343038ca047d7ed79369a271c0d13d6ca6b80567
[cascardo/linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #include <net/udp_tunnel.h>
28 #include <linux/ip.h>
29 #include <net/ipv6.h>
30 #include <net/tcp.h>
31 #include <linux/if_ether.h>
32 #include <linux/if_vlan.h>
33 #include <linux/pkt_sched.h>
34 #include <linux/ethtool.h>
35 #include <linux/in.h>
36 #include <linux/random.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/bitops.h>
39 #include <linux/qed/qede_roce.h>
40 #include "qede.h"
41
42 static char version[] =
43         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
44
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
52
53 static const struct qed_eth_ops *qed_ops;
54
55 #define CHIP_NUM_57980S_40              0x1634
56 #define CHIP_NUM_57980S_10              0x1666
57 #define CHIP_NUM_57980S_MF              0x1636
58 #define CHIP_NUM_57980S_100             0x1644
59 #define CHIP_NUM_57980S_50              0x1654
60 #define CHIP_NUM_57980S_25              0x1656
61 #define CHIP_NUM_57980S_IOV             0x1664
62
63 #ifndef PCI_DEVICE_ID_NX2_57980E
64 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
65 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
66 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
67 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
68 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
69 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
70 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
71 #endif
72
73 enum qede_pci_private {
74         QEDE_PRIVATE_PF,
75         QEDE_PRIVATE_VF
76 };
77
78 static const struct pci_device_id qede_pci_tbl[] = {
79         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85 #ifdef CONFIG_QED_SRIOV
86         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
87 #endif
88         { 0 }
89 };
90
91 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
92
93 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
94
95 #define TX_TIMEOUT              (5 * HZ)
96
97 static void qede_remove(struct pci_dev *pdev);
98 static int qede_alloc_rx_buffer(struct qede_dev *edev,
99                                 struct qede_rx_queue *rxq);
100 static void qede_link_update(void *dev, struct qed_link_output *link);
101
102 #ifdef CONFIG_QED_SRIOV
103 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
104                             __be16 vlan_proto)
105 {
106         struct qede_dev *edev = netdev_priv(ndev);
107
108         if (vlan > 4095) {
109                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
110                 return -EINVAL;
111         }
112
113         if (vlan_proto != htons(ETH_P_8021Q))
114                 return -EPROTONOSUPPORT;
115
116         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
117                    vlan, vf);
118
119         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
120 }
121
122 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
123 {
124         struct qede_dev *edev = netdev_priv(ndev);
125
126         DP_VERBOSE(edev, QED_MSG_IOV,
127                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
128                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
129
130         if (!is_valid_ether_addr(mac)) {
131                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
132                 return -EINVAL;
133         }
134
135         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
136 }
137
138 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
139 {
140         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
141         struct qed_dev_info *qed_info = &edev->dev_info.common;
142         int rc;
143
144         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
145
146         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
147
148         /* Enable/Disable Tx switching for PF */
149         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
150             qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
151                 struct qed_update_vport_params params;
152
153                 memset(&params, 0, sizeof(params));
154                 params.vport_id = 0;
155                 params.update_tx_switching_flg = 1;
156                 params.tx_switching_flg = num_vfs_param ? 1 : 0;
157                 edev->ops->vport_update(edev->cdev, &params);
158         }
159
160         return rc;
161 }
162 #endif
163
164 static struct pci_driver qede_pci_driver = {
165         .name = "qede",
166         .id_table = qede_pci_tbl,
167         .probe = qede_probe,
168         .remove = qede_remove,
169 #ifdef CONFIG_QED_SRIOV
170         .sriov_configure = qede_sriov_configure,
171 #endif
172 };
173
174 static void qede_force_mac(void *dev, u8 *mac)
175 {
176         struct qede_dev *edev = dev;
177
178         ether_addr_copy(edev->ndev->dev_addr, mac);
179         ether_addr_copy(edev->primary_mac, mac);
180 }
181
182 static struct qed_eth_cb_ops qede_ll_ops = {
183         {
184                 .link_update = qede_link_update,
185         },
186         .force_mac = qede_force_mac,
187 };
188
189 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
190                              void *ptr)
191 {
192         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
193         struct ethtool_drvinfo drvinfo;
194         struct qede_dev *edev;
195
196         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
197                 goto done;
198
199         /* Check whether this is a qede device */
200         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
201                 goto done;
202
203         memset(&drvinfo, 0, sizeof(drvinfo));
204         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
205         if (strcmp(drvinfo.driver, "qede"))
206                 goto done;
207         edev = netdev_priv(ndev);
208
209         switch (event) {
210         case NETDEV_CHANGENAME:
211                 /* Notify qed of the name change */
212                 if (!edev->ops || !edev->ops->common)
213                         goto done;
214                 edev->ops->common->set_id(edev->cdev, edev->ndev->name, "qede");
215                 break;
216         case NETDEV_CHANGEADDR:
217                 edev = netdev_priv(ndev);
218                 qede_roce_event_changeaddr(edev);
219                 break;
220         }
221
222 done:
223         return NOTIFY_DONE;
224 }
225
226 static struct notifier_block qede_netdev_notifier = {
227         .notifier_call = qede_netdev_event,
228 };
229
230 static
231 int __init qede_init(void)
232 {
233         int ret;
234
235         pr_info("qede_init: %s\n", version);
236
237         qed_ops = qed_get_eth_ops();
238         if (!qed_ops) {
239                 pr_notice("Failed to get qed ethtool operations\n");
240                 return -EINVAL;
241         }
242
243         /* Must register notifier before pci ops, since we might miss
244          * interface rename after pci probe and netdev registeration.
245          */
246         ret = register_netdevice_notifier(&qede_netdev_notifier);
247         if (ret) {
248                 pr_notice("Failed to register netdevice_notifier\n");
249                 qed_put_eth_ops();
250                 return -EINVAL;
251         }
252
253         ret = pci_register_driver(&qede_pci_driver);
254         if (ret) {
255                 pr_notice("Failed to register driver\n");
256                 unregister_netdevice_notifier(&qede_netdev_notifier);
257                 qed_put_eth_ops();
258                 return -EINVAL;
259         }
260
261         return 0;
262 }
263
264 static void __exit qede_cleanup(void)
265 {
266         if (debug & QED_LOG_INFO_MASK)
267                 pr_info("qede_cleanup called\n");
268
269         unregister_netdevice_notifier(&qede_netdev_notifier);
270         pci_unregister_driver(&qede_pci_driver);
271         qed_put_eth_ops();
272 }
273
274 module_init(qede_init);
275 module_exit(qede_cleanup);
276
277 /* -------------------------------------------------------------------------
278  * START OF FAST-PATH
279  * -------------------------------------------------------------------------
280  */
281
282 /* Unmap the data and free skb */
283 static int qede_free_tx_pkt(struct qede_dev *edev,
284                             struct qede_tx_queue *txq, int *len)
285 {
286         u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
287         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
288         struct eth_tx_1st_bd *first_bd;
289         struct eth_tx_bd *tx_data_bd;
290         int bds_consumed = 0;
291         int nbds;
292         bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
293         int i, split_bd_len = 0;
294
295         if (unlikely(!skb)) {
296                 DP_ERR(edev,
297                        "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
298                        idx, txq->sw_tx_cons, txq->sw_tx_prod);
299                 return -1;
300         }
301
302         *len = skb->len;
303
304         first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
305
306         bds_consumed++;
307
308         nbds = first_bd->data.nbds;
309
310         if (data_split) {
311                 struct eth_tx_bd *split = (struct eth_tx_bd *)
312                         qed_chain_consume(&txq->tx_pbl);
313                 split_bd_len = BD_UNMAP_LEN(split);
314                 bds_consumed++;
315         }
316         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
317                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
318
319         /* Unmap the data of the skb frags */
320         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
321                 tx_data_bd = (struct eth_tx_bd *)
322                         qed_chain_consume(&txq->tx_pbl);
323                 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
324                                BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
325         }
326
327         while (bds_consumed++ < nbds)
328                 qed_chain_consume(&txq->tx_pbl);
329
330         /* Free skb */
331         dev_kfree_skb_any(skb);
332         txq->sw_tx_ring[idx].skb = NULL;
333         txq->sw_tx_ring[idx].flags = 0;
334
335         return 0;
336 }
337
338 /* Unmap the data and free skb when mapping failed during start_xmit */
339 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
340                                     struct qede_tx_queue *txq,
341                                     struct eth_tx_1st_bd *first_bd,
342                                     int nbd, bool data_split)
343 {
344         u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
345         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
346         struct eth_tx_bd *tx_data_bd;
347         int i, split_bd_len = 0;
348
349         /* Return prod to its position before this skb was handled */
350         qed_chain_set_prod(&txq->tx_pbl,
351                            le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
352
353         first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
354
355         if (data_split) {
356                 struct eth_tx_bd *split = (struct eth_tx_bd *)
357                                           qed_chain_produce(&txq->tx_pbl);
358                 split_bd_len = BD_UNMAP_LEN(split);
359                 nbd--;
360         }
361
362         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
363                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
364
365         /* Unmap the data of the skb frags */
366         for (i = 0; i < nbd; i++) {
367                 tx_data_bd = (struct eth_tx_bd *)
368                         qed_chain_produce(&txq->tx_pbl);
369                 if (tx_data_bd->nbytes)
370                         dma_unmap_page(&edev->pdev->dev,
371                                        BD_UNMAP_ADDR(tx_data_bd),
372                                        BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
373         }
374
375         /* Return again prod to its position before this skb was handled */
376         qed_chain_set_prod(&txq->tx_pbl,
377                            le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
378
379         /* Free skb */
380         dev_kfree_skb_any(skb);
381         txq->sw_tx_ring[idx].skb = NULL;
382         txq->sw_tx_ring[idx].flags = 0;
383 }
384
385 static u32 qede_xmit_type(struct qede_dev *edev,
386                           struct sk_buff *skb, int *ipv6_ext)
387 {
388         u32 rc = XMIT_L4_CSUM;
389         __be16 l3_proto;
390
391         if (skb->ip_summed != CHECKSUM_PARTIAL)
392                 return XMIT_PLAIN;
393
394         l3_proto = vlan_get_protocol(skb);
395         if (l3_proto == htons(ETH_P_IPV6) &&
396             (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
397                 *ipv6_ext = 1;
398
399         if (skb->encapsulation)
400                 rc |= XMIT_ENC;
401
402         if (skb_is_gso(skb))
403                 rc |= XMIT_LSO;
404
405         return rc;
406 }
407
408 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
409                                          struct eth_tx_2nd_bd *second_bd,
410                                          struct eth_tx_3rd_bd *third_bd)
411 {
412         u8 l4_proto;
413         u16 bd2_bits1 = 0, bd2_bits2 = 0;
414
415         bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
416
417         bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
418                      ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
419                     << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
420
421         bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
422                       ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
423
424         if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
425                 l4_proto = ipv6_hdr(skb)->nexthdr;
426         else
427                 l4_proto = ip_hdr(skb)->protocol;
428
429         if (l4_proto == IPPROTO_UDP)
430                 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
431
432         if (third_bd)
433                 third_bd->data.bitfields |=
434                         cpu_to_le16(((tcp_hdrlen(skb) / 4) &
435                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
436                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
437
438         second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
439         second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
440 }
441
442 static int map_frag_to_bd(struct qede_dev *edev,
443                           skb_frag_t *frag, struct eth_tx_bd *bd)
444 {
445         dma_addr_t mapping;
446
447         /* Map skb non-linear frag data for DMA */
448         mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
449                                    skb_frag_size(frag), DMA_TO_DEVICE);
450         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
451                 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
452                 return -ENOMEM;
453         }
454
455         /* Setup the data pointer of the frag data */
456         BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
457
458         return 0;
459 }
460
461 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
462 {
463         if (is_encap_pkt)
464                 return (skb_inner_transport_header(skb) +
465                         inner_tcp_hdrlen(skb) - skb->data);
466         else
467                 return (skb_transport_header(skb) +
468                         tcp_hdrlen(skb) - skb->data);
469 }
470
471 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
472 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
473 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
474                              u8 xmit_type)
475 {
476         int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
477
478         if (xmit_type & XMIT_LSO) {
479                 int hlen;
480
481                 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
482
483                 /* linear payload would require its own BD */
484                 if (skb_headlen(skb) > hlen)
485                         allowed_frags--;
486         }
487
488         return (skb_shinfo(skb)->nr_frags > allowed_frags);
489 }
490 #endif
491
492 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
493 {
494         /* wmb makes sure that the BDs data is updated before updating the
495          * producer, otherwise FW may read old data from the BDs.
496          */
497         wmb();
498         barrier();
499         writel(txq->tx_db.raw, txq->doorbell_addr);
500
501         /* mmiowb is needed to synchronize doorbell writes from more than one
502          * processor. It guarantees that the write arrives to the device before
503          * the queue lock is released and another start_xmit is called (possibly
504          * on another CPU). Without this barrier, the next doorbell can bypass
505          * this doorbell. This is applicable to IA64/Altix systems.
506          */
507         mmiowb();
508 }
509
510 /* Main transmit function */
511 static netdev_tx_t qede_start_xmit(struct sk_buff *skb,
512                                    struct net_device *ndev)
513 {
514         struct qede_dev *edev = netdev_priv(ndev);
515         struct netdev_queue *netdev_txq;
516         struct qede_tx_queue *txq;
517         struct eth_tx_1st_bd *first_bd;
518         struct eth_tx_2nd_bd *second_bd = NULL;
519         struct eth_tx_3rd_bd *third_bd = NULL;
520         struct eth_tx_bd *tx_data_bd = NULL;
521         u16 txq_index;
522         u8 nbd = 0;
523         dma_addr_t mapping;
524         int rc, frag_idx = 0, ipv6_ext = 0;
525         u8 xmit_type;
526         u16 idx;
527         u16 hlen;
528         bool data_split = false;
529
530         /* Get tx-queue context and netdev index */
531         txq_index = skb_get_queue_mapping(skb);
532         WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
533         txq = QEDE_TX_QUEUE(edev, txq_index);
534         netdev_txq = netdev_get_tx_queue(ndev, txq_index);
535
536         WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
537
538         xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
539
540 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
541         if (qede_pkt_req_lin(edev, skb, xmit_type)) {
542                 if (skb_linearize(skb)) {
543                         DP_NOTICE(edev,
544                                   "SKB linearization failed - silently dropping this SKB\n");
545                         dev_kfree_skb_any(skb);
546                         return NETDEV_TX_OK;
547                 }
548         }
549 #endif
550
551         /* Fill the entry in the SW ring and the BDs in the FW ring */
552         idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
553         txq->sw_tx_ring[idx].skb = skb;
554         first_bd = (struct eth_tx_1st_bd *)
555                    qed_chain_produce(&txq->tx_pbl);
556         memset(first_bd, 0, sizeof(*first_bd));
557         first_bd->data.bd_flags.bitfields =
558                 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
559
560         /* Map skb linear data for DMA and set in the first BD */
561         mapping = dma_map_single(&edev->pdev->dev, skb->data,
562                                  skb_headlen(skb), DMA_TO_DEVICE);
563         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
564                 DP_NOTICE(edev, "SKB mapping failed\n");
565                 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
566                 qede_update_tx_producer(txq);
567                 return NETDEV_TX_OK;
568         }
569         nbd++;
570         BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
571
572         /* In case there is IPv6 with extension headers or LSO we need 2nd and
573          * 3rd BDs.
