6c904a6cad2a177036b42190cffb17a25e194708
[cascardo/linux.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61 /*  NETIF_MSG_TX_QUEUED | */
62 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = -1;  /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80                 "Option to enable MPI firmware dump. "
81                 "Default is OFF - Do Not allocate memory. ");
82
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86                 "Option to allow force of firmware core dump. "
87                 "Default is OFF - Do not allow.");
88
89 static const struct pci_device_id qlge_pci_tbl[] = {
90         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92         /* required last entry */
93         {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102
103 /* This hardware semaphore causes exclusive access to
104  * resources shared between the NIC driver, MPI firmware,
105  * FCOE firmware and the FC driver.
106  */
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109         u32 sem_bits = 0;
110
111         switch (sem_mask) {
112         case SEM_XGMAC0_MASK:
113                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114                 break;
115         case SEM_XGMAC1_MASK:
116                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117                 break;
118         case SEM_ICB_MASK:
119                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120                 break;
121         case SEM_MAC_ADDR_MASK:
122                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123                 break;
124         case SEM_FLASH_MASK:
125                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126                 break;
127         case SEM_PROBE_MASK:
128                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129                 break;
130         case SEM_RT_IDX_MASK:
131                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132                 break;
133         case SEM_PROC_REG_MASK:
134                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135                 break;
136         default:
137                 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138                 return -EINVAL;
139         }
140
141         ql_write32(qdev, SEM, sem_bits | sem_mask);
142         return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147         unsigned int wait_count = 30;
148         do {
149                 if (!ql_sem_trylock(qdev, sem_mask))
150                         return 0;
151                 udelay(100);
152         } while (--wait_count);
153         return -ETIMEDOUT;
154 }
155
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158         ql_write32(qdev, SEM, sem_mask);
159         ql_read32(qdev, SEM);   /* flush */
160 }
161
162 /* This function waits for a specific bit to come ready
163  * in a given register.  It is used mostly by the initialize
164  * process, but is also used in kernel thread API such as
165  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166  */
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169         u32 temp;
170         int count = UDELAY_COUNT;
171
172         while (count) {
173                 temp = ql_read32(qdev, reg);
174
175                 /* check for errors */
176                 if (temp & err_bit) {
177                         netif_alert(qdev, probe, qdev->ndev,
178                                     "register 0x%.08x access error, value = 0x%.08x!.\n",
179                                     reg, temp);
180                         return -EIO;
181                 } else if (temp & bit)
182                         return 0;
183                 udelay(UDELAY_DELAY);
184                 count--;
185         }
186         netif_alert(qdev, probe, qdev->ndev,
187                     "Timed out waiting for reg %x to come ready.\n", reg);
188         return -ETIMEDOUT;
189 }
190
191 /* The CFG register is used to download TX and RX control blocks
192  * to the chip. This function waits for an operation to complete.
193  */
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196         int count = UDELAY_COUNT;
197         u32 temp;
198
199         while (count) {
200                 temp = ql_read32(qdev, CFG);
201                 if (temp & CFG_LE)
202                         return -EIO;
203                 if (!(temp & bit))
204                         return 0;
205                 udelay(UDELAY_DELAY);
206                 count--;
207         }
208         return -ETIMEDOUT;
209 }
210
211
212 /* Used to issue init control blocks to hw. Maps control block,
213  * sets address, triggers download, waits for completion.
214  */
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216                  u16 q_id)
217 {
218         u64 map;
219         int status = 0;
220         int direction;
221         u32 mask;
222         u32 value;
223
224         direction =
225             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226             PCI_DMA_FROMDEVICE;
227
228         map = pci_map_single(qdev->pdev, ptr, size, direction);
229         if (pci_dma_mapping_error(qdev->pdev, map)) {
230                 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231                 return -ENOMEM;
232         }
233
234         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235         if (status)
236                 return status;
237
238         status = ql_wait_cfg(qdev, bit);
239         if (status) {
240                 netif_err(qdev, ifup, qdev->ndev,
241                           "Timed out waiting for CFG to come ready.\n");
242                 goto exit;
243         }
244
245         ql_write32(qdev, ICB_L, (u32) map);
246         ql_write32(qdev, ICB_H, (u32) (map >> 32));
247
248         mask = CFG_Q_MASK | (bit << 16);
249         value = bit | (q_id << CFG_Q_SHIFT);
250         ql_write32(qdev, CFG, (mask | value));
251
252         /*
253          * Wait for the bit to clear after signaling hw.
254          */
255         status = ql_wait_cfg(qdev, bit);
256 exit:
257         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
258         pci_unmap_single(qdev->pdev, map, size, direction);
259         return status;
260 }
261
262 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264                         u32 *value)
265 {
266         u32 offset = 0;
267         int status;
268
269         switch (type) {
270         case MAC_ADDR_TYPE_MULTI_MAC:
271         case MAC_ADDR_TYPE_CAM_MAC:
272                 {
273                         status =
274                             ql_wait_reg_rdy(qdev,
275                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276                         if (status)
277                                 goto exit;
278                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
280                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281                         status =
282                             ql_wait_reg_rdy(qdev,
283                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284                         if (status)
285                                 goto exit;
286                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287                         status =
288                             ql_wait_reg_rdy(qdev,
289                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290                         if (status)
291                                 goto exit;
292                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
294                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295                         status =
296                             ql_wait_reg_rdy(qdev,
297                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298                         if (status)
299                                 goto exit;
300                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
302                                 status =
303                                     ql_wait_reg_rdy(qdev,
304                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305                                 if (status)
306                                         goto exit;
307                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
309                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310                                 status =
311                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312                                                     MAC_ADDR_MR, 0);
313                                 if (status)
314                                         goto exit;
315                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316                         }
317                         break;
318                 }
319         case MAC_ADDR_TYPE_VLAN:
320         case MAC_ADDR_TYPE_MULTI_FLTR:
321         default:
322                 netif_crit(qdev, ifup, qdev->ndev,
323                            "Address type %d not yet supported.\n", type);
324                 status = -EPERM;
325         }
326 exit:
327         return status;
328 }
329
330 /* Set up a MAC, multicast or VLAN address for the
331  * inbound frame matching.
332  */
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334                                u16 index)
335 {
336         u32 offset = 0;
337         int status = 0;
338
339         switch (type) {
340         case MAC_ADDR_TYPE_MULTI_MAC:
341                 {
342                         u32 upper = (addr[0] << 8) | addr[1];
343                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344                                         (addr[4] << 8) | (addr[5]);
345
346                         status =
347                                 ql_wait_reg_rdy(qdev,
348                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349                         if (status)
350                                 goto exit;
351                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352                                 (index << MAC_ADDR_IDX_SHIFT) |
353                                 type | MAC_ADDR_E);
354                         ql_write32(qdev, MAC_ADDR_DATA, lower);
355                         status =
356                                 ql_wait_reg_rdy(qdev,
357                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358                         if (status)
359                                 goto exit;
360                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361                                 (index << MAC_ADDR_IDX_SHIFT) |
362                                 type | MAC_ADDR_E);
363
364                         ql_write32(qdev, MAC_ADDR_DATA, upper);
365                         status =
366                                 ql_wait_reg_rdy(qdev,
367                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368                         if (status)
369                                 goto exit;
370                         break;
371                 }
372         case MAC_ADDR_TYPE_CAM_MAC:
373                 {
374                         u32 cam_output;
375                         u32 upper = (addr[0] << 8) | addr[1];
376                         u32 lower =
377                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378                             (addr[5]);
379                         status =
380                             ql_wait_reg_rdy(qdev,
381                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382                         if (status)
383                                 goto exit;
384                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
386                                    type);       /* type */
387                         ql_write32(qdev, MAC_ADDR_DATA, lower);
388                         status =
389                             ql_wait_reg_rdy(qdev,
390                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391                         if (status)
392                                 goto exit;
393                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
395                                    type);       /* type */
396                         ql_write32(qdev, MAC_ADDR_DATA, upper);
397                         status =
398                             ql_wait_reg_rdy(qdev,
399                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400                         if (status)
401                                 goto exit;
402                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
403                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
404                                    type);       /* type */
405                         /* This field should also include the queue id
406                            and possibly the function id.  Right now we hardcode
407                            the route field to NIC core.
408                          */
409                         cam_output = (CAM_OUT_ROUTE_NIC |
410                                       (qdev->
411                                        func << CAM_OUT_FUNC_SHIFT) |
412                                         (0 << CAM_OUT_CQ_ID_SHIFT));
413                         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414                                 cam_output |= CAM_OUT_RV;
415                         /* route to NIC core */
416                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417                         break;
418                 }
419         case MAC_ADDR_TYPE_VLAN:
420                 {
421                         u32 enable_bit = *((u32 *) &addr[0]);
422                         /* For VLAN, the addr actually holds a bit that
423                          * either enables or disables the vlan id we are
424                          * addressing. It's either MAC_ADDR_E on or off.
425                          * That's bit-27 we're talking about.
426                          */
427                         status =
428                             ql_wait_reg_rdy(qdev,
429                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430                         if (status)
431                                 goto exit;
432                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
434                                    type |       /* type */
435                                    enable_bit); /* enable/disable */
436                         break;
437                 }
438         case MAC_ADDR_TYPE_MULTI_FLTR:
439         default:
440                 netif_crit(qdev, ifup, qdev->ndev,
441                            "Address type %d not yet supported.\n", type);
442                 status = -EPERM;
443         }
444 exit:
445         return status;
446 }
447
448 /* Set or clear MAC address in hardware. We sometimes
449  * have to clear it to prevent wrong frame routing
450  * especially in a bonding environment.
451  */
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454         int status;
455         char zero_mac_addr[ETH_ALEN];
456         char *addr;
457
458         if (set) {
459                 addr = &qdev->current_mac_addr[0];
460                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461                              "Set Mac addr %pM\n", addr);
462         } else {
463                 memset(zero_mac_addr, 0, ETH_ALEN);
464                 addr = &zero_mac_addr[0];
465                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466                              "Clearing MAC address\n");
467         }
468         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469         if (status)
470                 return status;
471         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474         if (status)
475                 netif_err(qdev, ifup, qdev->ndev,
476                           "Failed to init mac address.\n");
477         return status;
478 }
479
480 void ql_link_on(struct ql_adapter *qdev)
481 {
482         netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483         netif_carrier_on(qdev->ndev);
484         ql_set_mac_addr(qdev, 1);
485 }
486
487 void ql_link_off(struct ql_adapter *qdev)
488 {
489         netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490         netif_carrier_off(qdev->ndev);
491         ql_set_mac_addr(qdev, 0);
492 }
493
494 /* Get a specific frame routing value from the CAM.
495  * Used for debug and reg dump.
496  */
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499         int status = 0;
500
501         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502         if (status)
503                 goto exit;
504
505         ql_write32(qdev, RT_IDX,
506                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508         if (status)
509                 goto exit;
510         *value = ql_read32(qdev, RT_DATA);
511 exit:
512         return status;
513 }
514
515 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
516  * to route different frame types to various inbound queues.  We send broadcast/
517  * multicast/error frames to the default queue for slow handling,
518  * and CAM hit/RSS frames to the fast handling queues.
519  */
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521                               int enable)
522 {
523         int status = -EINVAL; /* Return error if no mask match. */
524         u32 value = 0;
525
526         switch (mask) {
527         case RT_IDX_CAM_HIT:
528                 {
529                         value = RT_IDX_DST_CAM_Q |      /* dest */
530                             RT_IDX_TYPE_NICQ |  /* type */
531                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532                         break;
533                 }
534         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
535                 {
536                         value = RT_IDX_DST_DFLT_Q |     /* dest */
537                             RT_IDX_TYPE_NICQ |  /* type */
538                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539                         break;
540                 }
541         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
542                 {
543                         value = RT_IDX_DST_DFLT_Q |     /* dest */
544                             RT_IDX_TYPE_NICQ |  /* type */
545                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546                         break;
547                 }
548         case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549                 {
550                         value = RT_IDX_DST_DFLT_Q | /* dest */
551                                 RT_IDX_TYPE_NICQ | /* type */
552                                 (RT_IDX_IP_CSUM_ERR_SLOT <<
553                                 RT_IDX_IDX_SHIFT); /* index */
554                         break;
555                 }
556         case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557                 {
558                         value = RT_IDX_DST_DFLT_Q | /* dest */
559                                 RT_IDX_TYPE_NICQ | /* type */
560                                 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561                                 RT_IDX_IDX_SHIFT); /* index */
562                         break;
563                 }
564         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
565                 {
566                         value = RT_IDX_DST_DFLT_Q |     /* dest */
567                             RT_IDX_TYPE_NICQ |  /* type */
568                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569                         break;
570                 }
571         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
572                 {
573                         value = RT_IDX_DST_DFLT_Q |     /* dest */
574                             RT_IDX_TYPE_NICQ |  /* type */
575                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576                         break;
577                 }
578         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
579                 {
580                         value = RT_IDX_DST_DFLT_Q |     /* dest */
581                             RT_IDX_TYPE_NICQ |  /* type */
582                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583                         break;
584                 }
585         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
586                 {
587                         value = RT_IDX_DST_RSS |        /* dest */
588                             RT_IDX_TYPE_NICQ |  /* type */
589                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590                         break;
591                 }
592         case 0:         /* Clear the E-bit on an entry. */
593                 {
594                         value = RT_IDX_DST_DFLT_Q |     /* dest */
595                             RT_IDX_TYPE_NICQ |  /* type */
596                             (index << RT_IDX_IDX_SHIFT);/* index */
597                         break;
598                 }
599         default:
600                 netif_err(qdev, ifup, qdev->ndev,
601                           "Mask type %d not yet supported.\n", mask);
602                 status = -EPERM;
603                 goto exit;
604         }
605
606         if (value) {
607                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608                 if (status)
609                         goto exit;
610                 value |= (enable ? RT_IDX_E : 0);
611                 ql_write32(qdev, RT_IDX, value);
612                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613         }
614 exit:
615         return status;
616 }
617
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629  * Otherwise, we may have multiple outstanding workers and don't want to
630  * enable until the last one finishes. In this case, the irq_cnt gets
631  * incremented every time we queue a worker and decremented every time
632  * a worker finishes.  Once it hits zero we enable the interrupt.
633  */
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636         u32 var = 0;
637         unsigned long hw_flags = 0;
638         struct intr_context *ctx = qdev->intr_context + intr;
639
640         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641                 /* Always enable if we're MSIX multi interrupts and
642                  * it's not the default (zeroeth) interrupt.
643                  */
644                 ql_write32(qdev, INTR_EN,
645                            ctx->intr_en_mask);
646                 var = ql_read32(qdev, STS);
647                 return var;
648         }
649
650         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651         if (atomic_dec_and_test(&ctx->irq_cnt)) {
652                 ql_write32(qdev, INTR_EN,
653                            ctx->intr_en_mask);
654                 var = ql_read32(qdev, STS);
655         }
656         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657         return var;
658 }
659
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662         u32 var = 0;
663         struct intr_context *ctx;
664
665         /* HW disables for us if we're MSIX multi interrupts and
666          * it's not the default (zeroeth) interrupt.
667          */
668         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669                 return 0;
670
671         ctx = qdev->intr_context + intr;
672         spin_lock(&qdev->hw_lock);
673         if (!atomic_read(&ctx->irq_cnt)) {
674                 ql_write32(qdev, INTR_EN,
675                 ctx->intr_dis_mask);
676                 var = ql_read32(qdev, STS);
677         }
678         atomic_inc(&ctx->irq_cnt);
679         spin_unlock(&qdev->hw_lock);
680         return var;
681 }
682
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685         int i;
686         for (i = 0; i < qdev->intr_count; i++) {
687                 /* The enable call does a atomic_dec_and_test
688                  * and enables only if the result is zero.
689                  * So we precharge it here.
690                  */
691                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692                         i == 0))
693                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694                 ql_enable_completion_interrupt(qdev, i);
695         }
696
697 }
698
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701         int status, i;
702         u16 csum = 0;
703         __le16 *flash = (__le16 *)&qdev->flash;
704
705         status = strncmp((char *)&qdev->flash, str, 4);
706         if (status) {
707                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708                 return  status;
709         }
710
711         for (i = 0; i < size; i++)
712                 csum += le16_to_cpu(*flash++);
713
714         if (csum)
715                 netif_err(qdev, ifup, qdev->ndev,
716                           "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717
718         return csum;
719 }
720
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723         int status = 0;
724         /* wait for reg to come ready */
725         status = ql_wait_reg_rdy(qdev,
726                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727         if (status)
728                 goto exit;
729         /* set up for reg read */
730         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731         /* wait for reg to come ready */
732         status = ql_wait_reg_rdy(qdev,
733                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734         if (status)
735                 goto exit;
736          /* This data is stored on flash as an array of
737          * __le32.  Since ql_read32() returns cpu endian
738          * we need to swap it back.
739          */
740         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742         return status;
743 }
744
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747         u32 i, size;
748         int status;
749         __le32 *p = (__le32 *)&qdev->flash;
750         u32 offset;
751         u8 mac_addr[6];
752
753         /* Get flash offset for function and adjust
754          * for dword access.
755          */
756         if (!qdev->port)
757                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758         else
759                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762                 return -ETIMEDOUT;
763
764         size = sizeof(struct flash_params_8000) / sizeof(u32);
765         for (i = 0; i < size; i++, p++) {
766                 status = ql_read_flash_word(qdev, i+offset, p);
767                 if (status) {
768                         netif_err(qdev, ifup, qdev->ndev,
769                                   "Error reading flash.\n");
770                         goto exit;
771                 }
772         }
773
774         status = ql_validate_flash(qdev,
775                         sizeof(struct flash_params_8000) / sizeof(u16),
776                         "8000");
777         if (status) {
778                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779                 status = -EINVAL;
780                 goto exit;
781         }
782
783         /* Extract either manufacturer or BOFM modified
784          * MAC address.
785          */
786         if (qdev->flash.flash_params_8000.data_type1 == 2)
787                 memcpy(mac_addr,
788                         qdev->flash.flash_params_8000.mac_addr1,
789                         qdev->ndev->addr_len);
790         else
791                 memcpy(mac_addr,
792                         qdev->flash.flash_params_8000.mac_addr,
793                         qdev->ndev->addr_len);
794
795         if (!is_valid_ether_addr(mac_addr)) {
796                 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797                 status = -EINVAL;
798                 goto exit;
799         }
800
801         memcpy(qdev->ndev->dev_addr,
802                 mac_addr,
803                 qdev->ndev->addr_len);
804
805 exit:
806         ql_sem_unlock(qdev, SEM_FLASH_MASK);
807         return status;
808 }
809
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812         int i;
813         int status;
814         __le32 *p = (__le32 *)&qdev->flash;
815         u32 offset = 0;
816         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817
818         /* Second function's parameters follow the first
819          * function's.
