);
589         struct netdev_hw_addr *ha;
590         u32 val;
591
592         val = rdl(pep, PORT_CONFIG);
593         if (dev->flags & IFF_PROMISC)
594                 val |= PCR_PM;
595         else
596                 val &= ~PCR_PM;
597         wrl(pep, PORT_CONFIG, val);
598
599         /*
600          * Remove the old list of MAC address and add dev->addr
601          * and multicast address.
602          */
603         memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
604         update_hash_table_mac_address(pep, NULL, dev->dev_addr);
605
606         netdev_for_each_mc_addr(ha, dev)
607                 update_hash_table_mac_address(pep, NULL, ha->addr);
608 }
609
610 static void pxa168_eth_get_mac_address(struct net_device *dev,
611                                        unsigned char *addr)
612 {
613         struct pxa168_eth_private *pep = netdev_priv(dev);
614         unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH);
615         unsigned int mac_l = rdl(pep, MAC_ADDR_LOW);
616
617         addr[0] = (mac_h >> 24) & 0xff;
618         addr[1] = (mac_h >> 16) & 0xff;
619         addr[2] = (mac_h >> 8) & 0xff;
620         addr[3] = mac_h & 0xff;
621         addr[4] = (mac_l >> 8) & 0xff;
622         addr[5] = mac_l & 0xff;
623 }
624
625 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
626 {
627         struct sockaddr *sa = addr;
628         struct pxa168_eth_private *pep = netdev_priv(dev);
629         unsigned char oldMac[ETH_ALEN];
630         u32 mac_h, mac_l;
631
632         if (!is_valid_ether_addr(sa->sa_data))
633                 return -EADDRNOTAVAIL;
634         memcpy(oldMac, dev->dev_addr, ETH_ALEN);
635         memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
636
637         mac_h = dev->dev_addr[0] << 24;
638         mac_h |= dev->dev_addr[1] << 16;
639         mac_h |= dev->dev_addr[2] << 8;
640         mac_h |= dev->dev_addr[3];
641         mac_l = dev->dev_addr[4] << 8;
642         mac_l |= dev->dev_addr[5];
643         wrl(pep, MAC_ADDR_HIGH, mac_h);
644         wrl(pep, MAC_ADDR_LOW, mac_l);
645
646         netif_addr_lock_bh(dev);
647         update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
648         netif_addr_unlock_bh(dev);
649         return 0;
650 }
651
652 static void eth_port_start(struct net_device *dev)
653 {
654         unsigned int val = 0;
655         struct pxa168_eth_private *pep = netdev_priv(dev);
656         int tx_curr_desc, rx_curr_desc;
657
658         /* Perform PHY reset, if there is a PHY. */
659         if (pep->phy != NULL) {
660                 struct ethtool_cmd cmd;
661
662                 pxa168_get_settings(pep->dev, &cmd);
663                 phy_init_hw(pep->phy);
664                 pxa168_set_settings(pep->dev, &cmd);
665         }
666
667         /* Assignment of Tx CTRP of given queue */
668         tx_curr_desc = pep->tx_curr_desc_q;
669         wrl(pep, ETH_C_TX_DESC_1,
670             (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
671
672         /* Assignment of Rx CRDP of given queue */
673         rx_curr_desc = pep->rx_curr_desc_q;
674         wrl(pep, ETH_C_RX_DESC_0,
675             (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
676
677         wrl(pep, ETH_F_RX_DESC_0,
678             (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
679
680         /* Clear all interrupts */
681         wrl(pep, INT_CAUSE, 0);
682
683         /* Enable all interrupts for receive, transmit and error. */
684         wrl(pep, INT_MASK, ALL_INTS);
685
686         val = rdl(pep, PORT_CONFIG);
687         val |= PCR_EN;
688         wrl(pep, PORT_CONFIG, val);
689
690         /* Start RX DMA engine */
691         val = rdl(pep, SDMA_CMD);
692         val |= SDMA_CMD_ERD;
693         wrl(pep, SDMA_CMD, val);
694 }
695
696 static void eth_port_reset(struct net_device *dev)
697 {
698         struct pxa168_eth_private *pep = netdev_priv(dev);
699         unsigned int val = 0;
700
701         /* Stop all interrupts for receive, transmit and error. */
702         wrl(pep, INT_MASK, 0);
703
704         /* Clear all interrupts */
705         wrl(pep, INT_CAUSE, 0);
706
707         /* Stop RX DMA */
708         val = rdl(pep, SDMA_CMD);
709         val &= ~SDMA_CMD_ERD;   /* abort dma command */
710
711         /* Abort any transmit and receive operations and put DMA
712          * in idle state.
