Merge tag 'usercopy-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
[cascardo/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25   Documentation available at:
26         http://www.stlinux.com
27   Support available at:
28         https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57
58 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
59 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
60
61 /* Module parameters */
62 #define TX_TIMEO        5000
63 static int watchdog = TX_TIMEO;
64 module_param(watchdog, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
66
67 static int debug = -1;
68 module_param(debug, int, S_IRUGO | S_IWUSR);
69 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
70
71 static int phyaddr = -1;
72 module_param(phyaddr, int, S_IRUGO);
73 MODULE_PARM_DESC(phyaddr, "Physical device address");
74
75 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
76 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
77
78 static int flow_ctrl = FLOW_OFF;
79 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
81
82 static int pause = PAUSE_TIME;
83 module_param(pause, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
85
86 #define TC_DEFAULT 64
87 static int tc = TC_DEFAULT;
88 module_param(tc, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(tc, "DMA threshold control value");
90
91 #define DEFAULT_BUFSIZE 1536
92 static int buf_sz = DEFAULT_BUFSIZE;
93 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
95
96 #define STMMAC_RX_COPYBREAK     256
97
98 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
99                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
100                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
101
102 #define STMMAC_DEFAULT_LPI_TIMER        1000
103 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
104 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
106 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107
108 /* By default the driver will use the ring mode to manage tx and rx descriptors
109  * but passing this value so user can force to use the chain instead of the ring
110  */
111 static unsigned int chain_mode;
112 module_param(chain_mode, int, S_IRUGO);
113 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
114
115 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
116
117 #ifdef CONFIG_DEBUG_FS
118 static int stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123
124 /**
125  * stmmac_verify_args - verify the driver parameters.
126  * Description: it checks the driver parameters and set a default in case of
127  * errors.
128  */
129 static void stmmac_verify_args(void)
130 {
131         if (unlikely(watchdog < 0))
132                 watchdog = TX_TIMEO;
133         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
134                 buf_sz = DEFAULT_BUFSIZE;
135         if (unlikely(flow_ctrl > 1))
136                 flow_ctrl = FLOW_AUTO;
137         else if (likely(flow_ctrl < 0))
138                 flow_ctrl = FLOW_OFF;
139         if (unlikely((pause < 0) || (pause > 0xffff)))
140                 pause = PAUSE_TIME;
141         if (eee_timer < 0)
142                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
143 }
144
145 /**
146  * stmmac_clk_csr_set - dynamically set the MDC clock
147  * @priv: driver private structure
148  * Description: this is to dynamically set the MDC clock according to the csr
149  * clock input.
150  * Note:
151  *      If a specific clk_csr value is passed from the platform
152  *      this means that the CSR Clock Range selection cannot be
153  *      changed at run-time and it is fixed (as reported in the driver
154  *      documentation). Viceversa the driver will try to set the MDC
155  *      clock dynamically according to the actual clock input.
156  */
157 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
158 {
159         u32 clk_rate;
160
161         clk_rate = clk_get_rate(priv->stmmac_clk);
162
163         /* Platform provided default clk_csr would be assumed valid
164          * for all other cases except for the below mentioned ones.
165          * For values higher than the IEEE 802.3 specified frequency
166          * we can not estimate the proper divider as it is not known
167          * the frequency of clk_csr_i. So we do not change the default
168          * divider.
169          */
170         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
171                 if (clk_rate < CSR_F_35M)
172                         priv->clk_csr = STMMAC_CSR_20_35M;
173                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
174                         priv->clk_csr = STMMAC_CSR_35_60M;
175                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
176                         priv->clk_csr = STMMAC_CSR_60_100M;
177                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
178                         priv->clk_csr = STMMAC_CSR_100_150M;
179                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
180                         priv->clk_csr = STMMAC_CSR_150_250M;
181                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
182                         priv->clk_csr = STMMAC_CSR_250_300M;
183         }
184 }
185
186 static void print_pkt(unsigned char *buf, int len)
187 {
188         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
189         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
190 }
191
192 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
193 {
194         unsigned avail;
195
196         if (priv->dirty_tx > priv->cur_tx)
197                 avail = priv->dirty_tx - priv->cur_tx - 1;
198         else
199                 avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
200
201         return avail;
202 }
203
204 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
205 {
206         unsigned dirty;
207
208         if (priv->dirty_rx <= priv->cur_rx)
209                 dirty = priv->cur_rx - priv->dirty_rx;
210         else
211                 dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
212
213         return dirty;
214 }
215
216 /**
217  * stmmac_hw_fix_mac_speed - callback for speed selection
218  * @priv: driver private structure
219  * Description: on some platforms (e.g. ST), some HW system configuraton
220  * registers have to be set according to the link speed negotiated.
221  */
222 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
223 {
224         struct phy_device *phydev = priv->phydev;
225
226         if (likely(priv->plat->fix_mac_speed))
227                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
228 }
229
230 /**
231  * stmmac_enable_eee_mode - check and enter in LPI mode
232  * @priv: driver private structure
233  * Description: this function is to verify and enter in LPI mode in case of
234  * EEE.
235  */
236 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237 {
238         /* Check and enter in LPI mode */
239         if ((priv->dirty_tx == priv->cur_tx) &&
240             (priv->tx_path_in_lpi_mode == false))
241                 priv->hw->mac->set_eee_mode(priv->hw);
242 }
243
244 /**
245  * stmmac_disable_eee_mode - disable and exit from LPI mode
246  * @priv: driver private structure
247  * Description: this function is to exit and disable EEE in case of
248  * LPI state is true. This is called by the xmit.
249  */
250 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
251 {
252         priv->hw->mac->reset_eee_mode(priv->hw);
253         del_timer_sync(&priv->eee_ctrl_timer);
254         priv->tx_path_in_lpi_mode = false;
255 }
256
257 /**
258  * stmmac_eee_ctrl_timer - EEE TX SW timer.
259  * @arg : data hook
260  * Description:
261  *  if there is no data transfer and if we are not in LPI state,
262  *  then MAC Transmitter can be moved to LPI state.
263  */
264 static void stmmac_eee_ctrl_timer(unsigned long arg)
265 {
266         struct stmmac_priv *priv = (struct stmmac_priv *)arg;
267
268         stmmac_enable_eee_mode(priv);
269         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
270 }
271
272 /**
273  * stmmac_eee_init - init EEE
274  * @priv: driver private structure
275  * Description:
276  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
277  *  can also manage EEE, this function enable the LPI state and start related
278  *  timer.
279  */
280 bool stmmac_eee_init(struct stmmac_priv *priv)
281 {
282         unsigned long flags;
283         bool ret = false;
284
285         /* Using PCS we cannot dial with the phy registers at this stage
286          * so we do not support extra feature like EEE.
287          */
288         if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
289             (priv->hw->pcs == STMMAC_PCS_TBI) ||
290             (priv->hw->pcs == STMMAC_PCS_RTBI))
291                 goto out;
292
293         /* MAC core supports the EEE feature. */
294         if (priv->dma_cap.eee) {
295                 int tx_lpi_timer = priv->tx_lpi_timer;
296
297                 /* Check if the PHY supports EEE */
298                 if (phy_init_eee(priv->phydev, 1)) {
299                         /* To manage at run-time if the EEE cannot be supported
300                          * anymore (for example because the lp caps have been
301                          * changed).
302                          * In that case the driver disable own timers.
303                          */
304                         spin_lock_irqsave(&priv->lock, flags);
305                         if (priv->eee_active) {
306                                 pr_debug("stmmac: disable EEE\n");
307                                 del_timer_sync(&priv->eee_ctrl_timer);
308                                 priv->hw->mac->set_eee_timer(priv->hw, 0,
309                                                              tx_lpi_timer);
310                         }
311                         priv->eee_active = 0;
312                         spin_unlock_irqrestore(&priv->lock, flags);
313                         goto out;
314                 }
315                 /* Activate the EEE and start timers */
316                 spin_lock_irqsave(&priv->lock, flags);
317                 if (!priv->eee_active) {
318                         priv->eee_active = 1;
319                         setup_timer(&priv->eee_ctrl_timer,
320                                     stmmac_eee_ctrl_timer,
321                                     (unsigned long)priv);
322                         mod_timer(&priv->eee_ctrl_timer,
323                                   STMMAC_LPI_T(eee_timer));
324
325                         priv->hw->mac->set_eee_timer(priv->hw,
326                                                      STMMAC_DEFAULT_LIT_LS,
327                                                      tx_lpi_timer);
328                 }
329                 /* Set HW EEE according to the speed */
330                 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
331
332                 ret = true;
333                 spin_unlock_irqrestore(&priv->lock, flags);
334
335                 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
336         }
337 out:
338         return ret;
339 }
340
341 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
342  * @priv: driver private structure
343  * @entry : descriptor index to be used.
344  * @skb : the socket buffer
345  * Description :
346  * This function will read timestamp from the descriptor & pass it to stack.
347  * and also perform some sanity checks.
348  */
349 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
350                                    unsigned int entry, struct sk_buff *skb)
351 {
352         struct skb_shared_hwtstamps shhwtstamp;
353         u64 ns;
354         void *desc = NULL;
355
356         if (!priv->hwts_tx_en)
357                 return;
358
359         /* exit if skb doesn't support hw tstamp */
360         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
361                 return;
362
363         if (priv->adv_ts)
364                 desc = (priv->dma_etx + entry);
365         else
366                 desc = (priv->dma_tx + entry);
367
368         /* check tx tstamp status */
369         if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
370                 return;
371
372         /* get the valid tstamp */
373         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
374
375         memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
376         shhwtstamp.hwtstamp = ns_to_ktime(ns);
377         /* pass tstamp to stack */
378         skb_tstamp_tx(skb, &shhwtstamp);
379
380         return;
381 }
382
383 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
384  * @priv: driver private structure
385  * @entry : descriptor index to be used.
386  * @skb : the socket buffer
387  * Description :
388  * This function will read received packet's timestamp from the descriptor
389  * and pass it to stack. It also perform some sanity checks.
390  */
391 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
392                                    unsigned int entry, struct sk_buff *skb)
393 {
394         struct skb_shared_hwtstamps *shhwtstamp = NULL;
395         u64 ns;
396         void *desc = NULL;
397
398         if (!priv->hwts_rx_en)
399                 return;
400
401         if (priv->adv_ts)
402                 desc = (priv->dma_erx + entry);
403         else
404                 desc = (priv->dma_rx + entry);
405
406         /* exit if rx tstamp is not valid */
407         if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
408                 return;
409
410         /* get valid tstamp */
411         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
412         shhwtstamp = skb_hwtstamps(skb);
413         memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
414         shhwtstamp->hwtstamp = ns_to_ktime(ns);
415 }
416
417 /**
418  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
419  *  @dev: device pointer.
420  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
421  *  a proprietary structure used to pass information to the driver.
422  *  Description:
423  *  This function configures the MAC to enable/disable both outgoing(TX)
424  *  and incoming(RX) packets time stamping based on user input.
425  *  Return Value:
426  *  0 on success and an appropriate -ve integer on failure.
427  */
428 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
429 {
430         struct stmmac_priv *priv = netdev_priv(dev);
431         struct hwtstamp_config config;
432         struct timespec64 now;
433         u64 temp = 0;
434         u32 ptp_v2 = 0;
435         u32 tstamp_all = 0;
436         u32 ptp_over_ipv4_udp = 0;
437         u32 ptp_over_ipv6_udp = 0;
438         u32 ptp_over_ethernet = 0;
439         u32 snap_type_sel = 0;
440         u32 ts_master_en = 0;
441         u32 ts_event_en = 0;
442         u32 value = 0;
443         u32 sec_inc;
444
445         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
446                 netdev_alert(priv->dev, "No support for HW time stamping\n");
447                 priv->hwts_tx_en = 0;
448                 priv->hwts_rx_en = 0;
449
450                 return -EOPNOTSUPP;
451         }
452
453         if (copy_from_user(&config, ifr->ifr_data,
454                            sizeof(struct hwtstamp_config)))
455                 return -EFAULT;
456
457         pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
458                  __func__, config.flags, config.tx_type, config.rx_filter);
459
460         /* reserved for future extensions */
461         if (config.flags)
462                 return -EINVAL;
463
464         if (config.tx_type != HWTSTAMP_TX_OFF &&
465             config.tx_type != HWTSTAMP_TX_ON)
466                 return -ERANGE;
467
468         if (priv->adv_ts) {
469                 switch (config.rx_filter) {
470                 case HWTSTAMP_FILTER_NONE:
471                         /* time stamp no incoming packet at all */
472                         config.rx_filter = HWTSTAMP_FILTER_NONE;
473                         break;
474
475                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
476                         /* PTP v1, UDP, any kind of event packet */
477                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
478                         /* take time stamp for all event messages */
479                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
480
481                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
482                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
483                         break;
484
485                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
486                         /* PTP v1, UDP, Sync packet */
487                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
488                         /* take time stamp for SYNC messages only */
489                         ts_event_en = PTP_TCR_TSEVNTENA;
490
491                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
492                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
493                         break;
494
495                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
496                         /* PTP v1, UDP, Delay_req packet */
497                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
498                         /* take time stamp for Delay_Req messages only */
499                         ts_master_en = PTP_TCR_TSMSTRENA;
500                         ts_event_en = PTP_TCR_TSEVNTENA;
501
502                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
503                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
504                         break;
505
506                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
507                         /* PTP v2, UDP, any kind of event packet */
508                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
509                         ptp_v2 = PTP_TCR_TSVER2ENA;
510                         /* take time stamp for all event messages */
511                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
512
513                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
514                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
515                         break;
516
517                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
518                         /* PTP v2, UDP, Sync packet */
519                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
520                         ptp_v2 = PTP_TCR_TSVER2ENA;
521                         /* take time stamp for SYNC messages only */
522                         ts_event_en = PTP_TCR_TSEVNTENA;
523
524                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
525                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
526                         break;
527
528                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
529                         /* PTP v2, UDP, Delay_req packet */
530                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
531                         ptp_v2 = PTP_TCR_TSVER2ENA;
532                         /* take time stamp for Delay_Req messages only */
533                         ts_master_en = PTP_TCR_TSMSTRENA;
534                         ts_event_en = PTP_TCR_TSEVNTENA;
535
536                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
537                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
538                         break;
539
540                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
541                         /* PTP v2/802.AS1 any layer, any kind of event packet */
542                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
543                         ptp_v2 = PTP_TCR_TSVER2ENA;
544                         /* take time stamp for all event messages */
545                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
546
547                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
548                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
549                         ptp_over_ethernet = PTP_TCR_TSIPENA;
550                         break;
551
552                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
553                         /* PTP v2/802.AS1, any layer, Sync packet */
554                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
555                         ptp_v2 = PTP_TCR_TSVER2ENA;
556                         /* take time stamp for SYNC messages only */
557                         ts_event_en = PTP_TCR_TSEVNTENA;
558
559                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
560                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
561                         ptp_over_ethernet = PTP_TCR_TSIPENA;
562                         break;
563
564                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
565                         /* PTP v2/802.AS1, any layer, Delay_req packet */
566                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
567                         ptp_v2 = PTP_TCR_TSVER2ENA;
568                         /* take time stamp for Delay_Req messages only */
569                         ts_master_en = PTP_TCR_TSMSTRENA;
570                         ts_event_en = PTP_TCR_TSEVNTENA;
571
572                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
573                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
574                         ptp_over_ethernet = PTP_TCR_TSIPENA;
575                         break;
576
577                 case HWTSTAMP_FILTER_ALL:
578                         /* time stamp any incoming packet */
579                         config.rx_filter = HWTSTAMP_FILTER_ALL;
580                         tstamp_all = PTP_TCR_TSENALL;
581                         break;
582
583                 default:
584                         return -ERANGE;
585                 }
586         } else {
587                 switch (config.rx_filter) {
588                 case HWTSTAMP_FILTER_NONE:
589                         config.rx_filter = HWTSTAMP_FILTER_NONE;
590                         break;
591                 default:
592                         /* PTP v1, UDP, any kind of event packet */
593                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
594                         break;
595                 }
596         }
597         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
598         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
599
600         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
601                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
602         else {
603                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
604                          tstamp_all | ptp_v2 | ptp_over_ethernet |
605                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
606                          ts_master_en | snap_type_sel);
607                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
608
609                 /* program Sub Second Increment reg */
610                 sec_inc = priv->hw->ptp->config_sub_second_increment(
611                         priv->ioaddr, priv->clk_ptp_rate);
612                 temp = div_u64(1000000000ULL, sec_inc);
613
614                 /* calculate default added value:
615                  * formula is :
616                  * addend = (2^32)/freq_div_ratio;
617                  * where, freq_div_ratio = 1e9ns/sec_inc
618                  */
619                 temp = (u64)(temp << 32);
620                 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
621                 priv->hw->ptp->config_addend(priv->ioaddr,
622                                              priv->default_addend);
623
624                 /* initialize system time */
625                 ktime_get_real_ts64(&now);
626
627                 /* lower 32 bits of tv_sec are safe until y2106 */
628                 priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
629                                             now.tv_nsec);
630         }
631
632         return copy_to_user(ifr->ifr_data, &config,
633                             sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
634 }
635
636 /**
637  * stmmac_init_ptp - init PTP
638  * @priv: driver private structure
639  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
640  * This is done by looking at the HW cap. register.
