vfat: don't use ->d_time
[cascardo/linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #include <net/udp_tunnel.h>
28 #include <linux/ip.h>
29 #include <net/ipv6.h>
30 #include <net/tcp.h>
31 #include <linux/if_ether.h>
32 #include <linux/if_vlan.h>
33 #include <linux/pkt_sched.h>
34 #include <linux/ethtool.h>
35 #include <linux/in.h>
36 #include <linux/random.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/bitops.h>
39
40 #include "qede.h"
41
42 static char version[] =
43         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
44
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
52
53 static const struct qed_eth_ops *qed_ops;
54
55 #define CHIP_NUM_57980S_40              0x1634
56 #define CHIP_NUM_57980S_10              0x1666
57 #define CHIP_NUM_57980S_MF              0x1636
58 #define CHIP_NUM_57980S_100             0x1644
59 #define CHIP_NUM_57980S_50              0x1654
60 #define CHIP_NUM_57980S_25              0x1656
61 #define CHIP_NUM_57980S_IOV             0x1664
62
63 #ifndef PCI_DEVICE_ID_NX2_57980E
64 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
65 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
66 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
67 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
68 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
69 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
70 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
71 #endif
72
73 enum qede_pci_private {
74         QEDE_PRIVATE_PF,
75         QEDE_PRIVATE_VF
76 };
77
78 static const struct pci_device_id qede_pci_tbl[] = {
79         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85 #ifdef CONFIG_QED_SRIOV
86         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
87 #endif
88         { 0 }
89 };
90
91 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
92
93 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
94
95 #define TX_TIMEOUT              (5 * HZ)
96
97 static void qede_remove(struct pci_dev *pdev);
98 static int qede_alloc_rx_buffer(struct qede_dev *edev,
99                                 struct qede_rx_queue *rxq);
100 static void qede_link_update(void *dev, struct qed_link_output *link);
101
102 #ifdef CONFIG_QED_SRIOV
103 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
104 {
105         struct qede_dev *edev = netdev_priv(ndev);
106
107         if (vlan > 4095) {
108                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
109                 return -EINVAL;
110         }
111
112         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
113                    vlan, vf);
114
115         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
116 }
117
118 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
119 {
120         struct qede_dev *edev = netdev_priv(ndev);
121
122         DP_VERBOSE(edev, QED_MSG_IOV,
123                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
124                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
125
126         if (!is_valid_ether_addr(mac)) {
127                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
128                 return -EINVAL;
129         }
130
131         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
132 }
133
134 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
135 {
136         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
137         struct qed_dev_info *qed_info = &edev->dev_info.common;
138         int rc;
139
140         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
141
142         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
143
144         /* Enable/Disable Tx switching for PF */
145         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
146             qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
147                 struct qed_update_vport_params params;
148
149                 memset(&params, 0, sizeof(params));
150                 params.vport_id = 0;
151                 params.update_tx_switching_flg = 1;
152                 params.tx_switching_flg = num_vfs_param ? 1 : 0;
153                 edev->ops->vport_update(edev->cdev, &params);
154         }
155
156         return rc;
157 }
158 #endif
159
160 static struct pci_driver qede_pci_driver = {
161         .name = "qede",
162         .id_table = qede_pci_tbl,
163         .probe = qede_probe,
164         .remove = qede_remove,
165 #ifdef CONFIG_QED_SRIOV
166         .sriov_configure = qede_sriov_configure,
167 #endif
168 };
169
170 static void qede_force_mac(void *dev, u8 *mac)
171 {
172         struct qede_dev *edev = dev;
173
174         ether_addr_copy(edev->ndev->dev_addr, mac);
175         ether_addr_copy(edev->primary_mac, mac);
176 }
177
178 static struct qed_eth_cb_ops qede_ll_ops = {
179         {
180                 .link_update = qede_link_update,
181         },
182         .force_mac = qede_force_mac,
183 };
184
185 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
186                              void *ptr)
187 {
188         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
189         struct ethtool_drvinfo drvinfo;
190         struct qede_dev *edev;
191
192         /* Currently only support name change */
193         if (event != NETDEV_CHANGENAME)
194                 goto done;
195
196         /* Check whether this is a qede device */
197         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
198                 goto done;
199
200         memset(&drvinfo, 0, sizeof(drvinfo));
201         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
202         if (strcmp(drvinfo.driver, "qede"))
203                 goto done;
204         edev = netdev_priv(ndev);
205
206         /* Notify qed of the name change */
207         if (!edev->ops || !edev->ops->common)
208                 goto done;
209         edev->ops->common->set_id(edev->cdev, edev->ndev->name,
210                                   "qede");
211
212 done:
213         return NOTIFY_DONE;
214 }
215
216 static struct notifier_block qede_netdev_notifier = {
217         .notifier_call = qede_netdev_event,
218 };
219
220 static
221 int __init qede_init(void)
222 {
223         int ret;
224
225         pr_notice("qede_init: %s\n", version);
226
227         qed_ops = qed_get_eth_ops();
228         if (!qed_ops) {
229                 pr_notice("Failed to get qed ethtool operations\n");
230                 return -EINVAL;
231         }
232
233         /* Must register notifier before pci ops, since we might miss
234          * interface rename after pci probe and netdev registeration.
235          */
236         ret = register_netdevice_notifier(&qede_netdev_notifier);
237         if (ret) {
238                 pr_notice("Failed to register netdevice_notifier\n");
239                 qed_put_eth_ops();
240                 return -EINVAL;
241         }
242
243         ret = pci_register_driver(&qede_pci_driver);
244         if (ret) {
245                 pr_notice("Failed to register driver\n");
246                 unregister_netdevice_notifier(&qede_netdev_notifier);
247                 qed_put_eth_ops();
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 static void __exit qede_cleanup(void)
255 {
256         pr_notice("qede_cleanup called\n");
257
258         unregister_netdevice_notifier(&qede_netdev_notifier);
259         pci_unregister_driver(&qede_pci_driver);
260         qed_put_eth_ops();
261 }
262
263 module_init(qede_init);
264 module_exit(qede_cleanup);
265
266 /* -------------------------------------------------------------------------
267  * START OF FAST-PATH
268  * -------------------------------------------------------------------------
269  */
270
271 /* Unmap the data and free skb */
272 static int qede_free_tx_pkt(struct qede_dev *edev,
273                             struct qede_tx_queue *txq,
274                             int *len)
275 {
276         u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
277         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
278         struct eth_tx_1st_bd *first_bd;
279         struct eth_tx_bd *tx_data_bd;
280         int bds_consumed = 0;
281         int nbds;
282         bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
283         int i, split_bd_len = 0;
284
285         if (unlikely(!skb)) {
286                 DP_ERR(edev,
287                        "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
288                        idx, txq->sw_tx_cons, txq->sw_tx_prod);
289                 return -1;
290         }
291
292         *len = skb->len;
293
294         first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
295
296         bds_consumed++;
297
298         nbds = first_bd->data.nbds;
299
300         if (data_split) {
301                 struct eth_tx_bd *split = (struct eth_tx_bd *)
302                         qed_chain_consume(&txq->tx_pbl);
303                 split_bd_len = BD_UNMAP_LEN(split);
304                 bds_consumed++;
305         }
306         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
307                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
308
309         /* Unmap the data of the skb frags */
310         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
311                 tx_data_bd = (struct eth_tx_bd *)
312                         qed_chain_consume(&txq->tx_pbl);
313                 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
314                                BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
315         }
316
317         while (bds_consumed++ < nbds)
318                 qed_chain_consume(&txq->tx_pbl);
319
320         /* Free skb */
321         dev_kfree_skb_any(skb);
322         txq->sw_tx_ring[idx].skb = NULL;
323         txq->sw_tx_ring[idx].flags = 0;
324
325         return 0;
326 }
327
328 /* Unmap the data and free skb when mapping failed during start_xmit */
329 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
330                                     struct qede_tx_queue *txq,
331                                     struct eth_tx_1st_bd *first_bd,
332                                     int nbd,
333                                     bool data_split)
334 {
335         u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
336         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
337         struct eth_tx_bd *tx_data_bd;
338         int i, split_bd_len = 0;
339
340         /* Return prod to its position before this skb was handled */
341         qed_chain_set_prod(&txq->tx_pbl,
342                            le16_to_cpu(txq->tx_db.data.bd_prod),
343                            first_bd);
344
345         first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
346
347         if (data_split) {
348                 struct eth_tx_bd *split = (struct eth_tx_bd *)
349                                           qed_chain_produce(&txq->tx_pbl);
350                 split_bd_len = BD_UNMAP_LEN(split);
351                 nbd--;
352         }
353
354         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
355                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
356
357         /* Unmap the data of the skb frags */
358         for (i = 0; i < nbd; i++) {
359                 tx_data_bd = (struct eth_tx_bd *)
360                         qed_chain_produce(&txq->tx_pbl);
361                 if (tx_data_bd->nbytes)
362                         dma_unmap_page(&edev->pdev->dev,
363                                        BD_UNMAP_ADDR(tx_data_bd),
364                                        BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
365         }
366
367         /* Return again prod to its position before this skb was handled */
368         qed_chain_set_prod(&txq->tx_pbl,
369                            le16_to_cpu(txq->tx_db.data.bd_prod),
370                            first_bd);
371
372         /* Free skb */
373         dev_kfree_skb_any(skb);
374         txq->sw_tx_ring[idx].skb = NULL;
375         txq->sw_tx_ring[idx].flags = 0;
376 }
377
378 static u32 qede_xmit_type(struct qede_dev *edev,
379                           struct sk_buff *skb,
380                           int *ipv6_ext)
381 {
382         u32 rc = XMIT_L4_CSUM;
383         __be16 l3_proto;
384
385         if (skb->ip_summed != CHECKSUM_PARTIAL)
386                 return XMIT_PLAIN;
387
388         l3_proto = vlan_get_protocol(skb);
389         if (l3_proto == htons(ETH_P_IPV6) &&
390             (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
391                 *ipv6_ext = 1;
392
393         if (skb->encapsulation)
394                 rc |= XMIT_ENC;
395
396         if (skb_is_gso(skb))
397                 rc |= XMIT_LSO;
398
399         return rc;
400 }
401
402 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
403                                          struct eth_tx_2nd_bd *second_bd,
404                                          struct eth_tx_3rd_bd *third_bd)
405 {
406         u8 l4_proto;
407         u16 bd2_bits1 = 0, bd2_bits2 = 0;
408
409         bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
410
411         bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
412                      ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
413                     << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
414
415         bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
416                       ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
417
418         if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
419                 l4_proto = ipv6_hdr(skb)->nexthdr;
420         else
421                 l4_proto = ip_hdr(skb)->protocol;
422
423         if (l4_proto == IPPROTO_UDP)
424                 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
425
426         if (third_bd)
427                 third_bd->data.bitfields |=
428                         cpu_to_le16(((tcp_hdrlen(skb) / 4) &
429                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
430                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
431
432         second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
433         second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
434 }
435
436 static int map_frag_to_bd(struct qede_dev *edev,
437                           skb_frag_t *frag,
438                           struct eth_tx_bd *bd)
439 {
440         dma_addr_t mapping;
441
442         /* Map skb non-linear frag data for DMA */
443         mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
444                                    skb_frag_size(frag),
445                                    DMA_TO_DEVICE);
446         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
447                 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
448                 return -ENOMEM;
449         }
450
451         /* Setup the data pointer of the frag data */
452         BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
453
454         return 0;
455 }
456
457 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
458 {
459         if (is_encap_pkt)
460                 return (skb_inner_transport_header(skb) +
461                         inner_tcp_hdrlen(skb) - skb->data);
462         else
463                 return (skb_transport_header(skb) +
464                         tcp_hdrlen(skb) - skb->data);
465 }
466
467 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
468 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
469 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
470                              u8 xmit_type)
471 {
472         int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
473
474         if (xmit_type & XMIT_LSO) {
475                 int hlen;
476
477                 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
478
479                 /* linear payload would require its own BD */
480                 if (skb_headlen(skb) > hlen)
481                         allowed_frags--;
482         }
483
484         return (skb_shinfo(skb)->nr_frags > allowed_frags);
485 }
486 #endif
487
488 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
489 {
490         /* wmb makes sure that the BDs data is updated before updating the
491          * producer, otherwise FW may read old data from the BDs.
492          */
493         wmb();
494         barrier();
495         writel(txq->tx_db.raw, txq->doorbell_addr);
496
497         /* mmiowb is needed to synchronize doorbell writes from more than one
498          * processor. It guarantees that the write arrives to the device before
499          * the queue lock is released and another start_xmit is called (possibly
500          * on another CPU). Without this barrier, the next doorbell can bypass
501          * this doorbell. This is applicable to IA64/Altix systems.
502          */
503         mmiowb();
504 }
505
506 /* Main transmit function */
507 static
508 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
509                             struct net_device *ndev)
510 {
511         struct qede_dev *edev = netdev_priv(ndev);
512         struct netdev_queue *netdev_txq;
513         struct qede_tx_queue *txq;
514         struct eth_tx_1st_bd *first_bd;
515         struct eth_tx_2nd_bd *second_bd = NULL;
516         struct eth_tx_3rd_bd *third_bd = NULL;
517         struct eth_tx_bd *tx_data_bd = NULL;
518         u16 txq_index;
519         u8 nbd = 0;
520         dma_addr_t mapping;
521         int rc, frag_idx = 0, ipv6_ext = 0;
522         u8 xmit_type;
523         u16 idx;
524         u16 hlen;
525         bool data_split = false;
526
527         /* Get tx-queue context and netdev index */
528         txq_index = skb_get_queue_mapping(skb);
529         WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
530         txq = QEDE_TX_QUEUE(edev, txq_index);
531         netdev_txq = netdev_get_tx_queue(ndev, txq_index);
532
533         WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
534                                (MAX_SKB_FRAGS + 1));
535
536         xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
537
538 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
539         if (qede_pkt_req_lin(edev, skb, xmit_type)) {
540                 if (skb_linearize(skb)) {
541                         DP_NOTICE(edev,
542                                   "SKB linearization failed - silently dropping this SKB\n");
543                         dev_kfree_skb_any(skb);
544                         return NETDEV_TX_OK;
545                 }
546         }
547 #endif
548
549         /* Fill the entry in the SW ring and the BDs in the FW ring */
550         idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
551         txq->sw_tx_ring[idx].skb = skb;
552         first_bd = (struct eth_tx_1st_bd *)
553                    qed_chain_produce(&txq->tx_pbl);
554         memset(first_bd, 0, sizeof(*first_bd));
555         first_bd->data.bd_flags.bitfields =
556                 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
557
558         /* Map skb linear data for DMA and set in the first BD */
559         mapping = dma_map_single(&edev->pdev->dev, skb->data,
560                                  skb_headlen(skb), DMA_TO_DEVICE);
561         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
562                 DP_NOTICE(edev, "SKB mapping failed\n");
563                 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
564                 qede_update_tx_producer(txq);
565                 return NETDEV_TX_OK;
566         }
567         nbd++;
568         BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
569
570         /* In case there is IPv6 with extension headers or LSO we need 2nd and
571          * 3rd BDs.