574          */
575         if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
576                 second_bd = (struct eth_tx_2nd_bd *)
577                         qed_chain_produce(&txq->tx_pbl);
578                 memset(second_bd, 0, sizeof(*second_bd));
579
580                 nbd++;
581                 third_bd = (struct eth_tx_3rd_bd *)
582                         qed_chain_produce(&txq->tx_pbl);
583                 memset(third_bd, 0, sizeof(*third_bd));
584
585                 nbd++;
586                 /* We need to fill in additional data in second_bd... */
587                 tx_data_bd = (struct eth_tx_bd *)second_bd;
588         }
589
590         if (skb_vlan_tag_present(skb)) {
591                 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
592                 first_bd->data.bd_flags.bitfields |=
593                         1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
594         }
595
596         /* Fill the parsing flags & params according to the requested offload */
597         if (xmit_type & XMIT_L4_CSUM) {
598                 /* We don't re-calculate IP checksum as it is already done by
599                  * the upper stack
600                  */
601                 first_bd->data.bd_flags.bitfields |=
602                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
603
604                 if (xmit_type & XMIT_ENC) {
605                         first_bd->data.bd_flags.bitfields |=
606                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
607                         first_bd->data.bitfields |=
608                             1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
609                 }
610
611                 /* Legacy FW had flipped behavior in regard to this bit -
612                  * I.e., needed to set to prevent FW from touching encapsulated
613                  * packets when it didn't need to.
614                  */
615                 if (unlikely(txq->is_legacy))
616                         first_bd->data.bitfields ^=
617                             1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
618
619                 /* If the packet is IPv6 with extension header, indicate that
620                  * to FW and pass few params, since the device cracker doesn't
621                  * support parsing IPv6 with extension header/s.
622                  */
623                 if (unlikely(ipv6_ext))
624                         qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
625         }
626
627         if (xmit_type & XMIT_LSO) {
628                 first_bd->data.bd_flags.bitfields |=
629                         (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
630                 third_bd->data.lso_mss =
631                         cpu_to_le16(skb_shinfo(skb)->gso_size);
632
633                 if (unlikely(xmit_type & XMIT_ENC)) {
634                         first_bd->data.bd_flags.bitfields |=
635                                 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
636                         hlen = qede_get_skb_hlen(skb, true);
637                 } else {
638                         first_bd->data.bd_flags.bitfields |=
639                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
640                         hlen = qede_get_skb_hlen(skb, false);
641                 }
642
643                 /* @@@TBD - if will not be removed need to check */
644                 third_bd->data.bitfields |=
645                         cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
646
647                 /* Make life easier for FW guys who can't deal with header and
648                  * data on same BD. If we need to split, use the second bd...
649                  */
650                 if (unlikely(skb_headlen(skb) > hlen)) {
651                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
652                                    "TSO split header size is %d (%x:%x)\n",
653                                    first_bd->nbytes, first_bd->addr.hi,
654                                    first_bd->addr.lo);
655
656                         mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
657                                            le32_to_cpu(first_bd->addr.lo)) +
658                                            hlen;
659
660                         BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
661                                               le16_to_cpu(first_bd->nbytes) -
662                                               hlen);
663
664                         /* this marks the BD as one that has no
665                          * individual mapping
666                          */
667                         txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
668
669                         first_bd->nbytes = cpu_to_le16(hlen);
670
671                         tx_data_bd = (struct eth_tx_bd *)third_bd;
672                         data_split = true;
673                 }
674         } else {
675                 first_bd->data.bitfields |=
676                     (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
677                     ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
678         }
679
680         /* Handle fragmented skb */
681         /* special handle for frags inside 2nd and 3rd bds.. */
682         while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
683                 rc = map_frag_to_bd(edev,
684                                     &skb_shinfo(skb)->frags[frag_idx],
685                                     tx_data_bd);
686                 if (rc) {
687                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
688                                                 data_split);
689                         qede_update_tx_producer(txq);
690                         return NETDEV_TX_OK;
691                 }
692
693                 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
694                         tx_data_bd = (struct eth_tx_bd *)third_bd;
695                 else
696                         tx_data_bd = NULL;
697
698                 frag_idx++;
699         }
700
701         /* map last frags into 4th, 5th .... */
702         for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
703                 tx_data_bd = (struct eth_tx_bd *)
704                              qed_chain_produce(&txq->tx_pbl);
705
706                 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
707
708                 rc = map_frag_to_bd(edev,
709                                     &skb_shinfo(skb)->frags[frag_idx],
710                                     tx_data_bd);
711                 if (rc) {
712                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
713                                                 data_split);
714                         qede_update_tx_producer(txq);
715                         return NETDEV_TX_OK;
716                 }
717         }
718
719         /* update the first BD with the actual num BDs */
720         first_bd->data.nbds = nbd;
721
722         netdev_tx_sent_queue(netdev_txq, skb->len);
723
724         skb_tx_timestamp(skb);
725
726         /* Advance packet producer only before sending the packet since mapping
727          * of pages may fail.
728          */
729         txq->sw_tx_prod++;
730
731         /* 'next page' entries are counted in the producer value */
732         txq->tx_db.data.bd_prod =
733                 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
734
735         if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
736                 qede_update_tx_producer(txq);
737
738         if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
739                       < (MAX_SKB_FRAGS + 1))) {
740                 if (skb->xmit_more)
741                         qede_update_tx_producer(txq);
742
743                 netif_tx_stop_queue(netdev_txq);
744                 txq->stopped_cnt++;
745                 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
746                            "Stop queue was called\n");
747                 /* paired memory barrier is in qede_tx_int(), we have to keep
748                  * ordering of set_bit() in netif_tx_stop_queue() and read of
749                  * fp->bd_tx_cons
750                  */
751                 smp_mb();
752
753                 if (qed_chain_get_elem_left(&txq->tx_pbl)
754                      >= (MAX_SKB_FRAGS + 1) &&
755                     (edev->state == QEDE_STATE_OPEN)) {
756                         netif_tx_wake_queue(netdev_txq);
757                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
758                                    "Wake queue was called\n");
759                 }
760         }
761
762         return NETDEV_TX_OK;
763 }
764
765 int qede_txq_has_work(struct qede_tx_queue *txq)
766 {
767         u16 hw_bd_cons;
768
769         /* Tell compiler that consumer and producer can change */
770         barrier();
771         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
772         if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
773                 return 0;
774
775         return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
776 }
777
778 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
779 {
780         struct netdev_queue *netdev_txq;
781         u16 hw_bd_cons;
782         unsigned int pkts_compl = 0, bytes_compl = 0;
783         int rc;
784
785         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
786
787         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
788         barrier();
789
790         while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
791                 int len = 0;
792
793                 rc = qede_free_tx_pkt(edev, txq, &len);
794                 if (rc) {
795                         DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
796                                   hw_bd_cons,
797                                   qed_chain_get_cons_idx(&txq->tx_pbl));
798                         break;
799                 }
800
801                 bytes_compl += len;
802                 pkts_compl++;
803                 txq->sw_tx_cons++;
804                 txq->xmit_pkts++;
805         }
806
807         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
808
809         /* Need to make the tx_bd_cons update visible to start_xmit()
810          * before checking for netif_tx_queue_stopped().  Without the
811          * memory barrier, there is a small possibility that
812          * start_xmit() will miss it and cause the queue to be stopped
813          * forever.
814          * On the other hand we need an rmb() here to ensure the proper
815          * ordering of bit testing in the following
816          * netif_tx_queue_stopped(txq) call.
817          */
818         smp_mb();
819
820         if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
821                 /* Taking tx_lock is needed to prevent reenabling the queue
822                  * while it's empty. This could have happen if rx_action() gets
823                  * suspended in qede_tx_int() after the condition before
824                  * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
825                  *
826                  * stops the queue->sees fresh tx_bd_cons->releases the queue->
827                  * sends some packets consuming the whole queue again->
828                  * stops the queue
829                  */
830
831                 __netif_tx_lock(netdev_txq, smp_processor_id());
832
833                 if ((netif_tx_queue_stopped(netdev_txq)) &&
834                     (edev->state == QEDE_STATE_OPEN) &&
835                     (qed_chain_get_elem_left(&txq->tx_pbl)
836                       >= (MAX_SKB_FRAGS + 1))) {
837                         netif_tx_wake_queue(netdev_txq);
838                         DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
839                                    "Wake queue was called\n");
840                 }
841
842                 __netif_tx_unlock(netdev_txq);
843         }
844
845         return 0;
846 }
847
848 bool qede_has_rx_work(struct qede_rx_queue *rxq)
849 {
850         u16 hw_comp_cons, sw_comp_cons;
851
852         /* Tell compiler that status block fields can change */
853         barrier();
854
855         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
856         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
857
858         return hw_comp_cons != sw_comp_cons;
859 }
860
861 static bool qede_has_tx_work(struct qede_fastpath *fp)
862 {
863         u8 tc;
864
865         for (tc = 0; tc < fp->edev->num_tc; tc++)
866                 if (qede_txq_has_work(&fp->txqs[tc]))
867                         return true;
868         return false;
869 }
870
871 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
872 {
873         qed_chain_consume(&rxq->rx_bd_ring);
874         rxq->sw_rx_cons++;
875 }
876
877 /* This function reuses the buffer(from an offset) from
878  * consumer index to producer index in the bd ring
879  */
880 static inline void qede_reuse_page(struct qede_dev *edev,
881                                    struct qede_rx_queue *rxq,
882                                    struct sw_rx_data *curr_cons)
883 {
884         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
885         struct sw_rx_data *curr_prod;
886         dma_addr_t new_mapping;
887
888         curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
889         *curr_prod = *curr_cons;
890
891         new_mapping = curr_prod->mapping + curr_prod->page_offset;
892
893         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
894         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
895
896         rxq->sw_rx_prod++;
897         curr_cons->data = NULL;
898 }
899
900 /* In case of allocation failures reuse buffers
901  * from consumer index to produce buffers for firmware
902  */
903 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
904                              struct qede_dev *edev, u8 count)
905 {
906         struct sw_rx_data *curr_cons;
907
908         for (; count > 0; count--) {
909                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
910                 qede_reuse_page(edev, rxq, curr_cons);
911                 qede_rx_bd_ring_consume(rxq);
912         }
913 }
914
915 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
916                                          struct qede_rx_queue *rxq,
917                                          struct sw_rx_data *curr_cons)
918 {
919         /* Move to the next segment in the page */
920         curr_cons->page_offset += rxq->rx_buf_seg_size;
921
922         if (curr_cons->page_offset == PAGE_SIZE) {
923                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
924                         /* Since we failed to allocate new buffer
925                          * current buffer can be used again.
926                          */
927                         curr_cons->page_offset -= rxq->rx_buf_seg_size;
928
929                         return -ENOMEM;
930                 }
931
932                 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
933                                PAGE_SIZE, DMA_FROM_DEVICE);
934         } else {
935                 /* Increment refcount of the page as we don't want
936                  * network stack to take the ownership of the page
937                  * which can be recycled multiple times by the driver.
938                  */
939                 page_ref_inc(curr_cons->data);
940                 qede_reuse_page(edev, rxq, curr_cons);
941         }
942
943         return 0;
944 }
945
946 static inline void qede_update_rx_prod(struct qede_dev *edev,
947                                        struct qede_rx_queue *rxq)
948 {
949         u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
950         u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
951         struct eth_rx_prod_data rx_prods = {0};
952
953         /* Update producers */
954         rx_prods.bd_prod = cpu_to_le16(bd_prod);
955         rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
956
957         /* Make sure that the BD and SGE data is updated before updating the
958          * producers since FW might read the BD/SGE right after the producer
959          * is updated.
960          */
961         wmb();
962
963         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
964                         (u32 *)&rx_prods);
965
966         /* mmiowb is needed to synchronize doorbell writes from more than one
967          * processor. It guarantees that the write arrives to the device before
968          * the napi lock is released and another qede_poll is called (possibly
969          * on another CPU). Without this barrier, the next doorbell can bypass
970          * this doorbell. This is applicable to IA64/Altix systems.
971          */
972         mmiowb();
973 }
974
975 static u32 qede_get_rxhash(struct qede_dev *edev,
976                            u8 bitfields,
977                            __le32 rss_hash, enum pkt_hash_types *rxhash_type)
978 {
979         enum rss_hash_type htype;
980
981         htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
982
983         if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
984                 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
985                                 (htype == RSS_HASH_TYPE_IPV6)) ?
986                                 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
987                 return le32_to_cpu(rss_hash);
988         }
989         *rxhash_type = PKT_HASH_TYPE_NONE;
990         return 0;
991 }
992
993 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
994 {
995         skb_checksum_none_assert(skb);
996
997         if (csum_flag & QEDE_CSUM_UNNECESSARY)
998                 skb->ip_summed = CHECKSUM_UNNECESSARY;
999
1000         if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
1001                 skb->csum_level = 1;
1002 }
1003
1004 static inline void qede_skb_receive(struct qede_dev *edev,
1005                                     struct qede_fastpath *fp,
1006                                     struct sk_buff *skb, u16 vlan_tag)
1007 {
1008         if (vlan_tag)
1009                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1010
1011         napi_gro_receive(&fp->napi, skb);
1012 }
1013
1014 static void qede_set_gro_params(struct qede_dev *edev,
1015                                 struct sk_buff *skb,
1016                                 struct eth_fast_path_rx_tpa_start_cqe *cqe)
1017 {
1018         u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1019
1020         if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1021             PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1022                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1023         else
1024                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1025
1026         skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1027                                         cqe->header_len;
1028 }
1029
1030 static int qede_fill_frag_skb(struct qede_dev *edev,
1031                               struct qede_rx_queue *rxq,
1032                               u8 tpa_agg_index, u16 len_on_bd)
1033 {
1034         struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1035                                                          NUM_RX_BDS_MAX];
1036         struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1037         struct sk_buff *skb = tpa_info->skb;
1038
1039         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1040                 goto out;
1041
1042         /* Add one frag and update the appropriate fields in the skb */
1043         skb_fill_page_desc(skb, tpa_info->frag_id++,
1044                            current_bd->data, current_bd->page_offset,
1045                            len_on_bd);
1046
1047         if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1048                 /* Incr page ref count to reuse on allocation failure
1049                  * so that it doesn't get freed while freeing SKB.
1050                  */
1051                 page_ref_inc(current_bd->data);
1052                 goto out;
1053         }
1054
1055         qed_chain_consume(&rxq->rx_bd_ring);
1056         rxq->sw_rx_cons++;
1057
1058         skb->data_len += len_on_bd;
1059         skb->truesize += rxq->rx_buf_seg_size;
1060         skb->len += len_on_bd;
1061
1062         return 0;
1063
1064 out:
1065         tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1066         qede_recycle_rx_bd_ring(rxq, edev, 1);
1067         return -ENOMEM;
1068 }
1069
1070 static void qede_tpa_start(struct qede_dev *edev,
1071                            struct qede_rx_queue *rxq,
1072                            struct eth_fast_path_rx_tpa_start_cqe *cqe)
1073 {
1074         struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1075         struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1076         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1077         struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1078         dma_addr_t mapping = tpa_info->replace_buf_mapping;
1079         struct sw_rx_data *sw_rx_data_cons;
1080         struct sw_rx_data *sw_rx_data_prod;
1081         enum pkt_hash_types rxhash_type;
1082         u32 rxhash;
1083
1084         sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1085         sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1086
1087         /* Use pre-allocated replacement buffer - we can't release the agg.