641  * This function also registers the ptp driver.
642  */
643 static int stmmac_init_ptp(struct stmmac_priv *priv)
644 {
645         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
646                 return -EOPNOTSUPP;
647
648         /* Fall-back to main clock in case of no PTP ref is passed */
649         priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
650         if (IS_ERR(priv->clk_ptp_ref)) {
651                 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
652                 priv->clk_ptp_ref = NULL;
653         } else {
654                 clk_prepare_enable(priv->clk_ptp_ref);
655                 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
656         }
657
658         priv->adv_ts = 0;
659         if (priv->dma_cap.atime_stamp && priv->extend_desc)
660                 priv->adv_ts = 1;
661
662         if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
663                 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
664
665         if (netif_msg_hw(priv) && priv->adv_ts)
666                 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
667
668         priv->hw->ptp = &stmmac_ptp;
669         priv->hwts_tx_en = 0;
670         priv->hwts_rx_en = 0;
671
672         return stmmac_ptp_register(priv);
673 }
674
675 static void stmmac_release_ptp(struct stmmac_priv *priv)
676 {
677         if (priv->clk_ptp_ref)
678                 clk_disable_unprepare(priv->clk_ptp_ref);
679         stmmac_ptp_unregister(priv);
680 }
681
682 /**
683  * stmmac_adjust_link - adjusts the link parameters
684  * @dev: net device structure
685  * Description: this is the helper called by the physical abstraction layer
686  * drivers to communicate the phy link status. According the speed and duplex
687  * this driver can invoke registered glue-logic as well.
688  * It also invoke the eee initialization because it could happen when switch
689  * on different networks (that are eee capable).
690  */
691 static void stmmac_adjust_link(struct net_device *dev)
692 {
693         struct stmmac_priv *priv = netdev_priv(dev);
694         struct phy_device *phydev = priv->phydev;
695         unsigned long flags;
696         int new_state = 0;
697         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
698
699         if (phydev == NULL)
700                 return;
701
702         spin_lock_irqsave(&priv->lock, flags);
703
704         if (phydev->link) {
705                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
706
707                 /* Now we make sure that we can be in full duplex mode.
708                  * If not, we operate in half-duplex mode. */
709                 if (phydev->duplex != priv->oldduplex) {
710                         new_state = 1;
711                         if (!(phydev->duplex))
712                                 ctrl &= ~priv->hw->link.duplex;
713                         else
714                                 ctrl |= priv->hw->link.duplex;
715                         priv->oldduplex = phydev->duplex;
716                 }
717                 /* Flow Control operation */
718                 if (phydev->pause)
719                         priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
720                                                  fc, pause_time);
721
722                 if (phydev->speed != priv->speed) {
723                         new_state = 1;
724                         switch (phydev->speed) {
725                         case 1000:
726                                 if (likely((priv->plat->has_gmac) ||
727                                            (priv->plat->has_gmac4)))
728                                         ctrl &= ~priv->hw->link.port;
729                                 stmmac_hw_fix_mac_speed(priv);
730                                 break;
731                         case 100:
732                         case 10:
733                                 if (likely((priv->plat->has_gmac) ||
734                                            (priv->plat->has_gmac4))) {
735                                         ctrl |= priv->hw->link.port;
736                                         if (phydev->speed == SPEED_100) {
737                                                 ctrl |= priv->hw->link.speed;
738                                         } else {
739                                                 ctrl &= ~(priv->hw->link.speed);
740                                         }
741                                 } else {
742                                         ctrl &= ~priv->hw->link.port;
743                                 }
744                                 stmmac_hw_fix_mac_speed(priv);
745                                 break;
746                         default:
747                                 if (netif_msg_link(priv))
748                                         pr_warn("%s: Speed (%d) not 10/100\n",
749                                                 dev->name, phydev->speed);
750                                 break;
751                         }
752
753                         priv->speed = phydev->speed;
754                 }
755
756                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
757
758                 if (!priv->oldlink) {
759                         new_state = 1;
760                         priv->oldlink = 1;
761                 }
762         } else if (priv->oldlink) {
763                 new_state = 1;
764                 priv->oldlink = 0;
765                 priv->speed = 0;
766                 priv->oldduplex = -1;
767         }
768
769         if (new_state && netif_msg_link(priv))
770                 phy_print_status(phydev);
771
772         spin_unlock_irqrestore(&priv->lock, flags);
773
774         if (phydev->is_pseudo_fixed_link)
775                 /* Stop PHY layer to call the hook to adjust the link in case
776                  * of a switch is attached to the stmmac driver.
777                  */
778                 phydev->irq = PHY_IGNORE_INTERRUPT;
779         else
780                 /* At this stage, init the EEE if supported.
781                  * Never called in case of fixed_link.
782                  */
783                 priv->eee_enabled = stmmac_eee_init(priv);
784 }
785
786 /**
787  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
788  * @priv: driver private structure
789  * Description: this is to verify if the HW supports the PCS.
790  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
791  * configured for the TBI, RTBI, or SGMII PHY interface.
792  */
793 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
794 {
795         int interface = priv->plat->interface;
796
797         if (priv->dma_cap.pcs) {
798                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
799                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
800                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
801                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
802                         pr_debug("STMMAC: PCS RGMII support enable\n");
803                         priv->hw->pcs = STMMAC_PCS_RGMII;
804                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
805                         pr_debug("STMMAC: PCS SGMII support enable\n");
806                         priv->hw->pcs = STMMAC_PCS_SGMII;
807                 }
808         }
809 }
810
811 /**
812  * stmmac_init_phy - PHY initialization
813  * @dev: net device structure
814  * Description: it initializes the driver's PHY state, and attaches the PHY
815  * to the mac driver.
816  *  Return value:
817  *  0 on success
818  */
819 static int stmmac_init_phy(struct net_device *dev)
820 {
821         struct stmmac_priv *priv = netdev_priv(dev);
822         struct phy_device *phydev;
823         char phy_id_fmt[MII_BUS_ID_SIZE + 3];
824         char bus_id[MII_BUS_ID_SIZE];
825         int interface = priv->plat->interface;
826         int max_speed = priv->plat->max_speed;
827         priv->oldlink = 0;
828         priv->speed = 0;
829         priv->oldduplex = -1;
830
831         if (priv->plat->phy_node) {
832                 phydev = of_phy_connect(dev, priv->plat->phy_node,
833                                         &stmmac_adjust_link, 0, interface);
834         } else {
835                 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
836                          priv->plat->bus_id);
837
838                 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
839                          priv->plat->phy_addr);
840                 pr_debug("stmmac_init_phy:  trying to attach to %s\n",
841                          phy_id_fmt);
842
843                 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
844                                      interface);
845         }
846
847         if (IS_ERR_OR_NULL(phydev)) {
848                 pr_err("%s: Could not attach to PHY\n", dev->name);
849                 if (!phydev)
850                         return -ENODEV;
851
852                 return PTR_ERR(phydev);
853         }
854
855         /* Stop Advertising 1000BASE Capability if interface is not GMII */
856         if ((interface == PHY_INTERFACE_MODE_MII) ||
857             (interface == PHY_INTERFACE_MODE_RMII) ||
858                 (max_speed < 1000 && max_speed > 0))
859                 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
860                                          SUPPORTED_1000baseT_Full);
861
862         /*
863          * Broken HW is sometimes missing the pull-up resistor on the
864          * MDIO line, which results in reads to non-existent devices returning
865          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
866          * device as well.
867          * Note: phydev->phy_id is the result of reading the UID PHY registers.
868          */
869         if (!priv->plat->phy_node && phydev->phy_id == 0) {
870                 phy_disconnect(phydev);
871                 return -ENODEV;
872         }
873
874         pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
875                  " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
876
877         priv->phydev = phydev;
878
879         return 0;
880 }
881
882 static void stmmac_display_rings(struct stmmac_priv *priv)
883 {
884         void *head_rx, *head_tx;
885
886         if (priv->extend_desc) {
887                 head_rx = (void *)priv->dma_erx;
888                 head_tx = (void *)priv->dma_etx;
889         } else {
890                 head_rx = (void *)priv->dma_rx;
891                 head_tx = (void *)priv->dma_tx;
892         }
893
894         /* Display Rx ring */
895         priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
896         /* Display Tx ring */
897         priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
898 }
899
900 static int stmmac_set_bfsize(int mtu, int bufsize)
901 {
902         int ret = bufsize;
903
904         if (mtu >= BUF_SIZE_4KiB)
905                 ret = BUF_SIZE_8KiB;
906         else if (mtu >= BUF_SIZE_2KiB)
907                 ret = BUF_SIZE_4KiB;
908         else if (mtu > DEFAULT_BUFSIZE)
909                 ret = BUF_SIZE_2KiB;
910         else
911                 ret = DEFAULT_BUFSIZE;
912
913         return ret;
914 }
915
916 /**
917  * stmmac_clear_descriptors - clear descriptors
918  * @priv: driver private structure
919  * Description: this function is called to clear the tx and rx descriptors
920  * in case of both basic and extended descriptors are used.
921  */
922 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
923 {
924         int i;
925
926         /* Clear the Rx/Tx descriptors */
927         for (i = 0; i < DMA_RX_SIZE; i++)
928                 if (priv->extend_desc)
929                         priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
930                                                      priv->use_riwt, priv->mode,
931                                                      (i == DMA_RX_SIZE - 1));
932                 else
933                         priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
934                                                      priv->use_riwt, priv->mode,
935                                                      (i == DMA_RX_SIZE - 1));
936         for (i = 0; i < DMA_TX_SIZE; i++)
937                 if (priv->extend_desc)
938                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
939                                                      priv->mode,
940                                                      (i == DMA_TX_SIZE - 1));
941                 else
942                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
943                                                      priv->mode,
944                                                      (i == DMA_TX_SIZE - 1));
945 }
946
947 /**
948  * stmmac_init_rx_buffers - init the RX descriptor buffer.
949  * @priv: driver private structure
950  * @p: descriptor pointer
951  * @i: descriptor index
952  * @flags: gfp flag.
953  * Description: this function is called to allocate a receive buffer, perform
954  * the DMA mapping and init the descriptor.
955  */
956 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
957                                   int i, gfp_t flags)
958 {
959         struct sk_buff *skb;
960
961         skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
962         if (!skb) {
963                 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
964                 return -ENOMEM;
965         }
966         priv->rx_skbuff[i] = skb;
967         priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
968                                                 priv->dma_buf_sz,
969                                                 DMA_FROM_DEVICE);
970         if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
971                 pr_err("%s: DMA mapping error\n", __func__);
972                 dev_kfree_skb_any(skb);
973                 return -EINVAL;
974         }
975
976         if (priv->synopsys_id >= DWMAC_CORE_4_00)
977                 p->des0 = priv->rx_skbuff_dma[i];
978         else
979                 p->des2 = priv->rx_skbuff_dma[i];
980
981         if ((priv->hw->mode->init_desc3) &&
982             (priv->dma_buf_sz == BUF_SIZE_16KiB))
983                 priv->hw->mode->init_desc3(p);
984
985         return 0;
986 }
987
988 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
989 {
990         if (priv->rx_skbuff[i]) {
991                 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
992                                  priv->dma_buf_sz, DMA_FROM_DEVICE);
993                 dev_kfree_skb_any(priv->rx_skbuff[i]);
994         }
995         priv->rx_skbuff[i] = NULL;
996 }
997
998 /**
999  * init_dma_desc_rings - init the RX/TX descriptor rings
1000  * @dev: net device structure
1001  * @flags: gfp flag.
1002  * Description: this function initializes the DMA RX/TX descriptors
1003  * and allocates the socket buffers. It suppors the chained and ring
1004  * modes.