713          */
714         abort_dma(pep);
715
716         /* Disable port */
717         val = rdl(pep, PORT_CONFIG);
718         val &= ~PCR_EN;
719         wrl(pep, PORT_CONFIG, val);
720 }
721
722 /*
723  * txq_reclaim - Free the tx desc data for completed descriptors
724  * If force is non-zero, frees uncompleted descriptors as well
725  */
726 static int txq_reclaim(struct net_device *dev, int force)
727 {
728         struct pxa168_eth_private *pep = netdev_priv(dev);
729         struct tx_desc *desc;
730         u32 cmd_sts;
731         struct sk_buff *skb;
732         int tx_index;
733         dma_addr_t addr;
734         int count;
735         int released = 0;
736
737         netif_tx_lock(dev);
738
739         pep->work_todo &= ~WORK_TX_DONE;
740         while (pep->tx_desc_count > 0) {
741                 tx_index = pep->tx_used_desc_q;
742                 desc = &pep->p_tx_desc_area[tx_index];
743                 cmd_sts = desc->cmd_sts;
744                 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
745                         if (released > 0) {
746                                 goto txq_reclaim_end;
747                         } else {
748                                 released = -1;
749                                 goto txq_reclaim_end;
750                         }
751                 }
752                 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
753                 pep->tx_desc_count--;
754                 addr = desc->buf_ptr;
755                 count = desc->byte_cnt;
756                 skb = pep->tx_skb[tx_index];
757                 if (skb)
758                         pep->tx_skb[tx_index] = NULL;
759
760                 if (cmd_sts & TX_ERROR) {
761                         if (net_ratelimit())
762                                 netdev_err(dev, "Error in TX\n");
763                         dev->stats.tx_errors++;
764                 }
765                 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
766                 if (skb)
767                         dev_kfree_skb_irq(skb);
768                 released++;
769         }
770 txq_reclaim_end:
771         netif_tx_unlock(dev);
772         return released;
773 }
774
775 static void pxa168_eth_tx_timeout(struct net_device *dev)
776 {
777         struct pxa168_eth_private *pep = netdev_priv(dev);
778
779         netdev_info(dev, "TX timeout  desc_count %d\n", pep->tx_desc_count);
780
781         schedule_work(&pep->tx_timeout_task);
782 }
783
784 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
785 {
786         struct pxa168_eth_private *pep = container_of(work,
787                                                  struct pxa168_eth_private,
788                                                  tx_timeout_task);
789         struct net_device *dev = pep->dev;
790         pxa168_eth_stop(dev);
791         pxa168_eth_open(dev);
792 }
793
794 static int rxq_process(struct net_device *dev, int budget)
795 {
796         struct pxa168_eth_private *pep = netdev_priv(dev);
797         struct net_device_stats *stats = &dev->stats;
798         unsigned int received_packets = 0;
799         struct sk_buff *skb;
800
801         while (budget-- > 0) {
802                 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
803                 struct rx_desc *rx_desc;
804                 unsigned int cmd_sts;
805
806                 /* Do not process Rx ring in case of Rx ring resource error */
807                 if (pep->rx_resource_err)
808                         break;
809                 rx_curr_desc = pep->rx_curr_desc_q;
810                 rx_used_desc = pep->rx_used_desc_q;
811                 rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
812                 cmd_sts = rx_desc->cmd_sts;
813                 rmb();
814                 if (cmd_sts & (BUF_OWNED_BY_DMA))
815                         break;
816                 skb = pep->rx_skb[rx_curr_desc];
817                 pep->rx_skb[rx_curr_desc] = NULL;
818
819                 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
820                 pep->rx_curr_desc_q = rx_next_curr_desc;
821
822                 /* Rx descriptors exhausted. */
823                 /* Set the Rx ring resource error flag */
824                 if (rx_next_curr_desc == rx_used_desc)
825                         pep->rx_resource_err = 1;
826                 pep->rx_desc_count--;
827                 dma_unmap_single(NULL, rx_desc->buf_ptr,
828                                  rx_desc->buf_size,
829                                  DMA_FROM_DEVICE);
830                 received_packets++;
831                 /*
832                  * Update statistics.
833                  * Note byte count includes 4 byte CRC count
834                  */
835                 stats->rx_packets++;
836                 stats->rx_bytes += rx_desc->byte_cnt;
837                 /*
838                  * In case received a packet without first / last bits on OR
839                  * the error summary bit is on, the packets needs to be droped.
