Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[cascardo/linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #include <net/udp_tunnel.h>
28 #include <linux/ip.h>
29 #include <net/ipv6.h>
30 #include <net/tcp.h>
31 #include <linux/if_ether.h>
32 #include <linux/if_vlan.h>
33 #include <linux/pkt_sched.h>
34 #include <linux/ethtool.h>
35 #include <linux/in.h>
36 #include <linux/random.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/bitops.h>
39
40 #include "qede.h"
41
42 static char version[] =
43         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
44
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
52
53 static const struct qed_eth_ops *qed_ops;
54
55 #define CHIP_NUM_57980S_40              0x1634
56 #define CHIP_NUM_57980S_10              0x1666
57 #define CHIP_NUM_57980S_MF              0x1636
58 #define CHIP_NUM_57980S_100             0x1644
59 #define CHIP_NUM_57980S_50              0x1654
60 #define CHIP_NUM_57980S_25              0x1656
61 #define CHIP_NUM_57980S_IOV             0x1664
62
63 #ifndef PCI_DEVICE_ID_NX2_57980E
64 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
65 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
66 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
67 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
68 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
69 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
70 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
71 #endif
72
73 enum qede_pci_private {
74         QEDE_PRIVATE_PF,
75         QEDE_PRIVATE_VF
76 };
77
78 static const struct pci_device_id qede_pci_tbl[] = {
79         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85 #ifdef CONFIG_QED_SRIOV
86         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
87 #endif
88         { 0 }
89 };
90
91 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
92
93 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
94
95 #define TX_TIMEOUT              (5 * HZ)
96
97 static void qede_remove(struct pci_dev *pdev);
98 static int qede_alloc_rx_buffer(struct qede_dev *edev,
99                                 struct qede_rx_queue *rxq);
100 static void qede_link_update(void *dev, struct qed_link_output *link);
101
102 #ifdef CONFIG_QED_SRIOV
103 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
104 {
105         struct qede_dev *edev = netdev_priv(ndev);
106
107         if (vlan > 4095) {
108                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
109                 return -EINVAL;
110         }
111
112         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
113                    vlan, vf);
114
115         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
116 }
117
118 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
119 {
120         struct qede_dev *edev = netdev_priv(ndev);
121
122         DP_VERBOSE(edev, QED_MSG_IOV,
123                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
124                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
125
126         if (!is_valid_ether_addr(mac)) {
127                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
128                 return -EINVAL;
129         }
130
131         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
132 }
133
134 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
135 {
136         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
137         struct qed_dev_info *qed_info = &edev->dev_info.common;
138         int rc;
139
140         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
141
142         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
143
144         /* Enable/Disable Tx switching for PF */
145         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
146             qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
147                 struct qed_update_vport_params params;
148
149                 memset(&params, 0, sizeof(params));
150                 params.vport_id = 0;
151                 params.update_tx_switching_flg = 1;
152                 params.tx_switching_flg = num_vfs_param ? 1 : 0;
153                 edev->ops->vport_update(edev->cdev, &params);
154         }
155
156         return rc;
157 }
158 #endif
159
160 static struct pci_driver qede_pci_driver = {
161         .name = "qede",
162         .id_table = qede_pci_tbl,
163         .probe = qede_probe,
164         .remove = qede_remove,
165 #ifdef CONFIG_QED_SRIOV
166         .sriov_configure = qede_sriov_configure,
167 #endif
168 };
169
170 static void qede_force_mac(void *dev, u8 *mac)
171 {
172         struct qede_dev *edev = dev;
173
174         ether_addr_copy(edev->ndev->dev_addr, mac);
175         ether_addr_copy(edev->primary_mac, mac);
176 }
177
178 static struct qed_eth_cb_ops qede_ll_ops = {
179         {
180                 .link_update = qede_link_update,
181         },
182         .force_mac = qede_force_mac,
183 };
184
185 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
186                              void *ptr)
187 {
188         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
189         struct ethtool_drvinfo drvinfo;
190         struct qede_dev *edev;
191
192         /* Currently only support name change */
193         if (event != NETDEV_CHANGENAME)
194                 goto done;
195
196         /* Check whether this is a qede device */
197         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
198                 goto done;
199
200         memset(&drvinfo, 0, sizeof(drvinfo));
201         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
202         if (strcmp(drvinfo.driver, "qede"))
203                 goto done;
204         edev = netdev_priv(ndev);
205
206         /* Notify qed of the name change */
207         if (!edev->ops || !edev->ops->common)
208                 goto done;
209         edev->ops->common->set_id(edev->cdev, edev->ndev->name,
210                                   "qede");
211
212 done:
213         return NOTIFY_DONE;
214 }
215
216 static struct notifier_block qede_netdev_notifier = {
217         .notifier_call = qede_netdev_event,
218 };
219
220 static
221 int __init qede_init(void)
222 {
223         int ret;
224
225         pr_info("qede_init: %s\n", version);
226
227         qed_ops = qed_get_eth_ops();
228         if (!qed_ops) {
229                 pr_notice("Failed to get qed ethtool operations\n");
230                 return -EINVAL;
231         }
232
233         /* Must register notifier before pci ops, since we might miss
234          * interface rename after pci probe and netdev registeration.
235          */
236         ret = register_netdevice_notifier(&qede_netdev_notifier);
237         if (ret) {
238                 pr_notice("Failed to register netdevice_notifier\n");
239                 qed_put_eth_ops();
240                 return -EINVAL;
241         }
242
243         ret = pci_register_driver(&qede_pci_driver);
244         if (ret) {
245                 pr_notice("Failed to register driver\n");
246                 unregister_netdevice_notifier(&qede_netdev_notifier);
247                 qed_put_eth_ops();
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 static void __exit qede_cleanup(void)
255 {
256         if (debug & QED_LOG_INFO_MASK)
257                 pr_info("qede_cleanup called\n");
258
259         unregister_netdevice_notifier(&qede_netdev_notifier);
260         pci_unregister_driver(&qede_pci_driver);
261         qed_put_eth_ops();
262 }
263
264 module_init(qede_init);
265 module_exit(qede_cleanup);
266
267 /* -------------------------------------------------------------------------
268  * START OF FAST-PATH
269  * -------------------------------------------------------------------------
270  */
271
272 /* Unmap the data and free skb */
273 static int qede_free_tx_pkt(struct qede_dev *edev,
274                             struct qede_tx_queue *txq, int *len)
275 {
276         u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
277         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
278         struct eth_tx_1st_bd *first_bd;
279         struct eth_tx_bd *tx_data_bd;
280         int bds_consumed = 0;
281         int nbds;
282         bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
283         int i, split_bd_len = 0;
284
285         if (unlikely(!skb)) {
286                 DP_ERR(edev,
287                        "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
288                        idx, txq->sw_tx_cons, txq->sw_tx_prod);
289                 return -1;
290         }
291
292         *len = skb->len;
293
294         first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
295
296         bds_consumed++;
297
298         nbds = first_bd->data.nbds;
299
300         if (data_split) {
301                 struct eth_tx_bd *split = (struct eth_tx_bd *)
302                         qed_chain_consume(&txq->tx_pbl);
303                 split_bd_len = BD_UNMAP_LEN(split);
304                 bds_consumed++;
305         }
306         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
307                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
308
309         /* Unmap the data of the skb frags */
310         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
311                 tx_data_bd = (struct eth_tx_bd *)
312                         qed_chain_consume(&txq->tx_pbl);
313                 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
314                                BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
315         }
316
317         while (bds_consumed++ < nbds)
318                 qed_chain_consume(&txq->tx_pbl);
319
320         /* Free skb */
321         dev_kfree_skb_any(skb);
322         txq->sw_tx_ring[idx].skb = NULL;
323         txq->sw_tx_ring[idx].flags = 0;
324
325         return 0;
326 }
327
328 /* Unmap the data and free skb when mapping failed during start_xmit */
329 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
330                                     struct qede_tx_queue *txq,
331                                     struct eth_tx_1st_bd *first_bd,
332                                     int nbd, bool data_split)
333 {
334         u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
335         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
336         struct eth_tx_bd *tx_data_bd;
337         int i, split_bd_len = 0;
338
339         /* Return prod to its position before this skb was handled */
340         qed_chain_set_prod(&txq->tx_pbl,
341                            le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
342
343         first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
344
345         if (data_split) {
346                 struct eth_tx_bd *split = (struct eth_tx_bd *)
347                                           qed_chain_produce(&txq->tx_pbl);
348                 split_bd_len = BD_UNMAP_LEN(split);
349                 nbd--;
350         }
351
352         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
353                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
354
355         /* Unmap the data of the skb frags */
356         for (i = 0; i < nbd; i++) {
357                 tx_data_bd = (struct eth_tx_bd *)
358                         qed_chain_produce(&txq->tx_pbl);
359                 if (tx_data_bd->nbytes)
360                         dma_unmap_page(&edev->pdev->dev,
361                                        BD_UNMAP_ADDR(tx_data_bd),
362                                        BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
363         }
364
365         /* Return again prod to its position before this skb was handled */
366         qed_chain_set_prod(&txq->tx_pbl,
367                            le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
368
369         /* Free skb */
370         dev_kfree_skb_any(skb);
371         txq->sw_tx_ring[idx].skb = NULL;
372         txq->sw_tx_ring[idx].flags = 0;
373 }
374
375 static u32 qede_xmit_type(struct qede_dev *edev,
376                           struct sk_buff *skb, int *ipv6_ext)
377 {
378         u32 rc = XMIT_L4_CSUM;
379         __be16 l3_proto;
380
381         if (skb->ip_summed != CHECKSUM_PARTIAL)
382                 return XMIT_PLAIN;
383
384         l3_proto = vlan_get_protocol(skb);
385         if (l3_proto == htons(ETH_P_IPV6) &&
386             (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
387                 *ipv6_ext = 1;
388
389         if (skb->encapsulation)
390                 rc |= XMIT_ENC;
391
392         if (skb_is_gso(skb))
393                 rc |= XMIT_LSO;
394
395         return rc;
396 }
397
398 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
399                                          struct eth_tx_2nd_bd *second_bd,
400                                          struct eth_tx_3rd_bd *third_bd)
401 {
402         u8 l4_proto;
403         u16 bd2_bits1 = 0, bd2_bits2 = 0;
404
405         bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
406
407         bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
408                      ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
409                     << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
410
411         bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
412                       ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
413
414         if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
415                 l4_proto = ipv6_hdr(skb)->nexthdr;
416         else
417                 l4_proto = ip_hdr(skb)->protocol;
418
419         if (l4_proto == IPPROTO_UDP)
420                 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
421
422         if (third_bd)
423                 third_bd->data.bitfields |=
424                         cpu_to_le16(((tcp_hdrlen(skb) / 4) &
425                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
426                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
427
428         second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
429         second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
430 }
431
432 static int map_frag_to_bd(struct qede_dev *edev,
433                           skb_frag_t *frag, struct eth_tx_bd *bd)
434 {
435         dma_addr_t mapping;
436
437         /* Map skb non-linear frag data for DMA */
438         mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
439                                    skb_frag_size(frag), DMA_TO_DEVICE);
440         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
441                 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
442                 return -ENOMEM;
443         }
444
445         /* Setup the data pointer of the frag data */
446         BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
447
448         return 0;
449 }
450
451 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
452 {
453         if (is_encap_pkt)
454                 return (skb_inner_transport_header(skb) +
455                         inner_tcp_hdrlen(skb) - skb->data);
456         else
457                 return (skb_transport_header(skb) +
458                         tcp_hdrlen(skb) - skb->data);
459 }
460
461 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
462 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
463 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
464                              u8 xmit_type)
465 {
466         int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
467
468         if (xmit_type & XMIT_LSO) {
469                 int hlen;
470
471                 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
472
473                 /* linear payload would require its own BD */
474                 if (skb_headlen(skb) > hlen)
475                         allowed_frags--;
476         }
477
478         return (skb_shinfo(skb)->nr_frags > allowed_frags);
479 }
480 #endif
481
482 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
483 {
484         /* wmb makes sure that the BDs data is updated before updating the
485          * producer, otherwise FW may read old data from the BDs.
486          */
487         wmb();
488         barrier();
489         writel(txq->tx_db.raw, txq->doorbell_addr);
490
491         /* mmiowb is needed to synchronize doorbell writes from more than one
492          * processor. It guarantees that the write arrives to the device before
493          * the queue lock is released and another start_xmit is called (possibly
494          * on another CPU). Without this barrier, the next doorbell can bypass
495          * this doorbell. This is applicable to IA64/Altix systems.
496          */
497         mmiowb();
498 }
499
500 /* Main transmit function */
501 static netdev_tx_t qede_start_xmit(struct sk_buff *skb,
502                                    struct net_device *ndev)
503 {
504         struct qede_dev *edev = netdev_priv(ndev);
505         struct netdev_queue *netdev_txq;
506         struct qede_tx_queue *txq;
507         struct eth_tx_1st_bd *first_bd;
508         struct eth_tx_2nd_bd *second_bd = NULL;
509         struct eth_tx_3rd_bd *third_bd = NULL;
510         struct eth_tx_bd *tx_data_bd = NULL;
511         u16 txq_index;
512         u8 nbd = 0;
513         dma_addr_t mapping;
514         int rc, frag_idx = 0, ipv6_ext = 0;
515         u8 xmit_type;
516         u16 idx;
517         u16 hlen;
518         bool data_split = false;
519
520         /* Get tx-queue context and netdev index */
521         txq_index = skb_get_queue_mapping(skb);
522         WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
523         txq = QEDE_TX_QUEUE(edev, txq_index);
524         netdev_txq = netdev_get_tx_queue(ndev, txq_index);
525
526         WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
527
528         xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
529
530 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
531         if (qede_pkt_req_lin(edev, skb, xmit_type)) {
532                 if (skb_linearize(skb)) {
533                         DP_NOTICE(edev,
534                                   "SKB linearization failed - silently dropping this SKB\n");
535                         dev_kfree_skb_any(skb);
536                         return NETDEV_TX_OK;
537                 }
538         }
539 #endif
540
541         /* Fill the entry in the SW ring and the BDs in the FW ring */
542         idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
543         txq->sw_tx_ring[idx].skb = skb;
544         first_bd = (struct eth_tx_1st_bd *)
545                    qed_chain_produce(&txq->tx_pbl);
546         memset(first_bd, 0, sizeof(*first_bd));
547         first_bd->data.bd_flags.bitfields =
548                 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
549
550         /* Map skb linear data for DMA and set in the first BD */
551         mapping = dma_map_single(&edev->pdev->dev, skb->data,
552                                  skb_headlen(skb), DMA_TO_DEVICE);
553         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
554                 DP_NOTICE(edev, "SKB mapping failed\n");
555                 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
556                 qede_update_tx_producer(txq);
557                 return NETDEV_TX_OK;
558         }
559         nbd++;
560         BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
561
562         /* In case there is IPv6 with extension headers or LSO we need 2nd and
563          * 3rd BDs.