1005  */
1006 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1007 {
1008         int i;
1009         struct stmmac_priv *priv = netdev_priv(dev);
1010         unsigned int bfsize = 0;
1011         int ret = -ENOMEM;
1012
1013         if (priv->hw->mode->set_16kib_bfsize)
1014                 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1015
1016         if (bfsize < BUF_SIZE_16KiB)
1017                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1018
1019         priv->dma_buf_sz = bfsize;
1020
1021         if (netif_msg_probe(priv)) {
1022                 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1023                          (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1024
1025                 /* RX INITIALIZATION */
1026                 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1027         }
1028         for (i = 0; i < DMA_RX_SIZE; i++) {
1029                 struct dma_desc *p;
1030                 if (priv->extend_desc)
1031                         p = &((priv->dma_erx + i)->basic);
1032                 else
1033                         p = priv->dma_rx + i;
1034
1035                 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1036                 if (ret)
1037                         goto err_init_rx_buffers;
1038
1039                 if (netif_msg_probe(priv))
1040                         pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1041                                  priv->rx_skbuff[i]->data,
1042                                  (unsigned int)priv->rx_skbuff_dma[i]);
1043         }
1044         priv->cur_rx = 0;
1045         priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1046         buf_sz = bfsize;
1047
1048         /* Setup the chained descriptor addresses */
1049         if (priv->mode == STMMAC_CHAIN_MODE) {
1050                 if (priv->extend_desc) {
1051                         priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1052                                              DMA_RX_SIZE, 1);
1053                         priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1054                                              DMA_TX_SIZE, 1);
1055                 } else {
1056                         priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1057                                              DMA_RX_SIZE, 0);
1058                         priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1059                                              DMA_TX_SIZE, 0);
1060                 }
1061         }
1062
1063         /* TX INITIALIZATION */
1064         for (i = 0; i < DMA_TX_SIZE; i++) {
1065                 struct dma_desc *p;
1066                 if (priv->extend_desc)
1067                         p = &((priv->dma_etx + i)->basic);
1068                 else
1069                         p = priv->dma_tx + i;
1070
1071                 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1072                         p->des0 = 0;
1073                         p->des1 = 0;
1074                         p->des2 = 0;
1075                         p->des3 = 0;
1076                 } else {
1077                         p->des2 = 0;
1078                 }
1079
1080                 priv->tx_skbuff_dma[i].buf = 0;
1081                 priv->tx_skbuff_dma[i].map_as_page = false;
1082                 priv->tx_skbuff_dma[i].len = 0;
1083                 priv->tx_skbuff_dma[i].last_segment = false;
1084                 priv->tx_skbuff[i] = NULL;
1085         }
1086
1087         priv->dirty_tx = 0;
1088         priv->cur_tx = 0;
1089         netdev_reset_queue(priv->dev);
1090
1091         stmmac_clear_descriptors(priv);
1092
1093         if (netif_msg_hw(priv))
1094                 stmmac_display_rings(priv);
1095
1096         return 0;
1097 err_init_rx_buffers:
1098         while (--i >= 0)
1099                 stmmac_free_rx_buffers(priv, i);
1100         return ret;
1101 }
1102
1103 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1104 {
1105         int i;
1106
1107         for (i = 0; i < DMA_RX_SIZE; i++)
1108                 stmmac_free_rx_buffers(priv, i);
1109 }
1110
1111 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1112 {
1113         int i;
1114
1115         for (i = 0; i < DMA_TX_SIZE; i++) {
1116                 struct dma_desc *p;
1117
1118                 if (priv->extend_desc)
1119                         p = &((priv->dma_etx + i)->basic);
1120                 else
1121                         p = priv->dma_tx + i;
1122
1123                 if (priv->tx_skbuff_dma[i].buf) {
1124                         if (priv->tx_skbuff_dma[i].map_as_page)
1125                                 dma_unmap_page(priv->device,
1126                                                priv->tx_skbuff_dma[i].buf,
1127                                                priv->tx_skbuff_dma[i].len,
1128                                                DMA_TO_DEVICE);
1129                         else
1130                                 dma_unmap_single(priv->device,
1131                                                  priv->tx_skbuff_dma[i].buf,
1132                                                  priv->tx_skbuff_dma[i].len,
1133                                                  DMA_TO_DEVICE);
1134                 }
1135
1136                 if (priv->tx_skbuff[i] != NULL) {
1137                         dev_kfree_skb_any(priv->tx_skbuff[i]);
1138                         priv->tx_skbuff[i] = NULL;
1139                         priv->tx_skbuff_dma[i].buf = 0;
1140                         priv->tx_skbuff_dma[i].map_as_page = false;
1141                 }
1142         }
1143 }
1144
1145 /**
1146  * alloc_dma_desc_resources - alloc TX/RX resources.
1147  * @priv: private structure
1148  * Description: according to which descriptor can be used (extend or basic)
1149  * this function allocates the resources for TX and RX paths. In case of
1150  * reception, for example, it pre-allocated the RX socket buffer in order to
1151  * allow zero-copy mechanism.
1152  */
1153 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1154 {
1155         int ret = -ENOMEM;
1156
1157         priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1158                                             GFP_KERNEL);
1159         if (!priv->rx_skbuff_dma)
1160                 return -ENOMEM;
1161
1162         priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1163                                         GFP_KERNEL);
1164         if (!priv->rx_skbuff)
1165                 goto err_rx_skbuff;
1166
1167         priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1168                                             sizeof(*priv->tx_skbuff_dma),
1169                                             GFP_KERNEL);
1170         if (!priv->tx_skbuff_dma)
1171                 goto err_tx_skbuff_dma;
1172
1173         priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1174                                         GFP_KERNEL);
1175         if (!priv->tx_skbuff)
1176                 goto err_tx_skbuff;
1177
1178         if (priv->extend_desc) {
1179                 priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1180                                                     sizeof(struct
1181                                                            dma_extended_desc),
1182                                                     &priv->dma_rx_phy,
1183                                                     GFP_KERNEL);
1184                 if (!priv->dma_erx)
1185                         goto err_dma;
1186
1187                 priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1188                                                     sizeof(struct
1189                                                            dma_extended_desc),
1190                                                     &priv->dma_tx_phy,
1191                                                     GFP_KERNEL);
1192                 if (!priv->dma_etx) {
1193                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1194                                           sizeof(struct dma_extended_desc),
1195                                           priv->dma_erx, priv->dma_rx_phy);
1196                         goto err_dma;
1197                 }
1198         } else {
1199                 priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1200                                                    sizeof(struct dma_desc),
1201                                                    &priv->dma_rx_phy,
1202                                                    GFP_KERNEL);
1203                 if (!priv->dma_rx)
1204                         goto err_dma;
1205
1206                 priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1207                                                    sizeof(struct dma_desc),
1208                                                    &priv->dma_tx_phy,
1209                                                    GFP_KERNEL);
1210                 if (!priv->dma_tx) {
1211                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1212                                           sizeof(struct dma_desc),
1213                                           priv->dma_rx, priv->dma_rx_phy);
1214                         goto err_dma;
1215                 }
1216         }
1217
1218         return 0;
1219
1220 err_dma:
1221         kfree(priv->tx_skbuff);
1222 err_tx_skbuff:
1223         kfree(priv->tx_skbuff_dma);
1224 err_tx_skbuff_dma:
1225         kfree(priv->rx_skbuff);
1226 err_rx_skbuff:
1227         kfree(priv->rx_skbuff_dma);
1228         return ret;
1229 }
1230
1231 static void free_dma_desc_resources(struct stmmac_priv *priv)
1232 {
1233         /* Release the DMA TX/RX socket buffers */
1234         dma_free_rx_skbufs(priv);
1235         dma_free_tx_skbufs(priv);
1236
1237         /* Free DMA regions of consistent memory previously allocated */
1238         if (!priv->extend_desc) {
1239                 dma_free_coherent(priv->device,
1240                                   DMA_TX_SIZE * sizeof(struct dma_desc),
1241                                   priv->dma_tx, priv->dma_tx_phy);
1242                 dma_free_coherent(priv->device,
1243                                   DMA_RX_SIZE * sizeof(struct dma_desc),
1244                                   priv->dma_rx, priv->dma_rx_phy);
1245         } else {
1246                 dma_free_coherent(priv->device, DMA_TX_SIZE *
1247                                   sizeof(struct dma_extended_desc),
1248                                   priv->dma_etx, priv->dma_tx_phy);
1249                 dma_free_coherent(priv->device, DMA_RX_SIZE *
1250                                   sizeof(struct dma_extended_desc),
1251                                   priv->dma_erx, priv->dma_rx_phy);
1252         }
1253         kfree(priv->rx_skbuff_dma);
1254         kfree(priv->rx_skbuff);
1255         kfree(priv->tx_skbuff_dma);
1256         kfree(priv->tx_skbuff);
1257 }
1258
1259 /**
1260  *  stmmac_dma_operation_mode - HW DMA operation mode
1261  *  @priv: driver private structure
1262  *  Description: it is used for configuring the DMA operation mode register in
1263  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1264  */
1265 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1266 {
1267         int rxfifosz = priv->plat->rx_fifo_size;
1268
1269         if (priv->plat->force_thresh_dma_mode)
1270                 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1271         else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1272                 /*
1273                  * In case of GMAC, SF mode can be enabled
1274                  * to perform the TX COE in HW. This depends on:
1275                  * 1) TX COE if actually supported
1276                  * 2) There is no bugged Jumbo frame support
1277                  *    that needs to not insert csum in the TDES.
1278                  */
1279                 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1280                                         rxfifosz);
1281                 priv->xstats.threshold = SF_DMA_MODE;
1282         } else
1283                 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1284                                         rxfifosz);
1285 }
1286
1287 /**
1288  * stmmac_tx_clean - to manage the transmission completion
1289  * @priv: driver private structure
1290  * Description: it reclaims the transmit resources after transmission completes.
1291  */
1292 static void stmmac_tx_clean(struct stmmac_priv *priv)
1293 {
1294         unsigned int bytes_compl = 0, pkts_compl = 0;
1295         unsigned int entry = priv->dirty_tx;
1296
1297         spin_lock(&priv->tx_lock);
1298
1299         priv->xstats.tx_clean++;
1300
1301         while (entry != priv->cur_tx) {
1302                 struct sk_buff *skb = priv->tx_skbuff[entry];
1303                 struct dma_desc *p;
1304                 int status;
1305
1306                 if (priv->extend_desc)
1307                         p = (struct dma_desc *)(priv->dma_etx + entry);
1308                 else
1309                         p = priv->dma_tx + entry;
1310
1311                 status = priv->hw->desc->tx_status(&priv->dev->stats,
1312                                                       &priv->xstats, p,
1313                                                       priv->ioaddr);
1314                 /* Check if the descriptor is owned by the DMA */
1315                 if (unlikely(status & tx_dma_own))
1316                         break;
1317
1318                 /* Just consider the last segment and ...*/
1319                 if (likely(!(status & tx_not_ls))) {
1320                         /* ... verify the status error condition */
1321                         if (unlikely(status & tx_err)) {
1322                                 priv->dev->stats.tx_errors++;
1323                         } else {
1324                                 priv->dev->stats.tx_packets++;
1325                                 priv->xstats.tx_pkt_n++;
1326                         }
1327                         stmmac_get_tx_hwtstamp(priv, entry, skb);
1328                 }
1329
1330                 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1331                         if (priv->tx_skbuff_dma[entry].map_as_page)
1332                                 dma_unmap_page(priv->device,
1333                                                priv->tx_skbuff_dma[entry].buf,
1334                                                priv->tx_skbuff_dma[entry].len,
1335                                                DMA_TO_DEVICE);
1336                         else
1337                                 dma_unmap_single(priv->device,
1338                                                  priv->tx_skbuff_dma[entry].buf,
1339                                                  priv->tx_skbuff_dma[entry].len,
1340                                                  DMA_TO_DEVICE);
1341                         priv->tx_skbuff_dma[entry].buf = 0;
1342                         priv->tx_skbuff_dma[entry].len = 0;
1343                         priv->tx_skbuff_dma[entry].map_as_page = false;
1344                 }
1345
1346                 if (priv->hw->mode->clean_desc3)
1347                         priv->hw->mode->clean_desc3(priv, p);
1348
1349                 priv->tx_skbuff_dma[entry].last_segment = false;
1350                 priv->tx_skbuff_dma[entry].is_jumbo = false;
1351
1352                 if (likely(skb != NULL)) {
1353                         pkts_compl++;
1354                         bytes_compl += skb->len;
1355                         dev_consume_skb_any(skb);
1356                         priv->tx_skbuff[entry] = NULL;
1357                 }
1358
1359                 priv->hw->desc->release_tx_desc(p, priv->mode);
1360
1361                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1362         }
1363         priv->dirty_tx = entry;
1364
1365         netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1366
1367         if (unlikely(netif_queue_stopped(priv->dev) &&
1368                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1369                 netif_tx_lock(priv->dev);
1370                 if (netif_queue_stopped(priv->dev) &&
1371                     stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
1372                         if (netif_msg_tx_done(priv))
1373                                 pr_debug("%s: restart transmit\n", __func__);
1374                         netif_wake_queue(priv->dev);
1375                 }
1376                 netif_tx_unlock(priv->dev);
1377         }
1378
1379         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1380                 stmmac_enable_eee_mode(priv);
1381                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1382         }
1383         spin_unlock(&priv->tx_lock);
1384 }
1385
1386 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1387 {
1388         priv->hw->dma->enable_dma_irq(priv->ioaddr);
1389 }
1390
1391 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1392 {
1393         priv->hw->dma->disable_dma_irq(priv->ioaddr);
1394 }
1395
1396 /**
1397  * stmmac_tx_err - to manage the tx error
1398  * @priv: driver private structure
1399  * Description: it cleans the descriptors and restarts the transmission
1400  * in case of transmission errors.
1401  */
1402 static void stmmac_tx_err(struct stmmac_priv *priv)
1403 {
1404         int i;
1405         netif_stop_queue(priv->dev);
1406
1407         priv->hw->dma->stop_tx(priv->ioaddr);
1408         dma_free_tx_skbufs(priv);
1409         for (i = 0; i < DMA_TX_SIZE; i++)
1410                 if (priv->extend_desc)
1411                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1412                                                      priv->mode,
1413                                                      (i == DMA_TX_SIZE - 1));
1414                 else
1415                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1416                                                      priv->mode,
1417                                                      (i == DMA_TX_SIZE - 1));
1418         priv->dirty_tx = 0;
1419         priv->cur_tx = 0;
1420         netdev_reset_queue(priv->dev);
1421         priv->hw->dma->start_tx(priv->ioaddr);
1422
1423         priv->dev->stats.tx_errors++;
1424         netif_wake_queue(priv->dev);
1425 }
1426
1427 /**
1428  * stmmac_dma_interrupt - DMA ISR
1429  * @priv: driver private structure
1430  * Description: this is the DMA ISR. It is called by the main ISR.