1088          * start until its over and we don't want to risk allocation failing
1089          * here, so re-allocate when aggregation will be over.
1090          */
1091         sw_rx_data_prod->mapping = replace_buf->mapping;
1092
1093         sw_rx_data_prod->data = replace_buf->data;
1094         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1095         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1096         sw_rx_data_prod->page_offset = replace_buf->page_offset;
1097
1098         rxq->sw_rx_prod++;
1099
1100         /* move partial skb from cons to pool (don't unmap yet)
1101          * save mapping, incase we drop the packet later on.
1102          */
1103         tpa_info->start_buf = *sw_rx_data_cons;
1104         mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1105                            le32_to_cpu(rx_bd_cons->addr.lo));
1106
1107         tpa_info->start_buf_mapping = mapping;
1108         rxq->sw_rx_cons++;
1109
1110         /* set tpa state to start only if we are able to allocate skb
1111          * for this aggregation, otherwise mark as error and aggregation will
1112          * be dropped
1113          */
1114         tpa_info->skb = netdev_alloc_skb(edev->ndev,
1115                                          le16_to_cpu(cqe->len_on_first_bd));
1116         if (unlikely(!tpa_info->skb)) {
1117                 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1118                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1119                 goto cons_buf;
1120         }
1121
1122         skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1123         memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1124
1125         /* Start filling in the aggregation info */
1126         tpa_info->frag_id = 0;
1127         tpa_info->agg_state = QEDE_AGG_STATE_START;
1128
1129         rxhash = qede_get_rxhash(edev, cqe->bitfields,
1130                                  cqe->rss_hash, &rxhash_type);
1131         skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1132         if ((le16_to_cpu(cqe->pars_flags.flags) >>
1133              PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1134                     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1135                 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1136         else
1137                 tpa_info->vlan_tag = 0;
1138
1139         /* This is needed in order to enable forwarding support */
1140         qede_set_gro_params(edev, tpa_info->skb, cqe);
1141
1142 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1143         if (likely(cqe->ext_bd_len_list[0]))
1144                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1145                                    le16_to_cpu(cqe->ext_bd_len_list[0]));
1146
1147         if (unlikely(cqe->ext_bd_len_list[1])) {
1148                 DP_ERR(edev,
1149                        "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1150                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1151         }
1152 }
1153
1154 #ifdef CONFIG_INET
1155 static void qede_gro_ip_csum(struct sk_buff *skb)
1156 {
1157         const struct iphdr *iph = ip_hdr(skb);
1158         struct tcphdr *th;
1159
1160         skb_set_transport_header(skb, sizeof(struct iphdr));
1161         th = tcp_hdr(skb);
1162
1163         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1164                                   iph->saddr, iph->daddr, 0);
1165
1166         tcp_gro_complete(skb);
1167 }
1168
1169 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1170 {
1171         struct ipv6hdr *iph = ipv6_hdr(skb);
1172         struct tcphdr *th;
1173
1174         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1175         th = tcp_hdr(skb);
1176
1177         th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1178                                   &iph->saddr, &iph->daddr, 0);
1179         tcp_gro_complete(skb);
1180 }
1181 #endif
1182
1183 static void qede_gro_receive(struct qede_dev *edev,
1184                              struct qede_fastpath *fp,
1185                              struct sk_buff *skb,
1186                              u16 vlan_tag)
1187 {
1188         /* FW can send a single MTU sized packet from gro flow
1189          * due to aggregation timeout/last segment etc. which
1190          * is not expected to be a gro packet. If a skb has zero
1191          * frags then simply push it in the stack as non gso skb.
1192          */
1193         if (unlikely(!skb->data_len)) {
1194                 skb_shinfo(skb)->gso_type = 0;
1195                 skb_shinfo(skb)->gso_size = 0;
1196                 goto send_skb;
1197         }
1198
1199 #ifdef CONFIG_INET
1200         if (skb_shinfo(skb)->gso_size) {
1201                 skb_set_network_header(skb, 0);
1202
1203                 switch (skb->protocol) {
1204                 case htons(ETH_P_IP):
1205                         qede_gro_ip_csum(skb);
1206                         break;
1207                 case htons(ETH_P_IPV6):
1208                         qede_gro_ipv6_csum(skb);
1209                         break;
1210                 default:
1211                         DP_ERR(edev,
1212                                "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1213                                ntohs(skb->protocol));
1214                 }
1215         }
1216 #endif
1217
1218 send_skb:
1219         skb_record_rx_queue(skb, fp->rxq->rxq_id);
1220         qede_skb_receive(edev, fp, skb, vlan_tag);
1221 }
1222
1223 static inline void qede_tpa_cont(struct qede_dev *edev,
1224                                  struct qede_rx_queue *rxq,
1225                                  struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1226 {
1227         int i;
1228
1229         for (i = 0; cqe->len_list[i]; i++)
1230                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1231                                    le16_to_cpu(cqe->len_list[i]));
1232
1233         if (unlikely(i > 1))
1234                 DP_ERR(edev,
1235                        "Strange - TPA cont with more than a single len_list entry\n");
1236 }
1237
1238 static void qede_tpa_end(struct qede_dev *edev,
1239                          struct qede_fastpath *fp,
1240                          struct eth_fast_path_rx_tpa_end_cqe *cqe)
1241 {
1242         struct qede_rx_queue *rxq = fp->rxq;
1243         struct qede_agg_info *tpa_info;
1244         struct sk_buff *skb;
1245         int i;
1246
1247         tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1248         skb = tpa_info->skb;
1249
1250         for (i = 0; cqe->len_list[i]; i++)
1251                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1252                                    le16_to_cpu(cqe->len_list[i]));
1253         if (unlikely(i > 1))
1254                 DP_ERR(edev,
1255                        "Strange - TPA emd with more than a single len_list entry\n");
1256
1257         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1258                 goto err;
1259
1260         /* Sanity */
1261         if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1262                 DP_ERR(edev,
1263                        "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1264                        cqe->num_of_bds, tpa_info->frag_id);
1265         if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1266                 DP_ERR(edev,
1267                        "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1268                        le16_to_cpu(cqe->total_packet_len), skb->len);
1269
1270         memcpy(skb->data,
1271                page_address(tpa_info->start_buf.data) +
1272                 tpa_info->start_cqe.placement_offset +
1273                 tpa_info->start_buf.page_offset,
1274                le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1275
1276         /* Recycle [mapped] start buffer for the next replacement */
1277         tpa_info->replace_buf = tpa_info->start_buf;
1278         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1279
1280         /* Finalize the SKB */
1281         skb->protocol = eth_type_trans(skb, edev->ndev);
1282         skb->ip_summed = CHECKSUM_UNNECESSARY;
1283
1284         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1285          * to skb_shinfo(skb)->gso_segs
1286          */
1287         NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1288
1289         qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1290
1291         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1292
1293         return;
1294 err:
1295         /* The BD starting the aggregation is still mapped; Re-use it for
1296          * future aggregations [as replacement buffer]
1297          */
1298         memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1299                sizeof(struct sw_rx_data));
1300         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1301         tpa_info->start_buf.data = NULL;
1302         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1303         dev_kfree_skb_any(tpa_info->skb);
1304         tpa_info->skb = NULL;
1305 }
1306
1307 static bool qede_tunn_exist(u16 flag)
1308 {
1309         return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1310                           PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1311 }
1312
1313 static u8 qede_check_tunn_csum(u16 flag)
1314 {
1315         u16 csum_flag = 0;
1316         u8 tcsum = 0;
1317
1318         if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1319                     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1320                 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1321                              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1322
1323         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1324                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1325                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1326                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1327                 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1328         }
1329
1330         csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1331                      PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1332                      PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1333                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1334
1335         if (csum_flag & flag)
1336                 return QEDE_CSUM_ERROR;
1337
1338         return QEDE_CSUM_UNNECESSARY | tcsum;
1339 }
1340
1341 static u8 qede_check_notunn_csum(u16 flag)
1342 {
1343         u16 csum_flag = 0;
1344         u8 csum = 0;
1345
1346         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1347                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1348                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1349                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1350                 csum = QEDE_CSUM_UNNECESSARY;
1351         }
1352
1353         csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1354                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1355
1356         if (csum_flag & flag)
1357                 return QEDE_CSUM_ERROR;
1358
1359         return csum;
1360 }
1361
1362 static u8 qede_check_csum(u16 flag)
1363 {
1364         if (!qede_tunn_exist(flag))
1365                 return qede_check_notunn_csum(flag);
1366         else
1367                 return qede_check_tunn_csum(flag);
1368 }
1369
1370 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1371                                       u16 flag)
1372 {
1373         u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1374
1375         if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1376                              ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1377             (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1378                      PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1379                 return true;
1380
1381         return false;
1382 }
1383
1384 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1385 {
1386         struct qede_dev *edev = fp->edev;
1387         struct qede_rx_queue *rxq = fp->rxq;
1388
1389         u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1390         int rx_pkt = 0;
1391         u8 csum_flag;
1392
1393         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1394         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1395
1396         /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1397          * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1398          * read before it is written by FW, then FW writes CQE and SB, and then
1399          * the CPU reads the hw_comp_cons, it will use an old CQE.
1400          */
1401         rmb();
1402
1403         /* Loop to complete all indicated BDs */
1404         while (sw_comp_cons != hw_comp_cons) {
1405                 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1406                 enum pkt_hash_types rxhash_type;
1407                 enum eth_rx_cqe_type cqe_type;
1408                 struct sw_rx_data *sw_rx_data;
1409                 union eth_rx_cqe *cqe;
1410                 struct sk_buff *skb;
1411                 struct page *data;
1412                 __le16 flags;
1413                 u16 len, pad;
1414                 u32 rx_hash;
1415
1416                 /* Get the CQE from the completion ring */
1417                 cqe = (union eth_rx_cqe *)
1418                         qed_chain_consume(&rxq->rx_comp_ring);
1419                 cqe_type = cqe->fast_path_regular.type;
1420
1421                 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1422                         edev->ops->eth_cqe_completion(
1423                                         edev->cdev, fp->id,
1424                                         (struct eth_slow_path_rx_cqe *)cqe);
1425                         goto next_cqe;
1426                 }
1427
1428                 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1429                         switch (cqe_type) {
1430                         case ETH_RX_CQE_TYPE_TPA_START:
1431                                 qede_tpa_start(edev, rxq,
1432                                                &cqe->fast_path_tpa_start);
1433                                 goto next_cqe;
1434                         case ETH_RX_CQE_TYPE_TPA_CONT:
1435                                 qede_tpa_cont(edev, rxq,
1436                                               &cqe->fast_path_tpa_cont);
1437                                 goto next_cqe;
1438                         case ETH_RX_CQE_TYPE_TPA_END:
1439                                 qede_tpa_end(edev, fp,
1440                                              &cqe->fast_path_tpa_end);
1441                                 goto next_rx_only;
1442                         default:
1443                                 break;
1444                         }
1445                 }
1446
1447                 /* Get the data from the SW ring */
1448                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1449                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1450                 data = sw_rx_data->data;
1451
1452                 fp_cqe = &cqe->fast_path_regular;
1453                 len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1454                 pad = fp_cqe->placement_offset;
1455                 flags = cqe->fast_path_regular.pars_flags.flags;
1456
1457                 /* If this is an error packet then drop it */
1458                 parse_flag = le16_to_cpu(flags);
1459
1460                 csum_flag = qede_check_csum(parse_flag);
1461                 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1462                         if (qede_pkt_is_ip_fragmented(&cqe->fast_path_regular,
1463                                                       parse_flag)) {
1464                                 rxq->rx_ip_frags++;
1465                                 goto alloc_skb;
1466                         }
1467
1468                         DP_NOTICE(edev,
1469                                   "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1470                                   sw_comp_cons, parse_flag);
1471                         rxq->rx_hw_errors++;
1472                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1473                         goto next_cqe;
1474                 }
1475
1476 alloc_skb:
1477                 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1478                 if (unlikely(!skb)) {
1479                         DP_NOTICE(edev,
1480                                   "skb allocation failed, dropping incoming packet\n");
1481                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1482                         rxq->rx_alloc_errors++;
1483                         goto next_cqe;
1484                 }
1485
1486                 /* Copy data into SKB */
1487                 if (len + pad <= edev->rx_copybreak) {
1488                         memcpy(skb_put(skb, len),
1489                                page_address(data) + pad +
1490                                 sw_rx_data->page_offset, len);
1491                         qede_reuse_page(edev, rxq, sw_rx_data);
1492                 } else {
1493                         struct skb_frag_struct *frag;
1494                         unsigned int pull_len;
1495                         unsigned char *va;
1496
1497                         frag = &skb_shinfo(skb)->frags[0];
1498
1499                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1500                                         pad + sw_rx_data->page_offset,
1501                                         len, rxq->rx_buf_seg_size);
1502
1503                         va = skb_frag_address(frag);
1504                         pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1505
1506                         /* Align the pull_len to optimize memcpy */
1507                         memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1508
1509                         skb_frag_size_sub(frag, pull_len);
1510                         frag->page_offset += pull_len;
1511                         skb->data_len -= pull_len;
1512                         skb->tail += pull_len;
1513
1514                         if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1515                                                             sw_rx_data))) {
1516                                 DP_ERR(edev, "Failed to allocate rx buffer\n");
1517                                 /* Incr page ref count to reuse on allocation
1518                                  * failure so that it doesn't get freed while
1519                                  * freeing SKB.