820          */
821         if (qdev->port)
822                 offset = size;
823
824         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825                 return -ETIMEDOUT;
826
827         for (i = 0; i < size; i++, p++) {
828                 status = ql_read_flash_word(qdev, i+offset, p);
829                 if (status) {
830                         netif_err(qdev, ifup, qdev->ndev,
831                                   "Error reading flash.\n");
832                         goto exit;
833                 }
834
835         }
836
837         status = ql_validate_flash(qdev,
838                         sizeof(struct flash_params_8012) / sizeof(u16),
839                         "8012");
840         if (status) {
841                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842                 status = -EINVAL;
843                 goto exit;
844         }
845
846         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847                 status = -EINVAL;
848                 goto exit;
849         }
850
851         memcpy(qdev->ndev->dev_addr,
852                 qdev->flash.flash_params_8012.mac_addr,
853                 qdev->ndev->addr_len);
854
855 exit:
856         ql_sem_unlock(qdev, SEM_FLASH_MASK);
857         return status;
858 }
859
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861  * register pair.  Each read/write requires us to wait for the ready
862  * bit before reading/writing the data.
863  */
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866         int status;
867         /* wait for reg to come ready */
868         status = ql_wait_reg_rdy(qdev,
869                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870         if (status)
871                 return status;
872         /* write the data to the data reg */
873         ql_write32(qdev, XGMAC_DATA, data);
874         /* trigger the write */
875         ql_write32(qdev, XGMAC_ADDR, reg);
876         return status;
877 }
878
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880  * register pair.  Each read/write requires us to wait for the ready
881  * bit before reading/writing the data.
882  */
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885         int status = 0;
886         /* wait for reg to come ready */
887         status = ql_wait_reg_rdy(qdev,
888                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889         if (status)
890                 goto exit;
891         /* set up for reg read */
892         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893         /* wait for reg to come ready */
894         status = ql_wait_reg_rdy(qdev,
895                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896         if (status)
897                 goto exit;
898         /* get the data */
899         *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901         return status;
902 }
903
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907         int status = 0;
908         u32 hi = 0;
909         u32 lo = 0;
910
911         status = ql_read_xgmac_reg(qdev, reg, &lo);
912         if (status)
913                 goto exit;
914
915         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916         if (status)
917                 goto exit;
918
919         *data = (u64) lo | ((u64) hi << 32);
920
921 exit:
922         return status;
923 }
924
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927         int status;
928         /*
929          * Get MPI firmware version for driver banner
930          * and ethool info.
931          */
932         status = ql_mb_about_fw(qdev);
933         if (status)
934                 goto exit;
935         status = ql_mb_get_fw_state(qdev);
936         if (status)
937                 goto exit;
938         /* Wake up a worker to get/set the TX/RX frame sizes. */
939         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941         return status;
942 }
943
944 /* Take the MAC Core out of reset.
945  * Enable statistics counting.
946  * Take the transmitter/receiver out of reset.
947  * This functionality may be done in the MPI firmware at a
948  * later date.
949  */
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952         int status = 0;
953         u32 data;
954
955         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956                 /* Another function has the semaphore, so
957                  * wait for the port init bit to come ready.
958                  */
959                 netif_info(qdev, link, qdev->ndev,
960                            "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962                 if (status) {
963                         netif_crit(qdev, link, qdev->ndev,
964                                    "Port initialize timed out.\n");
965                 }
966                 return status;
967         }
968
969         netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970         /* Set the core reset. */
971         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972         if (status)
973                 goto end;
974         data |= GLOBAL_CFG_RESET;
975         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976         if (status)
977                 goto end;
978
979         /* Clear the core reset and turn on jumbo for receiver. */
980         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
981         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
982         data |= GLOBAL_CFG_TX_STAT_EN;
983         data |= GLOBAL_CFG_RX_STAT_EN;
984         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985         if (status)
986                 goto end;
987
988         /* Enable transmitter, and clear it's reset. */
989         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990         if (status)
991                 goto end;
992         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
993         data |= TX_CFG_EN;      /* Enable the transmitter. */
994         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995         if (status)
996                 goto end;
997
998         /* Enable receiver and clear it's reset. */
999         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000         if (status)
1001                 goto end;
1002         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1003         data |= RX_CFG_EN;      /* Enable the receiver. */
1004         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005         if (status)
1006                 goto end;
1007
1008         /* Turn on jumbo. */
1009         status =
1010             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011         if (status)
1012                 goto end;
1013         status =
1014             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015         if (status)
1016                 goto end;
1017
1018         /* Signal to the world that the port is enabled.        */
1019         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022         return status;
1023 }
1024
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027         return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034         rx_ring->lbq_curr_idx++;
1035         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036                 rx_ring->lbq_curr_idx = 0;
1037         rx_ring->lbq_free_cnt++;
1038         return lbq_desc;
1039 }
1040
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042                 struct rx_ring *rx_ring)
1043 {
1044         struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046         pci_dma_sync_single_for_cpu(qdev->pdev,
1047                                         dma_unmap_addr(lbq_desc, mapaddr),
1048                                     rx_ring->lbq_buf_size,
1049                                         PCI_DMA_FROMDEVICE);
1050
1051         /* If it's the last chunk of our master page then
1052          * we unmap it.
1053          */
1054         if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055                                         == ql_lbq_block_size(qdev))
1056                 pci_unmap_page(qdev->pdev,
1057                                 lbq_desc->p.pg_chunk.map,
1058                                 ql_lbq_block_size(qdev),
1059                                 PCI_DMA_FROMDEVICE);
1060         return lbq_desc;
1061 }
1062
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067         rx_ring->sbq_curr_idx++;
1068         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069                 rx_ring->sbq_curr_idx = 0;
1070         rx_ring->sbq_free_cnt++;
1071         return sbq_desc;
1072 }
1073
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077         rx_ring->cnsmr_idx++;
1078         rx_ring->curr_entry++;
1079         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080                 rx_ring->cnsmr_idx = 0;
1081                 rx_ring->curr_entry = rx_ring->cq_base;
1082         }
1083 }
1084
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091                                                 struct bq_desc *lbq_desc)
1092 {
1093         if (!rx_ring->pg_chunk.page) {
1094                 u64 map;
1095                 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096                                                 GFP_ATOMIC,
1097                                                 qdev->lbq_buf_order);
1098                 if (unlikely(!rx_ring->pg_chunk.page)) {
1099                         netif_err(qdev, drv, qdev->ndev,
1100                                   "page allocation failed.\n");
1101                         return -ENOMEM;
1102                 }
1103                 rx_ring->pg_chunk.offset = 0;
1104                 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105                                         0, ql_lbq_block_size(qdev),
1106                                         PCI_DMA_FROMDEVICE);
1107                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108                         __free_pages(rx_ring->pg_chunk.page,
1109                                         qdev->lbq_buf_order);
1110                         rx_ring->pg_chunk.page = NULL;
1111                         netif_err(qdev, drv, qdev->ndev,
1112                                   "PCI mapping failed.\n");
1113                         return -ENOMEM;
1114                 }
1115                 rx_ring->pg_chunk.map = map;
1116                 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117         }
1118
1119         /* Copy the current master pg_chunk info
1120          * to the current descriptor.
1121          */
1122         lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124         /* Adjust the master page chunk for next
1125          * buffer get.
1126          */
1127         rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128         if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129                 rx_ring->pg_chunk.page = NULL;
1130                 lbq_desc->p.pg_chunk.last_flag = 1;
1131         } else {
1132                 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133                 get_page(rx_ring->pg_chunk.page);
1134                 lbq_desc->p.pg_chunk.last_flag = 0;
1135         }
1136         return 0;
1137 }
1138 /* Process (refill) a large buffer queue. */
1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140 {
1141         u32 clean_idx = rx_ring->lbq_clean_idx;
1142         u32 start_idx = clean_idx;
1143         struct bq_desc *lbq_desc;
1144         u64 map;
1145         int i;
1146
1147         while (rx_ring->lbq_free_cnt > 32) {
1148                 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150                                      "lbq: try cleaning clean_idx = %d.\n",
1151                                      clean_idx);
1152                         lbq_desc = &rx_ring->lbq[clean_idx];
1153                         if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154                                 rx_ring->lbq_clean_idx = clean_idx;
1155                                 netif_err(qdev, ifup, qdev->ndev,
1156                                                 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157                                                 i, clean_idx);
1158                                 return;
1159                         }
1160
1161                         map = lbq_desc->p.pg_chunk.map +
1162                                 lbq_desc->p.pg_chunk.offset;
1163                                 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164                         dma_unmap_len_set(lbq_desc, maplen,
1165                                         rx_ring->lbq_buf_size);
1166                                 *lbq_desc->addr = cpu_to_le64(map);
1167
1168                         pci_dma_sync_single_for_device(qdev->pdev, map,
1169                                                 rx_ring->lbq_buf_size,
1170                                                 PCI_DMA_FROMDEVICE);
1171                         clean_idx++;
1172                         if (clean_idx == rx_ring->lbq_len)
1173                                 clean_idx = 0;
1174                 }
1175
1176                 rx_ring->lbq_clean_idx = clean_idx;
1177                 rx_ring->lbq_prod_idx += 16;
1178                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179                         rx_ring->lbq_prod_idx = 0;
1180                 rx_ring->lbq_free_cnt -= 16;
1181         }
1182
1183         if (start_idx != clean_idx) {
1184                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185                              "lbq: updating prod idx = %d.\n",
1186                              rx_ring->lbq_prod_idx);
1187                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188                                 rx_ring->lbq_prod_idx_db_reg);
1189         }
1190 }
1191
1192 /* Process (refill) a small buffer queue. */
1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194 {
1195         u32 clean_idx = rx_ring->sbq_clean_idx;
1196         u32 start_idx = clean_idx;
1197         struct bq_desc *sbq_desc;
1198         u64 map;
1199         int i;
1200
1201         while (rx_ring->sbq_free_cnt > 16) {
1202                 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203                         sbq_desc = &rx_ring->sbq[clean_idx];
1204                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205                                      "sbq: try cleaning clean_idx = %d.\n",
1206                                      clean_idx);
1207                         if (sbq_desc->p.skb == NULL) {
1208                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1209                                              qdev->ndev,
1210                                              "sbq: getting new skb for index %d.\n",
1211                                              sbq_desc->index);
1212                                 sbq_desc->p.skb =
1213                                     netdev_alloc_skb(qdev->ndev,
1214                                                      SMALL_BUFFER_SIZE);
1215                                 if (sbq_desc->p.skb == NULL) {
1216                                         rx_ring->sbq_clean_idx = clean_idx;
1217                                         return;
1218                                 }
1219                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220                                 map = pci_map_single(qdev->pdev,
1221                                                      sbq_desc->p.skb->data,
1222                                                      rx_ring->sbq_buf_size,
1223                                                      PCI_DMA_FROMDEVICE);
1224                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225                                         netif_err(qdev, ifup, qdev->ndev,
1226                                                   "PCI mapping failed.\n");
1227                                         rx_ring->sbq_clean_idx = clean_idx;
1228                                         dev_kfree_skb_any(sbq_desc->p.skb);
1229                                         sbq_desc->p.skb = NULL;
1230                                         return;
1231                                 }
1232                                 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233                                 dma_unmap_len_set(sbq_desc, maplen,
1234                                                   rx_ring->sbq_buf_size);
1235                                 *sbq_desc->addr = cpu_to_le64(map);
1236                         }
1237
1238                         clean_idx++;
1239                         if (clean_idx == rx_ring->sbq_len)
1240                                 clean_idx = 0;
1241                 }
1242                 rx_ring->sbq_clean_idx = clean_idx;
1243                 rx_ring->sbq_prod_idx += 16;
1244                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245                         rx_ring->sbq_prod_idx = 0;
1246                 rx_ring->sbq_free_cnt -= 16;
1247         }
1248
1249         if (start_idx != clean_idx) {
1250                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251                              "sbq: updating prod idx = %d.\n",
1252                              rx_ring->sbq_prod_idx);
1253                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254                                 rx_ring->sbq_prod_idx_db_reg);
1255         }
1256 }
1257
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259                                     struct rx_ring *rx_ring)
1260 {
1261         ql_update_sbq(qdev, rx_ring);
1262         ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1266  * fails at some stage, or from the interrupt when a tx completes.
1267  */
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269                           struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271         int i;
1272         for (i = 0; i < mapped; i++) {
1273                 if (i == 0 || (i == 7 && mapped > 7)) {
1274                         /*
1275                          * Unmap the skb->data area, or the
1276                          * external sglist (AKA the Outbound
1277                          * Address List (OAL)).
1278                          * If its the zeroeth element, then it's
1279                          * the skb->data area.  If it's the 7th
1280                          * element and there is more than 6 frags,
1281                          * then its an OAL.
1282                          */
1283                         if (i == 7) {
1284                                 netif_printk(qdev, tx_done, KERN_DEBUG,
1285                                              qdev->ndev,
1286                                              "unmapping OAL area.\n");
1287                         }
1288                         pci_unmap_single(qdev->pdev,
1289                                          dma_unmap_addr(&tx_ring_desc->map[i],
1290                                                         mapaddr),
1291                                          dma_unmap_len(&tx_ring_desc->map[i],
1292                                                        maplen),
1293                                          PCI_DMA_TODEVICE);
1294                 } else {
1295                         netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296                                      "unmapping frag %d.\n", i);
1297                         pci_unmap_page(qdev->pdev,
1298                                        dma_unmap_addr(&tx_ring_desc->map[i],
1299                                                       mapaddr),
1300                                        dma_unmap_len(&tx_ring_desc->map[i],
1301                                                      maplen), PCI_DMA_TODEVICE);
1302                 }
1303         }
1304
1305 }
1306
1307 /* Map the buffers for this transmit.  This will return
1308  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309  */
1310 static int ql_map_send(struct ql_adapter *qdev,
1311                        struct ob_mac_iocb_req *mac_iocb_ptr,
1312                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314         int len = skb_headlen(skb);
1315         dma_addr_t map;
1316         int frag_idx, err, map_idx = 0;
1317         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318         int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320         if (frag_cnt) {
1321                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322                              "frag_cnt = %d.\n", frag_cnt);
1323         }
1324         /*
1325          * Map the skb buffer first.
1326          */
1327         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329         err = pci_dma_mapping_error(qdev->pdev, map);
1330         if (err) {
1331                 netif_err(qdev, tx_queued, qdev->ndev,
1332                           "PCI mapping failed with error: %d\n", err);
1333
1334                 return NETDEV_TX_BUSY;
1335         }
1336
1337         tbd->len = cpu_to_le32(len);
1338         tbd->addr = cpu_to_le64(map);
1339         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341         map_idx++;
1342
1343         /*
1344          * This loop fills the remainder of the 8 address descriptors
1345          * in the IOCB.  If there are more than 7 fragments, then the
1346          * eighth address desc will point to an external list (OAL).
1347          * When this happens, the remainder of the frags will be stored
1348          * in this list.
1349          */
1350         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352                 tbd++;
1353                 if (frag_idx == 6 && frag_cnt > 7) {
1354                         /* Let's tack on an sglist.
1355                          * Our control block will now
1356                          * look like this:
1357                          * iocb->seg[0] = skb->data
1358                          * iocb->seg[1] = frag[0]
1359                          * iocb->seg[2] = frag[1]
1360                          * iocb->seg[3] = frag[2]
1361                          * iocb->seg[4] = frag[3]
1362                          * iocb->seg[5] = frag[4]
1363                          * iocb->seg[6] = frag[5]
1364                          * iocb->seg[7] = ptr to OAL (external sglist)
1365                          * oal->seg[0] = frag[6]
1366                          * oal->seg[1] = frag[7]
1367                          * oal->seg[2] = frag[8]
1368                          * oal->seg[3] = frag[9]
1369                          * oal->seg[4] = frag[10]
1370                          *      etc...
1371                          */
1372                         /* Tack on the OAL in the eighth segment of IOCB. */
1373                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374                                              sizeof(struct oal),
1375                                              PCI_DMA_TODEVICE);
1376                         err = pci_dma_mapping_error(qdev->pdev, map);
1377                         if (err) {
1378                                 netif_err(qdev, tx_queued, qdev->ndev,
1379                                           "PCI mapping outbound address list with error: %d\n",
1380                                           err);
1381                                 goto map_error;
1382                         }
1383
1384                         tbd->addr = cpu_to_le64(map);
1385                         /*
1386                          * The length is the number of fragments
1387                          * that remain to be mapped times the length
1388                          * of our sglist (OAL).
1389                          */
1390                         tbd->len =
1391                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1392                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1393                         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394                                            map);
1395                         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396                                           sizeof(struct oal));
1397                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398                         map_idx++;
1399                 }
1400
1401                 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402                                        DMA_TO_DEVICE);
1403
1404                 err = dma_mapping_error(&qdev->pdev->dev, map);
1405                 if (err) {
1406                         netif_err(qdev, tx_queued, qdev->ndev,
1407                                   "PCI mapping frags failed with error: %d.\n",
1408                                   err);
1409                         goto map_error;
1410                 }
1411
1412                 tbd->addr = cpu_to_le64(map);
1413                 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414                 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415                 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416                                   skb_frag_size(frag));
1417
1418         }
1419         /* Save the number of segments we've mapped. */
1420         tx_ring_desc->map_cnt = map_idx;
1421         /* Terminate the last segment. */
1422         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423         return NETDEV_TX_OK;
1424
1425 map_error:
1426         /*
1427          * If the first frag mapping failed, then i will be zero.
1428          * This causes the unmap of the skb->data area.  Otherwise
1429          * we pass in the number of frags that mapped successfully
1430          * so they can be umapped.