1431  * It calls the dwmac dma routine and schedule poll method in case of some
1432  * work can be done.
1433  */
1434 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1435 {
1436         int status;
1437         int rxfifosz = priv->plat->rx_fifo_size;
1438
1439         status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1440         if (likely((status & handle_rx)) || (status & handle_tx)) {
1441                 if (likely(napi_schedule_prep(&priv->napi))) {
1442                         stmmac_disable_dma_irq(priv);
1443                         __napi_schedule(&priv->napi);
1444                 }
1445         }
1446         if (unlikely(status & tx_hard_error_bump_tc)) {
1447                 /* Try to bump up the dma threshold on this failure */
1448                 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1449                     (tc <= 256)) {
1450                         tc += 64;
1451                         if (priv->plat->force_thresh_dma_mode)
1452                                 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1453                                                         rxfifosz);
1454                         else
1455                                 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1456                                                         SF_DMA_MODE, rxfifosz);
1457                         priv->xstats.threshold = tc;
1458                 }
1459         } else if (unlikely(status == tx_hard_error))
1460                 stmmac_tx_err(priv);
1461 }
1462
1463 /**
1464  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1465  * @priv: driver private structure
1466  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1467  */
1468 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1469 {
1470         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1471                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1472
1473         if (priv->synopsys_id >= DWMAC_CORE_4_00)
1474                 priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
1475         else
1476                 priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
1477
1478         dwmac_mmc_intr_all_mask(priv->mmcaddr);
1479
1480         if (priv->dma_cap.rmon) {
1481                 dwmac_mmc_ctrl(priv->mmcaddr, mode);
1482                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1483         } else
1484                 pr_info(" No MAC Management Counters available\n");
1485 }
1486
1487 /**
1488  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1489  * @priv: driver private structure
1490  * Description: select the Enhanced/Alternate or Normal descriptors.
1491  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1492  * supported by the HW capability register.
1493  */
1494 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1495 {
1496         if (priv->plat->enh_desc) {
1497                 pr_info(" Enhanced/Alternate descriptors\n");
1498
1499                 /* GMAC older than 3.50 has no extended descriptors */
1500                 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1501                         pr_info("\tEnabled extended descriptors\n");
1502                         priv->extend_desc = 1;
1503                 } else
1504                         pr_warn("Extended descriptors not supported\n");
1505
1506                 priv->hw->desc = &enh_desc_ops;
1507         } else {
1508                 pr_info(" Normal descriptors\n");
1509                 priv->hw->desc = &ndesc_ops;
1510         }
1511 }
1512
1513 /**
1514  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1515  * @priv: driver private structure
1516  * Description:
1517  *  new GMAC chip generations have a new register to indicate the
1518  *  presence of the optional feature/functions.
1519  *  This can be also used to override the value passed through the
1520  *  platform and necessary for old MAC10/100 and GMAC chips.
1521  */
1522 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1523 {
1524         u32 ret = 0;
1525
1526         if (priv->hw->dma->get_hw_feature) {
1527                 priv->hw->dma->get_hw_feature(priv->ioaddr,
1528                                               &priv->dma_cap);
1529                 ret = 1;
1530         }
1531
1532         return ret;
1533 }
1534
1535 /**
1536  * stmmac_check_ether_addr - check if the MAC addr is valid
1537  * @priv: driver private structure
1538  * Description:
1539  * it is to verify if the MAC address is valid, in case of failures it
1540  * generates a random MAC address
1541  */
1542 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1543 {
1544         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1545                 priv->hw->mac->get_umac_addr(priv->hw,
1546                                              priv->dev->dev_addr, 0);
1547                 if (!is_valid_ether_addr(priv->dev->dev_addr))
1548                         eth_hw_addr_random(priv->dev);
1549                 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1550                         priv->dev->dev_addr);
1551         }
1552 }
1553
1554 /**
1555  * stmmac_init_dma_engine - DMA init.
1556  * @priv: driver private structure
1557  * Description:
1558  * It inits the DMA invoking the specific MAC/GMAC callback.
1559  * Some DMA parameters can be passed from the platform;
1560  * in case of these are not passed a default is kept for the MAC or GMAC.
1561  */
1562 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1563 {
1564         int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
1565         int mixed_burst = 0;
1566         int atds = 0;
1567         int ret = 0;
1568
1569         if (priv->plat->dma_cfg) {
1570                 pbl = priv->plat->dma_cfg->pbl;
1571                 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1572                 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1573                 aal = priv->plat->dma_cfg->aal;
1574         }
1575
1576         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1577                 atds = 1;
1578
1579         ret = priv->hw->dma->reset(priv->ioaddr);
1580         if (ret) {
1581                 dev_err(priv->device, "Failed to reset the dma\n");
1582                 return ret;
1583         }
1584
1585         priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1586                             aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1587
1588         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1589                 priv->rx_tail_addr = priv->dma_rx_phy +
1590                             (DMA_RX_SIZE * sizeof(struct dma_desc));
1591                 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->rx_tail_addr,
1592                                                STMMAC_CHAN0);
1593
1594                 priv->tx_tail_addr = priv->dma_tx_phy +
1595                             (DMA_TX_SIZE * sizeof(struct dma_desc));
1596                 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
1597                                                STMMAC_CHAN0);
1598         }
1599
1600         if (priv->plat->axi && priv->hw->dma->axi)
1601                 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1602
1603         return ret;
1604 }
1605
1606 /**
1607  * stmmac_tx_timer - mitigation sw timer for tx.
1608  * @data: data pointer
1609  * Description:
1610  * This is the timer handler to directly invoke the stmmac_tx_clean.
1611  */
1612 static void stmmac_tx_timer(unsigned long data)
1613 {
1614         struct stmmac_priv *priv = (struct stmmac_priv *)data;
1615
1616         stmmac_tx_clean(priv);
1617 }
1618
1619 /**
1620  * stmmac_init_tx_coalesce - init tx mitigation options.
1621  * @priv: driver private structure
1622  * Description:
1623  * This inits the transmit coalesce parameters: i.e. timer rate,
1624  * timer handler and default threshold used for enabling the
1625  * interrupt on completion bit.
1626  */
1627 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1628 {
1629         priv->tx_coal_frames = STMMAC_TX_FRAMES;
1630         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1631         init_timer(&priv->txtimer);
1632         priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1633         priv->txtimer.data = (unsigned long)priv;
1634         priv->txtimer.function = stmmac_tx_timer;
1635         add_timer(&priv->txtimer);
1636 }
1637
1638 /**
1639  * stmmac_hw_setup - setup mac in a usable state.
1640  *  @dev : pointer to the device structure.
1641  *  Description:
1642  *  this is the main function to setup the HW in a usable state because the
1643  *  dma engine is reset, the core registers are configured (e.g. AXI,
1644  *  Checksum features, timers). The DMA is ready to start receiving and
1645  *  transmitting.
1646  *  Return value:
1647  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1648  *  file on failure.
1649  */
1650 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1651 {
1652         struct stmmac_priv *priv = netdev_priv(dev);
1653         int ret;
1654
1655         /* DMA initialization and SW reset */
1656         ret = stmmac_init_dma_engine(priv);
1657         if (ret < 0) {
1658                 pr_err("%s: DMA engine initialization failed\n", __func__);
1659                 return ret;
1660         }
1661
1662         /* Copy the MAC addr into the HW  */
1663         priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1664
1665         /* If required, perform hw setup of the bus. */
1666         if (priv->plat->bus_setup)
1667                 priv->plat->bus_setup(priv->ioaddr);
1668
1669         /* PS and related bits will be programmed according to the speed */
1670         if (priv->hw->pcs) {
1671                 int speed = priv->plat->mac_port_sel_speed;
1672
1673                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
1674                     (speed == SPEED_1000)) {
1675                         priv->hw->ps = speed;
1676                 } else {
1677                         dev_warn(priv->device, "invalid port speed\n");
1678                         priv->hw->ps = 0;
1679                 }
1680         }
1681
1682         /* Initialize the MAC Core */
1683         priv->hw->mac->core_init(priv->hw, dev->mtu);
1684
1685         ret = priv->hw->mac->rx_ipc(priv->hw);
1686         if (!ret) {
1687                 pr_warn(" RX IPC Checksum Offload disabled\n");
1688                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1689                 priv->hw->rx_csum = 0;
1690         }
1691
1692         /* Enable the MAC Rx/Tx */
1693         if (priv->synopsys_id >= DWMAC_CORE_4_00)
1694                 stmmac_dwmac4_set_mac(priv->ioaddr, true);
1695         else
1696                 stmmac_set_mac(priv->ioaddr, true);
1697
1698         /* Set the HW DMA mode and the COE */
1699         stmmac_dma_operation_mode(priv);
1700
1701         stmmac_mmc_setup(priv);
1702
1703         if (init_ptp) {
1704                 ret = stmmac_init_ptp(priv);
1705                 if (ret && ret != -EOPNOTSUPP)
1706                         pr_warn("%s: failed PTP initialisation\n", __func__);
1707         }
1708
1709 #ifdef CONFIG_DEBUG_FS
1710         ret = stmmac_init_fs(dev);
1711         if (ret < 0)
1712                 pr_warn("%s: failed debugFS registration\n", __func__);
1713 #endif
1714         /* Start the ball rolling... */
1715         pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1716         priv->hw->dma->start_tx(priv->ioaddr);
1717         priv->hw->dma->start_rx(priv->ioaddr);
1718
1719         /* Dump DMA/MAC registers */
1720         if (netif_msg_hw(priv)) {
1721                 priv->hw->mac->dump_regs(priv->hw);
1722                 priv->hw->dma->dump_regs(priv->ioaddr);
1723         }
1724         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1725
1726         if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1727                 priv->rx_riwt = MAX_DMA_RIWT;
1728                 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1729         }
1730
1731         if (priv->hw->pcs && priv->hw->mac->pcs_ctrl_ane)
1732                 priv->hw->mac->pcs_ctrl_ane(priv->hw, 1, priv->hw->ps, 0);
1733
1734         /*  set TX ring length */
1735         if (priv->hw->dma->set_tx_ring_len)
1736                 priv->hw->dma->set_tx_ring_len(priv->ioaddr,
1737                                                (DMA_TX_SIZE - 1));
1738         /*  set RX ring length */
1739         if (priv->hw->dma->set_rx_ring_len)
1740                 priv->hw->dma->set_rx_ring_len(priv->ioaddr,
1741                                                (DMA_RX_SIZE - 1));
1742         /* Enable TSO */
1743         if (priv->tso)
1744                 priv->hw->dma->enable_tso(priv->ioaddr, 1, STMMAC_CHAN0);
1745
1746         return 0;
1747 }
1748
1749 /**
1750  *  stmmac_open - open entry point of the driver
1751  *  @dev : pointer to the device structure.
1752  *  Description:
1753  *  This function is the open entry point of the driver.
1754  *  Return value:
1755  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1756  *  file on failure.
1757  */
1758 static int stmmac_open(struct net_device *dev)
1759 {
1760         struct stmmac_priv *priv = netdev_priv(dev);
1761         int ret;
1762
1763         stmmac_check_ether_addr(priv);
1764
1765         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
1766             priv->hw->pcs != STMMAC_PCS_TBI &&
1767             priv->hw->pcs != STMMAC_PCS_RTBI) {
1768                 ret = stmmac_init_phy(dev);
1769                 if (ret) {
1770                         pr_err("%s: Cannot attach to PHY (error: %d)\n",
1771                                __func__, ret);
1772                         return ret;
1773                 }
1774         }
1775
1776         /* Extra statistics */
1777         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1778         priv->xstats.threshold = tc;
1779
1780         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1781         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
1782
1783         ret = alloc_dma_desc_resources(priv);
1784         if (ret < 0) {
1785                 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1786                 goto dma_desc_error;
1787         }
1788
1789         ret = init_dma_desc_rings(dev, GFP_KERNEL);
1790         if (ret < 0) {
1791                 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1792                 goto init_error;
1793         }
1794
1795         ret = stmmac_hw_setup(dev, true);
1796         if (ret < 0) {
1797                 pr_err("%s: Hw setup failed\n", __func__);
1798                 goto init_error;
1799         }
1800
1801         stmmac_init_tx_coalesce(priv);
1802
1803         if (priv->phydev)
1804                 phy_start(priv->phydev);
1805
1806         /* Request the IRQ lines */
1807         ret = request_irq(dev->irq, stmmac_interrupt,
1808                           IRQF_SHARED, dev->name, dev);
1809         if (unlikely(ret < 0)) {
1810                 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1811                        __func__, dev->irq, ret);
1812                 goto init_error;
1813         }
1814
1815         /* Request the Wake IRQ in case of another line is used for WoL */
1816         if (priv->wol_irq != dev->irq) {
1817                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1818                                   IRQF_SHARED, dev->name, dev);
1819                 if (unlikely(ret < 0)) {
1820                         pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1821                                __func__, priv->wol_irq, ret);
1822                         goto wolirq_error;
1823                 }
1824         }
1825
1826         /* Request the IRQ lines */
1827         if (priv->lpi_irq > 0) {
1828                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1829                                   dev->name, dev);
1830                 if (unlikely(ret < 0)) {
1831                         pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1832                                __func__, priv->lpi_irq, ret);
1833                         goto lpiirq_error;
1834                 }
1835         }
1836
1837         napi_enable(&priv->napi);
1838         netif_start_queue(dev);
1839
1840         return 0;
1841
1842 lpiirq_error:
1843         if (priv->wol_irq != dev->irq)
1844                 free_irq(priv->wol_irq, dev);
1845 wolirq_error:
1846         free_irq(dev->irq, dev);
1847
1848 init_error:
1849         free_dma_desc_resources(priv);
1850 dma_desc_error:
1851         if (priv->phydev)
1852                 phy_disconnect(priv->phydev);
1853
1854         return ret;
1855 }
1856
1857 /**
1858  *  stmmac_release - close entry point of the driver
1859  *  @dev : device pointer.
1860  *  Description:
1861  *  This is the stop entry point of the driver.
