Merge remote-tracking branches 'regulator/topic/pv88090', 'regulator/topic/qcom-smd...
[cascardo/linux.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014  Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46
47 #include "sh_eth.h"
48
49 #define SH_ETH_DEF_MSG_ENABLE \
50                 (NETIF_MSG_LINK | \
51                 NETIF_MSG_TIMER | \
52                 NETIF_MSG_RX_ERR| \
53                 NETIF_MSG_TX_ERR)
54
55 #define SH_ETH_OFFSET_INVALID   ((u16)~0)
56
57 #define SH_ETH_OFFSET_DEFAULTS                  \
58         [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61         SH_ETH_OFFSET_DEFAULTS,
62
63         [EDSR]          = 0x0000,
64         [EDMR]          = 0x0400,
65         [EDTRR]         = 0x0408,
66         [EDRRR]         = 0x0410,
67         [EESR]          = 0x0428,
68         [EESIPR]        = 0x0430,
69         [TDLAR]         = 0x0010,
70         [TDFAR]         = 0x0014,
71         [TDFXR]         = 0x0018,
72         [TDFFR]         = 0x001c,
73         [RDLAR]         = 0x0030,
74         [RDFAR]         = 0x0034,
75         [RDFXR]         = 0x0038,
76         [RDFFR]         = 0x003c,
77         [TRSCER]        = 0x0438,
78         [RMFCR]         = 0x0440,
79         [TFTR]          = 0x0448,
80         [FDR]           = 0x0450,
81         [RMCR]          = 0x0458,
82         [RPADIR]        = 0x0460,
83         [FCFTR]         = 0x0468,
84         [CSMR]          = 0x04E4,
85
86         [ECMR]          = 0x0500,
87         [ECSR]          = 0x0510,
88         [ECSIPR]        = 0x0518,
89         [PIR]           = 0x0520,
90         [PSR]           = 0x0528,
91         [PIPR]          = 0x052c,
92         [RFLR]          = 0x0508,
93         [APR]           = 0x0554,
94         [MPR]           = 0x0558,
95         [PFTCR]         = 0x055c,
96         [PFRCR]         = 0x0560,
97         [TPAUSER]       = 0x0564,
98         [GECMR]         = 0x05b0,
99         [BCULR]         = 0x05b4,
100         [MAHR]          = 0x05c0,
101         [MALR]          = 0x05c8,
102         [TROCR]         = 0x0700,
103         [CDCR]          = 0x0708,
104         [LCCR]          = 0x0710,
105         [CEFCR]         = 0x0740,
106         [FRECR]         = 0x0748,
107         [TSFRCR]        = 0x0750,
108         [TLFRCR]        = 0x0758,
109         [RFCR]          = 0x0760,
110         [CERCR]         = 0x0768,
111         [CEECR]         = 0x0770,
112         [MAFCR]         = 0x0778,
113         [RMII_MII]      = 0x0790,
114
115         [ARSTR]         = 0x0000,
116         [TSU_CTRST]     = 0x0004,
117         [TSU_FWEN0]     = 0x0010,
118         [TSU_FWEN1]     = 0x0014,
119         [TSU_FCM]       = 0x0018,
120         [TSU_BSYSL0]    = 0x0020,
121         [TSU_BSYSL1]    = 0x0024,
122         [TSU_PRISL0]    = 0x0028,
123         [TSU_PRISL1]    = 0x002c,
124         [TSU_FWSL0]     = 0x0030,
125         [TSU_FWSL1]     = 0x0034,
126         [TSU_FWSLC]     = 0x0038,
127         [TSU_QTAG0]     = 0x0040,
128         [TSU_QTAG1]     = 0x0044,
129         [TSU_FWSR]      = 0x0050,
130         [TSU_FWINMK]    = 0x0054,
131         [TSU_ADQT0]     = 0x0048,
132         [TSU_ADQT1]     = 0x004c,
133         [TSU_VTAG0]     = 0x0058,
134         [TSU_VTAG1]     = 0x005c,
135         [TSU_ADSBSY]    = 0x0060,
136         [TSU_TEN]       = 0x0064,
137         [TSU_POST1]     = 0x0070,
138         [TSU_POST2]     = 0x0074,
139         [TSU_POST3]     = 0x0078,
140         [TSU_POST4]     = 0x007c,
141         [TSU_ADRH0]     = 0x0100,
142
143         [TXNLCR0]       = 0x0080,
144         [TXALCR0]       = 0x0084,
145         [RXNLCR0]       = 0x0088,
146         [RXALCR0]       = 0x008c,
147         [FWNLCR0]       = 0x0090,
148         [FWALCR0]       = 0x0094,
149         [TXNLCR1]       = 0x00a0,
150         [TXALCR1]       = 0x00a0,
151         [RXNLCR1]       = 0x00a8,
152         [RXALCR1]       = 0x00ac,
153         [FWNLCR1]       = 0x00b0,
154         [FWALCR1]       = 0x00b4,
155 };
156
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158         SH_ETH_OFFSET_DEFAULTS,
159
160         [EDSR]          = 0x0000,
161         [EDMR]          = 0x0400,
162         [EDTRR]         = 0x0408,
163         [EDRRR]         = 0x0410,
164         [EESR]          = 0x0428,
165         [EESIPR]        = 0x0430,
166         [TDLAR]         = 0x0010,
167         [TDFAR]         = 0x0014,
168         [TDFXR]         = 0x0018,
169         [TDFFR]         = 0x001c,
170         [RDLAR]         = 0x0030,
171         [RDFAR]         = 0x0034,
172         [RDFXR]         = 0x0038,
173         [RDFFR]         = 0x003c,
174         [TRSCER]        = 0x0438,
175         [RMFCR]         = 0x0440,
176         [TFTR]          = 0x0448,
177         [FDR]           = 0x0450,
178         [RMCR]          = 0x0458,
179         [RPADIR]        = 0x0460,
180         [FCFTR]         = 0x0468,
181         [CSMR]          = 0x04E4,
182
183         [ECMR]          = 0x0500,
184         [RFLR]          = 0x0508,
185         [ECSR]          = 0x0510,
186         [ECSIPR]        = 0x0518,
187         [PIR]           = 0x0520,
188         [APR]           = 0x0554,
189         [MPR]           = 0x0558,
190         [PFTCR]         = 0x055c,
191         [PFRCR]         = 0x0560,
192         [TPAUSER]       = 0x0564,
193         [MAHR]          = 0x05c0,
194         [MALR]          = 0x05c8,
195         [CEFCR]         = 0x0740,
196         [FRECR]         = 0x0748,
197         [TSFRCR]        = 0x0750,
198         [TLFRCR]        = 0x0758,
199         [RFCR]          = 0x0760,
200         [MAFCR]         = 0x0778,
201
202         [ARSTR]         = 0x0000,
203         [TSU_CTRST]     = 0x0004,
204         [TSU_VTAG0]     = 0x0058,
205         [TSU_ADSBSY]    = 0x0060,
206         [TSU_TEN]       = 0x0064,
207         [TSU_ADRH0]     = 0x0100,
208
209         [TXNLCR0]       = 0x0080,
210         [TXALCR0]       = 0x0084,
211         [RXNLCR0]       = 0x0088,
212         [RXALCR0]       = 0x008C,
213 };
214
215 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
216         SH_ETH_OFFSET_DEFAULTS,
217
218         [ECMR]          = 0x0300,
219         [RFLR]          = 0x0308,
220         [ECSR]          = 0x0310,
221         [ECSIPR]        = 0x0318,
222         [PIR]           = 0x0320,
223         [PSR]           = 0x0328,
224         [RDMLR]         = 0x0340,
225         [IPGR]          = 0x0350,
226         [APR]           = 0x0354,
227         [MPR]           = 0x0358,
228         [RFCF]          = 0x0360,
229         [TPAUSER]       = 0x0364,
230         [TPAUSECR]      = 0x0368,
231         [MAHR]          = 0x03c0,
232         [MALR]          = 0x03c8,
233         [TROCR]         = 0x03d0,
234         [CDCR]          = 0x03d4,
235         [LCCR]          = 0x03d8,
236         [CNDCR]         = 0x03dc,
237         [CEFCR]         = 0x03e4,
238         [FRECR]         = 0x03e8,
239         [TSFRCR]        = 0x03ec,
240         [TLFRCR]        = 0x03f0,
241         [RFCR]          = 0x03f4,
242         [MAFCR]         = 0x03f8,
243
244         [EDMR]          = 0x0200,
245         [EDTRR]         = 0x0208,
246         [EDRRR]         = 0x0210,
247         [TDLAR]         = 0x0218,
248         [RDLAR]         = 0x0220,
249         [EESR]          = 0x0228,
250         [EESIPR]        = 0x0230,
251         [TRSCER]        = 0x0238,
252         [RMFCR]         = 0x0240,
253         [TFTR]          = 0x0248,
254         [FDR]           = 0x0250,
255         [RMCR]          = 0x0258,
256         [TFUCR]         = 0x0264,
257         [RFOCR]         = 0x0268,
258         [RMIIMODE]      = 0x026c,
259         [FCFTR]         = 0x0270,
260         [TRIMD]         = 0x027c,
261 };
262
263 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
264         SH_ETH_OFFSET_DEFAULTS,
265
266         [ECMR]          = 0x0100,
267         [RFLR]          = 0x0108,
268         [ECSR]          = 0x0110,
269         [ECSIPR]        = 0x0118,
270         [PIR]           = 0x0120,
271         [PSR]           = 0x0128,
272         [RDMLR]         = 0x0140,
273         [IPGR]          = 0x0150,
274         [APR]           = 0x0154,
275         [MPR]           = 0x0158,
276         [TPAUSER]       = 0x0164,
277         [RFCF]          = 0x0160,
278         [TPAUSECR]      = 0x0168,
279         [BCFRR]         = 0x016c,
280         [MAHR]          = 0x01c0,
281         [MALR]          = 0x01c8,
282         [TROCR]         = 0x01d0,
283         [CDCR]          = 0x01d4,
284         [LCCR]          = 0x01d8,
285         [CNDCR]         = 0x01dc,
286         [CEFCR]         = 0x01e4,
287         [FRECR]         = 0x01e8,
288         [TSFRCR]        = 0x01ec,
289         [TLFRCR]        = 0x01f0,
290         [RFCR]          = 0x01f4,
291         [MAFCR]         = 0x01f8,
292         [RTRATE]        = 0x01fc,
293
294         [EDMR]          = 0x0000,
295         [EDTRR]         = 0x0008,
296         [EDRRR]         = 0x0010,
297         [TDLAR]         = 0x0018,
298         [RDLAR]         = 0x0020,
299         [EESR]          = 0x0028,
300         [EESIPR]        = 0x0030,
301         [TRSCER]        = 0x0038,
302         [RMFCR]         = 0x0040,
303         [TFTR]          = 0x0048,
304         [FDR]           = 0x0050,
305         [RMCR]          = 0x0058,
306         [TFUCR]         = 0x0064,
307         [RFOCR]         = 0x0068,
308         [FCFTR]         = 0x0070,
309         [RPADIR]        = 0x0078,
310         [TRIMD]         = 0x007c,
311         [RBWAR]         = 0x00c8,
312         [RDFAR]         = 0x00cc,
313         [TBRAR]         = 0x00d4,
314         [TDFAR]         = 0x00d8,
315 };
316
317 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
318         SH_ETH_OFFSET_DEFAULTS,
319
320         [EDMR]          = 0x0000,
321         [EDTRR]         = 0x0004,
322         [EDRRR]         = 0x0008,
323         [TDLAR]         = 0x000c,
324         [RDLAR]         = 0x0010,
325         [EESR]          = 0x0014,
326         [EESIPR]        = 0x0018,
327         [TRSCER]        = 0x001c,
328         [RMFCR]         = 0x0020,
329         [TFTR]          = 0x0024,
330         [FDR]           = 0x0028,
331         [RMCR]          = 0x002c,
332         [EDOCR]         = 0x0030,
333         [FCFTR]         = 0x0034,
334         [RPADIR]        = 0x0038,
335         [TRIMD]         = 0x003c,
336         [RBWAR]         = 0x0040,
337         [RDFAR]         = 0x0044,
338         [TBRAR]         = 0x004c,
339         [TDFAR]         = 0x0050,
340
341         [ECMR]          = 0x0160,
342         [ECSR]          = 0x0164,
343         [ECSIPR]        = 0x0168,
344         [PIR]           = 0x016c,
345         [MAHR]          = 0x0170,
346         [MALR]          = 0x0174,
347         [RFLR]          = 0x0178,
348         [PSR]           = 0x017c,
349         [TROCR]         = 0x0180,
350         [CDCR]          = 0x0184,
351         [LCCR]          = 0x0188,
352         [CNDCR]         = 0x018c,
353         [CEFCR]         = 0x0194,
354         [FRECR]         = 0x0198,
355         [TSFRCR]        = 0x019c,
356         [TLFRCR]        = 0x01a0,
357         [RFCR]          = 0x01a4,
358         [MAFCR]         = 0x01a8,
359         [IPGR]          = 0x01b4,
360         [APR]           = 0x01b8,
361         [MPR]           = 0x01bc,
362         [TPAUSER]       = 0x01c4,
363         [BCFR]          = 0x01cc,
364
365         [ARSTR]         = 0x0000,
366         [TSU_CTRST]     = 0x0004,
367         [TSU_FWEN0]     = 0x0010,
368         [TSU_FWEN1]     = 0x0014,
369         [TSU_FCM]       = 0x0018,
370         [TSU_BSYSL0]    = 0x0020,
371         [TSU_BSYSL1]    = 0x0024,
372         [TSU_PRISL0]    = 0x0028,
373         [TSU_PRISL1]    = 0x002c,
374         [TSU_FWSL0]     = 0x0030,
375         [TSU_FWSL1]     = 0x0034,
376         [TSU_FWSLC]     = 0x0038,
377         [TSU_QTAGM0]    = 0x0040,
378         [TSU_QTAGM1]    = 0x0044,
379         [TSU_ADQT0]     = 0x0048,
380         [TSU_ADQT1]     = 0x004c,
381         [TSU_FWSR]      = 0x0050,
382         [TSU_FWINMK]    = 0x0054,
383         [TSU_ADSBSY]    = 0x0060,
384         [TSU_TEN]       = 0x0064,
385         [TSU_POST1]     = 0x0070,
386         [TSU_POST2]     = 0x0074,
387         [TSU_POST3]     = 0x0078,
388         [TSU_POST4]     = 0x007c,
389
390         [TXNLCR0]       = 0x0080,
391         [TXALCR0]       = 0x0084,
392         [RXNLCR0]       = 0x0088,
393         [RXALCR0]       = 0x008c,
394         [FWNLCR0]       = 0x0090,
395         [FWALCR0]       = 0x0094,
396         [TXNLCR1]       = 0x00a0,
397         [TXALCR1]       = 0x00a0,
398         [RXNLCR1]       = 0x00a8,
399         [RXALCR1]       = 0x00ac,
400         [FWNLCR1]       = 0x00b0,
401         [FWALCR1]       = 0x00b4,
402
403         [TSU_ADRH0]     = 0x0100,
404 };
405
406 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
407 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
408
409 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
410 {
411         struct sh_eth_private *mdp = netdev_priv(ndev);
412         u16 offset = mdp->reg_offset[enum_index];
413
414         if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
415                 return;
416
417         iowrite32(data, mdp->addr + offset);
418 }
419
420 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
421 {
422         struct sh_eth_private *mdp = netdev_priv(ndev);
423         u16 offset = mdp->reg_offset[enum_index];
424
425         if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
426                 return ~0U;
427
428         return ioread32(mdp->addr + offset);
429 }
430
431 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
432 {
433         return mdp->reg_offset == sh_eth_offset_gigabit;
434 }
435
436 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
437 {
438         return mdp->reg_offset == sh_eth_offset_fast_rz;
439 }
440
441 static void sh_eth_select_mii(struct net_device *ndev)
442 {
443         u32 value = 0x0;
444         struct sh_eth_private *mdp = netdev_priv(ndev);
445
446         switch (mdp->phy_interface) {
447         case PHY_INTERFACE_MODE_GMII:
448                 value = 0x2;
449                 break;
450         case PHY_INTERFACE_MODE_MII:
451                 value = 0x1;
452                 break;
453         case PHY_INTERFACE_MODE_RMII:
454                 value = 0x0;
455                 break;
456         default:
457                 netdev_warn(ndev,
458                             "PHY interface mode was not setup. Set to MII.\n");
459                 value = 0x1;
460                 break;
461         }
462
463         sh_eth_write(ndev, value, RMII_MII);
464 }
465
466 static void sh_eth_set_duplex(struct net_device *ndev)
467 {
468         struct sh_eth_private *mdp = netdev_priv(ndev);
469
470         if (mdp->duplex) /* Full */
471                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
472         else            /* Half */
473                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
474 }
475
476 /* There is CPU dependent code */
477 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
478 {
479         struct sh_eth_private *mdp = netdev_priv(ndev);
480
481         switch (mdp->speed) {
482         case 10: /* 10BASE */
483                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
484                 break;
485         case 100:/* 100BASE */
486                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
487                 break;
488         default:
489                 break;
490         }
491 }
492
493 /* R8A7778/9 */
494 static struct sh_eth_cpu_data r8a777x_data = {
495         .set_duplex     = sh_eth_set_duplex,
496         .set_rate       = sh_eth_set_rate_r8a777x,
497
498         .register_type  = SH_ETH_REG_FAST_RCAR,
499
500         .ecsr_value     = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
501         .ecsipr_value   = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
502         .eesipr_value   = 0x01ff009f,
503
504         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
505         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
506                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
507                           EESR_ECI,
508         .fdr_value      = 0x00000f0f,
509
510         .apr            = 1,
511         .mpr            = 1,
512         .tpauser        = 1,
513         .hw_swap        = 1,
514 };
515
516 /* R8A7790/1 */
517 static struct sh_eth_cpu_data r8a779x_data = {
518         .set_duplex     = sh_eth_set_duplex,
519         .set_rate       = sh_eth_set_rate_r8a777x,
520
521         .register_type  = SH_ETH_REG_FAST_RCAR,
522
523         .ecsr_value     = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
524         .ecsipr_value   = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
525         .eesipr_value   = 0x01ff009f,
526
527         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
528         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
529                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
530                           EESR_ECI,
531         .fdr_value      = 0x00000f0f,
532
533         .trscer_err_mask = DESC_I_RINT8,
534
535         .apr            = 1,
536         .mpr            = 1,
537         .tpauser        = 1,
538         .hw_swap        = 1,
539         .rmiimode       = 1,
540 };
541
542 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
543 {
544         struct sh_eth_private *mdp = netdev_priv(ndev);
545
546         switch (mdp->speed) {
547         case 10: /* 10BASE */
548                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
549                 break;
550         case 100:/* 100BASE */
551                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
552                 break;
553         default:
554                 break;
555         }
556 }
557
558 /* SH7724 */
559 static struct sh_eth_cpu_data sh7724_data = {
560         .set_duplex     = sh_eth_set_duplex,
561         .set_rate       = sh_eth_set_rate_sh7724,
562
563         .register_type  = SH_ETH_REG_FAST_SH4,
564
565         .ecsr_value     = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
566         .ecsipr_value   = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
567         .eesipr_value   = 0x01ff009f,
568
569         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
570         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
571                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
572                           EESR_ECI,
573
574         .apr            = 1,
575         .mpr            = 1,
576         .tpauser        = 1,
577         .hw_swap        = 1,
578         .rpadir         = 1,
579         .rpadir_value   = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
580 };
581
582 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
583 {
584         struct sh_eth_private *mdp = netdev_priv(ndev);
585
586         switch (mdp->speed) {
587         case 10: /* 10BASE */
588                 sh_eth_write(ndev, 0, RTRATE);
589                 break;
590         case 100:/* 100BASE */
591                 sh_eth_write(ndev, 1, RTRATE);
592                 break;
593         default:
594                 break;
595         }
596 }
597
598 /* SH7757 */
599 static struct sh_eth_cpu_data sh7757_data = {
600         .set_duplex     = sh_eth_set_duplex,
601         .set_rate       = sh_eth_set_rate_sh7757,
602
603         .register_type  = SH_ETH_REG_FAST_SH4,
604
605         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
606
607         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
608         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
609                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
610                           EESR_ECI,
611
612         .irq_flags      = IRQF_SHARED,
613         .apr            = 1,
614         .mpr            = 1,
615         .tpauser        = 1,
616         .hw_swap        = 1,
617         .no_ade         = 1,
618         .rpadir         = 1,
619         .rpadir_value   = 2 << 16,
620         .rtrate         = 1,
621 };
622
623 #define SH_GIGA_ETH_BASE        0xfee00000UL
624 #define GIGA_MALR(port)         (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
625 #define GIGA_MAHR(port)         (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
626 static void sh_eth_chip_reset_giga(struct net_device *ndev)
627 {
628         int i;
629         u32 mahr[2], malr[2];
630
631         /* save MAHR and MALR */
632         for (i = 0; i < 2; i++) {
633                 malr[i] = ioread32((void *)GIGA_MALR(i));
634                 mahr[i] = ioread32((void *)GIGA_MAHR(i));
635         }
636
637         /* reset device */
638         iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
639         mdelay(1);
640
641         /* restore MAHR and MALR */
642         for (i = 0; i < 2; i++) {
643                 iowrite32(malr[i], (void *)GIGA_MALR(i));
644                 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
645         }
646 }
647
648 static void sh_eth_set_rate_giga(struct net_device *ndev)
649 {
650         struct sh_eth_private *mdp = netdev_priv(ndev);
651
652         switch (mdp->speed) {
653         case 10: /* 10BASE */
654                 sh_eth_write(ndev, 0x00000000, GECMR);
655                 break;
656         case 100:/* 100BASE */
657                 sh_eth_write(ndev, 0x00000010, GECMR);
658                 break;
659         case 1000: /* 1000BASE */
660                 sh_eth_write(ndev, 0x00000020, GECMR);
661                 break;
662         default:
663                 break;
664         }
665 }
666
667 /* SH7757(GETHERC) */
668 static struct sh_eth_cpu_data sh7757_data_giga = {
669         .chip_reset     = sh_eth_chip_reset_giga,
670         .set_duplex     = sh_eth_set_duplex,
671         .set_rate       = sh_eth_set_rate_giga,
672
673         .register_type  = SH_ETH_REG_GIGABIT,
674
675         .ecsr_value     = ECSR_ICD | ECSR_MPD,
676         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
677         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
678
679         .tx_check       = EESR_TC1 | EESR_FTC,
680         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
681                           EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
682                           EESR_TDE | EESR_ECI,
683         .fdr_value      = 0x0000072f,
684
685         .irq_flags      = IRQF_SHARED,
686         .apr            = 1,
687         .mpr            = 1,
688         .tpauser        = 1,
689         .bculr          = 1,
690         .hw_swap        = 1,
691         .rpadir         = 1,
692         .rpadir_value   = 2 << 16,
693         .no_trimd       = 1,
694         .no_ade         = 1,
695         .tsu            = 1,
696 };
697
698 static void sh_eth_chip_reset(struct net_device *ndev)
699 {
700         struct sh_eth_private *mdp = netdev_priv(ndev);
701
702         /* reset device */
703         sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
704         mdelay(1);
705 }
706
707 static void sh_eth_set_rate_gether(struct net_device *ndev)
708 {
709         struct sh_eth_private *mdp = netdev_priv(ndev);
710
711         switch (mdp->speed) {
712         case 10: /* 10BASE */
713                 sh_eth_write(ndev, GECMR_10, GECMR);
714                 break;
715         case 100:/* 100BASE */
716                 sh_eth_write(ndev, GECMR_100, GECMR);
717                 break;
718         case 1000: /* 1000BASE */
719                 sh_eth_write(ndev, GECMR_1000, GECMR);
720                 break;
721         default:
722                 break;
723         }
724 }
725
726 /* SH7734 */
727 static struct sh_eth_cpu_data sh7734_data = {
728         .chip_reset     = sh_eth_chip_reset,
729         .set_duplex     = sh_eth_set_duplex,
730         .set_rate       = sh_eth_set_rate_gether,
731
732         .register_type  = SH_ETH_REG_GIGABIT,
733
734         .ecsr_value     = ECSR_ICD | ECSR_MPD,
735         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
736         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
737
738         .tx_check       = EESR_TC1 | EESR_FTC,
739         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
740                           EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
741                           EESR_TDE | EESR_ECI,
742
743         .apr            = 1,
744         .mpr            = 1,
745         .tpauser        = 1,
746         .bculr          = 1,
747         .hw_swap        = 1,
748         .no_trimd       = 1,
749         .no_ade         = 1,
750         .tsu            = 1,
751         .hw_crc         = 1,
752         .select_mii     = 1,
753 };
754
755 /* SH7763 */
756 static struct sh_eth_cpu_data sh7763_data = {
757         .chip_reset     = sh_eth_chip_reset,
758         .set_duplex     = sh_eth_set_duplex,
759         .set_rate       = sh_eth_set_rate_gether,
760
761         .register_type  = SH_ETH_REG_GIGABIT,
762
763         .ecsr_value     = ECSR_ICD | ECSR_MPD,
764         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
765         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
766
767         .tx_check       = EESR_TC1 | EESR_FTC,
768         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
769                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
770                           EESR_ECI,
771
772         .apr            = 1,
773         .mpr            = 1,
774         .tpauser        = 1,
775         .bculr          = 1,
776         .hw_swap        = 1,
777         .no_trimd       = 1,
778         .no_ade         = 1,
779         .tsu            = 1,
780         .irq_flags      = IRQF_SHARED,
781 };
782
783 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
784 {
785         struct sh_eth_private *mdp = netdev_priv(ndev);
786
787         /* reset device */
788         sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
789         mdelay(1);
790
791         sh_eth_select_mii(ndev);
792 }
793
794 /* R8A7740 */
795 static struct sh_eth_cpu_data r8a7740_data = {
796         .chip_reset     = sh_eth_chip_reset_r8a7740,
797         .set_duplex     = sh_eth_set_duplex,
798         .set_rate       = sh_eth_set_rate_gether,
799
800         .register_type  = SH_ETH_REG_GIGABIT,
801
802         .ecsr_value     = ECSR_ICD | ECSR_MPD,
803         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
804         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
805
806         .tx_check       = EESR_TC1 | EESR_FTC,
807         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
808                           EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
809                           EESR_TDE | EESR_ECI,
810         .fdr_value      = 0x0000070f,
811
812         .apr            = 1,
813         .mpr            = 1,
814         .tpauser        = 1,
815         .bculr          = 1,
816         .hw_swap        = 1,
817         .rpadir         = 1,
818         .rpadir_value   = 2 << 16,
819         .no_trimd       = 1,
820         .no_ade         = 1,
821         .tsu            = 1,
822         .select_mii     = 1,
823         .shift_rd0      = 1,
824 };
825
826 /* R7S72100 */
827 static struct sh_eth_cpu_data r7s72100_data = {
828         .chip_reset     = sh_eth_chip_reset,
829         .set_duplex     = sh_eth_set_duplex,
830
831         .register_type  = SH_ETH_REG_FAST_RZ,
832
833         .ecsr_value     = ECSR_ICD,
834         .ecsipr_value   = ECSIPR_ICDIP,
835         .eesipr_value   = 0xff7f009f,
836
837         .tx_check       = EESR_TC1 | EESR_FTC,
838         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
839                           EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
840                           EESR_TDE | EESR_ECI,
841         .fdr_value      = 0x0000070f,
842
843         .no_psr         = 1,
844         .apr            = 1,
845         .mpr            = 1,
846         .tpauser        = 1,
847         .hw_swap        = 1,
848         .rpadir         = 1,
849         .rpadir_value   = 2 << 16,
850         .no_trimd       = 1,