840                  */
841                 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
842                      (RX_FIRST_DESC | RX_LAST_DESC))
843                     || (cmd_sts & RX_ERROR)) {
844
845                         stats->rx_dropped++;
846                         if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
847                             (RX_FIRST_DESC | RX_LAST_DESC)) {
848                                 if (net_ratelimit())
849                                         netdev_err(dev,
850                                                    "Rx pkt on multiple desc\n");
851                         }
852                         if (cmd_sts & RX_ERROR)
853                                 stats->rx_errors++;
854                         dev_kfree_skb_irq(skb);
855                 } else {
856                         /*
857                          * The -4 is for the CRC in the trailer of the
858                          * received packet
859                          */
860                         skb_put(skb, rx_desc->byte_cnt - 4);
861                         skb->protocol = eth_type_trans(skb, dev);
862                         netif_receive_skb(skb);
863                 }
864         }
865         /* Fill RX ring with skb's */
866         rxq_refill(dev);
867         return received_packets;
868 }
869
870 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
871                                      struct net_device *dev)
872 {
873         u32 icr;
874         int ret = 0;
875
876         icr = rdl(pep, INT_CAUSE);
877         if (icr == 0)
878                 return IRQ_NONE;
879
880         wrl(pep, INT_CAUSE, ~icr);
881         if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
882                 pep->work_todo |= WORK_TX_DONE;
883                 ret = 1;
884         }
885         if (icr & ICR_RXBUF)
886                 ret = 1;
887         if (icr & ICR_MII_CH) {
888                 pep->work_todo |= WORK_LINK;
889                 ret = 1;
890         }
891         return ret;
892 }
893
894 static void handle_link_event(struct pxa168_eth_private *pep)
895 {
896         struct net_device *dev = pep->dev;
897         u32 port_status;
898         int speed;
899         int duplex;
900         int fc;
901
902         port_status = rdl(pep, PORT_STATUS);
903         if (!(port_status & LINK_UP)) {
904                 if (netif_carrier_ok(dev)) {
905                         netdev_info(dev, "link down\n");
906                         netif_carrier_off(dev);
907                         txq_reclaim(dev, 1);
908                 }
909                 return;
910         }
911         if (port_status & PORT_SPEED_100)
912                 speed = 100;
913         else
914                 speed = 10;
915
916         duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
917         fc = (port_status & FLOW_CONTROL_DISABLED) ? 0 : 1;
918         netdev_info(dev, "link up, %d Mb/s, %s duplex, flow control %sabled\n",
919                     speed, duplex ? "full" : "half", fc ? "en" : "dis");
920         if (!netif_carrier_ok(dev))
921                 netif_carrier_on(dev);
922 }
923
924 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
925 {
926         struct net_device *dev = (struct net_device *)dev_id;
927         struct pxa168_eth_private *pep = netdev_priv(dev);
928
929         if (unlikely(!pxa168_eth_collect_events(pep, dev)))
930                 return IRQ_NONE;
931         /* Disable interrupts */
932         wrl(pep, INT_MASK, 0);
933         napi_schedule(&pep->napi);
934         return IRQ_HANDLED;
935 }
936
937 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
938 {
939         int skb_size;
940
941         /*
942          * Reserve 2+14 bytes for an ethernet header (the hardware
943          * automatically prepends 2 bytes of dummy data to each
944          * received packet), 16 bytes for up to four VLAN tags, and
945          * 4 bytes for the trailing FCS -- 36 bytes total.
946          */
947         skb_size = pep->dev->mtu + 36;
948
949         /*
950          * Make sure that the skb size is a multiple of 8 bytes, as
951          * the lower three bits of the receive descriptor's buffer
952          * size field are ignored by the hardware.
953          */
954         pep->skb_size = (skb_size + 7) & ~7;
955
956         /*
957          * If NET_SKB_PAD is smaller than a cache line,
958          * netdev_alloc_skb() will cause skb->data to be misaligned
959          * to a cache line boundary.  If this is the case, include
960          * some extra space to allow re-aligning the data area.
961          */
962         pep->skb_size += SKB_DMA_REALIGN;
963
964 }
965
966 static int set_port_config_ext(struct pxa168_eth_private *pep)
967 {
968         int skb_size;
969
970         pxa168_eth_recalc_skb_size(pep);
971         if  (pep->skb_size <= 1518)
972                 skb_size = PCXR_MFL_1518;
973         else if (pep->skb_size <= 1536)
974                 skb_size = PCXR_MFL_1536;
975         else if (pep->skb_size <= 2048)
976                 skb_size = PCXR_MFL_2048;
977         else
978                 skb_size = PCXR_MFL_64K;
979
980         /* Extended Port Configuration */
981         wrl(pep,
982             PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
983             PCXR_DSCP_EN |               /* Enable DSCP in IP */
984             skb_size | PCXR_FLP |        /* do not force link pass */
985             PCXR_TX_HIGH_PRI);           /* Transmit - high priority queue */
986
987         return 0;
988 }
989
990 static int pxa168_init_hw(struct pxa168_eth_private *pep)
991 {
992         int err = 0;
993
994         /* Disable interrupts */
995         wrl(pep, INT_MASK, 0);
996         wrl(pep, INT_CAUSE, 0);
997         /* Write to ICR to clear interrupts. */
998         wrl(pep, INT_W_CLEAR, 0);
999         /* Abort any transmit and receive operations and put DMA
1000          * in idle state.