572          */
573         if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
574                 second_bd = (struct eth_tx_2nd_bd *)
575                         qed_chain_produce(&txq->tx_pbl);
576                 memset(second_bd, 0, sizeof(*second_bd));
577
578                 nbd++;
579                 third_bd = (struct eth_tx_3rd_bd *)
580                         qed_chain_produce(&txq->tx_pbl);
581                 memset(third_bd, 0, sizeof(*third_bd));
582
583                 nbd++;
584                 /* We need to fill in additional data in second_bd... */
585                 tx_data_bd = (struct eth_tx_bd *)second_bd;
586         }
587
588         if (skb_vlan_tag_present(skb)) {
589                 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
590                 first_bd->data.bd_flags.bitfields |=
591                         1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
592         }
593
594         /* Fill the parsing flags & params according to the requested offload */
595         if (xmit_type & XMIT_L4_CSUM) {
596                 /* We don't re-calculate IP checksum as it is already done by
597                  * the upper stack
598                  */
599                 first_bd->data.bd_flags.bitfields |=
600                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
601
602                 if (xmit_type & XMIT_ENC) {
603                         first_bd->data.bd_flags.bitfields |=
604                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
605                         first_bd->data.bitfields |=
606                             1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
607                 }
608
609                 /* If the packet is IPv6 with extension header, indicate that
610                  * to FW and pass few params, since the device cracker doesn't
611                  * support parsing IPv6 with extension header/s.
612                  */
613                 if (unlikely(ipv6_ext))
614                         qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
615         }
616
617         if (xmit_type & XMIT_LSO) {
618                 first_bd->data.bd_flags.bitfields |=
619                         (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
620                 third_bd->data.lso_mss =
621                         cpu_to_le16(skb_shinfo(skb)->gso_size);
622
623                 if (unlikely(xmit_type & XMIT_ENC)) {
624                         first_bd->data.bd_flags.bitfields |=
625                                 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
626                         hlen = qede_get_skb_hlen(skb, true);
627                 } else {
628                         first_bd->data.bd_flags.bitfields |=
629                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
630                         hlen = qede_get_skb_hlen(skb, false);
631                 }
632
633                 /* @@@TBD - if will not be removed need to check */
634                 third_bd->data.bitfields |=
635                         cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
636
637                 /* Make life easier for FW guys who can't deal with header and
638                  * data on same BD. If we need to split, use the second bd...
639                  */
640                 if (unlikely(skb_headlen(skb) > hlen)) {
641                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
642                                    "TSO split header size is %d (%x:%x)\n",
643                                    first_bd->nbytes, first_bd->addr.hi,
644                                    first_bd->addr.lo);
645
646                         mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
647                                            le32_to_cpu(first_bd->addr.lo)) +
648                                            hlen;
649
650                         BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
651                                               le16_to_cpu(first_bd->nbytes) -
652                                               hlen);
653
654                         /* this marks the BD as one that has no
655                          * individual mapping
656                          */
657                         txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
658
659                         first_bd->nbytes = cpu_to_le16(hlen);
660
661                         tx_data_bd = (struct eth_tx_bd *)third_bd;
662                         data_split = true;
663                 }
664         } else {
665                 first_bd->data.bitfields |=
666                     (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
667                     ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
668         }
669
670         /* Handle fragmented skb */
671         /* special handle for frags inside 2nd and 3rd bds.. */
672         while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
673                 rc = map_frag_to_bd(edev,
674                                     &skb_shinfo(skb)->frags[frag_idx],
675                                     tx_data_bd);
676                 if (rc) {
677                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
678                                                 data_split);
679                         qede_update_tx_producer(txq);
680                         return NETDEV_TX_OK;
681                 }
682
683                 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
684                         tx_data_bd = (struct eth_tx_bd *)third_bd;
685                 else
686                         tx_data_bd = NULL;
687
688                 frag_idx++;
689         }
690
691         /* map last frags into 4th, 5th .... */
692         for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
693                 tx_data_bd = (struct eth_tx_bd *)
694                              qed_chain_produce(&txq->tx_pbl);
695
696                 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
697
698                 rc = map_frag_to_bd(edev,
699                                     &skb_shinfo(skb)->frags[frag_idx],
700                                     tx_data_bd);
701                 if (rc) {
702                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
703                                                 data_split);
704                         qede_update_tx_producer(txq);
705                         return NETDEV_TX_OK;
706                 }
707         }
708
709         /* update the first BD with the actual num BDs */
710         first_bd->data.nbds = nbd;
711
712         netdev_tx_sent_queue(netdev_txq, skb->len);
713
714         skb_tx_timestamp(skb);
715
716         /* Advance packet producer only before sending the packet since mapping
717          * of pages may fail.
718          */
719         txq->sw_tx_prod++;
720
721         /* 'next page' entries are counted in the producer value */
722         txq->tx_db.data.bd_prod =
723                 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
724
725         if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
726                 qede_update_tx_producer(txq);
727
728         if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
729                       < (MAX_SKB_FRAGS + 1))) {
730                 if (skb->xmit_more)
731                         qede_update_tx_producer(txq);
732
733                 netif_tx_stop_queue(netdev_txq);
734                 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
735                            "Stop queue was called\n");
736                 /* paired memory barrier is in qede_tx_int(), we have to keep
737                  * ordering of set_bit() in netif_tx_stop_queue() and read of
738                  * fp->bd_tx_cons
739                  */
740                 smp_mb();
741
742                 if (qed_chain_get_elem_left(&txq->tx_pbl)
743                      >= (MAX_SKB_FRAGS + 1) &&
744                     (edev->state == QEDE_STATE_OPEN)) {
745                         netif_tx_wake_queue(netdev_txq);
746                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
747                                    "Wake queue was called\n");
748                 }
749         }
750
751         return NETDEV_TX_OK;
752 }
753
754 int qede_txq_has_work(struct qede_tx_queue *txq)
755 {
756         u16 hw_bd_cons;
757
758         /* Tell compiler that consumer and producer can change */
759         barrier();
760         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
761         if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
762                 return 0;
763
764         return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
765 }
766
767 static int qede_tx_int(struct qede_dev *edev,
768                        struct qede_tx_queue *txq)
769 {
770         struct netdev_queue *netdev_txq;
771         u16 hw_bd_cons;
772         unsigned int pkts_compl = 0, bytes_compl = 0;
773         int rc;
774
775         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
776
777         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
778         barrier();
779
780         while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
781                 int len = 0;
782
783                 rc = qede_free_tx_pkt(edev, txq, &len);
784                 if (rc) {
785                         DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
786                                   hw_bd_cons,
787                                   qed_chain_get_cons_idx(&txq->tx_pbl));
788                         break;
789                 }
790
791                 bytes_compl += len;
792                 pkts_compl++;
793                 txq->sw_tx_cons++;
794         }
795
796         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
797
798         /* Need to make the tx_bd_cons update visible to start_xmit()
799          * before checking for netif_tx_queue_stopped().  Without the
800          * memory barrier, there is a small possibility that
801          * start_xmit() will miss it and cause the queue to be stopped
802          * forever.
803          * On the other hand we need an rmb() here to ensure the proper
804          * ordering of bit testing in the following
805          * netif_tx_queue_stopped(txq) call.
806          */
807         smp_mb();
808
809         if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
810                 /* Taking tx_lock is needed to prevent reenabling the queue
811                  * while it's empty. This could have happen if rx_action() gets
812                  * suspended in qede_tx_int() after the condition before
813                  * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
814                  *
815                  * stops the queue->sees fresh tx_bd_cons->releases the queue->
816                  * sends some packets consuming the whole queue again->
817                  * stops the queue
818                  */
819
820                 __netif_tx_lock(netdev_txq, smp_processor_id());
821
822                 if ((netif_tx_queue_stopped(netdev_txq)) &&
823                     (edev->state == QEDE_STATE_OPEN) &&
824                     (qed_chain_get_elem_left(&txq->tx_pbl)
825                       >= (MAX_SKB_FRAGS + 1))) {
826                         netif_tx_wake_queue(netdev_txq);
827                         DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
828                                    "Wake queue was called\n");
829                 }
830
831                 __netif_tx_unlock(netdev_txq);
832         }
833
834         return 0;
835 }
836
837 bool qede_has_rx_work(struct qede_rx_queue *rxq)
838 {
839         u16 hw_comp_cons, sw_comp_cons;
840
841         /* Tell compiler that status block fields can change */
842         barrier();
843
844         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
845         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
846
847         return hw_comp_cons != sw_comp_cons;
848 }
849
850 static bool qede_has_tx_work(struct qede_fastpath *fp)
851 {
852         u8 tc;
853
854         for (tc = 0; tc < fp->edev->num_tc; tc++)
855                 if (qede_txq_has_work(&fp->txqs[tc]))
856                         return true;
857         return false;
858 }
859
860 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
861 {
862         qed_chain_consume(&rxq->rx_bd_ring);
863         rxq->sw_rx_cons++;
864 }
865
866 /* This function reuses the buffer(from an offset) from
867  * consumer index to producer index in the bd ring
868  */
869 static inline void qede_reuse_page(struct qede_dev *edev,
870                                    struct qede_rx_queue *rxq,
871                                    struct sw_rx_data *curr_cons)
872 {
873         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
874         struct sw_rx_data *curr_prod;
875         dma_addr_t new_mapping;
876
877         curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
878         *curr_prod = *curr_cons;
879
880         new_mapping = curr_prod->mapping + curr_prod->page_offset;
881
882         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
883         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
884
885         rxq->sw_rx_prod++;
886         curr_cons->data = NULL;
887 }
888
889 /* In case of allocation failures reuse buffers
890  * from consumer index to produce buffers for firmware
891  */
892 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
893                              struct qede_dev *edev, u8 count)
894 {
895         struct sw_rx_data *curr_cons;
896
897         for (; count > 0; count--) {
898                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
899                 qede_reuse_page(edev, rxq, curr_cons);
900                 qede_rx_bd_ring_consume(rxq);
901         }
902 }
903
904 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
905                                          struct qede_rx_queue *rxq,
906                                          struct sw_rx_data *curr_cons)
907 {
908         /* Move to the next segment in the page */
909         curr_cons->page_offset += rxq->rx_buf_seg_size;
910
911         if (curr_cons->page_offset == PAGE_SIZE) {
912                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
913                         /* Since we failed to allocate new buffer
914                          * current buffer can be used again.
915                          */
916                         curr_cons->page_offset -= rxq->rx_buf_seg_size;
917
918                         return -ENOMEM;
919                 }
920
921                 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
922                                PAGE_SIZE, DMA_FROM_DEVICE);
923         } else {
924                 /* Increment refcount of the page as we don't want
925                  * network stack to take the ownership of the page
926                  * which can be recycled multiple times by the driver.
927                  */
928                 page_ref_inc(curr_cons->data);
929                 qede_reuse_page(edev, rxq, curr_cons);
930         }
931
932         return 0;
933 }
934
935 static inline void qede_update_rx_prod(struct qede_dev *edev,
936                                        struct qede_rx_queue *rxq)
937 {
938         u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
939         u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
940         struct eth_rx_prod_data rx_prods = {0};
941
942         /* Update producers */
943         rx_prods.bd_prod = cpu_to_le16(bd_prod);
944         rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
945
946         /* Make sure that the BD and SGE data is updated before updating the
947          * producers since FW might read the BD/SGE right after the producer
948          * is updated.
949          */
950         wmb();
951
952         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
953                         (u32 *)&rx_prods);
954
955         /* mmiowb is needed to synchronize doorbell writes from more than one
956          * processor. It guarantees that the write arrives to the device before
957          * the napi lock is released and another qede_poll is called (possibly
958          * on another CPU). Without this barrier, the next doorbell can bypass
959          * this doorbell. This is applicable to IA64/Altix systems.
960          */
961         mmiowb();
962 }
963
964 static u32 qede_get_rxhash(struct qede_dev *edev,
965                            u8 bitfields,
966                            __le32 rss_hash,
967                            enum pkt_hash_types *rxhash_type)
968 {
969         enum rss_hash_type htype;
970
971         htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
972
973         if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
974                 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
975                                 (htype == RSS_HASH_TYPE_IPV6)) ?
976                                 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
977                 return le32_to_cpu(rss_hash);
978         }
979         *rxhash_type = PKT_HASH_TYPE_NONE;
980         return 0;
981 }
982
983 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
984 {
985         skb_checksum_none_assert(skb);
986
987         if (csum_flag & QEDE_CSUM_UNNECESSARY)
988                 skb->ip_summed = CHECKSUM_UNNECESSARY;
989
990         if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
991                 skb->csum_level = 1;
992 }
993
994 static inline void qede_skb_receive(struct qede_dev *edev,
995                                     struct qede_fastpath *fp,
996                                     struct sk_buff *skb,
997                                     u16 vlan_tag)
998 {
999         if (vlan_tag)
1000                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1001                                        vlan_tag);
1002
1003         napi_gro_receive(&fp->napi, skb);
1004 }
1005
1006 static void qede_set_gro_params(struct qede_dev *edev,
1007                                 struct sk_buff *skb,
1008                                 struct eth_fast_path_rx_tpa_start_cqe *cqe)
1009 {
1010         u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1011
1012         if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1013             PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1014                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1015         else
1016                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1017
1018         skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1019                                         cqe->header_len;
1020 }
1021
1022 static int qede_fill_frag_skb(struct qede_dev *edev,
1023                               struct qede_rx_queue *rxq,
1024                               u8 tpa_agg_index,
1025                               u16 len_on_bd)
1026 {
1027         struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1028                                                          NUM_RX_BDS_MAX];
1029         struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1030         struct sk_buff *skb = tpa_info->skb;
1031
1032         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1033                 goto out;
1034
1035         /* Add one frag and update the appropriate fields in the skb */
1036         skb_fill_page_desc(skb, tpa_info->frag_id++,
1037                            current_bd->data, current_bd->page_offset,
1038                            len_on_bd);
1039
1040         if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1041                 /* Incr page ref count to reuse on allocation failure
1042                  * so that it doesn't get freed while freeing SKB.