1862  */
1863 static int stmmac_release(struct net_device *dev)
1864 {
1865         struct stmmac_priv *priv = netdev_priv(dev);
1866
1867         if (priv->eee_enabled)
1868                 del_timer_sync(&priv->eee_ctrl_timer);
1869
1870         /* Stop and disconnect the PHY */
1871         if (priv->phydev) {
1872                 phy_stop(priv->phydev);
1873                 phy_disconnect(priv->phydev);
1874                 priv->phydev = NULL;
1875         }
1876
1877         netif_stop_queue(dev);
1878
1879         napi_disable(&priv->napi);
1880
1881         del_timer_sync(&priv->txtimer);
1882
1883         /* Free the IRQ lines */
1884         free_irq(dev->irq, dev);
1885         if (priv->wol_irq != dev->irq)
1886                 free_irq(priv->wol_irq, dev);
1887         if (priv->lpi_irq > 0)
1888                 free_irq(priv->lpi_irq, dev);
1889
1890         /* Stop TX/RX DMA and clear the descriptors */
1891         priv->hw->dma->stop_tx(priv->ioaddr);
1892         priv->hw->dma->stop_rx(priv->ioaddr);
1893
1894         /* Release and free the Rx/Tx resources */
1895         free_dma_desc_resources(priv);
1896
1897         /* Disable the MAC Rx/Tx */
1898         stmmac_set_mac(priv->ioaddr, false);
1899
1900         netif_carrier_off(dev);
1901
1902 #ifdef CONFIG_DEBUG_FS
1903         stmmac_exit_fs(dev);
1904 #endif
1905
1906         stmmac_release_ptp(priv);
1907
1908         return 0;
1909 }
1910
1911 /**
1912  *  stmmac_tso_allocator - close entry point of the driver
1913  *  @priv: driver private structure
1914  *  @des: buffer start address
1915  *  @total_len: total length to fill in descriptors
1916  *  @last_segmant: condition for the last descriptor
1917  *  Description:
1918  *  This function fills descriptor and request new descriptors according to
1919  *  buffer length to fill
1920  */
1921 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
1922                                  int total_len, bool last_segment)
1923 {
1924         struct dma_desc *desc;
1925         int tmp_len;
1926         u32 buff_size;
1927
1928         tmp_len = total_len;
1929
1930         while (tmp_len > 0) {
1931                 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
1932                 desc = priv->dma_tx + priv->cur_tx;
1933
1934                 desc->des0 = des + (total_len - tmp_len);
1935                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
1936                             TSO_MAX_BUFF_SIZE : tmp_len;
1937
1938                 priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
1939                         0, 1,
1940                         (last_segment) && (buff_size < TSO_MAX_BUFF_SIZE),
1941                         0, 0);
1942
1943                 tmp_len -= TSO_MAX_BUFF_SIZE;
1944         }
1945 }
1946
1947 /**
1948  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
1949  *  @skb : the socket buffer
1950  *  @dev : device pointer
1951  *  Description: this is the transmit function that is called on TSO frames
1952  *  (support available on GMAC4 and newer chips).
1953  *  Diagram below show the ring programming in case of TSO frames:
1954  *
1955  *  First Descriptor
1956  *   --------
1957  *   | DES0 |---> buffer1 = L2/L3/L4 header
1958  *   | DES1 |---> TCP Payload (can continue on next descr...)
1959  *   | DES2 |---> buffer 1 and 2 len
1960  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
1961  *   --------
1962  *      |
1963  *     ...
1964  *      |
1965  *   --------
1966  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
1967  *   | DES1 | --|
1968  *   | DES2 | --> buffer 1 and 2 len
1969  *   | DES3 |
1970  *   --------
1971  *
1972  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
1973  */
1974 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
1975 {
1976         u32 pay_len, mss;
1977         int tmp_pay_len = 0;
1978         struct stmmac_priv *priv = netdev_priv(dev);
1979         int nfrags = skb_shinfo(skb)->nr_frags;
1980         unsigned int first_entry, des;
1981         struct dma_desc *desc, *first, *mss_desc = NULL;
1982         u8 proto_hdr_len;
1983         int i;
1984
1985         spin_lock(&priv->tx_lock);
1986
1987         /* Compute header lengths */
1988         proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1989
1990         /* Desc availability based on threshold should be enough safe */
1991         if (unlikely(stmmac_tx_avail(priv) <
1992                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
1993                 if (!netif_queue_stopped(dev)) {
1994                         netif_stop_queue(dev);
1995                         /* This is a hard error, log it. */
1996                         pr_err("%s: Tx Ring full when queue awake\n", __func__);
1997                 }
1998                 spin_unlock(&priv->tx_lock);
1999                 return NETDEV_TX_BUSY;
2000         }
2001
2002         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2003
2004         mss = skb_shinfo(skb)->gso_size;
2005
2006         /* set new MSS value if needed */
2007         if (mss != priv->mss) {
2008                 mss_desc = priv->dma_tx + priv->cur_tx;
2009                 priv->hw->desc->set_mss(mss_desc, mss);
2010                 priv->mss = mss;
2011                 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2012         }
2013
2014         if (netif_msg_tx_queued(priv)) {
2015                 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2016                         __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2017                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2018                         skb->data_len);
2019         }
2020
2021         first_entry = priv->cur_tx;
2022
2023         desc = priv->dma_tx + first_entry;
2024         first = desc;
2025
2026         /* first descriptor: fill Headers on Buf1 */
2027         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2028                              DMA_TO_DEVICE);
2029         if (dma_mapping_error(priv->device, des))
2030                 goto dma_map_err;
2031
2032         priv->tx_skbuff_dma[first_entry].buf = des;
2033         priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2034         priv->tx_skbuff[first_entry] = skb;
2035
2036         first->des0 = des;
2037
2038         /* Fill start of payload in buff2 of first descriptor */
2039         if (pay_len)
2040                 first->des1 =  des + proto_hdr_len;
2041
2042         /* If needed take extra descriptors to fill the remaining payload */
2043         tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2044
2045         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0));
2046
2047         /* Prepare fragments */
2048         for (i = 0; i < nfrags; i++) {
2049                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2050
2051                 des = skb_frag_dma_map(priv->device, frag, 0,
2052                                        skb_frag_size(frag),
2053                                        DMA_TO_DEVICE);
2054
2055                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2056                                      (i == nfrags - 1));
2057
2058                 priv->tx_skbuff_dma[priv->cur_tx].buf = des;
2059                 priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag);
2060                 priv->tx_skbuff[priv->cur_tx] = NULL;
2061                 priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true;
2062         }
2063
2064         priv->tx_skbuff_dma[priv->cur_tx].last_segment = true;
2065
2066         priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2067
2068         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2069                 if (netif_msg_hw(priv))
2070                         pr_debug("%s: stop transmitted packets\n", __func__);
2071                 netif_stop_queue(dev);
2072         }
2073
2074         dev->stats.tx_bytes += skb->len;
2075         priv->xstats.tx_tso_frames++;
2076         priv->xstats.tx_tso_nfrags += nfrags;
2077
2078         /* Manage tx mitigation */
2079         priv->tx_count_frames += nfrags + 1;
2080         if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2081                 mod_timer(&priv->txtimer,
2082                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
2083         } else {
2084                 priv->tx_count_frames = 0;
2085                 priv->hw->desc->set_tx_ic(desc);
2086                 priv->xstats.tx_set_ic_bit++;
2087         }
2088
2089         if (!priv->hwts_tx_en)
2090                 skb_tx_timestamp(skb);
2091
2092         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2093                      priv->hwts_tx_en)) {
2094                 /* declare that device is doing timestamping */
2095                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2096                 priv->hw->desc->enable_tx_timestamp(first);
2097         }
2098
2099         /* Complete the first descriptor before granting the DMA */
2100         priv->hw->desc->prepare_tso_tx_desc(first, 1,
2101                         proto_hdr_len,
2102                         pay_len,
2103                         1, priv->tx_skbuff_dma[first_entry].last_segment,
2104                         tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2105
2106         /* If context desc is used to change MSS */
2107         if (mss_desc)
2108                 priv->hw->desc->set_tx_owner(mss_desc);
2109
2110         /* The own bit must be the latest setting done when prepare the
2111          * descriptor and then barrier is needed to make sure that
2112          * all is coherent before granting the DMA engine.
2113          */
2114         smp_wmb();
2115
2116         if (netif_msg_pktdata(priv)) {
2117                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2118                         __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2119                         priv->cur_tx, first, nfrags);
2120
2121                 priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE,
2122                                              0);
2123
2124                 pr_info(">>> frame to be transmitted: ");
2125                 print_pkt(skb->data, skb_headlen(skb));
2126         }
2127
2128         netdev_sent_queue(dev, skb->len);
2129
2130         priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2131                                        STMMAC_CHAN0);
2132
2133         spin_unlock(&priv->tx_lock);
2134         return NETDEV_TX_OK;
2135
2136 dma_map_err:
2137         spin_unlock(&priv->tx_lock);
2138         dev_err(priv->device, "Tx dma map failed\n");
2139         dev_kfree_skb(skb);
2140         priv->dev->stats.tx_dropped++;
2141         return NETDEV_TX_OK;
2142 }
2143
2144 /**
2145  *  stmmac_xmit - Tx entry point of the driver
2146  *  @skb : the socket buffer
2147  *  @dev : device pointer
2148  *  Description : this is the tx entry point of the driver.
2149  *  It programs the chain or the ring and supports oversized frames
2150  *  and SG feature.
2151  */
2152 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2153 {
2154         struct stmmac_priv *priv = netdev_priv(dev);
2155         unsigned int nopaged_len = skb_headlen(skb);
2156         int i, csum_insertion = 0, is_jumbo = 0;
2157         int nfrags = skb_shinfo(skb)->nr_frags;
2158         unsigned int entry, first_entry;
2159         struct dma_desc *desc, *first;
2160         unsigned int enh_desc;
2161         unsigned int des;
2162
2163         /* Manage oversized TCP frames for GMAC4 device */
2164         if (skb_is_gso(skb) && priv->tso) {
2165                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2166                         return stmmac_tso_xmit(skb, dev);
2167         }
2168
2169         spin_lock(&priv->tx_lock);
2170
2171         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
2172                 spin_unlock(&priv->tx_lock);
2173                 if (!netif_queue_stopped(dev)) {
2174                         netif_stop_queue(dev);
2175                         /* This is a hard error, log it. */
2176                         pr_err("%s: Tx Ring full when queue awake\n", __func__);
2177                 }
2178                 return NETDEV_TX_BUSY;
2179         }
2180
2181         if (priv->tx_path_in_lpi_mode)
2182                 stmmac_disable_eee_mode(priv);
2183
2184         entry = priv->cur_tx;
2185         first_entry = entry;
2186
2187         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
2188
2189         if (likely(priv->extend_desc))
2190                 desc = (struct dma_desc *)(priv->dma_etx + entry);
2191         else
2192                 desc = priv->dma_tx + entry;
2193
2194         first = desc;
2195
2196         priv->tx_skbuff[first_entry] = skb;
2197
2198         enh_desc = priv->plat->enh_desc;
2199         /* To program the descriptors according to the size of the frame */
2200         if (enh_desc)
2201                 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
2202
2203         if (unlikely(is_jumbo) && likely(priv->synopsys_id <
2204                                          DWMAC_CORE_4_00)) {
2205                 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
2206                 if (unlikely(entry < 0))
2207                         goto dma_map_err;
2208         }
2209
2210         for (i = 0; i < nfrags; i++) {
2211                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2212                 int len = skb_frag_size(frag);
2213                 bool last_segment = (i == (nfrags - 1));
2214
2215                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2216
2217                 if (likely(priv->extend_desc))
2218                         desc = (struct dma_desc *)(priv->dma_etx + entry);
2219                 else
2220                         desc = priv->dma_tx + entry;
2221
2222                 des = skb_frag_dma_map(priv->device, frag, 0, len,
2223                                        DMA_TO_DEVICE);
2224                 if (dma_mapping_error(priv->device, des))
2225                         goto dma_map_err; /* should reuse desc w/o issues */
2226
2227                 priv->tx_skbuff[entry] = NULL;
2228
2229                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2230                         desc->des0 = des;
2231                         priv->tx_skbuff_dma[entry].buf = desc->des0;
2232                 } else {
2233                         desc->des2 = des;
2234                         priv->tx_skbuff_dma[entry].buf = desc->des2;
2235                 }
2236
2237                 priv->tx_skbuff_dma[entry].map_as_page = true;
2238                 priv->tx_skbuff_dma[entry].len = len;
2239                 priv->tx_skbuff_dma[entry].last_segment = last_segment;
2240
2241                 /* Prepare the descriptor and set the own bit too */
2242                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2243                                                 priv->mode, 1, last_segment);
2244         }
2245
2246         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2247
2248         priv->cur_tx = entry;
2249
2250         if (netif_msg_pktdata(priv)) {
2251                 void *tx_head;
2252
2253                 pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2254                          __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2255                          entry, first, nfrags);
2256
2257                 if (priv->extend_desc)
2258                         tx_head = (void *)priv->dma_etx;
2259                 else
2260                         tx_head = (void *)priv->dma_tx;
2261
2262                 priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
2263
2264                 pr_debug(">>> frame to be transmitted: ");
2265                 print_pkt(skb->data, skb->len);
2266         }
2267
2268         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2269                 if (netif_msg_hw(priv))
2270                         pr_debug("%s: stop transmitted packets\n", __func__);
2271                 netif_stop_queue(dev);
2272         }
2273
2274         dev->stats.tx_bytes += skb->len;
2275
2276         /* According to the coalesce parameter the IC bit for the latest
2277          * segment is reset and the timer re-started to clean the tx status.
2278          * This approach takes care about the fragments: desc is the first
2279          * element in case of no SG.
2280          */
2281         priv->tx_count_frames += nfrags + 1;
2282         if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2283                 mod_timer(&priv->txtimer,
2284                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
2285         } else {
2286                 priv->tx_count_frames = 0;
2287                 priv->hw->desc->set_tx_ic(desc);
2288                 priv->xstats.tx_set_ic_bit++;
2289         }
2290
2291         if (!priv->hwts_tx_en)
2292                 skb_tx_timestamp(skb);
2293
2294         /* Ready to fill the first descriptor and set the OWN bit w/o any
2295          * problems because all the descriptors are actually ready to be
2296          * passed to the DMA engine.