1431          */
1432         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433         return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438                                  struct rx_ring *rx_ring)
1439 {
1440         struct nic_stats *stats = &qdev->nic_stats;
1441
1442         stats->rx_err_count++;
1443         rx_ring->rx_errors++;
1444
1445         switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446         case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447                 stats->rx_code_err++;
1448                 break;
1449         case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450                 stats->rx_oversize_err++;
1451                 break;
1452         case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453                 stats->rx_undersize_err++;
1454                 break;
1455         case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456                 stats->rx_preamble_err++;
1457                 break;
1458         case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459                 stats->rx_frame_len_err++;
1460                 break;
1461         case IB_MAC_IOCB_RSP_ERR_CRC:
1462                 stats->rx_crc_err++;
1463         default:
1464                 break;
1465         }
1466 }
1467
1468 /**
1469  * ql_update_mac_hdr_len - helper routine to update the mac header length
1470  * based on vlan tags if present
1471  */
1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473                                   struct ib_mac_iocb_rsp *ib_mac_rsp,
1474                                   void *page, size_t *len)
1475 {
1476         u16 *tags;
1477
1478         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479                 return;
1480         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481                 tags = (u16 *)page;
1482                 /* Look for stacked vlan tags in ethertype field */
1483                 if (tags[6] == ETH_P_8021Q &&
1484                     tags[8] == ETH_P_8021Q)
1485                         *len += 2 * VLAN_HLEN;
1486                 else
1487                         *len += VLAN_HLEN;
1488         }
1489 }
1490
1491 /* Process an inbound completion from an rx ring. */
1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493                                         struct rx_ring *rx_ring,
1494                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1495                                         u32 length,
1496                                         u16 vlan_id)
1497 {
1498         struct sk_buff *skb;
1499         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500         struct napi_struct *napi = &rx_ring->napi;
1501
1502         /* Frame error, so drop the packet. */
1503         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505                 put_page(lbq_desc->p.pg_chunk.page);
1506                 return;
1507         }
1508         napi->dev = qdev->ndev;
1509
1510         skb = napi_get_frags(napi);
1511         if (!skb) {
1512                 netif_err(qdev, drv, qdev->ndev,
1513                           "Couldn't get an skb, exiting.\n");
1514                 rx_ring->rx_dropped++;
1515                 put_page(lbq_desc->p.pg_chunk.page);
1516                 return;
1517         }
1518         prefetch(lbq_desc->p.pg_chunk.va);
1519         __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520                              lbq_desc->p.pg_chunk.page,
1521                              lbq_desc->p.pg_chunk.offset,
1522                              length);
1523
1524         skb->len += length;
1525         skb->data_len += length;
1526         skb->truesize += length;
1527         skb_shinfo(skb)->nr_frags++;
1528
1529         rx_ring->rx_packets++;
1530         rx_ring->rx_bytes += length;
1531         skb->ip_summed = CHECKSUM_UNNECESSARY;
1532         skb_record_rx_queue(skb, rx_ring->cq_id);
1533         if (vlan_id != 0xffff)
1534                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535         napi_gro_frags(napi);
1536 }
1537
1538 /* Process an inbound completion from an rx ring. */
1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540                                         struct rx_ring *rx_ring,
1541                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1542                                         u32 length,
1543                                         u16 vlan_id)
1544 {
1545         struct net_device *ndev = qdev->ndev;
1546         struct sk_buff *skb = NULL;
1547         void *addr;
1548         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549         struct napi_struct *napi = &rx_ring->napi;
1550         size_t hlen = ETH_HLEN;
1551
1552         skb = netdev_alloc_skb(ndev, length);
1553         if (!skb) {
1554                 rx_ring->rx_dropped++;
1555                 put_page(lbq_desc->p.pg_chunk.page);
1556                 return;
1557         }
1558
1559         addr = lbq_desc->p.pg_chunk.va;
1560         prefetch(addr);
1561
1562         /* Frame error, so drop the packet. */
1563         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565                 goto err_out;
1566         }
1567
1568         /* Update the MAC header length*/
1569         ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
1571         /* The max framesize filter on this chip is set higher than
1572          * MTU since FCoE uses 2k frames.
1573          */
1574         if (skb->len > ndev->mtu + hlen) {
1575                 netif_err(qdev, drv, qdev->ndev,
1576                           "Segment too small, dropping.\n");
1577                 rx_ring->rx_dropped++;
1578                 goto err_out;
1579         }
1580         memcpy(skb_put(skb, hlen), addr, hlen);
1581         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583                      length);
1584         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585                                 lbq_desc->p.pg_chunk.offset + hlen,
1586                                 length - hlen);
1587         skb->len += length - hlen;
1588         skb->data_len += length - hlen;
1589         skb->truesize += length - hlen;
1590
1591         rx_ring->rx_packets++;
1592         rx_ring->rx_bytes += skb->len;
1593         skb->protocol = eth_type_trans(skb, ndev);
1594         skb_checksum_none_assert(skb);
1595
1596         if ((ndev->features & NETIF_F_RXCSUM) &&
1597                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598                 /* TCP frame. */
1599                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601                                      "TCP checksum done!\n");
1602                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1603                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605                         /* Unfragmented ipv4 UDP frame. */
1606                         struct iphdr *iph =
1607                                 (struct iphdr *)((u8 *)addr + hlen);
1608                         if (!(iph->frag_off &
1609                                 htons(IP_MF|IP_OFFSET))) {
1610                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1611                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1612                                              qdev->ndev,
1613                                              "UDP checksum done!\n");
1614                         }
1615                 }
1616         }
1617
1618         skb_record_rx_queue(skb, rx_ring->cq_id);
1619         if (vlan_id != 0xffff)
1620                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622                 napi_gro_receive(napi, skb);
1623         else
1624                 netif_receive_skb(skb);
1625         return;
1626 err_out:
1627         dev_kfree_skb_any(skb);
1628         put_page(lbq_desc->p.pg_chunk.page);
1629 }
1630
1631 /* Process an inbound completion from an rx ring. */
1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633                                         struct rx_ring *rx_ring,
1634                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1635                                         u32 length,
1636                                         u16 vlan_id)
1637 {
1638         struct net_device *ndev = qdev->ndev;
1639         struct sk_buff *skb = NULL;
1640         struct sk_buff *new_skb = NULL;
1641         struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643         skb = sbq_desc->p.skb;
1644         /* Allocate new_skb and copy */
1645         new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646         if (new_skb == NULL) {
1647                 rx_ring->rx_dropped++;
1648                 return;
1649         }
1650         skb_reserve(new_skb, NET_IP_ALIGN);
1651         memcpy(skb_put(new_skb, length), skb->data, length);
1652         skb = new_skb;
1653
1654         /* Frame error, so drop the packet. */
1655         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1656                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1657                 dev_kfree_skb_any(skb);
1658                 return;
1659         }
1660
1661         /* loopback self test for ethtool */
1662         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1663                 ql_check_lb_frame(qdev, skb);
1664                 dev_kfree_skb_any(skb);
1665                 return;
1666         }
1667
1668         /* The max framesize filter on this chip is set higher than
1669          * MTU since FCoE uses 2k frames.
1670          */
1671         if (skb->len > ndev->mtu + ETH_HLEN) {
1672                 dev_kfree_skb_any(skb);
1673                 rx_ring->rx_dropped++;
1674                 return;
1675         }
1676
1677         prefetch(skb->data);
1678         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1679                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1680                              "%s Multicast.\n",
1681                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1682                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1683                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1684                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1685                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1686                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1687         }
1688         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1689                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690                              "Promiscuous Packet.\n");
1691
1692         rx_ring->rx_packets++;
1693         rx_ring->rx_bytes += skb->len;
1694         skb->protocol = eth_type_trans(skb, ndev);
1695         skb_checksum_none_assert(skb);
1696
1697         /* If rx checksum is on, and there are no
1698          * csum or frame errors.
1699          */
1700         if ((ndev->features & NETIF_F_RXCSUM) &&
1701                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1702                 /* TCP frame. */
1703                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1704                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1705                                      "TCP checksum done!\n");
1706                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1707                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1708                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1709                         /* Unfragmented ipv4 UDP frame. */
1710                         struct iphdr *iph = (struct iphdr *) skb->data;
1711                         if (!(iph->frag_off &
1712                                 htons(IP_MF|IP_OFFSET))) {
1713                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1714                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1715                                              qdev->ndev,
1716                                              "UDP checksum done!\n");
1717                         }
1718                 }
1719         }
1720
1721         skb_record_rx_queue(skb, rx_ring->cq_id);
1722         if (vlan_id != 0xffff)
1723                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1724         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1725                 napi_gro_receive(&rx_ring->napi, skb);
1726         else
1727                 netif_receive_skb(skb);
1728 }
1729
1730 static void ql_realign_skb(struct sk_buff *skb, int len)
1731 {
1732         void *temp_addr = skb->data;
1733
1734         /* Undo the skb_reserve(skb,32) we did before
1735          * giving to hardware, and realign data on
1736          * a 2-byte boundary.
1737          */
1738         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1739         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1740         skb_copy_to_linear_data(skb, temp_addr,
1741                 (unsigned int)len);
1742 }
1743
1744 /*
1745  * This function builds an skb for the given inbound
1746  * completion.  It will be rewritten for readability in the near
1747  * future, but for not it works well.
1748  */
1749 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1750                                        struct rx_ring *rx_ring,
1751                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1752 {
1753         struct bq_desc *lbq_desc;
1754         struct bq_desc *sbq_desc;
1755         struct sk_buff *skb = NULL;
1756         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1757         u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1758         size_t hlen = ETH_HLEN;
1759
1760         /*
1761          * Handle the header buffer if present.
1762          */
1763         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1764             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1765                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1766                              "Header of %d bytes in small buffer.\n", hdr_len);
1767                 /*
1768                  * Headers fit nicely into a small buffer.
1769                  */
1770                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1771                 pci_unmap_single(qdev->pdev,
1772                                 dma_unmap_addr(sbq_desc, mapaddr),
1773                                 dma_unmap_len(sbq_desc, maplen),
1774                                 PCI_DMA_FROMDEVICE);
1775                 skb = sbq_desc->p.skb;
1776                 ql_realign_skb(skb, hdr_len);
1777                 skb_put(skb, hdr_len);
1778                 sbq_desc->p.skb = NULL;
1779         }
1780
1781         /*
1782          * Handle the data buffer(s).
1783          */
1784         if (unlikely(!length)) {        /* Is there data too? */
1785                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1786                              "No Data buffer in this packet.\n");
1787                 return skb;
1788         }
1789
1790         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1791                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1792                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1793                                      "Headers in small, data of %d bytes in small, combine them.\n",
1794                                      length);
1795                         /*
1796                          * Data is less than small buffer size so it's
1797                          * stuffed in a small buffer.
1798                          * For this case we append the data
1799                          * from the "data" small buffer to the "header" small
1800                          * buffer.
1801                          */
1802                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1803                         pci_dma_sync_single_for_cpu(qdev->pdev,
1804                                                     dma_unmap_addr
1805                                                     (sbq_desc, mapaddr),
1806                                                     dma_unmap_len
1807                                                     (sbq_desc, maplen),
1808                                                     PCI_DMA_FROMDEVICE);
1809                         memcpy(skb_put(skb, length),
1810                                sbq_desc->p.skb->data, length);
1811                         pci_dma_sync_single_for_device(qdev->pdev,
1812                                                        dma_unmap_addr
1813                                                        (sbq_desc,
1814                                                         mapaddr),
1815                                                        dma_unmap_len
1816                                                        (sbq_desc,
1817                                                         maplen),
1818                                                        PCI_DMA_FROMDEVICE);
1819                 } else {
1820                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1821                                      "%d bytes in a single small buffer.\n",
1822                                      length);
1823                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1824                         skb = sbq_desc->p.skb;
1825                         ql_realign_skb(skb, length);
1826                         skb_put(skb, length);
1827                         pci_unmap_single(qdev->pdev,
1828                                          dma_unmap_addr(sbq_desc,
1829                                                         mapaddr),
1830                                          dma_unmap_len(sbq_desc,
1831                                                        maplen),
1832                                          PCI_DMA_FROMDEVICE);
1833                         sbq_desc->p.skb = NULL;
1834                 }
1835         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1836                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1837                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1838                                      "Header in small, %d bytes in large. Chain large to small!\n",
1839                                      length);
1840                         /*
1841                          * The data is in a single large buffer.  We
1842                          * chain it to the header buffer's skb and let
1843                          * it rip.
1844                          */
1845                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1846                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1847                                      "Chaining page at offset = %d, for %d bytes  to skb.\n",
1848                                      lbq_desc->p.pg_chunk.offset, length);
1849                         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1850                                                 lbq_desc->p.pg_chunk.offset,
1851                                                 length);
1852                         skb->len += length;
1853                         skb->data_len += length;
1854                         skb->truesize += length;
1855                 } else {
1856                         /*
1857                          * The headers and data are in a single large buffer. We
1858                          * copy it to a new skb and let it go. This can happen with
1859                          * jumbo mtu on a non-TCP/UDP frame.
1860                          */
1861                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1862                         skb = netdev_alloc_skb(qdev->ndev, length);
1863                         if (skb == NULL) {
1864                                 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1865                                              "No skb available, drop the packet.\n");
1866                                 return NULL;
1867                         }
1868                         pci_unmap_page(qdev->pdev,
1869                                        dma_unmap_addr(lbq_desc,
1870                                                       mapaddr),
1871                                        dma_unmap_len(lbq_desc, maplen),
1872                                        PCI_DMA_FROMDEVICE);
1873                         skb_reserve(skb, NET_IP_ALIGN);
1874                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1875                                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1876                                      length);
1877                         skb_fill_page_desc(skb, 0,
1878                                                 lbq_desc->p.pg_chunk.page,
1879                                                 lbq_desc->p.pg_chunk.offset,
1880                                                 length);
1881                         skb->len += length;
1882                         skb->data_len += length;
1883                         skb->truesize += length;
1884                         length -= length;
1885                         ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1886                                               lbq_desc->p.pg_chunk.va,
1887                                               &hlen);
1888                         __pskb_pull_tail(skb, hlen);
1889                 }
1890         } else {
1891                 /*
1892                  * The data is in a chain of large buffers
1893                  * pointed to by a small buffer.  We loop
1894                  * thru and chain them to the our small header
1895                  * buffer's skb.
1896                  * frags:  There are 18 max frags and our small
1897                  *         buffer will hold 32 of them. The thing is,
1898                  *         we'll use 3 max for our 9000 byte jumbo
1899                  *         frames.  If the MTU goes up we could
1900                  *          eventually be in trouble.
1901                  */
1902                 int size, i = 0;
1903                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1904                 pci_unmap_single(qdev->pdev,
1905                                  dma_unmap_addr(sbq_desc, mapaddr),
1906                                  dma_unmap_len(sbq_desc, maplen),
1907                                  PCI_DMA_FROMDEVICE);
1908                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1909                         /*
1910                          * This is an non TCP/UDP IP frame, so
1911                          * the headers aren't split into a small
1912                          * buffer.  We have to use the small buffer
1913                          * that contains our sg list as our skb to
1914                          * send upstairs. Copy the sg list here to
1915                          * a local buffer and use it to find the
1916                          * pages to chain.
1917                          */
1918                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1919                                      "%d bytes of headers & data in chain of large.\n",
1920                                      length);
1921                         skb = sbq_desc->p.skb;
1922                         sbq_desc->p.skb = NULL;
1923                         skb_reserve(skb, NET_IP_ALIGN);
1924                 }
1925                 do {
1926                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1927                         size = (length < rx_ring->lbq_buf_size) ? length :
1928                                 rx_ring->lbq_buf_size;
1929
1930                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1931                                      "Adding page %d to skb for %d bytes.\n",
1932                                      i, size);
1933                         skb_fill_page_desc(skb, i,
1934                                                 lbq_desc->p.pg_chunk.page,
1935                                                 lbq_desc->p.pg_chunk.offset,
1936                                                 size);
1937                         skb->len += size;
1938                         skb->data_len += size;
1939                         skb->truesize += size;
1940                         length -= size;
1941                         i++;
1942                 } while (length > 0);
1943                 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1944                                       &hlen);
1945                 __pskb_pull_tail(skb, hlen);
1946         }
1947         return skb;
1948 }
1949
1950 /* Process an inbound completion from an rx ring. */
1951 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1952                                    struct rx_ring *rx_ring,
1953                                    struct ib_mac_iocb_rsp *ib_mac_rsp,
1954                                    u16 vlan_id)
1955 {
1956         struct net_device *ndev = qdev->ndev;
1957         struct sk_buff *skb = NULL;
1958
1959         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1960
1961         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1962         if (unlikely(!skb)) {
1963                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1964                              "No skb available, drop packet.\n");
1965                 rx_ring->rx_dropped++;
1966                 return;
1967         }
1968
1969         /* Frame error, so drop the packet. */
1970         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1971                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1972                 dev_kfree_skb_any(skb);
1973                 return;
1974         }
1975
1976         /* The max framesize filter on this chip is set higher than
1977          * MTU since FCoE uses 2k frames.
1978          */
1979         if (skb->len > ndev->mtu + ETH_HLEN) {
1980                 dev_kfree_skb_any(skb);
1981                 rx_ring->rx_dropped++;
1982                 return;
1983         }
1984
1985         /* loopback self test for ethtool */
1986         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1987                 ql_check_lb_frame(qdev, skb);
1988                 dev_kfree_skb_any(skb);
1989                 return;
1990         }
1991
1992         prefetch(skb->data);
1993         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1994                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1995                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1996                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1997                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1998                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1999                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2000                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2001                 rx_ring->rx_multicast++;
2002         }
2003         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2004                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2005                              "Promiscuous Packet.\n");
2006         }
2007
2008         skb->protocol = eth_type_trans(skb, ndev);
2009         skb_checksum_none_assert(skb);
2010
2011         /* If rx checksum is on, and there are no
2012          * csum or frame errors.
2013          */
2014         if ((ndev->features & NETIF_F_RXCSUM) &&
2015                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2016                 /* TCP frame. */
2017                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2018                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2019                                      "TCP checksum done!\n");
2020                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2021                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2022                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2023                 /* Unfragmented ipv4 UDP frame. */
2024                         struct iphdr *iph = (struct iphdr *) skb->data;
2025                         if (!(iph->frag_off &
2026                                 htons(IP_MF|IP_OFFSET))) {
2027                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2028                                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2029                                              "TCP checksum done!\n");
2030                         }
2031                 }
2032         }
2033
2034         rx_ring->rx_packets++;
2035         rx_ring->rx_bytes += skb->len;
2036         skb_record_rx_queue(skb, rx_ring->cq_id);
2037         if (vlan_id != 0xffff)
2038                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2039         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2040                 napi_gro_receive(&rx_ring->napi, skb);
2041         else
2042                 netif_receive_skb(skb);
2043 }
2044
2045 /* Process an inbound completion from an rx ring. */
2046 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2047                                         struct rx_ring *rx_ring,
2048                                         struct ib_mac_iocb_rsp *ib_mac_rsp)
2049 {
2050         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2051         u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2052                         (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2053                         ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2054                         IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2055
2056         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2057
2058         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2059                 /* The data and headers are split into
2060                  * separate buffers.