1520                                  */
1521
1522                                 page_ref_inc(sw_rx_data->data);
1523                                 rxq->rx_alloc_errors++;
1524                                 qede_recycle_rx_bd_ring(rxq, edev,
1525                                                         fp_cqe->bd_num);
1526                                 dev_kfree_skb_any(skb);
1527                                 goto next_cqe;
1528                         }
1529                 }
1530
1531                 qede_rx_bd_ring_consume(rxq);
1532
1533                 if (fp_cqe->bd_num != 1) {
1534                         u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1535                         u8 num_frags;
1536
1537                         pkt_len -= len;
1538
1539                         for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1540                              num_frags--) {
1541                                 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1542                                                 rxq->rx_buf_size : pkt_len;
1543                                 if (unlikely(!cur_size)) {
1544                                         DP_ERR(edev,
1545                                                "Still got %d BDs for mapping jumbo, but length became 0\n",
1546                                                num_frags);
1547                                         qede_recycle_rx_bd_ring(rxq, edev,
1548                                                                 num_frags);
1549                                         dev_kfree_skb_any(skb);
1550                                         goto next_cqe;
1551                                 }
1552
1553                                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1554                                         qede_recycle_rx_bd_ring(rxq, edev,
1555                                                                 num_frags);
1556                                         dev_kfree_skb_any(skb);
1557                                         goto next_cqe;
1558                                 }
1559
1560                                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1561                                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1562                                 qede_rx_bd_ring_consume(rxq);
1563
1564                                 dma_unmap_page(&edev->pdev->dev,
1565                                                sw_rx_data->mapping,
1566                                                PAGE_SIZE, DMA_FROM_DEVICE);
1567
1568                                 skb_fill_page_desc(skb,
1569                                                    skb_shinfo(skb)->nr_frags++,
1570                                                    sw_rx_data->data, 0,
1571                                                    cur_size);
1572
1573                                 skb->truesize += PAGE_SIZE;
1574                                 skb->data_len += cur_size;
1575                                 skb->len += cur_size;
1576                                 pkt_len -= cur_size;
1577                         }
1578
1579                         if (unlikely(pkt_len))
1580                                 DP_ERR(edev,
1581                                        "Mapped all BDs of jumbo, but still have %d bytes\n",
1582                                        pkt_len);
1583                 }
1584
1585                 skb->protocol = eth_type_trans(skb, edev->ndev);
1586
1587                 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1588                                           fp_cqe->rss_hash, &rxhash_type);
1589
1590                 skb_set_hash(skb, rx_hash, rxhash_type);
1591
1592                 qede_set_skb_csum(skb, csum_flag);
1593
1594                 skb_record_rx_queue(skb, fp->rxq->rxq_id);
1595
1596                 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1597 next_rx_only:
1598                 rx_pkt++;
1599
1600 next_cqe: /* don't consume bd rx buffer */
1601                 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1602                 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1603                 /* CR TPA - revisit how to handle budget in TPA perhaps
1604                  * increase on "end"
1605                  */
1606                 if (rx_pkt == budget)
1607                         break;
1608         } /* repeat while sw_comp_cons != hw_comp_cons... */
1609
1610         /* Update producers */
1611         qede_update_rx_prod(edev, rxq);
1612
1613         rxq->rcv_pkts += rx_pkt;
1614
1615         return rx_pkt;
1616 }
1617
1618 static int qede_poll(struct napi_struct *napi, int budget)
1619 {
1620         struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1621                                                 napi);
1622         struct qede_dev *edev = fp->edev;
1623         int rx_work_done = 0;
1624         u8 tc;
1625
1626         for (tc = 0; tc < edev->num_tc; tc++)
1627                 if (likely(fp->type & QEDE_FASTPATH_TX) &&
1628                     qede_txq_has_work(&fp->txqs[tc]))
1629                         qede_tx_int(edev, &fp->txqs[tc]);
1630
1631         rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1632                         qede_has_rx_work(fp->rxq)) ?
1633                         qede_rx_int(fp, budget) : 0;
1634         if (rx_work_done < budget) {
1635                 qed_sb_update_sb_idx(fp->sb_info);
1636                 /* *_has_*_work() reads the status block,
1637                  * thus we need to ensure that status block indices
1638                  * have been actually read (qed_sb_update_sb_idx)
1639                  * prior to this check (*_has_*_work) so that
1640                  * we won't write the "newer" value of the status block
1641                  * to HW (if there was a DMA right after
1642                  * qede_has_rx_work and if there is no rmb, the memory
1643                  * reading (qed_sb_update_sb_idx) may be postponed
1644                  * to right before *_ack_sb). In this case there
1645                  * will never be another interrupt until there is
1646                  * another update of the status block, while there
1647                  * is still unhandled work.
1648                  */
1649                 rmb();
1650
1651                 /* Fall out from the NAPI loop if needed */
1652                 if (!((likely(fp->type & QEDE_FASTPATH_RX) &&
1653                        qede_has_rx_work(fp->rxq)) ||
1654                       (likely(fp->type & QEDE_FASTPATH_TX) &&
1655                        qede_has_tx_work(fp)))) {
1656                         napi_complete(napi);
1657
1658                         /* Update and reenable interrupts */
1659                         qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1660                                    1 /*update*/);
1661                 } else {
1662                         rx_work_done = budget;
1663                 }
1664         }
1665
1666         return rx_work_done;
1667 }
1668
1669 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1670 {
1671         struct qede_fastpath *fp = fp_cookie;
1672
1673         qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1674
1675         napi_schedule_irqoff(&fp->napi);
1676         return IRQ_HANDLED;
1677 }
1678
1679 /* -------------------------------------------------------------------------
1680  * END OF FAST-PATH
1681  * -------------------------------------------------------------------------
1682  */
1683
1684 static int qede_open(struct net_device *ndev);
1685 static int qede_close(struct net_device *ndev);
1686 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1687 static void qede_set_rx_mode(struct net_device *ndev);
1688 static void qede_config_rx_mode(struct net_device *ndev);
1689
1690 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1691                                  enum qed_filter_xcast_params_type opcode,
1692                                  unsigned char mac[ETH_ALEN])
1693 {
1694         struct qed_filter_params filter_cmd;
1695
1696         memset(&filter_cmd, 0, sizeof(filter_cmd));
1697         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1698         filter_cmd.filter.ucast.type = opcode;
1699         filter_cmd.filter.ucast.mac_valid = 1;
1700         ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1701
1702         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1703 }
1704
1705 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1706                                   enum qed_filter_xcast_params_type opcode,
1707                                   u16 vid)
1708 {
1709         struct qed_filter_params filter_cmd;
1710
1711         memset(&filter_cmd, 0, sizeof(filter_cmd));
1712         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1713         filter_cmd.filter.ucast.type = opcode;
1714         filter_cmd.filter.ucast.vlan_valid = 1;
1715         filter_cmd.filter.ucast.vlan = vid;
1716
1717         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1718 }
1719
1720 void qede_fill_by_demand_stats(struct qede_dev *edev)
1721 {
1722         struct qed_eth_stats stats;
1723
1724         edev->ops->get_vport_stats(edev->cdev, &stats);
1725         edev->stats.no_buff_discards = stats.no_buff_discards;
1726         edev->stats.packet_too_big_discard = stats.packet_too_big_discard;
1727         edev->stats.ttl0_discard = stats.ttl0_discard;
1728         edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1729         edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1730         edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1731         edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1732         edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1733         edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1734         edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1735         edev->stats.mac_filter_discards = stats.mac_filter_discards;
1736
1737         edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1738         edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1739         edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1740         edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1741         edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1742         edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1743         edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1744         edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1745         edev->stats.coalesced_events = stats.tpa_coalesced_events;
1746         edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1747         edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1748         edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1749
1750         edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1751         edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1752         edev->stats.rx_128_to_255_byte_packets =
1753                                 stats.rx_128_to_255_byte_packets;
1754         edev->stats.rx_256_to_511_byte_packets =
1755                                 stats.rx_256_to_511_byte_packets;
1756         edev->stats.rx_512_to_1023_byte_packets =
1757                                 stats.rx_512_to_1023_byte_packets;
1758         edev->stats.rx_1024_to_1518_byte_packets =
1759                                 stats.rx_1024_to_1518_byte_packets;
1760         edev->stats.rx_1519_to_1522_byte_packets =
1761                                 stats.rx_1519_to_1522_byte_packets;
1762         edev->stats.rx_1519_to_2047_byte_packets =
1763                                 stats.rx_1519_to_2047_byte_packets;
1764         edev->stats.rx_2048_to_4095_byte_packets =
1765                                 stats.rx_2048_to_4095_byte_packets;
1766         edev->stats.rx_4096_to_9216_byte_packets =
1767                                 stats.rx_4096_to_9216_byte_packets;
1768         edev->stats.rx_9217_to_16383_byte_packets =
1769                                 stats.rx_9217_to_16383_byte_packets;
1770         edev->stats.rx_crc_errors = stats.rx_crc_errors;
1771         edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1772         edev->stats.rx_pause_frames = stats.rx_pause_frames;
1773         edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1774         edev->stats.rx_align_errors = stats.rx_align_errors;
1775         edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1776         edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1777         edev->stats.rx_jabbers = stats.rx_jabbers;
1778         edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1779         edev->stats.rx_fragments = stats.rx_fragments;
1780         edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1781         edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1782         edev->stats.tx_128_to_255_byte_packets =
1783                                 stats.tx_128_to_255_byte_packets;
1784         edev->stats.tx_256_to_511_byte_packets =
1785                                 stats.tx_256_to_511_byte_packets;
1786         edev->stats.tx_512_to_1023_byte_packets =
1787                                 stats.tx_512_to_1023_byte_packets;
1788         edev->stats.tx_1024_to_1518_byte_packets =
1789                                 stats.tx_1024_to_1518_byte_packets;
1790         edev->stats.tx_1519_to_2047_byte_packets =
1791                                 stats.tx_1519_to_2047_byte_packets;
1792         edev->stats.tx_2048_to_4095_byte_packets =
1793                                 stats.tx_2048_to_4095_byte_packets;
1794         edev->stats.tx_4096_to_9216_byte_packets =
1795                                 stats.tx_4096_to_9216_byte_packets;
1796         edev->stats.tx_9217_to_16383_byte_packets =
1797                                 stats.tx_9217_to_16383_byte_packets;
1798         edev->stats.tx_pause_frames = stats.tx_pause_frames;
1799         edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1800         edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1801         edev->stats.tx_total_collisions = stats.tx_total_collisions;
1802         edev->stats.brb_truncates = stats.brb_truncates;
1803         edev->stats.brb_discards = stats.brb_discards;
1804         edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1805 }
1806
1807 static
1808 struct rtnl_link_stats64 *qede_get_stats64(struct net_device *dev,
1809                                            struct rtnl_link_stats64 *stats)
1810 {
1811         struct qede_dev *edev = netdev_priv(dev);
1812
1813         qede_fill_by_demand_stats(edev);
1814
1815         stats->rx_packets = edev->stats.rx_ucast_pkts +
1816                             edev->stats.rx_mcast_pkts +
1817                             edev->stats.rx_bcast_pkts;
1818         stats->tx_packets = edev->stats.tx_ucast_pkts +
1819                             edev->stats.tx_mcast_pkts +
1820                             edev->stats.tx_bcast_pkts;
1821
1822         stats->rx_bytes = edev->stats.rx_ucast_bytes +
1823                           edev->stats.rx_mcast_bytes +
1824                           edev->stats.rx_bcast_bytes;
1825
1826         stats->tx_bytes = edev->stats.tx_ucast_bytes +
1827                           edev->stats.tx_mcast_bytes +
1828                           edev->stats.tx_bcast_bytes;
1829
1830         stats->tx_errors = edev->stats.tx_err_drop_pkts;
1831         stats->multicast = edev->stats.rx_mcast_pkts +
1832                            edev->stats.rx_bcast_pkts;
1833
1834         stats->rx_fifo_errors = edev->stats.no_buff_discards;
1835
1836         stats->collisions = edev->stats.tx_total_collisions;
1837         stats->rx_crc_errors = edev->stats.rx_crc_errors;
1838         stats->rx_frame_errors = edev->stats.rx_align_errors;
1839
1840         return stats;
1841 }
1842
1843 #ifdef CONFIG_QED_SRIOV
1844 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1845                               struct ifla_vf_info *ivi)
1846 {
1847         struct qede_dev *edev = netdev_priv(dev);
1848
1849         if (!edev->ops)
1850                 return -EINVAL;
1851
1852         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1853 }
1854
1855 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1856                             int min_tx_rate, int max_tx_rate)
1857 {
1858         struct qede_dev *edev = netdev_priv(dev);
1859
1860         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
1861                                         max_tx_rate);
1862 }
1863
1864 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1865 {
1866         struct qede_dev *edev = netdev_priv(dev);
1867
1868         if (!edev->ops)
1869                 return -EINVAL;
1870
1871         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1872 }
1873
1874 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1875                                   int link_state)
1876 {
1877         struct qede_dev *edev = netdev_priv(dev);
1878
1879         if (!edev->ops)
1880                 return -EINVAL;
1881
1882         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1883 }
1884 #endif
1885
1886 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1887 {
1888         struct qed_update_vport_params params;
1889         int rc;
1890
1891         /* Proceed only if action actually needs to be performed */
1892         if (edev->accept_any_vlan == action)
1893                 return;
1894
1895         memset(&params, 0, sizeof(params));
1896
1897         params.vport_id = 0;
1898         params.accept_any_vlan = action;
1899         params.update_accept_any_vlan_flg = 1;
1900
1901         rc = edev->ops->vport_update(edev->cdev, &params);
1902         if (rc) {
1903                 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1904                        action ? "enable" : "disable");
1905         } else {
1906                 DP_INFO(edev, "%s accept-any-vlan\n",
1907                         action ? "enabled" : "disabled");
1908                 edev->accept_any_vlan = action;
1909         }
1910 }
1911
1912 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1913 {
1914         struct qede_dev *edev = netdev_priv(dev);
1915         struct qede_vlan *vlan, *tmp;
1916         int rc;
1917
1918         DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1919
1920         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1921         if (!vlan) {
1922                 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1923                 return -ENOMEM;
1924         }
1925         INIT_LIST_HEAD(&vlan->list);
1926         vlan->vid = vid;
1927         vlan->configured = false;
1928
1929         /* Verify vlan isn't already configured */
1930         list_for_each_entry(tmp, &edev->vlan_list, list) {
1931                 if (tmp->vid == vlan->vid) {
1932                         DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1933                                    "vlan already configured\n");
1934                         kfree(vlan);
1935                         return -EEXIST;
1936                 }
1937         }
1938
1939         /* If interface is down, cache this VLAN ID and return */
1940         if (edev->state != QEDE_STATE_OPEN) {
1941                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1942                            "Interface is down, VLAN %d will be configured when interface is up\n",
1943                            vid);
1944                 if (vid != 0)
1945                         edev->non_configured_vlans++;
1946                 list_add(&vlan->list, &edev->vlan_list);
1947
1948                 return 0;
1949         }
1950
1951         /* Check for the filter limit.