851         .no_ade         = 1,
852         .hw_crc         = 1,
853         .tsu            = 1,
854         .shift_rd0      = 1,
855 };
856
857 static struct sh_eth_cpu_data sh7619_data = {
858         .register_type  = SH_ETH_REG_FAST_SH3_SH2,
859
860         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
861
862         .apr            = 1,
863         .mpr            = 1,
864         .tpauser        = 1,
865         .hw_swap        = 1,
866 };
867
868 static struct sh_eth_cpu_data sh771x_data = {
869         .register_type  = SH_ETH_REG_FAST_SH3_SH2,
870
871         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
872         .tsu            = 1,
873 };
874
875 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
876 {
877         if (!cd->ecsr_value)
878                 cd->ecsr_value = DEFAULT_ECSR_INIT;
879
880         if (!cd->ecsipr_value)
881                 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
882
883         if (!cd->fcftr_value)
884                 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
885                                   DEFAULT_FIFO_F_D_RFD;
886
887         if (!cd->fdr_value)
888                 cd->fdr_value = DEFAULT_FDR_INIT;
889
890         if (!cd->tx_check)
891                 cd->tx_check = DEFAULT_TX_CHECK;
892
893         if (!cd->eesr_err_check)
894                 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
895
896         if (!cd->trscer_err_mask)
897                 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
898 }
899
900 static int sh_eth_check_reset(struct net_device *ndev)
901 {
902         int ret = 0;
903         int cnt = 100;
904
905         while (cnt > 0) {
906                 if (!(sh_eth_read(ndev, EDMR) & 0x3))
907                         break;
908                 mdelay(1);
909                 cnt--;
910         }
911         if (cnt <= 0) {
912                 netdev_err(ndev, "Device reset failed\n");
913                 ret = -ETIMEDOUT;
914         }
915         return ret;
916 }
917
918 static int sh_eth_reset(struct net_device *ndev)
919 {
920         struct sh_eth_private *mdp = netdev_priv(ndev);
921         int ret = 0;
922
923         if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
924                 sh_eth_write(ndev, EDSR_ENALL, EDSR);
925                 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
926                              EDMR);
927
928                 ret = sh_eth_check_reset(ndev);
929                 if (ret)
930                         return ret;
931
932                 /* Table Init */
933                 sh_eth_write(ndev, 0x0, TDLAR);
934                 sh_eth_write(ndev, 0x0, TDFAR);
935                 sh_eth_write(ndev, 0x0, TDFXR);
936                 sh_eth_write(ndev, 0x0, TDFFR);
937                 sh_eth_write(ndev, 0x0, RDLAR);
938                 sh_eth_write(ndev, 0x0, RDFAR);
939                 sh_eth_write(ndev, 0x0, RDFXR);
940                 sh_eth_write(ndev, 0x0, RDFFR);
941
942                 /* Reset HW CRC register */
943                 if (mdp->cd->hw_crc)
944                         sh_eth_write(ndev, 0x0, CSMR);
945
946                 /* Select MII mode */
947                 if (mdp->cd->select_mii)
948                         sh_eth_select_mii(ndev);
949         } else {
950                 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
951                              EDMR);
952                 mdelay(3);
953                 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
954                              EDMR);
955         }
956
957         return ret;
958 }
959
960 static void sh_eth_set_receive_align(struct sk_buff *skb)
961 {
962         uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
963
964         if (reserve)
965                 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
966 }
967
968
969 /* CPU <-> EDMAC endian convert */
970 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
971 {
972         switch (mdp->edmac_endian) {
973         case EDMAC_LITTLE_ENDIAN:
974                 return cpu_to_le32(x);
975         case EDMAC_BIG_ENDIAN:
976                 return cpu_to_be32(x);
977         }
978         return x;
979 }
980
981 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
982 {
983         switch (mdp->edmac_endian) {
984         case EDMAC_LITTLE_ENDIAN:
985                 return le32_to_cpu(x);
986         case EDMAC_BIG_ENDIAN:
987                 return be32_to_cpu(x);
988         }
989         return x;
990 }
991
992 /* Program the hardware MAC address from dev->dev_addr. */
993 static void update_mac_address(struct net_device *ndev)
994 {
995         sh_eth_write(ndev,
996                      (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
997                      (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
998         sh_eth_write(ndev,
999                      (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1000 }
1001
1002 /* Get MAC address from SuperH MAC address register
1003  *
1004  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1005  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1006  * When you want use this device, you must set MAC address in bootloader.
1007  *
1008  */
1009 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1010 {
1011         if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1012                 memcpy(ndev->dev_addr, mac, ETH_ALEN);
1013         } else {
1014                 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
1015                 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
1016                 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
1017                 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
1018                 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
1019                 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
1020         }
1021 }
1022
1023 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1024 {
1025         if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1026                 return EDTRR_TRNS_GETHER;
1027         else
1028                 return EDTRR_TRNS_ETHER;
1029 }
1030
1031 struct bb_info {
1032         void (*set_gate)(void *addr);
1033         struct mdiobb_ctrl ctrl;
1034         void *addr;
1035         u32 mmd_msk;/* MMD */
1036         u32 mdo_msk;
1037         u32 mdi_msk;
1038         u32 mdc_msk;
1039 };
1040
1041 /* PHY bit set */
1042 static void bb_set(void *addr, u32 msk)
1043 {
1044         iowrite32(ioread32(addr) | msk, addr);
1045 }
1046
1047 /* PHY bit clear */
1048 static void bb_clr(void *addr, u32 msk)
1049 {
1050         iowrite32((ioread32(addr) & ~msk), addr);
1051 }
1052
1053 /* PHY bit read */
1054 static int bb_read(void *addr, u32 msk)
1055 {
1056         return (ioread32(addr) & msk) != 0;
1057 }
1058
1059 /* Data I/O pin control */
1060 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1061 {
1062         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1063
1064         if (bitbang->set_gate)
1065                 bitbang->set_gate(bitbang->addr);
1066
1067         if (bit)
1068                 bb_set(bitbang->addr, bitbang->mmd_msk);
1069         else
1070                 bb_clr(bitbang->addr, bitbang->mmd_msk);
1071 }
1072
1073 /* Set bit data*/
1074 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1075 {
1076         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1077
1078         if (bitbang->set_gate)
1079                 bitbang->set_gate(bitbang->addr);
1080
1081         if (bit)
1082                 bb_set(bitbang->addr, bitbang->mdo_msk);
1083         else
1084                 bb_clr(bitbang->addr, bitbang->mdo_msk);
1085 }
1086
1087 /* Get bit data*/
1088 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1089 {
1090         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1091
1092         if (bitbang->set_gate)
1093                 bitbang->set_gate(bitbang->addr);
1094
1095         return bb_read(bitbang->addr, bitbang->mdi_msk);
1096 }
1097
1098 /* MDC pin control */
1099 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1100 {
1101         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1102
1103         if (bitbang->set_gate)
1104                 bitbang->set_gate(bitbang->addr);
1105
1106         if (bit)
1107                 bb_set(bitbang->addr, bitbang->mdc_msk);
1108         else
1109                 bb_clr(bitbang->addr, bitbang->mdc_msk);
1110 }
1111
1112 /* mdio bus control struct */
1113 static struct mdiobb_ops bb_ops = {
1114         .owner = THIS_MODULE,
1115         .set_mdc = sh_mdc_ctrl,
1116         .set_mdio_dir = sh_mmd_ctrl,
1117         .set_mdio_data = sh_set_mdio,
1118         .get_mdio_data = sh_get_mdio,
1119 };
1120
1121 /* free skb and descriptor buffer */
1122 static void sh_eth_ring_free(struct net_device *ndev)
1123 {
1124         struct sh_eth_private *mdp = netdev_priv(ndev);
1125         int ringsize, i;
1126
1127         /* Free Rx skb ringbuffer */
1128         if (mdp->rx_skbuff) {
1129                 for (i = 0; i < mdp->num_rx_ring; i++)
1130                         dev_kfree_skb(mdp->rx_skbuff[i]);
1131         }
1132         kfree(mdp->rx_skbuff);
1133         mdp->rx_skbuff = NULL;
1134
1135         /* Free Tx skb ringbuffer */
1136         if (mdp->tx_skbuff) {
1137                 for (i = 0; i < mdp->num_tx_ring; i++)
1138                         dev_kfree_skb(mdp->tx_skbuff[i]);
1139         }
1140         kfree(mdp->tx_skbuff);
1141         mdp->tx_skbuff = NULL;
1142
1143         if (mdp->rx_ring) {
1144                 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1145                 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1146                                   mdp->rx_desc_dma);
1147                 mdp->rx_ring = NULL;
1148         }
1149
1150         if (mdp->tx_ring) {
1151                 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1152                 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1153                                   mdp->tx_desc_dma);
1154                 mdp->tx_ring = NULL;
1155         }
1156 }
1157
1158 /* format skb and descriptor buffer */
1159 static void sh_eth_ring_format(struct net_device *ndev)
1160 {
1161         struct sh_eth_private *mdp = netdev_priv(ndev);
1162         int i;
1163         struct sk_buff *skb;
1164         struct sh_eth_rxdesc *rxdesc = NULL;
1165         struct sh_eth_txdesc *txdesc = NULL;
1166         int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1167         int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1168         int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1169         dma_addr_t dma_addr;
1170         u32 buf_len;
1171
1172         mdp->cur_rx = 0;
1173         mdp->cur_tx = 0;
1174         mdp->dirty_rx = 0;
1175         mdp->dirty_tx = 0;
1176
1177         memset(mdp->rx_ring, 0, rx_ringsize);
1178
1179         /* build Rx ring buffer */
1180         for (i = 0; i < mdp->num_rx_ring; i++) {
1181                 /* skb */
1182                 mdp->rx_skbuff[i] = NULL;
1183                 skb = netdev_alloc_skb(ndev, skbuff_size);
1184                 if (skb == NULL)
1185                         break;
1186                 sh_eth_set_receive_align(skb);
1187
1188                 /* RX descriptor */
1189                 rxdesc = &mdp->rx_ring[i];
1190                 /* The size of the buffer is a multiple of 32 bytes. */
1191                 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1192                 rxdesc->len = cpu_to_edmac(mdp, buf_len << 16);
1193                 dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1194                                           DMA_FROM_DEVICE);
1195                 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1196                         kfree_skb(skb);
1197                         break;
1198                 }
1199                 mdp->rx_skbuff[i] = skb;
1200                 rxdesc->addr = cpu_to_edmac(mdp, dma_addr);
1201                 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1202
1203                 /* Rx descriptor address set */
1204                 if (i == 0) {
1205                         sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1206                         if (sh_eth_is_gether(mdp) ||
1207                             sh_eth_is_rz_fast_ether(mdp))
1208                                 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1209                 }
1210         }
1211
1212         mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1213
1214         /* Mark the last entry as wrapping the ring. */
1215         rxdesc->status |= cpu_to_edmac(mdp, RD_RDLE);
1216
1217         memset(mdp->tx_ring, 0, tx_ringsize);
1218
1219         /* build Tx ring buffer */
1220         for (i = 0; i < mdp->num_tx_ring; i++) {
1221                 mdp->tx_skbuff[i] = NULL;
1222                 txdesc = &mdp->tx_ring[i];
1223                 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1224                 txdesc->len = cpu_to_edmac(mdp, 0);
1225                 if (i == 0) {
1226                         /* Tx descriptor address set */
1227                         sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1228                         if (sh_eth_is_gether(mdp) ||
1229                             sh_eth_is_rz_fast_ether(mdp))
1230                                 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1231                 }
1232         }
1233
1234         txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1235 }
1236
1237 /* Get skb and descriptor buffer */
1238 static int sh_eth_ring_init(struct net_device *ndev)
1239 {
1240         struct sh_eth_private *mdp = netdev_priv(ndev);
1241         int rx_ringsize, tx_ringsize;
1242
1243         /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1244          * card needs room to do 8 byte alignment, +2 so we can reserve
1245          * the first 2 bytes, and +16 gets room for the status word from the
1246          * card.