1043                  */
1044                 page_ref_inc(current_bd->data);
1045                 goto out;
1046         }
1047
1048         qed_chain_consume(&rxq->rx_bd_ring);
1049         rxq->sw_rx_cons++;
1050
1051         skb->data_len += len_on_bd;
1052         skb->truesize += rxq->rx_buf_seg_size;
1053         skb->len += len_on_bd;
1054
1055         return 0;
1056
1057 out:
1058         tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1059         qede_recycle_rx_bd_ring(rxq, edev, 1);
1060         return -ENOMEM;
1061 }
1062
1063 static void qede_tpa_start(struct qede_dev *edev,
1064                            struct qede_rx_queue *rxq,
1065                            struct eth_fast_path_rx_tpa_start_cqe *cqe)
1066 {
1067         struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1068         struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1069         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1070         struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1071         dma_addr_t mapping = tpa_info->replace_buf_mapping;
1072         struct sw_rx_data *sw_rx_data_cons;
1073         struct sw_rx_data *sw_rx_data_prod;
1074         enum pkt_hash_types rxhash_type;
1075         u32 rxhash;
1076
1077         sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1078         sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1079
1080         /* Use pre-allocated replacement buffer - we can't release the agg.
1081          * start until its over and we don't want to risk allocation failing
1082          * here, so re-allocate when aggregation will be over.
1083          */
1084         sw_rx_data_prod->mapping = replace_buf->mapping;
1085
1086         sw_rx_data_prod->data = replace_buf->data;
1087         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1088         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1089         sw_rx_data_prod->page_offset = replace_buf->page_offset;
1090
1091         rxq->sw_rx_prod++;
1092
1093         /* move partial skb from cons to pool (don't unmap yet)
1094          * save mapping, incase we drop the packet later on.
1095          */
1096         tpa_info->start_buf = *sw_rx_data_cons;
1097         mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1098                            le32_to_cpu(rx_bd_cons->addr.lo));
1099
1100         tpa_info->start_buf_mapping = mapping;
1101         rxq->sw_rx_cons++;
1102
1103         /* set tpa state to start only if we are able to allocate skb
1104          * for this aggregation, otherwise mark as error and aggregation will
1105          * be dropped
1106          */
1107         tpa_info->skb = netdev_alloc_skb(edev->ndev,
1108                                          le16_to_cpu(cqe->len_on_first_bd));
1109         if (unlikely(!tpa_info->skb)) {
1110                 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1111                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1112                 goto cons_buf;
1113         }
1114
1115         skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1116         memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1117
1118         /* Start filling in the aggregation info */
1119         tpa_info->frag_id = 0;
1120         tpa_info->agg_state = QEDE_AGG_STATE_START;
1121
1122         rxhash = qede_get_rxhash(edev, cqe->bitfields,
1123                                  cqe->rss_hash, &rxhash_type);
1124         skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1125         if ((le16_to_cpu(cqe->pars_flags.flags) >>
1126              PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1127                     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1128                 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1129         else
1130                 tpa_info->vlan_tag = 0;
1131
1132         /* This is needed in order to enable forwarding support */
1133         qede_set_gro_params(edev, tpa_info->skb, cqe);
1134
1135 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1136         if (likely(cqe->ext_bd_len_list[0]))
1137                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1138                                    le16_to_cpu(cqe->ext_bd_len_list[0]));
1139
1140         if (unlikely(cqe->ext_bd_len_list[1])) {
1141                 DP_ERR(edev,
1142                        "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1143                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1144         }
1145 }
1146
1147 #ifdef CONFIG_INET
1148 static void qede_gro_ip_csum(struct sk_buff *skb)
1149 {
1150         const struct iphdr *iph = ip_hdr(skb);
1151         struct tcphdr *th;
1152
1153         skb_set_transport_header(skb, sizeof(struct iphdr));
1154         th = tcp_hdr(skb);
1155
1156         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1157                                   iph->saddr, iph->daddr, 0);
1158
1159         tcp_gro_complete(skb);
1160 }
1161
1162 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1163 {
1164         struct ipv6hdr *iph = ipv6_hdr(skb);
1165         struct tcphdr *th;
1166
1167         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1168         th = tcp_hdr(skb);
1169
1170         th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1171                                   &iph->saddr, &iph->daddr, 0);
1172         tcp_gro_complete(skb);
1173 }
1174 #endif
1175
1176 static void qede_gro_receive(struct qede_dev *edev,
1177                              struct qede_fastpath *fp,
1178                              struct sk_buff *skb,
1179                              u16 vlan_tag)
1180 {
1181         /* FW can send a single MTU sized packet from gro flow
1182          * due to aggregation timeout/last segment etc. which
1183          * is not expected to be a gro packet. If a skb has zero
1184          * frags then simply push it in the stack as non gso skb.
1185          */
1186         if (unlikely(!skb->data_len)) {
1187                 skb_shinfo(skb)->gso_type = 0;
1188                 skb_shinfo(skb)->gso_size = 0;
1189                 goto send_skb;
1190         }
1191
1192 #ifdef CONFIG_INET
1193         if (skb_shinfo(skb)->gso_size) {
1194                 skb_set_network_header(skb, 0);
1195
1196                 switch (skb->protocol) {
1197                 case htons(ETH_P_IP):
1198                         qede_gro_ip_csum(skb);
1199                         break;
1200                 case htons(ETH_P_IPV6):
1201                         qede_gro_ipv6_csum(skb);
1202                         break;
1203                 default:
1204                         DP_ERR(edev,
1205                                "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1206                                ntohs(skb->protocol));
1207                 }
1208         }
1209 #endif
1210
1211 send_skb:
1212         skb_record_rx_queue(skb, fp->rss_id);
1213         qede_skb_receive(edev, fp, skb, vlan_tag);
1214 }
1215
1216 static inline void qede_tpa_cont(struct qede_dev *edev,
1217                                  struct qede_rx_queue *rxq,
1218                                  struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1219 {
1220         int i;
1221
1222         for (i = 0; cqe->len_list[i]; i++)
1223                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1224                                    le16_to_cpu(cqe->len_list[i]));
1225
1226         if (unlikely(i > 1))
1227                 DP_ERR(edev,
1228                        "Strange - TPA cont with more than a single len_list entry\n");
1229 }
1230
1231 static void qede_tpa_end(struct qede_dev *edev,
1232                          struct qede_fastpath *fp,
1233                          struct eth_fast_path_rx_tpa_end_cqe *cqe)
1234 {
1235         struct qede_rx_queue *rxq = fp->rxq;
1236         struct qede_agg_info *tpa_info;
1237         struct sk_buff *skb;
1238         int i;
1239
1240         tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1241         skb = tpa_info->skb;
1242
1243         for (i = 0; cqe->len_list[i]; i++)
1244                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1245                                    le16_to_cpu(cqe->len_list[i]));
1246         if (unlikely(i > 1))
1247                 DP_ERR(edev,
1248                        "Strange - TPA emd with more than a single len_list entry\n");
1249
1250         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1251                 goto err;
1252
1253         /* Sanity */
1254         if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1255                 DP_ERR(edev,
1256                        "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1257                        cqe->num_of_bds, tpa_info->frag_id);
1258         if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1259                 DP_ERR(edev,
1260                        "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1261                        le16_to_cpu(cqe->total_packet_len), skb->len);
1262
1263         memcpy(skb->data,
1264                page_address(tpa_info->start_buf.data) +
1265                 tpa_info->start_cqe.placement_offset +
1266                 tpa_info->start_buf.page_offset,
1267                le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1268
1269         /* Recycle [mapped] start buffer for the next replacement */
1270         tpa_info->replace_buf = tpa_info->start_buf;
1271         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1272
1273         /* Finalize the SKB */
1274         skb->protocol = eth_type_trans(skb, edev->ndev);
1275         skb->ip_summed = CHECKSUM_UNNECESSARY;
1276
1277         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1278          * to skb_shinfo(skb)->gso_segs
1279          */
1280         NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1281
1282         qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1283
1284         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1285
1286         return;
1287 err:
1288         /* The BD starting the aggregation is still mapped; Re-use it for
1289          * future aggregations [as replacement buffer]
1290          */
1291         memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1292                sizeof(struct sw_rx_data));
1293         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1294         tpa_info->start_buf.data = NULL;
1295         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1296         dev_kfree_skb_any(tpa_info->skb);
1297         tpa_info->skb = NULL;
1298 }
1299
1300 static bool qede_tunn_exist(u16 flag)
1301 {
1302         return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1303                           PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1304 }
1305
1306 static u8 qede_check_tunn_csum(u16 flag)
1307 {
1308         u16 csum_flag = 0;
1309         u8 tcsum = 0;
1310
1311         if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1312                     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1313                 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1314                              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1315
1316         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1317                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1318                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1319                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1320                 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1321         }
1322
1323         csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1324                      PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1325                      PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1326                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1327
1328         if (csum_flag & flag)
1329                 return QEDE_CSUM_ERROR;
1330
1331         return QEDE_CSUM_UNNECESSARY | tcsum;
1332 }
1333
1334 static u8 qede_check_notunn_csum(u16 flag)
1335 {
1336         u16 csum_flag = 0;
1337         u8 csum = 0;
1338
1339         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1340                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1341                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1342                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1343                 csum = QEDE_CSUM_UNNECESSARY;
1344         }
1345
1346         csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1347                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1348
1349         if (csum_flag & flag)
1350                 return QEDE_CSUM_ERROR;
1351
1352         return csum;
1353 }
1354
1355 static u8 qede_check_csum(u16 flag)
1356 {
1357         if (!qede_tunn_exist(flag))
1358                 return qede_check_notunn_csum(flag);
1359         else
1360                 return qede_check_tunn_csum(flag);
1361 }
1362
1363 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1364                                       u16 flag)
1365 {
1366         u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1367
1368         if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1369                              ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1370             (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1371                      PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1372                 return true;
1373
1374         return false;
1375 }
1376
1377 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1378 {
1379         struct qede_dev *edev = fp->edev;
1380         struct qede_rx_queue *rxq = fp->rxq;
1381
1382         u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1383         int rx_pkt = 0;
1384         u8 csum_flag;
1385
1386         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1387         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1388
1389         /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1390          * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1391          * read before it is written by FW, then FW writes CQE and SB, and then
1392          * the CPU reads the hw_comp_cons, it will use an old CQE.
1393          */
1394         rmb();
1395
1396         /* Loop to complete all indicated BDs */
1397         while (sw_comp_cons != hw_comp_cons) {
1398                 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1399                 enum pkt_hash_types rxhash_type;
1400                 enum eth_rx_cqe_type cqe_type;
1401                 struct sw_rx_data *sw_rx_data;
1402                 union eth_rx_cqe *cqe;
1403                 struct sk_buff *skb;
1404                 struct page *data;
1405                 __le16 flags;
1406                 u16 len, pad;
1407                 u32 rx_hash;
1408
1409                 /* Get the CQE from the completion ring */
1410                 cqe = (union eth_rx_cqe *)
1411                         qed_chain_consume(&rxq->rx_comp_ring);
1412                 cqe_type = cqe->fast_path_regular.type;
1413
1414                 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1415                         edev->ops->eth_cqe_completion(
1416                                         edev->cdev, fp->rss_id,
1417                                         (struct eth_slow_path_rx_cqe *)cqe);
1418                         goto next_cqe;
1419                 }
1420
1421                 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1422                         switch (cqe_type) {
1423                         case ETH_RX_CQE_TYPE_TPA_START:
1424                                 qede_tpa_start(edev, rxq,
1425                                                &cqe->fast_path_tpa_start);
1426                                 goto next_cqe;
1427                         case ETH_RX_CQE_TYPE_TPA_CONT:
1428                                 qede_tpa_cont(edev, rxq,
1429                                               &cqe->fast_path_tpa_cont);
1430                                 goto next_cqe;
1431                         case ETH_RX_CQE_TYPE_TPA_END:
1432                                 qede_tpa_end(edev, fp,
1433                                              &cqe->fast_path_tpa_end);
1434                                 goto next_rx_only;
1435                         default:
1436                                 break;
1437                         }
1438                 }
1439
1440                 /* Get the data from the SW ring */
1441                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1442                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1443                 data = sw_rx_data->data;
1444
1445                 fp_cqe = &cqe->fast_path_regular;
1446                 len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1447                 pad = fp_cqe->placement_offset;
1448                 flags = cqe->fast_path_regular.pars_flags.flags;
1449
1450                 /* If this is an error packet then drop it */
1451                 parse_flag = le16_to_cpu(flags);
1452
1453                 csum_flag = qede_check_csum(parse_flag);
1454                 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1455                         if (qede_pkt_is_ip_fragmented(&cqe->fast_path_regular,
1456                                                       parse_flag)) {
1457                                 rxq->rx_ip_frags++;
1458                                 goto alloc_skb;
1459                         }
1460
1461                         DP_NOTICE(edev,
1462                                   "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1463                                   sw_comp_cons, parse_flag);
1464                         rxq->rx_hw_errors++;
1465                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1466                         goto next_cqe;
1467                 }
1468
1469 alloc_skb:
1470                 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1471                 if (unlikely(!skb)) {
1472                         DP_NOTICE(edev,
1473                                   "Build_skb failed, dropping incoming packet\n");
1474                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1475                         rxq->rx_alloc_errors++;
1476                         goto next_cqe;
1477                 }
1478
1479                 /* Copy data into SKB */
1480                 if (len + pad <= edev->rx_copybreak) {
1481                         memcpy(skb_put(skb, len),
1482                                page_address(data) + pad +
1483                                 sw_rx_data->page_offset, len);
1484                         qede_reuse_page(edev, rxq, sw_rx_data);
1485                 } else {
1486                         struct skb_frag_struct *frag;
1487                         unsigned int pull_len;
1488                         unsigned char *va;
1489
1490                         frag = &skb_shinfo(skb)->frags[0];
1491
1492                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1493                                         pad + sw_rx_data->page_offset,
1494                                         len, rxq->rx_buf_seg_size);
1495
1496                         va = skb_frag_address(frag);
1497                         pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1498
1499                         /* Align the pull_len to optimize memcpy */
1500                         memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1501
1502                         skb_frag_size_sub(frag, pull_len);
1503                         frag->page_offset += pull_len;
1504                         skb->data_len -= pull_len;
1505                         skb->tail += pull_len;
1506
1507                         if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1508                                                             sw_rx_data))) {
1509                                 DP_ERR(edev, "Failed to allocate rx buffer\n");
1510                                 /* Incr page ref count to reuse on allocation
1511                                  * failure so that it doesn't get freed while
1512                                  * freeing SKB.