1001          */
1002         abort_dma(pep);
1003         /* Initialize address hash table */
1004         err = init_hash_table(pep);
1005         if (err)
1006                 return err;
1007         /* SDMA configuration */
1008         wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |       /* Burst size = 32 bytes */
1009             SDCR_RIFB |                         /* Rx interrupt on frame */
1010             SDCR_BLMT |                         /* Little endian transmit */
1011             SDCR_BLMR |                         /* Little endian receive */
1012             SDCR_RC_MAX_RETRANS);               /* Max retransmit count */
1013         /* Port Configuration */
1014         wrl(pep, PORT_CONFIG, PCR_HS);          /* Hash size is 1/2kb */
1015         set_port_config_ext(pep);
1016
1017         return err;
1018 }
1019
1020 static int rxq_init(struct net_device *dev)
1021 {
1022         struct pxa168_eth_private *pep = netdev_priv(dev);
1023         struct rx_desc *p_rx_desc;
1024         int size = 0, i = 0;
1025         int rx_desc_num = pep->rx_ring_size;
1026
1027         /* Allocate RX skb rings */
1028         pep->rx_skb = kzalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1029                              GFP_KERNEL);
1030         if (!pep->rx_skb)
1031                 return -ENOMEM;
1032
1033         /* Allocate RX ring */
1034         pep->rx_desc_count = 0;
1035         size = pep->rx_ring_size * sizeof(struct rx_desc);
1036         pep->rx_desc_area_size = size;
1037         pep->p_rx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1038                                                   &pep->rx_desc_dma,
1039                                                   GFP_KERNEL);
1040         if (!pep->p_rx_desc_area)
1041                 goto out;
1042
1043         /* initialize the next_desc_ptr links in the Rx descriptors ring */
1044         p_rx_desc = pep->p_rx_desc_area;
1045         for (i = 0; i < rx_desc_num; i++) {
1046                 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1047                     ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1048         }
1049         /* Save Rx desc pointer to driver struct. */
1050         pep->rx_curr_desc_q = 0;
1051         pep->rx_used_desc_q = 0;
1052         pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1053         return 0;
1054 out:
1055         kfree(pep->rx_skb);
1056         return -ENOMEM;
1057 }
1058
1059 static void rxq_deinit(struct net_device *dev)
1060 {
1061         struct pxa168_eth_private *pep = netdev_priv(dev);
1062         int curr;
1063
1064         /* Free preallocated skb's on RX rings */
1065         for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1066                 if (pep->rx_skb[curr]) {
1067                         dev_kfree_skb(pep->rx_skb[curr]);
1068                         pep->rx_desc_count--;
1069                 }
1070         }
1071         if (pep->rx_desc_count)
1072                 netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n",
1073                            pep->rx_desc_count);
1074         /* Free RX ring */
1075         if (pep->p_rx_desc_area)
1076                 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1077                                   pep->p_rx_desc_area, pep->rx_desc_dma);
1078         kfree(pep->rx_skb);
1079 }
1080
1081 static int txq_init(struct net_device *dev)
1082 {
1083         struct pxa168_eth_private *pep = netdev_priv(dev);
1084         struct tx_desc *p_tx_desc;
1085         int size = 0, i = 0;
1086         int tx_desc_num = pep->tx_ring_size;
1087
1088         pep->tx_skb = kzalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1089                              GFP_KERNEL);
1090         if (!pep->tx_skb)
1091                 return -ENOMEM;
1092
1093         /* Allocate TX ring */
1094         pep->tx_desc_count = 0;
1095         size = pep->tx_ring_size * sizeof(struct tx_desc);
1096         pep->tx_desc_area_size = size;
1097         pep->p_tx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1098                                                   &pep->tx_desc_dma,
1099                                                   GFP_KERNEL);
1100         if (!pep->p_tx_desc_area)
1101                 goto out;
1102         /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1103         p_tx_desc = pep->p_tx_desc_area;
1104         for (i = 0; i < tx_desc_num; i++) {
1105                 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1106                     ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1107         }