1247          */
1248         mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1249                           (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1250         if (mdp->cd->rpadir)
1251                 mdp->rx_buf_sz += NET_IP_ALIGN;
1252
1253         /* Allocate RX and TX skb rings */
1254         mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1255                                  GFP_KERNEL);
1256         if (!mdp->rx_skbuff)
1257                 return -ENOMEM;
1258
1259         mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1260                                  GFP_KERNEL);
1261         if (!mdp->tx_skbuff)
1262                 goto ring_free;
1263
1264         /* Allocate all Rx descriptors. */
1265         rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1266         mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1267                                           GFP_KERNEL);
1268         if (!mdp->rx_ring)
1269                 goto ring_free;
1270
1271         mdp->dirty_rx = 0;
1272
1273         /* Allocate all Tx descriptors. */
1274         tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1275         mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1276                                           GFP_KERNEL);
1277         if (!mdp->tx_ring)
1278                 goto ring_free;
1279         return 0;
1280
1281 ring_free:
1282         /* Free Rx and Tx skb ring buffer and DMA buffer */
1283         sh_eth_ring_free(ndev);
1284
1285         return -ENOMEM;
1286 }
1287
1288 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1289 {
1290         int ret = 0;
1291         struct sh_eth_private *mdp = netdev_priv(ndev);
1292         u32 val;
1293
1294         /* Soft Reset */
1295         ret = sh_eth_reset(ndev);
1296         if (ret)
1297                 return ret;
1298
1299         if (mdp->cd->rmiimode)
1300                 sh_eth_write(ndev, 0x1, RMIIMODE);
1301
1302         /* Descriptor format */
1303         sh_eth_ring_format(ndev);
1304         if (mdp->cd->rpadir)
1305                 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1306
1307         /* all sh_eth int mask */
1308         sh_eth_write(ndev, 0, EESIPR);
1309
1310 #if defined(__LITTLE_ENDIAN)
1311         if (mdp->cd->hw_swap)
1312                 sh_eth_write(ndev, EDMR_EL, EDMR);
1313         else
1314 #endif
1315                 sh_eth_write(ndev, 0, EDMR);
1316
1317         /* FIFO size set */
1318         sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1319         sh_eth_write(ndev, 0, TFTR);
1320
1321         /* Frame recv control (enable multiple-packets per rx irq) */
1322         sh_eth_write(ndev, RMCR_RNC, RMCR);
1323
1324         sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1325
1326         if (mdp->cd->bculr)
1327                 sh_eth_write(ndev, 0x800, BCULR);       /* Burst sycle set */
1328
1329         sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1330
1331         if (!mdp->cd->no_trimd)
1332                 sh_eth_write(ndev, 0, TRIMD);
1333
1334         /* Recv frame limit set register */
1335         sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1336                      RFLR);
1337
1338         sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1339         if (start) {
1340                 mdp->irq_enabled = true;
1341                 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1342         }
1343
1344         /* PAUSE Prohibition */
1345         val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1346                 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1347
1348         sh_eth_write(ndev, val, ECMR);
1349
1350         if (mdp->cd->set_rate)
1351                 mdp->cd->set_rate(ndev);
1352
1353         /* E-MAC Status Register clear */
1354         sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1355
1356         /* E-MAC Interrupt Enable register */
1357         if (start)
1358                 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1359
1360         /* Set MAC address */
1361         update_mac_address(ndev);
1362
1363         /* mask reset */
1364         if (mdp->cd->apr)
1365                 sh_eth_write(ndev, APR_AP, APR);
1366         if (mdp->cd->mpr)
1367                 sh_eth_write(ndev, MPR_MP, MPR);
1368         if (mdp->cd->tpauser)
1369                 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1370
1371         if (start) {
1372                 /* Setting the Rx mode will start the Rx process. */
1373                 sh_eth_write(ndev, EDRRR_R, EDRRR);
1374
1375                 netif_start_queue(ndev);
1376         }
1377
1378         return ret;
1379 }
1380
1381 static void sh_eth_dev_exit(struct net_device *ndev)
1382 {
1383         struct sh_eth_private *mdp = netdev_priv(ndev);
1384         int i;
1385
1386         /* Deactivate all TX descriptors, so DMA should stop at next
1387          * packet boundary if it's currently running
1388          */
1389         for (i = 0; i < mdp->num_tx_ring; i++)
1390                 mdp->tx_ring[i].status &= ~cpu_to_edmac(mdp, TD_TACT);
1391
1392         /* Disable TX FIFO egress to MAC */
1393         sh_eth_rcv_snd_disable(ndev);
1394
1395         /* Stop RX DMA at next packet boundary */
1396         sh_eth_write(ndev, 0, EDRRR);
1397
1398         /* Aside from TX DMA, we can't tell when the hardware is
1399          * really stopped, so we need to reset to make sure.
1400          * Before doing that, wait for long enough to *probably*
1401          * finish transmitting the last packet and poll stats.
1402          */
1403         msleep(2); /* max frame time at 10 Mbps < 1250 us */
1404         sh_eth_get_stats(ndev);
1405         sh_eth_reset(ndev);
1406
1407         /* Set MAC address again */
1408         update_mac_address(ndev);
1409 }
1410
1411 /* free Tx skb function */
1412 static int sh_eth_txfree(struct net_device *ndev)
1413 {
1414         struct sh_eth_private *mdp = netdev_priv(ndev);
1415         struct sh_eth_txdesc *txdesc;
1416         int free_num = 0;
1417         int entry = 0;
1418
1419         for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1420                 entry = mdp->dirty_tx % mdp->num_tx_ring;
1421                 txdesc = &mdp->tx_ring[entry];
1422                 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1423                         break;
1424                 /* TACT bit must be checked before all the following reads */
1425                 dma_rmb();
1426                 netif_info(mdp, tx_done, ndev,
1427                            "tx entry %d status 0x%08x\n",
1428                            entry, edmac_to_cpu(mdp, txdesc->status));
1429                 /* Free the original skb. */
1430                 if (mdp->tx_skbuff[entry]) {
1431                         dma_unmap_single(&ndev->dev,
1432                                          edmac_to_cpu(mdp, txdesc->addr),
1433                                          edmac_to_cpu(mdp, txdesc->len) >> 16,
1434                                          DMA_TO_DEVICE);
1435                         dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1436                         mdp->tx_skbuff[entry] = NULL;
1437                         free_num++;
1438                 }
1439                 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1440                 if (entry >= mdp->num_tx_ring - 1)
1441                         txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1442
1443                 ndev->stats.tx_packets++;
1444                 ndev->stats.tx_bytes += edmac_to_cpu(mdp, txdesc->len) >> 16;
1445         }
1446         return free_num;
1447 }
1448
1449 /* Packet receive function */
1450 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1451 {
1452         struct sh_eth_private *mdp = netdev_priv(ndev);
1453         struct sh_eth_rxdesc *rxdesc;
1454
1455         int entry = mdp->cur_rx % mdp->num_rx_ring;
1456         int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1457         int limit;
1458         struct sk_buff *skb;
1459         u16 pkt_len = 0;
1460         u32 desc_status;
1461         int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1462         dma_addr_t dma_addr;
1463         u32 buf_len;
1464
1465         boguscnt = min(boguscnt, *quota);
1466         limit = boguscnt;
1467         rxdesc = &mdp->rx_ring[entry];
1468         while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1469                 /* RACT bit must be checked before all the following reads */
1470                 dma_rmb();
1471                 desc_status = edmac_to_cpu(mdp, rxdesc->status);
1472                 pkt_len = edmac_to_cpu(mdp, rxdesc->len) & RD_RFL;
1473
1474                 if (--boguscnt < 0)
1475                         break;
1476
1477                 netif_info(mdp, rx_status, ndev,
1478                            "rx entry %d status 0x%08x len %d\n",
1479                            entry, desc_status, pkt_len);
1480
1481                 if (!(desc_status & RDFEND))
1482                         ndev->stats.rx_length_errors++;
1483
1484                 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1485                  * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1486                  * bit 0. However, in case of the R8A7740 and R7S72100
1487                  * the RFS bits are from bit 25 to bit 16. So, the
1488                  * driver needs right shifting by 16.
1489                  */
1490                 if (mdp->cd->shift_rd0)
1491                         desc_status >>= 16;
1492
1493                 skb = mdp->rx_skbuff[entry];
1494                 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1495                                    RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1496                         ndev->stats.rx_errors++;
1497                         if (desc_status & RD_RFS1)
1498                                 ndev->stats.rx_crc_errors++;
1499                         if (desc_status & RD_RFS2)
1500                                 ndev->stats.rx_frame_errors++;
1501                         if (desc_status & RD_RFS3)
1502                                 ndev->stats.rx_length_errors++;
1503                         if (desc_status & RD_RFS4)
1504                                 ndev->stats.rx_length_errors++;
1505                         if (desc_status & RD_RFS6)
1506                                 ndev->stats.rx_missed_errors++;
1507                         if (desc_status & RD_RFS10)
1508                                 ndev->stats.rx_over_errors++;
1509                 } else  if (skb) {
1510                         dma_addr = edmac_to_cpu(mdp, rxdesc->addr);
1511                         if (!mdp->cd->hw_swap)
1512                                 sh_eth_soft_swap(
1513                                         phys_to_virt(ALIGN(dma_addr, 4)),
1514                                         pkt_len + 2);
1515                         mdp->rx_skbuff[entry] = NULL;
1516                         if (mdp->cd->rpadir)
1517                                 skb_reserve(skb, NET_IP_ALIGN);
1518                         dma_unmap_single(&ndev->dev, dma_addr,
1519                                          ALIGN(mdp->rx_buf_sz, 32),
1520                                          DMA_FROM_DEVICE);
1521                         skb_put(skb, pkt_len);
1522                         skb->protocol = eth_type_trans(skb, ndev);
1523                         netif_receive_skb(skb);
1524                         ndev->stats.rx_packets++;
1525                         ndev->stats.rx_bytes += pkt_len;
1526                         if (desc_status & RD_RFS8)
1527                                 ndev->stats.multicast++;
1528                 }
1529                 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1530                 rxdesc = &mdp->rx_ring[entry];
1531         }
1532
1533         /* Refill the Rx ring buffers. */
1534         for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1535                 entry = mdp->dirty_rx % mdp->num_rx_ring;
1536                 rxdesc = &mdp->rx_ring[entry];
1537                 /* The size of the buffer is 32 byte boundary. */
1538                 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1539                 rxdesc->len = cpu_to_edmac(mdp, buf_len << 16);
1540
1541                 if (mdp->rx_skbuff[entry] == NULL) {
1542                         skb = netdev_alloc_skb(ndev, skbuff_size);
1543                         if (skb == NULL)
1544                                 break;  /* Better luck next round. */
1545                         sh_eth_set_receive_align(skb);
1546                         dma_addr = dma_map_single(&ndev->dev, skb->data,
1547                                                   buf_len, DMA_FROM_DEVICE);
1548                         if (dma_mapping_error(&ndev->dev, dma_addr)) {
1549                                 kfree_skb(skb);
1550                                 break;
1551                         }
1552                         mdp->rx_skbuff[entry] = skb;
1553
1554                         skb_checksum_none_assert(skb);
1555                         rxdesc->addr = cpu_to_edmac(mdp, dma_addr);
1556                 }
1557                 dma_wmb(); /* RACT bit must be set after all the above writes */
1558                 if (entry >= mdp->num_rx_ring - 1)
1559                         rxdesc->status |=
1560                                 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDLE);
1561                 else
1562                         rxdesc->status |=
1563                                 cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1564         }
1565
1566         /* Restart Rx engine if stopped. */
1567         /* If we don't need to check status, don't. -KDU */
1568         if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1569                 /* fix the values for the next receiving if RDE is set */
1570                 if (intr_status & EESR_RDE &&
1571                     mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1572                         u32 count = (sh_eth_read(ndev, RDFAR) -
1573                                      sh_eth_read(ndev, RDLAR)) >> 4;
1574
1575                         mdp->cur_rx = count;
1576                         mdp->dirty_rx = count;
1577                 }
1578                 sh_eth_write(ndev, EDRRR_R, EDRRR);
1579         }
1580
1581         *quota -= limit - boguscnt - 1;
1582
1583         return *quota <= 0;
1584 }
1585
1586 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1587 {
1588         /* disable tx and rx */
1589         sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1590                 ~(ECMR_RE | ECMR_TE), ECMR);
1591 }
1592
1593 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1594 {
1595         /* enable tx and rx */
1596         sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1597                 (ECMR_RE | ECMR_TE), ECMR);
1598 }
1599
1600 /* error control function */
1601 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1602 {
1603         struct sh_eth_private *mdp = netdev_priv(ndev);
1604         u32 felic_stat;
1605         u32 link_stat;
1606         u32 mask;
1607
1608         if (intr_status & EESR_ECI) {
1609                 felic_stat = sh_eth_read(ndev, ECSR);
1610                 sh_eth_write(ndev, felic_stat, ECSR);   /* clear int */
1611                 if (felic_stat & ECSR_ICD)
1612                         ndev->stats.tx_carrier_errors++;
1613                 if (felic_stat & ECSR_LCHNG) {
1614                         /* Link Changed */
1615                         if (mdp->cd->no_psr || mdp->no_ether_link) {
1616                                 goto ignore_link;
1617                         } else {
1618                                 link_stat = (sh_eth_read(ndev, PSR));
1619                                 if (mdp->ether_link_active_low)
1620                                         link_stat = ~link_stat;
1621                         }
1622                         if (!(link_stat & PHY_ST_LINK)) {
1623                                 sh_eth_rcv_snd_disable(ndev);
1624                         } else {
1625                                 /* Link Up */
1626                                 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1627                                                    ~DMAC_M_ECI, EESIPR);
1628                                 /* clear int */
1629                                 sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1630                                              ECSR);
1631                                 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1632                                                    DMAC_M_ECI, EESIPR);
1633                                 /* enable tx and rx */
1634                                 sh_eth_rcv_snd_enable(ndev);
1635                         }
1636                 }
1637         }
1638
1639 ignore_link:
1640         if (intr_status & EESR_TWB) {
1641                 /* Unused write back interrupt */
1642                 if (intr_status & EESR_TABT) {  /* Transmit Abort int */
1643                         ndev->stats.tx_aborted_errors++;
1644                         netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1645                 }
1646         }
1647
1648         if (intr_status & EESR_RABT) {
1649                 /* Receive Abort int */
1650                 if (intr_status & EESR_RFRMER) {
1651                         /* Receive Frame Overflow int */
1652                         ndev->stats.rx_frame_errors++;
1653                 }
1654         }
1655
1656         if (intr_status & EESR_TDE) {
1657                 /* Transmit Descriptor Empty int */
1658                 ndev->stats.tx_fifo_errors++;
1659                 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1660         }
1661
1662         if (intr_status & EESR_TFE) {
1663                 /* FIFO under flow */
1664                 ndev->stats.tx_fifo_errors++;
1665                 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1666         }
1667
1668         if (intr_status & EESR_RDE) {
1669                 /* Receive Descriptor Empty int */
1670                 ndev->stats.rx_over_errors++;
1671         }
1672
1673         if (intr_status & EESR_RFE) {
1674                 /* Receive FIFO Overflow int */
1675                 ndev->stats.rx_fifo_errors++;
1676         }
1677
1678         if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1679                 /* Address Error */
1680                 ndev->stats.tx_fifo_errors++;
1681                 netif_err(mdp, tx_err, ndev, "Address Error\n");
1682         }
1683
1684         mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1685         if (mdp->cd->no_ade)
1686                 mask &= ~EESR_ADE;
1687         if (intr_status & mask) {
1688                 /* Tx error */
1689                 u32 edtrr = sh_eth_read(ndev, EDTRR);
1690
1691                 /* dmesg */
1692                 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1693                            intr_status, mdp->cur_tx, mdp->dirty_tx,
1694                            (u32)ndev->state, edtrr);
1695                 /* dirty buffer free */
1696                 sh_eth_txfree(ndev);
1697
1698                 /* SH7712 BUG */
1699                 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1700                         /* tx dma start */
1701                         sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1702                 }
1703                 /* wakeup */
1704                 netif_wake_queue(ndev);
1705         }
1706 }
1707
1708 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1709 {
1710         struct net_device *ndev = netdev;
1711         struct sh_eth_private *mdp = netdev_priv(ndev);
1712         struct sh_eth_cpu_data *cd = mdp->cd;
1713         irqreturn_t ret = IRQ_NONE;
1714         u32 intr_status, intr_enable;
1715
1716         spin_lock(&mdp->lock);
1717
1718         /* Get interrupt status */
1719         intr_status = sh_eth_read(ndev, EESR);
1720         /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1721          * enabled since it's the one that  comes thru regardless of the mask,
1722          * and we need to fully handle it in sh_eth_error() in order to quench
1723          * it as it doesn't get cleared by just writing 1 to the ECI bit...