1513                                  */
1514
1515                                 page_ref_inc(sw_rx_data->data);
1516                                 rxq->rx_alloc_errors++;
1517                                 qede_recycle_rx_bd_ring(rxq, edev,
1518                                                         fp_cqe->bd_num);
1519                                 dev_kfree_skb_any(skb);
1520                                 goto next_cqe;
1521                         }
1522                 }
1523
1524                 qede_rx_bd_ring_consume(rxq);
1525
1526                 if (fp_cqe->bd_num != 1) {
1527                         u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1528                         u8 num_frags;
1529
1530                         pkt_len -= len;
1531
1532                         for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1533                              num_frags--) {
1534                                 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1535                                                 rxq->rx_buf_size : pkt_len;
1536                                 if (unlikely(!cur_size)) {
1537                                         DP_ERR(edev,
1538                                                "Still got %d BDs for mapping jumbo, but length became 0\n",
1539                                                num_frags);
1540                                         qede_recycle_rx_bd_ring(rxq, edev,
1541                                                                 num_frags);
1542                                         dev_kfree_skb_any(skb);
1543                                         goto next_cqe;
1544                                 }
1545
1546                                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1547                                         qede_recycle_rx_bd_ring(rxq, edev,
1548                                                                 num_frags);
1549                                         dev_kfree_skb_any(skb);
1550                                         goto next_cqe;
1551                                 }
1552
1553                                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1554                                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1555                                 qede_rx_bd_ring_consume(rxq);
1556
1557                                 dma_unmap_page(&edev->pdev->dev,
1558                                                sw_rx_data->mapping,
1559                                                PAGE_SIZE, DMA_FROM_DEVICE);
1560
1561                                 skb_fill_page_desc(skb,
1562                                                    skb_shinfo(skb)->nr_frags++,
1563                                                    sw_rx_data->data, 0,
1564                                                    cur_size);
1565
1566                                 skb->truesize += PAGE_SIZE;
1567                                 skb->data_len += cur_size;
1568                                 skb->len += cur_size;
1569                                 pkt_len -= cur_size;
1570                         }
1571
1572                         if (unlikely(pkt_len))
1573                                 DP_ERR(edev,
1574                                        "Mapped all BDs of jumbo, but still have %d bytes\n",
1575                                        pkt_len);
1576                 }
1577
1578                 skb->protocol = eth_type_trans(skb, edev->ndev);
1579
1580                 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1581                                           fp_cqe->rss_hash,
1582                                           &rxhash_type);
1583
1584                 skb_set_hash(skb, rx_hash, rxhash_type);
1585
1586                 qede_set_skb_csum(skb, csum_flag);
1587
1588                 skb_record_rx_queue(skb, fp->rss_id);
1589
1590                 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1591 next_rx_only:
1592                 rx_pkt++;
1593
1594 next_cqe: /* don't consume bd rx buffer */
1595                 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1596                 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1597                 /* CR TPA - revisit how to handle budget in TPA perhaps
1598                  * increase on "end"
1599                  */
1600                 if (rx_pkt == budget)
1601                         break;
1602         } /* repeat while sw_comp_cons != hw_comp_cons... */
1603
1604         /* Update producers */
1605         qede_update_rx_prod(edev, rxq);
1606
1607         return rx_pkt;
1608 }
1609
1610 static int qede_poll(struct napi_struct *napi, int budget)
1611 {
1612         struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1613                                                 napi);
1614         struct qede_dev *edev = fp->edev;
1615         int rx_work_done = 0;
1616         u8 tc;
1617
1618         for (tc = 0; tc < edev->num_tc; tc++)
1619                 if (qede_txq_has_work(&fp->txqs[tc]))
1620                         qede_tx_int(edev, &fp->txqs[tc]);
1621
1622         rx_work_done = qede_has_rx_work(fp->rxq) ?
1623                         qede_rx_int(fp, budget) : 0;
1624         if (rx_work_done < budget) {
1625                 qed_sb_update_sb_idx(fp->sb_info);
1626                 /* *_has_*_work() reads the status block,
1627                  * thus we need to ensure that status block indices
1628                  * have been actually read (qed_sb_update_sb_idx)
1629                  * prior to this check (*_has_*_work) so that
1630                  * we won't write the "newer" value of the status block
1631                  * to HW (if there was a DMA right after
1632                  * qede_has_rx_work and if there is no rmb, the memory
1633                  * reading (qed_sb_update_sb_idx) may be postponed
1634                  * to right before *_ack_sb). In this case there
1635                  * will never be another interrupt until there is
1636                  * another update of the status block, while there
1637                  * is still unhandled work.
1638                  */
1639                 rmb();
1640
1641                 /* Fall out from the NAPI loop if needed */
1642                 if (!(qede_has_rx_work(fp->rxq) ||
1643                       qede_has_tx_work(fp))) {
1644                         napi_complete(napi);
1645
1646                         /* Update and reenable interrupts */
1647                         qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1648                                    1 /*update*/);
1649                 } else {
1650                         rx_work_done = budget;
1651                 }
1652         }
1653
1654         return rx_work_done;
1655 }
1656
1657 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1658 {
1659         struct qede_fastpath *fp = fp_cookie;
1660
1661         qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1662
1663         napi_schedule_irqoff(&fp->napi);
1664         return IRQ_HANDLED;
1665 }
1666
1667 /* -------------------------------------------------------------------------
1668  * END OF FAST-PATH
1669  * -------------------------------------------------------------------------
1670  */
1671
1672 static int qede_open(struct net_device *ndev);
1673 static int qede_close(struct net_device *ndev);
1674 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1675 static void qede_set_rx_mode(struct net_device *ndev);
1676 static void qede_config_rx_mode(struct net_device *ndev);
1677
1678 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1679                                  enum qed_filter_xcast_params_type opcode,
1680                                  unsigned char mac[ETH_ALEN])
1681 {
1682         struct qed_filter_params filter_cmd;
1683
1684         memset(&filter_cmd, 0, sizeof(filter_cmd));
1685         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1686         filter_cmd.filter.ucast.type = opcode;
1687         filter_cmd.filter.ucast.mac_valid = 1;
1688         ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1689
1690         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1691 }
1692
1693 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1694                                   enum qed_filter_xcast_params_type opcode,
1695                                   u16 vid)
1696 {
1697         struct qed_filter_params filter_cmd;
1698
1699         memset(&filter_cmd, 0, sizeof(filter_cmd));
1700         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1701         filter_cmd.filter.ucast.type = opcode;
1702         filter_cmd.filter.ucast.vlan_valid = 1;
1703         filter_cmd.filter.ucast.vlan = vid;
1704
1705         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1706 }
1707
1708 void qede_fill_by_demand_stats(struct qede_dev *edev)
1709 {
1710         struct qed_eth_stats stats;
1711
1712         edev->ops->get_vport_stats(edev->cdev, &stats);
1713         edev->stats.no_buff_discards = stats.no_buff_discards;
1714         edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1715         edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1716         edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1717         edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1718         edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1719         edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1720         edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1721         edev->stats.mac_filter_discards = stats.mac_filter_discards;
1722
1723         edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1724         edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1725         edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1726         edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1727         edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1728         edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1729         edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1730         edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1731         edev->stats.coalesced_events = stats.tpa_coalesced_events;
1732         edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1733         edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1734         edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1735
1736         edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1737         edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1738         edev->stats.rx_128_to_255_byte_packets =
1739                                 stats.rx_128_to_255_byte_packets;
1740         edev->stats.rx_256_to_511_byte_packets =
1741                                 stats.rx_256_to_511_byte_packets;
1742         edev->stats.rx_512_to_1023_byte_packets =
1743                                 stats.rx_512_to_1023_byte_packets;
1744         edev->stats.rx_1024_to_1518_byte_packets =
1745                                 stats.rx_1024_to_1518_byte_packets;
1746         edev->stats.rx_1519_to_1522_byte_packets =
1747                                 stats.rx_1519_to_1522_byte_packets;
1748         edev->stats.rx_1519_to_2047_byte_packets =
1749                                 stats.rx_1519_to_2047_byte_packets;
1750         edev->stats.rx_2048_to_4095_byte_packets =
1751                                 stats.rx_2048_to_4095_byte_packets;
1752         edev->stats.rx_4096_to_9216_byte_packets =
1753                                 stats.rx_4096_to_9216_byte_packets;
1754         edev->stats.rx_9217_to_16383_byte_packets =
1755                                 stats.rx_9217_to_16383_byte_packets;
1756         edev->stats.rx_crc_errors = stats.rx_crc_errors;
1757         edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1758         edev->stats.rx_pause_frames = stats.rx_pause_frames;
1759         edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1760         edev->stats.rx_align_errors = stats.rx_align_errors;
1761         edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1762         edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1763         edev->stats.rx_jabbers = stats.rx_jabbers;
1764         edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1765         edev->stats.rx_fragments = stats.rx_fragments;
1766         edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1767         edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1768         edev->stats.tx_128_to_255_byte_packets =
1769                                 stats.tx_128_to_255_byte_packets;
1770         edev->stats.tx_256_to_511_byte_packets =
1771                                 stats.tx_256_to_511_byte_packets;
1772         edev->stats.tx_512_to_1023_byte_packets =
1773                                 stats.tx_512_to_1023_byte_packets;
1774         edev->stats.tx_1024_to_1518_byte_packets =
1775                                 stats.tx_1024_to_1518_byte_packets;
1776         edev->stats.tx_1519_to_2047_byte_packets =
1777                                 stats.tx_1519_to_2047_byte_packets;
1778         edev->stats.tx_2048_to_4095_byte_packets =
1779                                 stats.tx_2048_to_4095_byte_packets;
1780         edev->stats.tx_4096_to_9216_byte_packets =
1781                                 stats.tx_4096_to_9216_byte_packets;
1782         edev->stats.tx_9217_to_16383_byte_packets =
1783                                 stats.tx_9217_to_16383_byte_packets;
1784         edev->stats.tx_pause_frames = stats.tx_pause_frames;
1785         edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1786         edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1787         edev->stats.tx_total_collisions = stats.tx_total_collisions;
1788         edev->stats.brb_truncates = stats.brb_truncates;
1789         edev->stats.brb_discards = stats.brb_discards;
1790         edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1791 }
1792
1793 static struct rtnl_link_stats64 *qede_get_stats64(
1794                             struct net_device *dev,
1795                             struct rtnl_link_stats64 *stats)
1796 {
1797         struct qede_dev *edev = netdev_priv(dev);
1798
1799         qede_fill_by_demand_stats(edev);
1800
1801         stats->rx_packets = edev->stats.rx_ucast_pkts +
1802                             edev->stats.rx_mcast_pkts +
1803                             edev->stats.rx_bcast_pkts;
1804         stats->tx_packets = edev->stats.tx_ucast_pkts +
1805                             edev->stats.tx_mcast_pkts +
1806                             edev->stats.tx_bcast_pkts;
1807
1808         stats->rx_bytes = edev->stats.rx_ucast_bytes +
1809                           edev->stats.rx_mcast_bytes +
1810                           edev->stats.rx_bcast_bytes;
1811
1812         stats->tx_bytes = edev->stats.tx_ucast_bytes +
1813                           edev->stats.tx_mcast_bytes +
1814                           edev->stats.tx_bcast_bytes;
1815
1816         stats->tx_errors = edev->stats.tx_err_drop_pkts;
1817         stats->multicast = edev->stats.rx_mcast_pkts +
1818                            edev->stats.rx_bcast_pkts;
1819
1820         stats->rx_fifo_errors = edev->stats.no_buff_discards;
1821
1822         stats->collisions = edev->stats.tx_total_collisions;
1823         stats->rx_crc_errors = edev->stats.rx_crc_errors;
1824         stats->rx_frame_errors = edev->stats.rx_align_errors;
1825
1826         return stats;
1827 }
1828
1829 #ifdef CONFIG_QED_SRIOV
1830 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1831                               struct ifla_vf_info *ivi)
1832 {
1833         struct qede_dev *edev = netdev_priv(dev);
1834
1835         if (!edev->ops)
1836                 return -EINVAL;
1837
1838         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1839 }
1840
1841 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1842                             int min_tx_rate, int max_tx_rate)
1843 {
1844         struct qede_dev *edev = netdev_priv(dev);
1845
1846         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
1847                                         max_tx_rate);
1848 }
1849
1850 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1851 {
1852         struct qede_dev *edev = netdev_priv(dev);
1853
1854         if (!edev->ops)
1855                 return -EINVAL;
1856
1857         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1858 }
1859
1860 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1861                                   int link_state)
1862 {
1863         struct qede_dev *edev = netdev_priv(dev);
1864
1865         if (!edev->ops)
1866                 return -EINVAL;
1867
1868         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1869 }
1870 #endif
1871
1872 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1873 {
1874         struct qed_update_vport_params params;
1875         int rc;
1876
1877         /* Proceed only if action actually needs to be performed */
1878         if (edev->accept_any_vlan == action)
1879                 return;
1880
1881         memset(&params, 0, sizeof(params));
1882
1883         params.vport_id = 0;
1884         params.accept_any_vlan = action;
1885         params.update_accept_any_vlan_flg = 1;
1886
1887         rc = edev->ops->vport_update(edev->cdev, &params);
1888         if (rc) {
1889                 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1890                        action ? "enable" : "disable");
1891         } else {
1892                 DP_INFO(edev, "%s accept-any-vlan\n",
1893                         action ? "enabled" : "disabled");
1894                 edev->accept_any_vlan = action;
1895         }
1896 }
1897
1898 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1899 {
1900         struct qede_dev *edev = netdev_priv(dev);
1901         struct qede_vlan *vlan, *tmp;
1902         int rc;
1903
1904         DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1905
1906         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1907         if (!vlan) {
1908                 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1909                 return -ENOMEM;
1910         }
1911         INIT_LIST_HEAD(&vlan->list);
1912         vlan->vid = vid;
1913         vlan->configured = false;
1914
1915         /* Verify vlan isn't already configured */
1916         list_for_each_entry(tmp, &edev->vlan_list, list) {
1917                 if (tmp->vid == vlan->vid) {
1918                         DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1919                                    "vlan already configured\n");
1920                         kfree(vlan);
1921                         return -EEXIST;
1922                 }
1923         }
1924
1925         /* If interface is down, cache this VLAN ID and return */
1926         if (edev->state != QEDE_STATE_OPEN) {
1927                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1928                            "Interface is down, VLAN %d will be configured when interface is up\n",
1929                            vid);
1930                 if (vid != 0)
1931                         edev->non_configured_vlans++;
1932                 list_add(&vlan->list, &edev->vlan_list);
1933
1934                 return 0;
1935         }
1936
1937         /* Check for the filter limit.