1952          * Note - vlan0 has a reserved filter and can be added without
1953          * worrying about quota
1954          */
1955         if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1956             (vlan->vid == 0)) {
1957                 rc = qede_set_ucast_rx_vlan(edev,
1958                                             QED_FILTER_XCAST_TYPE_ADD,
1959                                             vlan->vid);
1960                 if (rc) {
1961                         DP_ERR(edev, "Failed to configure VLAN %d\n",
1962                                vlan->vid);
1963                         kfree(vlan);
1964                         return -EINVAL;
1965                 }
1966                 vlan->configured = true;
1967
1968                 /* vlan0 filter isn't consuming out of our quota */
1969                 if (vlan->vid != 0)
1970                         edev->configured_vlans++;
1971         } else {
1972                 /* Out of quota; Activate accept-any-VLAN mode */
1973                 if (!edev->non_configured_vlans)
1974                         qede_config_accept_any_vlan(edev, true);
1975
1976                 edev->non_configured_vlans++;
1977         }
1978
1979         list_add(&vlan->list, &edev->vlan_list);
1980
1981         return 0;
1982 }
1983
1984 static void qede_del_vlan_from_list(struct qede_dev *edev,
1985                                     struct qede_vlan *vlan)
1986 {
1987         /* vlan0 filter isn't consuming out of our quota */
1988         if (vlan->vid != 0) {
1989                 if (vlan->configured)
1990                         edev->configured_vlans--;
1991                 else
1992                         edev->non_configured_vlans--;
1993         }
1994
1995         list_del(&vlan->list);
1996         kfree(vlan);
1997 }
1998
1999 static int qede_configure_vlan_filters(struct qede_dev *edev)
2000 {
2001         int rc = 0, real_rc = 0, accept_any_vlan = 0;
2002         struct qed_dev_eth_info *dev_info;
2003         struct qede_vlan *vlan = NULL;
2004
2005         if (list_empty(&edev->vlan_list))
2006                 return 0;
2007
2008         dev_info = &edev->dev_info;
2009
2010         /* Configure non-configured vlans */
2011         list_for_each_entry(vlan, &edev->vlan_list, list) {
2012                 if (vlan->configured)
2013                         continue;
2014
2015                 /* We have used all our credits, now enable accept_any_vlan */
2016                 if ((vlan->vid != 0) &&
2017                     (edev->configured_vlans == dev_info->num_vlan_filters)) {
2018                         accept_any_vlan = 1;
2019                         continue;
2020                 }
2021
2022                 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
2023
2024                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
2025                                             vlan->vid);
2026                 if (rc) {
2027                         DP_ERR(edev, "Failed to configure VLAN %u\n",
2028                                vlan->vid);
2029                         real_rc = rc;
2030                         continue;
2031                 }
2032
2033                 vlan->configured = true;
2034                 /* vlan0 filter doesn't consume our VLAN filter's quota */
2035                 if (vlan->vid != 0) {
2036                         edev->non_configured_vlans--;
2037                         edev->configured_vlans++;
2038                 }
2039         }
2040
2041         /* enable accept_any_vlan mode if we have more VLANs than credits,
2042          * or remove accept_any_vlan mode if we've actually removed
2043          * a non-configured vlan, and all remaining vlans are truly configured.
2044          */
2045
2046         if (accept_any_vlan)
2047                 qede_config_accept_any_vlan(edev, true);
2048         else if (!edev->non_configured_vlans)
2049                 qede_config_accept_any_vlan(edev, false);
2050
2051         return real_rc;
2052 }
2053
2054 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2055 {
2056         struct qede_dev *edev = netdev_priv(dev);
2057         struct qede_vlan *vlan = NULL;
2058         int rc;
2059
2060         DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2061
2062         /* Find whether entry exists */
2063         list_for_each_entry(vlan, &edev->vlan_list, list)
2064                 if (vlan->vid == vid)
2065                         break;
2066
2067         if (!vlan || (vlan->vid != vid)) {
2068                 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2069                            "Vlan isn't configured\n");
2070                 return 0;
2071         }
2072
2073         if (edev->state != QEDE_STATE_OPEN) {
2074                 /* As interface is already down, we don't have a VPORT
2075                  * instance to remove vlan filter. So just update vlan list
2076                  */
2077                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2078                            "Interface is down, removing VLAN from list only\n");
2079                 qede_del_vlan_from_list(edev, vlan);
2080                 return 0;
2081         }
2082
2083         /* Remove vlan */
2084         if (vlan->configured) {
2085                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
2086                                             vid);
2087                 if (rc) {
2088                         DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2089                         return -EINVAL;
2090                 }
2091         }
2092
2093         qede_del_vlan_from_list(edev, vlan);
2094
2095         /* We have removed a VLAN - try to see if we can
2096          * configure non-configured VLAN from the list.
2097          */
2098         rc = qede_configure_vlan_filters(edev);
2099
2100         return rc;
2101 }
2102
2103 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2104 {
2105         struct qede_vlan *vlan = NULL;
2106
2107         if (list_empty(&edev->vlan_list))
2108                 return;
2109
2110         list_for_each_entry(vlan, &edev->vlan_list, list) {
2111                 if (!vlan->configured)
2112                         continue;
2113
2114                 vlan->configured = false;
2115
2116                 /* vlan0 filter isn't consuming out of our quota */
2117                 if (vlan->vid != 0) {
2118                         edev->non_configured_vlans++;
2119                         edev->configured_vlans--;
2120                 }
2121
2122                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2123                            "marked vlan %d as non-configured\n", vlan->vid);
2124         }
2125
2126         edev->accept_any_vlan = false;
2127 }
2128
2129 static int qede_set_features(struct net_device *dev, netdev_features_t features)
2130 {
2131         struct qede_dev *edev = netdev_priv(dev);
2132         netdev_features_t changes = features ^ dev->features;
2133         bool need_reload = false;
2134
2135         /* No action needed if hardware GRO is disabled during driver load */
2136         if (changes & NETIF_F_GRO) {
2137                 if (dev->features & NETIF_F_GRO)
2138                         need_reload = !edev->gro_disable;
2139                 else
2140                         need_reload = edev->gro_disable;
2141         }
2142
2143         if (need_reload && netif_running(edev->ndev)) {
2144                 dev->features = features;
2145                 qede_reload(edev, NULL, NULL);
2146                 return 1;
2147         }
2148
2149         return 0;
2150 }
2151
2152 static void qede_udp_tunnel_add(struct net_device *dev,
2153                                 struct udp_tunnel_info *ti)
2154 {
2155         struct qede_dev *edev = netdev_priv(dev);
2156         u16 t_port = ntohs(ti->port);
2157
2158         switch (ti->type) {
2159         case UDP_TUNNEL_TYPE_VXLAN:
2160                 if (edev->vxlan_dst_port)
2161                         return;
2162
2163                 edev->vxlan_dst_port = t_port;
2164
2165                 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d\n",
2166                            t_port);
2167
2168                 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2169                 break;
2170         case UDP_TUNNEL_TYPE_GENEVE:
2171                 if (edev->geneve_dst_port)
2172                         return;
2173
2174                 edev->geneve_dst_port = t_port;
2175
2176                 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d\n",
2177                            t_port);
2178                 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2179                 break;
2180         default:
2181                 return;
2182         }
2183
2184         schedule_delayed_work(&edev->sp_task, 0);
2185 }
2186
2187 static void qede_udp_tunnel_del(struct net_device *dev,
2188                                 struct udp_tunnel_info *ti)
2189 {
2190         struct qede_dev *edev = netdev_priv(dev);
2191         u16 t_port = ntohs(ti->port);
2192
2193         switch (ti->type) {
2194         case UDP_TUNNEL_TYPE_VXLAN:
2195                 if (t_port != edev->vxlan_dst_port)
2196                         return;
2197
2198                 edev->vxlan_dst_port = 0;
2199
2200                 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d\n",
2201                            t_port);
2202
2203                 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2204                 break;
2205         case UDP_TUNNEL_TYPE_GENEVE:
2206                 if (t_port != edev->geneve_dst_port)
2207                         return;
2208
2209                 edev->geneve_dst_port = 0;
2210
2211                 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d\n",
2212                            t_port);
2213                 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2214                 break;
2215         default:
2216                 return;
2217         }
2218
2219         schedule_delayed_work(&edev->sp_task, 0);
2220 }
2221
2222 static const struct net_device_ops qede_netdev_ops = {
2223         .ndo_open = qede_open,
2224         .ndo_stop = qede_close,
2225         .ndo_start_xmit = qede_start_xmit,
2226         .ndo_set_rx_mode = qede_set_rx_mode,
2227         .ndo_set_mac_address = qede_set_mac_addr,
2228         .ndo_validate_addr = eth_validate_addr,
2229         .ndo_change_mtu = qede_change_mtu,
2230 #ifdef CONFIG_QED_SRIOV
2231         .ndo_set_vf_mac = qede_set_vf_mac,
2232         .ndo_set_vf_vlan = qede_set_vf_vlan,
2233 #endif
2234         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2235         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2236         .ndo_set_features = qede_set_features,
2237         .ndo_get_stats64 = qede_get_stats64,
2238 #ifdef CONFIG_QED_SRIOV
2239         .ndo_set_vf_link_state = qede_set_vf_link_state,
2240         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2241         .ndo_get_vf_config = qede_get_vf_config,
2242         .ndo_set_vf_rate = qede_set_vf_rate,
2243 #endif
2244         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
2245         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
2246 };
2247
2248 /* -------------------------------------------------------------------------
2249  * START OF PROBE / REMOVE
2250  * -------------------------------------------------------------------------
2251  */
2252
2253 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2254                                             struct pci_dev *pdev,
2255                                             struct qed_dev_eth_info *info,
2256                                             u32 dp_module, u8 dp_level)
2257 {
2258         struct net_device *ndev;
2259         struct qede_dev *edev;
2260
2261         ndev = alloc_etherdev_mqs(sizeof(*edev),
2262                                   info->num_queues, info->num_queues);
2263         if (!ndev) {
2264                 pr_err("etherdev allocation failed\n");
2265                 return NULL;
2266         }
2267
2268         edev = netdev_priv(ndev);
2269         edev->ndev = ndev;
2270         edev->cdev = cdev;
2271         edev->pdev = pdev;
2272         edev->dp_module = dp_module;
2273         edev->dp_level = dp_level;
2274         edev->ops = qed_ops;
2275         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2276         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2277
2278         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
2279                 info->num_queues, info->num_queues);
2280
2281         SET_NETDEV_DEV(ndev, &pdev->dev);
2282
2283         memset(&edev->stats, 0, sizeof(edev->stats));
2284         memcpy(&edev->dev_info, info, sizeof(*info));
2285
2286         edev->num_tc = edev->dev_info.num_tc;
2287
2288         INIT_LIST_HEAD(&edev->vlan_list);
2289
2290         return edev;
2291 }
2292
2293 static void qede_init_ndev(struct qede_dev *edev)
2294 {
2295         struct net_device *ndev = edev->ndev;
2296         struct pci_dev *pdev = edev->pdev;
2297         u32 hw_features;
2298
2299         pci_set_drvdata(pdev, ndev);
2300
2301         ndev->mem_start = edev->dev_info.common.pci_mem_start;
2302         ndev->base_addr = ndev->mem_start;
2303         ndev->mem_end = edev->dev_info.common.pci_mem_end;
2304         ndev->irq = edev->dev_info.common.pci_irq;
2305
2306         ndev->watchdog_timeo = TX_TIMEOUT;
2307
2308         ndev->netdev_ops = &qede_netdev_ops;
2309
2310         qede_set_ethtool_ops(ndev);
2311
2312         /* user-changeble features */
2313         hw_features = NETIF_F_GRO | NETIF_F_SG |
2314                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2315                       NETIF_F_TSO | NETIF_F_TSO6;
2316
2317         /* Encap features*/
2318         hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2319                        NETIF_F_TSO_ECN;
2320         ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2321                                 NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2322                                 NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2323                                 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2324
2325         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2326                               NETIF_F_HIGHDMA;
2327         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2328                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2329                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2330
2331         ndev->hw_features = hw_features;
2332
2333         /* Set network device HW mac */
2334         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2335 }
2336
2337 /* This function converts from 32b param to two params of level and module
2338  * Input 32b decoding:
2339  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2340  * 'happy' flow, e.g. memory allocation failed.
2341  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2342  * and provide important parameters.
2343  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2344  * module. VERBOSE prints are for tracking the specific flow in low level.
2345  *
2346  * Notice that the level should be that of the lowest required logs.
2347  */
2348 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2349 {
2350         *p_dp_level = QED_LEVEL_NOTICE;
2351         *p_dp_module = 0;
2352
2353         if (debug & QED_LOG_VERBOSE_MASK) {
2354                 *p_dp_level = QED_LEVEL_VERBOSE;
2355                 *p_dp_module = (debug & 0x3FFFFFFF);
2356         } else if (debug & QED_LOG_INFO_MASK) {
2357                 *p_dp_level = QED_LEVEL_INFO;
2358         } else if (debug & QED_LOG_NOTICE_MASK) {
2359                 *p_dp_level = QED_LEVEL_NOTICE;
2360         }
2361 }
2362
2363 static void qede_free_fp_array(struct qede_dev *edev)
2364 {
2365         if (edev->fp_array) {
2366                 struct qede_fastpath *fp;
2367                 int i;
2368
2369                 for_each_queue(i) {
2370                         fp = &edev->fp_array[i];
2371
2372                         kfree(fp->sb_info);
2373                         kfree(fp->rxq);
2374                         kfree(fp->txqs);
2375                 }
2376                 kfree(edev->fp_array);
2377         }
2378
2379         edev->num_queues = 0;
2380         edev->fp_num_tx = 0;
2381         edev->fp_num_rx = 0;
2382 }
2383
2384 static int qede_alloc_fp_array(struct qede_dev *edev)
2385 {
2386         u8 fp_combined, fp_rx = edev->fp_num_rx;
2387         struct qede_fastpath *fp;
2388         int i;
2389
2390         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
2391                                  sizeof(*edev->fp_array), GFP_KERNEL);
2392         if (!edev->fp_array) {
2393                 DP_NOTICE(edev, "fp array allocation failed\n");
2394                 goto err;
2395         }
2396
2397         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
2398
2399         /* Allocate the FP elements for Rx queues followed by combined and then
2400          * the Tx. This ordering should be maintained so that the respective
2401          * queues (Rx or Tx) will be together in the fastpath array and the
2402          * associated ids will be sequential.