1724          */
1725         intr_enable = sh_eth_read(ndev, EESIPR);
1726         intr_status &= intr_enable | DMAC_M_ECI;
1727         if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1728                 ret = IRQ_HANDLED;
1729         else
1730                 goto out;
1731
1732         if (!likely(mdp->irq_enabled)) {
1733                 sh_eth_write(ndev, 0, EESIPR);
1734                 goto out;
1735         }
1736
1737         if (intr_status & EESR_RX_CHECK) {
1738                 if (napi_schedule_prep(&mdp->napi)) {
1739                         /* Mask Rx interrupts */
1740                         sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1741                                      EESIPR);
1742                         __napi_schedule(&mdp->napi);
1743                 } else {
1744                         netdev_warn(ndev,
1745                                     "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1746                                     intr_status, intr_enable);
1747                 }
1748         }
1749
1750         /* Tx Check */
1751         if (intr_status & cd->tx_check) {
1752                 /* Clear Tx interrupts */
1753                 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1754
1755                 sh_eth_txfree(ndev);
1756                 netif_wake_queue(ndev);
1757         }
1758
1759         if (intr_status & cd->eesr_err_check) {
1760                 /* Clear error interrupts */
1761                 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1762
1763                 sh_eth_error(ndev, intr_status);
1764         }
1765
1766 out:
1767         spin_unlock(&mdp->lock);
1768
1769         return ret;
1770 }
1771
1772 static int sh_eth_poll(struct napi_struct *napi, int budget)
1773 {
1774         struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1775                                                   napi);
1776         struct net_device *ndev = napi->dev;
1777         int quota = budget;
1778         u32 intr_status;
1779
1780         for (;;) {
1781                 intr_status = sh_eth_read(ndev, EESR);
1782                 if (!(intr_status & EESR_RX_CHECK))
1783                         break;
1784                 /* Clear Rx interrupts */
1785                 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1786
1787                 if (sh_eth_rx(ndev, intr_status, &quota))
1788                         goto out;
1789         }
1790
1791         napi_complete(napi);
1792
1793         /* Reenable Rx interrupts */
1794         if (mdp->irq_enabled)
1795                 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1796 out:
1797         return budget - quota;
1798 }
1799
1800 /* PHY state control function */
1801 static void sh_eth_adjust_link(struct net_device *ndev)
1802 {
1803         struct sh_eth_private *mdp = netdev_priv(ndev);
1804         struct phy_device *phydev = mdp->phydev;
1805         int new_state = 0;
1806
1807         if (phydev->link) {
1808                 if (phydev->duplex != mdp->duplex) {
1809                         new_state = 1;
1810                         mdp->duplex = phydev->duplex;
1811                         if (mdp->cd->set_duplex)
1812                                 mdp->cd->set_duplex(ndev);
1813                 }
1814
1815                 if (phydev->speed != mdp->speed) {
1816                         new_state = 1;
1817                         mdp->speed = phydev->speed;
1818                         if (mdp->cd->set_rate)
1819                                 mdp->cd->set_rate(ndev);
1820                 }
1821                 if (!mdp->link) {
1822                         sh_eth_write(ndev,
1823                                      sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1824                                      ECMR);
1825                         new_state = 1;
1826                         mdp->link = phydev->link;
1827                         if (mdp->cd->no_psr || mdp->no_ether_link)
1828                                 sh_eth_rcv_snd_enable(ndev);
1829                 }
1830         } else if (mdp->link) {
1831                 new_state = 1;
1832                 mdp->link = 0;
1833                 mdp->speed = 0;
1834                 mdp->duplex = -1;
1835                 if (mdp->cd->no_psr || mdp->no_ether_link)
1836                         sh_eth_rcv_snd_disable(ndev);
1837         }
1838
1839         if (new_state && netif_msg_link(mdp))
1840                 phy_print_status(phydev);
1841 }
1842
1843 /* PHY init function */
1844 static int sh_eth_phy_init(struct net_device *ndev)
1845 {
1846         struct device_node *np = ndev->dev.parent->of_node;
1847         struct sh_eth_private *mdp = netdev_priv(ndev);
1848         struct phy_device *phydev = NULL;
1849
1850         mdp->link = 0;
1851         mdp->speed = 0;
1852         mdp->duplex = -1;
1853
1854         /* Try connect to PHY */
1855         if (np) {
1856                 struct device_node *pn;
1857
1858                 pn = of_parse_phandle(np, "phy-handle", 0);
1859                 phydev = of_phy_connect(ndev, pn,
1860                                         sh_eth_adjust_link, 0,
1861                                         mdp->phy_interface);
1862
1863                 if (!phydev)
1864                         phydev = ERR_PTR(-ENOENT);
1865         } else {
1866                 char phy_id[MII_BUS_ID_SIZE + 3];
1867
1868                 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1869                          mdp->mii_bus->id, mdp->phy_id);
1870
1871                 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1872                                      mdp->phy_interface);
1873         }
1874
1875         if (IS_ERR(phydev)) {
1876                 netdev_err(ndev, "failed to connect PHY\n");
1877                 return PTR_ERR(phydev);
1878         }
1879
1880         netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1881                     phydev->addr, phydev->irq, phydev->drv->name);
1882
1883         mdp->phydev = phydev;
1884
1885         return 0;
1886 }
1887
1888 /* PHY control start function */
1889 static int sh_eth_phy_start(struct net_device *ndev)
1890 {
1891         struct sh_eth_private *mdp = netdev_priv(ndev);
1892         int ret;
1893
1894         ret = sh_eth_phy_init(ndev);
1895         if (ret)
1896                 return ret;
1897
1898         phy_start(mdp->phydev);
1899
1900         return 0;
1901 }
1902
1903 static int sh_eth_get_settings(struct net_device *ndev,
1904                                struct ethtool_cmd *ecmd)
1905 {
1906         struct sh_eth_private *mdp = netdev_priv(ndev);
1907         unsigned long flags;
1908         int ret;
1909
1910         if (!mdp->phydev)
1911                 return -ENODEV;
1912
1913         spin_lock_irqsave(&mdp->lock, flags);
1914         ret = phy_ethtool_gset(mdp->phydev, ecmd);
1915         spin_unlock_irqrestore(&mdp->lock, flags);
1916
1917         return ret;
1918 }
1919
1920 static int sh_eth_set_settings(struct net_device *ndev,
1921                                struct ethtool_cmd *ecmd)
1922 {
1923         struct sh_eth_private *mdp = netdev_priv(ndev);
1924         unsigned long flags;
1925         int ret;
1926
1927         if (!mdp->phydev)
1928                 return -ENODEV;
1929
1930         spin_lock_irqsave(&mdp->lock, flags);
1931
1932         /* disable tx and rx */
1933         sh_eth_rcv_snd_disable(ndev);
1934
1935         ret = phy_ethtool_sset(mdp->phydev, ecmd);
1936         if (ret)
1937                 goto error_exit;
1938
1939         if (ecmd->duplex == DUPLEX_FULL)
1940                 mdp->duplex = 1;
1941         else
1942                 mdp->duplex = 0;
1943
1944         if (mdp->cd->set_duplex)
1945                 mdp->cd->set_duplex(ndev);
1946
1947 error_exit:
1948         mdelay(1);
1949
1950         /* enable tx and rx */
1951         sh_eth_rcv_snd_enable(ndev);
1952
1953         spin_unlock_irqrestore(&mdp->lock, flags);
1954
1955         return ret;
1956 }
1957
1958 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1959  * version must be bumped as well.  Just adding registers up to that
1960  * limit is fine, as long as the existing register indices don't
1961  * change.
1962  */
1963 #define SH_ETH_REG_DUMP_VERSION         1
1964 #define SH_ETH_REG_DUMP_MAX_REGS        256
1965
1966 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1967 {
1968         struct sh_eth_private *mdp = netdev_priv(ndev);
1969         struct sh_eth_cpu_data *cd = mdp->cd;
1970         u32 *valid_map;
1971         size_t len;
1972
1973         BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1974
1975         /* Dump starts with a bitmap that tells ethtool which
1976          * registers are defined for this chip.
1977          */
1978         len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1979         if (buf) {
1980                 valid_map = buf;
1981                 buf += len;
1982         } else {
1983                 valid_map = NULL;
1984         }
1985
1986         /* Add a register to the dump, if it has a defined offset.
1987          * This automatically skips most undefined registers, but for
1988          * some it is also necessary to check a capability flag in
1989          * struct sh_eth_cpu_data.
1990          */
1991 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1992 #define add_reg_from(reg, read_expr) do {                               \
1993                 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {    \
1994                         if (buf) {                                      \
1995                                 mark_reg_valid(reg);                    \
1996                                 *buf++ = read_expr;                     \
1997                         }                                               \
1998                         ++len;                                          \
1999                 }                                                       \
2000         } while (0)
2001 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2002 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2003
2004         add_reg(EDSR);
2005         add_reg(EDMR);
2006         add_reg(EDTRR);
2007         add_reg(EDRRR);
2008         add_reg(EESR);
2009         add_reg(EESIPR);
2010         add_reg(TDLAR);
2011         add_reg(TDFAR);
2012         add_reg(TDFXR);
2013         add_reg(TDFFR);
2014         add_reg(RDLAR);
2015         add_reg(RDFAR);
2016         add_reg(RDFXR);
2017         add_reg(RDFFR);
2018         add_reg(TRSCER);
2019         add_reg(RMFCR);
2020         add_reg(TFTR);
2021         add_reg(FDR);
2022         add_reg(RMCR);
2023         add_reg(TFUCR);
2024         add_reg(RFOCR);
2025         if (cd->rmiimode)
2026                 add_reg(RMIIMODE);
2027         add_reg(FCFTR);
2028         if (cd->rpadir)
2029                 add_reg(RPADIR);
2030         if (!cd->no_trimd)
2031                 add_reg(TRIMD);
2032         add_reg(ECMR);
2033         add_reg(ECSR);
2034         add_reg(ECSIPR);
2035         add_reg(PIR);
2036         if (!cd->no_psr)
2037                 add_reg(PSR);
2038         add_reg(RDMLR);
2039         add_reg(RFLR);
2040         add_reg(IPGR);
2041         if (cd->apr)
2042                 add_reg(APR);
2043         if (cd->mpr)
2044                 add_reg(MPR);
2045         add_reg(RFCR);
2046         add_reg(RFCF);
2047         if (cd->tpauser)
2048                 add_reg(TPAUSER);
2049         add_reg(TPAUSECR);
2050         add_reg(GECMR);
2051         if (cd->bculr)
2052                 add_reg(BCULR);
2053         add_reg(MAHR);
2054         add_reg(MALR);
2055         add_reg(TROCR);
2056         add_reg(CDCR);
2057         add_reg(LCCR);
2058         add_reg(CNDCR);
2059         add_reg(CEFCR);
2060         add_reg(FRECR);
2061         add_reg(TSFRCR);
2062         add_reg(TLFRCR);
2063         add_reg(CERCR);
2064         add_reg(CEECR);
2065         add_reg(MAFCR);
2066         if (cd->rtrate)
2067                 add_reg(RTRATE);
2068         if (cd->hw_crc)
2069                 add_reg(CSMR);
2070         if (cd->select_mii)
2071                 add_reg(RMII_MII);
2072         add_reg(ARSTR);
2073         if (cd->tsu) {
2074                 add_tsu_reg(TSU_CTRST);
2075                 add_tsu_reg(TSU_FWEN0);
2076                 add_tsu_reg(TSU_FWEN1);
2077                 add_tsu_reg(TSU_FCM);
2078                 add_tsu_reg(TSU_BSYSL0);
2079                 add_tsu_reg(TSU_BSYSL1);
2080                 add_tsu_reg(TSU_PRISL0);
2081                 add_tsu_reg(TSU_PRISL1);
2082                 add_tsu_reg(TSU_FWSL0);
2083                 add_tsu_reg(TSU_FWSL1);
2084                 add_tsu_reg(TSU_FWSLC);
2085                 add_tsu_reg(TSU_QTAG0);
2086                 add_tsu_reg(TSU_QTAG1);
2087                 add_tsu_reg(TSU_QTAGM0);
2088                 add_tsu_reg(TSU_QTAGM1);
2089                 add_tsu_reg(TSU_FWSR);
2090                 add_tsu_reg(TSU_FWINMK);
2091                 add_tsu_reg(TSU_ADQT0);
2092                 add_tsu_reg(TSU_ADQT1);
2093                 add_tsu_reg(TSU_VTAG0);
2094                 add_tsu_reg(TSU_VTAG1);
2095                 add_tsu_reg(TSU_ADSBSY);
2096                 add_tsu_reg(TSU_TEN);
2097                 add_tsu_reg(TSU_POST1);
2098                 add_tsu_reg(TSU_POST2);
2099                 add_tsu_reg(TSU_POST3);
2100                 add_tsu_reg(TSU_POST4);
2101                 if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2102                         /* This is the start of a table, not just a single
2103                          * register.