564          */
565         if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
566                 second_bd = (struct eth_tx_2nd_bd *)
567                         qed_chain_produce(&txq->tx_pbl);
568                 memset(second_bd, 0, sizeof(*second_bd));
569
570                 nbd++;
571                 third_bd = (struct eth_tx_3rd_bd *)
572                         qed_chain_produce(&txq->tx_pbl);
573                 memset(third_bd, 0, sizeof(*third_bd));
574
575                 nbd++;
576                 /* We need to fill in additional data in second_bd... */
577                 tx_data_bd = (struct eth_tx_bd *)second_bd;
578         }
579
580         if (skb_vlan_tag_present(skb)) {
581                 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
582                 first_bd->data.bd_flags.bitfields |=
583                         1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
584         }
585
586         /* Fill the parsing flags & params according to the requested offload */
587         if (xmit_type & XMIT_L4_CSUM) {
588                 /* We don't re-calculate IP checksum as it is already done by
589                  * the upper stack
590                  */
591                 first_bd->data.bd_flags.bitfields |=
592                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
593
594                 if (xmit_type & XMIT_ENC) {
595                         first_bd->data.bd_flags.bitfields |=
596                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
597                         first_bd->data.bitfields |=
598                             1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
599                 }
600
601                 /* Legacy FW had flipped behavior in regard to this bit -
602                  * I.e., needed to set to prevent FW from touching encapsulated
603                  * packets when it didn't need to.
604                  */
605                 if (unlikely(txq->is_legacy))
606                         first_bd->data.bitfields ^=
607                             1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
608
609                 /* If the packet is IPv6 with extension header, indicate that
610                  * to FW and pass few params, since the device cracker doesn't
611                  * support parsing IPv6 with extension header/s.
612                  */
613                 if (unlikely(ipv6_ext))
614                         qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
615         }
616
617         if (xmit_type & XMIT_LSO) {
618                 first_bd->data.bd_flags.bitfields |=
619                         (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
620                 third_bd->data.lso_mss =
621                         cpu_to_le16(skb_shinfo(skb)->gso_size);
622
623                 if (unlikely(xmit_type & XMIT_ENC)) {
624                         first_bd->data.bd_flags.bitfields |=
625                                 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
626                         hlen = qede_get_skb_hlen(skb, true);
627                 } else {
628                         first_bd->data.bd_flags.bitfields |=
629                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
630                         hlen = qede_get_skb_hlen(skb, false);
631                 }
632
633                 /* @@@TBD - if will not be removed need to check */
634                 third_bd->data.bitfields |=
635                         cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
636
637                 /* Make life easier for FW guys who can't deal with header and
638                  * data on same BD. If we need to split, use the second bd...
639                  */
640                 if (unlikely(skb_headlen(skb) > hlen)) {
641                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
642                                    "TSO split header size is %d (%x:%x)\n",
643                                    first_bd->nbytes, first_bd->addr.hi,
644                                    first_bd->addr.lo);
645
646                         mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
647                                            le32_to_cpu(first_bd->addr.lo)) +
648                                            hlen;
649
650                         BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
651                                               le16_to_cpu(first_bd->nbytes) -
652                                               hlen);
653
654                         /* this marks the BD as one that has no
655                          * individual mapping
656                          */
657                         txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
658
659                         first_bd->nbytes = cpu_to_le16(hlen);
660
661                         tx_data_bd = (struct eth_tx_bd *)third_bd;
662                         data_split = true;
663                 }
664         } else {
665                 first_bd->data.bitfields |=
666                     (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
667                     ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
668         }
669
670         /* Handle fragmented skb */
671         /* special handle for frags inside 2nd and 3rd bds.. */
672         while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
673                 rc = map_frag_to_bd(edev,
674                                     &skb_shinfo(skb)->frags[frag_idx],
675                                     tx_data_bd);
676                 if (rc) {
677                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
678                                                 data_split);
679                         qede_update_tx_producer(txq);
680                         return NETDEV_TX_OK;
681                 }
682
683                 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
684                         tx_data_bd = (struct eth_tx_bd *)third_bd;
685                 else
686                         tx_data_bd = NULL;
687
688                 frag_idx++;
689         }
690
691         /* map last frags into 4th, 5th .... */
692         for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
693                 tx_data_bd = (struct eth_tx_bd *)
694                              qed_chain_produce(&txq->tx_pbl);
695
696                 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
697
698                 rc = map_frag_to_bd(edev,
699                                     &skb_shinfo(skb)->frags[frag_idx],
700                                     tx_data_bd);
701                 if (rc) {
702                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
703                                                 data_split);
704                         qede_update_tx_producer(txq);
705                         return NETDEV_TX_OK;
706                 }
707         }
708
709         /* update the first BD with the actual num BDs */
710         first_bd->data.nbds = nbd;
711
712         netdev_tx_sent_queue(netdev_txq, skb->len);
713
714         skb_tx_timestamp(skb);
715
716         /* Advance packet producer only before sending the packet since mapping
717          * of pages may fail.
718          */
719         txq->sw_tx_prod++;
720
721         /* 'next page' entries are counted in the producer value */
722         txq->tx_db.data.bd_prod =
723                 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
724
725         if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
726                 qede_update_tx_producer(txq);
727
728         if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
729                       < (MAX_SKB_FRAGS + 1))) {
730                 if (skb->xmit_more)
731                         qede_update_tx_producer(txq);
732
733                 netif_tx_stop_queue(netdev_txq);
734                 txq->stopped_cnt++;
735                 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
736                            "Stop queue was called\n");
737                 /* paired memory barrier is in qede_tx_int(), we have to keep
738                  * ordering of set_bit() in netif_tx_stop_queue() and read of
739                  * fp->bd_tx_cons
740                  */
741                 smp_mb();
742
743                 if (qed_chain_get_elem_left(&txq->tx_pbl)
744                      >= (MAX_SKB_FRAGS + 1) &&
745                     (edev->state == QEDE_STATE_OPEN)) {
746                         netif_tx_wake_queue(netdev_txq);
747                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
748                                    "Wake queue was called\n");
749                 }
750         }
751
752         return NETDEV_TX_OK;
753 }
754
755 int qede_txq_has_work(struct qede_tx_queue *txq)
756 {
757         u16 hw_bd_cons;
758
759         /* Tell compiler that consumer and producer can change */
760         barrier();
761         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
762         if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
763                 return 0;
764
765         return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
766 }
767
768 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
769 {
770         struct netdev_queue *netdev_txq;
771         u16 hw_bd_cons;
772         unsigned int pkts_compl = 0, bytes_compl = 0;
773         int rc;
774
775         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
776
777         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
778         barrier();
779
780         while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
781                 int len = 0;
782
783                 rc = qede_free_tx_pkt(edev, txq, &len);
784                 if (rc) {
785                         DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
786                                   hw_bd_cons,
787                                   qed_chain_get_cons_idx(&txq->tx_pbl));
788                         break;
789                 }
790
791                 bytes_compl += len;
792                 pkts_compl++;
793                 txq->sw_tx_cons++;
794                 txq->xmit_pkts++;
795         }
796
797         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
798
799         /* Need to make the tx_bd_cons update visible to start_xmit()
800          * before checking for netif_tx_queue_stopped().  Without the
801          * memory barrier, there is a small possibility that
802          * start_xmit() will miss it and cause the queue to be stopped
803          * forever.
804          * On the other hand we need an rmb() here to ensure the proper
805          * ordering of bit testing in the following
806          * netif_tx_queue_stopped(txq) call.
807          */
808         smp_mb();
809
810         if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
811                 /* Taking tx_lock is needed to prevent reenabling the queue
812                  * while it's empty. This could have happen if rx_action() gets
813                  * suspended in qede_tx_int() after the condition before
814                  * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
815                  *
816                  * stops the queue->sees fresh tx_bd_cons->releases the queue->
817                  * sends some packets consuming the whole queue again->
818                  * stops the queue
819                  */
820
821                 __netif_tx_lock(netdev_txq, smp_processor_id());
822
823                 if ((netif_tx_queue_stopped(netdev_txq)) &&
824                     (edev->state == QEDE_STATE_OPEN) &&
825                     (qed_chain_get_elem_left(&txq->tx_pbl)
826                       >= (MAX_SKB_FRAGS + 1))) {
827                         netif_tx_wake_queue(netdev_txq);
828                         DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
829                                    "Wake queue was called\n");
830                 }
831
832                 __netif_tx_unlock(netdev_txq);
833         }
834
835         return 0;
836 }
837
838 bool qede_has_rx_work(struct qede_rx_queue *rxq)
839 {
840         u16 hw_comp_cons, sw_comp_cons;
841
842         /* Tell compiler that status block fields can change */
843         barrier();
844
845         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
846         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
847
848         return hw_comp_cons != sw_comp_cons;
849 }
850
851 static bool qede_has_tx_work(struct qede_fastpath *fp)
852 {
853         u8 tc;
854
855         for (tc = 0; tc < fp->edev->num_tc; tc++)
856                 if (qede_txq_has_work(&fp->txqs[tc]))
857                         return true;
858         return false;
859 }
860
861 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
862 {
863         qed_chain_consume(&rxq->rx_bd_ring);
864         rxq->sw_rx_cons++;
865 }
866
867 /* This function reuses the buffer(from an offset) from
868  * consumer index to producer index in the bd ring
869  */
870 static inline void qede_reuse_page(struct qede_dev *edev,
871                                    struct qede_rx_queue *rxq,
872                                    struct sw_rx_data *curr_cons)
873 {
874         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
875         struct sw_rx_data *curr_prod;
876         dma_addr_t new_mapping;
877
878         curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
879         *curr_prod = *curr_cons;
880
881         new_mapping = curr_prod->mapping + curr_prod->page_offset;
882
883         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
884         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
885
886         rxq->sw_rx_prod++;
887         curr_cons->data = NULL;
888 }
889
890 /* In case of allocation failures reuse buffers
891  * from consumer index to produce buffers for firmware
892  */
893 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
894                              struct qede_dev *edev, u8 count)
895 {
896         struct sw_rx_data *curr_cons;
897
898         for (; count > 0; count--) {
899                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
900                 qede_reuse_page(edev, rxq, curr_cons);
901                 qede_rx_bd_ring_consume(rxq);
902         }
903 }
904
905 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
906                                          struct qede_rx_queue *rxq,
907                                          struct sw_rx_data *curr_cons)
908 {
909         /* Move to the next segment in the page */
910         curr_cons->page_offset += rxq->rx_buf_seg_size;
911
912         if (curr_cons->page_offset == PAGE_SIZE) {
913                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
914                         /* Since we failed to allocate new buffer
915                          * current buffer can be used again.
916                          */
917                         curr_cons->page_offset -= rxq->rx_buf_seg_size;
918
919                         return -ENOMEM;
920                 }
921
922                 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
923                                PAGE_SIZE, DMA_FROM_DEVICE);
924         } else {
925                 /* Increment refcount of the page as we don't want
926                  * network stack to take the ownership of the page
927                  * which can be recycled multiple times by the driver.
928                  */
929                 page_ref_inc(curr_cons->data);
930                 qede_reuse_page(edev, rxq, curr_cons);
931         }
932
933         return 0;
934 }
935
936 static inline void qede_update_rx_prod(struct qede_dev *edev,
937                                        struct qede_rx_queue *rxq)
938 {
939         u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
940         u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
941         struct eth_rx_prod_data rx_prods = {0};
942
943         /* Update producers */
944         rx_prods.bd_prod = cpu_to_le16(bd_prod);
945         rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
946
947         /* Make sure that the BD and SGE data is updated before updating the
948          * producers since FW might read the BD/SGE right after the producer
949          * is updated.
950          */
951         wmb();
952
953         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
954                         (u32 *)&rx_prods);
955
956         /* mmiowb is needed to synchronize doorbell writes from more than one
957          * processor. It guarantees that the write arrives to the device before
958          * the napi lock is released and another qede_poll is called (possibly
959          * on another CPU). Without this barrier, the next doorbell can bypass
960          * this doorbell. This is applicable to IA64/Altix systems.
961          */
962         mmiowb();
963 }
964
965 static u32 qede_get_rxhash(struct qede_dev *edev,
966                            u8 bitfields,
967                            __le32 rss_hash, enum pkt_hash_types *rxhash_type)
968 {
969         enum rss_hash_type htype;
970
971         htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
972
973         if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
974                 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
975                                 (htype == RSS_HASH_TYPE_IPV6)) ?
976                                 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
977                 return le32_to_cpu(rss_hash);
978         }
979         *rxhash_type = PKT_HASH_TYPE_NONE;
980         return 0;
981 }
982
983 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
984 {
985         skb_checksum_none_assert(skb);
986
987         if (csum_flag & QEDE_CSUM_UNNECESSARY)
988                 skb->ip_summed = CHECKSUM_UNNECESSARY;
989
990         if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
991                 skb->csum_level = 1;
992 }
993
994 static inline void qede_skb_receive(struct qede_dev *edev,
995                                     struct qede_fastpath *fp,
996                                     struct sk_buff *skb, u16 vlan_tag)
997 {
998         if (vlan_tag)
999                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1000
1001         napi_gro_receive(&fp->napi, skb);
1002 }
1003
1004 static void qede_set_gro_params(struct qede_dev *edev,
1005                                 struct sk_buff *skb,
1006                                 struct eth_fast_path_rx_tpa_start_cqe *cqe)
1007 {
1008         u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1009
1010         if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1011             PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1012                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1013         else
1014                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1015
1016         skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1017                                         cqe->header_len;
1018 }
1019
1020 static int qede_fill_frag_skb(struct qede_dev *edev,
1021                               struct qede_rx_queue *rxq,
1022                               u8 tpa_agg_index, u16 len_on_bd)
1023 {
1024         struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1025                                                          NUM_RX_BDS_MAX];
1026         struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1027         struct sk_buff *skb = tpa_info->skb;
1028
1029         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1030                 goto out;
1031
1032         /* Add one frag and update the appropriate fields in the skb */
1033         skb_fill_page_desc(skb, tpa_info->frag_id++,
1034                            current_bd->data, current_bd->page_offset,
1035                            len_on_bd);
1036
1037         if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1038                 /* Incr page ref count to reuse on allocation failure
1039                  * so that it doesn't get freed while freeing SKB.
1040                  */
1041                 page_ref_inc(current_bd->data);
1042                 goto out;
1043         }
1044
1045         qed_chain_consume(&rxq->rx_bd_ring);
1046         rxq->sw_rx_cons++;
1047
1048         skb->data_len += len_on_bd;
1049         skb->truesize += rxq->rx_buf_seg_size;
1050         skb->len += len_on_bd;
1051
1052         return 0;
1053
1054 out:
1055         tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1056         qede_recycle_rx_bd_ring(rxq, edev, 1);
1057         return -ENOMEM;
1058 }
1059
1060 static void qede_tpa_start(struct qede_dev *edev,
1061                            struct qede_rx_queue *rxq,
1062                            struct eth_fast_path_rx_tpa_start_cqe *cqe)
1063 {
1064         struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1065         struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1066         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1067         struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1068         dma_addr_t mapping = tpa_info->replace_buf_mapping;
1069         struct sw_rx_data *sw_rx_data_cons;
1070         struct sw_rx_data *sw_rx_data_prod;
1071         enum pkt_hash_types rxhash_type;
1072         u32 rxhash;
1073
1074         sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1075         sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1076
1077         /* Use pre-allocated replacement buffer - we can't release the agg.