1108         pep->tx_curr_desc_q = 0;
1109         pep->tx_used_desc_q = 0;
1110         pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1111         return 0;
1112 out:
1113         kfree(pep->tx_skb);
1114         return -ENOMEM;
1115 }
1116
1117 static void txq_deinit(struct net_device *dev)
1118 {
1119         struct pxa168_eth_private *pep = netdev_priv(dev);
1120
1121         /* Free outstanding skb's on TX ring */
1122         txq_reclaim(dev, 1);
1123         BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1124         /* Free TX ring */
1125         if (pep->p_tx_desc_area)
1126                 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1127                                   pep->p_tx_desc_area, pep->tx_desc_dma);
1128         kfree(pep->tx_skb);
1129 }
1130
1131 static int pxa168_eth_open(struct net_device *dev)
1132 {
1133         struct pxa168_eth_private *pep = netdev_priv(dev);
1134         int err;
1135
1136         err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1137         if (err) {
1138                 dev_err(&dev->dev, "can't assign irq\n");
1139                 return -EAGAIN;
1140         }
1141         pep->rx_resource_err = 0;
1142         err = rxq_init(dev);
1143         if (err != 0)
1144                 goto out_free_irq;
1145         err = txq_init(dev);
1146         if (err != 0)
1147                 goto out_free_rx_skb;
1148         pep->rx_used_desc_q = 0;
1149         pep->rx_curr_desc_q = 0;
1150
1151         /* Fill RX ring with skb's */
1152         rxq_refill(dev);
1153         pep->rx_used_desc_q = 0;
1154         pep->rx_curr_desc_q = 0;
1155         netif_carrier_off(dev);
1156         eth_port_start(dev);
1157         napi_enable(&pep->napi);
1158         return 0;
1159 out_free_rx_skb:
1160         rxq_deinit(dev);
1161 out_free_irq:
1162         free_irq(dev->irq, dev);
1163         return err;
1164 }
1165
1166 static int pxa168_eth_stop(struct net_device *dev)
1167 {
1168         struct pxa168_eth_private *pep = netdev_priv(dev);
1169         eth_port_reset(dev);
1170
1171         /* Disable interrupts */
1172         wrl(pep, INT_MASK, 0);
1173         wrl(pep, INT_CAUSE, 0);
1174         /* Write to ICR to clear interrupts. */
1175         wrl(pep, INT_W_CLEAR, 0);
1176         napi_disable(&pep->napi);
1177         del_timer_sync(&pep->timeout);
1178         netif_carrier_off(dev);
1179         free_irq(dev->irq, dev);
1180         rxq_deinit(dev);
1181         txq_deinit(dev);
1182
1183         return 0;
1184 }
1185
1186 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1187 {
1188         int retval;
1189         struct pxa168_eth_private *pep = netdev_priv(dev);
1190
1191         if ((mtu > 9500) || (mtu < 68))
1192                 return -EINVAL;
1193
1194         dev->mtu = mtu;
1195         retval = set_port_config_ext(pep);
1196
1197         if (!netif_running(dev))
1198                 return 0;
1199
1200         /*
1201          * Stop and then re-open the interface. This will allocate RX
1202          * skbs of the new MTU.
1203          * There is a possible danger that the open will not succeed,
1204          * due to memory being full.
1205          */
1206         pxa168_eth_stop(dev);
1207         if (pxa168_eth_open(dev)) {
1208                 dev_err(&dev->dev,
1209                         "fatal error on re-opening device after MTU change\n");
1210         }
1211
1212         return 0;
1213 }
1214
1215 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1216 {
1217         int tx_desc_curr;
1218
1219         tx_desc_curr = pep->tx_curr_desc_q;
1220         pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1221         BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1222         pep->tx_desc_count++;
1223
1224         return tx_desc_curr;
1225 }
1226
1227 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1228 {
1229         struct pxa168_eth_private *pep =
1230             container_of(napi, struct pxa168_eth_private, napi);
1231         struct net_device *dev = pep->dev;
1232         int work_done = 0;
1233
1234         if (unlikely(pep->work_todo & WORK_LINK)) {
1235                 pep->work_todo &= ~(WORK_LINK);
1236                 handle_link_event(pep);
1237         }
1238         /*
1239          * We call txq_reclaim every time since in NAPI interupts are disabled
1240          * and due to this we miss the TX_DONE interrupt,which is not updated in
1241          * interrupt status register.