2061                  */
2062                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2063                                                 vlan_id);
2064         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2065                 /* The data fit in a single small buffer.
2066                  * Allocate a new skb, copy the data and
2067                  * return the buffer to the free pool.
2068                  */
2069                 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2070                                                 length, vlan_id);
2071         } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2072                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2073                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2074                 /* TCP packet in a page chunk that's been checksummed.
2075                  * Tack it on to our GRO skb and let it go.
2076                  */
2077                 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2078                                                 length, vlan_id);
2079         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2080                 /* Non-TCP packet in a page chunk. Allocate an
2081                  * skb, tack it on frags, and send it up.
2082                  */
2083                 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2084                                                 length, vlan_id);
2085         } else {
2086                 /* Non-TCP/UDP large frames that span multiple buffers
2087                  * can be processed corrrectly by the split frame logic.
2088                  */
2089                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2090                                                 vlan_id);
2091         }
2092
2093         return (unsigned long)length;
2094 }
2095
2096 /* Process an outbound completion from an rx ring. */
2097 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2098                                    struct ob_mac_iocb_rsp *mac_rsp)
2099 {
2100         struct tx_ring *tx_ring;
2101         struct tx_ring_desc *tx_ring_desc;
2102
2103         QL_DUMP_OB_MAC_RSP(mac_rsp);
2104         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2105         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2106         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2107         tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2108         tx_ring->tx_packets++;
2109         dev_kfree_skb(tx_ring_desc->skb);
2110         tx_ring_desc->skb = NULL;
2111
2112         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2113                                         OB_MAC_IOCB_RSP_S |
2114                                         OB_MAC_IOCB_RSP_L |
2115                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2116                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2117                         netif_warn(qdev, tx_done, qdev->ndev,
2118                                    "Total descriptor length did not match transfer length.\n");
2119                 }
2120                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2121                         netif_warn(qdev, tx_done, qdev->ndev,
2122                                    "Frame too short to be valid, not sent.\n");
2123                 }
2124                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2125                         netif_warn(qdev, tx_done, qdev->ndev,
2126                                    "Frame too long, but sent anyway.\n");
2127                 }
2128                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2129                         netif_warn(qdev, tx_done, qdev->ndev,
2130                                    "PCI backplane error. Frame not sent.\n");
2131                 }
2132         }
2133         atomic_inc(&tx_ring->tx_count);
2134 }
2135
2136 /* Fire up a handler to reset the MPI processor. */
2137 void ql_queue_fw_error(struct ql_adapter *qdev)
2138 {
2139         ql_link_off(qdev);
2140         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2141 }
2142
2143 void ql_queue_asic_error(struct ql_adapter *qdev)
2144 {
2145         ql_link_off(qdev);
2146         ql_disable_interrupts(qdev);
2147         /* Clear adapter up bit to signal the recovery
2148          * process that it shouldn't kill the reset worker
2149          * thread
2150          */
2151         clear_bit(QL_ADAPTER_UP, &qdev->flags);
2152         /* Set asic recovery bit to indicate reset process that we are
2153          * in fatal error recovery process rather than normal close
2154          */
2155         set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2156         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2157 }
2158
2159 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2160                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
2161 {
2162         switch (ib_ae_rsp->event) {
2163         case MGMT_ERR_EVENT:
2164                 netif_err(qdev, rx_err, qdev->ndev,
2165                           "Management Processor Fatal Error.\n");
2166                 ql_queue_fw_error(qdev);
2167                 return;
2168
2169         case CAM_LOOKUP_ERR_EVENT:
2170                 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2171                 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2172                 ql_queue_asic_error(qdev);
2173                 return;
2174
2175         case SOFT_ECC_ERROR_EVENT:
2176                 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2177                 ql_queue_asic_error(qdev);
2178                 break;
2179
2180         case PCI_ERR_ANON_BUF_RD:
2181                 netdev_err(qdev->ndev, "PCI error occurred when reading "
2182                                         "anonymous buffers from rx_ring %d.\n",
2183                                         ib_ae_rsp->q_id);
2184                 ql_queue_asic_error(qdev);
2185                 break;
2186
2187         default:
2188                 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2189                           ib_ae_rsp->event);
2190                 ql_queue_asic_error(qdev);
2191                 break;
2192         }
2193 }
2194
2195 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2196 {
2197         struct ql_adapter *qdev = rx_ring->qdev;
2198         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2199         struct ob_mac_iocb_rsp *net_rsp = NULL;
2200         int count = 0;
2201
2202         struct tx_ring *tx_ring;
2203         /* While there are entries in the completion queue. */
2204         while (prod != rx_ring->cnsmr_idx) {
2205
2206                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2207                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2208                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2209
2210                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2211                 rmb();
2212                 switch (net_rsp->opcode) {
2213
2214                 case OPCODE_OB_MAC_TSO_IOCB:
2215                 case OPCODE_OB_MAC_IOCB:
2216                         ql_process_mac_tx_intr(qdev, net_rsp);
2217                         break;
2218                 default:
2219                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2220                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2221                                      net_rsp->opcode);
2222                 }
2223                 count++;
2224                 ql_update_cq(rx_ring);
2225                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2226         }
2227         if (!net_rsp)
2228                 return 0;
2229         ql_write_cq_idx(rx_ring);
2230         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2231         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2232                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2233                         /*
2234                          * The queue got stopped because the tx_ring was full.
2235                          * Wake it up, because it's now at least 25% empty.
2236                          */
2237                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2238         }
2239
2240         return count;
2241 }
2242
2243 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2244 {
2245         struct ql_adapter *qdev = rx_ring->qdev;
2246         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2247         struct ql_net_rsp_iocb *net_rsp;
2248         int count = 0;
2249
2250         /* While there are entries in the completion queue. */
2251         while (prod != rx_ring->cnsmr_idx) {
2252
2253                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2254                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2255                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2256
2257                 net_rsp = rx_ring->curr_entry;
2258                 rmb();
2259                 switch (net_rsp->opcode) {
2260                 case OPCODE_IB_MAC_IOCB:
2261                         ql_process_mac_rx_intr(qdev, rx_ring,
2262                                                (struct ib_mac_iocb_rsp *)
2263                                                net_rsp);
2264                         break;
2265
2266                 case OPCODE_IB_AE_IOCB:
2267                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2268                                                 net_rsp);
2269                         break;
2270                 default:
2271                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2272                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2273                                      net_rsp->opcode);
2274                         break;
2275                 }
2276                 count++;
2277                 ql_update_cq(rx_ring);
2278                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2279                 if (count == budget)
2280                         break;
2281         }
2282         ql_update_buffer_queues(qdev, rx_ring);
2283         ql_write_cq_idx(rx_ring);
2284         return count;
2285 }
2286
2287 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2288 {
2289         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2290         struct ql_adapter *qdev = rx_ring->qdev;
2291         struct rx_ring *trx_ring;
2292         int i, work_done = 0;
2293         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2294
2295         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2296                      "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2297
2298         /* Service the TX rings first.  They start
2299          * right after the RSS rings. */
2300         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2301                 trx_ring = &qdev->rx_ring[i];
2302                 /* If this TX completion ring belongs to this vector and
2303                  * it's not empty then service it.
2304                  */
2305                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2306                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2307                                         trx_ring->cnsmr_idx)) {
2308                         netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2309                                      "%s: Servicing TX completion ring %d.\n",
2310                                      __func__, trx_ring->cq_id);
2311                         ql_clean_outbound_rx_ring(trx_ring);
2312                 }
2313         }
2314
2315         /*
2316          * Now service the RSS ring if it's active.
2317          */
2318         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2319                                         rx_ring->cnsmr_idx) {
2320                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2321                              "%s: Servicing RX completion ring %d.\n",
2322                              __func__, rx_ring->cq_id);
2323                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2324         }
2325
2326         if (work_done < budget) {
2327                 napi_complete(napi);
2328                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2329         }
2330         return work_done;
2331 }
2332
2333 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2334 {
2335         struct ql_adapter *qdev = netdev_priv(ndev);
2336
2337         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2338                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2339                                  NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2340         } else {
2341                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2342         }
2343 }
2344
2345 /**
2346  * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2347  * based on the features to enable/disable hardware vlan accel
2348  */
2349 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2350                                         netdev_features_t features)
2351 {
2352         struct ql_adapter *qdev = netdev_priv(ndev);
2353         int status = 0;
2354
2355         status = ql_adapter_down(qdev);
2356         if (status) {
2357                 netif_err(qdev, link, qdev->ndev,
2358                           "Failed to bring down the adapter\n");
2359                 return status;
2360         }
2361
2362         /* update the features with resent change */
2363         ndev->features = features;
2364
2365         status = ql_adapter_up(qdev);
2366         if (status) {
2367                 netif_err(qdev, link, qdev->ndev,
2368                           "Failed to bring up the adapter\n");
2369                 return status;
2370         }
2371         return status;
2372 }
2373
2374 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2375         netdev_features_t features)
2376 {
2377         int err;
2378
2379         /* Update the behavior of vlan accel in the adapter */
2380         err = qlge_update_hw_vlan_features(ndev, features);
2381         if (err)
2382                 return err;
2383
2384         return features;
2385 }
2386
2387 static int qlge_set_features(struct net_device *ndev,
2388         netdev_features_t features)
2389 {
2390         netdev_features_t changed = ndev->features ^ features;
2391
2392         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2393                 qlge_vlan_mode(ndev, features);
2394
2395         return 0;
2396 }
2397
2398 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2399 {
2400         u32 enable_bit = MAC_ADDR_E;
2401         int err;
2402
2403         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2404                                   MAC_ADDR_TYPE_VLAN, vid);
2405         if (err)
2406                 netif_err(qdev, ifup, qdev->ndev,
2407                           "Failed to init vlan address.\n");
2408         return err;
2409 }
2410
2411 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2412 {
2413         struct ql_adapter *qdev = netdev_priv(ndev);
2414         int status;
2415         int err;
2416
2417         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2418         if (status)
2419                 return status;
2420
2421         err = __qlge_vlan_rx_add_vid(qdev, vid);
2422         set_bit(vid, qdev->active_vlans);
2423
2424         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2425
2426         return err;
2427 }
2428
2429 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2430 {
2431         u32 enable_bit = 0;
2432         int err;
2433
2434         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2435                                   MAC_ADDR_TYPE_VLAN, vid);
2436         if (err)
2437                 netif_err(qdev, ifup, qdev->ndev,
2438                           "Failed to clear vlan address.\n");
2439         return err;
2440 }
2441
2442 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2443 {
2444         struct ql_adapter *qdev = netdev_priv(ndev);
2445         int status;
2446         int err;
2447
2448         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2449         if (status)
2450                 return status;
2451
2452         err = __qlge_vlan_rx_kill_vid(qdev, vid);
2453         clear_bit(vid, qdev->active_vlans);
2454
2455         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2456
2457         return err;
2458 }
2459
2460 static void qlge_restore_vlan(struct ql_adapter *qdev)
2461 {
2462         int status;
2463         u16 vid;
2464
2465         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2466         if (status)
2467                 return;
2468
2469         for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2470                 __qlge_vlan_rx_add_vid(qdev, vid);
2471
2472         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2473 }
2474
2475 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2476 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2477 {
2478         struct rx_ring *rx_ring = dev_id;
2479         napi_schedule(&rx_ring->napi);
2480         return IRQ_HANDLED;
2481 }
2482
2483 /* This handles a fatal error, MPI activity, and the default
2484  * rx_ring in an MSI-X multiple vector environment.
2485  * In MSI/Legacy environment it also process the rest of
2486  * the rx_rings.
2487  */
2488 static irqreturn_t qlge_isr(int irq, void *dev_id)
2489 {
2490         struct rx_ring *rx_ring = dev_id;
2491         struct ql_adapter *qdev = rx_ring->qdev;
2492         struct intr_context *intr_context = &qdev->intr_context[0];
2493         u32 var;
2494         int work_done = 0;
2495
2496         spin_lock(&qdev->hw_lock);
2497         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2498                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2499                              "Shared Interrupt, Not ours!\n");
2500                 spin_unlock(&qdev->hw_lock);
2501                 return IRQ_NONE;
2502         }
2503         spin_unlock(&qdev->hw_lock);
2504
2505         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2506
2507         /*
2508          * Check for fatal error.
2509          */
2510         if (var & STS_FE) {
2511                 ql_queue_asic_error(qdev);
2512                 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2513                 var = ql_read32(qdev, ERR_STS);
2514                 netdev_err(qdev->ndev, "Resetting chip. "
2515                                         "Error Status Register = 0x%x\n", var);
2516                 return IRQ_HANDLED;
2517         }
2518
2519         /*
2520          * Check MPI processor activity.
2521          */
2522         if ((var & STS_PI) &&
2523                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2524                 /*
2525                  * We've got an async event or mailbox completion.
2526                  * Handle it and clear the source of the interrupt.
2527                  */
2528                 netif_err(qdev, intr, qdev->ndev,
2529                           "Got MPI processor interrupt.\n");
2530                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2531                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2532                 queue_delayed_work_on(smp_processor_id(),
2533                                 qdev->workqueue, &qdev->mpi_work, 0);
2534                 work_done++;
2535         }
2536
2537         /*
2538          * Get the bit-mask that shows the active queues for this
2539          * pass.  Compare it to the queues that this irq services
2540          * and call napi if there's a match.
2541          */
2542         var = ql_read32(qdev, ISR1);
2543         if (var & intr_context->irq_mask) {
2544                 netif_info(qdev, intr, qdev->ndev,
2545                            "Waking handler for rx_ring[0].\n");
2546                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2547                 napi_schedule(&rx_ring->napi);
2548                 work_done++;
2549         }
2550         ql_enable_completion_interrupt(qdev, intr_context->intr);
2551         return work_done ? IRQ_HANDLED : IRQ_NONE;
2552 }
2553
2554 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2555 {
2556
2557         if (skb_is_gso(skb)) {
2558                 int err;
2559                 __be16 l3_proto = vlan_get_protocol(skb);
2560
2561                 err = skb_cow_head(skb, 0);
2562                 if (err < 0)
2563                         return err;
2564
2565                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2566                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2567                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2568                 mac_iocb_ptr->total_hdrs_len =
2569                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2570                 mac_iocb_ptr->net_trans_offset =
2571                     cpu_to_le16(skb_network_offset(skb) |
2572                                 skb_transport_offset(skb)
2573                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2574                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2575                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2576                 if (likely(l3_proto == htons(ETH_P_IP))) {
2577                         struct iphdr *iph = ip_hdr(skb);
2578                         iph->check = 0;
2579                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2580                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2581                                                                  iph->daddr, 0,
2582                                                                  IPPROTO_TCP,
2583                                                                  0);
2584                 } else if (l3_proto == htons(ETH_P_IPV6)) {
2585                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2586                         tcp_hdr(skb)->check =
2587                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2588                                              &ipv6_hdr(skb)->daddr,
2589                                              0, IPPROTO_TCP, 0);
2590                 }
2591                 return 1;
2592         }
2593         return 0;
2594 }
2595
2596 static void ql_hw_csum_setup(struct sk_buff *skb,
2597                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2598 {
2599         int len;
2600         struct iphdr *iph = ip_hdr(skb);
2601         __sum16 *check;
2602         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2603         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2604         mac_iocb_ptr->net_trans_offset =
2605                 cpu_to_le16(skb_network_offset(skb) |
2606                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2607
2608         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2609         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2610         if (likely(iph->protocol == IPPROTO_TCP)) {
2611                 check = &(tcp_hdr(skb)->check);
2612                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2613                 mac_iocb_ptr->total_hdrs_len =
2614                     cpu_to_le16(skb_transport_offset(skb) +
2615                                 (tcp_hdr(skb)->doff << 2));
2616         } else {
2617                 check = &(udp_hdr(skb)->check);
2618                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2619                 mac_iocb_ptr->total_hdrs_len =
2620                     cpu_to_le16(skb_transport_offset(skb) +
2621                                 sizeof(struct udphdr));
2622         }
2623         *check = ~csum_tcpudp_magic(iph->saddr,
2624                                     iph->daddr, len, iph->protocol, 0);
2625 }
2626
2627 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2628 {
2629         struct tx_ring_desc *tx_ring_desc;
2630         struct ob_mac_iocb_req *mac_iocb_ptr;
2631         struct ql_adapter *qdev = netdev_priv(ndev);
2632         int tso;
2633         struct tx_ring *tx_ring;
2634         u32 tx_ring_idx = (u32) skb->queue_mapping;
2635
2636         tx_ring = &qdev->tx_ring[tx_ring_idx];
2637
2638         if (skb_padto(skb, ETH_ZLEN))
2639                 return NETDEV_TX_OK;
2640
2641         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2642                 netif_info(qdev, tx_queued, qdev->ndev,
2643                            "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2644                            __func__, tx_ring_idx);
2645                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2646                 tx_ring->tx_errors++;
2647                 return NETDEV_TX_BUSY;
2648         }
2649         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2650         mac_iocb_ptr = tx_ring_desc->queue_entry;
2651         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2652
2653         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2654         mac_iocb_ptr->tid = tx_ring_desc->index;
2655         /* We use the upper 32-bits to store the tx queue for this IO.
2656          * When we get the completion we can use it to establish the context.
2657          */
2658         mac_iocb_ptr->txq_idx = tx_ring_idx;
2659         tx_ring_desc->skb = skb;
2660
2661         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2662
2663         if (vlan_tx_tag_present(skb)) {
2664                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2665                              "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2666                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2667                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2668         }
2669         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2670         if (tso < 0) {
2671                 dev_kfree_skb_any(skb);
2672                 return NETDEV_TX_OK;
2673         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2674                 ql_hw_csum_setup(skb,
2675                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2676         }
2677         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2678                         NETDEV_TX_OK) {
2679                 netif_err(qdev, tx_queued, qdev->ndev,
2680                           "Could not map the segments.\n");
2681                 tx_ring->tx_errors++;
2682                 return NETDEV_TX_BUSY;
2683         }
2684         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2685         tx_ring->prod_idx++;
2686         if (tx_ring->prod_idx == tx_ring->wq_len)
2687                 tx_ring->prod_idx = 0;
2688         wmb();
2689
2690         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2691         netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2692                      "tx queued, slot %d, len %d\n",
2693                      tx_ring->prod_idx, skb->len);
2694
2695         atomic_dec(&tx_ring->tx_count);
2696
2697         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2698                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2699                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2700                         /*
2701                          * The queue got stopped because the tx_ring was full.