1078          * start until its over and we don't want to risk allocation failing
1079          * here, so re-allocate when aggregation will be over.
1080          */
1081         sw_rx_data_prod->mapping = replace_buf->mapping;
1082
1083         sw_rx_data_prod->data = replace_buf->data;
1084         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1085         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1086         sw_rx_data_prod->page_offset = replace_buf->page_offset;
1087
1088         rxq->sw_rx_prod++;
1089
1090         /* move partial skb from cons to pool (don't unmap yet)
1091          * save mapping, incase we drop the packet later on.
1092          */
1093         tpa_info->start_buf = *sw_rx_data_cons;
1094         mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1095                            le32_to_cpu(rx_bd_cons->addr.lo));
1096
1097         tpa_info->start_buf_mapping = mapping;
1098         rxq->sw_rx_cons++;
1099
1100         /* set tpa state to start only if we are able to allocate skb
1101          * for this aggregation, otherwise mark as error and aggregation will
1102          * be dropped
1103          */
1104         tpa_info->skb = netdev_alloc_skb(edev->ndev,
1105                                          le16_to_cpu(cqe->len_on_first_bd));
1106         if (unlikely(!tpa_info->skb)) {
1107                 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1108                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1109                 goto cons_buf;
1110         }
1111
1112         skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1113         memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1114
1115         /* Start filling in the aggregation info */
1116         tpa_info->frag_id = 0;
1117         tpa_info->agg_state = QEDE_AGG_STATE_START;
1118
1119         rxhash = qede_get_rxhash(edev, cqe->bitfields,
1120                                  cqe->rss_hash, &rxhash_type);
1121         skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1122         if ((le16_to_cpu(cqe->pars_flags.flags) >>
1123              PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1124                     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1125                 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1126         else
1127                 tpa_info->vlan_tag = 0;
1128
1129         /* This is needed in order to enable forwarding support */
1130         qede_set_gro_params(edev, tpa_info->skb, cqe);
1131
1132 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1133         if (likely(cqe->ext_bd_len_list[0]))
1134                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1135                                    le16_to_cpu(cqe->ext_bd_len_list[0]));
1136
1137         if (unlikely(cqe->ext_bd_len_list[1])) {
1138                 DP_ERR(edev,
1139                        "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1140                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1141         }
1142 }
1143
1144 #ifdef CONFIG_INET
1145 static void qede_gro_ip_csum(struct sk_buff *skb)
1146 {
1147         const struct iphdr *iph = ip_hdr(skb);
1148         struct tcphdr *th;
1149
1150         skb_set_transport_header(skb, sizeof(struct iphdr));
1151         th = tcp_hdr(skb);
1152
1153         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1154                                   iph->saddr, iph->daddr, 0);
1155
1156         tcp_gro_complete(skb);
1157 }
1158
1159 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1160 {
1161         struct ipv6hdr *iph = ipv6_hdr(skb);
1162         struct tcphdr *th;
1163
1164         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1165         th = tcp_hdr(skb);
1166
1167         th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1168                                   &iph->saddr, &iph->daddr, 0);
1169         tcp_gro_complete(skb);
1170 }
1171 #endif
1172
1173 static void qede_gro_receive(struct qede_dev *edev,
1174                              struct qede_fastpath *fp,
1175                              struct sk_buff *skb,
1176                              u16 vlan_tag)
1177 {
1178         /* FW can send a single MTU sized packet from gro flow
1179          * due to aggregation timeout/last segment etc. which
1180          * is not expected to be a gro packet. If a skb has zero
1181          * frags then simply push it in the stack as non gso skb.
1182          */
1183         if (unlikely(!skb->data_len)) {
1184                 skb_shinfo(skb)->gso_type = 0;
1185                 skb_shinfo(skb)->gso_size = 0;
1186                 goto send_skb;
1187         }
1188
1189 #ifdef CONFIG_INET
1190         if (skb_shinfo(skb)->gso_size) {
1191                 skb_set_network_header(skb, 0);
1192
1193                 switch (skb->protocol) {
1194                 case htons(ETH_P_IP):
1195                         qede_gro_ip_csum(skb);
1196                         break;
1197                 case htons(ETH_P_IPV6):
1198                         qede_gro_ipv6_csum(skb);
1199                         break;
1200                 default:
1201                         DP_ERR(edev,
1202                                "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1203                                ntohs(skb->protocol));
1204                 }
1205         }
1206 #endif
1207
1208 send_skb:
1209         skb_record_rx_queue(skb, fp->rxq->rxq_id);
1210         qede_skb_receive(edev, fp, skb, vlan_tag);
1211 }
1212
1213 static inline void qede_tpa_cont(struct qede_dev *edev,
1214                                  struct qede_rx_queue *rxq,
1215                                  struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1216 {
1217         int i;
1218
1219         for (i = 0; cqe->len_list[i]; i++)
1220                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1221                                    le16_to_cpu(cqe->len_list[i]));
1222
1223         if (unlikely(i > 1))
1224                 DP_ERR(edev,
1225                        "Strange - TPA cont with more than a single len_list entry\n");
1226 }
1227
1228 static void qede_tpa_end(struct qede_dev *edev,
1229                          struct qede_fastpath *fp,
1230                          struct eth_fast_path_rx_tpa_end_cqe *cqe)
1231 {
1232         struct qede_rx_queue *rxq = fp->rxq;
1233         struct qede_agg_info *tpa_info;
1234         struct sk_buff *skb;
1235         int i;
1236
1237         tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1238         skb = tpa_info->skb;
1239
1240         for (i = 0; cqe->len_list[i]; i++)
1241                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1242                                    le16_to_cpu(cqe->len_list[i]));
1243         if (unlikely(i > 1))
1244                 DP_ERR(edev,
1245                        "Strange - TPA emd with more than a single len_list entry\n");
1246
1247         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1248                 goto err;
1249
1250         /* Sanity */
1251         if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1252                 DP_ERR(edev,
1253                        "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1254                        cqe->num_of_bds, tpa_info->frag_id);
1255         if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1256                 DP_ERR(edev,
1257                        "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1258                        le16_to_cpu(cqe->total_packet_len), skb->len);
1259
1260         memcpy(skb->data,
1261                page_address(tpa_info->start_buf.data) +
1262                 tpa_info->start_cqe.placement_offset +
1263                 tpa_info->start_buf.page_offset,
1264                le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1265
1266         /* Recycle [mapped] start buffer for the next replacement */
1267         tpa_info->replace_buf = tpa_info->start_buf;
1268         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1269
1270         /* Finalize the SKB */
1271         skb->protocol = eth_type_trans(skb, edev->ndev);
1272         skb->ip_summed = CHECKSUM_UNNECESSARY;
1273
1274         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1275          * to skb_shinfo(skb)->gso_segs
1276          */
1277         NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1278
1279         qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1280
1281         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1282
1283         return;
1284 err:
1285         /* The BD starting the aggregation is still mapped; Re-use it for
1286          * future aggregations [as replacement buffer]
1287          */
1288         memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1289                sizeof(struct sw_rx_data));
1290         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1291         tpa_info->start_buf.data = NULL;
1292         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1293         dev_kfree_skb_any(tpa_info->skb);
1294         tpa_info->skb = NULL;
1295 }
1296
1297 static bool qede_tunn_exist(u16 flag)
1298 {
1299         return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1300                           PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1301 }
1302
1303 static u8 qede_check_tunn_csum(u16 flag)
1304 {
1305         u16 csum_flag = 0;
1306         u8 tcsum = 0;
1307
1308         if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1309                     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1310                 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1311                              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1312
1313         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1314                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1315                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1316                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1317                 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1318         }
1319
1320         csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1321                      PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1322                      PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1323                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1324
1325         if (csum_flag & flag)
1326                 return QEDE_CSUM_ERROR;
1327
1328         return QEDE_CSUM_UNNECESSARY | tcsum;
1329 }
1330
1331 static u8 qede_check_notunn_csum(u16 flag)
1332 {
1333         u16 csum_flag = 0;
1334         u8 csum = 0;
1335
1336         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1337                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1338                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1339                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1340                 csum = QEDE_CSUM_UNNECESSARY;
1341         }
1342
1343         csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1344                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1345
1346         if (csum_flag & flag)
1347                 return QEDE_CSUM_ERROR;
1348
1349         return csum;
1350 }
1351
1352 static u8 qede_check_csum(u16 flag)
1353 {
1354         if (!qede_tunn_exist(flag))
1355                 return qede_check_notunn_csum(flag);
1356         else
1357                 return qede_check_tunn_csum(flag);
1358 }
1359
1360 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1361                                       u16 flag)
1362 {
1363         u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1364
1365         if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1366                              ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1367             (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1368                      PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1369                 return true;
1370
1371         return false;
1372 }
1373
1374 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1375 {
1376         struct qede_dev *edev = fp->edev;
1377         struct qede_rx_queue *rxq = fp->rxq;
1378
1379         u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1380         int rx_pkt = 0;
1381         u8 csum_flag;
1382
1383         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1384         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1385
1386         /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1387          * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1388          * read before it is written by FW, then FW writes CQE and SB, and then
1389          * the CPU reads the hw_comp_cons, it will use an old CQE.
1390          */
1391         rmb();
1392
1393         /* Loop to complete all indicated BDs */
1394         while (sw_comp_cons != hw_comp_cons) {
1395                 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1396                 enum pkt_hash_types rxhash_type;
1397                 enum eth_rx_cqe_type cqe_type;
1398                 struct sw_rx_data *sw_rx_data;
1399                 union eth_rx_cqe *cqe;
1400                 struct sk_buff *skb;
1401                 struct page *data;
1402                 __le16 flags;
1403                 u16 len, pad;
1404                 u32 rx_hash;
1405
1406                 /* Get the CQE from the completion ring */
1407                 cqe = (union eth_rx_cqe *)
1408                         qed_chain_consume(&rxq->rx_comp_ring);
1409                 cqe_type = cqe->fast_path_regular.type;
1410
1411                 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1412                         edev->ops->eth_cqe_completion(
1413                                         edev->cdev, fp->id,
1414                                         (struct eth_slow_path_rx_cqe *)cqe);
1415                         goto next_cqe;
1416                 }
1417
1418                 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1419                         switch (cqe_type) {
1420                         case ETH_RX_CQE_TYPE_TPA_START:
1421                                 qede_tpa_start(edev, rxq,
1422                                                &cqe->fast_path_tpa_start);
1423                                 goto next_cqe;
1424                         case ETH_RX_CQE_TYPE_TPA_CONT:
1425                                 qede_tpa_cont(edev, rxq,
1426                                               &cqe->fast_path_tpa_cont);
1427                                 goto next_cqe;
1428                         case ETH_RX_CQE_TYPE_TPA_END:
1429                                 qede_tpa_end(edev, fp,
1430                                              &cqe->fast_path_tpa_end);
1431                                 goto next_rx_only;
1432                         default:
1433                                 break;
1434                         }
1435                 }
1436
1437                 /* Get the data from the SW ring */
1438                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1439                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1440                 data = sw_rx_data->data;
1441
1442                 fp_cqe = &cqe->fast_path_regular;
1443                 len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1444                 pad = fp_cqe->placement_offset;
1445                 flags = cqe->fast_path_regular.pars_flags.flags;
1446
1447                 /* If this is an error packet then drop it */
1448                 parse_flag = le16_to_cpu(flags);
1449
1450                 csum_flag = qede_check_csum(parse_flag);
1451                 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1452                         if (qede_pkt_is_ip_fragmented(&cqe->fast_path_regular,
1453                                                       parse_flag)) {
1454                                 rxq->rx_ip_frags++;
1455                                 goto alloc_skb;
1456                         }
1457
1458                         DP_NOTICE(edev,
1459                                   "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1460                                   sw_comp_cons, parse_flag);
1461                         rxq->rx_hw_errors++;
1462                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1463                         goto next_cqe;
1464                 }
1465
1466 alloc_skb:
1467                 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1468                 if (unlikely(!skb)) {
1469                         DP_NOTICE(edev,
1470                                   "skb allocation failed, dropping incoming packet\n");
1471                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1472                         rxq->rx_alloc_errors++;
1473                         goto next_cqe;
1474                 }
1475
1476                 /* Copy data into SKB */
1477                 if (len + pad <= edev->rx_copybreak) {
1478                         memcpy(skb_put(skb, len),
1479                                page_address(data) + pad +
1480                                 sw_rx_data->page_offset, len);
1481                         qede_reuse_page(edev, rxq, sw_rx_data);
1482                 } else {
1483                         struct skb_frag_struct *frag;
1484                         unsigned int pull_len;
1485                         unsigned char *va;
1486
1487                         frag = &skb_shinfo(skb)->frags[0];
1488
1489                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1490                                         pad + sw_rx_data->page_offset,
1491                                         len, rxq->rx_buf_seg_size);
1492
1493                         va = skb_frag_address(frag);
1494                         pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1495
1496                         /* Align the pull_len to optimize memcpy */
1497                         memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1498
1499                         skb_frag_size_sub(frag, pull_len);
1500                         frag->page_offset += pull_len;
1501                         skb->data_len -= pull_len;
1502                         skb->tail += pull_len;
1503
1504                         if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1505                                                             sw_rx_data))) {
1506                                 DP_ERR(edev, "Failed to allocate rx buffer\n");
1507                                 /* Incr page ref count to reuse on allocation
1508                                  * failure so that it doesn't get freed while
1509                                  * freeing SKB.