1938          * Note - vlan0 has a reserved filter and can be added without
1939          * worrying about quota
1940          */
1941         if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1942             (vlan->vid == 0)) {
1943                 rc = qede_set_ucast_rx_vlan(edev,
1944                                             QED_FILTER_XCAST_TYPE_ADD,
1945                                             vlan->vid);
1946                 if (rc) {
1947                         DP_ERR(edev, "Failed to configure VLAN %d\n",
1948                                vlan->vid);
1949                         kfree(vlan);
1950                         return -EINVAL;
1951                 }
1952                 vlan->configured = true;
1953
1954                 /* vlan0 filter isn't consuming out of our quota */
1955                 if (vlan->vid != 0)
1956                         edev->configured_vlans++;
1957         } else {
1958                 /* Out of quota; Activate accept-any-VLAN mode */
1959                 if (!edev->non_configured_vlans)
1960                         qede_config_accept_any_vlan(edev, true);
1961
1962                 edev->non_configured_vlans++;
1963         }
1964
1965         list_add(&vlan->list, &edev->vlan_list);
1966
1967         return 0;
1968 }
1969
1970 static void qede_del_vlan_from_list(struct qede_dev *edev,
1971                                     struct qede_vlan *vlan)
1972 {
1973         /* vlan0 filter isn't consuming out of our quota */
1974         if (vlan->vid != 0) {
1975                 if (vlan->configured)
1976                         edev->configured_vlans--;
1977                 else
1978                         edev->non_configured_vlans--;
1979         }
1980
1981         list_del(&vlan->list);
1982         kfree(vlan);
1983 }
1984
1985 static int qede_configure_vlan_filters(struct qede_dev *edev)
1986 {
1987         int rc = 0, real_rc = 0, accept_any_vlan = 0;
1988         struct qed_dev_eth_info *dev_info;
1989         struct qede_vlan *vlan = NULL;
1990
1991         if (list_empty(&edev->vlan_list))
1992                 return 0;
1993
1994         dev_info = &edev->dev_info;
1995
1996         /* Configure non-configured vlans */
1997         list_for_each_entry(vlan, &edev->vlan_list, list) {
1998                 if (vlan->configured)
1999                         continue;
2000
2001                 /* We have used all our credits, now enable accept_any_vlan */
2002                 if ((vlan->vid != 0) &&
2003                     (edev->configured_vlans == dev_info->num_vlan_filters)) {
2004                         accept_any_vlan = 1;
2005                         continue;
2006                 }
2007
2008                 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
2009
2010                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
2011                                             vlan->vid);
2012                 if (rc) {
2013                         DP_ERR(edev, "Failed to configure VLAN %u\n",
2014                                vlan->vid);
2015                         real_rc = rc;
2016                         continue;
2017                 }
2018
2019                 vlan->configured = true;
2020                 /* vlan0 filter doesn't consume our VLAN filter's quota */
2021                 if (vlan->vid != 0) {
2022                         edev->non_configured_vlans--;
2023                         edev->configured_vlans++;
2024                 }
2025         }
2026
2027         /* enable accept_any_vlan mode if we have more VLANs than credits,
2028          * or remove accept_any_vlan mode if we've actually removed
2029          * a non-configured vlan, and all remaining vlans are truly configured.
2030          */
2031
2032         if (accept_any_vlan)
2033                 qede_config_accept_any_vlan(edev, true);
2034         else if (!edev->non_configured_vlans)
2035                 qede_config_accept_any_vlan(edev, false);
2036
2037         return real_rc;
2038 }
2039
2040 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2041 {
2042         struct qede_dev *edev = netdev_priv(dev);
2043         struct qede_vlan *vlan = NULL;
2044         int rc;
2045
2046         DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2047
2048         /* Find whether entry exists */
2049         list_for_each_entry(vlan, &edev->vlan_list, list)
2050                 if (vlan->vid == vid)
2051                         break;
2052
2053         if (!vlan || (vlan->vid != vid)) {
2054                 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2055                            "Vlan isn't configured\n");
2056                 return 0;
2057         }
2058
2059         if (edev->state != QEDE_STATE_OPEN) {
2060                 /* As interface is already down, we don't have a VPORT
2061                  * instance to remove vlan filter. So just update vlan list
2062                  */
2063                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2064                            "Interface is down, removing VLAN from list only\n");
2065                 qede_del_vlan_from_list(edev, vlan);
2066                 return 0;
2067         }
2068
2069         /* Remove vlan */
2070         if (vlan->configured) {
2071                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
2072                                             vid);
2073                 if (rc) {
2074                         DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2075                         return -EINVAL;
2076                 }
2077         }
2078
2079         qede_del_vlan_from_list(edev, vlan);
2080
2081         /* We have removed a VLAN - try to see if we can
2082          * configure non-configured VLAN from the list.
2083          */
2084         rc = qede_configure_vlan_filters(edev);
2085
2086         return rc;
2087 }
2088
2089 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2090 {
2091         struct qede_vlan *vlan = NULL;
2092
2093         if (list_empty(&edev->vlan_list))
2094                 return;
2095
2096         list_for_each_entry(vlan, &edev->vlan_list, list) {
2097                 if (!vlan->configured)
2098                         continue;
2099
2100                 vlan->configured = false;
2101
2102                 /* vlan0 filter isn't consuming out of our quota */
2103                 if (vlan->vid != 0) {
2104                         edev->non_configured_vlans++;
2105                         edev->configured_vlans--;
2106                 }
2107
2108                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2109                            "marked vlan %d as non-configured\n",
2110                            vlan->vid);
2111         }
2112
2113         edev->accept_any_vlan = false;
2114 }
2115
2116 int qede_set_features(struct net_device *dev, netdev_features_t features)
2117 {
2118         struct qede_dev *edev = netdev_priv(dev);
2119         netdev_features_t changes = features ^ dev->features;
2120         bool need_reload = false;
2121
2122         /* No action needed if hardware GRO is disabled during driver load */
2123         if (changes & NETIF_F_GRO) {
2124                 if (dev->features & NETIF_F_GRO)
2125                         need_reload = !edev->gro_disable;
2126                 else
2127                         need_reload = edev->gro_disable;
2128         }
2129
2130         if (need_reload && netif_running(edev->ndev)) {
2131                 dev->features = features;
2132                 qede_reload(edev, NULL, NULL);
2133                 return 1;
2134         }
2135
2136         return 0;
2137 }
2138
2139 static void qede_udp_tunnel_add(struct net_device *dev,
2140                                 struct udp_tunnel_info *ti)
2141 {
2142         struct qede_dev *edev = netdev_priv(dev);
2143         u16 t_port = ntohs(ti->port);
2144
2145         switch (ti->type) {
2146         case UDP_TUNNEL_TYPE_VXLAN:
2147                 if (edev->vxlan_dst_port)
2148                         return;
2149
2150                 edev->vxlan_dst_port = t_port;
2151
2152                 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d",
2153                            t_port);
2154
2155                 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2156                 break;
2157         case UDP_TUNNEL_TYPE_GENEVE:
2158                 if (edev->geneve_dst_port)
2159                         return;
2160
2161                 edev->geneve_dst_port = t_port;
2162
2163                 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d",
2164                            t_port);
2165                 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2166                 break;
2167         default:
2168                 return;
2169         }
2170
2171         schedule_delayed_work(&edev->sp_task, 0);
2172 }
2173
2174 static void qede_udp_tunnel_del(struct net_device *dev,
2175                                 struct udp_tunnel_info *ti)
2176 {
2177         struct qede_dev *edev = netdev_priv(dev);
2178         u16 t_port = ntohs(ti->port);
2179
2180         switch (ti->type) {
2181         case UDP_TUNNEL_TYPE_VXLAN:
2182                 if (t_port != edev->vxlan_dst_port)
2183                         return;
2184
2185                 edev->vxlan_dst_port = 0;
2186
2187                 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d",
2188                            t_port);
2189
2190                 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2191                 break;
2192         case UDP_TUNNEL_TYPE_GENEVE:
2193                 if (t_port != edev->geneve_dst_port)
2194                         return;
2195
2196                 edev->geneve_dst_port = 0;
2197
2198                 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d",
2199                            t_port);
2200                 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2201                 break;
2202         default:
2203                 return;
2204         }
2205
2206         schedule_delayed_work(&edev->sp_task, 0);
2207 }
2208
2209 static const struct net_device_ops qede_netdev_ops = {
2210         .ndo_open = qede_open,
2211         .ndo_stop = qede_close,
2212         .ndo_start_xmit = qede_start_xmit,
2213         .ndo_set_rx_mode = qede_set_rx_mode,
2214         .ndo_set_mac_address = qede_set_mac_addr,
2215         .ndo_validate_addr = eth_validate_addr,
2216         .ndo_change_mtu = qede_change_mtu,
2217 #ifdef CONFIG_QED_SRIOV
2218         .ndo_set_vf_mac = qede_set_vf_mac,
2219         .ndo_set_vf_vlan = qede_set_vf_vlan,
2220 #endif
2221         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2222         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2223         .ndo_set_features = qede_set_features,
2224         .ndo_get_stats64 = qede_get_stats64,
2225 #ifdef CONFIG_QED_SRIOV
2226         .ndo_set_vf_link_state = qede_set_vf_link_state,
2227         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2228         .ndo_get_vf_config = qede_get_vf_config,
2229         .ndo_set_vf_rate = qede_set_vf_rate,
2230 #endif
2231         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
2232         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
2233 };
2234
2235 /* -------------------------------------------------------------------------
2236  * START OF PROBE / REMOVE
2237  * -------------------------------------------------------------------------
2238  */
2239
2240 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2241                                             struct pci_dev *pdev,
2242                                             struct qed_dev_eth_info *info,
2243                                             u32 dp_module,
2244                                             u8 dp_level)
2245 {
2246         struct net_device *ndev;
2247         struct qede_dev *edev;
2248
2249         ndev = alloc_etherdev_mqs(sizeof(*edev),
2250                                   info->num_queues,
2251                                   info->num_queues);
2252         if (!ndev) {
2253                 pr_err("etherdev allocation failed\n");
2254                 return NULL;
2255         }
2256
2257         edev = netdev_priv(ndev);
2258         edev->ndev = ndev;
2259         edev->cdev = cdev;
2260         edev->pdev = pdev;
2261         edev->dp_module = dp_module;
2262         edev->dp_level = dp_level;
2263         edev->ops = qed_ops;
2264         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2265         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2266
2267         SET_NETDEV_DEV(ndev, &pdev->dev);
2268
2269         memset(&edev->stats, 0, sizeof(edev->stats));
2270         memcpy(&edev->dev_info, info, sizeof(*info));
2271
2272         edev->num_tc = edev->dev_info.num_tc;
2273
2274         INIT_LIST_HEAD(&edev->vlan_list);
2275
2276         return edev;
2277 }
2278
2279 static void qede_init_ndev(struct qede_dev *edev)
2280 {
2281         struct net_device *ndev = edev->ndev;
2282         struct pci_dev *pdev = edev->pdev;
2283         u32 hw_features;
2284
2285         pci_set_drvdata(pdev, ndev);
2286
2287         ndev->mem_start = edev->dev_info.common.pci_mem_start;
2288         ndev->base_addr = ndev->mem_start;
2289         ndev->mem_end = edev->dev_info.common.pci_mem_end;
2290         ndev->irq = edev->dev_info.common.pci_irq;
2291
2292         ndev->watchdog_timeo = TX_TIMEOUT;
2293
2294         ndev->netdev_ops = &qede_netdev_ops;
2295
2296         qede_set_ethtool_ops(ndev);
2297
2298         /* user-changeble features */
2299         hw_features = NETIF_F_GRO | NETIF_F_SG |
2300                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2301                       NETIF_F_TSO | NETIF_F_TSO6;
2302
2303         /* Encap features*/
2304         hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2305                        NETIF_F_TSO_ECN;
2306         ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2307                                 NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2308                                 NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2309                                 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2310
2311         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2312                               NETIF_F_HIGHDMA;
2313         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2314                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2315                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2316
2317         ndev->hw_features = hw_features;
2318
2319         /* Set network device HW mac */
2320         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2321 }
2322
2323 /* This function converts from 32b param to two params of level and module
2324  * Input 32b decoding:
2325  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2326  * 'happy' flow, e.g. memory allocation failed.
2327  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2328  * and provide important parameters.
2329  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2330  * module. VERBOSE prints are for tracking the specific flow in low level.
2331  *
2332  * Notice that the level should be that of the lowest required logs.