2702                          * Wake it up, because it's now at least 25% empty.
2703                          */
2704                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2705         }
2706         return NETDEV_TX_OK;
2707 }
2708
2709
2710 static void ql_free_shadow_space(struct ql_adapter *qdev)
2711 {
2712         if (qdev->rx_ring_shadow_reg_area) {
2713                 pci_free_consistent(qdev->pdev,
2714                                     PAGE_SIZE,
2715                                     qdev->rx_ring_shadow_reg_area,
2716                                     qdev->rx_ring_shadow_reg_dma);
2717                 qdev->rx_ring_shadow_reg_area = NULL;
2718         }
2719         if (qdev->tx_ring_shadow_reg_area) {
2720                 pci_free_consistent(qdev->pdev,
2721                                     PAGE_SIZE,
2722                                     qdev->tx_ring_shadow_reg_area,
2723                                     qdev->tx_ring_shadow_reg_dma);
2724                 qdev->tx_ring_shadow_reg_area = NULL;
2725         }
2726 }
2727
2728 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2729 {
2730         qdev->rx_ring_shadow_reg_area =
2731                 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2732                                       &qdev->rx_ring_shadow_reg_dma);
2733         if (qdev->rx_ring_shadow_reg_area == NULL) {
2734                 netif_err(qdev, ifup, qdev->ndev,
2735                           "Allocation of RX shadow space failed.\n");
2736                 return -ENOMEM;
2737         }
2738
2739         qdev->tx_ring_shadow_reg_area =
2740                 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2741                                       &qdev->tx_ring_shadow_reg_dma);
2742         if (qdev->tx_ring_shadow_reg_area == NULL) {
2743                 netif_err(qdev, ifup, qdev->ndev,
2744                           "Allocation of TX shadow space failed.\n");
2745                 goto err_wqp_sh_area;
2746         }
2747         return 0;
2748
2749 err_wqp_sh_area:
2750         pci_free_consistent(qdev->pdev,
2751                             PAGE_SIZE,
2752                             qdev->rx_ring_shadow_reg_area,
2753                             qdev->rx_ring_shadow_reg_dma);
2754         return -ENOMEM;
2755 }
2756
2757 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2758 {
2759         struct tx_ring_desc *tx_ring_desc;
2760         int i;
2761         struct ob_mac_iocb_req *mac_iocb_ptr;
2762
2763         mac_iocb_ptr = tx_ring->wq_base;
2764         tx_ring_desc = tx_ring->q;
2765         for (i = 0; i < tx_ring->wq_len; i++) {
2766                 tx_ring_desc->index = i;
2767                 tx_ring_desc->skb = NULL;
2768                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2769                 mac_iocb_ptr++;
2770                 tx_ring_desc++;
2771         }
2772         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2773 }
2774
2775 static void ql_free_tx_resources(struct ql_adapter *qdev,
2776                                  struct tx_ring *tx_ring)
2777 {
2778         if (tx_ring->wq_base) {
2779                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2780                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2781                 tx_ring->wq_base = NULL;
2782         }
2783         kfree(tx_ring->q);
2784         tx_ring->q = NULL;
2785 }
2786
2787 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2788                                  struct tx_ring *tx_ring)
2789 {
2790         tx_ring->wq_base =
2791             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2792                                  &tx_ring->wq_base_dma);
2793
2794         if ((tx_ring->wq_base == NULL) ||
2795             tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2796                 goto pci_alloc_err;
2797
2798         tx_ring->q =
2799             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2800         if (tx_ring->q == NULL)
2801                 goto err;
2802
2803         return 0;
2804 err:
2805         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2806                             tx_ring->wq_base, tx_ring->wq_base_dma);
2807         tx_ring->wq_base = NULL;
2808 pci_alloc_err:
2809         netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2810         return -ENOMEM;
2811 }
2812
2813 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2814 {
2815         struct bq_desc *lbq_desc;
2816
2817         uint32_t  curr_idx, clean_idx;
2818
2819         curr_idx = rx_ring->lbq_curr_idx;
2820         clean_idx = rx_ring->lbq_clean_idx;
2821         while (curr_idx != clean_idx) {
2822                 lbq_desc = &rx_ring->lbq[curr_idx];
2823
2824                 if (lbq_desc->p.pg_chunk.last_flag) {
2825                         pci_unmap_page(qdev->pdev,
2826                                 lbq_desc->p.pg_chunk.map,
2827                                 ql_lbq_block_size(qdev),
2828                                        PCI_DMA_FROMDEVICE);
2829                         lbq_desc->p.pg_chunk.last_flag = 0;
2830                 }
2831
2832                 put_page(lbq_desc->p.pg_chunk.page);
2833                 lbq_desc->p.pg_chunk.page = NULL;
2834
2835                 if (++curr_idx == rx_ring->lbq_len)
2836                         curr_idx = 0;
2837
2838         }
2839         if (rx_ring->pg_chunk.page) {
2840                 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2841                         ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2842                 put_page(rx_ring->pg_chunk.page);
2843                 rx_ring->pg_chunk.page = NULL;
2844         }
2845 }
2846
2847 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2848 {
2849         int i;
2850         struct bq_desc *sbq_desc;
2851
2852         for (i = 0; i < rx_ring->sbq_len; i++) {
2853                 sbq_desc = &rx_ring->sbq[i];
2854                 if (sbq_desc == NULL) {
2855                         netif_err(qdev, ifup, qdev->ndev,
2856                                   "sbq_desc %d is NULL.\n", i);
2857                         return;
2858                 }
2859                 if (sbq_desc->p.skb) {
2860                         pci_unmap_single(qdev->pdev,
2861                                          dma_unmap_addr(sbq_desc, mapaddr),
2862                                          dma_unmap_len(sbq_desc, maplen),
2863                                          PCI_DMA_FROMDEVICE);
2864                         dev_kfree_skb(sbq_desc->p.skb);
2865                         sbq_desc->p.skb = NULL;
2866                 }
2867         }
2868 }
2869
2870 /* Free all large and small rx buffers associated
2871  * with the completion queues for this device.
2872  */
2873 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2874 {
2875         int i;
2876         struct rx_ring *rx_ring;
2877
2878         for (i = 0; i < qdev->rx_ring_count; i++) {
2879                 rx_ring = &qdev->rx_ring[i];
2880                 if (rx_ring->lbq)
2881                         ql_free_lbq_buffers(qdev, rx_ring);
2882                 if (rx_ring->sbq)
2883                         ql_free_sbq_buffers(qdev, rx_ring);
2884         }
2885 }
2886
2887 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2888 {
2889         struct rx_ring *rx_ring;
2890         int i;
2891
2892         for (i = 0; i < qdev->rx_ring_count; i++) {
2893                 rx_ring = &qdev->rx_ring[i];
2894                 if (rx_ring->type != TX_Q)
2895                         ql_update_buffer_queues(qdev, rx_ring);
2896         }
2897 }
2898
2899 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2900                                 struct rx_ring *rx_ring)
2901 {
2902         int i;
2903         struct bq_desc *lbq_desc;
2904         __le64 *bq = rx_ring->lbq_base;
2905
2906         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2907         for (i = 0; i < rx_ring->lbq_len; i++) {
2908                 lbq_desc = &rx_ring->lbq[i];
2909                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2910                 lbq_desc->index = i;
2911                 lbq_desc->addr = bq;
2912                 bq++;
2913         }
2914 }
2915
2916 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2917                                 struct rx_ring *rx_ring)
2918 {
2919         int i;
2920         struct bq_desc *sbq_desc;
2921         __le64 *bq = rx_ring->sbq_base;
2922
2923         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2924         for (i = 0; i < rx_ring->sbq_len; i++) {
2925                 sbq_desc = &rx_ring->sbq[i];
2926                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2927                 sbq_desc->index = i;
2928                 sbq_desc->addr = bq;
2929                 bq++;
2930         }
2931 }
2932
2933 static void ql_free_rx_resources(struct ql_adapter *qdev,
2934                                  struct rx_ring *rx_ring)
2935 {
2936         /* Free the small buffer queue. */
2937         if (rx_ring->sbq_base) {
2938                 pci_free_consistent(qdev->pdev,
2939                                     rx_ring->sbq_size,
2940                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2941                 rx_ring->sbq_base = NULL;
2942         }
2943
2944         /* Free the small buffer queue control blocks. */
2945         kfree(rx_ring->sbq);
2946         rx_ring->sbq = NULL;
2947
2948         /* Free the large buffer queue. */
2949         if (rx_ring->lbq_base) {
2950                 pci_free_consistent(qdev->pdev,
2951                                     rx_ring->lbq_size,
2952                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2953                 rx_ring->lbq_base = NULL;
2954         }
2955
2956         /* Free the large buffer queue control blocks. */
2957         kfree(rx_ring->lbq);
2958         rx_ring->lbq = NULL;
2959
2960         /* Free the rx queue. */
2961         if (rx_ring->cq_base) {
2962                 pci_free_consistent(qdev->pdev,
2963                                     rx_ring->cq_size,
2964                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2965                 rx_ring->cq_base = NULL;
2966         }
2967 }
2968
2969 /* Allocate queues and buffers for this completions queue based
2970  * on the values in the parameter structure. */
2971 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2972                                  struct rx_ring *rx_ring)
2973 {
2974
2975         /*
2976          * Allocate the completion queue for this rx_ring.
2977          */
2978         rx_ring->cq_base =
2979             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2980                                  &rx_ring->cq_base_dma);
2981
2982         if (rx_ring->cq_base == NULL) {
2983                 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2984                 return -ENOMEM;
2985         }
2986
2987         if (rx_ring->sbq_len) {
2988                 /*
2989                  * Allocate small buffer queue.
2990                  */
2991                 rx_ring->sbq_base =
2992                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2993                                          &rx_ring->sbq_base_dma);
2994
2995                 if (rx_ring->sbq_base == NULL) {
2996                         netif_err(qdev, ifup, qdev->ndev,
2997                                   "Small buffer queue allocation failed.\n");
2998                         goto err_mem;
2999                 }
3000
3001                 /*
3002                  * Allocate small buffer queue control blocks.
3003                  */
3004                 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3005                                              sizeof(struct bq_desc),
3006                                              GFP_KERNEL);
3007                 if (rx_ring->sbq == NULL)
3008                         goto err_mem;
3009
3010                 ql_init_sbq_ring(qdev, rx_ring);
3011         }
3012
3013         if (rx_ring->lbq_len) {
3014                 /*
3015                  * Allocate large buffer queue.
3016                  */
3017                 rx_ring->lbq_base =
3018                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3019                                          &rx_ring->lbq_base_dma);
3020
3021                 if (rx_ring->lbq_base == NULL) {
3022                         netif_err(qdev, ifup, qdev->ndev,
3023                                   "Large buffer queue allocation failed.\n");
3024                         goto err_mem;
3025                 }
3026                 /*
3027                  * Allocate large buffer queue control blocks.
3028                  */
3029                 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3030                                              sizeof(struct bq_desc),
3031                                              GFP_KERNEL);
3032                 if (rx_ring->lbq == NULL)
3033                         goto err_mem;
3034
3035                 ql_init_lbq_ring(qdev, rx_ring);
3036         }
3037
3038         return 0;
3039
3040 err_mem:
3041         ql_free_rx_resources(qdev, rx_ring);
3042         return -ENOMEM;
3043 }
3044
3045 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3046 {
3047         struct tx_ring *tx_ring;
3048         struct tx_ring_desc *tx_ring_desc;
3049         int i, j;
3050
3051         /*
3052          * Loop through all queues and free
3053          * any resources.
3054          */
3055         for (j = 0; j < qdev->tx_ring_count; j++) {
3056                 tx_ring = &qdev->tx_ring[j];
3057                 for (i = 0; i < tx_ring->wq_len; i++) {
3058                         tx_ring_desc = &tx_ring->q[i];
3059                         if (tx_ring_desc && tx_ring_desc->skb) {
3060                                 netif_err(qdev, ifdown, qdev->ndev,
3061                                           "Freeing lost SKB %p, from queue %d, index %d.\n",
3062                                           tx_ring_desc->skb, j,
3063                                           tx_ring_desc->index);
3064                                 ql_unmap_send(qdev, tx_ring_desc,
3065                                               tx_ring_desc->map_cnt);
3066                                 dev_kfree_skb(tx_ring_desc->skb);
3067                                 tx_ring_desc->skb = NULL;
3068                         }
3069                 }
3070         }
3071 }
3072
3073 static void ql_free_mem_resources(struct ql_adapter *qdev)
3074 {
3075         int i;
3076
3077         for (i = 0; i < qdev->tx_ring_count; i++)
3078                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3079         for (i = 0; i < qdev->rx_ring_count; i++)
3080                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3081         ql_free_shadow_space(qdev);
3082 }
3083
3084 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3085 {
3086         int i;
3087
3088         /* Allocate space for our shadow registers and such. */
3089         if (ql_alloc_shadow_space(qdev))
3090                 return -ENOMEM;
3091
3092         for (i = 0; i < qdev->rx_ring_count; i++) {
3093                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3094                         netif_err(qdev, ifup, qdev->ndev,
3095                                   "RX resource allocation failed.\n");
3096                         goto err_mem;
3097                 }
3098         }
3099         /* Allocate tx queue resources */
3100         for (i = 0; i < qdev->tx_ring_count; i++) {
3101                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3102                         netif_err(qdev, ifup, qdev->ndev,
3103                                   "TX resource allocation failed.\n");
3104                         goto err_mem;
3105                 }
3106         }
3107         return 0;
3108
3109 err_mem:
3110         ql_free_mem_resources(qdev);
3111         return -ENOMEM;
3112 }
3113
3114 /* Set up the rx ring control block and pass it to the chip.
3115  * The control block is defined as
3116  * "Completion Queue Initialization Control Block", or cqicb.
3117  */
3118 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3119 {
3120         struct cqicb *cqicb = &rx_ring->cqicb;
3121         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3122                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3123         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3124                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3125         void __iomem *doorbell_area =
3126             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3127         int err = 0;
3128         u16 bq_len;
3129         u64 tmp;
3130         __le64 *base_indirect_ptr;
3131         int page_entries;
3132
3133         /* Set up the shadow registers for this ring. */
3134         rx_ring->prod_idx_sh_reg = shadow_reg;
3135         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3136         *rx_ring->prod_idx_sh_reg = 0;
3137         shadow_reg += sizeof(u64);
3138         shadow_reg_dma += sizeof(u64);
3139         rx_ring->lbq_base_indirect = shadow_reg;
3140         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3141         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3142         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3143         rx_ring->sbq_base_indirect = shadow_reg;
3144         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3145
3146         /* PCI doorbell mem area + 0x00 for consumer index register */
3147         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3148         rx_ring->cnsmr_idx = 0;
3149         rx_ring->curr_entry = rx_ring->cq_base;
3150
3151         /* PCI doorbell mem area + 0x04 for valid register */
3152         rx_ring->valid_db_reg = doorbell_area + 0x04;
3153
3154         /* PCI doorbell mem area + 0x18 for large buffer consumer */
3155         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3156
3157         /* PCI doorbell mem area + 0x1c */
3158         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3159
3160         memset((void *)cqicb, 0, sizeof(struct cqicb));
3161         cqicb->msix_vect = rx_ring->irq;
3162
3163         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3164         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3165
3166         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3167
3168         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3169
3170         /*
3171          * Set up the control block load flags.
3172          */
3173         cqicb->flags = FLAGS_LC |       /* Load queue base address */
3174             FLAGS_LV |          /* Load MSI-X vector */
3175             FLAGS_LI;           /* Load irq delay values */
3176         if (rx_ring->lbq_len) {
3177                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
3178                 tmp = (u64)rx_ring->lbq_base_dma;
3179                 base_indirect_ptr = rx_ring->lbq_base_indirect;
3180                 page_entries = 0;
3181                 do {
3182                         *base_indirect_ptr = cpu_to_le64(tmp);
3183                         tmp += DB_PAGE_SIZE;
3184                         base_indirect_ptr++;
3185                         page_entries++;
3186                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3187                 cqicb->lbq_addr =
3188                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3189                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3190                         (u16) rx_ring->lbq_buf_size;
3191                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3192                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3193                         (u16) rx_ring->lbq_len;
3194                 cqicb->lbq_len = cpu_to_le16(bq_len);
3195                 rx_ring->lbq_prod_idx = 0;
3196                 rx_ring->lbq_curr_idx = 0;
3197                 rx_ring->lbq_clean_idx = 0;
3198                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3199         }
3200         if (rx_ring->sbq_len) {
3201                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
3202                 tmp = (u64)rx_ring->sbq_base_dma;
3203                 base_indirect_ptr = rx_ring->sbq_base_indirect;
3204                 page_entries = 0;
3205                 do {
3206                         *base_indirect_ptr = cpu_to_le64(tmp);
3207                         tmp += DB_PAGE_SIZE;
3208                         base_indirect_ptr++;
3209                         page_entries++;
3210                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3211                 cqicb->sbq_addr =
3212                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3213                 cqicb->sbq_buf_size =
3214                     cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3215                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3216                         (u16) rx_ring->sbq_len;
3217                 cqicb->sbq_len = cpu_to_le16(bq_len);
3218                 rx_ring->sbq_prod_idx = 0;
3219                 rx_ring->sbq_curr_idx = 0;
3220                 rx_ring->sbq_clean_idx = 0;
3221                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3222         }
3223         switch (rx_ring->type) {
3224         case TX_Q:
3225                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3226                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3227                 break;
3228         case RX_Q:
3229                 /* Inbound completion handling rx_rings run in
3230                  * separate NAPI contexts.
3231                  */
3232                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3233                                64);
3234                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3235                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3236                 break;
3237         default:
3238                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3239                              "Invalid rx_ring->type = %d.\n", rx_ring->type);
3240         }
3241         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3242                            CFG_LCQ, rx_ring->cq_id);
3243         if (err) {
3244                 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3245                 return err;
3246         }
3247         return err;
3248 }
3249
3250 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3251 {
3252         struct wqicb *wqicb = (struct wqicb *)tx_ring;
3253         void __iomem *doorbell_area =
3254             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3255         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3256             (tx_ring->wq_id * sizeof(u64));
3257         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3258             (tx_ring->wq_id * sizeof(u64));
3259         int err = 0;
3260
3261         /*
3262          * Assign doorbell registers for this tx_ring.
3263          */
3264         /* TX PCI doorbell mem area for tx producer index */
3265         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3266         tx_ring->prod_idx = 0;
3267         /* TX PCI doorbell mem area + 0x04 */
3268         tx_ring->valid_db_reg = doorbell_area + 0x04;
3269
3270         /*
3271          * Assign shadow registers for this tx_ring.