2104                          */
2105                         if (buf) {
2106                                 unsigned int i;
2107
2108                                 mark_reg_valid(TSU_ADRH0);
2109                                 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2110                                         *buf++ = ioread32(
2111                                                 mdp->tsu_addr +
2112                                                 mdp->reg_offset[TSU_ADRH0] +
2113                                                 i * 4);
2114                         }
2115                         len += SH_ETH_TSU_CAM_ENTRIES * 2;
2116                 }
2117         }
2118
2119 #undef mark_reg_valid
2120 #undef add_reg_from
2121 #undef add_reg
2122 #undef add_tsu_reg
2123
2124         return len * 4;
2125 }
2126
2127 static int sh_eth_get_regs_len(struct net_device *ndev)
2128 {
2129         return __sh_eth_get_regs(ndev, NULL);
2130 }
2131
2132 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2133                             void *buf)
2134 {
2135         struct sh_eth_private *mdp = netdev_priv(ndev);
2136
2137         regs->version = SH_ETH_REG_DUMP_VERSION;
2138
2139         pm_runtime_get_sync(&mdp->pdev->dev);
2140         __sh_eth_get_regs(ndev, buf);
2141         pm_runtime_put_sync(&mdp->pdev->dev);
2142 }
2143
2144 static int sh_eth_nway_reset(struct net_device *ndev)
2145 {
2146         struct sh_eth_private *mdp = netdev_priv(ndev);
2147         unsigned long flags;
2148         int ret;
2149
2150         if (!mdp->phydev)
2151                 return -ENODEV;
2152
2153         spin_lock_irqsave(&mdp->lock, flags);
2154         ret = phy_start_aneg(mdp->phydev);
2155         spin_unlock_irqrestore(&mdp->lock, flags);
2156
2157         return ret;
2158 }
2159
2160 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2161 {
2162         struct sh_eth_private *mdp = netdev_priv(ndev);
2163         return mdp->msg_enable;
2164 }
2165
2166 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2167 {
2168         struct sh_eth_private *mdp = netdev_priv(ndev);
2169         mdp->msg_enable = value;
2170 }
2171
2172 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2173         "rx_current", "tx_current",
2174         "rx_dirty", "tx_dirty",
2175 };
2176 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2177
2178 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2179 {
2180         switch (sset) {
2181         case ETH_SS_STATS:
2182                 return SH_ETH_STATS_LEN;
2183         default:
2184                 return -EOPNOTSUPP;
2185         }
2186 }
2187
2188 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2189                                      struct ethtool_stats *stats, u64 *data)
2190 {
2191         struct sh_eth_private *mdp = netdev_priv(ndev);
2192         int i = 0;
2193
2194         /* device-specific stats */
2195         data[i++] = mdp->cur_rx;
2196         data[i++] = mdp->cur_tx;
2197         data[i++] = mdp->dirty_rx;
2198         data[i++] = mdp->dirty_tx;
2199 }
2200
2201 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2202 {
2203         switch (stringset) {
2204         case ETH_SS_STATS:
2205                 memcpy(data, *sh_eth_gstrings_stats,
2206                        sizeof(sh_eth_gstrings_stats));
2207                 break;
2208         }
2209 }
2210
2211 static void sh_eth_get_ringparam(struct net_device *ndev,
2212                                  struct ethtool_ringparam *ring)
2213 {
2214         struct sh_eth_private *mdp = netdev_priv(ndev);
2215
2216         ring->rx_max_pending = RX_RING_MAX;
2217         ring->tx_max_pending = TX_RING_MAX;
2218         ring->rx_pending = mdp->num_rx_ring;
2219         ring->tx_pending = mdp->num_tx_ring;
2220 }
2221
2222 static int sh_eth_set_ringparam(struct net_device *ndev,
2223                                 struct ethtool_ringparam *ring)
2224 {
2225         struct sh_eth_private *mdp = netdev_priv(ndev);
2226         int ret;
2227
2228         if (ring->tx_pending > TX_RING_MAX ||
2229             ring->rx_pending > RX_RING_MAX ||
2230             ring->tx_pending < TX_RING_MIN ||
2231             ring->rx_pending < RX_RING_MIN)
2232                 return -EINVAL;
2233         if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2234                 return -EINVAL;
2235
2236         if (netif_running(ndev)) {
2237                 netif_device_detach(ndev);
2238                 netif_tx_disable(ndev);
2239
2240                 /* Serialise with the interrupt handler and NAPI, then
2241                  * disable interrupts.  We have to clear the
2242                  * irq_enabled flag first to ensure that interrupts
2243                  * won't be re-enabled.
2244                  */
2245                 mdp->irq_enabled = false;
2246                 synchronize_irq(ndev->irq);
2247                 napi_synchronize(&mdp->napi);
2248                 sh_eth_write(ndev, 0x0000, EESIPR);
2249
2250                 sh_eth_dev_exit(ndev);
2251
2252                 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2253                 sh_eth_ring_free(ndev);
2254         }
2255
2256         /* Set new parameters */
2257         mdp->num_rx_ring = ring->rx_pending;
2258         mdp->num_tx_ring = ring->tx_pending;
2259
2260         if (netif_running(ndev)) {
2261                 ret = sh_eth_ring_init(ndev);
2262                 if (ret < 0) {
2263                         netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2264                                    __func__);
2265                         return ret;
2266                 }
2267                 ret = sh_eth_dev_init(ndev, false);
2268                 if (ret < 0) {
2269                         netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2270                                    __func__);
2271                         return ret;
2272                 }
2273
2274                 mdp->irq_enabled = true;
2275                 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2276                 /* Setting the Rx mode will start the Rx process. */
2277                 sh_eth_write(ndev, EDRRR_R, EDRRR);
2278                 netif_device_attach(ndev);
2279         }
2280
2281         return 0;
2282 }
2283
2284 static const struct ethtool_ops sh_eth_ethtool_ops = {
2285         .get_settings   = sh_eth_get_settings,
2286         .set_settings   = sh_eth_set_settings,
2287         .get_regs_len   = sh_eth_get_regs_len,
2288         .get_regs       = sh_eth_get_regs,
2289         .nway_reset     = sh_eth_nway_reset,
2290         .get_msglevel   = sh_eth_get_msglevel,
2291         .set_msglevel   = sh_eth_set_msglevel,
2292         .get_link       = ethtool_op_get_link,
2293         .get_strings    = sh_eth_get_strings,
2294         .get_ethtool_stats  = sh_eth_get_ethtool_stats,
2295         .get_sset_count     = sh_eth_get_sset_count,
2296         .get_ringparam  = sh_eth_get_ringparam,
2297         .set_ringparam  = sh_eth_set_ringparam,
2298 };
2299
2300 /* network device open function */
2301 static int sh_eth_open(struct net_device *ndev)
2302 {
2303         int ret = 0;
2304         struct sh_eth_private *mdp = netdev_priv(ndev);
2305
2306         pm_runtime_get_sync(&mdp->pdev->dev);
2307
2308         napi_enable(&mdp->napi);
2309
2310         ret = request_irq(ndev->irq, sh_eth_interrupt,
2311                           mdp->cd->irq_flags, ndev->name, ndev);
2312         if (ret) {
2313                 netdev_err(ndev, "Can not assign IRQ number\n");
2314                 goto out_napi_off;
2315         }
2316
2317         /* Descriptor set */
2318         ret = sh_eth_ring_init(ndev);
2319         if (ret)
2320                 goto out_free_irq;
2321
2322         /* device init */
2323         ret = sh_eth_dev_init(ndev, true);
2324         if (ret)
2325                 goto out_free_irq;
2326
2327         /* PHY control start*/
2328         ret = sh_eth_phy_start(ndev);
2329         if (ret)
2330                 goto out_free_irq;
2331
2332         mdp->is_opened = 1;
2333
2334         return ret;
2335
2336 out_free_irq:
2337         free_irq(ndev->irq, ndev);
2338 out_napi_off:
2339         napi_disable(&mdp->napi);
2340         pm_runtime_put_sync(&mdp->pdev->dev);
2341         return ret;
2342 }
2343
2344 /* Timeout function */
2345 static void sh_eth_tx_timeout(struct net_device *ndev)
2346 {
2347         struct sh_eth_private *mdp = netdev_priv(ndev);
2348         struct sh_eth_rxdesc *rxdesc;
2349         int i;
2350
2351         netif_stop_queue(ndev);
2352
2353         netif_err(mdp, timer, ndev,
2354                   "transmit timed out, status %8.8x, resetting...\n",
2355                   sh_eth_read(ndev, EESR));
2356
2357         /* tx_errors count up */
2358         ndev->stats.tx_errors++;
2359
2360         /* Free all the skbuffs in the Rx queue. */
2361         for (i = 0; i < mdp->num_rx_ring; i++) {
2362                 rxdesc = &mdp->rx_ring[i];
2363                 rxdesc->status = cpu_to_edmac(mdp, 0);
2364                 rxdesc->addr = cpu_to_edmac(mdp, 0xBADF00D0);
2365                 dev_kfree_skb(mdp->rx_skbuff[i]);
2366                 mdp->rx_skbuff[i] = NULL;
2367         }
2368         for (i = 0; i < mdp->num_tx_ring; i++) {
2369                 dev_kfree_skb(mdp->tx_skbuff[i]);
2370                 mdp->tx_skbuff[i] = NULL;
2371         }
2372
2373         /* device init */
2374         sh_eth_dev_init(ndev, true);
2375 }
2376
2377 /* Packet transmit function */
2378 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2379 {
2380         struct sh_eth_private *mdp = netdev_priv(ndev);
2381         struct sh_eth_txdesc *txdesc;
2382         dma_addr_t dma_addr;
2383         u32 entry;
2384         unsigned long flags;
2385
2386         spin_lock_irqsave(&mdp->lock, flags);
2387         if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2388                 if (!sh_eth_txfree(ndev)) {
2389                         netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2390                         netif_stop_queue(ndev);
2391                         spin_unlock_irqrestore(&mdp->lock, flags);
2392                         return NETDEV_TX_BUSY;
2393                 }
2394         }
2395         spin_unlock_irqrestore(&mdp->lock, flags);
2396
2397         if (skb_put_padto(skb, ETH_ZLEN))
2398                 return NETDEV_TX_OK;
2399
2400         entry = mdp->cur_tx % mdp->num_tx_ring;
2401         mdp->tx_skbuff[entry] = skb;
2402         txdesc = &mdp->tx_ring[entry];
2403         /* soft swap. */
2404         if (!mdp->cd->hw_swap)
2405                 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2406         dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2407                                   DMA_TO_DEVICE);
2408         if (dma_mapping_error(&ndev->dev, dma_addr)) {
2409                 kfree_skb(skb);
2410                 return NETDEV_TX_OK;
2411         }
2412         txdesc->addr = cpu_to_edmac(mdp, dma_addr);
2413         txdesc->len  = cpu_to_edmac(mdp, skb->len << 16);
2414
2415         dma_wmb(); /* TACT bit must be set after all the above writes */
2416         if (entry >= mdp->num_tx_ring - 1)
2417                 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2418         else
2419                 txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2420
2421         mdp->cur_tx++;
2422
2423         if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2424                 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2425
2426         return NETDEV_TX_OK;
2427 }
2428
2429 /* The statistics registers have write-clear behaviour, which means we
2430  * will lose any increment between the read and write.  We mitigate
2431  * this by only clearing when we read a non-zero value, so we will
2432  * never falsely report a total of zero.