2403          */
2404         for_each_queue(i) {
2405                 fp = &edev->fp_array[i];
2406
2407                 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2408                 if (!fp->sb_info) {
2409                         DP_NOTICE(edev, "sb info struct allocation failed\n");
2410                         goto err;
2411                 }
2412
2413                 if (fp_rx) {
2414                         fp->type = QEDE_FASTPATH_RX;
2415                         fp_rx--;
2416                 } else if (fp_combined) {
2417                         fp->type = QEDE_FASTPATH_COMBINED;
2418                         fp_combined--;
2419                 } else {
2420                         fp->type = QEDE_FASTPATH_TX;
2421                 }
2422
2423                 if (fp->type & QEDE_FASTPATH_TX) {
2424                         fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs),
2425                                            GFP_KERNEL);
2426                         if (!fp->txqs) {
2427                                 DP_NOTICE(edev,
2428                                           "TXQ array allocation failed\n");
2429                                 goto err;
2430                         }
2431                 }
2432
2433                 if (fp->type & QEDE_FASTPATH_RX) {
2434                         fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2435                         if (!fp->rxq) {
2436                                 DP_NOTICE(edev,
2437                                           "RXQ struct allocation failed\n");
2438                                 goto err;
2439                         }
2440                 }
2441         }
2442
2443         return 0;
2444 err:
2445         qede_free_fp_array(edev);
2446         return -ENOMEM;
2447 }
2448
2449 static void qede_sp_task(struct work_struct *work)
2450 {
2451         struct qede_dev *edev = container_of(work, struct qede_dev,
2452                                              sp_task.work);
2453         struct qed_dev *cdev = edev->cdev;
2454
2455         mutex_lock(&edev->qede_lock);
2456
2457         if (edev->state == QEDE_STATE_OPEN) {
2458                 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2459                         qede_config_rx_mode(edev->ndev);
2460         }
2461
2462         if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2463                 struct qed_tunn_params tunn_params;
2464
2465                 memset(&tunn_params, 0, sizeof(tunn_params));
2466                 tunn_params.update_vxlan_port = 1;
2467                 tunn_params.vxlan_port = edev->vxlan_dst_port;
2468                 qed_ops->tunn_config(cdev, &tunn_params);
2469         }
2470
2471         if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2472                 struct qed_tunn_params tunn_params;
2473
2474                 memset(&tunn_params, 0, sizeof(tunn_params));
2475                 tunn_params.update_geneve_port = 1;
2476                 tunn_params.geneve_port = edev->geneve_dst_port;
2477                 qed_ops->tunn_config(cdev, &tunn_params);
2478         }
2479
2480         mutex_unlock(&edev->qede_lock);
2481 }
2482
2483 static void qede_update_pf_params(struct qed_dev *cdev)
2484 {
2485         struct qed_pf_params pf_params;
2486
2487         /* 64 rx + 64 tx */
2488         memset(&pf_params, 0, sizeof(struct qed_pf_params));
2489         pf_params.eth_pf_params.num_cons = 128;
2490         qed_ops->common->update_pf_params(cdev, &pf_params);
2491 }
2492
2493 enum qede_probe_mode {
2494         QEDE_PROBE_NORMAL,
2495 };
2496
2497 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2498                         bool is_vf, enum qede_probe_mode mode)
2499 {
2500         struct qed_probe_params probe_params;
2501         struct qed_slowpath_params sp_params;
2502         struct qed_dev_eth_info dev_info;
2503         struct qede_dev *edev;
2504         struct qed_dev *cdev;
2505         int rc;
2506
2507         if (unlikely(dp_level & QED_LEVEL_INFO))
2508                 pr_notice("Starting qede probe\n");
2509
2510         memset(&probe_params, 0, sizeof(probe_params));
2511         probe_params.protocol = QED_PROTOCOL_ETH;
2512         probe_params.dp_module = dp_module;
2513         probe_params.dp_level = dp_level;
2514         probe_params.is_vf = is_vf;
2515         cdev = qed_ops->common->probe(pdev, &probe_params);
2516         if (!cdev) {
2517                 rc = -ENODEV;
2518                 goto err0;
2519         }
2520
2521         qede_update_pf_params(cdev);
2522
2523         /* Start the Slowpath-process */
2524         memset(&sp_params, 0, sizeof(sp_params));
2525         sp_params.int_mode = QED_INT_MODE_MSIX;
2526         sp_params.drv_major = QEDE_MAJOR_VERSION;
2527         sp_params.drv_minor = QEDE_MINOR_VERSION;
2528         sp_params.drv_rev = QEDE_REVISION_VERSION;
2529         sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
2530         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2531         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
2532         if (rc) {
2533                 pr_notice("Cannot start slowpath\n");
2534                 goto err1;
2535         }
2536
2537         /* Learn information crucial for qede to progress */
2538         rc = qed_ops->fill_dev_info(cdev, &dev_info);
2539         if (rc)
2540                 goto err2;
2541
2542         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2543                                    dp_level);
2544         if (!edev) {
2545                 rc = -ENOMEM;
2546                 goto err2;
2547         }
2548
2549         if (is_vf)
2550                 edev->flags |= QEDE_FLAG_IS_VF;
2551
2552         qede_init_ndev(edev);
2553
2554         rc = qede_roce_dev_add(edev);
2555         if (rc)
2556                 goto err3;
2557
2558         rc = register_netdev(edev->ndev);
2559         if (rc) {
2560                 DP_NOTICE(edev, "Cannot register net-device\n");
2561                 goto err4;
2562         }
2563
2564         edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2565
2566         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2567
2568 #ifdef CONFIG_DCB
2569         if (!IS_VF(edev))
2570                 qede_set_dcbnl_ops(edev->ndev);
2571 #endif
2572
2573         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2574         mutex_init(&edev->qede_lock);
2575         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
2576
2577         DP_INFO(edev, "Ending successfully qede probe\n");
2578
2579         return 0;
2580
2581 err4:
2582         qede_roce_dev_remove(edev);
2583 err3:
2584         free_netdev(edev->ndev);
2585 err2:
2586         qed_ops->common->slowpath_stop(cdev);
2587 err1:
2588         qed_ops->common->remove(cdev);
2589 err0:
2590         return rc;
2591 }
2592
2593 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2594 {
2595         bool is_vf = false;
2596         u32 dp_module = 0;
2597         u8 dp_level = 0;
2598
2599         switch ((enum qede_pci_private)id->driver_data) {
2600         case QEDE_PRIVATE_VF:
2601                 if (debug & QED_LOG_VERBOSE_MASK)
2602                         dev_err(&pdev->dev, "Probing a VF\n");
2603                 is_vf = true;
2604                 break;
2605         default:
2606                 if (debug & QED_LOG_VERBOSE_MASK)
2607                         dev_err(&pdev->dev, "Probing a PF\n");
2608         }
2609
2610         qede_config_debug(debug, &dp_module, &dp_level);
2611
2612         return __qede_probe(pdev, dp_module, dp_level, is_vf,
2613                             QEDE_PROBE_NORMAL);
2614 }
2615
2616 enum qede_remove_mode {
2617         QEDE_REMOVE_NORMAL,
2618 };
2619
2620 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2621 {
2622         struct net_device *ndev = pci_get_drvdata(pdev);
2623         struct qede_dev *edev = netdev_priv(ndev);
2624         struct qed_dev *cdev = edev->cdev;
2625
2626         DP_INFO(edev, "Starting qede_remove\n");
2627
2628         cancel_delayed_work_sync(&edev->sp_task);
2629
2630         unregister_netdev(ndev);
2631
2632         qede_roce_dev_remove(edev);
2633
2634         edev->ops->common->set_power_state(cdev, PCI_D0);
2635
2636         pci_set_drvdata(pdev, NULL);
2637
2638         free_netdev(ndev);
2639
2640         /* Use global ops since we've freed edev */
2641         qed_ops->common->slowpath_stop(cdev);
2642         qed_ops->common->remove(cdev);
2643
2644         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
2645 }
2646
2647 static void qede_remove(struct pci_dev *pdev)
2648 {
2649         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2650 }
2651
2652 /* -------------------------------------------------------------------------
2653  * START OF LOAD / UNLOAD
2654  * -------------------------------------------------------------------------
2655  */
2656
2657 static int qede_set_num_queues(struct qede_dev *edev)
2658 {
2659         int rc;
2660         u16 rss_num;
2661
2662         /* Setup queues according to possible resources*/
2663         if (edev->req_queues)
2664                 rss_num = edev->req_queues;
2665         else
2666                 rss_num = netif_get_num_default_rss_queues() *
2667                           edev->dev_info.common.num_hwfns;
2668
2669         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2670
2671         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2672         if (rc > 0) {
2673                 /* Managed to request interrupts for our queues */
2674                 edev->num_queues = rc;
2675                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2676                         QEDE_QUEUE_CNT(edev), rss_num);
2677                 rc = 0;
2678         }
2679
2680         edev->fp_num_tx = edev->req_num_tx;
2681         edev->fp_num_rx = edev->req_num_rx;
2682
2683         return rc;
2684 }
2685
2686 static void qede_free_mem_sb(struct qede_dev *edev,
2687                              struct qed_sb_info *sb_info)
2688 {
2689         if (sb_info->sb_virt)
2690                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2691                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
2692 }
2693
2694 /* This function allocates fast-path status block memory */
2695 static int qede_alloc_mem_sb(struct qede_dev *edev,
2696                              struct qed_sb_info *sb_info, u16 sb_id)
2697 {
2698         struct status_block *sb_virt;
2699         dma_addr_t sb_phys;
2700         int rc;
2701
2702         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2703                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
2704         if (!sb_virt) {
2705                 DP_ERR(edev, "Status block allocation failed\n");
2706                 return -ENOMEM;
2707         }
2708
2709         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2710                                         sb_virt, sb_phys, sb_id,
2711                                         QED_SB_TYPE_L2_QUEUE);
2712         if (rc) {
2713                 DP_ERR(edev, "Status block initialization failed\n");
2714                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2715                                   sb_virt, sb_phys);
2716                 return rc;
2717         }
2718
2719         return 0;
2720 }
2721
2722 static void qede_free_rx_buffers(struct qede_dev *edev,
2723                                  struct qede_rx_queue *rxq)
2724 {
2725         u16 i;
2726
2727         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2728                 struct sw_rx_data *rx_buf;
2729                 struct page *data;
2730
2731                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2732                 data = rx_buf->data;
2733
2734                 dma_unmap_page(&edev->pdev->dev,
2735                                rx_buf->mapping, PAGE_SIZE, DMA_FROM_DEVICE);
2736
2737                 rx_buf->data = NULL;
2738                 __free_page(data);
2739         }
2740 }
2741
2742 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
2743 {
2744         int i;
2745
2746         if (edev->gro_disable)
2747                 return;
2748
2749         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2750                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2751                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2752
2753                 if (replace_buf->data) {
2754                         dma_unmap_page(&edev->pdev->dev,
2755                                        replace_buf->mapping,
2756                                        PAGE_SIZE, DMA_FROM_DEVICE);
2757                         __free_page(replace_buf->data);
2758                 }
2759         }
2760 }
2761
2762 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
2763 {
2764         qede_free_sge_mem(edev, rxq);
2765
2766         /* Free rx buffers */
2767         qede_free_rx_buffers(edev, rxq);
2768
2769         /* Free the parallel SW ring */
2770         kfree(rxq->sw_rx_ring);
2771
2772         /* Free the real RQ ring used by FW */
2773         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2774         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2775 }
2776
2777 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2778                                 struct qede_rx_queue *rxq)
2779 {
2780         struct sw_rx_data *sw_rx_data;
2781         struct eth_rx_bd *rx_bd;
2782         dma_addr_t mapping;
2783         struct page *data;
2784
2785         data = alloc_pages(GFP_ATOMIC, 0);
2786         if (unlikely(!data)) {
2787                 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2788                 return -ENOMEM;
2789         }
2790
2791         /* Map the entire page as it would be used
2792          * for multiple RX buffer segment size mapping.
2793          */
2794         mapping = dma_map_page(&edev->pdev->dev, data, 0,
2795                                PAGE_SIZE, DMA_FROM_DEVICE);
2796         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2797                 __free_page(data);
2798                 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2799                 return -ENOMEM;
2800         }
2801
2802         sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2803         sw_rx_data->page_offset = 0;
2804         sw_rx_data->data = data;
2805         sw_rx_data->mapping = mapping;
2806
2807         /* Advance PROD and get BD pointer */
2808         rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2809         WARN_ON(!rx_bd);
2810         rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2811         rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2812
2813         rxq->sw_rx_prod++;
2814
2815         return 0;
2816 }
2817
2818 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
2819 {
2820         dma_addr_t mapping;
2821         int i;
2822
2823         if (edev->gro_disable)
2824                 return 0;
2825
2826         if (edev->ndev->mtu > PAGE_SIZE) {
2827                 edev->gro_disable = 1;
2828                 return 0;
2829         }
2830
2831         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2832                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2833                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2834
2835                 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2836                 if (unlikely(!replace_buf->data)) {
2837                         DP_NOTICE(edev,
2838                                   "Failed to allocate TPA skb pool [replacement buffer]\n");
2839                         goto err;
2840                 }
2841
2842                 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2843                                        rxq->rx_buf_size, DMA_FROM_DEVICE);
2844                 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2845                         DP_NOTICE(edev,
2846                                   "Failed to map TPA replacement buffer\n");
2847                         goto err;
2848                 }
2849
2850                 replace_buf->mapping = mapping;
2851                 tpa_info->replace_buf.page_offset = 0;
2852
2853                 tpa_info->replace_buf_mapping = mapping;
2854                 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2855         }
2856
2857         return 0;
2858 err:
2859         qede_free_sge_mem(edev, rxq);
2860         edev->gro_disable = 1;
2861         return -ENOMEM;
2862 }
2863
2864 /* This function allocates all memory needed per Rx queue */
2865 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
2866 {
2867         int i, rc, size;
2868
2869         rxq->num_rx_buffers = edev->q_num_rx_buffers;
2870
2871         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
2872
2873         if (rxq->rx_buf_size > PAGE_SIZE)
2874                 rxq->rx_buf_size = PAGE_SIZE;
2875
2876         /* Segment size to spilt a page in multiple equal parts */
2877         rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2878
2879         /* Allocate the parallel driver ring for Rx buffers */
2880         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2881         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2882         if (!rxq->sw_rx_ring) {
2883                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2884                 rc = -ENOMEM;
2885                 goto err;
2886         }
2887
2888         /* Allocate FW Rx ring  */
2889         rc = edev->ops->common->chain_alloc(edev->cdev,
2890                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2891                                             QED_CHAIN_MODE_NEXT_PTR,
2892                                             QED_CHAIN_CNT_TYPE_U16,
2893                                             RX_RING_SIZE,
2894                                             sizeof(struct eth_rx_bd),
2895                                             &rxq->rx_bd_ring);
2896
2897         if (rc)
2898                 goto err;
2899
2900         /* Allocate FW completion ring */
2901         rc = edev->ops->common->chain_alloc(edev->cdev,
2902                                             QED_CHAIN_USE_TO_CONSUME,
2903                                             QED_CHAIN_MODE_PBL,
2904                                             QED_CHAIN_CNT_TYPE_U16,
2905                                             RX_RING_SIZE,
2906                                             sizeof(union eth_rx_cqe),
2907                                             &rxq->rx_comp_ring);
2908         if (rc)
2909                 goto err;
2910
2911         /* Allocate buffers for the Rx ring */
2912         for (i = 0; i < rxq->num_rx_buffers; i++) {
2913                 rc = qede_alloc_rx_buffer(edev, rxq);
2914                 if (rc) {
2915                         DP_ERR(edev,
2916                                "Rx buffers allocation failed at index %d\n", i);
2917                         goto err;
2918                 }
2919         }
2920
2921         rc = qede_alloc_sge_mem(edev, rxq);
2922 err:
2923         return rc;
2924 }
2925
2926 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
2927 {
2928         /* Free the parallel SW ring */
2929         kfree(txq->sw_tx_ring);
2930
2931         /* Free the real RQ ring used by FW */
2932         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2933 }
2934
2935 /* This function allocates all memory needed per Tx queue */
2936 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
2937 {
2938         int size, rc;
2939         union eth_tx_bd_types *p_virt;
2940
2941         txq->num_tx_buffers = edev->q_num_tx_buffers;
2942
2943         /* Allocate the parallel driver ring for Tx buffers */
2944         size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2945         txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2946         if (!txq->sw_tx_ring) {
2947                 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2948                 goto err;
2949         }
2950
2951         rc = edev->ops->common->chain_alloc(edev->cdev,
2952                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2953                                             QED_CHAIN_MODE_PBL,
2954                                             QED_CHAIN_CNT_TYPE_U16,
2955                                             NUM_TX_BDS_MAX,
2956                                             sizeof(*p_virt), &txq->tx_pbl);
2957         if (rc)
2958                 goto err;
2959
2960         return 0;
2961
2962 err:
2963         qede_free_mem_txq(edev, txq);
2964         return -ENOMEM;
2965 }
2966
2967 /* This function frees all memory of a single fp */
2968 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
2969 {
2970         int tc;
2971
2972         qede_free_mem_sb(edev, fp->sb_info);
2973
2974         if (fp->type & QEDE_FASTPATH_RX)
2975                 qede_free_mem_rxq(edev, fp->rxq);
2976
2977         if (fp->type & QEDE_FASTPATH_TX)
2978                 for (tc = 0; tc < edev->num_tc; tc++)
2979                         qede_free_mem_txq(edev, &fp->txqs[tc]);
2980 }
2981
2982 /* This function allocates all memory needed for a single fp (i.e. an entity
2983  * which contains status block, one rx queue and/or multiple per-TC tx queues.