1510                                  */
1511
1512                                 page_ref_inc(sw_rx_data->data);
1513                                 rxq->rx_alloc_errors++;
1514                                 qede_recycle_rx_bd_ring(rxq, edev,
1515                                                         fp_cqe->bd_num);
1516                                 dev_kfree_skb_any(skb);
1517                                 goto next_cqe;
1518                         }
1519                 }
1520
1521                 qede_rx_bd_ring_consume(rxq);
1522
1523                 if (fp_cqe->bd_num != 1) {
1524                         u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1525                         u8 num_frags;
1526
1527                         pkt_len -= len;
1528
1529                         for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1530                              num_frags--) {
1531                                 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1532                                                 rxq->rx_buf_size : pkt_len;
1533                                 if (unlikely(!cur_size)) {
1534                                         DP_ERR(edev,
1535                                                "Still got %d BDs for mapping jumbo, but length became 0\n",
1536                                                num_frags);
1537                                         qede_recycle_rx_bd_ring(rxq, edev,
1538                                                                 num_frags);
1539                                         dev_kfree_skb_any(skb);
1540                                         goto next_cqe;
1541                                 }
1542
1543                                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1544                                         qede_recycle_rx_bd_ring(rxq, edev,
1545                                                                 num_frags);
1546                                         dev_kfree_skb_any(skb);
1547                                         goto next_cqe;
1548                                 }
1549
1550                                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1551                                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1552                                 qede_rx_bd_ring_consume(rxq);
1553
1554                                 dma_unmap_page(&edev->pdev->dev,
1555                                                sw_rx_data->mapping,
1556                                                PAGE_SIZE, DMA_FROM_DEVICE);
1557
1558                                 skb_fill_page_desc(skb,
1559                                                    skb_shinfo(skb)->nr_frags++,
1560                                                    sw_rx_data->data, 0,
1561                                                    cur_size);
1562
1563                                 skb->truesize += PAGE_SIZE;
1564                                 skb->data_len += cur_size;
1565                                 skb->len += cur_size;
1566                                 pkt_len -= cur_size;
1567                         }
1568
1569                         if (unlikely(pkt_len))
1570                                 DP_ERR(edev,
1571                                        "Mapped all BDs of jumbo, but still have %d bytes\n",
1572                                        pkt_len);
1573                 }
1574
1575                 skb->protocol = eth_type_trans(skb, edev->ndev);
1576
1577                 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1578                                           fp_cqe->rss_hash, &rxhash_type);
1579
1580                 skb_set_hash(skb, rx_hash, rxhash_type);
1581
1582                 qede_set_skb_csum(skb, csum_flag);
1583
1584                 skb_record_rx_queue(skb, fp->rxq->rxq_id);
1585
1586                 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1587 next_rx_only:
1588                 rx_pkt++;
1589
1590 next_cqe: /* don't consume bd rx buffer */
1591                 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1592                 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1593                 /* CR TPA - revisit how to handle budget in TPA perhaps
1594                  * increase on "end"
1595                  */
1596                 if (rx_pkt == budget)
1597                         break;
1598         } /* repeat while sw_comp_cons != hw_comp_cons... */
1599
1600         /* Update producers */
1601         qede_update_rx_prod(edev, rxq);
1602
1603         rxq->rcv_pkts += rx_pkt;
1604
1605         return rx_pkt;
1606 }
1607
1608 static int qede_poll(struct napi_struct *napi, int budget)
1609 {
1610         struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1611                                                 napi);
1612         struct qede_dev *edev = fp->edev;
1613         int rx_work_done = 0;
1614         u8 tc;
1615
1616         for (tc = 0; tc < edev->num_tc; tc++)
1617                 if (likely(fp->type & QEDE_FASTPATH_TX) &&
1618                     qede_txq_has_work(&fp->txqs[tc]))
1619                         qede_tx_int(edev, &fp->txqs[tc]);
1620
1621         rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1622                         qede_has_rx_work(fp->rxq)) ?
1623                         qede_rx_int(fp, budget) : 0;
1624         if (rx_work_done < budget) {
1625                 qed_sb_update_sb_idx(fp->sb_info);
1626                 /* *_has_*_work() reads the status block,
1627                  * thus we need to ensure that status block indices
1628                  * have been actually read (qed_sb_update_sb_idx)
1629                  * prior to this check (*_has_*_work) so that
1630                  * we won't write the "newer" value of the status block
1631                  * to HW (if there was a DMA right after
1632                  * qede_has_rx_work and if there is no rmb, the memory
1633                  * reading (qed_sb_update_sb_idx) may be postponed
1634                  * to right before *_ack_sb). In this case there
1635                  * will never be another interrupt until there is
1636                  * another update of the status block, while there
1637                  * is still unhandled work.
1638                  */
1639                 rmb();
1640
1641                 /* Fall out from the NAPI loop if needed */
1642                 if (!((likely(fp->type & QEDE_FASTPATH_RX) &&
1643                        qede_has_rx_work(fp->rxq)) ||
1644                       (likely(fp->type & QEDE_FASTPATH_TX) &&
1645                        qede_has_tx_work(fp)))) {
1646                         napi_complete(napi);
1647
1648                         /* Update and reenable interrupts */
1649                         qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1650                                    1 /*update*/);
1651                 } else {
1652                         rx_work_done = budget;
1653                 }
1654         }
1655
1656         return rx_work_done;
1657 }
1658
1659 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1660 {
1661         struct qede_fastpath *fp = fp_cookie;
1662
1663         qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1664
1665         napi_schedule_irqoff(&fp->napi);
1666         return IRQ_HANDLED;
1667 }
1668
1669 /* -------------------------------------------------------------------------
1670  * END OF FAST-PATH
1671  * -------------------------------------------------------------------------
1672  */
1673
1674 static int qede_open(struct net_device *ndev);
1675 static int qede_close(struct net_device *ndev);
1676 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1677 static void qede_set_rx_mode(struct net_device *ndev);
1678 static void qede_config_rx_mode(struct net_device *ndev);
1679
1680 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1681                                  enum qed_filter_xcast_params_type opcode,
1682                                  unsigned char mac[ETH_ALEN])
1683 {
1684         struct qed_filter_params filter_cmd;
1685
1686         memset(&filter_cmd, 0, sizeof(filter_cmd));
1687         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1688         filter_cmd.filter.ucast.type = opcode;
1689         filter_cmd.filter.ucast.mac_valid = 1;
1690         ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1691
1692         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1693 }
1694
1695 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1696                                   enum qed_filter_xcast_params_type opcode,
1697                                   u16 vid)
1698 {
1699         struct qed_filter_params filter_cmd;
1700
1701         memset(&filter_cmd, 0, sizeof(filter_cmd));
1702         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1703         filter_cmd.filter.ucast.type = opcode;
1704         filter_cmd.filter.ucast.vlan_valid = 1;
1705         filter_cmd.filter.ucast.vlan = vid;
1706
1707         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1708 }
1709
1710 void qede_fill_by_demand_stats(struct qede_dev *edev)
1711 {
1712         struct qed_eth_stats stats;
1713
1714         edev->ops->get_vport_stats(edev->cdev, &stats);
1715         edev->stats.no_buff_discards = stats.no_buff_discards;
1716         edev->stats.packet_too_big_discard = stats.packet_too_big_discard;
1717         edev->stats.ttl0_discard = stats.ttl0_discard;
1718         edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1719         edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1720         edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1721         edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1722         edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1723         edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1724         edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1725         edev->stats.mac_filter_discards = stats.mac_filter_discards;
1726
1727         edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1728         edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1729         edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1730         edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1731         edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1732         edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1733         edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1734         edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1735         edev->stats.coalesced_events = stats.tpa_coalesced_events;
1736         edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1737         edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1738         edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1739
1740         edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1741         edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1742         edev->stats.rx_128_to_255_byte_packets =
1743                                 stats.rx_128_to_255_byte_packets;
1744         edev->stats.rx_256_to_511_byte_packets =
1745                                 stats.rx_256_to_511_byte_packets;
1746         edev->stats.rx_512_to_1023_byte_packets =
1747                                 stats.rx_512_to_1023_byte_packets;
1748         edev->stats.rx_1024_to_1518_byte_packets =
1749                                 stats.rx_1024_to_1518_byte_packets;
1750         edev->stats.rx_1519_to_1522_byte_packets =
1751                                 stats.rx_1519_to_1522_byte_packets;
1752         edev->stats.rx_1519_to_2047_byte_packets =
1753                                 stats.rx_1519_to_2047_byte_packets;
1754         edev->stats.rx_2048_to_4095_byte_packets =
1755                                 stats.rx_2048_to_4095_byte_packets;
1756         edev->stats.rx_4096_to_9216_byte_packets =
1757                                 stats.rx_4096_to_9216_byte_packets;
1758         edev->stats.rx_9217_to_16383_byte_packets =
1759                                 stats.rx_9217_to_16383_byte_packets;
1760         edev->stats.rx_crc_errors = stats.rx_crc_errors;
1761         edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1762         edev->stats.rx_pause_frames = stats.rx_pause_frames;
1763         edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1764         edev->stats.rx_align_errors = stats.rx_align_errors;
1765         edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1766         edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1767         edev->stats.rx_jabbers = stats.rx_jabbers;
1768         edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1769         edev->stats.rx_fragments = stats.rx_fragments;
1770         edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1771         edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1772         edev->stats.tx_128_to_255_byte_packets =
1773                                 stats.tx_128_to_255_byte_packets;
1774         edev->stats.tx_256_to_511_byte_packets =
1775                                 stats.tx_256_to_511_byte_packets;
1776         edev->stats.tx_512_to_1023_byte_packets =
1777                                 stats.tx_512_to_1023_byte_packets;
1778         edev->stats.tx_1024_to_1518_byte_packets =
1779                                 stats.tx_1024_to_1518_byte_packets;
1780         edev->stats.tx_1519_to_2047_byte_packets =
1781                                 stats.tx_1519_to_2047_byte_packets;
1782         edev->stats.tx_2048_to_4095_byte_packets =
1783                                 stats.tx_2048_to_4095_byte_packets;
1784         edev->stats.tx_4096_to_9216_byte_packets =
1785                                 stats.tx_4096_to_9216_byte_packets;
1786         edev->stats.tx_9217_to_16383_byte_packets =
1787                                 stats.tx_9217_to_16383_byte_packets;
1788         edev->stats.tx_pause_frames = stats.tx_pause_frames;
1789         edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1790         edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1791         edev->stats.tx_total_collisions = stats.tx_total_collisions;
1792         edev->stats.brb_truncates = stats.brb_truncates;
1793         edev->stats.brb_discards = stats.brb_discards;
1794         edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1795 }
1796
1797 static
1798 struct rtnl_link_stats64 *qede_get_stats64(struct net_device *dev,
1799                                            struct rtnl_link_stats64 *stats)
1800 {
1801         struct qede_dev *edev = netdev_priv(dev);
1802
1803         qede_fill_by_demand_stats(edev);
1804
1805         stats->rx_packets = edev->stats.rx_ucast_pkts +
1806                             edev->stats.rx_mcast_pkts +
1807                             edev->stats.rx_bcast_pkts;
1808         stats->tx_packets = edev->stats.tx_ucast_pkts +
1809                             edev->stats.tx_mcast_pkts +
1810                             edev->stats.tx_bcast_pkts;
1811
1812         stats->rx_bytes = edev->stats.rx_ucast_bytes +
1813                           edev->stats.rx_mcast_bytes +
1814                           edev->stats.rx_bcast_bytes;
1815
1816         stats->tx_bytes = edev->stats.tx_ucast_bytes +
1817                           edev->stats.tx_mcast_bytes +
1818                           edev->stats.tx_bcast_bytes;
1819
1820         stats->tx_errors = edev->stats.tx_err_drop_pkts;
1821         stats->multicast = edev->stats.rx_mcast_pkts +
1822                            edev->stats.rx_bcast_pkts;
1823
1824         stats->rx_fifo_errors = edev->stats.no_buff_discards;
1825
1826         stats->collisions = edev->stats.tx_total_collisions;
1827         stats->rx_crc_errors = edev->stats.rx_crc_errors;
1828         stats->rx_frame_errors = edev->stats.rx_align_errors;
1829
1830         return stats;
1831 }
1832
1833 #ifdef CONFIG_QED_SRIOV
1834 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1835                               struct ifla_vf_info *ivi)
1836 {
1837         struct qede_dev *edev = netdev_priv(dev);
1838
1839         if (!edev->ops)
1840                 return -EINVAL;
1841
1842         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1843 }
1844
1845 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1846                             int min_tx_rate, int max_tx_rate)
1847 {
1848         struct qede_dev *edev = netdev_priv(dev);
1849
1850         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
1851                                         max_tx_rate);
1852 }
1853
1854 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1855 {
1856         struct qede_dev *edev = netdev_priv(dev);
1857
1858         if (!edev->ops)
1859                 return -EINVAL;
1860
1861         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1862 }
1863
1864 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1865                                   int link_state)
1866 {
1867         struct qede_dev *edev = netdev_priv(dev);
1868
1869         if (!edev->ops)
1870                 return -EINVAL;
1871
1872         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1873 }
1874 #endif
1875
1876 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1877 {
1878         struct qed_update_vport_params params;
1879         int rc;
1880
1881         /* Proceed only if action actually needs to be performed */
1882         if (edev->accept_any_vlan == action)
1883                 return;
1884
1885         memset(&params, 0, sizeof(params));
1886
1887         params.vport_id = 0;
1888         params.accept_any_vlan = action;
1889         params.update_accept_any_vlan_flg = 1;
1890
1891         rc = edev->ops->vport_update(edev->cdev, &params);
1892         if (rc) {
1893                 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1894                        action ? "enable" : "disable");
1895         } else {
1896                 DP_INFO(edev, "%s accept-any-vlan\n",
1897                         action ? "enabled" : "disabled");
1898                 edev->accept_any_vlan = action;
1899         }
1900 }
1901
1902 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1903 {
1904         struct qede_dev *edev = netdev_priv(dev);
1905         struct qede_vlan *vlan, *tmp;
1906         int rc;
1907
1908         DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1909
1910         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1911         if (!vlan) {
1912                 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1913                 return -ENOMEM;
1914         }
1915         INIT_LIST_HEAD(&vlan->list);
1916         vlan->vid = vid;
1917         vlan->configured = false;
1918
1919         /* Verify vlan isn't already configured */
1920         list_for_each_entry(tmp, &edev->vlan_list, list) {
1921                 if (tmp->vid == vlan->vid) {
1922                         DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1923                                    "vlan already configured\n");
1924                         kfree(vlan);
1925                         return -EEXIST;
1926                 }
1927         }
1928
1929         /* If interface is down, cache this VLAN ID and return */
1930         if (edev->state != QEDE_STATE_OPEN) {
1931                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1932                            "Interface is down, VLAN %d will be configured when interface is up\n",
1933                            vid);
1934                 if (vid != 0)
1935                         edev->non_configured_vlans++;
1936                 list_add(&vlan->list, &edev->vlan_list);
1937
1938                 return 0;
1939         }
1940
1941         /* Check for the filter limit.