2333  */
2334 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2335 {
2336         *p_dp_level = QED_LEVEL_NOTICE;
2337         *p_dp_module = 0;
2338
2339         if (debug & QED_LOG_VERBOSE_MASK) {
2340                 *p_dp_level = QED_LEVEL_VERBOSE;
2341                 *p_dp_module = (debug & 0x3FFFFFFF);
2342         } else if (debug & QED_LOG_INFO_MASK) {
2343                 *p_dp_level = QED_LEVEL_INFO;
2344         } else if (debug & QED_LOG_NOTICE_MASK) {
2345                 *p_dp_level = QED_LEVEL_NOTICE;
2346         }
2347 }
2348
2349 static void qede_free_fp_array(struct qede_dev *edev)
2350 {
2351         if (edev->fp_array) {
2352                 struct qede_fastpath *fp;
2353                 int i;
2354
2355                 for_each_rss(i) {
2356                         fp = &edev->fp_array[i];
2357
2358                         kfree(fp->sb_info);
2359                         kfree(fp->rxq);
2360                         kfree(fp->txqs);
2361                 }
2362                 kfree(edev->fp_array);
2363         }
2364         edev->num_rss = 0;
2365 }
2366
2367 static int qede_alloc_fp_array(struct qede_dev *edev)
2368 {
2369         struct qede_fastpath *fp;
2370         int i;
2371
2372         edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2373                                  sizeof(*edev->fp_array), GFP_KERNEL);
2374         if (!edev->fp_array) {
2375                 DP_NOTICE(edev, "fp array allocation failed\n");
2376                 goto err;
2377         }
2378
2379         for_each_rss(i) {
2380                 fp = &edev->fp_array[i];
2381
2382                 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2383                 if (!fp->sb_info) {
2384                         DP_NOTICE(edev, "sb info struct allocation failed\n");
2385                         goto err;
2386                 }
2387
2388                 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2389                 if (!fp->rxq) {
2390                         DP_NOTICE(edev, "RXQ struct allocation failed\n");
2391                         goto err;
2392                 }
2393
2394                 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2395                 if (!fp->txqs) {
2396                         DP_NOTICE(edev, "TXQ array allocation failed\n");
2397                         goto err;
2398                 }
2399         }
2400
2401         return 0;
2402 err:
2403         qede_free_fp_array(edev);
2404         return -ENOMEM;
2405 }
2406
2407 static void qede_sp_task(struct work_struct *work)
2408 {
2409         struct qede_dev *edev = container_of(work, struct qede_dev,
2410                                              sp_task.work);
2411         struct qed_dev *cdev = edev->cdev;
2412
2413         mutex_lock(&edev->qede_lock);
2414
2415         if (edev->state == QEDE_STATE_OPEN) {
2416                 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2417                         qede_config_rx_mode(edev->ndev);
2418         }
2419
2420         if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2421                 struct qed_tunn_params tunn_params;
2422
2423                 memset(&tunn_params, 0, sizeof(tunn_params));
2424                 tunn_params.update_vxlan_port = 1;
2425                 tunn_params.vxlan_port = edev->vxlan_dst_port;
2426                 qed_ops->tunn_config(cdev, &tunn_params);
2427         }
2428
2429         if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2430                 struct qed_tunn_params tunn_params;
2431
2432                 memset(&tunn_params, 0, sizeof(tunn_params));
2433                 tunn_params.update_geneve_port = 1;
2434                 tunn_params.geneve_port = edev->geneve_dst_port;
2435                 qed_ops->tunn_config(cdev, &tunn_params);
2436         }
2437
2438         mutex_unlock(&edev->qede_lock);
2439 }
2440
2441 static void qede_update_pf_params(struct qed_dev *cdev)
2442 {
2443         struct qed_pf_params pf_params;
2444
2445         /* 64 rx + 64 tx */
2446         memset(&pf_params, 0, sizeof(struct qed_pf_params));
2447         pf_params.eth_pf_params.num_cons = 128;
2448         qed_ops->common->update_pf_params(cdev, &pf_params);
2449 }
2450
2451 enum qede_probe_mode {
2452         QEDE_PROBE_NORMAL,
2453 };
2454
2455 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2456                         bool is_vf, enum qede_probe_mode mode)
2457 {
2458         struct qed_probe_params probe_params;
2459         struct qed_slowpath_params params;
2460         struct qed_dev_eth_info dev_info;
2461         struct qede_dev *edev;
2462         struct qed_dev *cdev;
2463         int rc;
2464
2465         if (unlikely(dp_level & QED_LEVEL_INFO))
2466                 pr_notice("Starting qede probe\n");
2467
2468         memset(&probe_params, 0, sizeof(probe_params));
2469         probe_params.protocol = QED_PROTOCOL_ETH;
2470         probe_params.dp_module = dp_module;
2471         probe_params.dp_level = dp_level;
2472         probe_params.is_vf = is_vf;
2473         cdev = qed_ops->common->probe(pdev, &probe_params);
2474         if (!cdev) {
2475                 rc = -ENODEV;
2476                 goto err0;
2477         }
2478
2479         qede_update_pf_params(cdev);
2480
2481         /* Start the Slowpath-process */
2482         memset(&params, 0, sizeof(struct qed_slowpath_params));
2483         params.int_mode = QED_INT_MODE_MSIX;
2484         params.drv_major = QEDE_MAJOR_VERSION;
2485         params.drv_minor = QEDE_MINOR_VERSION;
2486         params.drv_rev = QEDE_REVISION_VERSION;
2487         params.drv_eng = QEDE_ENGINEERING_VERSION;
2488         strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2489         rc = qed_ops->common->slowpath_start(cdev, &params);
2490         if (rc) {
2491                 pr_notice("Cannot start slowpath\n");
2492                 goto err1;
2493         }
2494
2495         /* Learn information crucial for qede to progress */
2496         rc = qed_ops->fill_dev_info(cdev, &dev_info);
2497         if (rc)
2498                 goto err2;
2499
2500         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2501                                    dp_level);
2502         if (!edev) {
2503                 rc = -ENOMEM;
2504                 goto err2;
2505         }
2506
2507         if (is_vf)
2508                 edev->flags |= QEDE_FLAG_IS_VF;
2509
2510         qede_init_ndev(edev);
2511
2512         rc = register_netdev(edev->ndev);
2513         if (rc) {
2514                 DP_NOTICE(edev, "Cannot register net-device\n");
2515                 goto err3;
2516         }
2517
2518         edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2519
2520         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2521
2522 #ifdef CONFIG_DCB
2523         qede_set_dcbnl_ops(edev->ndev);
2524 #endif
2525
2526         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2527         mutex_init(&edev->qede_lock);
2528         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
2529
2530         DP_INFO(edev, "Ending successfully qede probe\n");
2531
2532         return 0;
2533
2534 err3:
2535         free_netdev(edev->ndev);
2536 err2:
2537         qed_ops->common->slowpath_stop(cdev);
2538 err1:
2539         qed_ops->common->remove(cdev);
2540 err0:
2541         return rc;
2542 }
2543
2544 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2545 {
2546         bool is_vf = false;
2547         u32 dp_module = 0;
2548         u8 dp_level = 0;
2549
2550         switch ((enum qede_pci_private)id->driver_data) {
2551         case QEDE_PRIVATE_VF:
2552                 if (debug & QED_LOG_VERBOSE_MASK)
2553                         dev_err(&pdev->dev, "Probing a VF\n");
2554                 is_vf = true;
2555                 break;
2556         default:
2557                 if (debug & QED_LOG_VERBOSE_MASK)
2558                         dev_err(&pdev->dev, "Probing a PF\n");
2559         }
2560
2561         qede_config_debug(debug, &dp_module, &dp_level);
2562
2563         return __qede_probe(pdev, dp_module, dp_level, is_vf,
2564                             QEDE_PROBE_NORMAL);
2565 }
2566
2567 enum qede_remove_mode {
2568         QEDE_REMOVE_NORMAL,
2569 };
2570
2571 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2572 {
2573         struct net_device *ndev = pci_get_drvdata(pdev);
2574         struct qede_dev *edev = netdev_priv(ndev);
2575         struct qed_dev *cdev = edev->cdev;
2576
2577         DP_INFO(edev, "Starting qede_remove\n");
2578
2579         cancel_delayed_work_sync(&edev->sp_task);
2580         unregister_netdev(ndev);
2581
2582         edev->ops->common->set_power_state(cdev, PCI_D0);
2583
2584         pci_set_drvdata(pdev, NULL);
2585
2586         free_netdev(ndev);
2587
2588         /* Use global ops since we've freed edev */
2589         qed_ops->common->slowpath_stop(cdev);
2590         qed_ops->common->remove(cdev);
2591
2592         pr_notice("Ending successfully qede_remove\n");
2593 }
2594
2595 static void qede_remove(struct pci_dev *pdev)
2596 {
2597         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2598 }
2599
2600 /* -------------------------------------------------------------------------
2601  * START OF LOAD / UNLOAD
2602  * -------------------------------------------------------------------------
2603  */
2604
2605 static int qede_set_num_queues(struct qede_dev *edev)
2606 {
2607         int rc;
2608         u16 rss_num;
2609
2610         /* Setup queues according to possible resources*/
2611         if (edev->req_rss)
2612                 rss_num = edev->req_rss;
2613         else
2614                 rss_num = netif_get_num_default_rss_queues() *
2615                           edev->dev_info.common.num_hwfns;
2616
2617         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2618
2619         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2620         if (rc > 0) {
2621                 /* Managed to request interrupts for our queues */
2622                 edev->num_rss = rc;
2623                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2624                         QEDE_RSS_CNT(edev), rss_num);
2625                 rc = 0;
2626         }
2627         return rc;
2628 }
2629
2630 static void qede_free_mem_sb(struct qede_dev *edev,
2631                              struct qed_sb_info *sb_info)
2632 {
2633         if (sb_info->sb_virt)
2634                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2635                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
2636 }
2637
2638 /* This function allocates fast-path status block memory */
2639 static int qede_alloc_mem_sb(struct qede_dev *edev,
2640                              struct qed_sb_info *sb_info,
2641                              u16 sb_id)
2642 {
2643         struct status_block *sb_virt;
2644         dma_addr_t sb_phys;
2645         int rc;
2646
2647         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2648                                      sizeof(*sb_virt),
2649                                      &sb_phys, GFP_KERNEL);
2650         if (!sb_virt) {
2651                 DP_ERR(edev, "Status block allocation failed\n");
2652                 return -ENOMEM;
2653         }
2654
2655         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2656                                         sb_virt, sb_phys, sb_id,
2657                                         QED_SB_TYPE_L2_QUEUE);
2658         if (rc) {
2659                 DP_ERR(edev, "Status block initialization failed\n");
2660                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2661                                   sb_virt, sb_phys);
2662                 return rc;
2663         }
2664
2665         return 0;
2666 }
2667
2668 static void qede_free_rx_buffers(struct qede_dev *edev,
2669                                  struct qede_rx_queue *rxq)
2670 {
2671         u16 i;
2672
2673         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2674                 struct sw_rx_data *rx_buf;
2675                 struct page *data;
2676
2677                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2678                 data = rx_buf->data;
2679
2680                 dma_unmap_page(&edev->pdev->dev,
2681                                rx_buf->mapping,
2682                                PAGE_SIZE, DMA_FROM_DEVICE);
2683
2684                 rx_buf->data = NULL;
2685                 __free_page(data);
2686         }
2687 }
2688
2689 static void qede_free_sge_mem(struct qede_dev *edev,
2690                               struct qede_rx_queue *rxq) {
2691         int i;
2692
2693         if (edev->gro_disable)
2694                 return;
2695
2696         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2697                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2698                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2699
2700                 if (replace_buf->data) {
2701                         dma_unmap_page(&edev->pdev->dev,
2702                                        replace_buf->mapping,
2703                                        PAGE_SIZE, DMA_FROM_DEVICE);
2704                         __free_page(replace_buf->data);
2705                 }
2706         }
2707 }
2708
2709 static void qede_free_mem_rxq(struct qede_dev *edev,
2710                               struct qede_rx_queue *rxq)
2711 {
2712         qede_free_sge_mem(edev, rxq);
2713
2714         /* Free rx buffers */
2715         qede_free_rx_buffers(edev, rxq);
2716
2717         /* Free the parallel SW ring */
2718         kfree(rxq->sw_rx_ring);
2719
2720         /* Free the real RQ ring used by FW */
2721         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2722         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2723 }
2724
2725 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2726                                 struct qede_rx_queue *rxq)
2727 {
2728         struct sw_rx_data *sw_rx_data;
2729         struct eth_rx_bd *rx_bd;
2730         dma_addr_t mapping;
2731         struct page *data;
2732         u16 rx_buf_size;
2733
2734         rx_buf_size = rxq->rx_buf_size;
2735
2736         data = alloc_pages(GFP_ATOMIC, 0);
2737         if (unlikely(!data)) {
2738                 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2739                 return -ENOMEM;
2740         }
2741
2742         /* Map the entire page as it would be used
2743          * for multiple RX buffer segment size mapping.
2744          */
2745         mapping = dma_map_page(&edev->pdev->dev, data, 0,
2746                                PAGE_SIZE, DMA_FROM_DEVICE);
2747         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2748                 __free_page(data);
2749                 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2750                 return -ENOMEM;
2751         }
2752
2753         sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2754         sw_rx_data->page_offset = 0;
2755         sw_rx_data->data = data;
2756         sw_rx_data->mapping = mapping;
2757
2758         /* Advance PROD and get BD pointer */
2759         rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2760         WARN_ON(!rx_bd);
2761         rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2762         rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2763
2764         rxq->sw_rx_prod++;
2765
2766         return 0;
2767 }
2768
2769 static int qede_alloc_sge_mem(struct qede_dev *edev,
2770                               struct qede_rx_queue *rxq)
2771 {
2772         dma_addr_t mapping;
2773         int i;
2774
2775         if (edev->gro_disable)
2776                 return 0;
2777
2778         if (edev->ndev->mtu > PAGE_SIZE) {
2779                 edev->gro_disable = 1;
2780                 return 0;
2781         }
2782
2783         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2784                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2785                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2786
2787                 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2788                 if (unlikely(!replace_buf->data)) {
2789                         DP_NOTICE(edev,
2790                                   "Failed to allocate TPA skb pool [replacement buffer]\n");
2791                         goto err;
2792                 }
2793
2794                 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2795                                        rxq->rx_buf_size, DMA_FROM_DEVICE);
2796                 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2797                         DP_NOTICE(edev,
2798                                   "Failed to map TPA replacement buffer\n");
2799                         goto err;
2800                 }
2801
2802                 replace_buf->mapping = mapping;
2803                 tpa_info->replace_buf.page_offset = 0;
2804
2805                 tpa_info->replace_buf_mapping = mapping;
2806                 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2807         }
2808
2809         return 0;
2810 err:
2811         qede_free_sge_mem(edev, rxq);
2812         edev->gro_disable = 1;
2813         return -ENOMEM;
2814 }
2815
2816 /* This function allocates all memory needed per Rx queue */
2817 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2818                               struct qede_rx_queue *rxq)
2819 {
2820         int i, rc, size;
2821
2822         rxq->num_rx_buffers = edev->q_num_rx_buffers;
2823
2824         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2825                            edev->ndev->mtu;
2826         if (rxq->rx_buf_size > PAGE_SIZE)
2827                 rxq->rx_buf_size = PAGE_SIZE;
2828
2829         /* Segment size to spilt a page in multiple equal parts */
2830         rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2831
2832         /* Allocate the parallel driver ring for Rx buffers */
2833         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2834         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2835         if (!rxq->sw_rx_ring) {
2836                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2837                 rc = -ENOMEM;
2838                 goto err;
2839         }
2840
2841         /* Allocate FW Rx ring  */
2842         rc = edev->ops->common->chain_alloc(edev->cdev,
2843                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2844                                             QED_CHAIN_MODE_NEXT_PTR,
2845                                             QED_CHAIN_CNT_TYPE_U16,
2846                                             RX_RING_SIZE,
2847                                             sizeof(struct eth_rx_bd),
2848                                             &rxq->rx_bd_ring);
2849
2850         if (rc)
2851                 goto err;
2852
2853         /* Allocate FW completion ring */
2854         rc = edev->ops->common->chain_alloc(edev->cdev,
2855                                             QED_CHAIN_USE_TO_CONSUME,
2856                                             QED_CHAIN_MODE_PBL,
2857                                             QED_CHAIN_CNT_TYPE_U16,
2858                                             RX_RING_SIZE,
2859                                             sizeof(union eth_rx_cqe),
2860                                             &rxq->rx_comp_ring);
2861         if (rc)
2862                 goto err;
2863
2864         /* Allocate buffers for the Rx ring */
2865         for (i = 0; i < rxq->num_rx_buffers; i++) {
2866                 rc = qede_alloc_rx_buffer(edev, rxq);
2867                 if (rc) {
2868                         DP_ERR(edev,
2869                                "Rx buffers allocation failed at index %d\n", i);
2870                         goto err;
2871                 }
2872         }
2873
2874         rc = qede_alloc_sge_mem(edev, rxq);
2875 err:
2876         return rc;
2877 }
2878
2879 static void qede_free_mem_txq(struct qede_dev *edev,
2880                               struct qede_tx_queue *txq)
2881 {
2882         /* Free the parallel SW ring */
2883         kfree(txq->sw_tx_ring);
2884
2885         /* Free the real RQ ring used by FW */
2886         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2887 }
2888
2889 /* This function allocates all memory needed per Tx queue */
2890 static int qede_alloc_mem_txq(struct qede_dev *edev,
2891                               struct qede_tx_queue *txq)
2892 {
2893         int size, rc;
2894         union eth_tx_bd_types *p_virt;
2895
2896         txq->num_tx_buffers = edev->q_num_tx_buffers;
2897
2898         /* Allocate the parallel driver ring for Tx buffers */
2899         size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2900         txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2901         if (!txq->sw_tx_ring) {
2902                 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2903                 goto err;
2904         }
2905
2906         rc = edev->ops->common->chain_alloc(edev->cdev,
2907                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2908                                             QED_CHAIN_MODE_PBL,
2909                                             QED_CHAIN_CNT_TYPE_U16,
2910                                             NUM_TX_BDS_MAX,
2911                                             sizeof(*p_virt), &txq->tx_pbl);
2912         if (rc)
2913                 goto err;
2914
2915         return 0;
2916
2917 err:
2918         qede_free_mem_txq(edev, txq);
2919         return -ENOMEM;
2920 }
2921
2922 /* This function frees all memory of a single fp */
2923 static void qede_free_mem_fp(struct qede_dev *edev,
2924                              struct qede_fastpath *fp)
2925 {
2926         int tc;
2927
2928         qede_free_mem_sb(edev, fp->sb_info);
2929
2930         qede_free_mem_rxq(edev, fp->rxq);
2931
2932         for (tc = 0; tc < edev->num_tc; tc++)
2933                 qede_free_mem_txq(edev, &fp->txqs[tc]);
2934 }
2935
2936 /* This function allocates all memory needed for a single fp (i.e. an entity
2937  * which contains status block, one rx queue and multiple per-TC tx queues.