3272          */
3273         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3274         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3275
3276         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3277         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3278                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3279         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3280         wqicb->rid = 0;
3281         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3282
3283         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3284
3285         ql_init_tx_ring(qdev, tx_ring);
3286
3287         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3288                            (u16) tx_ring->wq_id);
3289         if (err) {
3290                 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3291                 return err;
3292         }
3293         return err;
3294 }
3295
3296 static void ql_disable_msix(struct ql_adapter *qdev)
3297 {
3298         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3299                 pci_disable_msix(qdev->pdev);
3300                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3301                 kfree(qdev->msi_x_entry);
3302                 qdev->msi_x_entry = NULL;
3303         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3304                 pci_disable_msi(qdev->pdev);
3305                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3306         }
3307 }
3308
3309 /* We start by trying to get the number of vectors
3310  * stored in qdev->intr_count. If we don't get that
3311  * many then we reduce the count and try again.
3312  */
3313 static void ql_enable_msix(struct ql_adapter *qdev)
3314 {
3315         int i, err;
3316
3317         /* Get the MSIX vectors. */
3318         if (qlge_irq_type == MSIX_IRQ) {
3319                 /* Try to alloc space for the msix struct,
3320                  * if it fails then go to MSI/legacy.
3321                  */
3322                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3323                                             sizeof(struct msix_entry),
3324                                             GFP_KERNEL);
3325                 if (!qdev->msi_x_entry) {
3326                         qlge_irq_type = MSI_IRQ;
3327                         goto msi;
3328                 }
3329
3330                 for (i = 0; i < qdev->intr_count; i++)
3331                         qdev->msi_x_entry[i].entry = i;
3332
3333                 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3334                                             1, qdev->intr_count);
3335                 if (err < 0) {
3336                         kfree(qdev->msi_x_entry);
3337                         qdev->msi_x_entry = NULL;
3338                         netif_warn(qdev, ifup, qdev->ndev,
3339                                    "MSI-X Enable failed, trying MSI.\n");
3340                         qlge_irq_type = MSI_IRQ;
3341                 } else {
3342                         qdev->intr_count = err;
3343                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
3344                         netif_info(qdev, ifup, qdev->ndev,
3345                                    "MSI-X Enabled, got %d vectors.\n",
3346                                    qdev->intr_count);
3347                         return;
3348                 }
3349         }
3350 msi:
3351         qdev->intr_count = 1;
3352         if (qlge_irq_type == MSI_IRQ) {
3353                 if (!pci_enable_msi(qdev->pdev)) {
3354                         set_bit(QL_MSI_ENABLED, &qdev->flags);
3355                         netif_info(qdev, ifup, qdev->ndev,
3356                                    "Running with MSI interrupts.\n");
3357                         return;
3358                 }
3359         }
3360         qlge_irq_type = LEG_IRQ;
3361         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3362                      "Running with legacy interrupts.\n");
3363 }
3364
3365 /* Each vector services 1 RSS ring and and 1 or more
3366  * TX completion rings.  This function loops through
3367  * the TX completion rings and assigns the vector that
3368  * will service it.  An example would be if there are
3369  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3370  * This would mean that vector 0 would service RSS ring 0
3371  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3372  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3373  */
3374 static void ql_set_tx_vect(struct ql_adapter *qdev)
3375 {
3376         int i, j, vect;
3377         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3378
3379         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3380                 /* Assign irq vectors to TX rx_rings.*/
3381                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3382                                          i < qdev->rx_ring_count; i++) {
3383                         if (j == tx_rings_per_vector) {
3384                                 vect++;
3385                                 j = 0;
3386                         }
3387                         qdev->rx_ring[i].irq = vect;
3388                         j++;
3389                 }
3390         } else {
3391                 /* For single vector all rings have an irq
3392                  * of zero.
3393                  */
3394                 for (i = 0; i < qdev->rx_ring_count; i++)
3395                         qdev->rx_ring[i].irq = 0;
3396         }
3397 }
3398
3399 /* Set the interrupt mask for this vector.  Each vector
3400  * will service 1 RSS ring and 1 or more TX completion
3401  * rings.  This function sets up a bit mask per vector
3402  * that indicates which rings it services.
3403  */
3404 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3405 {
3406         int j, vect = ctx->intr;
3407         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3408
3409         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3410                 /* Add the RSS ring serviced by this vector
3411                  * to the mask.
3412                  */
3413                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3414                 /* Add the TX ring(s) serviced by this vector
3415                  * to the mask. */
3416                 for (j = 0; j < tx_rings_per_vector; j++) {
3417                         ctx->irq_mask |=
3418                         (1 << qdev->rx_ring[qdev->rss_ring_count +
3419                         (vect * tx_rings_per_vector) + j].cq_id);
3420                 }
3421         } else {
3422                 /* For single vector we just shift each queue's
3423                  * ID into the mask.
3424                  */
3425                 for (j = 0; j < qdev->rx_ring_count; j++)
3426                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3427         }
3428 }
3429
3430 /*
3431  * Here we build the intr_context structures based on
3432  * our rx_ring count and intr vector count.
3433  * The intr_context structure is used to hook each vector
3434  * to possibly different handlers.
3435  */
3436 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3437 {
3438         int i = 0;
3439         struct intr_context *intr_context = &qdev->intr_context[0];
3440
3441         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3442                 /* Each rx_ring has it's
3443                  * own intr_context since we have separate
3444                  * vectors for each queue.
3445                  */
3446                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3447                         qdev->rx_ring[i].irq = i;
3448                         intr_context->intr = i;
3449                         intr_context->qdev = qdev;
3450                         /* Set up this vector's bit-mask that indicates
3451                          * which queues it services.
3452                          */
3453                         ql_set_irq_mask(qdev, intr_context);
3454                         /*
3455                          * We set up each vectors enable/disable/read bits so
3456                          * there's no bit/mask calculations in the critical path.
3457                          */
3458                         intr_context->intr_en_mask =
3459                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3460                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3461                             | i;
3462                         intr_context->intr_dis_mask =
3463                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3464                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3465                             INTR_EN_IHD | i;
3466                         intr_context->intr_read_mask =
3467                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3468                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3469                             i;
3470                         if (i == 0) {
3471                                 /* The first vector/queue handles
3472                                  * broadcast/multicast, fatal errors,
3473                                  * and firmware events.  This in addition
3474                                  * to normal inbound NAPI processing.
3475                                  */
3476                                 intr_context->handler = qlge_isr;
3477                                 sprintf(intr_context->name, "%s-rx-%d",
3478                                         qdev->ndev->name, i);
3479                         } else {
3480                                 /*
3481                                  * Inbound queues handle unicast frames only.
3482                                  */
3483                                 intr_context->handler = qlge_msix_rx_isr;
3484                                 sprintf(intr_context->name, "%s-rx-%d",
3485                                         qdev->ndev->name, i);
3486                         }
3487                 }
3488         } else {
3489                 /*
3490                  * All rx_rings use the same intr_context since
3491                  * there is only one vector.
3492                  */
3493                 intr_context->intr = 0;
3494                 intr_context->qdev = qdev;
3495                 /*
3496                  * We set up each vectors enable/disable/read bits so
3497                  * there's no bit/mask calculations in the critical path.
3498                  */
3499                 intr_context->intr_en_mask =
3500                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3501                 intr_context->intr_dis_mask =
3502                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3503                     INTR_EN_TYPE_DISABLE;
3504                 intr_context->intr_read_mask =
3505                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3506                 /*
3507                  * Single interrupt means one handler for all rings.
3508                  */
3509                 intr_context->handler = qlge_isr;
3510                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3511                 /* Set up this vector's bit-mask that indicates
3512                  * which queues it services. In this case there is
3513                  * a single vector so it will service all RSS and
3514                  * TX completion rings.
3515                  */
3516                 ql_set_irq_mask(qdev, intr_context);
3517         }
3518         /* Tell the TX completion rings which MSIx vector
3519          * they will be using.
3520          */
3521         ql_set_tx_vect(qdev);
3522 }
3523
3524 static void ql_free_irq(struct ql_adapter *qdev)
3525 {
3526         int i;
3527         struct intr_context *intr_context = &qdev->intr_context[0];
3528
3529         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3530                 if (intr_context->hooked) {
3531                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3532                                 free_irq(qdev->msi_x_entry[i].vector,
3533                                          &qdev->rx_ring[i]);
3534                         } else {
3535                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3536                         }
3537                 }
3538         }
3539         ql_disable_msix(qdev);
3540 }
3541
3542 static int ql_request_irq(struct ql_adapter *qdev)
3543 {
3544         int i;
3545         int status = 0;
3546         struct pci_dev *pdev = qdev->pdev;
3547         struct intr_context *intr_context = &qdev->intr_context[0];
3548
3549         ql_resolve_queues_to_irqs(qdev);
3550
3551         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3552                 atomic_set(&intr_context->irq_cnt, 0);
3553                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3554                         status = request_irq(qdev->msi_x_entry[i].vector,
3555                                              intr_context->handler,
3556                                              0,
3557                                              intr_context->name,
3558                                              &qdev->rx_ring[i]);
3559                         if (status) {
3560                                 netif_err(qdev, ifup, qdev->ndev,
3561                                           "Failed request for MSIX interrupt %d.\n",
3562                                           i);
3563                                 goto err_irq;
3564                         }
3565                 } else {
3566                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3567                                      "trying msi or legacy interrupts.\n");
3568                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3569                                      "%s: irq = %d.\n", __func__, pdev->irq);
3570                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3571                                      "%s: context->name = %s.\n", __func__,
3572                                      intr_context->name);
3573                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3574                                      "%s: dev_id = 0x%p.\n", __func__,
3575                                      &qdev->rx_ring[0]);
3576                         status =
3577                             request_irq(pdev->irq, qlge_isr,
3578                                         test_bit(QL_MSI_ENABLED,
3579                                                  &qdev->
3580                                                  flags) ? 0 : IRQF_SHARED,
3581                                         intr_context->name, &qdev->rx_ring[0]);
3582                         if (status)
3583                                 goto err_irq;
3584
3585                         netif_err(qdev, ifup, qdev->ndev,
3586                                   "Hooked intr %d, queue type %s, with name %s.\n",
3587                                   i,
3588                                   qdev->rx_ring[0].type == DEFAULT_Q ?
3589                                   "DEFAULT_Q" :
3590                                   qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3591                                   qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3592                                   intr_context->name);
3593                 }
3594                 intr_context->hooked = 1;
3595         }
3596         return status;
3597 err_irq:
3598         netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3599         ql_free_irq(qdev);
3600         return status;
3601 }
3602
3603 static int ql_start_rss(struct ql_adapter *qdev)
3604 {
3605         static const u8 init_hash_seed[] = {
3606                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3607                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3608                 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3609                 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3610                 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3611         };
3612         struct ricb *ricb = &qdev->ricb;
3613         int status = 0;
3614         int i;
3615         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3616
3617         memset((void *)ricb, 0, sizeof(*ricb));
3618
3619         ricb->base_cq = RSS_L4K;
3620         ricb->flags =
3621                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3622         ricb->mask = cpu_to_le16((u16)(0x3ff));
3623
3624         /*
3625          * Fill out the Indirection Table.
3626          */
3627         for (i = 0; i < 1024; i++)
3628                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3629
3630         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3631         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3632
3633         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3634         if (status) {
3635                 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3636                 return status;
3637         }
3638         return status;
3639 }
3640
3641 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3642 {
3643         int i, status = 0;
3644
3645         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3646         if (status)
3647                 return status;
3648         /* Clear all the entries in the routing table. */
3649         for (i = 0; i < 16; i++) {
3650                 status = ql_set_routing_reg(qdev, i, 0, 0);
3651                 if (status) {
3652                         netif_err(qdev, ifup, qdev->ndev,
3653                                   "Failed to init routing register for CAM packets.\n");
3654                         break;
3655                 }
3656         }
3657         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3658         return status;
3659 }
3660
3661 /* Initialize the frame-to-queue routing. */
3662 static int ql_route_initialize(struct ql_adapter *qdev)
3663 {
3664         int status = 0;
3665
3666         /* Clear all the entries in the routing table. */
3667         status = ql_clear_routing_entries(qdev);
3668         if (status)
3669                 return status;
3670
3671         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3672         if (status)
3673                 return status;
3674
3675         status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3676                                                 RT_IDX_IP_CSUM_ERR, 1);
3677         if (status) {
3678                 netif_err(qdev, ifup, qdev->ndev,
3679                         "Failed to init routing register "
3680                         "for IP CSUM error packets.\n");
3681                 goto exit;
3682         }
3683         status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3684                                                 RT_IDX_TU_CSUM_ERR, 1);
3685         if (status) {
3686                 netif_err(qdev, ifup, qdev->ndev,
3687                         "Failed to init routing register "
3688                         "for TCP/UDP CSUM error packets.\n");
3689                 goto exit;
3690         }
3691         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3692         if (status) {
3693                 netif_err(qdev, ifup, qdev->ndev,
3694                           "Failed to init routing register for broadcast packets.\n");
3695                 goto exit;
3696         }
3697         /* If we have more than one inbound queue, then turn on RSS in the
3698          * routing block.
3699          */
3700         if (qdev->rss_ring_count > 1) {
3701                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3702                                         RT_IDX_RSS_MATCH, 1);
3703                 if (status) {
3704                         netif_err(qdev, ifup, qdev->ndev,
3705                                   "Failed to init routing register for MATCH RSS packets.\n");
3706                         goto exit;
3707                 }
3708         }
3709
3710         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3711                                     RT_IDX_CAM_HIT, 1);
3712         if (status)
3713                 netif_err(qdev, ifup, qdev->ndev,
3714                           "Failed to init routing register for CAM packets.\n");
3715 exit:
3716         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3717         return status;
3718 }
3719
3720 int ql_cam_route_initialize(struct ql_adapter *qdev)
3721 {
3722         int status, set;
3723
3724         /* If check if the link is up and use to
3725          * determine if we are setting or clearing
3726          * the MAC address in the CAM.
3727          */
3728         set = ql_read32(qdev, STS);
3729         set &= qdev->port_link_up;
3730         status = ql_set_mac_addr(qdev, set);
3731         if (status) {
3732                 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3733                 return status;
3734         }
3735
3736         status = ql_route_initialize(qdev);
3737         if (status)
3738                 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3739
3740         return status;
3741 }
3742
3743 static int ql_adapter_initialize(struct ql_adapter *qdev)
3744 {
3745         u32 value, mask;
3746         int i;
3747         int status = 0;
3748
3749         /*
3750          * Set up the System register to halt on errors.
3751          */
3752         value = SYS_EFE | SYS_FAE;
3753         mask = value << 16;
3754         ql_write32(qdev, SYS, mask | value);
3755
3756         /* Set the default queue, and VLAN behavior. */
3757         value = NIC_RCV_CFG_DFQ;
3758         mask = NIC_RCV_CFG_DFQ_MASK;
3759         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3760                 value |= NIC_RCV_CFG_RV;
3761                 mask |= (NIC_RCV_CFG_RV << 16);
3762         }
3763         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3764
3765         /* Set the MPI interrupt to enabled. */
3766         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3767
3768         /* Enable the function, set pagesize, enable error checking. */
3769         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3770             FSC_EC | FSC_VM_PAGE_4K;
3771         value |= SPLT_SETTING;
3772
3773         /* Set/clear header splitting. */
3774         mask = FSC_VM_PAGESIZE_MASK |
3775             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3776         ql_write32(qdev, FSC, mask | value);
3777
3778         ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3779
3780         /* Set RX packet routing to use port/pci function on which the
3781          * packet arrived on in addition to usual frame routing.
3782          * This is helpful on bonding where both interfaces can have
3783          * the same MAC address.
3784          */
3785         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3786         /* Reroute all packets to our Interface.
3787          * They may have been routed to MPI firmware
3788          * due to WOL.
3789          */
3790         value = ql_read32(qdev, MGMT_RCV_CFG);
3791         value &= ~MGMT_RCV_CFG_RM;
3792         mask = 0xffff0000;
3793
3794         /* Sticky reg needs clearing due to WOL. */
3795         ql_write32(qdev, MGMT_RCV_CFG, mask);
3796         ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3797
3798         /* Default WOL is enable on Mezz cards */
3799         if (qdev->pdev->subsystem_device == 0x0068 ||
3800                         qdev->pdev->subsystem_device == 0x0180)
3801                 qdev->wol = WAKE_MAGIC;
3802
3803         /* Start up the rx queues. */
3804         for (i = 0; i < qdev->rx_ring_count; i++) {
3805                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3806                 if (status) {
3807                         netif_err(qdev, ifup, qdev->ndev,
3808                                   "Failed to start rx ring[%d].\n", i);
3809                         return status;
3810                 }
3811         }
3812
3813         /* If there is more than one inbound completion queue
3814          * then download a RICB to configure RSS.
3815          */
3816         if (qdev->rss_ring_count > 1) {
3817                 status = ql_start_rss(qdev);
3818                 if (status) {
3819                         netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3820                         return status;
3821                 }
3822         }
3823
3824         /* Start up the tx queues. */
3825         for (i = 0; i < qdev->tx_ring_count; i++) {
3826                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3827                 if (status) {
3828                         netif_err(qdev, ifup, qdev->ndev,
3829                                   "Failed to start tx ring[%d].\n", i);
3830                         return status;
3831                 }
3832         }
3833
3834         /* Initialize the port and set the max framesize. */
3835         status = qdev->nic_ops->port_initialize(qdev);
3836         if (status)
3837                 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3838
3839         /* Set up the MAC address and frame routing filter. */
3840         status = ql_cam_route_initialize(qdev);
3841         if (status) {
3842                 netif_err(qdev, ifup, qdev->ndev,
3843                           "Failed to init CAM/Routing tables.\n");
3844                 return status;
3845         }
3846
3847         /* Start NAPI for the RSS queues. */
3848         for (i = 0; i < qdev->rss_ring_count; i++)
3849                 napi_enable(&qdev->rx_ring[i].napi);
3850
3851         return status;
3852 }
3853
3854 /* Issue soft reset to chip. */
3855 static int ql_adapter_reset(struct ql_adapter *qdev)
3856 {
3857         u32 value;
3858         int status = 0;
3859         unsigned long end_jiffies;
3860
3861         /* Clear all the entries in the routing table. */
3862         status = ql_clear_routing_entries(qdev);
3863         if (status) {
3864                 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3865                 return status;
3866         }
3867
3868         end_jiffies = jiffies +
3869                 max((unsigned long)1, usecs_to_jiffies(30));
3870
3871         /* Check if bit is set then skip the mailbox command and
3872          * clear the bit, else we are in normal reset process.