2433  */
2434 static void
2435 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2436 {
2437         u32 delta = sh_eth_read(ndev, reg);
2438
2439         if (delta) {
2440                 *stat += delta;
2441                 sh_eth_write(ndev, 0, reg);
2442         }
2443 }
2444
2445 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2446 {
2447         struct sh_eth_private *mdp = netdev_priv(ndev);
2448
2449         if (sh_eth_is_rz_fast_ether(mdp))
2450                 return &ndev->stats;
2451
2452         if (!mdp->is_opened)
2453                 return &ndev->stats;
2454
2455         sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2456         sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2457         sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2458
2459         if (sh_eth_is_gether(mdp)) {
2460                 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2461                                    CERCR);
2462                 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2463                                    CEECR);
2464         } else {
2465                 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2466                                    CNDCR);
2467         }
2468
2469         return &ndev->stats;
2470 }
2471
2472 /* device close function */
2473 static int sh_eth_close(struct net_device *ndev)
2474 {
2475         struct sh_eth_private *mdp = netdev_priv(ndev);
2476
2477         netif_stop_queue(ndev);
2478
2479         /* Serialise with the interrupt handler and NAPI, then disable
2480          * interrupts.  We have to clear the irq_enabled flag first to
2481          * ensure that interrupts won't be re-enabled.
2482          */
2483         mdp->irq_enabled = false;
2484         synchronize_irq(ndev->irq);
2485         napi_disable(&mdp->napi);
2486         sh_eth_write(ndev, 0x0000, EESIPR);
2487
2488         sh_eth_dev_exit(ndev);
2489
2490         /* PHY Disconnect */
2491         if (mdp->phydev) {
2492                 phy_stop(mdp->phydev);
2493                 phy_disconnect(mdp->phydev);
2494                 mdp->phydev = NULL;
2495         }
2496
2497         free_irq(ndev->irq, ndev);
2498
2499         /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2500         sh_eth_ring_free(ndev);
2501
2502         pm_runtime_put_sync(&mdp->pdev->dev);
2503
2504         mdp->is_opened = 0;
2505
2506         return 0;
2507 }
2508
2509 /* ioctl to device function */
2510 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2511 {
2512         struct sh_eth_private *mdp = netdev_priv(ndev);
2513         struct phy_device *phydev = mdp->phydev;
2514
2515         if (!netif_running(ndev))
2516                 return -EINVAL;
2517
2518         if (!phydev)
2519                 return -ENODEV;
2520
2521         return phy_mii_ioctl(phydev, rq, cmd);
2522 }
2523
2524 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2525 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2526                                             int entry)
2527 {
2528         return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2529 }
2530
2531 static u32 sh_eth_tsu_get_post_mask(int entry)
2532 {
2533         return 0x0f << (28 - ((entry % 8) * 4));
2534 }
2535
2536 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2537 {
2538         return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2539 }
2540
2541 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2542                                              int entry)
2543 {
2544         struct sh_eth_private *mdp = netdev_priv(ndev);
2545         u32 tmp;
2546         void *reg_offset;
2547
2548         reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2549         tmp = ioread32(reg_offset);
2550         iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2551 }
2552
2553 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2554                                               int entry)
2555 {
2556         struct sh_eth_private *mdp = netdev_priv(ndev);
2557         u32 post_mask, ref_mask, tmp;
2558         void *reg_offset;
2559
2560         reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2561         post_mask = sh_eth_tsu_get_post_mask(entry);
2562         ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2563
2564         tmp = ioread32(reg_offset);
2565         iowrite32(tmp & ~post_mask, reg_offset);
2566
2567         /* If other port enables, the function returns "true" */
2568         return tmp & ref_mask;
2569 }
2570
2571 static int sh_eth_tsu_busy(struct net_device *ndev)
2572 {
2573         int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2574         struct sh_eth_private *mdp = netdev_priv(ndev);
2575
2576         while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2577                 udelay(10);
2578                 timeout--;
2579                 if (timeout <= 0) {
2580                         netdev_err(ndev, "%s: timeout\n", __func__);
2581                         return -ETIMEDOUT;
2582                 }
2583         }
2584
2585         return 0;
2586 }
2587
2588 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2589                                   const u8 *addr)
2590 {
2591         u32 val;
2592
2593         val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2594         iowrite32(val, reg);
2595         if (sh_eth_tsu_busy(ndev) < 0)
2596                 return -EBUSY;
2597
2598         val = addr[4] << 8 | addr[5];
2599         iowrite32(val, reg + 4);
2600         if (sh_eth_tsu_busy(ndev) < 0)
2601                 return -EBUSY;
2602
2603         return 0;
2604 }
2605
2606 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2607 {
2608         u32 val;
2609
2610         val = ioread32(reg);
2611         addr[0] = (val >> 24) & 0xff;
2612         addr[1] = (val >> 16) & 0xff;
2613         addr[2] = (val >> 8) & 0xff;
2614         addr[3] = val & 0xff;
2615         val = ioread32(reg + 4);
2616         addr[4] = (val >> 8) & 0xff;
2617         addr[5] = val & 0xff;
2618 }
2619
2620
2621 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2622 {
2623         struct sh_eth_private *mdp = netdev_priv(ndev);
2624         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2625         int i;
2626         u8 c_addr[ETH_ALEN];
2627
2628         for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2629                 sh_eth_tsu_read_entry(reg_offset, c_addr);
2630                 if (ether_addr_equal(addr, c_addr))
2631                         return i;
2632         }
2633
2634         return -ENOENT;
2635 }
2636
2637 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2638 {
2639         u8 blank[ETH_ALEN];
2640         int entry;
2641
2642         memset(blank, 0, sizeof(blank));
2643         entry = sh_eth_tsu_find_entry(ndev, blank);
2644         return (entry < 0) ? -ENOMEM : entry;
2645 }
2646
2647 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2648                                               int entry)
2649 {
2650         struct sh_eth_private *mdp = netdev_priv(ndev);
2651         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2652         int ret;
2653         u8 blank[ETH_ALEN];
2654
2655         sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2656                          ~(1 << (31 - entry)), TSU_TEN);
2657
2658         memset(blank, 0, sizeof(blank));
2659         ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2660         if (ret < 0)
2661                 return ret;
2662         return 0;
2663 }
2664
2665 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2666 {
2667         struct sh_eth_private *mdp = netdev_priv(ndev);
2668         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2669         int i, ret;
2670
2671         if (!mdp->cd->tsu)
2672                 return 0;
2673
2674         i = sh_eth_tsu_find_entry(ndev, addr);
2675         if (i < 0) {
2676                 /* No entry found, create one */
2677                 i = sh_eth_tsu_find_empty(ndev);
2678                 if (i < 0)
2679                         return -ENOMEM;
2680                 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2681                 if (ret < 0)
2682                         return ret;
2683
2684                 /* Enable the entry */
2685                 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2686                                  (1 << (31 - i)), TSU_TEN);
2687         }
2688
2689         /* Entry found or created, enable POST */
2690         sh_eth_tsu_enable_cam_entry_post(ndev, i);
2691
2692         return 0;
2693 }
2694
2695 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2696 {
2697         struct sh_eth_private *mdp = netdev_priv(ndev);
2698         int i, ret;
2699
2700         if (!mdp->cd->tsu)
2701                 return 0;
2702
2703         i = sh_eth_tsu_find_entry(ndev, addr);
2704         if (i) {
2705                 /* Entry found */
2706                 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2707                         goto done;
2708
2709                 /* Disable the entry if both ports was disabled */
2710                 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2711                 if (ret < 0)
2712                         return ret;
2713         }
2714 done:
2715         return 0;
2716 }
2717
2718 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2719 {
2720         struct sh_eth_private *mdp = netdev_priv(ndev);
2721         int i, ret;
2722
2723         if (!mdp->cd->tsu)
2724                 return 0;
2725
2726         for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2727                 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2728                         continue;
2729
2730                 /* Disable the entry if both ports was disabled */
2731                 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2732                 if (ret < 0)
2733                         return ret;
2734         }
2735
2736         return 0;
2737 }
2738
2739 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2740 {
2741         struct sh_eth_private *mdp = netdev_priv(ndev);
2742         u8 addr[ETH_ALEN];
2743         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2744         int i;
2745
2746         if (!mdp->cd->tsu)
2747                 return;
2748
2749         for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2750                 sh_eth_tsu_read_entry(reg_offset, addr);
2751                 if (is_multicast_ether_addr(addr))
2752                         sh_eth_tsu_del_entry(ndev, addr);
2753         }
2754 }
2755
2756 /* Update promiscuous flag and multicast filter */
2757 static void sh_eth_set_rx_mode(struct net_device *ndev)
2758 {
2759         struct sh_eth_private *mdp = netdev_priv(ndev);
2760         u32 ecmr_bits;
2761         int mcast_all = 0;
2762         unsigned long flags;
2763
2764         spin_lock_irqsave(&mdp->lock, flags);
2765         /* Initial condition is MCT = 1, PRM = 0.
2766          * Depending on ndev->flags, set PRM or clear MCT
2767          */
2768         ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2769         if (mdp->cd->tsu)
2770                 ecmr_bits |= ECMR_MCT;
2771
2772         if (!(ndev->flags & IFF_MULTICAST)) {
2773                 sh_eth_tsu_purge_mcast(ndev);
2774                 mcast_all = 1;
2775         }
2776         if (ndev->flags & IFF_ALLMULTI) {
2777                 sh_eth_tsu_purge_mcast(ndev);
2778                 ecmr_bits &= ~ECMR_MCT;
2779                 mcast_all = 1;
2780         }
2781
2782         if (ndev->flags & IFF_PROMISC) {
2783                 sh_eth_tsu_purge_all(ndev);
2784                 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2785         } else if (mdp->cd->tsu) {
2786                 struct netdev_hw_addr *ha;
2787                 netdev_for_each_mc_addr(ha, ndev) {
2788                         if (mcast_all && is_multicast_ether_addr(ha->addr))
2789                                 continue;
2790
2791                         if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2792                                 if (!mcast_all) {
2793                                         sh_eth_tsu_purge_mcast(ndev);
2794                                         ecmr_bits &= ~ECMR_MCT;
2795                                         mcast_all = 1;
2796                                 }
2797                         }
2798                 }
2799         }
2800
2801         /* update the ethernet mode */
2802         sh_eth_write(ndev, ecmr_bits, ECMR);
2803
2804         spin_unlock_irqrestore(&mdp->lock, flags);
2805 }
2806
2807 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2808 {
2809         if (!mdp->port)
2810                 return TSU_VTAG0;
2811         else
2812                 return TSU_VTAG1;
2813 }
2814
2815 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2816                                   __be16 proto, u16 vid)
2817 {
2818         struct sh_eth_private *mdp = netdev_priv(ndev);
2819         int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2820
2821         if (unlikely(!mdp->cd->tsu))
2822                 return -EPERM;
2823
2824         /* No filtering if vid = 0 */
2825         if (!vid)
2826                 return 0;
2827
2828         mdp->vlan_num_ids++;
2829
2830         /* The controller has one VLAN tag HW filter. So, if the filter is
2831          * already enabled, the driver disables it and the filte
2832          */
2833         if (mdp->vlan_num_ids > 1) {
2834                 /* disable VLAN filter */
2835                 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2836                 return 0;
2837         }
2838
2839         sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2840                          vtag_reg_index);
2841
2842         return 0;
2843 }
2844
2845 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2846                                    __be16 proto, u16 vid)
2847 {
2848         struct sh_eth_private *mdp = netdev_priv(ndev);
2849         int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2850
2851         if (unlikely(!mdp->cd->tsu))
2852                 return -EPERM;
2853
2854         /* No filtering if vid = 0 */
2855         if (!vid)
2856                 return 0;
2857
2858         mdp->vlan_num_ids--;
2859         sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2860
2861         return 0;
2862 }
2863
2864 /* SuperH's TSU register init function */
2865 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2866 {
2867         if (sh_eth_is_rz_fast_ether(mdp)) {
2868                 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2869                 return;
2870         }
2871
2872         sh_eth_tsu_write(mdp, 0, TSU_FWEN0);    /* Disable forward(0->1) */
2873         sh_eth_tsu_write(mdp, 0, TSU_FWEN1);    /* Disable forward(1->0) */
2874         sh_eth_tsu_write(mdp, 0, TSU_FCM);      /* forward fifo 3k-3k */
2875         sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2876         sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2877         sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2878         sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2879         sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2880         sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2881         sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2882         if (sh_eth_is_gether(mdp)) {
2883                 sh_eth_tsu_write(mdp, 0, TSU_QTAG0);    /* Disable QTAG(0->1) */
2884                 sh_eth_tsu_write(mdp, 0, TSU_QTAG1);    /* Disable QTAG(1->0) */
2885         } else {
2886                 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);   /* Disable QTAG(0->1) */
2887                 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);   /* Disable QTAG(1->0) */
2888         }
2889         sh_eth_tsu_write(mdp, 0, TSU_FWSR);     /* all interrupt status clear */
2890         sh_eth_tsu_write(mdp, 0, TSU_FWINMK);   /* Disable all interrupt */
2891         sh_eth_tsu_write(mdp, 0, TSU_TEN);      /* Disable all CAM entry */
2892         sh_eth_tsu_write(mdp, 0, TSU_POST1);    /* Disable CAM entry [ 0- 7] */
2893         sh_eth_tsu_write(mdp, 0, TSU_POST2);    /* Disable CAM entry [ 8-15] */