1242          */
1243         txq_reclaim(dev, 0);
1244         if (netif_queue_stopped(dev)
1245             && pep->tx_ring_size - pep->tx_desc_count > 1) {
1246                 netif_wake_queue(dev);
1247         }
1248         work_done = rxq_process(dev, budget);
1249         if (work_done < budget) {
1250                 napi_complete(napi);
1251                 wrl(pep, INT_MASK, ALL_INTS);
1252         }
1253
1254         return work_done;
1255 }
1256
1257 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1258 {
1259         struct pxa168_eth_private *pep = netdev_priv(dev);
1260         struct net_device_stats *stats = &dev->stats;
1261         struct tx_desc *desc;
1262         int tx_index;
1263         int length;
1264
1265         tx_index = eth_alloc_tx_desc_index(pep);
1266         desc = &pep->p_tx_desc_area[tx_index];
1267         length = skb->len;
1268         pep->tx_skb[tx_index] = skb;
1269         desc->byte_cnt = length;
1270         desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1271
1272         skb_tx_timestamp(skb);
1273
1274         wmb();
1275         desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1276                         TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1277         wmb();
1278         wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1279
1280         stats->tx_bytes += length;
1281         stats->tx_packets++;
1282         dev->trans_start = jiffies;
1283         if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1284                 /* We handled the current skb, but now we are out of space.*/
1285                 netif_stop_queue(dev);
1286         }
1287
1288         return NETDEV_TX_OK;
1289 }
1290
1291 static int smi_wait_ready(struct pxa168_eth_private *pep)
1292 {
1293         int i = 0;
1294
1295         /* wait for the SMI register to become available */
1296         for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1297                 if (i == PHY_WAIT_ITERATIONS)
1298                         return -ETIMEDOUT;
1299                 msleep(10);
1300         }
1301
1302         return 0;
1303 }
1304
1305 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1306 {
1307         struct pxa168_eth_private *pep = bus->priv;
1308         int i = 0;
1309         int val;
1310
1311         if (smi_wait_ready(pep)) {
1312                 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1313                 return -ETIMEDOUT;
1314         }
1315         wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1316         /* now wait for the data to be valid */
1317         for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1318                 if (i == PHY_WAIT_ITERATIONS) {
1319                         netdev_warn(pep->dev,
1320                                     "pxa168_eth: SMI bus read not valid\n");
1321                         return -ENODEV;
1322                 }
1323                 msleep(10);
1324         }
1325
1326         return val & 0xffff;
1327 }
1328
1329 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1330                             u16 value)
1331 {
1332         struct pxa168_eth_private *pep = bus->priv;
1333
1334         if (smi_wait_ready(pep)) {
1335                 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1336                 return -ETIMEDOUT;
1337         }
1338
1339         wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1340             SMI_OP_W | (value & 0xffff));
1341
1342         if (smi_wait_ready(pep)) {
1343                 netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1344                 return -ETIMEDOUT;
1345         }
1346
1347         return 0;
1348 }
1349
1350 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1351                                int cmd)
1352 {
1353         struct pxa168_eth_private *pep = netdev_priv(dev);
1354         if (pep->phy != NULL)
1355                 return phy_mii_ioctl(pep->phy, ifr, cmd);
1356
1357         return -EOPNOTSUPP;
1358 }
1359
1360 static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
1361 {
1362         struct mii_bus *bus = pep->smi_bus;
1363         struct phy_device *phydev;
1364         int start;
1365         int num;
1366         int i;
1367
1368         if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
1369                 /* Scan entire range */
1370                 start = ethernet_phy_get(pep);
1371                 num = 32;
1372         } else {
1373                 /* Use phy addr specific to platform */
1374                 start = phy_addr & 0x1f;
1375                 num = 1;
1376         }
1377         phydev = NULL;
1378         for (i = 0; i < num; i++) {
1379                 int addr = (start + i) & 0x1f;
1380                 if (bus->phy_map[addr] == NULL)
1381                         mdiobus_scan(bus, addr);
1382
1383                 if (phydev == NULL) {
1384                         phydev = bus->phy_map[addr];
1385                         if (phydev != NULL)
1386                                 ethernet_phy_set_addr(pep, addr);
1387                 }
1388         }
1389
1390         return phydev;
1391 }
1392
1393 static void phy_init(struct pxa168_eth_private *pep)
1394 {
1395         struct phy_device *phy = pep->phy;