3873          */
3874         if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3875                 /* Stop management traffic. */
3876                 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3877
3878                 /* Wait for the NIC and MGMNT FIFOs to empty. */
3879                 ql_wait_fifo_empty(qdev);
3880         } else
3881                 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3882
3883         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3884
3885         do {
3886                 value = ql_read32(qdev, RST_FO);
3887                 if ((value & RST_FO_FR) == 0)
3888                         break;
3889                 cpu_relax();
3890         } while (time_before(jiffies, end_jiffies));
3891
3892         if (value & RST_FO_FR) {
3893                 netif_err(qdev, ifdown, qdev->ndev,
3894                           "ETIMEDOUT!!! errored out of resetting the chip!\n");
3895                 status = -ETIMEDOUT;
3896         }
3897
3898         /* Resume management traffic. */
3899         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3900         return status;
3901 }
3902
3903 static void ql_display_dev_info(struct net_device *ndev)
3904 {
3905         struct ql_adapter *qdev = netdev_priv(ndev);
3906
3907         netif_info(qdev, probe, qdev->ndev,
3908                    "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3909                    "XG Roll = %d, XG Rev = %d.\n",
3910                    qdev->func,
3911                    qdev->port,
3912                    qdev->chip_rev_id & 0x0000000f,
3913                    qdev->chip_rev_id >> 4 & 0x0000000f,
3914                    qdev->chip_rev_id >> 8 & 0x0000000f,
3915                    qdev->chip_rev_id >> 12 & 0x0000000f);
3916         netif_info(qdev, probe, qdev->ndev,
3917                    "MAC address %pM\n", ndev->dev_addr);
3918 }
3919
3920 static int ql_wol(struct ql_adapter *qdev)
3921 {
3922         int status = 0;
3923         u32 wol = MB_WOL_DISABLE;
3924
3925         /* The CAM is still intact after a reset, but if we
3926          * are doing WOL, then we may need to program the
3927          * routing regs. We would also need to issue the mailbox
3928          * commands to instruct the MPI what to do per the ethtool
3929          * settings.
3930          */
3931
3932         if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3933                         WAKE_MCAST | WAKE_BCAST)) {
3934                 netif_err(qdev, ifdown, qdev->ndev,
3935                           "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3936                           qdev->wol);
3937                 return -EINVAL;
3938         }
3939
3940         if (qdev->wol & WAKE_MAGIC) {
3941                 status = ql_mb_wol_set_magic(qdev, 1);
3942                 if (status) {
3943                         netif_err(qdev, ifdown, qdev->ndev,
3944                                   "Failed to set magic packet on %s.\n",
3945                                   qdev->ndev->name);
3946                         return status;
3947                 } else
3948                         netif_info(qdev, drv, qdev->ndev,
3949                                    "Enabled magic packet successfully on %s.\n",
3950                                    qdev->ndev->name);
3951
3952                 wol |= MB_WOL_MAGIC_PKT;
3953         }
3954
3955         if (qdev->wol) {
3956                 wol |= MB_WOL_MODE_ON;
3957                 status = ql_mb_wol_mode(qdev, wol);
3958                 netif_err(qdev, drv, qdev->ndev,
3959                           "WOL %s (wol code 0x%x) on %s\n",
3960                           (status == 0) ? "Successfully set" : "Failed",
3961                           wol, qdev->ndev->name);
3962         }
3963
3964         return status;
3965 }
3966
3967 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3968 {
3969
3970         /* Don't kill the reset worker thread if we
3971          * are in the process of recovery.
3972          */
3973         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3974                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3975         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3976         cancel_delayed_work_sync(&qdev->mpi_work);
3977         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3978         cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3979         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3980 }
3981
3982 static int ql_adapter_down(struct ql_adapter *qdev)
3983 {
3984         int i, status = 0;
3985
3986         ql_link_off(qdev);
3987
3988         ql_cancel_all_work_sync(qdev);
3989
3990         for (i = 0; i < qdev->rss_ring_count; i++)
3991                 napi_disable(&qdev->rx_ring[i].napi);
3992
3993         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3994
3995         ql_disable_interrupts(qdev);
3996
3997         ql_tx_ring_clean(qdev);
3998
3999         /* Call netif_napi_del() from common point.
4000          */
4001         for (i = 0; i < qdev->rss_ring_count; i++)
4002                 netif_napi_del(&qdev->rx_ring[i].napi);
4003
4004         status = ql_adapter_reset(qdev);
4005         if (status)
4006                 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4007                           qdev->func);
4008         ql_free_rx_buffers(qdev);
4009
4010         return status;
4011 }
4012
4013 static int ql_adapter_up(struct ql_adapter *qdev)
4014 {
4015         int err = 0;
4016
4017         err = ql_adapter_initialize(qdev);
4018         if (err) {
4019                 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4020                 goto err_init;
4021         }
4022         set_bit(QL_ADAPTER_UP, &qdev->flags);
4023         ql_alloc_rx_buffers(qdev);
4024         /* If the port is initialized and the
4025          * link is up the turn on the carrier.
4026          */
4027         if ((ql_read32(qdev, STS) & qdev->port_init) &&
4028                         (ql_read32(qdev, STS) & qdev->port_link_up))
4029                 ql_link_on(qdev);
4030         /* Restore rx mode. */
4031         clear_bit(QL_ALLMULTI, &qdev->flags);
4032         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4033         qlge_set_multicast_list(qdev->ndev);
4034
4035         /* Restore vlan setting. */
4036         qlge_restore_vlan(qdev);
4037
4038         ql_enable_interrupts(qdev);
4039         ql_enable_all_completion_interrupts(qdev);
4040         netif_tx_start_all_queues(qdev->ndev);
4041
4042         return 0;
4043 err_init:
4044         ql_adapter_reset(qdev);
4045         return err;
4046 }
4047
4048 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4049 {
4050         ql_free_mem_resources(qdev);
4051         ql_free_irq(qdev);
4052 }
4053
4054 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4055 {
4056         int status = 0;
4057
4058         if (ql_alloc_mem_resources(qdev)) {
4059                 netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
4060                 return -ENOMEM;
4061         }
4062         status = ql_request_irq(qdev);
4063         return status;
4064 }
4065
4066 static int qlge_close(struct net_device *ndev)
4067 {
4068         struct ql_adapter *qdev = netdev_priv(ndev);
4069
4070         /* If we hit pci_channel_io_perm_failure
4071          * failure condition, then we already
4072          * brought the adapter down.
4073          */
4074         if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4075                 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4076                 clear_bit(QL_EEH_FATAL, &qdev->flags);
4077                 return 0;
4078         }
4079
4080         /*
4081          * Wait for device to recover from a reset.
4082          * (Rarely happens, but possible.)
4083          */
4084         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4085                 msleep(1);
4086         ql_adapter_down(qdev);
4087         ql_release_adapter_resources(qdev);
4088         return 0;
4089 }
4090
4091 static int ql_configure_rings(struct ql_adapter *qdev)
4092 {
4093         int i;
4094         struct rx_ring *rx_ring;
4095         struct tx_ring *tx_ring;
4096         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4097         unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4098                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4099
4100         qdev->lbq_buf_order = get_order(lbq_buf_len);
4101
4102         /* In a perfect world we have one RSS ring for each CPU
4103          * and each has it's own vector.  To do that we ask for
4104          * cpu_cnt vectors.  ql_enable_msix() will adjust the
4105          * vector count to what we actually get.  We then
4106          * allocate an RSS ring for each.
4107          * Essentially, we are doing min(cpu_count, msix_vector_count).
4108          */
4109         qdev->intr_count = cpu_cnt;
4110         ql_enable_msix(qdev);
4111         /* Adjust the RSS ring count to the actual vector count. */
4112         qdev->rss_ring_count = qdev->intr_count;
4113         qdev->tx_ring_count = cpu_cnt;
4114         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4115
4116         for (i = 0; i < qdev->tx_ring_count; i++) {
4117                 tx_ring = &qdev->tx_ring[i];
4118                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4119                 tx_ring->qdev = qdev;
4120                 tx_ring->wq_id = i;
4121                 tx_ring->wq_len = qdev->tx_ring_size;
4122                 tx_ring->wq_size =
4123                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4124
4125                 /*
4126                  * The completion queue ID for the tx rings start
4127                  * immediately after the rss rings.
4128                  */
4129                 tx_ring->cq_id = qdev->rss_ring_count + i;
4130         }
4131
4132         for (i = 0; i < qdev->rx_ring_count; i++) {
4133                 rx_ring = &qdev->rx_ring[i];
4134                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4135                 rx_ring->qdev = qdev;
4136                 rx_ring->cq_id = i;
4137                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
4138                 if (i < qdev->rss_ring_count) {
4139                         /*
4140                          * Inbound (RSS) queues.
4141                          */
4142                         rx_ring->cq_len = qdev->rx_ring_size;
4143                         rx_ring->cq_size =
4144                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4145                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4146                         rx_ring->lbq_size =
4147                             rx_ring->lbq_len * sizeof(__le64);
4148                         rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4149                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4150                         rx_ring->sbq_size =
4151                             rx_ring->sbq_len * sizeof(__le64);
4152                         rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4153                         rx_ring->type = RX_Q;
4154                 } else {
4155                         /*
4156                          * Outbound queue handles outbound completions only.
4157                          */
4158                         /* outbound cq is same size as tx_ring it services. */
4159                         rx_ring->cq_len = qdev->tx_ring_size;
4160                         rx_ring->cq_size =
4161                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4162                         rx_ring->lbq_len = 0;
4163                         rx_ring->lbq_size = 0;
4164                         rx_ring->lbq_buf_size = 0;
4165                         rx_ring->sbq_len = 0;
4166                         rx_ring->sbq_size = 0;
4167                         rx_ring->sbq_buf_size = 0;
4168                         rx_ring->type = TX_Q;
4169                 }
4170         }
4171         return 0;
4172 }
4173
4174 static int qlge_open(struct net_device *ndev)
4175 {
4176         int err = 0;
4177         struct ql_adapter *qdev = netdev_priv(ndev);
4178
4179         err = ql_adapter_reset(qdev);
4180         if (err)
4181                 return err;
4182
4183         err = ql_configure_rings(qdev);
4184         if (err)
4185                 return err;
4186
4187         err = ql_get_adapter_resources(qdev);
4188         if (err)
4189                 goto error_up;
4190
4191         err = ql_adapter_up(qdev);
4192         if (err)
4193                 goto error_up;
4194
4195         return err;
4196
4197 error_up:
4198         ql_release_adapter_resources(qdev);
4199         return err;
4200 }
4201
4202 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4203 {
4204         struct rx_ring *rx_ring;
4205         int i, status;
4206         u32 lbq_buf_len;
4207
4208         /* Wait for an outstanding reset to complete. */
4209         if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4210                 int i = 3;
4211                 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4212                         netif_err(qdev, ifup, qdev->ndev,
4213                                   "Waiting for adapter UP...\n");
4214                         ssleep(1);
4215                 }
4216
4217                 if (!i) {
4218                         netif_err(qdev, ifup, qdev->ndev,
4219                                   "Timed out waiting for adapter UP\n");
4220                         return -ETIMEDOUT;
4221                 }
4222         }
4223
4224         status = ql_adapter_down(qdev);
4225         if (status)
4226                 goto error;
4227
4228         /* Get the new rx buffer size. */
4229         lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4230                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4231         qdev->lbq_buf_order = get_order(lbq_buf_len);
4232
4233         for (i = 0; i < qdev->rss_ring_count; i++) {
4234                 rx_ring = &qdev->rx_ring[i];
4235                 /* Set the new size. */
4236                 rx_ring->lbq_buf_size = lbq_buf_len;
4237         }
4238
4239         status = ql_adapter_up(qdev);
4240         if (status)
4241                 goto error;
4242
4243         return status;
4244 error:
4245         netif_alert(qdev, ifup, qdev->ndev,
4246                     "Driver up/down cycle failed, closing device.\n");
4247         set_bit(QL_ADAPTER_UP, &qdev->flags);
4248         dev_close(qdev->ndev);
4249         return status;
4250 }
4251
4252 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4253 {
4254         struct ql_adapter *qdev = netdev_priv(ndev);
4255         int status;
4256
4257         if (ndev->mtu == 1500 && new_mtu == 9000) {
4258                 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4259         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4260                 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4261         } else
4262                 return -EINVAL;
4263
4264         queue_delayed_work(qdev->workqueue,
4265                         &qdev->mpi_port_cfg_work, 3*HZ);
4266
4267         ndev->mtu = new_mtu;
4268
4269         if (!netif_running(qdev->ndev)) {
4270                 return 0;
4271         }
4272
4273         status = ql_change_rx_buffers(qdev);
4274         if (status) {
4275                 netif_err(qdev, ifup, qdev->ndev,
4276                           "Changing MTU failed.\n");
4277         }
4278
4279         return status;
4280 }
4281
4282 static struct net_device_stats *qlge_get_stats(struct net_device
4283                                                *ndev)
4284 {
4285         struct ql_adapter *qdev = netdev_priv(ndev);
4286         struct rx_ring *rx_ring = &qdev->rx_ring[0];
4287         struct tx_ring *tx_ring = &qdev->tx_ring[0];
4288         unsigned long pkts, mcast, dropped, errors, bytes;
4289         int i;
4290
4291         /* Get RX stats. */
4292         pkts = mcast = dropped = errors = bytes = 0;
4293         for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4294                         pkts += rx_ring->rx_packets;
4295                         bytes += rx_ring->rx_bytes;
4296                         dropped += rx_ring->rx_dropped;
4297                         errors += rx_ring->rx_errors;
4298                         mcast += rx_ring->rx_multicast;
4299         }
4300         ndev->stats.rx_packets = pkts;
4301         ndev->stats.rx_bytes = bytes;
4302         ndev->stats.rx_dropped = dropped;
4303         ndev->stats.rx_errors = errors;
4304         ndev->stats.multicast = mcast;
4305
4306         /* Get TX stats. */
4307         pkts = errors = bytes = 0;
4308         for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4309                         pkts += tx_ring->tx_packets;
4310                         bytes += tx_ring->tx_bytes;
4311                         errors += tx_ring->tx_errors;
4312         }
4313         ndev->stats.tx_packets = pkts;
4314         ndev->stats.tx_bytes = bytes;
4315         ndev->stats.tx_errors = errors;
4316         return &ndev->stats;
4317 }
4318
4319 static void qlge_set_multicast_list(struct net_device *ndev)
4320 {
4321         struct ql_adapter *qdev = netdev_priv(ndev);
4322         struct netdev_hw_addr *ha;
4323         int i, status;
4324
4325         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4326         if (status)
4327                 return;
4328         /*
4329          * Set or clear promiscuous mode if a
4330          * transition is taking place.
4331          */
4332         if (ndev->flags & IFF_PROMISC) {
4333                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4334                         if (ql_set_routing_reg
4335                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4336                                 netif_err(qdev, hw, qdev->ndev,
4337                                           "Failed to set promiscuous mode.\n");
4338                         } else {
4339                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
4340                         }
4341                 }
4342         } else {
4343                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4344                         if (ql_set_routing_reg
4345                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4346                                 netif_err(qdev, hw, qdev->ndev,
4347                                           "Failed to clear promiscuous mode.\n");
4348                         } else {
4349                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4350                         }
4351                 }
4352         }
4353
4354         /*
4355          * Set or clear all multicast mode if a
4356          * transition is taking place.
4357          */
4358         if ((ndev->flags & IFF_ALLMULTI) ||
4359             (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4360                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4361                         if (ql_set_routing_reg
4362                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4363                                 netif_err(qdev, hw, qdev->ndev,
4364                                           "Failed to set all-multi mode.\n");
4365                         } else {
4366                                 set_bit(QL_ALLMULTI, &qdev->flags);
4367                         }
4368                 }
4369         } else {
4370                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4371                         if (ql_set_routing_reg
4372                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4373                                 netif_err(qdev, hw, qdev->ndev,
4374                                           "Failed to clear all-multi mode.\n");
4375                         } else {
4376                                 clear_bit(QL_ALLMULTI, &qdev->flags);
4377                         }
4378                 }
4379         }
4380
4381         if (!netdev_mc_empty(ndev)) {
4382                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4383                 if (status)
4384                         goto exit;
4385                 i = 0;
4386                 netdev_for_each_mc_addr(ha, ndev) {
4387                         if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4388                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4389                                 netif_err(qdev, hw, qdev->ndev,
4390                                           "Failed to loadmulticast address.\n");
4391                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4392                                 goto exit;
4393                         }
4394                         i++;
4395                 }
4396                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4397                 if (ql_set_routing_reg
4398                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4399                         netif_err(qdev, hw, qdev->ndev,
4400                                   "Failed to set multicast match mode.\n");
4401                 } else {
4402                         set_bit(QL_ALLMULTI, &qdev->flags);
4403                 }
4404         }
4405 exit:
4406         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4407 }
4408
4409 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4410 {
4411         struct ql_adapter *qdev = netdev_priv(ndev);
4412         struct sockaddr *addr = p;
4413         int status;
4414
4415         if (!is_valid_ether_addr(addr->sa_data))
4416                 return -EADDRNOTAVAIL;
4417         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4418         /* Update local copy of current mac address. */
4419         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4420
4421         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4422         if (status)
4423                 return status;
4424         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4425                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4426         if (status)
4427                 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4428         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4429         return status;
4430 }
4431
4432 static void qlge_tx_timeout(struct net_device *ndev)
4433 {
4434         struct ql_adapter *qdev = netdev_priv(ndev);
4435         ql_queue_asic_error(qdev);
4436 }
4437
4438 static void ql_asic_reset_work(struct work_struct *work)
4439 {
4440         struct ql_adapter *qdev =
4441             container_of(work, struct ql_adapter, asic_reset_work.work);
4442         int status;
4443         rtnl_lock();
4444         status = ql_adapter_down(qdev);
4445         if (status)
4446                 goto error;
4447
4448         status = ql_adapter_up(qdev);
4449         if (status)
4450                 goto error;
4451
4452         /* Restore rx mode. */
4453         clear_bit(QL_ALLMULTI, &qdev->flags);
4454         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4455         qlge_set_multicast_list(qdev->ndev);
4456
4457         rtnl_unlock();
4458         return;
4459 error:
4460         netif_alert(qdev, ifup, qdev->ndev,
4461                     "Driver up/down cycle failed, closing device\n");
4462
4463         set_bit(QL_ADAPTER_UP, &qdev->flags);
4464         dev_close(qdev->ndev);
4465         rtnl_unlock();
4466 }
4467
4468 static const struct nic_operations qla8012_nic_ops = {
4469         .get_flash              = ql_get_8012_flash_params,
4470         .port_initialize        = ql_8012_port_initialize,
4471 };
4472
4473 static const struct nic_operations qla8000_nic_ops = {
4474         .get_flash              = ql_get_8000_flash_params,
4475         .port_initialize        = ql_8000_port_initialize,
4476 };
4477
4478 /* Find the pcie function number for the other NIC
4479  * on this chip.  Since both NIC functions share a
4480  * common firmware we have the lowest enabled function
4481  * do any common work.  Examples would be resetting
4482  * after a fatal firmware error, or doing a firmware
4483  * coredump.