2938  */
2939 static int qede_alloc_mem_fp(struct qede_dev *edev,
2940                              struct qede_fastpath *fp)
2941 {
2942         int rc, tc;
2943
2944         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2945         if (rc)
2946                 goto err;
2947
2948         rc = qede_alloc_mem_rxq(edev, fp->rxq);
2949         if (rc)
2950                 goto err;
2951
2952         for (tc = 0; tc < edev->num_tc; tc++) {
2953                 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2954                 if (rc)
2955                         goto err;
2956         }
2957
2958         return 0;
2959 err:
2960         return rc;
2961 }
2962
2963 static void qede_free_mem_load(struct qede_dev *edev)
2964 {
2965         int i;
2966
2967         for_each_rss(i) {
2968                 struct qede_fastpath *fp = &edev->fp_array[i];
2969
2970                 qede_free_mem_fp(edev, fp);
2971         }
2972 }
2973
2974 /* This function allocates all qede memory at NIC load. */
2975 static int qede_alloc_mem_load(struct qede_dev *edev)
2976 {
2977         int rc = 0, rss_id;
2978
2979         for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2980                 struct qede_fastpath *fp = &edev->fp_array[rss_id];
2981
2982                 rc = qede_alloc_mem_fp(edev, fp);
2983                 if (rc) {
2984                         DP_ERR(edev,
2985                                "Failed to allocate memory for fastpath - rss id = %d\n",
2986                                rss_id);
2987                         qede_free_mem_load(edev);
2988                         return rc;
2989                 }
2990         }
2991
2992         return 0;
2993 }
2994
2995 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2996 static void qede_init_fp(struct qede_dev *edev)
2997 {
2998         int rss_id, txq_index, tc;
2999         struct qede_fastpath *fp;
3000
3001         for_each_rss(rss_id) {
3002                 fp = &edev->fp_array[rss_id];
3003
3004                 fp->edev = edev;
3005                 fp->rss_id = rss_id;
3006
3007                 memset((void *)&fp->napi, 0, sizeof(fp->napi));
3008
3009                 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
3010
3011                 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
3012                 fp->rxq->rxq_id = rss_id;
3013
3014                 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
3015                 for (tc = 0; tc < edev->num_tc; tc++) {
3016                         txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
3017                         fp->txqs[tc].index = txq_index;
3018                 }
3019
3020                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
3021                          edev->ndev->name, rss_id);
3022         }
3023
3024         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
3025 }
3026
3027 static int qede_set_real_num_queues(struct qede_dev *edev)
3028 {
3029         int rc = 0;
3030
3031         rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
3032         if (rc) {
3033                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3034                 return rc;
3035         }
3036         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
3037         if (rc) {
3038                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3039                 return rc;
3040         }
3041
3042         return 0;
3043 }
3044
3045 static void qede_napi_disable_remove(struct qede_dev *edev)
3046 {
3047         int i;
3048
3049         for_each_rss(i) {
3050                 napi_disable(&edev->fp_array[i].napi);
3051
3052                 netif_napi_del(&edev->fp_array[i].napi);
3053         }
3054 }
3055
3056 static void qede_napi_add_enable(struct qede_dev *edev)
3057 {
3058         int i;
3059
3060         /* Add NAPI objects */
3061         for_each_rss(i) {
3062                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3063                                qede_poll, NAPI_POLL_WEIGHT);
3064                 napi_enable(&edev->fp_array[i].napi);
3065         }
3066 }
3067
3068 static void qede_sync_free_irqs(struct qede_dev *edev)
3069 {
3070         int i;
3071
3072         for (i = 0; i < edev->int_info.used_cnt; i++) {
3073                 if (edev->int_info.msix_cnt) {
3074                         synchronize_irq(edev->int_info.msix[i].vector);
3075                         free_irq(edev->int_info.msix[i].vector,
3076                                  &edev->fp_array[i]);
3077                 } else {
3078                         edev->ops->common->simd_handler_clean(edev->cdev, i);
3079                 }
3080         }
3081
3082         edev->int_info.used_cnt = 0;
3083 }
3084
3085 static int qede_req_msix_irqs(struct qede_dev *edev)
3086 {
3087         int i, rc;
3088
3089         /* Sanitize number of interrupts == number of prepared RSS queues */
3090         if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
3091                 DP_ERR(edev,
3092                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3093                        QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
3094                 return -EINVAL;
3095         }
3096
3097         for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
3098                 rc = request_irq(edev->int_info.msix[i].vector,
3099                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
3100                                  &edev->fp_array[i]);
3101                 if (rc) {
3102                         DP_ERR(edev, "Request fp %d irq failed\n", i);
3103                         qede_sync_free_irqs(edev);
3104                         return rc;
3105                 }
3106                 DP_VERBOSE(edev, NETIF_MSG_INTR,
3107                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3108                            edev->fp_array[i].name, i,
3109                            &edev->fp_array[i]);
3110                 edev->int_info.used_cnt++;
3111         }
3112
3113         return 0;
3114 }
3115
3116 static void qede_simd_fp_handler(void *cookie)
3117 {
3118         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3119
3120         napi_schedule_irqoff(&fp->napi);
3121 }
3122
3123 static int qede_setup_irqs(struct qede_dev *edev)
3124 {
3125         int i, rc = 0;
3126
3127         /* Learn Interrupt configuration */
3128         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3129         if (rc)
3130                 return rc;
3131
3132         if (edev->int_info.msix_cnt) {
3133                 rc = qede_req_msix_irqs(edev);
3134                 if (rc)
3135                         return rc;
3136                 edev->ndev->irq = edev->int_info.msix[0].vector;
3137         } else {
3138                 const struct qed_common_ops *ops;
3139
3140                 /* qed should learn receive the RSS ids and callbacks */
3141                 ops = edev->ops->common;
3142                 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
3143                         ops->simd_handler_config(edev->cdev,
3144                                                  &edev->fp_array[i], i,
3145                                                  qede_simd_fp_handler);
3146                 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
3147         }
3148         return 0;
3149 }
3150
3151 static int qede_drain_txq(struct qede_dev *edev,
3152                           struct qede_tx_queue *txq,
3153                           bool allow_drain)
3154 {
3155         int rc, cnt = 1000;
3156
3157         while (txq->sw_tx_cons != txq->sw_tx_prod) {
3158                 if (!cnt) {
3159                         if (allow_drain) {
3160                                 DP_NOTICE(edev,
3161                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
3162                                           txq->index);
3163                                 rc = edev->ops->common->drain(edev->cdev);
3164                                 if (rc)
3165                                         return rc;
3166                                 return qede_drain_txq(edev, txq, false);
3167                         }
3168                         DP_NOTICE(edev,
3169                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3170                                   txq->index, txq->sw_tx_prod,
3171                                   txq->sw_tx_cons);
3172                         return -ENODEV;
3173                 }
3174                 cnt--;
3175                 usleep_range(1000, 2000);
3176                 barrier();
3177         }
3178
3179         /* FW finished processing, wait for HW to transmit all tx packets */
3180         usleep_range(1000, 2000);
3181
3182         return 0;
3183 }
3184
3185 static int qede_stop_queues(struct qede_dev *edev)
3186 {
3187         struct qed_update_vport_params vport_update_params;
3188         struct qed_dev *cdev = edev->cdev;
3189         int rc, tc, i;
3190
3191         /* Disable the vport */
3192         memset(&vport_update_params, 0, sizeof(vport_update_params));
3193         vport_update_params.vport_id = 0;
3194         vport_update_params.update_vport_active_flg = 1;
3195         vport_update_params.vport_active_flg = 0;
3196         vport_update_params.update_rss_flg = 0;
3197
3198         rc = edev->ops->vport_update(cdev, &vport_update_params);
3199         if (rc) {
3200                 DP_ERR(edev, "Failed to update vport\n");
3201                 return rc;
3202         }
3203
3204         /* Flush Tx queues. If needed, request drain from MCP */
3205         for_each_rss(i) {
3206                 struct qede_fastpath *fp = &edev->fp_array[i];
3207
3208                 for (tc = 0; tc < edev->num_tc; tc++) {
3209                         struct qede_tx_queue *txq = &fp->txqs[tc];
3210
3211                         rc = qede_drain_txq(edev, txq, true);
3212                         if (rc)
3213                                 return rc;
3214                 }
3215         }
3216
3217         /* Stop all Queues in reverse order*/
3218         for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
3219                 struct qed_stop_rxq_params rx_params;
3220
3221                 /* Stop the Tx Queue(s)*/
3222                 for (tc = 0; tc < edev->num_tc; tc++) {
3223                         struct qed_stop_txq_params tx_params;
3224
3225                         tx_params.rss_id = i;
3226                         tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
3227                         rc = edev->ops->q_tx_stop(cdev, &tx_params);
3228                         if (rc) {
3229                                 DP_ERR(edev, "Failed to stop TXQ #%d\n",
3230                                        tx_params.tx_queue_id);
3231                                 return rc;
3232                         }
3233                 }
3234
3235                 /* Stop the Rx Queue*/
3236                 memset(&rx_params, 0, sizeof(rx_params));
3237                 rx_params.rss_id = i;
3238                 rx_params.rx_queue_id = i;
3239
3240                 rc = edev->ops->q_rx_stop(cdev, &rx_params);
3241                 if (rc) {
3242                         DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3243                         return rc;
3244                 }
3245         }
3246
3247         /* Stop the vport */
3248         rc = edev->ops->vport_stop(cdev, 0);
3249         if (rc)
3250                 DP_ERR(edev, "Failed to stop VPORT\n");
3251
3252         return rc;
3253 }
3254
3255 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
3256 {
3257         int rc, tc, i;
3258         int vlan_removal_en = 1;
3259         struct qed_dev *cdev = edev->cdev;
3260         struct qed_update_vport_params vport_update_params;
3261         struct qed_queue_start_common_params q_params;
3262         struct qed_dev_info *qed_info = &edev->dev_info.common;
3263         struct qed_start_vport_params start = {0};
3264         bool reset_rss_indir = false;
3265
3266         if (!edev->num_rss) {
3267                 DP_ERR(edev,
3268                        "Cannot update V-VPORT as active as there are no Rx queues\n");
3269                 return -EINVAL;
3270         }
3271
3272         start.gro_enable = !edev->gro_disable;
3273         start.mtu = edev->ndev->mtu;
3274         start.vport_id = 0;
3275         start.drop_ttl0 = true;
3276         start.remove_inner_vlan = vlan_removal_en;
3277         start.clear_stats = clear_stats;
3278
3279         rc = edev->ops->vport_start(cdev, &start);
3280
3281         if (rc) {
3282                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3283                 return rc;
3284         }
3285
3286         DP_VERBOSE(edev, NETIF_MSG_IFUP,
3287                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3288                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3289
3290         for_each_rss(i) {
3291                 struct qede_fastpath *fp = &edev->fp_array[i];
3292                 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
3293
3294                 memset(&q_params, 0, sizeof(q_params));
3295                 q_params.rss_id = i;
3296                 q_params.queue_id = i;
3297                 q_params.vport_id = 0;
3298                 q_params.sb = fp->sb_info->igu_sb_id;
3299                 q_params.sb_idx = RX_PI;
3300
3301                 rc = edev->ops->q_rx_start(cdev, &q_params,
3302                                            fp->rxq->rx_buf_size,
3303                                            fp->rxq->rx_bd_ring.p_phys_addr,
3304                                            phys_table,
3305                                            fp->rxq->rx_comp_ring.page_cnt,
3306                                            &fp->rxq->hw_rxq_prod_addr);
3307                 if (rc) {
3308                         DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
3309                         return rc;
3310                 }
3311
3312                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
3313
3314                 qede_update_rx_prod(edev, fp->rxq);
3315
3316                 for (tc = 0; tc < edev->num_tc; tc++) {
3317                         struct qede_tx_queue *txq = &fp->txqs[tc];
3318                         int txq_index = tc * QEDE_RSS_CNT(edev) + i;
3319
3320                         memset(&q_params, 0, sizeof(q_params));
3321                         q_params.rss_id = i;
3322                         q_params.queue_id = txq_index;
3323                         q_params.vport_id = 0;
3324                         q_params.sb = fp->sb_info->igu_sb_id;
3325                         q_params.sb_idx = TX_PI(tc);
3326
3327                         rc = edev->ops->q_tx_start(cdev, &q_params,
3328                                                    txq->tx_pbl.pbl.p_phys_table,
3329                                                    txq->tx_pbl.page_cnt,
3330                                                    &txq->doorbell_addr);
3331                         if (rc) {
3332                                 DP_ERR(edev, "Start TXQ #%d failed %d\n",
3333                                        txq_index, rc);
3334                                 return rc;
3335                         }
3336
3337                         txq->hw_cons_ptr =
3338                                 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3339                         SET_FIELD(txq->tx_db.data.params,
3340                                   ETH_DB_DATA_DEST, DB_DEST_XCM);
3341                         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3342                                   DB_AGG_CMD_SET);
3343                         SET_FIELD(txq->tx_db.data.params,
3344                                   ETH_DB_DATA_AGG_VAL_SEL,
3345                                   DQ_XCM_ETH_TX_BD_PROD_CMD);
3346
3347                         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3348                 }
3349         }
3350
3351         /* Prepare and send the vport enable */
3352         memset(&vport_update_params, 0, sizeof(vport_update_params));
3353         vport_update_params.vport_id = start.vport_id;
3354         vport_update_params.update_vport_active_flg = 1;
3355         vport_update_params.vport_active_flg = 1;
3356
3357         if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3358             qed_info->tx_switching) {
3359                 vport_update_params.update_tx_switching_flg = 1;
3360                 vport_update_params.tx_switching_flg = 1;
3361         }
3362
3363         /* Fill struct with RSS params */
3364         if (QEDE_RSS_CNT(edev) > 1) {
3365                 vport_update_params.update_rss_flg = 1;
3366