1942          * Note - vlan0 has a reserved filter and can be added without
1943          * worrying about quota
1944          */
1945         if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1946             (vlan->vid == 0)) {
1947                 rc = qede_set_ucast_rx_vlan(edev,
1948                                             QED_FILTER_XCAST_TYPE_ADD,
1949                                             vlan->vid);
1950                 if (rc) {
1951                         DP_ERR(edev, "Failed to configure VLAN %d\n",
1952                                vlan->vid);
1953                         kfree(vlan);
1954                         return -EINVAL;
1955                 }
1956                 vlan->configured = true;
1957
1958                 /* vlan0 filter isn't consuming out of our quota */
1959                 if (vlan->vid != 0)
1960                         edev->configured_vlans++;
1961         } else {
1962                 /* Out of quota; Activate accept-any-VLAN mode */
1963                 if (!edev->non_configured_vlans)
1964                         qede_config_accept_any_vlan(edev, true);
1965
1966                 edev->non_configured_vlans++;
1967         }
1968
1969         list_add(&vlan->list, &edev->vlan_list);
1970
1971         return 0;
1972 }
1973
1974 static void qede_del_vlan_from_list(struct qede_dev *edev,
1975                                     struct qede_vlan *vlan)
1976 {
1977         /* vlan0 filter isn't consuming out of our quota */
1978         if (vlan->vid != 0) {
1979                 if (vlan->configured)
1980                         edev->configured_vlans--;
1981                 else
1982                         edev->non_configured_vlans--;
1983         }
1984
1985         list_del(&vlan->list);
1986         kfree(vlan);
1987 }
1988
1989 static int qede_configure_vlan_filters(struct qede_dev *edev)
1990 {
1991         int rc = 0, real_rc = 0, accept_any_vlan = 0;
1992         struct qed_dev_eth_info *dev_info;
1993         struct qede_vlan *vlan = NULL;
1994
1995         if (list_empty(&edev->vlan_list))
1996                 return 0;
1997
1998         dev_info = &edev->dev_info;
1999
2000         /* Configure non-configured vlans */
2001         list_for_each_entry(vlan, &edev->vlan_list, list) {
2002                 if (vlan->configured)
2003                         continue;
2004
2005                 /* We have used all our credits, now enable accept_any_vlan */
2006                 if ((vlan->vid != 0) &&
2007                     (edev->configured_vlans == dev_info->num_vlan_filters)) {
2008                         accept_any_vlan = 1;
2009                         continue;
2010                 }
2011
2012                 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
2013
2014                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
2015                                             vlan->vid);
2016                 if (rc) {
2017                         DP_ERR(edev, "Failed to configure VLAN %u\n",
2018                                vlan->vid);
2019                         real_rc = rc;
2020                         continue;
2021                 }
2022
2023                 vlan->configured = true;
2024                 /* vlan0 filter doesn't consume our VLAN filter's quota */
2025                 if (vlan->vid != 0) {
2026                         edev->non_configured_vlans--;
2027                         edev->configured_vlans++;
2028                 }
2029         }
2030
2031         /* enable accept_any_vlan mode if we have more VLANs than credits,
2032          * or remove accept_any_vlan mode if we've actually removed
2033          * a non-configured vlan, and all remaining vlans are truly configured.
2034          */
2035
2036         if (accept_any_vlan)
2037                 qede_config_accept_any_vlan(edev, true);
2038         else if (!edev->non_configured_vlans)
2039                 qede_config_accept_any_vlan(edev, false);
2040
2041         return real_rc;
2042 }
2043
2044 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2045 {
2046         struct qede_dev *edev = netdev_priv(dev);
2047         struct qede_vlan *vlan = NULL;
2048         int rc;
2049
2050         DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2051
2052         /* Find whether entry exists */
2053         list_for_each_entry(vlan, &edev->vlan_list, list)
2054                 if (vlan->vid == vid)
2055                         break;
2056
2057         if (!vlan || (vlan->vid != vid)) {
2058                 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2059                            "Vlan isn't configured\n");
2060                 return 0;
2061         }
2062
2063         if (edev->state != QEDE_STATE_OPEN) {
2064                 /* As interface is already down, we don't have a VPORT
2065                  * instance to remove vlan filter. So just update vlan list
2066                  */
2067                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2068                            "Interface is down, removing VLAN from list only\n");
2069                 qede_del_vlan_from_list(edev, vlan);
2070                 return 0;
2071         }
2072
2073         /* Remove vlan */
2074         if (vlan->configured) {
2075                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
2076                                             vid);
2077                 if (rc) {
2078                         DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2079                         return -EINVAL;
2080                 }
2081         }
2082
2083         qede_del_vlan_from_list(edev, vlan);
2084
2085         /* We have removed a VLAN - try to see if we can
2086          * configure non-configured VLAN from the list.
2087          */
2088         rc = qede_configure_vlan_filters(edev);
2089
2090         return rc;
2091 }
2092
2093 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2094 {
2095         struct qede_vlan *vlan = NULL;
2096
2097         if (list_empty(&edev->vlan_list))
2098                 return;
2099
2100         list_for_each_entry(vlan, &edev->vlan_list, list) {
2101                 if (!vlan->configured)
2102                         continue;
2103
2104                 vlan->configured = false;
2105
2106                 /* vlan0 filter isn't consuming out of our quota */
2107                 if (vlan->vid != 0) {
2108                         edev->non_configured_vlans++;
2109                         edev->configured_vlans--;
2110                 }
2111
2112                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2113                            "marked vlan %d as non-configured\n", vlan->vid);
2114         }
2115
2116         edev->accept_any_vlan = false;
2117 }
2118
2119 static int qede_set_features(struct net_device *dev, netdev_features_t features)
2120 {
2121         struct qede_dev *edev = netdev_priv(dev);
2122         netdev_features_t changes = features ^ dev->features;
2123         bool need_reload = false;
2124
2125         /* No action needed if hardware GRO is disabled during driver load */
2126         if (changes & NETIF_F_GRO) {
2127                 if (dev->features & NETIF_F_GRO)
2128                         need_reload = !edev->gro_disable;
2129                 else
2130                         need_reload = edev->gro_disable;
2131         }
2132
2133         if (need_reload && netif_running(edev->ndev)) {
2134                 dev->features = features;
2135                 qede_reload(edev, NULL, NULL);
2136                 return 1;
2137         }
2138
2139         return 0;
2140 }
2141
2142 static void qede_udp_tunnel_add(struct net_device *dev,
2143                                 struct udp_tunnel_info *ti)
2144 {
2145         struct qede_dev *edev = netdev_priv(dev);
2146         u16 t_port = ntohs(ti->port);
2147
2148         switch (ti->type) {
2149         case UDP_TUNNEL_TYPE_VXLAN:
2150                 if (edev->vxlan_dst_port)
2151                         return;
2152
2153                 edev->vxlan_dst_port = t_port;
2154
2155                 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d\n",
2156                            t_port);
2157
2158                 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2159                 break;
2160         case UDP_TUNNEL_TYPE_GENEVE:
2161                 if (edev->geneve_dst_port)
2162                         return;
2163
2164                 edev->geneve_dst_port = t_port;
2165
2166                 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d\n",
2167                            t_port);
2168                 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2169                 break;
2170         default:
2171                 return;
2172         }
2173
2174         schedule_delayed_work(&edev->sp_task, 0);
2175 }
2176
2177 static void qede_udp_tunnel_del(struct net_device *dev,
2178                                 struct udp_tunnel_info *ti)
2179 {
2180         struct qede_dev *edev = netdev_priv(dev);
2181         u16 t_port = ntohs(ti->port);
2182
2183         switch (ti->type) {
2184         case UDP_TUNNEL_TYPE_VXLAN:
2185                 if (t_port != edev->vxlan_dst_port)
2186                         return;
2187
2188                 edev->vxlan_dst_port = 0;
2189
2190                 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d\n",
2191                            t_port);
2192
2193                 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2194                 break;
2195         case UDP_TUNNEL_TYPE_GENEVE:
2196                 if (t_port != edev->geneve_dst_port)
2197                         return;
2198
2199                 edev->geneve_dst_port = 0;
2200
2201                 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d\n",
2202                            t_port);
2203                 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2204                 break;
2205         default:
2206                 return;
2207         }
2208
2209         schedule_delayed_work(&edev->sp_task, 0);
2210 }
2211
2212 static const struct net_device_ops qede_netdev_ops = {
2213         .ndo_open = qede_open,
2214         .ndo_stop = qede_close,
2215         .ndo_start_xmit = qede_start_xmit,
2216         .ndo_set_rx_mode = qede_set_rx_mode,
2217         .ndo_set_mac_address = qede_set_mac_addr,
2218         .ndo_validate_addr = eth_validate_addr,
2219         .ndo_change_mtu = qede_change_mtu,
2220 #ifdef CONFIG_QED_SRIOV
2221         .ndo_set_vf_mac = qede_set_vf_mac,
2222         .ndo_set_vf_vlan = qede_set_vf_vlan,
2223 #endif
2224         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2225         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2226         .ndo_set_features = qede_set_features,
2227         .ndo_get_stats64 = qede_get_stats64,
2228 #ifdef CONFIG_QED_SRIOV
2229         .ndo_set_vf_link_state = qede_set_vf_link_state,
2230         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2231         .ndo_get_vf_config = qede_get_vf_config,
2232         .ndo_set_vf_rate = qede_set_vf_rate,
2233 #endif
2234         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
2235         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
2236 };
2237
2238 /* -------------------------------------------------------------------------
2239  * START OF PROBE / REMOVE
2240  * -------------------------------------------------------------------------
2241  */
2242
2243 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2244                                             struct pci_dev *pdev,
2245                                             struct qed_dev_eth_info *info,
2246                                             u32 dp_module, u8 dp_level)
2247 {
2248         struct net_device *ndev;
2249         struct qede_dev *edev;
2250
2251         ndev = alloc_etherdev_mqs(sizeof(*edev),
2252                                   info->num_queues, info->num_queues);
2253         if (!ndev) {
2254                 pr_err("etherdev allocation failed\n");
2255                 return NULL;
2256         }
2257
2258         edev = netdev_priv(ndev);
2259         edev->ndev = ndev;
2260         edev->cdev = cdev;
2261         edev->pdev = pdev;
2262         edev->dp_module = dp_module;
2263         edev->dp_level = dp_level;
2264         edev->ops = qed_ops;
2265         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2266         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2267
2268         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
2269                 info->num_queues, info->num_queues);
2270
2271         SET_NETDEV_DEV(ndev, &pdev->dev);
2272
2273         memset(&edev->stats, 0, sizeof(edev->stats));
2274         memcpy(&edev->dev_info, info, sizeof(*info));
2275
2276         edev->num_tc = edev->dev_info.num_tc;
2277
2278         INIT_LIST_HEAD(&edev->vlan_list);
2279
2280         return edev;
2281 }
2282
2283 static void qede_init_ndev(struct qede_dev *edev)
2284 {
2285         struct net_device *ndev = edev->ndev;
2286         struct pci_dev *pdev = edev->pdev;
2287         u32 hw_features;
2288
2289         pci_set_drvdata(pdev, ndev);
2290
2291         ndev->mem_start = edev->dev_info.common.pci_mem_start;
2292         ndev->base_addr = ndev->mem_start;
2293         ndev->mem_end = edev->dev_info.common.pci_mem_end;
2294         ndev->irq = edev->dev_info.common.pci_irq;
2295
2296         ndev->watchdog_timeo = TX_TIMEOUT;
2297
2298         ndev->netdev_ops = &qede_netdev_ops;
2299
2300         qede_set_ethtool_ops(ndev);
2301
2302         /* user-changeble features */
2303         hw_features = NETIF_F_GRO | NETIF_F_SG |
2304                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2305                       NETIF_F_TSO | NETIF_F_TSO6;
2306
2307         /* Encap features*/
2308         hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2309                        NETIF_F_TSO_ECN;
2310         ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2311                                 NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2312                                 NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2313                                 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2314
2315         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2316                               NETIF_F_HIGHDMA;
2317         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2318                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2319                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2320
2321         ndev->hw_features = hw_features;
2322
2323         /* Set network device HW mac */
2324         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2325 }
2326
2327 /* This function converts from 32b param to two params of level and module
2328  * Input 32b decoding:
2329  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2330  * 'happy' flow, e.g. memory allocation failed.
2331  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2332  * and provide important parameters.
2333  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2334  * module. VERBOSE prints are for tracking the specific flow in low level.
2335  *
2336  * Notice that the level should be that of the lowest required logs.
2337  */
2338 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2339 {
2340         *p_dp_level = QED_LEVEL_NOTICE;
2341         *p_dp_module = 0;
2342
2343         if (debug & QED_LOG_VERBOSE_MASK) {
2344                 *p_dp_level = QED_LEVEL_VERBOSE;
2345                 *p_dp_module = (debug & 0x3FFFFFFF);
2346         } else if (debug & QED_LOG_INFO_MASK) {
2347                 *p_dp_level = QED_LEVEL_INFO;
2348         } else if (debug & QED_LOG_NOTICE_MASK) {
2349                 *p_dp_level = QED_LEVEL_NOTICE;
2350         }
2351 }
2352
2353 static void qede_free_fp_array(struct qede_dev *edev)
2354 {
2355         if (edev->fp_array) {
2356                 struct qede_fastpath *fp;
2357                 int i;
2358
2359                 for_each_queue(i) {
2360                         fp = &edev->fp_array[i];
2361
2362                         kfree(fp->sb_info);
2363                         kfree(fp->rxq);
2364                         kfree(fp->txqs);
2365                 }
2366                 kfree(edev->fp_array);
2367         }
2368
2369         edev->num_queues = 0;
2370         edev->fp_num_tx = 0;
2371         edev->fp_num_rx = 0;
2372 }
2373
2374 static int qede_alloc_fp_array(struct qede_dev *edev)
2375 {
2376         u8 fp_combined, fp_rx = edev->fp_num_rx;
2377         struct qede_fastpath *fp;
2378         int i;
2379
2380         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
2381                                  sizeof(*edev->fp_array), GFP_KERNEL);
2382         if (!edev->fp_array) {
2383                 DP_NOTICE(edev, "fp array allocation failed\n");
2384                 goto err;
2385         }
2386
2387         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
2388
2389         /* Allocate the FP elements for Rx queues followed by combined and then
2390          * the Tx. This ordering should be maintained so that the respective
2391          * queues (Rx or Tx) will be together in the fastpath array and the
2392          * associated ids will be sequential.