4484  */
4485 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4486 {
4487         int status = 0;
4488         u32 temp;
4489         u32 nic_func1, nic_func2;
4490
4491         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4492                         &temp);
4493         if (status)
4494                 return status;
4495
4496         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4497                         MPI_TEST_NIC_FUNC_MASK);
4498         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4499                         MPI_TEST_NIC_FUNC_MASK);
4500
4501         if (qdev->func == nic_func1)
4502                 qdev->alt_func = nic_func2;
4503         else if (qdev->func == nic_func2)
4504                 qdev->alt_func = nic_func1;
4505         else
4506                 status = -EIO;
4507
4508         return status;
4509 }
4510
4511 static int ql_get_board_info(struct ql_adapter *qdev)
4512 {
4513         int status;
4514         qdev->func =
4515             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4516         if (qdev->func > 3)
4517                 return -EIO;
4518
4519         status = ql_get_alt_pcie_func(qdev);
4520         if (status)
4521                 return status;
4522
4523         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4524         if (qdev->port) {
4525                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4526                 qdev->port_link_up = STS_PL1;
4527                 qdev->port_init = STS_PI1;
4528                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4529                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4530         } else {
4531                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4532                 qdev->port_link_up = STS_PL0;
4533                 qdev->port_init = STS_PI0;
4534                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4535                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4536         }
4537         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4538         qdev->device_id = qdev->pdev->device;
4539         if (qdev->device_id == QLGE_DEVICE_ID_8012)
4540                 qdev->nic_ops = &qla8012_nic_ops;
4541         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4542                 qdev->nic_ops = &qla8000_nic_ops;
4543         return status;
4544 }
4545
4546 static void ql_release_all(struct pci_dev *pdev)
4547 {
4548         struct net_device *ndev = pci_get_drvdata(pdev);
4549         struct ql_adapter *qdev = netdev_priv(ndev);
4550
4551         if (qdev->workqueue) {
4552                 destroy_workqueue(qdev->workqueue);
4553                 qdev->workqueue = NULL;
4554         }
4555
4556         if (qdev->reg_base)
4557                 iounmap(qdev->reg_base);
4558         if (qdev->doorbell_area)
4559                 iounmap(qdev->doorbell_area);
4560         vfree(qdev->mpi_coredump);
4561         pci_release_regions(pdev);
4562 }
4563
4564 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4565                           int cards_found)
4566 {
4567         struct ql_adapter *qdev = netdev_priv(ndev);
4568         int err = 0;
4569
4570         memset((void *)qdev, 0, sizeof(*qdev));
4571         err = pci_enable_device(pdev);
4572         if (err) {
4573                 dev_err(&pdev->dev, "PCI device enable failed.\n");
4574                 return err;
4575         }
4576
4577         qdev->ndev = ndev;
4578         qdev->pdev = pdev;
4579         pci_set_drvdata(pdev, ndev);
4580
4581         /* Set PCIe read request size */
4582         err = pcie_set_readrq(pdev, 4096);
4583         if (err) {
4584                 dev_err(&pdev->dev, "Set readrq failed.\n");
4585                 goto err_out1;
4586         }
4587
4588         err = pci_request_regions(pdev, DRV_NAME);
4589         if (err) {
4590                 dev_err(&pdev->dev, "PCI region request failed.\n");
4591                 return err;
4592         }
4593
4594         pci_set_master(pdev);
4595         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4596                 set_bit(QL_DMA64, &qdev->flags);
4597                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4598         } else {
4599                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4600                 if (!err)
4601                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4602         }
4603
4604         if (err) {
4605                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4606                 goto err_out2;
4607         }
4608
4609         /* Set PCIe reset type for EEH to fundamental. */
4610         pdev->needs_freset = 1;
4611         pci_save_state(pdev);
4612         qdev->reg_base =
4613             ioremap_nocache(pci_resource_start(pdev, 1),
4614                             pci_resource_len(pdev, 1));
4615         if (!qdev->reg_base) {
4616                 dev_err(&pdev->dev, "Register mapping failed.\n");
4617                 err = -ENOMEM;
4618                 goto err_out2;
4619         }
4620
4621         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4622         qdev->doorbell_area =
4623             ioremap_nocache(pci_resource_start(pdev, 3),
4624                             pci_resource_len(pdev, 3));
4625         if (!qdev->doorbell_area) {
4626                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4627                 err = -ENOMEM;
4628                 goto err_out2;
4629         }
4630
4631         err = ql_get_board_info(qdev);
4632         if (err) {
4633                 dev_err(&pdev->dev, "Register access failed.\n");
4634                 err = -EIO;
4635                 goto err_out2;
4636         }
4637         qdev->msg_enable = netif_msg_init(debug, default_msg);
4638         spin_lock_init(&qdev->hw_lock);
4639         spin_lock_init(&qdev->stats_lock);
4640
4641         if (qlge_mpi_coredump) {
4642                 qdev->mpi_coredump =
4643                         vmalloc(sizeof(struct ql_mpi_coredump));
4644                 if (qdev->mpi_coredump == NULL) {
4645                         err = -ENOMEM;
4646                         goto err_out2;
4647                 }
4648                 if (qlge_force_coredump)
4649                         set_bit(QL_FRC_COREDUMP, &qdev->flags);
4650         }
4651         /* make sure the EEPROM is good */
4652         err = qdev->nic_ops->get_flash(qdev);
4653         if (err) {
4654                 dev_err(&pdev->dev, "Invalid FLASH.\n");
4655                 goto err_out2;
4656         }
4657
4658         /* Keep local copy of current mac address. */
4659         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4660
4661         /* Set up the default ring sizes. */
4662         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4663         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4664
4665         /* Set up the coalescing parameters. */
4666         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4667         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4668         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4669         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4670
4671         /*
4672          * Set up the operating parameters.
4673          */
4674         qdev->workqueue = create_singlethread_workqueue(ndev->name);
4675         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4676         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4677         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4678         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4679         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4680         INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4681         init_completion(&qdev->ide_completion);
4682         mutex_init(&qdev->mpi_mutex);
4683
4684         if (!cards_found) {
4685                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4686                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4687                          DRV_NAME, DRV_VERSION);
4688         }
4689         return 0;
4690 err_out2:
4691         ql_release_all(pdev);
4692 err_out1:
4693         pci_disable_device(pdev);
4694         return err;
4695 }
4696
4697 static const struct net_device_ops qlge_netdev_ops = {
4698         .ndo_open               = qlge_open,
4699         .ndo_stop               = qlge_close,
4700         .ndo_start_xmit         = qlge_send,
4701         .ndo_change_mtu         = qlge_change_mtu,
4702         .ndo_get_stats          = qlge_get_stats,
4703         .ndo_set_rx_mode        = qlge_set_multicast_list,
4704         .ndo_set_mac_address    = qlge_set_mac_address,
4705         .ndo_validate_addr      = eth_validate_addr,
4706         .ndo_tx_timeout         = qlge_tx_timeout,
4707         .ndo_fix_features       = qlge_fix_features,
4708         .ndo_set_features       = qlge_set_features,
4709         .ndo_vlan_rx_add_vid    = qlge_vlan_rx_add_vid,
4710         .ndo_vlan_rx_kill_vid   = qlge_vlan_rx_kill_vid,
4711 };
4712
4713 static void ql_timer(unsigned long data)
4714 {
4715         struct ql_adapter *qdev = (struct ql_adapter *)data;
4716         u32 var = 0;
4717
4718         var = ql_read32(qdev, STS);
4719         if (pci_channel_offline(qdev->pdev)) {
4720                 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4721                 return;
4722         }
4723
4724         mod_timer(&qdev->timer, jiffies + (5*HZ));
4725 }
4726
4727 static int qlge_probe(struct pci_dev *pdev,
4728                       const struct pci_device_id *pci_entry)
4729 {
4730         struct net_device *ndev = NULL;
4731         struct ql_adapter *qdev = NULL;
4732         static int cards_found = 0;
4733         int err = 0;
4734
4735         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4736                         min(MAX_CPUS, netif_get_num_default_rss_queues()));
4737         if (!ndev)
4738                 return -ENOMEM;
4739
4740         err = ql_init_device(pdev, ndev, cards_found);
4741         if (err < 0) {
4742                 free_netdev(ndev);
4743                 return err;
4744         }
4745
4746         qdev = netdev_priv(ndev);
4747         SET_NETDEV_DEV(ndev, &pdev->dev);
4748         ndev->hw_features = NETIF_F_SG |
4749                             NETIF_F_IP_CSUM |
4750                             NETIF_F_TSO |
4751                             NETIF_F_TSO_ECN |
4752                             NETIF_F_HW_VLAN_CTAG_TX |
4753                             NETIF_F_HW_VLAN_CTAG_RX |
4754                             NETIF_F_HW_VLAN_CTAG_FILTER |
4755                             NETIF_F_RXCSUM;
4756         ndev->features = ndev->hw_features;
4757         ndev->vlan_features = ndev->hw_features;
4758         /* vlan gets same features (except vlan filter) */
4759         ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4760                                  NETIF_F_HW_VLAN_CTAG_TX |
4761                                  NETIF_F_HW_VLAN_CTAG_RX);
4762
4763         if (test_bit(QL_DMA64, &qdev->flags))
4764                 ndev->features |= NETIF_F_HIGHDMA;
4765
4766         /*
4767          * Set up net_device structure.
4768          */
4769         ndev->tx_queue_len = qdev->tx_ring_size;
4770         ndev->irq = pdev->irq;
4771
4772         ndev->netdev_ops = &qlge_netdev_ops;
4773         ndev->ethtool_ops = &qlge_ethtool_ops;
4774         ndev->watchdog_timeo = 10 * HZ;
4775
4776         err = register_netdev(ndev);
4777         if (err) {
4778                 dev_err(&pdev->dev, "net device registration failed.\n");
4779                 ql_release_all(pdev);
4780                 pci_disable_device(pdev);
4781                 free_netdev(ndev);
4782                 return err;
4783         }
4784         /* Start up the timer to trigger EEH if
4785          * the bus goes dead
4786          */
4787         init_timer_deferrable(&qdev->timer);
4788         qdev->timer.data = (unsigned long)qdev;
4789         qdev->timer.function = ql_timer;
4790         qdev->timer.expires = jiffies + (5*HZ);
4791         add_timer(&qdev->timer);
4792         ql_link_off(qdev);
4793         ql_display_dev_info(ndev);
4794         atomic_set(&qdev->lb_count, 0);
4795         cards_found++;
4796         return 0;
4797 }
4798
4799 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4800 {
4801         return qlge_send(skb, ndev);
4802 }
4803
4804 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4805 {
4806         return ql_clean_inbound_rx_ring(rx_ring, budget);
4807 }
4808
4809 static void qlge_remove(struct pci_dev *pdev)
4810 {
4811         struct net_device *ndev = pci_get_drvdata(pdev);
4812         struct ql_adapter *qdev = netdev_priv(ndev);
4813         del_timer_sync(&qdev->timer);
4814         ql_cancel_all_work_sync(qdev);
4815         unregister_netdev(ndev);
4816         ql_release_all(pdev);
4817         pci_disable_device(pdev);
4818         free_netdev(ndev);
4819 }
4820
4821 /* Clean up resources without touching hardware. */
4822 static void ql_eeh_close(struct net_device *ndev)
4823 {
4824         int i;
4825         struct ql_adapter *qdev = netdev_priv(ndev);
4826
4827         if (netif_carrier_ok(ndev)) {
4828                 netif_carrier_off(ndev);
4829                 netif_stop_queue(ndev);
4830         }
4831
4832         /* Disabling the timer */
4833         del_timer_sync(&qdev->timer);
4834         ql_cancel_all_work_sync(qdev);
4835
4836         for (i = 0; i < qdev->rss_ring_count; i++)
4837                 netif_napi_del(&qdev->rx_ring[i].napi);
4838
4839         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4840         ql_tx_ring_clean(qdev);
4841         ql_free_rx_buffers(qdev);
4842         ql_release_adapter_resources(qdev);
4843 }
4844
4845 /*
4846  * This callback is called by the PCI subsystem whenever
4847  * a PCI bus error is detected.
4848  */
4849 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4850                                                enum pci_channel_state state)
4851 {
4852         struct net_device *ndev = pci_get_drvdata(pdev);
4853         struct ql_adapter *qdev = netdev_priv(ndev);
4854
4855         switch (state) {
4856         case pci_channel_io_normal:
4857                 return PCI_ERS_RESULT_CAN_RECOVER;
4858         case pci_channel_io_frozen:
4859                 netif_device_detach(ndev);
4860                 if (netif_running(ndev))
4861                         ql_eeh_close(ndev);
4862                 pci_disable_device(pdev);
4863                 return PCI_ERS_RESULT_NEED_RESET;
4864         case pci_channel_io_perm_failure:
4865                 dev_err(&pdev->dev,
4866                         "%s: pci_channel_io_perm_failure.\n", __func__);
4867                 ql_eeh_close(ndev);
4868                 set_bit(QL_EEH_FATAL, &qdev->flags);
4869                 return PCI_ERS_RESULT_DISCONNECT;
4870         }
4871
4872         /* Request a slot reset. */
4873         return PCI_ERS_RESULT_NEED_RESET;
4874 }
4875
4876 /*
4877  * This callback is called after the PCI buss has been reset.
4878  * Basically, this tries to restart the card from scratch.
4879  * This is a shortened version of the device probe/discovery code,
4880  * it resembles the first-half of the () routine.
4881  */
4882 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4883 {
4884         struct net_device *ndev = pci_get_drvdata(pdev);
4885         struct ql_adapter *qdev = netdev_priv(ndev);
4886
4887         pdev->error_state = pci_channel_io_normal;
4888
4889         pci_restore_state(pdev);
4890         if (pci_enable_device(pdev)) {
4891                 netif_err(qdev, ifup, qdev->ndev,
4892                           "Cannot re-enable PCI device after reset.\n");
4893                 return PCI_ERS_RESULT_DISCONNECT;
4894         }
4895         pci_set_master(pdev);
4896
4897         if (ql_adapter_reset(qdev)) {
4898                 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4899                 set_bit(QL_EEH_FATAL, &qdev->flags);
4900                 return PCI_ERS_RESULT_DISCONNECT;
4901         }
4902
4903         return PCI_ERS_RESULT_RECOVERED;
4904 }
4905
4906 static void qlge_io_resume(struct pci_dev *pdev)
4907 {
4908         struct net_device *ndev = pci_get_drvdata(pdev);
4909         struct ql_adapter *qdev = netdev_priv(ndev);
4910         int err = 0;
4911
4912         if (netif_running(ndev)) {
4913                 err = qlge_open(ndev);
4914                 if (err) {
4915                         netif_err(qdev, ifup, qdev->ndev,
4916                                   "Device initialization failed after reset.\n");
4917                         return;
4918                 }
4919         } else {
4920                 netif_err(qdev, ifup, qdev->ndev,
4921                           "Device was not running prior to EEH.\n");
4922         }
4923         mod_timer(&qdev->timer, jiffies + (5*HZ));
4924         netif_device_attach(ndev);
4925 }
4926
4927 static const struct pci_error_handlers qlge_err_handler = {
4928         .error_detected = qlge_io_error_detected,
4929         .slot_reset = qlge_io_slot_reset,
4930         .resume = qlge_io_resume,
4931 };
4932
4933 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4934 {
4935         struct net_device *ndev = pci_get_drvdata(pdev);
4936         struct ql_adapter *qdev = netdev_priv(ndev);
4937         int err;
4938
4939         netif_device_detach(ndev);
4940         del_timer_sync(&qdev->timer);
4941
4942         if (netif_running(ndev)) {
4943                 err = ql_adapter_down(qdev);
4944                 if (!err)
4945                         return err;
4946         }
4947
4948         ql_wol(qdev);
4949         err = pci_save_state(pdev);
4950         if (err)
4951                 return err;
4952
4953         pci_disable_device(pdev);
4954
4955         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4956
4957         return 0;
4958 }
4959
4960 #ifdef CONFIG_PM
4961 static int qlge_resume(struct pci_dev *pdev)
4962 {
4963         struct net_device *ndev = pci_get_drvdata(pdev);
4964         struct ql_adapter *qdev = netdev_priv(ndev);
4965         int err;
4966
4967         pci_set_power_state(pdev, PCI_D0);
4968         pci_restore_state(pdev);
4969         err = pci_enable_device(pdev);
4970         if (err) {
4971                 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4972                 return err;
4973         }
4974         pci_set_master(pdev);
4975
4976         pci_enable_wake(pdev, PCI_D3hot, 0);
4977         pci_enable_wake(pdev, PCI_D3cold, 0);
4978
4979         if (netif_running(ndev)) {
4980                 err = ql_adapter_up(qdev);
4981                 if (err)
4982                         return err;
4983         }
4984
4985         mod_timer(&qdev->timer, jiffies + (5*HZ));
4986         netif_device_attach(ndev);
4987
4988         return 0;
4989 }
4990 #endif /* CONFIG_PM */
4991
4992 static void qlge_shutdown(struct pci_dev *pdev)
4993 {
4994         qlge_suspend(pdev, PMSG_SUSPEND);
4995 }
4996
4997 static struct pci_driver qlge_driver = {
4998         .name = DRV_NAME,
4999         .id_table = qlge_pci_tbl,
5000         .probe = qlge_probe,
5001         .remove = qlge_remove,
5002 #ifdef CONFIG_PM
5003         .suspend = qlge_suspend,
5004         .resume = qlge_resume,
5005 #endif
5006         .shutdown = qlge_shutdown,
5007         .err_handler = &qlge_err_handler
5008 };
5009
5010 module_pci_driver(qlge_driver);