2297          */
2298         if (likely(!is_jumbo)) {
2299                 bool last_segment = (nfrags == 0);
2300
2301                 des = dma_map_single(priv->device, skb->data,
2302                                      nopaged_len, DMA_TO_DEVICE);
2303                 if (dma_mapping_error(priv->device, des))
2304                         goto dma_map_err;
2305
2306                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2307                         first->des0 = des;
2308                         priv->tx_skbuff_dma[first_entry].buf = first->des0;
2309                 } else {
2310                         first->des2 = des;
2311                         priv->tx_skbuff_dma[first_entry].buf = first->des2;
2312                 }
2313
2314                 priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2315                 priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2316
2317                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2318                              priv->hwts_tx_en)) {
2319                         /* declare that device is doing timestamping */
2320                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2321                         priv->hw->desc->enable_tx_timestamp(first);
2322                 }
2323
2324                 /* Prepare the first descriptor setting the OWN bit too */
2325                 priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2326                                                 csum_insertion, priv->mode, 1,
2327                                                 last_segment);
2328
2329                 /* The own bit must be the latest setting done when prepare the
2330                  * descriptor and then barrier is needed to make sure that
2331                  * all is coherent before granting the DMA engine.
2332                  */
2333                 smp_wmb();
2334         }
2335
2336         netdev_sent_queue(dev, skb->len);
2337
2338         if (priv->synopsys_id < DWMAC_CORE_4_00)
2339                 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2340         else
2341                 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2342                                                STMMAC_CHAN0);
2343
2344         spin_unlock(&priv->tx_lock);
2345         return NETDEV_TX_OK;
2346
2347 dma_map_err:
2348         spin_unlock(&priv->tx_lock);
2349         dev_err(priv->device, "Tx dma map failed\n");
2350         dev_kfree_skb(skb);
2351         priv->dev->stats.tx_dropped++;
2352         return NETDEV_TX_OK;
2353 }
2354
2355 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2356 {
2357         struct ethhdr *ehdr;
2358         u16 vlanid;
2359
2360         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2361             NETIF_F_HW_VLAN_CTAG_RX &&
2362             !__vlan_get_tag(skb, &vlanid)) {
2363                 /* pop the vlan tag */
2364                 ehdr = (struct ethhdr *)skb->data;
2365                 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2366                 skb_pull(skb, VLAN_HLEN);
2367                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2368         }
2369 }
2370
2371
2372 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2373 {
2374         if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2375                 return 0;
2376
2377         return 1;
2378 }
2379
2380 /**
2381  * stmmac_rx_refill - refill used skb preallocated buffers
2382  * @priv: driver private structure
2383  * Description : this is to reallocate the skb for the reception process
2384  * that is based on zero-copy.
2385  */
2386 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2387 {
2388         int bfsize = priv->dma_buf_sz;
2389         unsigned int entry = priv->dirty_rx;
2390         int dirty = stmmac_rx_dirty(priv);
2391
2392         while (dirty-- > 0) {
2393                 struct dma_desc *p;
2394
2395                 if (priv->extend_desc)
2396                         p = (struct dma_desc *)(priv->dma_erx + entry);
2397                 else
2398                         p = priv->dma_rx + entry;
2399
2400                 if (likely(priv->rx_skbuff[entry] == NULL)) {
2401                         struct sk_buff *skb;
2402
2403                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2404                         if (unlikely(!skb)) {
2405                                 /* so for a while no zero-copy! */
2406                                 priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2407                                 if (unlikely(net_ratelimit()))
2408                                         dev_err(priv->device,
2409                                                 "fail to alloc skb entry %d\n",
2410                                                 entry);
2411                                 break;
2412                         }
2413
2414                         priv->rx_skbuff[entry] = skb;
2415                         priv->rx_skbuff_dma[entry] =
2416                             dma_map_single(priv->device, skb->data, bfsize,
2417                                            DMA_FROM_DEVICE);
2418                         if (dma_mapping_error(priv->device,
2419                                               priv->rx_skbuff_dma[entry])) {
2420                                 dev_err(priv->device, "Rx dma map failed\n");
2421                                 dev_kfree_skb(skb);
2422                                 break;
2423                         }
2424
2425                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2426                                 p->des0 = priv->rx_skbuff_dma[entry];
2427                                 p->des1 = 0;
2428                         } else {
2429                                 p->des2 = priv->rx_skbuff_dma[entry];
2430                         }
2431                         if (priv->hw->mode->refill_desc3)
2432                                 priv->hw->mode->refill_desc3(priv, p);
2433
2434                         if (priv->rx_zeroc_thresh > 0)
2435                                 priv->rx_zeroc_thresh--;
2436
2437                         if (netif_msg_rx_status(priv))
2438                                 pr_debug("\trefill entry #%d\n", entry);
2439                 }
2440                 wmb();
2441
2442                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2443                         priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
2444                 else
2445                         priv->hw->desc->set_rx_owner(p);
2446
2447                 wmb();
2448
2449                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2450         }
2451         priv->dirty_rx = entry;
2452 }
2453
2454 /**
2455  * stmmac_rx - manage the receive process
2456  * @priv: driver private structure
2457  * @limit: napi bugget.
2458  * Description :  this the function called by the napi poll method.
2459  * It gets all the frames inside the ring.
2460  */
2461 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2462 {
2463         unsigned int entry = priv->cur_rx;
2464         unsigned int next_entry;
2465         unsigned int count = 0;
2466         int coe = priv->hw->rx_csum;
2467
2468         if (netif_msg_rx_status(priv)) {
2469                 void *rx_head;
2470
2471                 pr_debug("%s: descriptor ring:\n", __func__);
2472                 if (priv->extend_desc)
2473                         rx_head = (void *)priv->dma_erx;
2474                 else
2475                         rx_head = (void *)priv->dma_rx;
2476
2477                 priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
2478         }
2479         while (count < limit) {
2480                 int status;
2481                 struct dma_desc *p;
2482
2483                 if (priv->extend_desc)
2484                         p = (struct dma_desc *)(priv->dma_erx + entry);
2485                 else
2486                         p = priv->dma_rx + entry;
2487
2488                 /* read the status of the incoming frame */
2489                 status = priv->hw->desc->rx_status(&priv->dev->stats,
2490                                                    &priv->xstats, p);
2491                 /* check if managed by the DMA otherwise go ahead */
2492                 if (unlikely(status & dma_own))
2493                         break;
2494
2495                 count++;
2496
2497                 priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2498                 next_entry = priv->cur_rx;
2499
2500                 if (priv->extend_desc)
2501                         prefetch(priv->dma_erx + next_entry);
2502                 else
2503                         prefetch(priv->dma_rx + next_entry);
2504
2505                 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2506                         priv->hw->desc->rx_extended_status(&priv->dev->stats,
2507                                                            &priv->xstats,
2508                                                            priv->dma_erx +
2509                                                            entry);
2510                 if (unlikely(status == discard_frame)) {
2511                         priv->dev->stats.rx_errors++;
2512                         if (priv->hwts_rx_en && !priv->extend_desc) {
2513                                 /* DESC2 & DESC3 will be overwitten by device
2514                                  * with timestamp value, hence reinitialize
2515                                  * them in stmmac_rx_refill() function so that
2516                                  * device can reuse it.
2517                                  */
2518                                 priv->rx_skbuff[entry] = NULL;
2519                                 dma_unmap_single(priv->device,
2520                                                  priv->rx_skbuff_dma[entry],
2521                                                  priv->dma_buf_sz,
2522                                                  DMA_FROM_DEVICE);
2523                         }
2524                 } else {
2525                         struct sk_buff *skb;
2526                         int frame_len;
2527                         unsigned int des;
2528
2529                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2530                                 des = p->des0;
2531                         else
2532                                 des = p->des2;
2533
2534                         frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2535
2536                         /*  If frame length is greather than skb buffer size
2537                          *  (preallocated during init) then the packet is
2538                          *  ignored
2539                          */
2540                         if (frame_len > priv->dma_buf_sz) {
2541                                 pr_err("%s: len %d larger than size (%d)\n",
2542                                        priv->dev->name, frame_len,
2543                                        priv->dma_buf_sz);
2544                                 priv->dev->stats.rx_length_errors++;
2545                                 break;
2546                         }
2547
2548                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2549                          * Type frames (LLC/LLC-SNAP)
2550                          */
2551                         if (unlikely(status != llc_snap))
2552                                 frame_len -= ETH_FCS_LEN;
2553
2554                         if (netif_msg_rx_status(priv)) {
2555                                 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2556                                         p, entry, des);
2557                                 if (frame_len > ETH_FRAME_LEN)
2558                                         pr_debug("\tframe size %d, COE: %d\n",
2559                                                  frame_len, status);
2560                         }
2561
2562                         /* The zero-copy is always used for all the sizes
2563                          * in case of GMAC4 because it needs
2564                          * to refill the used descriptors, always.
2565                          */
2566                         if (unlikely(!priv->plat->has_gmac4 &&
2567                                      ((frame_len < priv->rx_copybreak) ||
2568                                      stmmac_rx_threshold_count(priv)))) {
2569                                 skb = netdev_alloc_skb_ip_align(priv->dev,
2570                                                                 frame_len);
2571                                 if (unlikely(!skb)) {
2572                                         if (net_ratelimit())
2573                                                 dev_warn(priv->device,
2574                                                          "packet dropped\n");
2575                                         priv->dev->stats.rx_dropped++;
2576                                         break;
2577                                 }
2578
2579                                 dma_sync_single_for_cpu(priv->device,
2580                                                         priv->rx_skbuff_dma
2581                                                         [entry], frame_len,
2582                                                         DMA_FROM_DEVICE);
2583                                 skb_copy_to_linear_data(skb,
2584                                                         priv->
2585                                                         rx_skbuff[entry]->data,
2586                                                         frame_len);
2587
2588                                 skb_put(skb, frame_len);
2589                                 dma_sync_single_for_device(priv->device,
2590                                                            priv->rx_skbuff_dma
2591                                                            [entry], frame_len,
2592                                                            DMA_FROM_DEVICE);
2593                         } else {
2594                                 skb = priv->rx_skbuff[entry];
2595                                 if (unlikely(!skb)) {
2596                                         pr_err("%s: Inconsistent Rx chain\n",
2597                                                priv->dev->name);
2598                                         priv->dev->stats.rx_dropped++;
2599                                         break;
2600                                 }
2601                                 prefetch(skb->data - NET_IP_ALIGN);
2602                                 priv->rx_skbuff[entry] = NULL;
2603                                 priv->rx_zeroc_thresh++;
2604
2605                                 skb_put(skb, frame_len);
2606                                 dma_unmap_single(priv->device,
2607                                                  priv->rx_skbuff_dma[entry],
2608                                                  priv->dma_buf_sz,
2609                                                  DMA_FROM_DEVICE);
2610                         }
2611
2612                         stmmac_get_rx_hwtstamp(priv, entry, skb);
2613
2614                         if (netif_msg_pktdata(priv)) {
2615                                 pr_debug("frame received (%dbytes)", frame_len);
2616                                 print_pkt(skb->data, frame_len);
2617                         }
2618
2619                         stmmac_rx_vlan(priv->dev, skb);
2620
2621                         skb->protocol = eth_type_trans(skb, priv->dev);
2622
2623                         if (unlikely(!coe))
2624                                 skb_checksum_none_assert(skb);
2625                         else
2626                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2627
2628                         napi_gro_receive(&priv->napi, skb);
2629
2630                         priv->dev->stats.rx_packets++;
2631                         priv->dev->stats.rx_bytes += frame_len;
2632                 }
2633                 entry = next_entry;
2634         }
2635
2636         stmmac_rx_refill(priv);
2637
2638         priv->xstats.rx_pkt_n += count;
2639
2640         return count;
2641 }
2642
2643 /**
2644  *  stmmac_poll - stmmac poll method (NAPI)
2645  *  @napi : pointer to the napi structure.
2646  *  @budget : maximum number of packets that the current CPU can receive from
2647  *            all interfaces.
2648  *  Description :
2649  *  To look at the incoming frames and clear the tx resources.
2650  */
2651 static int stmmac_poll(struct napi_struct *napi, int budget)
2652 {
2653         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2654         int work_done = 0;
2655
2656         priv->xstats.napi_poll++;
2657         stmmac_tx_clean(priv);
2658
2659         work_done = stmmac_rx(priv, budget);
2660         if (work_done < budget) {
2661                 napi_complete(napi);
2662                 stmmac_enable_dma_irq(priv);
2663         }
2664         return work_done;
2665 }
2666
2667 /**
2668  *  stmmac_tx_timeout
2669  *  @dev : Pointer to net device structure
2670  *  Description: this function is called when a packet transmission fails to
2671  *   complete within a reasonable time. The driver will mark the error in the
2672  *   netdev structure and arrange for the device to be reset to a sane state
2673  *   in order to transmit a new packet.
2674  */
2675 static void stmmac_tx_timeout(struct net_device *dev)
2676 {
2677         struct stmmac_priv *priv = netdev_priv(dev);
2678
2679         /* Clear Tx resources and restart transmitting again */
2680         stmmac_tx_err(priv);
2681 }
2682
2683 /**
2684  *  stmmac_set_rx_mode - entry point for multicast addressing
2685  *  @dev : pointer to the device structure
2686  *  Description:
2687  *  This function is a driver entry point which gets called by the kernel
2688  *  whenever multicast addresses must be enabled/disabled.
2689  *  Return value:
2690  *  void.
2691  */
2692 static void stmmac_set_rx_mode(struct net_device *dev)
2693 {
2694         struct stmmac_priv *priv = netdev_priv(dev);
2695
2696         priv->hw->mac->set_filter(priv->hw, dev);
2697 }
2698
2699 /**
2700  *  stmmac_change_mtu - entry point to change MTU size for the device.
2701  *  @dev : device pointer.
2702  *  @new_mtu : the new MTU size for the device.
2703  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2704  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2705  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2706  *  Return value:
2707  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2708  *  file on failure.
2709  */
2710 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2711 {
2712         struct stmmac_priv *priv = netdev_priv(dev);
2713         int max_mtu;
2714
2715         if (netif_running(dev)) {
2716                 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2717                 return -EBUSY;
2718         }
2719
2720         if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
2721                 max_mtu = JUMBO_LEN;
2722         else
2723                 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2724
2725         if (priv->plat->maxmtu < max_mtu)
2726                 max_mtu = priv->plat->maxmtu;
2727
2728         if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2729                 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2730                 return -EINVAL;
2731         }
2732
2733         dev->mtu = new_mtu;
2734
2735         netdev_update_features(dev);
2736
2737         return 0;
2738 }
2739
2740 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2741                                              netdev_features_t features)
2742 {
2743         struct stmmac_priv *priv = netdev_priv(dev);
2744
2745         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2746                 features &= ~NETIF_F_RXCSUM;
2747
2748         if (!priv->plat->tx_coe)
2749                 features &= ~NETIF_F_CSUM_MASK;
2750
2751         /* Some GMAC devices have a bugged Jumbo frame support that
2752          * needs to have the Tx COE disabled for oversized frames
2753          * (due to limited buffer sizes). In this case we disable
2754          * the TX csum insertionin the TDES and not use SF.