1396
1397         phy_attach(pep->dev, dev_name(&phy->dev), PHY_INTERFACE_MODE_MII);
1398
1399         if (pep->pd && pep->pd->speed != 0) {
1400                 phy->autoneg = AUTONEG_DISABLE;
1401                 phy->advertising = 0;
1402                 phy->speed = pep->pd->speed;
1403                 phy->duplex = pep->pd->duplex;
1404         } else {
1405                 phy->autoneg = AUTONEG_ENABLE;
1406                 phy->speed = 0;
1407                 phy->duplex = 0;
1408                 phy->supported &= PHY_BASIC_FEATURES;
1409                 phy->advertising = phy->supported | ADVERTISED_Autoneg;
1410         }
1411
1412         phy_start_aneg(phy);
1413 }
1414
1415 static int ethernet_phy_setup(struct net_device *dev)
1416 {
1417         struct pxa168_eth_private *pep = netdev_priv(dev);
1418
1419         if (pep->pd && pep->pd->init)
1420                 pep->pd->init();
1421
1422         pep->phy = phy_scan(pep, pep->phy_addr & 0x1f);
1423         if (pep->phy != NULL)
1424                 phy_init(pep);
1425
1426         update_hash_table_mac_address(pep, NULL, dev->dev_addr);
1427
1428         return 0;
1429 }
1430
1431 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1432 {
1433         struct pxa168_eth_private *pep = netdev_priv(dev);
1434         int err;
1435
1436         err = phy_read_status(pep->phy);
1437         if (err == 0)
1438                 err = phy_ethtool_gset(pep->phy, cmd);
1439
1440         return err;
1441 }
1442
1443 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1444 {
1445         struct pxa168_eth_private *pep = netdev_priv(dev);
1446
1447         return phy_ethtool_sset(pep->phy, cmd);
1448 }
1449
1450 static void pxa168_get_drvinfo(struct net_device *dev,
1451                                struct ethtool_drvinfo *info)
1452 {
1453         strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1454         strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1455         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1456         strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1457 }
1458
1459 static const struct ethtool_ops pxa168_ethtool_ops = {
1460         .get_settings   = pxa168_get_settings,
1461         .set_settings   = pxa168_set_settings,
1462         .get_drvinfo    = pxa168_get_drvinfo,
1463         .get_link       = ethtool_op_get_link,
1464         .get_ts_info    = ethtool_op_get_ts_info,
1465 };
1466
1467 static const struct net_device_ops pxa168_eth_netdev_ops = {
1468         .ndo_open               = pxa168_eth_open,
1469         .ndo_stop               = pxa168_eth_stop,
1470         .ndo_start_xmit         = pxa168_eth_start_xmit,
1471         .ndo_set_rx_mode        = pxa168_eth_set_rx_mode,
1472         .ndo_set_mac_address    = pxa168_eth_set_mac_address,
1473         .ndo_validate_addr      = eth_validate_addr,
1474         .ndo_do_ioctl           = pxa168_eth_do_ioctl,
1475         .ndo_change_mtu         = pxa168_eth_change_mtu,
1476         .ndo_tx_timeout         = pxa168_eth_tx_timeout,
1477 };
1478
1479 static int pxa168_eth_probe(struct platform_device *pdev)
1480 {
1481         struct pxa168_eth_private *pep = NULL;
1482         struct net_device *dev = NULL;
1483         struct resource *res;
1484         struct clk *clk;
1485         struct device_node *np;
1486         const unsigned char *mac_addr = NULL;
1487         int err;
1488
1489         printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1490
1491         clk = devm_clk_get(&pdev->dev, NULL);
1492         if (IS_ERR(clk)) {
1493                 dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n");
1494                 return -ENODEV;
1495         }
1496         clk_prepare_enable(clk);
1497
1498         dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1499         if (!dev) {
1500                 err = -ENOMEM;
1501                 goto err_clk;
1502         }
1503
1504         platform_set_drvdata(pdev, dev);
1505         pep = netdev_priv(dev);
1506         pep->dev = dev;
1507         pep->clk = clk;
1508         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1509         if (res == NULL) {
1510                 err = -ENODEV;
1511                 goto err_netdev;
1512         }
1513         pep->base = devm_ioremap_resource(&pdev->dev, res);
1514         if (IS_ERR(pep->base)) {
1515                 err = -ENOMEM;
1516                 goto err_netdev;
1517         }
1518         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1519         BUG_ON(!res);
1520         dev->irq = res->start;
1521         dev->netdev_ops = &pxa168_eth_netdev_ops;
1522         dev->watchdog_timeo = 2 * HZ;
1523         dev->base_addr = 0;
1524         dev->ethtool_ops = &pxa168_ethtool_ops;
1525
1526         INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1527
1528         if (pdev->dev.of_node)
1529                 mac_addr = of_get_mac_address(pdev->dev.of_node);
1530
1531         if (mac_addr && is_valid_ether_addr(mac_addr)) {
1532                 ether_addr_copy(dev->dev_addr, mac_addr);
1533         } else {
1534                 /* try reading the mac address, if set by the bootloader */
1535                 pxa168_eth_get_mac_address(dev, dev->dev_addr);