3367                 /* Need to validate current RSS config uses valid entries */
3368                 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3369                         if (edev->rss_params.rss_ind_table[i] >=
3370                             edev->num_rss) {
3371                                 reset_rss_indir = true;
3372                                 break;
3373                         }
3374                 }
3375
3376                 if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3377                     reset_rss_indir) {
3378                         u16 val;
3379
3380                         for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3381                                 u16 indir_val;
3382
3383                                 val = QEDE_RSS_CNT(edev);
3384                                 indir_val = ethtool_rxfh_indir_default(i, val);
3385                                 edev->rss_params.rss_ind_table[i] = indir_val;
3386                         }
3387                         edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3388                 }
3389
3390                 if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3391                         netdev_rss_key_fill(edev->rss_params.rss_key,
3392                                             sizeof(edev->rss_params.rss_key));
3393                         edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3394                 }
3395
3396                 if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3397                         edev->rss_params.rss_caps = QED_RSS_IPV4 |
3398                                                     QED_RSS_IPV6 |
3399                                                     QED_RSS_IPV4_TCP |
3400                                                     QED_RSS_IPV6_TCP;
3401                         edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3402                 }
3403
3404                 memcpy(&vport_update_params.rss_params, &edev->rss_params,
3405                        sizeof(vport_update_params.rss_params));
3406         } else {
3407                 memset(&vport_update_params.rss_params, 0,
3408                        sizeof(vport_update_params.rss_params));
3409         }
3410
3411         rc = edev->ops->vport_update(cdev, &vport_update_params);
3412         if (rc) {
3413                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3414                 return rc;
3415         }
3416
3417         return 0;
3418 }
3419
3420 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3421                                  enum qed_filter_xcast_params_type opcode,
3422                                  unsigned char *mac, int num_macs)
3423 {
3424         struct qed_filter_params filter_cmd;
3425         int i;
3426
3427         memset(&filter_cmd, 0, sizeof(filter_cmd));
3428         filter_cmd.type = QED_FILTER_TYPE_MCAST;
3429         filter_cmd.filter.mcast.type = opcode;
3430         filter_cmd.filter.mcast.num = num_macs;
3431
3432         for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3433                 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3434
3435         return edev->ops->filter_config(edev->cdev, &filter_cmd);
3436 }
3437
3438 enum qede_unload_mode {
3439         QEDE_UNLOAD_NORMAL,
3440 };
3441
3442 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3443 {
3444         struct qed_link_params link_params;
3445         int rc;
3446
3447         DP_INFO(edev, "Starting qede unload\n");
3448
3449         mutex_lock(&edev->qede_lock);
3450         edev->state = QEDE_STATE_CLOSED;
3451
3452         /* Close OS Tx */
3453         netif_tx_disable(edev->ndev);
3454         netif_carrier_off(edev->ndev);
3455
3456         /* Reset the link */
3457         memset(&link_params, 0, sizeof(link_params));
3458         link_params.link_up = false;
3459         edev->ops->common->set_link(edev->cdev, &link_params);
3460         rc = qede_stop_queues(edev);
3461         if (rc) {
3462                 qede_sync_free_irqs(edev);
3463                 goto out;
3464         }
3465
3466         DP_INFO(edev, "Stopped Queues\n");
3467
3468         qede_vlan_mark_nonconfigured(edev);
3469         edev->ops->fastpath_stop(edev->cdev);
3470
3471         /* Release the interrupts */
3472         qede_sync_free_irqs(edev);
3473         edev->ops->common->set_fp_int(edev->cdev, 0);
3474
3475         qede_napi_disable_remove(edev);
3476
3477         qede_free_mem_load(edev);
3478         qede_free_fp_array(edev);
3479
3480 out:
3481         mutex_unlock(&edev->qede_lock);
3482         DP_INFO(edev, "Ending qede unload\n");
3483 }
3484
3485 enum qede_load_mode {
3486         QEDE_LOAD_NORMAL,
3487         QEDE_LOAD_RELOAD,
3488 };
3489
3490 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3491 {
3492         struct qed_link_params link_params;
3493         struct qed_link_output link_output;
3494         int rc;
3495
3496         DP_INFO(edev, "Starting qede load\n");
3497
3498         rc = qede_set_num_queues(edev);
3499         if (rc)
3500                 goto err0;
3501
3502         rc = qede_alloc_fp_array(edev);
3503         if (rc)
3504                 goto err0;
3505
3506         qede_init_fp(edev);
3507
3508         rc = qede_alloc_mem_load(edev);
3509         if (rc)
3510                 goto err1;
3511         DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3512                 QEDE_RSS_CNT(edev), edev->num_tc);
3513
3514         rc = qede_set_real_num_queues(edev);
3515         if (rc)
3516                 goto err2;
3517
3518         qede_napi_add_enable(edev);
3519         DP_INFO(edev, "Napi added and enabled\n");
3520
3521         rc = qede_setup_irqs(edev);
3522         if (rc)
3523                 goto err3;
3524         DP_INFO(edev, "Setup IRQs succeeded\n");
3525
3526         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
3527         if (rc)
3528                 goto err4;
3529         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3530
3531         /* Add primary mac and set Rx filters */
3532         ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3533
3534         mutex_lock(&edev->qede_lock);
3535         edev->state = QEDE_STATE_OPEN;
3536         mutex_unlock(&edev->qede_lock);
3537
3538         /* Program un-configured VLANs */
3539         qede_configure_vlan_filters(edev);
3540
3541         /* Ask for link-up using current configuration */
3542         memset(&link_params, 0, sizeof(link_params));
3543         link_params.link_up = true;
3544         edev->ops->common->set_link(edev->cdev, &link_params);
3545
3546         /* Query whether link is already-up */
3547         memset(&link_output, 0, sizeof(link_output));
3548         edev->ops->common->get_link(edev->cdev, &link_output);
3549         qede_link_update(edev, &link_output);
3550
3551         DP_INFO(edev, "Ending successfully qede load\n");
3552
3553         return 0;
3554
3555 err4:
3556         qede_sync_free_irqs(edev);
3557         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3558 err3:
3559         qede_napi_disable_remove(edev);
3560 err2:
3561         qede_free_mem_load(edev);
3562 err1:
3563         edev->ops->common->set_fp_int(edev->cdev, 0);
3564         qede_free_fp_array(edev);
3565         edev->num_rss = 0;
3566 err0:
3567         return rc;
3568 }
3569
3570 void qede_reload(struct qede_dev *edev,
3571                  void (*func)(struct qede_dev *, union qede_reload_args *),
3572                  union qede_reload_args *args)
3573 {
3574         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3575         /* Call function handler to update parameters
3576          * needed for function load.
3577          */
3578         if (func)
3579                 func(edev, args);
3580
3581         qede_load(edev, QEDE_LOAD_RELOAD);
3582
3583         mutex_lock(&edev->qede_lock);
3584         qede_config_rx_mode(edev->ndev);
3585         mutex_unlock(&edev->qede_lock);
3586 }
3587
3588 /* called with rtnl_lock */
3589 static int qede_open(struct net_device *ndev)
3590 {
3591         struct qede_dev *edev = netdev_priv(ndev);
3592         int rc;
3593
3594         netif_carrier_off(ndev);
3595
3596         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3597
3598         rc = qede_load(edev, QEDE_LOAD_NORMAL);
3599
3600         if (rc)
3601                 return rc;
3602
3603         udp_tunnel_get_rx_info(ndev);
3604
3605         return 0;
3606 }
3607
3608 static int qede_close(struct net_device *ndev)
3609 {
3610         struct qede_dev *edev = netdev_priv(ndev);
3611
3612         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3613
3614         return 0;
3615 }
3616
3617 static void qede_link_update(void *dev, struct qed_link_output *link)
3618 {
3619         struct qede_dev *edev = dev;
3620
3621         if (!netif_running(edev->ndev)) {
3622                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3623                 return;
3624         }
3625
3626         if (link->link_up) {
3627                 if (!netif_carrier_ok(edev->ndev)) {
3628                         DP_NOTICE(edev, "Link is up\n");
3629                         netif_tx_start_all_queues(edev->ndev);
3630                         netif_carrier_on(edev->ndev);
3631                 }
3632         } else {
3633                 if (netif_carrier_ok(edev->ndev)) {
3634                         DP_NOTICE(edev, "Link is down\n");
3635                         netif_tx_disable(edev->ndev);
3636                         netif_carrier_off(edev->ndev);
3637                 }
3638         }
3639 }
3640
3641 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3642 {
3643         struct qede_dev *edev = netdev_priv(ndev);
3644         struct sockaddr *addr = p;
3645         int rc;
3646
3647         ASSERT_RTNL(); /* @@@TBD To be removed */
3648
3649         DP_INFO(edev, "Set_mac_addr called\n");
3650
3651         if (!is_valid_ether_addr(addr->sa_data)) {
3652                 DP_NOTICE(edev, "The MAC address is not valid\n");
3653                 return -EFAULT;
3654         }
3655
3656         if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3657                 DP_NOTICE(edev, "qed prevents setting MAC\n");
3658                 return -EINVAL;
3659         }
3660
3661         ether_addr_copy(ndev->dev_addr, addr->sa_data);
3662
3663         if (!netif_running(ndev))  {
3664                 DP_NOTICE(edev, "The device is currently down\n");
3665                 return 0;
3666         }
3667
3668         /* Remove the previous primary mac */
3669         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3670                                    edev->primary_mac);
3671         if (rc)
3672                 return rc;
3673
3674         /* Add MAC filter according to the new unicast HW MAC address */
3675         ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3676         return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3677                                       edev->primary_mac);
3678 }
3679
3680 static int
3681 qede_configure_mcast_filtering(struct net_device *ndev,
3682                                enum qed_filter_rx_mode_type *accept_flags)
3683 {
3684         struct qede_dev *edev = netdev_priv(ndev);
3685         unsigned char *mc_macs, *temp;
3686         struct netdev_hw_addr *ha;
3687         int rc = 0, mc_count;
3688         size_t size;
3689
3690         size = 64 * ETH_ALEN;
3691
3692         mc_macs = kzalloc(size, GFP_KERNEL);
3693         if (!mc_macs) {
3694                 DP_NOTICE(edev,
3695                           "Failed to allocate memory for multicast MACs\n");
3696                 rc = -ENOMEM;
3697                 goto exit;
3698         }
3699
3700         temp = mc_macs;
3701
3702         /* Remove all previously configured MAC filters */
3703         rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3704                                    mc_macs, 1);
3705         if (rc)
3706                 goto exit;
3707
3708         netif_addr_lock_bh(ndev);
3709
3710         mc_count = netdev_mc_count(ndev);
3711         if (mc_count < 64) {
3712                 netdev_for_each_mc_addr(ha, ndev) {
3713                         ether_addr_copy(temp, ha->addr);
3714                         temp += ETH_ALEN;
3715                 }
3716         }
3717
3718         netif_addr_unlock_bh(ndev);
3719
3720         /* Check for all multicast @@@TBD resource allocation */
3721         if ((ndev->flags & IFF_ALLMULTI) ||
3722             (mc_count > 64)) {
3723                 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3724                         *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3725         } else {
3726                 /* Add all multicast MAC filters */
3727                 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3728                                            mc_macs, mc_count);
3729         }
3730
3731 exit:
3732         kfree(mc_macs);
3733         return rc;
3734 }
3735
3736 static void qede_set_rx_mode(struct net_device *ndev)
3737 {
3738         struct qede_dev *edev = netdev_priv(ndev);
3739
3740         DP_INFO(edev, "qede_set_rx_mode called\n");
3741
3742         if (edev->state != QEDE_STATE_OPEN) {
3743                 DP_INFO(edev,
3744                         "qede_set_rx_mode called while interface is down\n");
3745         } else {
3746                 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3747                 schedule_delayed_work(&edev->sp_task, 0);
3748         }
3749 }
3750
3751 /* Must be called with qede_lock held */
3752 static void qede_config_rx_mode(struct net_device *ndev)
3753 {
3754         enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3755         struct qede_dev *edev = netdev_priv(ndev);
3756         struct qed_filter_params rx_mode;
3757         unsigned char *uc_macs, *temp;
3758         struct netdev_hw_addr *ha;
3759         int rc, uc_count;
3760         size_t size;
3761
3762         netif_addr_lock_bh(ndev);
3763
3764         uc_count = netdev_uc_count(ndev);
3765         size = uc_count * ETH_ALEN;
3766
3767         uc_macs = kzalloc(size, GFP_ATOMIC);
3768         if (!uc_macs) {
3769                 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3770                 netif_addr_unlock_bh(ndev);
3771                 return;
3772         }
3773
3774         temp = uc_macs;
3775         netdev_for_each_uc_addr(ha, ndev) {
3776                 ether_addr_copy(temp, ha->addr);
3777                 temp += ETH_ALEN;
3778         }
3779
3780         netif_addr_unlock_bh(ndev);
3781
3782         /* Configure the struct for the Rx mode */
3783         memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3784         rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3785
3786         /* Remove all previous unicast secondary macs and multicast macs
3787          * (configrue / leave the primary mac)
3788          */
3789         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3790                                    edev->primary_mac);
3791         if (rc)
3792                 goto out;
3793
3794         /* Check for promiscuous */
3795         if ((ndev->flags & IFF_PROMISC) ||
3796             (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3797                 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3798         } else {
3799                 /* Add MAC filters according to the unicast secondary macs */
3800                 int i;
3801
3802                 temp = uc_macs;
3803                 for (i = 0; i < uc_count; i++) {
3804                         rc = qede_set_ucast_rx_mac(edev,
3805                                                    QED_FILTER_XCAST_TYPE_ADD,
3806                                                    temp);
3807                         if (rc)
3808                                 goto out;
3809
3810                         temp += ETH_ALEN;
3811                 }
3812
3813                 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3814                 if (rc)
3815                         goto out;
3816         }
3817
3818         /* take care of VLAN mode */
3819         if (ndev->flags & IFF_PROMISC) {
3820                 qede_config_accept_any_vlan(edev, true);
3821         } else if (!edev->non_configured_vlans) {
3822                 /* It's possible that accept_any_vlan mode is set due to a
3823                  * previous setting of IFF_PROMISC. If vlan credits are
3824                  * sufficient, disable accept_any_vlan.
3825                  */
3826                 qede_config_accept_any_vlan(edev, false);
3827         }
3828
3829         rx_mode.filter.accept_flags = accept_flags;
3830         edev->ops->filter_config(edev->cdev, &rx_mode);
3831 out:
3832         kfree(uc_macs);
3833 }