2393          */
2394         for_each_queue(i) {
2395                 fp = &edev->fp_array[i];
2396
2397                 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2398                 if (!fp->sb_info) {
2399                         DP_NOTICE(edev, "sb info struct allocation failed\n");
2400                         goto err;
2401                 }
2402
2403                 if (fp_rx) {
2404                         fp->type = QEDE_FASTPATH_RX;
2405                         fp_rx--;
2406                 } else if (fp_combined) {
2407                         fp->type = QEDE_FASTPATH_COMBINED;
2408                         fp_combined--;
2409                 } else {
2410                         fp->type = QEDE_FASTPATH_TX;
2411                 }
2412
2413                 if (fp->type & QEDE_FASTPATH_TX) {
2414                         fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs),
2415                                            GFP_KERNEL);
2416                         if (!fp->txqs) {
2417                                 DP_NOTICE(edev,
2418                                           "TXQ array allocation failed\n");
2419                                 goto err;
2420                         }
2421                 }
2422
2423                 if (fp->type & QEDE_FASTPATH_RX) {
2424                         fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2425                         if (!fp->rxq) {
2426                                 DP_NOTICE(edev,
2427                                           "RXQ struct allocation failed\n");
2428                                 goto err;
2429                         }
2430                 }
2431         }
2432
2433         return 0;
2434 err:
2435         qede_free_fp_array(edev);
2436         return -ENOMEM;
2437 }
2438
2439 static void qede_sp_task(struct work_struct *work)
2440 {
2441         struct qede_dev *edev = container_of(work, struct qede_dev,
2442                                              sp_task.work);
2443         struct qed_dev *cdev = edev->cdev;
2444
2445         mutex_lock(&edev->qede_lock);
2446
2447         if (edev->state == QEDE_STATE_OPEN) {
2448                 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2449                         qede_config_rx_mode(edev->ndev);
2450         }
2451
2452         if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2453                 struct qed_tunn_params tunn_params;
2454
2455                 memset(&tunn_params, 0, sizeof(tunn_params));
2456                 tunn_params.update_vxlan_port = 1;
2457                 tunn_params.vxlan_port = edev->vxlan_dst_port;
2458                 qed_ops->tunn_config(cdev, &tunn_params);
2459         }
2460
2461         if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2462                 struct qed_tunn_params tunn_params;
2463
2464                 memset(&tunn_params, 0, sizeof(tunn_params));
2465                 tunn_params.update_geneve_port = 1;
2466                 tunn_params.geneve_port = edev->geneve_dst_port;
2467                 qed_ops->tunn_config(cdev, &tunn_params);
2468         }
2469
2470         mutex_unlock(&edev->qede_lock);
2471 }
2472
2473 static void qede_update_pf_params(struct qed_dev *cdev)
2474 {
2475         struct qed_pf_params pf_params;
2476
2477         /* 64 rx + 64 tx */
2478         memset(&pf_params, 0, sizeof(struct qed_pf_params));
2479         pf_params.eth_pf_params.num_cons = 128;
2480         qed_ops->common->update_pf_params(cdev, &pf_params);
2481 }
2482
2483 enum qede_probe_mode {
2484         QEDE_PROBE_NORMAL,
2485 };
2486
2487 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2488                         bool is_vf, enum qede_probe_mode mode)
2489 {
2490         struct qed_probe_params probe_params;
2491         struct qed_slowpath_params sp_params;
2492         struct qed_dev_eth_info dev_info;
2493         struct qede_dev *edev;
2494         struct qed_dev *cdev;
2495         int rc;
2496
2497         if (unlikely(dp_level & QED_LEVEL_INFO))
2498                 pr_notice("Starting qede probe\n");
2499
2500         memset(&probe_params, 0, sizeof(probe_params));
2501         probe_params.protocol = QED_PROTOCOL_ETH;
2502         probe_params.dp_module = dp_module;
2503         probe_params.dp_level = dp_level;
2504         probe_params.is_vf = is_vf;
2505         cdev = qed_ops->common->probe(pdev, &probe_params);
2506         if (!cdev) {
2507                 rc = -ENODEV;
2508                 goto err0;
2509         }
2510
2511         qede_update_pf_params(cdev);
2512
2513         /* Start the Slowpath-process */
2514         memset(&sp_params, 0, sizeof(sp_params));
2515         sp_params.int_mode = QED_INT_MODE_MSIX;
2516         sp_params.drv_major = QEDE_MAJOR_VERSION;
2517         sp_params.drv_minor = QEDE_MINOR_VERSION;
2518         sp_params.drv_rev = QEDE_REVISION_VERSION;
2519         sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
2520         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2521         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
2522         if (rc) {
2523                 pr_notice("Cannot start slowpath\n");
2524                 goto err1;
2525         }
2526
2527         /* Learn information crucial for qede to progress */
2528         rc = qed_ops->fill_dev_info(cdev, &dev_info);
2529         if (rc)
2530                 goto err2;
2531
2532         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2533                                    dp_level);
2534         if (!edev) {
2535                 rc = -ENOMEM;
2536                 goto err2;
2537         }
2538
2539         if (is_vf)
2540                 edev->flags |= QEDE_FLAG_IS_VF;
2541
2542         qede_init_ndev(edev);
2543
2544         rc = register_netdev(edev->ndev);
2545         if (rc) {
2546                 DP_NOTICE(edev, "Cannot register net-device\n");
2547                 goto err3;
2548         }
2549
2550         edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2551
2552         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2553
2554 #ifdef CONFIG_DCB
2555         if (!IS_VF(edev))
2556                 qede_set_dcbnl_ops(edev->ndev);
2557 #endif
2558
2559         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2560         mutex_init(&edev->qede_lock);
2561         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
2562
2563         DP_INFO(edev, "Ending successfully qede probe\n");
2564
2565         return 0;
2566
2567 err3:
2568         free_netdev(edev->ndev);
2569 err2:
2570         qed_ops->common->slowpath_stop(cdev);
2571 err1:
2572         qed_ops->common->remove(cdev);
2573 err0:
2574         return rc;
2575 }
2576
2577 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2578 {
2579         bool is_vf = false;
2580         u32 dp_module = 0;
2581         u8 dp_level = 0;
2582
2583         switch ((enum qede_pci_private)id->driver_data) {
2584         case QEDE_PRIVATE_VF:
2585                 if (debug & QED_LOG_VERBOSE_MASK)
2586                         dev_err(&pdev->dev, "Probing a VF\n");
2587                 is_vf = true;
2588                 break;
2589         default:
2590                 if (debug & QED_LOG_VERBOSE_MASK)
2591                         dev_err(&pdev->dev, "Probing a PF\n");
2592         }
2593
2594         qede_config_debug(debug, &dp_module, &dp_level);
2595
2596         return __qede_probe(pdev, dp_module, dp_level, is_vf,
2597                             QEDE_PROBE_NORMAL);
2598 }
2599
2600 enum qede_remove_mode {
2601         QEDE_REMOVE_NORMAL,
2602 };
2603
2604 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2605 {
2606         struct net_device *ndev = pci_get_drvdata(pdev);
2607         struct qede_dev *edev = netdev_priv(ndev);
2608         struct qed_dev *cdev = edev->cdev;
2609
2610         DP_INFO(edev, "Starting qede_remove\n");
2611
2612         cancel_delayed_work_sync(&edev->sp_task);
2613         unregister_netdev(ndev);
2614
2615         edev->ops->common->set_power_state(cdev, PCI_D0);
2616
2617         pci_set_drvdata(pdev, NULL);
2618
2619         free_netdev(ndev);
2620
2621         /* Use global ops since we've freed edev */
2622         qed_ops->common->slowpath_stop(cdev);
2623         qed_ops->common->remove(cdev);
2624
2625         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
2626 }
2627
2628 static void qede_remove(struct pci_dev *pdev)
2629 {
2630         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2631 }
2632
2633 /* -------------------------------------------------------------------------
2634  * START OF LOAD / UNLOAD
2635  * -------------------------------------------------------------------------
2636  */
2637
2638 static int qede_set_num_queues(struct qede_dev *edev)
2639 {
2640         int rc;
2641         u16 rss_num;
2642
2643         /* Setup queues according to possible resources*/
2644         if (edev->req_queues)
2645                 rss_num = edev->req_queues;
2646         else
2647                 rss_num = netif_get_num_default_rss_queues() *
2648                           edev->dev_info.common.num_hwfns;
2649
2650         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2651
2652         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2653         if (rc > 0) {
2654                 /* Managed to request interrupts for our queues */
2655                 edev->num_queues = rc;
2656                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2657                         QEDE_QUEUE_CNT(edev), rss_num);
2658                 rc = 0;
2659         }
2660
2661         edev->fp_num_tx = edev->req_num_tx;
2662         edev->fp_num_rx = edev->req_num_rx;
2663
2664         return rc;
2665 }
2666
2667 static void qede_free_mem_sb(struct qede_dev *edev,
2668                              struct qed_sb_info *sb_info)
2669 {
2670         if (sb_info->sb_virt)
2671                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2672                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
2673 }
2674
2675 /* This function allocates fast-path status block memory */
2676 static int qede_alloc_mem_sb(struct qede_dev *edev,
2677                              struct qed_sb_info *sb_info, u16 sb_id)
2678 {
2679         struct status_block *sb_virt;
2680         dma_addr_t sb_phys;
2681         int rc;
2682
2683         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2684                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
2685         if (!sb_virt) {
2686                 DP_ERR(edev, "Status block allocation failed\n");
2687                 return -ENOMEM;
2688         }
2689
2690         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2691                                         sb_virt, sb_phys, sb_id,
2692                                         QED_SB_TYPE_L2_QUEUE);
2693         if (rc) {
2694                 DP_ERR(edev, "Status block initialization failed\n");
2695                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2696                                   sb_virt, sb_phys);
2697                 return rc;
2698         }
2699
2700         return 0;
2701 }
2702
2703 static void qede_free_rx_buffers(struct qede_dev *edev,
2704                                  struct qede_rx_queue *rxq)
2705 {
2706         u16 i;
2707
2708         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2709                 struct sw_rx_data *rx_buf;
2710                 struct page *data;
2711
2712                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2713                 data = rx_buf->data;
2714
2715                 dma_unmap_page(&edev->pdev->dev,
2716                                rx_buf->mapping, PAGE_SIZE, DMA_FROM_DEVICE);
2717
2718                 rx_buf->data = NULL;
2719                 __free_page(data);
2720         }
2721 }
2722
2723 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
2724 {
2725         int i;
2726
2727         if (edev->gro_disable)
2728                 return;
2729
2730         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2731                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2732                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2733
2734                 if (replace_buf->data) {
2735                         dma_unmap_page(&edev->pdev->dev,
2736                                        replace_buf->mapping,
2737                                        PAGE_SIZE, DMA_FROM_DEVICE);
2738                         __free_page(replace_buf->data);
2739                 }
2740         }
2741 }
2742
2743 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
2744 {
2745         qede_free_sge_mem(edev, rxq);
2746
2747         /* Free rx buffers */
2748         qede_free_rx_buffers(edev, rxq);
2749
2750         /* Free the parallel SW ring */
2751         kfree(rxq->sw_rx_ring);
2752
2753         /* Free the real RQ ring used by FW */
2754         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2755         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2756 }
2757
2758 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2759                                 struct qede_rx_queue *rxq)
2760 {
2761         struct sw_rx_data *sw_rx_data;
2762         struct eth_rx_bd *rx_bd;
2763         dma_addr_t mapping;
2764         struct page *data;
2765
2766         data = alloc_pages(GFP_ATOMIC, 0);
2767         if (unlikely(!data)) {
2768                 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2769                 return -ENOMEM;
2770         }
2771
2772         /* Map the entire page as it would be used
2773          * for multiple RX buffer segment size mapping.
2774          */
2775         mapping = dma_map_page(&edev->pdev->dev, data, 0,
2776                                PAGE_SIZE, DMA_FROM_DEVICE);
2777         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2778                 __free_page(data);
2779                 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2780                 return -ENOMEM;
2781         }
2782
2783         sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2784         sw_rx_data->page_offset = 0;
2785         sw_rx_data->data = data;
2786         sw_rx_data->mapping = mapping;
2787
2788         /* Advance PROD and get BD pointer */
2789         rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2790         WARN_ON(!rx_bd);
2791         rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2792         rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2793
2794         rxq->sw_rx_prod++;
2795
2796         return 0;
2797 }
2798
2799 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
2800 {
2801         dma_addr_t mapping;
2802         int i;
2803
2804         if (edev->gro_disable)
2805                 return 0;
2806
2807         if (edev->ndev->mtu > PAGE_SIZE) {
2808                 edev->gro_disable = 1;
2809                 return 0;
2810         }
2811
2812         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2813                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2814                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2815
2816                 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2817                 if (unlikely(!replace_buf->data)) {
2818                         DP_NOTICE(edev,
2819                                   "Failed to allocate TPA skb pool [replacement buffer]\n");
2820                         goto err;
2821                 }
2822
2823                 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2824                                        rxq->rx_buf_size, DMA_FROM_DEVICE);
2825                 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2826                         DP_NOTICE(edev,
2827                                   "Failed to map TPA replacement buffer\n");
2828                         goto err;
2829                 }
2830
2831                 replace_buf->mapping = mapping;
2832                 tpa_info->replace_buf.page_offset = 0;
2833
2834                 tpa_info->replace_buf_mapping = mapping;
2835                 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2836         }
2837
2838         return 0;
2839 err:
2840         qede_free_sge_mem(edev, rxq);
2841         edev->gro_disable = 1;
2842         return -ENOMEM;
2843 }
2844
2845 /* This function allocates all memory needed per Rx queue */
2846 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
2847 {
2848         int i, rc, size;
2849
2850         rxq->num_rx_buffers = edev->q_num_rx_buffers;
2851
2852         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
2853
2854         if (rxq->rx_buf_size > PAGE_SIZE)
2855                 rxq->rx_buf_size = PAGE_SIZE;
2856
2857         /* Segment size to spilt a page in multiple equal parts */
2858         rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2859
2860         /* Allocate the parallel driver ring for Rx buffers */
2861         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2862         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2863         if (!rxq->sw_rx_ring) {
2864                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2865                 rc = -ENOMEM;
2866                 goto err;
2867         }
2868
2869         /* Allocate FW Rx ring  */
2870         rc = edev->ops->common->chain_alloc(edev->cdev,
2871                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2872                                             QED_CHAIN_MODE_NEXT_PTR,
2873                                             QED_CHAIN_CNT_TYPE_U16,
2874                                             RX_RING_SIZE,
2875                                             sizeof(struct eth_rx_bd),
2876                                             &rxq->rx_bd_ring);
2877
2878         if (rc)
2879                 goto err;
2880
2881         /* Allocate FW completion ring */
2882         rc = edev->ops->common->chain_alloc(edev->cdev,
2883                                             QED_CHAIN_USE_TO_CONSUME,
2884                                             QED_CHAIN_MODE_PBL,
2885                                             QED_CHAIN_CNT_TYPE_U16,
2886                                             RX_RING_SIZE,
2887                                             sizeof(union eth_rx_cqe),
2888                                             &rxq->rx_comp_ring);
2889         if (rc)
2890                 goto err;
2891
2892         /* Allocate buffers for the Rx ring */
2893         for (i = 0; i < rxq->num_rx_buffers; i++) {
2894                 rc = qede_alloc_rx_buffer(edev, rxq);
2895                 if (rc) {
2896                         DP_ERR(edev,
2897                                "Rx buffers allocation failed at index %d\n", i);
2898                         goto err;
2899                 }
2900         }
2901
2902         rc = qede_alloc_sge_mem(edev, rxq);
2903 err:
2904         return rc;
2905 }
2906
2907 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
2908 {
2909         /* Free the parallel SW ring */
2910         kfree(txq->sw_tx_ring);
2911
2912         /* Free the real RQ ring used by FW */
2913         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2914 }
2915
2916 /* This function allocates all memory needed per Tx queue */
2917 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
2918 {
2919         int size, rc;
2920         union eth_tx_bd_types *p_virt;
2921
2922         txq->num_tx_buffers = edev->q_num_tx_buffers;
2923
2924         /* Allocate the parallel driver ring for Tx buffers */
2925         size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2926         txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2927         if (!txq->sw_tx_ring) {
2928                 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2929                 goto err;
2930         }
2931
2932         rc = edev->ops->common->chain_alloc(edev->cdev,
2933                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2934                                             QED_CHAIN_MODE_PBL,
2935                                             QED_CHAIN_CNT_TYPE_U16,
2936                                             NUM_TX_BDS_MAX,
2937                                             sizeof(*p_virt), &txq->tx_pbl);
2938         if (rc)
2939                 goto err;
2940
2941         return 0;
2942
2943 err:
2944         qede_free_mem_txq(edev, txq);
2945         return -ENOMEM;
2946 }
2947
2948 /* This function frees all memory of a single fp */
2949 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
2950 {
2951         int tc;
2952
2953         qede_free_mem_sb(edev, fp->sb_info);
2954
2955         if (fp->type & QEDE_FASTPATH_RX)
2956                 qede_free_mem_rxq(edev, fp->rxq);
2957
2958         if (fp->type & QEDE_FASTPATH_TX)
2959                 for (tc = 0; tc < edev->num_tc; tc++)
2960                         qede_free_mem_txq(edev, &fp->txqs[tc]);
2961 }
2962
2963 /* This function allocates all memory needed for a single fp (i.e. an entity
2964  * which contains status block, one rx queue and/or multiple per-TC tx queues.