1536                 if (!is_valid_ether_addr(dev->dev_addr)) {
1537                         dev_info(&pdev->dev, "Using random mac address\n");
1538                         eth_hw_addr_random(dev);
1539                 }
1540         }
1541
1542         pep->rx_ring_size = NUM_RX_DESCS;
1543         pep->tx_ring_size = NUM_TX_DESCS;
1544
1545         pep->pd = dev_get_platdata(&pdev->dev);
1546         if (pep->pd) {
1547                 if (pep->pd->rx_queue_size)
1548                         pep->rx_ring_size = pep->pd->rx_queue_size;
1549
1550                 if (pep->pd->tx_queue_size)
1551                         pep->tx_ring_size = pep->pd->tx_queue_size;
1552
1553                 pep->port_num = pep->pd->port_number;
1554                 pep->phy_addr = pep->pd->phy_addr;
1555         } else if (pdev->dev.of_node) {
1556                 of_property_read_u32(pdev->dev.of_node, "port-id",
1557                                      &pep->port_num);
1558
1559                 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1560                 if (np)
1561                         of_property_read_u32(np, "reg", &pep->phy_addr);
1562         }
1563
1564         /* Hardware supports only 3 ports */
1565         BUG_ON(pep->port_num > 2);
1566         netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1567
1568         memset(&pep->timeout, 0, sizeof(struct timer_list));
1569         init_timer(&pep->timeout);
1570         pep->timeout.function = rxq_refill_timer_wrapper;
1571         pep->timeout.data = (unsigned long)pep;
1572
1573         pep->smi_bus = mdiobus_alloc();
1574         if (pep->smi_bus == NULL) {
1575                 err = -ENOMEM;
1576                 goto err_base;
1577         }
1578         pep->smi_bus->priv = pep;
1579         pep->smi_bus->name = "pxa168_eth smi";
1580         pep->smi_bus->read = pxa168_smi_read;
1581         pep->smi_bus->write = pxa168_smi_write;
1582         snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1583                 pdev->name, pdev->id);
1584         pep->smi_bus->parent = &pdev->dev;
1585         pep->smi_bus->phy_mask = 0xffffffff;
1586         err = mdiobus_register(pep->smi_bus);
1587         if (err)
1588                 goto err_free_mdio;
1589
1590         pxa168_init_hw(pep);
1591         err = ethernet_phy_setup(dev);
1592         if (err)
1593                 goto err_mdiobus;
1594         SET_NETDEV_DEV(dev, &pdev->dev);
1595         err = register_netdev(dev);
1596         if (err)
1597                 goto err_mdiobus;
1598         return 0;
1599
1600 err_mdiobus:
1601         mdiobus_unregister(pep->smi_bus);
1602 err_free_mdio:
1603         mdiobus_free(pep->smi_bus);
1604 err_base:
1605         iounmap(pep->base);
1606 err_netdev:
1607         free_netdev(dev);
1608 err_clk:
1609         clk_disable(clk);
1610         clk_put(clk);
1611         return err;
1612 }
1613
1614 static int pxa168_eth_remove(struct platform_device *pdev)
1615 {
1616         struct net_device *dev = platform_get_drvdata(pdev);
1617         struct pxa168_eth_private *pep = netdev_priv(dev);
1618
1619         if (pep->htpr) {
1620                 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1621                                   pep->htpr, pep->htpr_dma);
1622                 pep->htpr = NULL;
1623         }
1624         if (pep->clk) {
1625                 clk_disable(pep->clk);
1626                 clk_put(pep->clk);
1627                 pep->clk = NULL;
1628         }
1629         if (pep->phy != NULL)
1630                 phy_detach(pep->phy);
1631
1632         iounmap(pep->base);
1633         pep->base = NULL;
1634         mdiobus_unregister(pep->smi_bus);
1635         mdiobus_free(pep->smi_bus);
1636         unregister_netdev(dev);
1637         cancel_work_sync(&pep->tx_timeout_task);
1638         free_netdev(dev);
1639         return 0;
1640 }
1641
1642 static void pxa168_eth_shutdown(struct platform_device *pdev)
1643 {
1644         struct net_device *dev = platform_get_drvdata(pdev);
1645         eth_port_reset(dev);
1646 }
1647
1648 #ifdef CONFIG_PM
1649 static int pxa168_eth_resume(struct platform_device *pdev)
1650 {
1651         return -ENOSYS;
1652 }
1653
1654 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1655 {
1656         return -ENOSYS;
1657 }
1658
1659 #else
1660 #define pxa168_eth_resume NULL
1661 #define pxa168_eth_suspend NULL
1662 #endif
1663
1664 static const struct of_device_id pxa168_eth_of_match[] = {
1665         { .compatible = "marvell,pxa168-eth" },
1666         { },
1667 };
1668 MODULE_DEVICE_TABLE(of, pxa168_eth_of_match);
1669
1670 static struct platform_driver pxa168_eth_driver = {
1671         .probe = pxa168_eth_probe,
1672         .remove = pxa168_eth_remove,
1673         .shutdown = pxa168_eth_shutdown,
1674         .resume = pxa168_eth_resume,
1675         .suspend = pxa168_eth_suspend,
1676         .driver = {
1677                 .name           = DRIVER_NAME,
1678                 .of_match_table = of_match_ptr(pxa168_eth_of_match),
1679         },
1680 };
1681
1682 module_platform_driver(pxa168_eth_driver);
1683
1684 MODULE_LICENSE("GPL");
1685 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1686 MODULE_ALIAS("platform:pxa168_eth");