2755          */
2756         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2757                 features &= ~NETIF_F_CSUM_MASK;
2758
2759         /* Disable tso if asked by ethtool */
2760         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
2761                 if (features & NETIF_F_TSO)
2762                         priv->tso = true;
2763                 else
2764                         priv->tso = false;
2765         }
2766
2767         return features;
2768 }
2769
2770 static int stmmac_set_features(struct net_device *netdev,
2771                                netdev_features_t features)
2772 {
2773         struct stmmac_priv *priv = netdev_priv(netdev);
2774
2775         /* Keep the COE Type in case of csum is supporting */
2776         if (features & NETIF_F_RXCSUM)
2777                 priv->hw->rx_csum = priv->plat->rx_coe;
2778         else
2779                 priv->hw->rx_csum = 0;
2780         /* No check needed because rx_coe has been set before and it will be
2781          * fixed in case of issue.
2782          */
2783         priv->hw->mac->rx_ipc(priv->hw);
2784
2785         return 0;
2786 }
2787
2788 /**
2789  *  stmmac_interrupt - main ISR
2790  *  @irq: interrupt number.
2791  *  @dev_id: to pass the net device pointer.
2792  *  Description: this is the main driver interrupt service routine.
2793  *  It can call:
2794  *  o DMA service routine (to manage incoming frame reception and transmission
2795  *    status)
2796  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2797  *    interrupts.
2798  */
2799 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2800 {
2801         struct net_device *dev = (struct net_device *)dev_id;
2802         struct stmmac_priv *priv = netdev_priv(dev);
2803
2804         if (priv->irq_wake)
2805                 pm_wakeup_event(priv->device, 0);
2806
2807         if (unlikely(!dev)) {
2808                 pr_err("%s: invalid dev pointer\n", __func__);
2809                 return IRQ_NONE;
2810         }
2811
2812         /* To handle GMAC own interrupts */
2813         if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
2814                 int status = priv->hw->mac->host_irq_status(priv->hw,
2815                                                             &priv->xstats);
2816                 if (unlikely(status)) {
2817                         /* For LPI we need to save the tx status */
2818                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2819                                 priv->tx_path_in_lpi_mode = true;
2820                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2821                                 priv->tx_path_in_lpi_mode = false;
2822                         if (status & CORE_IRQ_MTL_RX_OVERFLOW && priv->hw->dma->set_rx_tail_ptr)
2823                                 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
2824                                                         priv->rx_tail_addr,
2825                                                         STMMAC_CHAN0);
2826                 }
2827
2828                 /* PCS link status */
2829                 if (priv->hw->pcs) {
2830                         if (priv->xstats.pcs_link)
2831                                 netif_carrier_on(dev);
2832                         else
2833                                 netif_carrier_off(dev);
2834                 }
2835         }
2836
2837         /* To handle DMA interrupts */
2838         stmmac_dma_interrupt(priv);
2839
2840         return IRQ_HANDLED;
2841 }
2842
2843 #ifdef CONFIG_NET_POLL_CONTROLLER
2844 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2845  * to allow network I/O with interrupts disabled.
2846  */
2847 static void stmmac_poll_controller(struct net_device *dev)
2848 {
2849         disable_irq(dev->irq);
2850         stmmac_interrupt(dev->irq, dev);
2851         enable_irq(dev->irq);
2852 }
2853 #endif
2854
2855 /**
2856  *  stmmac_ioctl - Entry point for the Ioctl
2857  *  @dev: Device pointer.
2858  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2859  *  a proprietary structure used to pass information to the driver.
2860  *  @cmd: IOCTL command
2861  *  Description:
2862  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2863  */
2864 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2865 {
2866         struct stmmac_priv *priv = netdev_priv(dev);
2867         int ret = -EOPNOTSUPP;
2868
2869         if (!netif_running(dev))
2870                 return -EINVAL;
2871
2872         switch (cmd) {
2873         case SIOCGMIIPHY:
2874         case SIOCGMIIREG:
2875         case SIOCSMIIREG:
2876                 if (!priv->phydev)
2877                         return -EINVAL;
2878                 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2879                 break;
2880         case SIOCSHWTSTAMP:
2881                 ret = stmmac_hwtstamp_ioctl(dev, rq);
2882                 break;
2883         default:
2884                 break;
2885         }
2886
2887         return ret;
2888 }
2889
2890 #ifdef CONFIG_DEBUG_FS
2891 static struct dentry *stmmac_fs_dir;
2892
2893 static void sysfs_display_ring(void *head, int size, int extend_desc,
2894                                struct seq_file *seq)
2895 {
2896         int i;
2897         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2898         struct dma_desc *p = (struct dma_desc *)head;
2899
2900         for (i = 0; i < size; i++) {
2901                 u64 x;
2902                 if (extend_desc) {
2903                         x = *(u64 *) ep;
2904                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2905                                    i, (unsigned int)virt_to_phys(ep),
2906                                    ep->basic.des0, ep->basic.des1,
2907                                    ep->basic.des2, ep->basic.des3);
2908                         ep++;
2909                 } else {
2910                         x = *(u64 *) p;
2911                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2912                                    i, (unsigned int)virt_to_phys(ep),
2913                                    p->des0, p->des1, p->des2, p->des3);
2914                         p++;
2915                 }
2916                 seq_printf(seq, "\n");
2917         }
2918 }
2919
2920 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2921 {
2922         struct net_device *dev = seq->private;
2923         struct stmmac_priv *priv = netdev_priv(dev);
2924
2925         if (priv->extend_desc) {
2926                 seq_printf(seq, "Extended RX descriptor ring:\n");
2927                 sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2928                 seq_printf(seq, "Extended TX descriptor ring:\n");
2929                 sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2930         } else {
2931                 seq_printf(seq, "RX descriptor ring:\n");
2932                 sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2933                 seq_printf(seq, "TX descriptor ring:\n");
2934                 sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2935         }
2936
2937         return 0;
2938 }
2939
2940 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2941 {
2942         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2943 }
2944
2945 static const struct file_operations stmmac_rings_status_fops = {
2946         .owner = THIS_MODULE,
2947         .open = stmmac_sysfs_ring_open,
2948         .read = seq_read,
2949         .llseek = seq_lseek,
2950         .release = single_release,
2951 };
2952
2953 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2954 {
2955         struct net_device *dev = seq->private;
2956         struct stmmac_priv *priv = netdev_priv(dev);
2957
2958         if (!priv->hw_cap_support) {
2959                 seq_printf(seq, "DMA HW features not supported\n");
2960                 return 0;
2961         }
2962
2963         seq_printf(seq, "==============================\n");
2964         seq_printf(seq, "\tDMA HW features\n");
2965         seq_printf(seq, "==============================\n");
2966
2967         seq_printf(seq, "\t10/100 Mbps %s\n",
2968                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2969         seq_printf(seq, "\t1000 Mbps %s\n",
2970                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
2971         seq_printf(seq, "\tHalf duple %s\n",
2972                    (priv->dma_cap.half_duplex) ? "Y" : "N");
2973         seq_printf(seq, "\tHash Filter: %s\n",
2974                    (priv->dma_cap.hash_filter) ? "Y" : "N");
2975         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2976                    (priv->dma_cap.multi_addr) ? "Y" : "N");
2977         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2978                    (priv->dma_cap.pcs) ? "Y" : "N");
2979         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2980                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
2981         seq_printf(seq, "\tPMT Remote wake up: %s\n",
2982                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2983         seq_printf(seq, "\tPMT Magic Frame: %s\n",
2984                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2985         seq_printf(seq, "\tRMON module: %s\n",
2986                    (priv->dma_cap.rmon) ? "Y" : "N");
2987         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2988                    (priv->dma_cap.time_stamp) ? "Y" : "N");
2989         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2990                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
2991         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2992                    (priv->dma_cap.eee) ? "Y" : "N");
2993         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2994         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2995                    (priv->dma_cap.tx_coe) ? "Y" : "N");
2996         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
2997                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
2998                            (priv->dma_cap.rx_coe) ? "Y" : "N");
2999         } else {
3000                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3001                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3002                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3003                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3004         }
3005         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3006                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3007         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3008                    priv->dma_cap.number_rx_channel);
3009         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3010                    priv->dma_cap.number_tx_channel);
3011         seq_printf(seq, "\tEnhanced descriptors: %s\n",
3012                    (priv->dma_cap.enh_desc) ? "Y" : "N");
3013
3014         return 0;
3015 }
3016
3017 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
3018 {
3019         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
3020 }
3021
3022 static const struct file_operations stmmac_dma_cap_fops = {
3023         .owner = THIS_MODULE,
3024         .open = stmmac_sysfs_dma_cap_open,
3025         .read = seq_read,
3026         .llseek = seq_lseek,
3027         .release = single_release,
3028 };
3029
3030 static int stmmac_init_fs(struct net_device *dev)
3031 {
3032         struct stmmac_priv *priv = netdev_priv(dev);
3033
3034         /* Create per netdev entries */
3035         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3036
3037         if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3038                 pr_err("ERROR %s/%s, debugfs create directory failed\n",
3039                        STMMAC_RESOURCE_NAME, dev->name);
3040
3041                 return -ENOMEM;
3042         }
3043
3044         /* Entry to report DMA RX/TX rings */
3045         priv->dbgfs_rings_status =
3046                 debugfs_create_file("descriptors_status", S_IRUGO,
3047                                     priv->dbgfs_dir, dev,
3048                                     &stmmac_rings_status_fops);
3049
3050         if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3051                 pr_info("ERROR creating stmmac ring debugfs file\n");
3052                 debugfs_remove_recursive(priv->dbgfs_dir);
3053
3054                 return -ENOMEM;
3055         }
3056
3057         /* Entry to report the DMA HW features */
3058         priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
3059                                             priv->dbgfs_dir,
3060                                             dev, &stmmac_dma_cap_fops);
3061
3062         if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3063                 pr_info("ERROR creating stmmac MMC debugfs file\n");
3064                 debugfs_remove_recursive(priv->dbgfs_dir);
3065
3066                 return -ENOMEM;
3067         }
3068
3069         return 0;
3070 }
3071
3072 static void stmmac_exit_fs(struct net_device *dev)
3073 {
3074         struct stmmac_priv *priv = netdev_priv(dev);
3075
3076         debugfs_remove_recursive(priv->dbgfs_dir);
3077 }
3078 #endif /* CONFIG_DEBUG_FS */
3079
3080 static const struct net_device_ops stmmac_netdev_ops = {
3081         .ndo_open = stmmac_open,
3082         .ndo_start_xmit = stmmac_xmit,
3083         .ndo_stop = stmmac_release,
3084         .ndo_change_mtu = stmmac_change_mtu,
3085         .ndo_fix_features = stmmac_fix_features,
3086         .ndo_set_features = stmmac_set_features,
3087         .ndo_set_rx_mode = stmmac_set_rx_mode,
3088         .ndo_tx_timeout = stmmac_tx_timeout,
3089         .ndo_do_ioctl = stmmac_ioctl,
3090 #ifdef CONFIG_NET_POLL_CONTROLLER
3091         .ndo_poll_controller = stmmac_poll_controller,
3092 #endif
3093         .ndo_set_mac_address = eth_mac_addr,
3094 };
3095
3096 /**
3097  *  stmmac_hw_init - Init the MAC device
3098  *  @priv: driver private structure
3099  *  Description: this function is to configure the MAC device according to
3100  *  some platform parameters or the HW capability register. It prepares the
3101  *  driver to use either ring or chain modes and to setup either enhanced or
3102  *  normal descriptors.
3103  */
3104 static int stmmac_hw_init(struct stmmac_priv *priv)
3105 {
3106         struct mac_device_info *mac;
3107
3108         /* Identify the MAC HW device */
3109         if (priv->plat->has_gmac) {
3110                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3111                 mac = dwmac1000_setup(priv->ioaddr,
3112                                       priv->plat->multicast_filter_bins,
3113                                       priv->plat->unicast_filter_entries,
3114                                       &priv->synopsys_id);
3115         } else if (priv->plat->has_gmac4) {
3116                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3117                 mac = dwmac4_setup(priv->ioaddr,
3118                                    priv->plat->multicast_filter_bins,
3119                                    priv->plat->unicast_filter_entries,
3120                                    &priv->synopsys_id);
3121         } else {
3122                 mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
3123         }
3124         if (!mac)
3125                 return -ENOMEM;
3126
3127         priv->hw = mac;
3128
3129         /* To use the chained or ring mode */
3130         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3131                 priv->hw->mode = &dwmac4_ring_mode_ops;
3132         } else {
3133                 if (chain_mode) {
3134                         priv->hw->mode = &chain_mode_ops;
3135                         pr_info(" Chain mode enabled\n");
3136                         priv->mode = STMMAC_CHAIN_MODE;
3137                 } else {
3138                         priv->hw->mode = &ring_mode_ops;
3139                         pr_info(" Ring mode enabled\n");
3140                         priv->mode = STMMAC_RING_MODE;
3141                 }
3142         }
3143
3144         /* Get the HW capability (new GMAC newer than 3.50a) */
3145         priv->hw_cap_support = stmmac_get_hw_features(priv);
3146         if (priv->hw_cap_support) {
3147                 pr_info(" DMA HW capability register supported");
3148
3149                 /* We can override some gmac/dma configuration fields: e.g.
3150                  * enh_desc, tx_coe (e.g. that are passed through the
3151                  * platform) with the values from the HW capability
3152                  * register (if supported).
3153                  */
3154                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
3155                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
3156                 priv->hw->pmt = priv->plat->pmt;
3157
3158                 /* TXCOE doesn't work in thresh DMA mode */
3159                 if (priv->plat->force_thresh_dma_mode)
3160                         priv->plat->tx_coe = 0;
3161                 else
3162                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
3163
3164                 /* In case of GMAC4 rx_coe is from HW cap register. */
3165                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
3166
3167                 if (priv->dma_cap.rx_coe_type2)
3168                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
3169                 else if (priv->dma_cap.rx_coe_type1)
3170                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
3171
3172         } else
3173                 pr_info(" No HW DMA feature register supported");
3174
3175         /* To use alternate (extended), normal or GMAC4 descriptor structures */
3176         if (priv->synopsys_id >= DWMAC_CORE_4_00)
3177                 priv->hw->desc = &dwmac4_desc_ops;
3178         else
3179                 stmmac_selec_desc_mode(priv);
3180
3181         if (priv->plat->rx_coe) {
3182                 priv->hw->rx_csum = priv->plat->rx_coe;
3183                 pr_info(" RX Checksum Offload Engine supported\n");
3184                 if (priv->synopsys_id < DWMAC_CORE_4_00)
3185                         pr_info("\tCOE Type %d\n", priv->hw->rx_csum);
3186         }
3187         if (priv->plat->tx_coe)
3188                 pr_info(" TX Checksum insertion supported\n");
3189
3190         if (priv->plat->pmt) {
3191                 pr_info(" Wake-Up On Lan supported\n");
3192                 device_set_wakeup_capable(priv->device, 1);
3193         }
3194
3195         if (priv->dma_cap.tsoen)
3196                 pr_info(" TSO supported\n");
3197
3198         return 0;
3199 }
3200
3201 /**
3202  * stmmac_dvr_probe
3203  * @device: device pointer
3204  * @plat_dat: platform data pointer
3205  * @res: stmmac resource pointer
3206  * Description: this is the main probe function used to
3207  * call the alloc_etherdev, allocate the priv structure.