2984  */
2985 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
2986 {
2987         int rc, tc;
2988
2989         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
2990         if (rc)
2991                 goto err;
2992
2993         if (fp->type & QEDE_FASTPATH_RX) {
2994                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
2995                 if (rc)
2996                         goto err;
2997         }
2998
2999         if (fp->type & QEDE_FASTPATH_TX) {
3000                 for (tc = 0; tc < edev->num_tc; tc++) {
3001                         rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
3002                         if (rc)
3003                                 goto err;
3004                 }
3005         }
3006
3007         return 0;
3008 err:
3009         return rc;
3010 }
3011
3012 static void qede_free_mem_load(struct qede_dev *edev)
3013 {
3014         int i;
3015
3016         for_each_queue(i) {
3017                 struct qede_fastpath *fp = &edev->fp_array[i];
3018
3019                 qede_free_mem_fp(edev, fp);
3020         }
3021 }
3022
3023 /* This function allocates all qede memory at NIC load. */
3024 static int qede_alloc_mem_load(struct qede_dev *edev)
3025 {
3026         int rc = 0, queue_id;
3027
3028         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
3029                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
3030
3031                 rc = qede_alloc_mem_fp(edev, fp);
3032                 if (rc) {
3033                         DP_ERR(edev,
3034                                "Failed to allocate memory for fastpath - rss id = %d\n",
3035                                queue_id);
3036                         qede_free_mem_load(edev);
3037                         return rc;
3038                 }
3039         }
3040
3041         return 0;
3042 }
3043
3044 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
3045 static void qede_init_fp(struct qede_dev *edev)
3046 {
3047         int queue_id, rxq_index = 0, txq_index = 0, tc;
3048         struct qede_fastpath *fp;
3049
3050         for_each_queue(queue_id) {
3051                 fp = &edev->fp_array[queue_id];
3052
3053                 fp->edev = edev;
3054                 fp->id = queue_id;
3055
3056                 memset((void *)&fp->napi, 0, sizeof(fp->napi));
3057
3058                 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
3059
3060                 if (fp->type & QEDE_FASTPATH_RX) {
3061                         memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
3062                         fp->rxq->rxq_id = rxq_index++;
3063                 }
3064
3065                 if (fp->type & QEDE_FASTPATH_TX) {
3066                         memset((void *)fp->txqs, 0,
3067                                (edev->num_tc * sizeof(*fp->txqs)));
3068                         for (tc = 0; tc < edev->num_tc; tc++) {
3069                                 fp->txqs[tc].index = txq_index +
3070                                     tc * QEDE_TSS_COUNT(edev);
3071                                 if (edev->dev_info.is_legacy)
3072                                         fp->txqs[tc].is_legacy = true;
3073                         }
3074                         txq_index++;
3075                 }
3076
3077                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
3078                          edev->ndev->name, queue_id);
3079         }
3080
3081         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
3082 }
3083
3084 static int qede_set_real_num_queues(struct qede_dev *edev)
3085 {
3086         int rc = 0;
3087
3088         rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
3089         if (rc) {
3090                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3091                 return rc;
3092         }
3093
3094         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
3095         if (rc) {
3096                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3097                 return rc;
3098         }
3099
3100         return 0;
3101 }
3102
3103 static void qede_napi_disable_remove(struct qede_dev *edev)
3104 {
3105         int i;
3106
3107         for_each_queue(i) {
3108                 napi_disable(&edev->fp_array[i].napi);
3109
3110                 netif_napi_del(&edev->fp_array[i].napi);
3111         }
3112 }
3113
3114 static void qede_napi_add_enable(struct qede_dev *edev)
3115 {
3116         int i;
3117
3118         /* Add NAPI objects */
3119         for_each_queue(i) {
3120                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3121                                qede_poll, NAPI_POLL_WEIGHT);
3122                 napi_enable(&edev->fp_array[i].napi);
3123         }
3124 }
3125
3126 static void qede_sync_free_irqs(struct qede_dev *edev)
3127 {
3128         int i;
3129
3130         for (i = 0; i < edev->int_info.used_cnt; i++) {
3131                 if (edev->int_info.msix_cnt) {
3132                         synchronize_irq(edev->int_info.msix[i].vector);
3133                         free_irq(edev->int_info.msix[i].vector,
3134                                  &edev->fp_array[i]);
3135                 } else {
3136                         edev->ops->common->simd_handler_clean(edev->cdev, i);
3137                 }
3138         }
3139
3140         edev->int_info.used_cnt = 0;
3141 }
3142
3143 static int qede_req_msix_irqs(struct qede_dev *edev)
3144 {
3145         int i, rc;
3146
3147         /* Sanitize number of interrupts == number of prepared RSS queues */
3148         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
3149                 DP_ERR(edev,
3150                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3151                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
3152                 return -EINVAL;
3153         }
3154
3155         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
3156                 rc = request_irq(edev->int_info.msix[i].vector,
3157                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
3158                                  &edev->fp_array[i]);
3159                 if (rc) {
3160                         DP_ERR(edev, "Request fp %d irq failed\n", i);
3161                         qede_sync_free_irqs(edev);
3162                         return rc;
3163                 }
3164                 DP_VERBOSE(edev, NETIF_MSG_INTR,
3165                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3166                            edev->fp_array[i].name, i,
3167                            &edev->fp_array[i]);
3168                 edev->int_info.used_cnt++;
3169         }
3170
3171         return 0;
3172 }
3173
3174 static void qede_simd_fp_handler(void *cookie)
3175 {
3176         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3177
3178         napi_schedule_irqoff(&fp->napi);
3179 }
3180
3181 static int qede_setup_irqs(struct qede_dev *edev)
3182 {
3183         int i, rc = 0;
3184
3185         /* Learn Interrupt configuration */
3186         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3187         if (rc)
3188                 return rc;
3189
3190         if (edev->int_info.msix_cnt) {
3191                 rc = qede_req_msix_irqs(edev);
3192                 if (rc)
3193                         return rc;
3194                 edev->ndev->irq = edev->int_info.msix[0].vector;
3195         } else {
3196                 const struct qed_common_ops *ops;
3197
3198                 /* qed should learn receive the RSS ids and callbacks */
3199                 ops = edev->ops->common;
3200                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
3201                         ops->simd_handler_config(edev->cdev,
3202                                                  &edev->fp_array[i], i,
3203                                                  qede_simd_fp_handler);
3204                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
3205         }
3206         return 0;
3207 }
3208
3209 static int qede_drain_txq(struct qede_dev *edev,
3210                           struct qede_tx_queue *txq, bool allow_drain)
3211 {
3212         int rc, cnt = 1000;
3213
3214         while (txq->sw_tx_cons != txq->sw_tx_prod) {
3215                 if (!cnt) {
3216                         if (allow_drain) {
3217                                 DP_NOTICE(edev,
3218                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
3219                                           txq->index);
3220                                 rc = edev->ops->common->drain(edev->cdev);
3221                                 if (rc)
3222                                         return rc;
3223                                 return qede_drain_txq(edev, txq, false);
3224                         }
3225                         DP_NOTICE(edev,
3226                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3227                                   txq->index, txq->sw_tx_prod,
3228                                   txq->sw_tx_cons);
3229                         return -ENODEV;
3230                 }
3231                 cnt--;
3232                 usleep_range(1000, 2000);
3233                 barrier();
3234         }
3235
3236         /* FW finished processing, wait for HW to transmit all tx packets */
3237         usleep_range(1000, 2000);
3238
3239         return 0;
3240 }
3241
3242 static int qede_stop_queues(struct qede_dev *edev)
3243 {
3244         struct qed_update_vport_params vport_update_params;
3245         struct qed_dev *cdev = edev->cdev;
3246         int rc, tc, i;
3247
3248         /* Disable the vport */
3249         memset(&vport_update_params, 0, sizeof(vport_update_params));
3250         vport_update_params.vport_id = 0;
3251         vport_update_params.update_vport_active_flg = 1;
3252         vport_update_params.vport_active_flg = 0;
3253         vport_update_params.update_rss_flg = 0;
3254
3255         rc = edev->ops->vport_update(cdev, &vport_update_params);
3256         if (rc) {
3257                 DP_ERR(edev, "Failed to update vport\n");
3258                 return rc;
3259         }
3260
3261         /* Flush Tx queues. If needed, request drain from MCP */
3262         for_each_queue(i) {
3263                 struct qede_fastpath *fp = &edev->fp_array[i];
3264
3265                 if (fp->type & QEDE_FASTPATH_TX) {
3266                         for (tc = 0; tc < edev->num_tc; tc++) {
3267                                 struct qede_tx_queue *txq = &fp->txqs[tc];
3268
3269                                 rc = qede_drain_txq(edev, txq, true);
3270                                 if (rc)
3271                                         return rc;
3272                         }
3273                 }
3274         }
3275
3276         /* Stop all Queues in reverse order */
3277         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
3278                 struct qed_stop_rxq_params rx_params;
3279
3280                 /* Stop the Tx Queue(s) */
3281                 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
3282                         for (tc = 0; tc < edev->num_tc; tc++) {
3283                                 struct qed_stop_txq_params tx_params;
3284                                 u8 val;
3285
3286                                 tx_params.rss_id = i;
3287                                 val = edev->fp_array[i].txqs[tc].index;
3288                                 tx_params.tx_queue_id = val;
3289                                 rc = edev->ops->q_tx_stop(cdev, &tx_params);
3290                                 if (rc) {
3291                                         DP_ERR(edev, "Failed to stop TXQ #%d\n",
3292                                                tx_params.tx_queue_id);
3293                                         return rc;
3294                                 }
3295                         }
3296                 }
3297
3298                 /* Stop the Rx Queue */
3299                 if (edev->fp_array[i].type & QEDE_FASTPATH_RX) {
3300                         memset(&rx_params, 0, sizeof(rx_params));
3301                         rx_params.rss_id = i;
3302                         rx_params.rx_queue_id = edev->fp_array[i].rxq->rxq_id;
3303
3304                         rc = edev->ops->q_rx_stop(cdev, &rx_params);
3305                         if (rc) {
3306                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3307                                 return rc;
3308                         }
3309                 }
3310         }
3311
3312         /* Stop the vport */
3313         rc = edev->ops->vport_stop(cdev, 0);
3314         if (rc)
3315                 DP_ERR(edev, "Failed to stop VPORT\n");
3316
3317         return rc;
3318 }
3319
3320 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
3321 {
3322         int rc, tc, i;
3323         int vlan_removal_en = 1;
3324         struct qed_dev *cdev = edev->cdev;
3325         struct qed_update_vport_params vport_update_params;
3326         struct qed_queue_start_common_params q_params;
3327         struct qed_dev_info *qed_info = &edev->dev_info.common;
3328         struct qed_start_vport_params start = {0};
3329         bool reset_rss_indir = false;
3330
3331         if (!edev->num_queues) {
3332                 DP_ERR(edev,
3333                        "Cannot update V-VPORT as active as there are no Rx queues\n");
3334                 return -EINVAL;
3335         }
3336
3337         start.gro_enable = !edev->gro_disable;
3338         start.mtu = edev->ndev->mtu;
3339         start.vport_id = 0;
3340         start.drop_ttl0 = true;
3341         start.remove_inner_vlan = vlan_removal_en;
3342         start.clear_stats = clear_stats;
3343
3344         rc = edev->ops->vport_start(cdev, &start);
3345
3346         if (rc) {
3347                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3348                 return rc;
3349         }
3350
3351         DP_VERBOSE(edev, NETIF_MSG_IFUP,
3352                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3353                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3354
3355         for_each_queue(i) {
3356                 struct qede_fastpath *fp = &edev->fp_array[i];
3357                 dma_addr_t p_phys_table;
3358                 u32 page_cnt;
3359
3360                 if (fp->type & QEDE_FASTPATH_RX) {
3361                         struct qede_rx_queue *rxq = fp->rxq;
3362                         __le16 *val;
3363
3364                         memset(&q_params, 0, sizeof(q_params));
3365                         q_params.rss_id = i;
3366                         q_params.queue_id = rxq->rxq_id;
3367                         q_params.vport_id = 0;
3368                         q_params.sb = fp->sb_info->igu_sb_id;
3369                         q_params.sb_idx = RX_PI;
3370
3371                         p_phys_table =
3372                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
3373                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
3374
3375                         rc = edev->ops->q_rx_start(cdev, &q_params,
3376                                                    rxq->rx_buf_size,
3377                                                    rxq->rx_bd_ring.p_phys_addr,
3378                                                    p_phys_table,
3379                                                    page_cnt,
3380                                                    &rxq->hw_rxq_prod_addr);
3381                         if (rc) {
3382                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
3383                                        rc);
3384                                 return rc;
3385                         }
3386
3387                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
3388                         rxq->hw_cons_ptr = val;
3389
3390                         qede_update_rx_prod(edev, rxq);
3391                 }
3392
3393                 if (!(fp->type & QEDE_FASTPATH_TX))
3394                         continue;
3395
3396                 for (tc = 0; tc < edev->num_tc; tc++) {
3397                         struct qede_tx_queue *txq = &fp->txqs[tc];
3398
3399                         p_phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
3400                         page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
3401
3402                         memset(&q_params, 0, sizeof(q_params));
3403                         q_params.rss_id = i;
3404                         q_params.queue_id = txq->index;
3405                         q_params.vport_id = 0;
3406                         q_params.sb = fp->sb_info->igu_sb_id;
3407                         q_params.sb_idx = TX_PI(tc);
3408
3409                         rc = edev->ops->q_tx_start(cdev, &q_params,
3410                                                    p_phys_table, page_cnt,
3411                                                    &txq->doorbell_addr);
3412                         if (rc) {
3413                                 DP_ERR(edev, "Start TXQ #%d failed %d\n",
3414                                        txq->index, rc);
3415                                 return rc;
3416                         }
3417
3418                         txq->hw_cons_ptr =
3419                                 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3420                         SET_FIELD(txq->tx_db.data.params,
3421                                   ETH_DB_DATA_DEST, DB_DEST_XCM);
3422                         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3423                                   DB_AGG_CMD_SET);
3424                         SET_FIELD(txq->tx_db.data.params,
3425                                   ETH_DB_DATA_AGG_VAL_SEL,
3426                                   DQ_XCM_ETH_TX_BD_PROD_CMD);
3427