2894         sh_eth_tsu_write(mdp, 0, TSU_POST3);    /* Disable CAM entry [16-23] */
2895         sh_eth_tsu_write(mdp, 0, TSU_POST4);    /* Disable CAM entry [24-31] */
2896 }
2897
2898 /* MDIO bus release function */
2899 static int sh_mdio_release(struct sh_eth_private *mdp)
2900 {
2901         /* unregister mdio bus */
2902         mdiobus_unregister(mdp->mii_bus);
2903
2904         /* free bitbang info */
2905         free_mdio_bitbang(mdp->mii_bus);
2906
2907         return 0;
2908 }
2909
2910 /* MDIO bus init function */
2911 static int sh_mdio_init(struct sh_eth_private *mdp,
2912                         struct sh_eth_plat_data *pd)
2913 {
2914         int ret, i;
2915         struct bb_info *bitbang;
2916         struct platform_device *pdev = mdp->pdev;
2917         struct device *dev = &mdp->pdev->dev;
2918
2919         /* create bit control struct for PHY */
2920         bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2921         if (!bitbang)
2922                 return -ENOMEM;
2923
2924         /* bitbang init */
2925         bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2926         bitbang->set_gate = pd->set_mdio_gate;
2927         bitbang->mdi_msk = PIR_MDI;
2928         bitbang->mdo_msk = PIR_MDO;
2929         bitbang->mmd_msk = PIR_MMD;
2930         bitbang->mdc_msk = PIR_MDC;
2931         bitbang->ctrl.ops = &bb_ops;
2932
2933         /* MII controller setting */
2934         mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2935         if (!mdp->mii_bus)
2936                 return -ENOMEM;
2937
2938         /* Hook up MII support for ethtool */
2939         mdp->mii_bus->name = "sh_mii";
2940         mdp->mii_bus->parent = dev;
2941         snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2942                  pdev->name, pdev->id);
2943
2944         /* PHY IRQ */
2945         mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2946                                                GFP_KERNEL);
2947         if (!mdp->mii_bus->irq) {
2948                 ret = -ENOMEM;
2949                 goto out_free_bus;
2950         }
2951
2952         /* register MDIO bus */
2953         if (dev->of_node) {
2954                 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2955         } else {
2956                 for (i = 0; i < PHY_MAX_ADDR; i++)
2957                         mdp->mii_bus->irq[i] = PHY_POLL;
2958                 if (pd->phy_irq > 0)
2959                         mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2960
2961                 ret = mdiobus_register(mdp->mii_bus);
2962         }
2963
2964         if (ret)
2965                 goto out_free_bus;
2966
2967         return 0;
2968
2969 out_free_bus:
2970         free_mdio_bitbang(mdp->mii_bus);
2971         return ret;
2972 }
2973
2974 static const u16 *sh_eth_get_register_offset(int register_type)
2975 {
2976         const u16 *reg_offset = NULL;
2977
2978         switch (register_type) {
2979         case SH_ETH_REG_GIGABIT:
2980                 reg_offset = sh_eth_offset_gigabit;
2981                 break;
2982         case SH_ETH_REG_FAST_RZ:
2983                 reg_offset = sh_eth_offset_fast_rz;
2984                 break;
2985         case SH_ETH_REG_FAST_RCAR:
2986                 reg_offset = sh_eth_offset_fast_rcar;
2987                 break;
2988         case SH_ETH_REG_FAST_SH4:
2989                 reg_offset = sh_eth_offset_fast_sh4;
2990                 break;
2991         case SH_ETH_REG_FAST_SH3_SH2:
2992                 reg_offset = sh_eth_offset_fast_sh3_sh2;
2993                 break;
2994         default:
2995                 break;
2996         }
2997
2998         return reg_offset;
2999 }
3000
3001 static const struct net_device_ops sh_eth_netdev_ops = {
3002         .ndo_open               = sh_eth_open,
3003         .ndo_stop               = sh_eth_close,
3004         .ndo_start_xmit         = sh_eth_start_xmit,
3005         .ndo_get_stats          = sh_eth_get_stats,
3006         .ndo_set_rx_mode        = sh_eth_set_rx_mode,
3007         .ndo_tx_timeout         = sh_eth_tx_timeout,
3008         .ndo_do_ioctl           = sh_eth_do_ioctl,
3009         .ndo_validate_addr      = eth_validate_addr,
3010         .ndo_set_mac_address    = eth_mac_addr,
3011         .ndo_change_mtu         = eth_change_mtu,
3012 };
3013
3014 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3015         .ndo_open               = sh_eth_open,
3016         .ndo_stop               = sh_eth_close,
3017         .ndo_start_xmit         = sh_eth_start_xmit,
3018         .ndo_get_stats          = sh_eth_get_stats,
3019         .ndo_set_rx_mode        = sh_eth_set_rx_mode,
3020         .ndo_vlan_rx_add_vid    = sh_eth_vlan_rx_add_vid,
3021         .ndo_vlan_rx_kill_vid   = sh_eth_vlan_rx_kill_vid,
3022         .ndo_tx_timeout         = sh_eth_tx_timeout,
3023         .ndo_do_ioctl           = sh_eth_do_ioctl,
3024         .ndo_validate_addr      = eth_validate_addr,
3025         .ndo_set_mac_address    = eth_mac_addr,
3026         .ndo_change_mtu         = eth_change_mtu,
3027 };
3028
3029 #ifdef CONFIG_OF
3030 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3031 {
3032         struct device_node *np = dev->of_node;
3033         struct sh_eth_plat_data *pdata;
3034         const char *mac_addr;
3035
3036         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3037         if (!pdata)
3038                 return NULL;
3039
3040         pdata->phy_interface = of_get_phy_mode(np);
3041
3042         mac_addr = of_get_mac_address(np);
3043         if (mac_addr)
3044                 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3045
3046         pdata->no_ether_link =
3047                 of_property_read_bool(np, "renesas,no-ether-link");
3048         pdata->ether_link_active_low =
3049                 of_property_read_bool(np, "renesas,ether-link-active-low");
3050
3051         return pdata;
3052 }
3053
3054 static const struct of_device_id sh_eth_match_table[] = {
3055         { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3056         { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
3057         { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
3058         { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
3059         { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
3060         { .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
3061         { .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
3062         { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3063         { }
3064 };
3065 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3066 #else
3067 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3068 {
3069         return NULL;
3070 }
3071 #endif
3072
3073 static int sh_eth_drv_probe(struct platform_device *pdev)
3074 {
3075         int ret, devno = 0;
3076         struct resource *res;
3077         struct net_device *ndev = NULL;
3078         struct sh_eth_private *mdp = NULL;
3079         struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3080         const struct platform_device_id *id = platform_get_device_id(pdev);
3081
3082         /* get base addr */
3083         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3084
3085         ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3086         if (!ndev)
3087                 return -ENOMEM;
3088
3089         pm_runtime_enable(&pdev->dev);
3090         pm_runtime_get_sync(&pdev->dev);
3091
3092         devno = pdev->id;
3093         if (devno < 0)
3094                 devno = 0;
3095
3096         ndev->dma = -1;
3097         ret = platform_get_irq(pdev, 0);
3098         if (ret < 0)
3099                 goto out_release;
3100         ndev->irq = ret;
3101
3102         SET_NETDEV_DEV(ndev, &pdev->dev);
3103
3104         mdp = netdev_priv(ndev);
3105         mdp->num_tx_ring = TX_RING_SIZE;
3106         mdp->num_rx_ring = RX_RING_SIZE;
3107         mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3108         if (IS_ERR(mdp->addr)) {
3109                 ret = PTR_ERR(mdp->addr);
3110                 goto out_release;
3111         }
3112
3113         ndev->base_addr = res->start;
3114
3115         spin_lock_init(&mdp->lock);
3116         mdp->pdev = pdev;
3117
3118         if (pdev->dev.of_node)
3119                 pd = sh_eth_parse_dt(&pdev->dev);
3120         if (!pd) {
3121                 dev_err(&pdev->dev, "no platform data\n");
3122                 ret = -EINVAL;
3123                 goto out_release;
3124         }
3125
3126         /* get PHY ID */
3127         mdp->phy_id = pd->phy;
3128         mdp->phy_interface = pd->phy_interface;
3129         /* EDMAC endian */
3130         mdp->edmac_endian = pd->edmac_endian;
3131         mdp->no_ether_link = pd->no_ether_link;
3132         mdp->ether_link_active_low = pd->ether_link_active_low;
3133
3134         /* set cpu data */
3135         if (id) {
3136                 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3137         } else  {
3138                 const struct of_device_id *match;
3139
3140                 match = of_match_device(of_match_ptr(sh_eth_match_table),
3141                                         &pdev->dev);
3142                 mdp->cd = (struct sh_eth_cpu_data *)match->data;
3143         }
3144         mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3145         if (!mdp->reg_offset) {
3146                 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3147                         mdp->cd->register_type);
3148                 ret = -EINVAL;
3149                 goto out_release;
3150         }
3151         sh_eth_set_default_cpu_data(mdp->cd);
3152
3153         /* set function */
3154         if (mdp->cd->tsu)
3155                 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3156         else
3157                 ndev->netdev_ops = &sh_eth_netdev_ops;
3158         ndev->ethtool_ops = &sh_eth_ethtool_ops;
3159         ndev->watchdog_timeo = TX_TIMEOUT;
3160
3161         /* debug message level */
3162         mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3163
3164         /* read and set MAC address */
3165         read_mac_address(ndev, pd->mac_addr);
3166         if (!is_valid_ether_addr(ndev->dev_addr)) {
3167                 dev_warn(&pdev->dev,
3168                          "no valid MAC address supplied, using a random one.\n");
3169                 eth_hw_addr_random(ndev);
3170         }
3171
3172         /* ioremap the TSU registers */
3173         if (mdp->cd->tsu) {
3174                 struct resource *rtsu;
3175                 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3176                 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3177                 if (IS_ERR(mdp->tsu_addr)) {
3178                         ret = PTR_ERR(mdp->tsu_addr);
3179                         goto out_release;
3180                 }
3181                 mdp->port = devno % 2;
3182                 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3183         }
3184
3185         /* initialize first or needed device */
3186         if (!devno || pd->needs_init) {
3187                 if (mdp->cd->chip_reset)
3188                         mdp->cd->chip_reset(ndev);
3189
3190                 if (mdp->cd->tsu) {
3191                         /* TSU init (Init only)*/
3192                         sh_eth_tsu_init(mdp);
3193                 }
3194         }
3195
3196         if (mdp->cd->rmiimode)
3197                 sh_eth_write(ndev, 0x1, RMIIMODE);
3198
3199         /* MDIO bus init */
3200         ret = sh_mdio_init(mdp, pd);
3201         if (ret) {
3202                 dev_err(&ndev->dev, "failed to initialise MDIO\n");
3203                 goto out_release;
3204         }
3205
3206         netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3207
3208         /* network device register */
3209         ret = register_netdev(ndev);
3210         if (ret)
3211                 goto out_napi_del;
3212
3213         /* print device information */
3214         netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3215                     (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3216
3217         pm_runtime_put(&pdev->dev);
3218         platform_set_drvdata(pdev, ndev);
3219
3220         return ret;
3221
3222 out_napi_del:
3223         netif_napi_del(&mdp->napi);
3224         sh_mdio_release(mdp);
3225
3226 out_release:
3227         /* net_dev free */
3228         if (ndev)
3229                 free_netdev(ndev);
3230
3231         pm_runtime_put(&pdev->dev);
3232         pm_runtime_disable(&pdev->dev);
3233         return ret;
3234 }
3235
3236 static int sh_eth_drv_remove(struct platform_device *pdev)
3237 {
3238         struct net_device *ndev = platform_get_drvdata(pdev);
3239         struct sh_eth_private *mdp = netdev_priv(ndev);
3240
3241         unregister_netdev(ndev);
3242         netif_napi_del(&mdp->napi);
3243         sh_mdio_release(mdp);
3244         pm_runtime_disable(&pdev->dev);
3245         free_netdev(ndev);
3246
3247         return 0;
3248 }
3249
3250 #ifdef CONFIG_PM
3251 #ifdef CONFIG_PM_SLEEP
3252 static int sh_eth_suspend(struct device *dev)
3253 {
3254         struct net_device *ndev = dev_get_drvdata(dev);
3255         int ret = 0;
3256
3257         if (netif_running(ndev)) {
3258                 netif_device_detach(ndev);
3259                 ret = sh_eth_close(ndev);
3260         }
3261
3262         return ret;
3263 }
3264
3265 static int sh_eth_resume(struct device *dev)
3266 {
3267         struct net_device *ndev = dev_get_drvdata(dev);
3268         int ret = 0;
3269
3270         if (netif_running(ndev)) {
3271                 ret = sh_eth_open(ndev);
3272                 if (ret < 0)
3273                         return ret;
3274                 netif_device_attach(ndev);
3275         }
3276
3277         return ret;
3278 }
3279 #endif
3280
3281 static int sh_eth_runtime_nop(struct device *dev)
3282 {
3283         /* Runtime PM callback shared between ->runtime_suspend()
3284          * and ->runtime_resume(). Simply returns success.
3285          *
3286          * This driver re-initializes all registers after
3287          * pm_runtime_get_sync() anyway so there is no need
3288          * to save and restore registers here.
3289          */
3290         return 0;
3291 }
3292
3293 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3294         SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3295         SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3296 };
3297 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3298 #else
3299 #define SH_ETH_PM_OPS NULL
3300 #endif
3301
3302 static struct platform_device_id sh_eth_id_table[] = {
3303         { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3304         { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3305         { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3306         { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3307         { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3308         { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3309         { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3310         { "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
3311         { "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
3312         { "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
3313         { "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
3314         { "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
3315         { "r8a7793-ether", (kernel_ulong_t)&r8a779x_data },
3316         { "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
3317         { }
3318 };
3319 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3320
3321 static struct platform_driver sh_eth_driver = {
3322         .probe = sh_eth_drv_probe,
3323         .remove = sh_eth_drv_remove,
3324         .id_table = sh_eth_id_table,
3325         .driver = {
3326                    .name = CARDNAME,
3327                    .pm = SH_ETH_PM_OPS,
3328                    .of_match_table = of_match_ptr(sh_eth_match_table),
3329         },
3330 };
3331
3332 module_platform_driver(sh_eth_driver);
3333
3334 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3335 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3336 MODULE_LICENSE("GPL v2");