2965  */
2966 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
2967 {
2968         int rc, tc;
2969
2970         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
2971         if (rc)
2972                 goto err;
2973
2974         if (fp->type & QEDE_FASTPATH_RX) {
2975                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
2976                 if (rc)
2977                         goto err;
2978         }
2979
2980         if (fp->type & QEDE_FASTPATH_TX) {
2981                 for (tc = 0; tc < edev->num_tc; tc++) {
2982                         rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2983                         if (rc)
2984                                 goto err;
2985                 }
2986         }
2987
2988         return 0;
2989 err:
2990         return rc;
2991 }
2992
2993 static void qede_free_mem_load(struct qede_dev *edev)
2994 {
2995         int i;
2996
2997         for_each_queue(i) {
2998                 struct qede_fastpath *fp = &edev->fp_array[i];
2999
3000                 qede_free_mem_fp(edev, fp);
3001         }
3002 }
3003
3004 /* This function allocates all qede memory at NIC load. */
3005 static int qede_alloc_mem_load(struct qede_dev *edev)
3006 {
3007         int rc = 0, queue_id;
3008
3009         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
3010                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
3011
3012                 rc = qede_alloc_mem_fp(edev, fp);
3013                 if (rc) {
3014                         DP_ERR(edev,
3015                                "Failed to allocate memory for fastpath - rss id = %d\n",
3016                                queue_id);
3017                         qede_free_mem_load(edev);
3018                         return rc;
3019                 }
3020         }
3021
3022         return 0;
3023 }
3024
3025 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
3026 static void qede_init_fp(struct qede_dev *edev)
3027 {
3028         int queue_id, rxq_index = 0, txq_index = 0, tc;
3029         struct qede_fastpath *fp;
3030
3031         for_each_queue(queue_id) {
3032                 fp = &edev->fp_array[queue_id];
3033
3034                 fp->edev = edev;
3035                 fp->id = queue_id;
3036
3037                 memset((void *)&fp->napi, 0, sizeof(fp->napi));
3038
3039                 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
3040
3041                 if (fp->type & QEDE_FASTPATH_RX) {
3042                         memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
3043                         fp->rxq->rxq_id = rxq_index++;
3044                 }
3045
3046                 if (fp->type & QEDE_FASTPATH_TX) {
3047                         memset((void *)fp->txqs, 0,
3048                                (edev->num_tc * sizeof(*fp->txqs)));
3049                         for (tc = 0; tc < edev->num_tc; tc++) {
3050                                 fp->txqs[tc].index = txq_index +
3051                                     tc * QEDE_TSS_COUNT(edev);
3052                                 if (edev->dev_info.is_legacy)
3053                                         fp->txqs[tc].is_legacy = true;
3054                         }
3055                         txq_index++;
3056                 }
3057
3058                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
3059                          edev->ndev->name, queue_id);
3060         }
3061
3062         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
3063 }
3064
3065 static int qede_set_real_num_queues(struct qede_dev *edev)
3066 {
3067         int rc = 0;
3068
3069         rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
3070         if (rc) {
3071                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3072                 return rc;
3073         }
3074
3075         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
3076         if (rc) {
3077                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3078                 return rc;
3079         }
3080
3081         return 0;
3082 }
3083
3084 static void qede_napi_disable_remove(struct qede_dev *edev)
3085 {
3086         int i;
3087
3088         for_each_queue(i) {
3089                 napi_disable(&edev->fp_array[i].napi);
3090
3091                 netif_napi_del(&edev->fp_array[i].napi);
3092         }
3093 }
3094
3095 static void qede_napi_add_enable(struct qede_dev *edev)
3096 {
3097         int i;
3098
3099         /* Add NAPI objects */
3100         for_each_queue(i) {
3101                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3102                                qede_poll, NAPI_POLL_WEIGHT);
3103                 napi_enable(&edev->fp_array[i].napi);
3104         }
3105 }
3106
3107 static void qede_sync_free_irqs(struct qede_dev *edev)
3108 {
3109         int i;
3110
3111         for (i = 0; i < edev->int_info.used_cnt; i++) {
3112                 if (edev->int_info.msix_cnt) {
3113                         synchronize_irq(edev->int_info.msix[i].vector);
3114                         free_irq(edev->int_info.msix[i].vector,
3115                                  &edev->fp_array[i]);
3116                 } else {
3117                         edev->ops->common->simd_handler_clean(edev->cdev, i);
3118                 }
3119         }
3120
3121         edev->int_info.used_cnt = 0;
3122 }
3123
3124 static int qede_req_msix_irqs(struct qede_dev *edev)
3125 {
3126         int i, rc;
3127
3128         /* Sanitize number of interrupts == number of prepared RSS queues */
3129         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
3130                 DP_ERR(edev,
3131                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3132                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
3133                 return -EINVAL;
3134         }
3135
3136         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
3137                 rc = request_irq(edev->int_info.msix[i].vector,
3138                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
3139                                  &edev->fp_array[i]);
3140                 if (rc) {
3141                         DP_ERR(edev, "Request fp %d irq failed\n", i);
3142                         qede_sync_free_irqs(edev);
3143                         return rc;
3144                 }
3145                 DP_VERBOSE(edev, NETIF_MSG_INTR,
3146                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3147                            edev->fp_array[i].name, i,
3148                            &edev->fp_array[i]);
3149                 edev->int_info.used_cnt++;
3150         }
3151
3152         return 0;
3153 }
3154
3155 static void qede_simd_fp_handler(void *cookie)
3156 {
3157         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3158
3159         napi_schedule_irqoff(&fp->napi);
3160 }
3161
3162 static int qede_setup_irqs(struct qede_dev *edev)
3163 {
3164         int i, rc = 0;
3165
3166         /* Learn Interrupt configuration */
3167         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3168         if (rc)
3169                 return rc;
3170
3171         if (edev->int_info.msix_cnt) {
3172                 rc = qede_req_msix_irqs(edev);
3173                 if (rc)
3174                         return rc;
3175                 edev->ndev->irq = edev->int_info.msix[0].vector;
3176         } else {
3177                 const struct qed_common_ops *ops;
3178
3179                 /* qed should learn receive the RSS ids and callbacks */
3180                 ops = edev->ops->common;
3181                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
3182                         ops->simd_handler_config(edev->cdev,
3183                                                  &edev->fp_array[i], i,
3184                                                  qede_simd_fp_handler);
3185                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
3186         }
3187         return 0;
3188 }
3189
3190 static int qede_drain_txq(struct qede_dev *edev,
3191                           struct qede_tx_queue *txq, bool allow_drain)
3192 {
3193         int rc, cnt = 1000;
3194
3195         while (txq->sw_tx_cons != txq->sw_tx_prod) {
3196                 if (!cnt) {
3197                         if (allow_drain) {
3198                                 DP_NOTICE(edev,
3199                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
3200                                           txq->index);
3201                                 rc = edev->ops->common->drain(edev->cdev);
3202                                 if (rc)
3203                                         return rc;
3204                                 return qede_drain_txq(edev, txq, false);
3205                         }
3206                         DP_NOTICE(edev,
3207                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3208                                   txq->index, txq->sw_tx_prod,
3209                                   txq->sw_tx_cons);
3210                         return -ENODEV;
3211                 }
3212                 cnt--;
3213                 usleep_range(1000, 2000);
3214                 barrier();
3215         }
3216
3217         /* FW finished processing, wait for HW to transmit all tx packets */
3218         usleep_range(1000, 2000);
3219
3220         return 0;
3221 }
3222
3223 static int qede_stop_queues(struct qede_dev *edev)
3224 {
3225         struct qed_update_vport_params vport_update_params;
3226         struct qed_dev *cdev = edev->cdev;
3227         int rc, tc, i;
3228
3229         /* Disable the vport */
3230         memset(&vport_update_params, 0, sizeof(vport_update_params));
3231         vport_update_params.vport_id = 0;
3232         vport_update_params.update_vport_active_flg = 1;
3233         vport_update_params.vport_active_flg = 0;
3234         vport_update_params.update_rss_flg = 0;
3235
3236         rc = edev->ops->vport_update(cdev, &vport_update_params);
3237         if (rc) {
3238                 DP_ERR(edev, "Failed to update vport\n");
3239                 return rc;
3240         }
3241
3242         /* Flush Tx queues. If needed, request drain from MCP */
3243         for_each_queue(i) {
3244                 struct qede_fastpath *fp = &edev->fp_array[i];
3245
3246                 if (fp->type & QEDE_FASTPATH_TX) {
3247                         for (tc = 0; tc < edev->num_tc; tc++) {
3248                                 struct qede_tx_queue *txq = &fp->txqs[tc];
3249
3250                                 rc = qede_drain_txq(edev, txq, true);
3251                                 if (rc)
3252                                         return rc;
3253                         }
3254                 }
3255         }
3256
3257         /* Stop all Queues in reverse order */
3258         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
3259                 struct qed_stop_rxq_params rx_params;
3260
3261                 /* Stop the Tx Queue(s) */
3262                 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
3263                         for (tc = 0; tc < edev->num_tc; tc++) {
3264                                 struct qed_stop_txq_params tx_params;
3265                                 u8 val;
3266
3267                                 tx_params.rss_id = i;
3268                                 val = edev->fp_array[i].txqs[tc].index;
3269                                 tx_params.tx_queue_id = val;
3270                                 rc = edev->ops->q_tx_stop(cdev, &tx_params);
3271                                 if (rc) {
3272                                         DP_ERR(edev, "Failed to stop TXQ #%d\n",
3273                                                tx_params.tx_queue_id);
3274                                         return rc;
3275                                 }
3276                         }
3277                 }
3278
3279                 /* Stop the Rx Queue */
3280                 if (edev->fp_array[i].type & QEDE_FASTPATH_RX) {
3281                         memset(&rx_params, 0, sizeof(rx_params));
3282                         rx_params.rss_id = i;
3283                         rx_params.rx_queue_id = edev->fp_array[i].rxq->rxq_id;
3284
3285                         rc = edev->ops->q_rx_stop(cdev, &rx_params);
3286                         if (rc) {
3287                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3288                                 return rc;
3289                         }
3290                 }
3291         }
3292
3293         /* Stop the vport */
3294         rc = edev->ops->vport_stop(cdev, 0);
3295         if (rc)
3296                 DP_ERR(edev, "Failed to stop VPORT\n");
3297
3298         return rc;
3299 }
3300
3301 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
3302 {
3303         int rc, tc, i;
3304         int vlan_removal_en = 1;
3305         struct qed_dev *cdev = edev->cdev;
3306         struct qed_update_vport_params vport_update_params;
3307         struct qed_queue_start_common_params q_params;
3308         struct qed_dev_info *qed_info = &edev->dev_info.common;
3309         struct qed_start_vport_params start = {0};
3310         bool reset_rss_indir = false;
3311
3312         if (!edev->num_queues) {
3313                 DP_ERR(edev,
3314                        "Cannot update V-VPORT as active as there are no Rx queues\n");
3315                 return -EINVAL;
3316         }
3317
3318         start.gro_enable = !edev->gro_disable;
3319         start.mtu = edev->ndev->mtu;
3320         start.vport_id = 0;
3321         start.drop_ttl0 = true;
3322         start.remove_inner_vlan = vlan_removal_en;
3323         start.clear_stats = clear_stats;
3324
3325         rc = edev->ops->vport_start(cdev, &start);
3326
3327         if (rc) {
3328                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3329                 return rc;
3330         }
3331
3332         DP_VERBOSE(edev, NETIF_MSG_IFUP,
3333                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3334                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3335
3336         for_each_queue(i) {
3337                 struct qede_fastpath *fp = &edev->fp_array[i];
3338                 dma_addr_t p_phys_table;
3339                 u32 page_cnt;
3340
3341                 if (fp->type & QEDE_FASTPATH_RX) {
3342                         struct qede_rx_queue *rxq = fp->rxq;
3343                         __le16 *val;
3344
3345                         memset(&q_params, 0, sizeof(q_params));
3346                         q_params.rss_id = i;
3347                         q_params.queue_id = rxq->rxq_id;
3348                         q_params.vport_id = 0;
3349                         q_params.sb = fp->sb_info->igu_sb_id;
3350                         q_params.sb_idx = RX_PI;
3351
3352                         p_phys_table =
3353                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
3354                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
3355
3356                         rc = edev->ops->q_rx_start(cdev, &q_params,
3357                                                    rxq->rx_buf_size,
3358                                                    rxq->rx_bd_ring.p_phys_addr,
3359                                                    p_phys_table,
3360                                                    page_cnt,
3361                                                    &rxq->hw_rxq_prod_addr);
3362                         if (rc) {
3363                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
3364                                        rc);
3365                                 return rc;
3366                         }
3367
3368                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
3369                         rxq->hw_cons_ptr = val;
3370
3371                         qede_update_rx_prod(edev, rxq);
3372                 }
3373
3374                 if (!(fp->type & QEDE_FASTPATH_TX))
3375                         continue;
3376
3377                 for (tc = 0; tc < edev->num_tc; tc++) {
3378                         struct qede_tx_queue *txq = &fp->txqs[tc];
3379
3380                         p_phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
3381                         page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
3382
3383                         memset(&q_params, 0, sizeof(q_params));
3384                         q_params.rss_id = i;
3385                         q_params.queue_id = txq->index;
3386                         q_params.vport_id = 0;
3387                         q_params.sb = fp->sb_info->igu_sb_id;
3388                         q_params.sb_idx = TX_PI(tc);
3389
3390                         rc = edev->ops->q_tx_start(cdev, &q_params,
3391                                                    p_phys_table, page_cnt,
3392                                                    &txq->doorbell_addr);
3393                         if (rc) {
3394                                 DP_ERR(edev, "Start TXQ #%d failed %d\n",
3395                                        txq->index, rc);
3396                                 return rc;
3397                         }
3398
3399                         txq->hw_cons_ptr =
3400                                 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3401                         SET_FIELD(txq->tx_db.data.params,
3402                                   ETH_DB_DATA_DEST, DB_DEST_XCM);
3403                         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3404                                   DB_AGG_CMD_SET);
3405                         SET_FIELD(txq->tx_db.data.params,
3406                                   ETH_DB_DATA_AGG_VAL_SEL,
3407                                   DQ_XCM_ETH_TX_BD_PROD_CMD);