3428                         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3429                 }
3430         }
3431
3432         /* Prepare and send the vport enable */
3433         memset(&vport_update_params, 0, sizeof(vport_update_params));
3434         vport_update_params.vport_id = start.vport_id;
3435         vport_update_params.update_vport_active_flg = 1;
3436         vport_update_params.vport_active_flg = 1;
3437
3438         if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3439             qed_info->tx_switching) {
3440                 vport_update_params.update_tx_switching_flg = 1;
3441                 vport_update_params.tx_switching_flg = 1;
3442         }
3443
3444         /* Fill struct with RSS params */
3445         if (QEDE_RSS_COUNT(edev) > 1) {
3446                 vport_update_params.update_rss_flg = 1;
3447
3448                 /* Need to validate current RSS config uses valid entries */
3449                 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3450                         if (edev->rss_params.rss_ind_table[i] >=
3451                             QEDE_RSS_COUNT(edev)) {
3452                                 reset_rss_indir = true;
3453                                 break;
3454                         }
3455                 }
3456
3457                 if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3458                     reset_rss_indir) {
3459                         u16 val;
3460
3461                         for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3462                                 u16 indir_val;
3463
3464                                 val = QEDE_RSS_COUNT(edev);
3465                                 indir_val = ethtool_rxfh_indir_default(i, val);
3466                                 edev->rss_params.rss_ind_table[i] = indir_val;
3467                         }
3468                         edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3469                 }
3470
3471                 if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3472                         netdev_rss_key_fill(edev->rss_params.rss_key,
3473                                             sizeof(edev->rss_params.rss_key));
3474                         edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3475                 }
3476
3477                 if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3478                         edev->rss_params.rss_caps = QED_RSS_IPV4 |
3479                                                     QED_RSS_IPV6 |
3480                                                     QED_RSS_IPV4_TCP |
3481                                                     QED_RSS_IPV6_TCP;
3482                         edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3483                 }
3484
3485                 memcpy(&vport_update_params.rss_params, &edev->rss_params,
3486                        sizeof(vport_update_params.rss_params));
3487         } else {
3488                 memset(&vport_update_params.rss_params, 0,
3489                        sizeof(vport_update_params.rss_params));
3490         }
3491
3492         rc = edev->ops->vport_update(cdev, &vport_update_params);
3493         if (rc) {
3494                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3495                 return rc;
3496         }
3497
3498         return 0;
3499 }
3500
3501 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3502                                  enum qed_filter_xcast_params_type opcode,
3503                                  unsigned char *mac, int num_macs)
3504 {
3505         struct qed_filter_params filter_cmd;
3506         int i;
3507
3508         memset(&filter_cmd, 0, sizeof(filter_cmd));
3509         filter_cmd.type = QED_FILTER_TYPE_MCAST;
3510         filter_cmd.filter.mcast.type = opcode;
3511         filter_cmd.filter.mcast.num = num_macs;
3512
3513         for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3514                 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3515
3516         return edev->ops->filter_config(edev->cdev, &filter_cmd);
3517 }
3518
3519 enum qede_unload_mode {
3520         QEDE_UNLOAD_NORMAL,
3521 };
3522
3523 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3524 {
3525         struct qed_link_params link_params;
3526         int rc;
3527
3528         DP_INFO(edev, "Starting qede unload\n");
3529
3530         qede_roce_dev_event_close(edev);
3531         mutex_lock(&edev->qede_lock);
3532         edev->state = QEDE_STATE_CLOSED;
3533
3534         /* Close OS Tx */
3535         netif_tx_disable(edev->ndev);
3536         netif_carrier_off(edev->ndev);
3537
3538         /* Reset the link */
3539         memset(&link_params, 0, sizeof(link_params));
3540         link_params.link_up = false;
3541         edev->ops->common->set_link(edev->cdev, &link_params);
3542         rc = qede_stop_queues(edev);
3543         if (rc) {
3544                 qede_sync_free_irqs(edev);
3545                 goto out;
3546         }
3547
3548         DP_INFO(edev, "Stopped Queues\n");
3549
3550         qede_vlan_mark_nonconfigured(edev);
3551         edev->ops->fastpath_stop(edev->cdev);
3552
3553         /* Release the interrupts */
3554         qede_sync_free_irqs(edev);
3555         edev->ops->common->set_fp_int(edev->cdev, 0);
3556
3557         qede_napi_disable_remove(edev);
3558
3559         qede_free_mem_load(edev);
3560         qede_free_fp_array(edev);
3561
3562 out:
3563         mutex_unlock(&edev->qede_lock);
3564         DP_INFO(edev, "Ending qede unload\n");
3565 }
3566
3567 enum qede_load_mode {
3568         QEDE_LOAD_NORMAL,
3569         QEDE_LOAD_RELOAD,
3570 };
3571
3572 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3573 {
3574         struct qed_link_params link_params;
3575         struct qed_link_output link_output;
3576         int rc;
3577
3578         DP_INFO(edev, "Starting qede load\n");
3579
3580         rc = qede_set_num_queues(edev);
3581         if (rc)
3582                 goto err0;
3583
3584         rc = qede_alloc_fp_array(edev);
3585         if (rc)
3586                 goto err0;
3587
3588         qede_init_fp(edev);
3589
3590         rc = qede_alloc_mem_load(edev);
3591         if (rc)
3592                 goto err1;
3593         DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3594                 QEDE_QUEUE_CNT(edev), edev->num_tc);
3595
3596         rc = qede_set_real_num_queues(edev);
3597         if (rc)
3598                 goto err2;
3599
3600         qede_napi_add_enable(edev);
3601         DP_INFO(edev, "Napi added and enabled\n");
3602
3603         rc = qede_setup_irqs(edev);
3604         if (rc)
3605                 goto err3;
3606         DP_INFO(edev, "Setup IRQs succeeded\n");
3607
3608         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
3609         if (rc)
3610                 goto err4;
3611         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3612
3613         /* Add primary mac and set Rx filters */
3614         ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3615
3616         mutex_lock(&edev->qede_lock);
3617         edev->state = QEDE_STATE_OPEN;
3618         mutex_unlock(&edev->qede_lock);
3619
3620         /* Program un-configured VLANs */
3621         qede_configure_vlan_filters(edev);
3622
3623         /* Ask for link-up using current configuration */
3624         memset(&link_params, 0, sizeof(link_params));
3625         link_params.link_up = true;
3626         edev->ops->common->set_link(edev->cdev, &link_params);
3627
3628         /* Query whether link is already-up */
3629         memset(&link_output, 0, sizeof(link_output));
3630         edev->ops->common->get_link(edev->cdev, &link_output);
3631         qede_roce_dev_event_open(edev);
3632         qede_link_update(edev, &link_output);
3633
3634         DP_INFO(edev, "Ending successfully qede load\n");
3635
3636         return 0;
3637
3638 err4:
3639         qede_sync_free_irqs(edev);
3640         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3641 err3:
3642         qede_napi_disable_remove(edev);
3643 err2:
3644         qede_free_mem_load(edev);
3645 err1:
3646         edev->ops->common->set_fp_int(edev->cdev, 0);
3647         qede_free_fp_array(edev);
3648         edev->num_queues = 0;
3649         edev->fp_num_tx = 0;
3650         edev->fp_num_rx = 0;
3651 err0:
3652         return rc;
3653 }
3654
3655 void qede_reload(struct qede_dev *edev,
3656                  void (*func)(struct qede_dev *, union qede_reload_args *),
3657                  union qede_reload_args *args)
3658 {
3659         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3660         /* Call function handler to update parameters
3661          * needed for function load.
3662          */
3663         if (func)
3664                 func(edev, args);
3665
3666         qede_load(edev, QEDE_LOAD_RELOAD);
3667
3668         mutex_lock(&edev->qede_lock);
3669         qede_config_rx_mode(edev->ndev);
3670         mutex_unlock(&edev->qede_lock);
3671 }
3672
3673 /* called with rtnl_lock */
3674 static int qede_open(struct net_device *ndev)
3675 {
3676         struct qede_dev *edev = netdev_priv(ndev);
3677         int rc;
3678
3679         netif_carrier_off(ndev);
3680
3681         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3682
3683         rc = qede_load(edev, QEDE_LOAD_NORMAL);
3684
3685         if (rc)
3686                 return rc;
3687
3688         udp_tunnel_get_rx_info(ndev);
3689
3690         return 0;
3691 }
3692
3693 static int qede_close(struct net_device *ndev)
3694 {
3695         struct qede_dev *edev = netdev_priv(ndev);
3696
3697         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3698
3699         return 0;
3700 }
3701
3702 static void qede_link_update(void *dev, struct qed_link_output *link)
3703 {
3704         struct qede_dev *edev = dev;
3705
3706         if (!netif_running(edev->ndev)) {
3707                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3708                 return;
3709         }
3710
3711         if (link->link_up) {
3712                 if (!netif_carrier_ok(edev->ndev)) {
3713                         DP_NOTICE(edev, "Link is up\n");
3714                         netif_tx_start_all_queues(edev->ndev);
3715                         netif_carrier_on(edev->ndev);
3716                 }
3717         } else {
3718                 if (netif_carrier_ok(edev->ndev)) {
3719                         DP_NOTICE(edev, "Link is down\n");
3720                         netif_tx_disable(edev->ndev);
3721                         netif_carrier_off(edev->ndev);
3722                 }
3723         }
3724 }
3725
3726 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3727 {
3728         struct qede_dev *edev = netdev_priv(ndev);
3729         struct sockaddr *addr = p;
3730         int rc;
3731
3732         ASSERT_RTNL(); /* @@@TBD To be removed */
3733
3734         DP_INFO(edev, "Set_mac_addr called\n");
3735
3736         if (!is_valid_ether_addr(addr->sa_data)) {
3737                 DP_NOTICE(edev, "The MAC address is not valid\n");
3738                 return -EFAULT;
3739         }
3740
3741         if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3742                 DP_NOTICE(edev, "qed prevents setting MAC\n");
3743                 return -EINVAL;
3744         }
3745
3746         ether_addr_copy(ndev->dev_addr, addr->sa_data);
3747
3748         if (!netif_running(ndev))  {
3749                 DP_NOTICE(edev, "The device is currently down\n");
3750                 return 0;
3751         }
3752
3753         /* Remove the previous primary mac */
3754         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3755                                    edev->primary_mac);
3756         if (rc)
3757                 return rc;
3758
3759         /* Add MAC filter according to the new unicast HW MAC address */
3760         ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3761         return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3762                                       edev->primary_mac);
3763 }
3764
3765 static int
3766 qede_configure_mcast_filtering(struct net_device *ndev,
3767                                enum qed_filter_rx_mode_type *accept_flags)
3768 {
3769         struct qede_dev *edev = netdev_priv(ndev);
3770         unsigned char *mc_macs, *temp;
3771         struct netdev_hw_addr *ha;
3772         int rc = 0, mc_count;
3773         size_t size;
3774
3775         size = 64 * ETH_ALEN;
3776
3777         mc_macs = kzalloc(size, GFP_KERNEL);
3778         if (!mc_macs) {
3779                 DP_NOTICE(edev,
3780                           "Failed to allocate memory for multicast MACs\n");
3781                 rc = -ENOMEM;
3782                 goto exit;
3783         }
3784
3785         temp = mc_macs;
3786
3787         /* Remove all previously configured MAC filters */
3788         rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3789                                    mc_macs, 1);
3790         if (rc)
3791                 goto exit;
3792
3793         netif_addr_lock_bh(ndev);
3794
3795         mc_count = netdev_mc_count(ndev);
3796         if (mc_count < 64) {
3797                 netdev_for_each_mc_addr(ha, ndev) {
3798                         ether_addr_copy(temp, ha->addr);
3799                         temp += ETH_ALEN;
3800                 }
3801         }
3802
3803         netif_addr_unlock_bh(ndev);
3804
3805         /* Check for all multicast @@@TBD resource allocation */
3806         if ((ndev->flags & IFF_ALLMULTI) ||
3807             (mc_count > 64)) {
3808                 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3809                         *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3810         } else {
3811                 /* Add all multicast MAC filters */
3812                 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3813                                            mc_macs, mc_count);
3814         }
3815
3816 exit:
3817         kfree(mc_macs);
3818         return rc;
3819 }
3820
3821 static void qede_set_rx_mode(struct net_device *ndev)
3822 {
3823         struct qede_dev *edev = netdev_priv(ndev);
3824
3825         DP_INFO(edev, "qede_set_rx_mode called\n");
3826
3827         if (edev->state != QEDE_STATE_OPEN) {
3828                 DP_INFO(edev,
3829                         "qede_set_rx_mode called while interface is down\n");
3830         } else {
3831                 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3832                 schedule_delayed_work(&edev->sp_task, 0);
3833         }
3834 }
3835
3836 /* Must be called with qede_lock held */
3837 static void qede_config_rx_mode(struct net_device *ndev)
3838 {
3839         enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3840         struct qede_dev *edev = netdev_priv(ndev);
3841         struct qed_filter_params rx_mode;
3842         unsigned char *uc_macs, *temp;
3843         struct netdev_hw_addr *ha;
3844         int rc, uc_count;
3845         size_t size;
3846
3847         netif_addr_lock_bh(ndev);
3848
3849         uc_count = netdev_uc_count(ndev);
3850         size = uc_count * ETH_ALEN;
3851
3852         uc_macs = kzalloc(size, GFP_ATOMIC);
3853         if (!uc_macs) {
3854                 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3855                 netif_addr_unlock_bh(ndev);
3856                 return;
3857         }
3858
3859         temp = uc_macs;
3860         netdev_for_each_uc_addr(ha, ndev) {
3861                 ether_addr_copy(temp, ha->addr);
3862                 temp += ETH_ALEN;
3863         }
3864
3865         netif_addr_unlock_bh(ndev);
3866
3867         /* Configure the struct for the Rx mode */
3868         memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3869         rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3870
3871         /* Remove all previous unicast secondary macs and multicast macs
3872          * (configrue / leave the primary mac)
3873          */
3874         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3875                                    edev->primary_mac);
3876         if (rc)
3877                 goto out;
3878
3879         /* Check for promiscuous */
3880         if ((ndev->flags & IFF_PROMISC) ||
3881             (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3882                 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3883         } else {
3884                 /* Add MAC filters according to the unicast secondary macs */
3885                 int i;
3886
3887                 temp = uc_macs;
3888                 for (i = 0; i < uc_count; i++) {
3889                         rc = qede_set_ucast_rx_mac(edev,
3890                                                    QED_FILTER_XCAST_TYPE_ADD,
3891                                                    temp);
3892                         if (rc)
3893                                 goto out;
3894
3895                         temp += ETH_ALEN;
3896                 }
3897
3898                 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3899                 if (rc)
3900                         goto out;
3901         }
3902
3903         /* take care of VLAN mode */
3904         if (ndev->flags & IFF_PROMISC) {
3905                 qede_config_accept_any_vlan(edev, true);
3906         } else if (!edev->non_configured_vlans) {
3907                 /* It's possible that accept_any_vlan mode is set due to a
3908                  * previous setting of IFF_PROMISC. If vlan credits are
3909                  * sufficient, disable accept_any_vlan.
3910                  */
3911                 qede_config_accept_any_vlan(edev, false);
3912         }
3913
3914         rx_mode.filter.accept_flags = accept_flags;
3915         edev->ops->filter_config(edev->cdev, &rx_mode);
3916 out:
3917         kfree(uc_macs);
3918 }