3408
3409                         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3410                 }
3411         }
3412
3413         /* Prepare and send the vport enable */
3414         memset(&vport_update_params, 0, sizeof(vport_update_params));
3415         vport_update_params.vport_id = start.vport_id;
3416         vport_update_params.update_vport_active_flg = 1;
3417         vport_update_params.vport_active_flg = 1;
3418
3419         if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3420             qed_info->tx_switching) {
3421                 vport_update_params.update_tx_switching_flg = 1;
3422                 vport_update_params.tx_switching_flg = 1;
3423         }
3424
3425         /* Fill struct with RSS params */
3426         if (QEDE_RSS_COUNT(edev) > 1) {
3427                 vport_update_params.update_rss_flg = 1;
3428
3429                 /* Need to validate current RSS config uses valid entries */
3430                 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3431                         if (edev->rss_params.rss_ind_table[i] >=
3432                             QEDE_RSS_COUNT(edev)) {
3433                                 reset_rss_indir = true;
3434                                 break;
3435                         }
3436                 }
3437
3438                 if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3439                     reset_rss_indir) {
3440                         u16 val;
3441
3442                         for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3443                                 u16 indir_val;
3444
3445                                 val = QEDE_RSS_COUNT(edev);
3446                                 indir_val = ethtool_rxfh_indir_default(i, val);
3447                                 edev->rss_params.rss_ind_table[i] = indir_val;
3448                         }
3449                         edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3450                 }
3451
3452                 if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3453                         netdev_rss_key_fill(edev->rss_params.rss_key,
3454                                             sizeof(edev->rss_params.rss_key));
3455                         edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3456                 }
3457
3458                 if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3459                         edev->rss_params.rss_caps = QED_RSS_IPV4 |
3460                                                     QED_RSS_IPV6 |
3461                                                     QED_RSS_IPV4_TCP |
3462                                                     QED_RSS_IPV6_TCP;
3463                         edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3464                 }
3465
3466                 memcpy(&vport_update_params.rss_params, &edev->rss_params,
3467                        sizeof(vport_update_params.rss_params));
3468         } else {
3469                 memset(&vport_update_params.rss_params, 0,
3470                        sizeof(vport_update_params.rss_params));
3471         }
3472
3473         rc = edev->ops->vport_update(cdev, &vport_update_params);
3474         if (rc) {
3475                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3476                 return rc;
3477         }
3478
3479         return 0;
3480 }
3481
3482 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3483                                  enum qed_filter_xcast_params_type opcode,
3484                                  unsigned char *mac, int num_macs)
3485 {
3486         struct qed_filter_params filter_cmd;
3487         int i;
3488
3489         memset(&filter_cmd, 0, sizeof(filter_cmd));
3490         filter_cmd.type = QED_FILTER_TYPE_MCAST;
3491         filter_cmd.filter.mcast.type = opcode;
3492         filter_cmd.filter.mcast.num = num_macs;
3493
3494         for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3495                 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3496
3497         return edev->ops->filter_config(edev->cdev, &filter_cmd);
3498 }
3499
3500 enum qede_unload_mode {
3501         QEDE_UNLOAD_NORMAL,
3502 };
3503
3504 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3505 {
3506         struct qed_link_params link_params;
3507         int rc;
3508
3509         DP_INFO(edev, "Starting qede unload\n");
3510
3511         mutex_lock(&edev->qede_lock);
3512         edev->state = QEDE_STATE_CLOSED;
3513
3514         /* Close OS Tx */
3515         netif_tx_disable(edev->ndev);
3516         netif_carrier_off(edev->ndev);
3517
3518         /* Reset the link */
3519         memset(&link_params, 0, sizeof(link_params));
3520         link_params.link_up = false;
3521         edev->ops->common->set_link(edev->cdev, &link_params);
3522         rc = qede_stop_queues(edev);
3523         if (rc) {
3524                 qede_sync_free_irqs(edev);
3525                 goto out;
3526         }
3527
3528         DP_INFO(edev, "Stopped Queues\n");
3529
3530         qede_vlan_mark_nonconfigured(edev);
3531         edev->ops->fastpath_stop(edev->cdev);
3532
3533         /* Release the interrupts */
3534         qede_sync_free_irqs(edev);
3535         edev->ops->common->set_fp_int(edev->cdev, 0);
3536
3537         qede_napi_disable_remove(edev);
3538
3539         qede_free_mem_load(edev);
3540         qede_free_fp_array(edev);
3541
3542 out:
3543         mutex_unlock(&edev->qede_lock);
3544         DP_INFO(edev, "Ending qede unload\n");
3545 }
3546
3547 enum qede_load_mode {
3548         QEDE_LOAD_NORMAL,
3549         QEDE_LOAD_RELOAD,
3550 };
3551
3552 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3553 {
3554         struct qed_link_params link_params;
3555         struct qed_link_output link_output;
3556         int rc;
3557
3558         DP_INFO(edev, "Starting qede load\n");
3559
3560         rc = qede_set_num_queues(edev);
3561         if (rc)
3562                 goto err0;
3563
3564         rc = qede_alloc_fp_array(edev);
3565         if (rc)
3566                 goto err0;
3567
3568         qede_init_fp(edev);
3569
3570         rc = qede_alloc_mem_load(edev);
3571         if (rc)
3572                 goto err1;
3573         DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3574                 QEDE_QUEUE_CNT(edev), edev->num_tc);
3575
3576         rc = qede_set_real_num_queues(edev);
3577         if (rc)
3578                 goto err2;
3579
3580         qede_napi_add_enable(edev);
3581         DP_INFO(edev, "Napi added and enabled\n");
3582
3583         rc = qede_setup_irqs(edev);
3584         if (rc)
3585                 goto err3;
3586         DP_INFO(edev, "Setup IRQs succeeded\n");
3587
3588         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
3589         if (rc)
3590                 goto err4;
3591         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3592
3593         /* Add primary mac and set Rx filters */
3594         ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3595
3596         mutex_lock(&edev->qede_lock);
3597         edev->state = QEDE_STATE_OPEN;
3598         mutex_unlock(&edev->qede_lock);
3599
3600         /* Program un-configured VLANs */
3601         qede_configure_vlan_filters(edev);
3602
3603         /* Ask for link-up using current configuration */
3604         memset(&link_params, 0, sizeof(link_params));
3605         link_params.link_up = true;
3606         edev->ops->common->set_link(edev->cdev, &link_params);
3607
3608         /* Query whether link is already-up */
3609         memset(&link_output, 0, sizeof(link_output));
3610         edev->ops->common->get_link(edev->cdev, &link_output);
3611         qede_link_update(edev, &link_output);
3612
3613         DP_INFO(edev, "Ending successfully qede load\n");
3614
3615         return 0;
3616
3617 err4:
3618         qede_sync_free_irqs(edev);
3619         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3620 err3:
3621         qede_napi_disable_remove(edev);
3622 err2:
3623         qede_free_mem_load(edev);
3624 err1:
3625         edev->ops->common->set_fp_int(edev->cdev, 0);
3626         qede_free_fp_array(edev);
3627         edev->num_queues = 0;
3628         edev->fp_num_tx = 0;
3629         edev->fp_num_rx = 0;
3630 err0:
3631         return rc;
3632 }
3633
3634 void qede_reload(struct qede_dev *edev,
3635                  void (*func)(struct qede_dev *, union qede_reload_args *),
3636                  union qede_reload_args *args)
3637 {
3638         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3639         /* Call function handler to update parameters
3640          * needed for function load.
3641          */
3642         if (func)
3643                 func(edev, args);
3644
3645         qede_load(edev, QEDE_LOAD_RELOAD);
3646
3647         mutex_lock(&edev->qede_lock);
3648         qede_config_rx_mode(edev->ndev);
3649         mutex_unlock(&edev->qede_lock);
3650 }
3651
3652 /* called with rtnl_lock */
3653 static int qede_open(struct net_device *ndev)
3654 {
3655         struct qede_dev *edev = netdev_priv(ndev);
3656         int rc;
3657
3658         netif_carrier_off(ndev);
3659
3660         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3661
3662         rc = qede_load(edev, QEDE_LOAD_NORMAL);
3663
3664         if (rc)
3665                 return rc;
3666
3667         udp_tunnel_get_rx_info(ndev);
3668
3669         return 0;
3670 }
3671
3672 static int qede_close(struct net_device *ndev)
3673 {
3674         struct qede_dev *edev = netdev_priv(ndev);
3675
3676         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3677
3678         return 0;
3679 }
3680
3681 static void qede_link_update(void *dev, struct qed_link_output *link)
3682 {
3683         struct qede_dev *edev = dev;
3684
3685         if (!netif_running(edev->ndev)) {
3686                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3687                 return;
3688         }
3689
3690         if (link->link_up) {
3691                 if (!netif_carrier_ok(edev->ndev)) {
3692                         DP_NOTICE(edev, "Link is up\n");
3693                         netif_tx_start_all_queues(edev->ndev);
3694                         netif_carrier_on(edev->ndev);
3695                 }
3696         } else {
3697                 if (netif_carrier_ok(edev->ndev)) {
3698                         DP_NOTICE(edev, "Link is down\n");
3699                         netif_tx_disable(edev->ndev);
3700                         netif_carrier_off(edev->ndev);
3701                 }
3702         }
3703 }
3704
3705 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3706 {
3707         struct qede_dev *edev = netdev_priv(ndev);
3708         struct sockaddr *addr = p;
3709         int rc;
3710
3711         ASSERT_RTNL(); /* @@@TBD To be removed */
3712
3713         DP_INFO(edev, "Set_mac_addr called\n");
3714
3715         if (!is_valid_ether_addr(addr->sa_data)) {
3716                 DP_NOTICE(edev, "The MAC address is not valid\n");
3717                 return -EFAULT;
3718         }
3719
3720         if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3721                 DP_NOTICE(edev, "qed prevents setting MAC\n");
3722                 return -EINVAL;
3723         }
3724
3725         ether_addr_copy(ndev->dev_addr, addr->sa_data);
3726
3727         if (!netif_running(ndev))  {
3728                 DP_NOTICE(edev, "The device is currently down\n");
3729                 return 0;
3730         }
3731
3732         /* Remove the previous primary mac */
3733         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3734                                    edev->primary_mac);
3735         if (rc)
3736                 return rc;
3737
3738         /* Add MAC filter according to the new unicast HW MAC address */
3739         ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3740         return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3741                                       edev->primary_mac);
3742 }
3743
3744 static int
3745 qede_configure_mcast_filtering(struct net_device *ndev,
3746                                enum qed_filter_rx_mode_type *accept_flags)
3747 {
3748         struct qede_dev *edev = netdev_priv(ndev);
3749         unsigned char *mc_macs, *temp;
3750         struct netdev_hw_addr *ha;
3751         int rc = 0, mc_count;
3752         size_t size;
3753
3754         size = 64 * ETH_ALEN;
3755
3756         mc_macs = kzalloc(size, GFP_KERNEL);
3757         if (!mc_macs) {
3758                 DP_NOTICE(edev,
3759                           "Failed to allocate memory for multicast MACs\n");
3760                 rc = -ENOMEM;
3761                 goto exit;
3762         }
3763
3764         temp = mc_macs;
3765
3766         /* Remove all previously configured MAC filters */
3767         rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3768                                    mc_macs, 1);
3769         if (rc)
3770                 goto exit;
3771
3772         netif_addr_lock_bh(ndev);
3773
3774         mc_count = netdev_mc_count(ndev);
3775         if (mc_count < 64) {
3776                 netdev_for_each_mc_addr(ha, ndev) {
3777                         ether_addr_copy(temp, ha->addr);
3778                         temp += ETH_ALEN;
3779                 }
3780         }
3781
3782         netif_addr_unlock_bh(ndev);
3783
3784         /* Check for all multicast @@@TBD resource allocation */
3785         if ((ndev->flags & IFF_ALLMULTI) ||
3786             (mc_count > 64)) {
3787                 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3788                         *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3789         } else {
3790                 /* Add all multicast MAC filters */
3791                 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3792                                            mc_macs, mc_count);
3793         }
3794
3795 exit:
3796         kfree(mc_macs);
3797         return rc;
3798 }
3799
3800 static void qede_set_rx_mode(struct net_device *ndev)
3801 {
3802         struct qede_dev *edev = netdev_priv(ndev);
3803
3804         DP_INFO(edev, "qede_set_rx_mode called\n");
3805
3806         if (edev->state != QEDE_STATE_OPEN) {
3807                 DP_INFO(edev,
3808                         "qede_set_rx_mode called while interface is down\n");
3809         } else {
3810                 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3811                 schedule_delayed_work(&edev->sp_task, 0);
3812         }
3813 }
3814
3815 /* Must be called with qede_lock held */
3816 static void qede_config_rx_mode(struct net_device *ndev)
3817 {
3818         enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3819         struct qede_dev *edev = netdev_priv(ndev);
3820         struct qed_filter_params rx_mode;
3821         unsigned char *uc_macs, *temp;
3822         struct netdev_hw_addr *ha;
3823         int rc, uc_count;
3824         size_t size;
3825
3826         netif_addr_lock_bh(ndev);
3827
3828         uc_count = netdev_uc_count(ndev);
3829         size = uc_count * ETH_ALEN;
3830
3831         uc_macs = kzalloc(size, GFP_ATOMIC);
3832         if (!uc_macs) {
3833                 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3834                 netif_addr_unlock_bh(ndev);
3835                 return;
3836         }
3837
3838         temp = uc_macs;
3839         netdev_for_each_uc_addr(ha, ndev) {
3840                 ether_addr_copy(temp, ha->addr);
3841                 temp += ETH_ALEN;
3842         }
3843
3844         netif_addr_unlock_bh(ndev);
3845
3846         /* Configure the struct for the Rx mode */
3847         memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3848         rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3849
3850         /* Remove all previous unicast secondary macs and multicast macs
3851          * (configrue / leave the primary mac)
3852          */
3853         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3854                                    edev->primary_mac);
3855         if (rc)
3856                 goto out;
3857
3858         /* Check for promiscuous */
3859         if ((ndev->flags & IFF_PROMISC) ||
3860             (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3861                 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3862         } else {
3863                 /* Add MAC filters according to the unicast secondary macs */
3864                 int i;
3865
3866                 temp = uc_macs;
3867                 for (i = 0; i < uc_count; i++) {
3868                         rc = qede_set_ucast_rx_mac(edev,
3869                                                    QED_FILTER_XCAST_TYPE_ADD,
3870                                                    temp);
3871                         if (rc)
3872                                 goto out;
3873
3874                         temp += ETH_ALEN;
3875                 }
3876
3877                 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3878                 if (rc)
3879                         goto out;
3880         }
3881
3882         /* take care of VLAN mode */
3883         if (ndev->flags & IFF_PROMISC) {
3884                 qede_config_accept_any_vlan(edev, true);
3885         } else if (!edev->non_configured_vlans) {
3886                 /* It's possible that accept_any_vlan mode is set due to a
3887                  * previous setting of IFF_PROMISC. If vlan credits are
3888                  * sufficient, disable accept_any_vlan.
3889                  */
3890                 qede_config_accept_any_vlan(edev, false);
3891         }
3892
3893         rx_mode.filter.accept_flags = accept_flags;
3894         edev->ops->filter_config(edev->cdev, &rx_mode);
3895 out:
3896         kfree(uc_macs);
3897 }