3208  * Return:
3209  * returns 0 on success, otherwise errno.
3210  */
3211 int stmmac_dvr_probe(struct device *device,
3212                      struct plat_stmmacenet_data *plat_dat,
3213                      struct stmmac_resources *res)
3214 {
3215         int ret = 0;
3216         struct net_device *ndev = NULL;
3217         struct stmmac_priv *priv;
3218
3219         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
3220         if (!ndev)
3221                 return -ENOMEM;
3222
3223         SET_NETDEV_DEV(ndev, device);
3224
3225         priv = netdev_priv(ndev);
3226         priv->device = device;
3227         priv->dev = ndev;
3228
3229         stmmac_set_ethtool_ops(ndev);
3230         priv->pause = pause;
3231         priv->plat = plat_dat;
3232         priv->ioaddr = res->addr;
3233         priv->dev->base_addr = (unsigned long)res->addr;
3234
3235         priv->dev->irq = res->irq;
3236         priv->wol_irq = res->wol_irq;
3237         priv->lpi_irq = res->lpi_irq;
3238
3239         if (res->mac)
3240                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
3241
3242         dev_set_drvdata(device, priv->dev);
3243
3244         /* Verify driver arguments */
3245         stmmac_verify_args();
3246
3247         /* Override with kernel parameters if supplied XXX CRS XXX
3248          * this needs to have multiple instances
3249          */
3250         if ((phyaddr >= 0) && (phyaddr <= 31))
3251                 priv->plat->phy_addr = phyaddr;
3252
3253         priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
3254         if (IS_ERR(priv->stmmac_clk)) {
3255                 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
3256                          __func__);
3257                 /* If failed to obtain stmmac_clk and specific clk_csr value
3258                  * is NOT passed from the platform, probe fail.
3259                  */
3260                 if (!priv->plat->clk_csr) {
3261                         ret = PTR_ERR(priv->stmmac_clk);
3262                         goto error_clk_get;
3263                 } else {
3264                         priv->stmmac_clk = NULL;
3265                 }
3266         }
3267         clk_prepare_enable(priv->stmmac_clk);
3268
3269         priv->pclk = devm_clk_get(priv->device, "pclk");
3270         if (IS_ERR(priv->pclk)) {
3271                 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
3272                         ret = -EPROBE_DEFER;
3273                         goto error_pclk_get;
3274                 }
3275                 priv->pclk = NULL;
3276         }
3277         clk_prepare_enable(priv->pclk);
3278
3279         priv->stmmac_rst = devm_reset_control_get(priv->device,
3280                                                   STMMAC_RESOURCE_NAME);
3281         if (IS_ERR(priv->stmmac_rst)) {
3282                 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
3283                         ret = -EPROBE_DEFER;
3284                         goto error_hw_init;
3285                 }
3286                 dev_info(priv->device, "no reset control found\n");
3287                 priv->stmmac_rst = NULL;
3288         }
3289         if (priv->stmmac_rst)
3290                 reset_control_deassert(priv->stmmac_rst);
3291
3292         /* Init MAC and get the capabilities */
3293         ret = stmmac_hw_init(priv);
3294         if (ret)
3295                 goto error_hw_init;
3296
3297         ndev->netdev_ops = &stmmac_netdev_ops;
3298
3299         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3300                             NETIF_F_RXCSUM;
3301
3302         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3303                 ndev->hw_features |= NETIF_F_TSO;
3304                 priv->tso = true;
3305                 pr_info(" TSO feature enabled\n");
3306         }
3307         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
3308         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
3309 #ifdef STMMAC_VLAN_TAG_USED
3310         /* Both mac100 and gmac support receive VLAN tag detection */
3311         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3312 #endif
3313         priv->msg_enable = netif_msg_init(debug, default_msg_level);
3314
3315         if (flow_ctrl)
3316                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
3317
3318         /* Rx Watchdog is available in the COREs newer than the 3.40.
3319          * In some case, for example on bugged HW this feature
3320          * has to be disable and this can be done by passing the
3321          * riwt_off field from the platform.
3322          */
3323         if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3324                 priv->use_riwt = 1;
3325                 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
3326         }
3327
3328         netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
3329
3330         spin_lock_init(&priv->lock);
3331         spin_lock_init(&priv->tx_lock);
3332
3333         ret = register_netdev(ndev);
3334         if (ret) {
3335                 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
3336                 goto error_netdev_register;
3337         }
3338
3339         /* If a specific clk_csr value is passed from the platform
3340          * this means that the CSR Clock Range selection cannot be
3341          * changed at run-time and it is fixed. Viceversa the driver'll try to
3342          * set the MDC clock dynamically according to the csr actual
3343          * clock input.
3344          */
3345         if (!priv->plat->clk_csr)
3346                 stmmac_clk_csr_set(priv);
3347         else
3348                 priv->clk_csr = priv->plat->clk_csr;
3349
3350         stmmac_check_pcs_mode(priv);
3351
3352         if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
3353             priv->hw->pcs != STMMAC_PCS_TBI &&
3354             priv->hw->pcs != STMMAC_PCS_RTBI) {
3355                 /* MDIO bus Registration */
3356                 ret = stmmac_mdio_register(ndev);
3357                 if (ret < 0) {
3358                         pr_debug("%s: MDIO bus (id: %d) registration failed",
3359                                  __func__, priv->plat->bus_id);
3360                         goto error_mdio_register;
3361                 }
3362         }
3363
3364         return 0;
3365
3366 error_mdio_register:
3367         unregister_netdev(ndev);
3368 error_netdev_register:
3369         netif_napi_del(&priv->napi);
3370 error_hw_init:
3371         clk_disable_unprepare(priv->pclk);
3372 error_pclk_get:
3373         clk_disable_unprepare(priv->stmmac_clk);
3374 error_clk_get:
3375         free_netdev(ndev);
3376
3377         return ret;
3378 }
3379 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3380
3381 /**
3382  * stmmac_dvr_remove
3383  * @dev: device pointer
3384  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3385  * changes the link status, releases the DMA descriptor rings.
3386  */
3387 int stmmac_dvr_remove(struct device *dev)
3388 {
3389         struct net_device *ndev = dev_get_drvdata(dev);
3390         struct stmmac_priv *priv = netdev_priv(ndev);
3391
3392         pr_info("%s:\n\tremoving driver", __func__);
3393
3394         priv->hw->dma->stop_rx(priv->ioaddr);
3395         priv->hw->dma->stop_tx(priv->ioaddr);
3396
3397         stmmac_set_mac(priv->ioaddr, false);
3398         netif_carrier_off(ndev);
3399         unregister_netdev(ndev);
3400         of_node_put(priv->plat->phy_node);
3401         if (priv->stmmac_rst)
3402                 reset_control_assert(priv->stmmac_rst);
3403         clk_disable_unprepare(priv->pclk);
3404         clk_disable_unprepare(priv->stmmac_clk);
3405         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3406             priv->hw->pcs != STMMAC_PCS_TBI &&
3407             priv->hw->pcs != STMMAC_PCS_RTBI)
3408                 stmmac_mdio_unregister(ndev);
3409         free_netdev(ndev);
3410
3411         return 0;
3412 }
3413 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3414
3415 /**
3416  * stmmac_suspend - suspend callback
3417  * @dev: device pointer
3418  * Description: this is the function to suspend the device and it is called
3419  * by the platform driver to stop the network queue, release the resources,
3420  * program the PMT register (for WoL), clean and release driver resources.
3421  */
3422 int stmmac_suspend(struct device *dev)
3423 {
3424         struct net_device *ndev = dev_get_drvdata(dev);
3425         struct stmmac_priv *priv = netdev_priv(ndev);
3426         unsigned long flags;
3427
3428         if (!ndev || !netif_running(ndev))
3429                 return 0;
3430
3431         if (priv->phydev)
3432                 phy_stop(priv->phydev);
3433
3434         spin_lock_irqsave(&priv->lock, flags);
3435
3436         netif_device_detach(ndev);
3437         netif_stop_queue(ndev);
3438
3439         napi_disable(&priv->napi);
3440
3441         /* Stop TX/RX DMA */
3442         priv->hw->dma->stop_tx(priv->ioaddr);
3443         priv->hw->dma->stop_rx(priv->ioaddr);
3444
3445         /* Enable Power down mode by programming the PMT regs */
3446         if (device_may_wakeup(priv->device)) {
3447                 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3448                 priv->irq_wake = 1;
3449         } else {
3450                 stmmac_set_mac(priv->ioaddr, false);
3451                 pinctrl_pm_select_sleep_state(priv->device);
3452                 /* Disable clock in case of PWM is off */
3453                 clk_disable(priv->pclk);
3454                 clk_disable(priv->stmmac_clk);
3455         }
3456         spin_unlock_irqrestore(&priv->lock, flags);
3457
3458         priv->oldlink = 0;
3459         priv->speed = 0;
3460         priv->oldduplex = -1;
3461         return 0;
3462 }
3463 EXPORT_SYMBOL_GPL(stmmac_suspend);
3464
3465 /**
3466  * stmmac_resume - resume callback
3467  * @dev: device pointer
3468  * Description: when resume this function is invoked to setup the DMA and CORE
3469  * in a usable state.
3470  */
3471 int stmmac_resume(struct device *dev)
3472 {
3473         struct net_device *ndev = dev_get_drvdata(dev);
3474         struct stmmac_priv *priv = netdev_priv(ndev);
3475         unsigned long flags;
3476
3477         if (!netif_running(ndev))
3478                 return 0;
3479
3480         /* Power Down bit, into the PM register, is cleared
3481          * automatically as soon as a magic packet or a Wake-up frame
3482          * is received. Anyway, it's better to manually clear
3483          * this bit because it can generate problems while resuming
3484          * from another devices (e.g. serial console).
3485          */
3486         if (device_may_wakeup(priv->device)) {
3487                 spin_lock_irqsave(&priv->lock, flags);
3488                 priv->hw->mac->pmt(priv->hw, 0);
3489                 spin_unlock_irqrestore(&priv->lock, flags);
3490                 priv->irq_wake = 0;
3491         } else {
3492                 pinctrl_pm_select_default_state(priv->device);
3493                 /* enable the clk prevously disabled */
3494                 clk_enable(priv->stmmac_clk);
3495                 clk_enable(priv->pclk);
3496                 /* reset the phy so that it's ready */
3497                 if (priv->mii)
3498                         stmmac_mdio_reset(priv->mii);
3499         }
3500
3501         netif_device_attach(ndev);
3502
3503         spin_lock_irqsave(&priv->lock, flags);
3504
3505         priv->cur_rx = 0;
3506         priv->dirty_rx = 0;
3507         priv->dirty_tx = 0;
3508         priv->cur_tx = 0;
3509         /* reset private mss value to force mss context settings at
3510          * next tso xmit (only used for gmac4).
3511          */
3512         priv->mss = 0;
3513
3514         stmmac_clear_descriptors(priv);
3515
3516         stmmac_hw_setup(ndev, false);
3517         stmmac_init_tx_coalesce(priv);
3518         stmmac_set_rx_mode(ndev);
3519
3520         napi_enable(&priv->napi);
3521
3522         netif_start_queue(ndev);
3523
3524         spin_unlock_irqrestore(&priv->lock, flags);
3525
3526         if (priv->phydev)
3527                 phy_start(priv->phydev);
3528
3529         return 0;
3530 }
3531 EXPORT_SYMBOL_GPL(stmmac_resume);
3532
3533 #ifndef MODULE
3534 static int __init stmmac_cmdline_opt(char *str)
3535 {
3536         char *opt;
3537
3538         if (!str || !*str)
3539                 return -EINVAL;
3540         while ((opt = strsep(&str, ",")) != NULL) {
3541                 if (!strncmp(opt, "debug:", 6)) {
3542                         if (kstrtoint(opt + 6, 0, &debug))
3543                                 goto err;
3544                 } else if (!strncmp(opt, "phyaddr:", 8)) {
3545                         if (kstrtoint(opt + 8, 0, &phyaddr))
3546                                 goto err;
3547                 } else if (!strncmp(opt, "buf_sz:", 7)) {
3548                         if (kstrtoint(opt + 7, 0, &buf_sz))
3549                                 goto err;
3550                 } else if (!strncmp(opt, "tc:", 3)) {
3551                         if (kstrtoint(opt + 3, 0, &tc))
3552                                 goto err;
3553                 } else if (!strncmp(opt, "watchdog:", 9)) {
3554                         if (kstrtoint(opt + 9, 0, &watchdog))
3555                                 goto err;
3556                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3557                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
3558                                 goto err;
3559                 } else if (!strncmp(opt, "pause:", 6)) {
3560                         if (kstrtoint(opt + 6, 0, &pause))
3561                                 goto err;
3562                 } else if (!strncmp(opt, "eee_timer:", 10)) {
3563                         if (kstrtoint(opt + 10, 0, &eee_timer))
3564                                 goto err;
3565                 } else if (!strncmp(opt, "chain_mode:", 11)) {
3566                         if (kstrtoint(opt + 11, 0, &chain_mode))
3567                                 goto err;
3568                 }
3569         }
3570         return 0;
3571
3572 err:
3573         pr_err("%s: ERROR broken module parameter conversion", __func__);
3574         return -EINVAL;
3575 }
3576
3577 __setup("stmmaceth=", stmmac_cmdline_opt);
3578 #endif /* MODULE */
3579
3580 static int __init stmmac_init(void)
3581 {
3582 #ifdef CONFIG_DEBUG_FS
3583         /* Create debugfs main directory if it doesn't exist yet */
3584         if (!stmmac_fs_dir) {
3585                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3586
3587                 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3588                         pr_err("ERROR %s, debugfs create directory failed\n",
3589                                STMMAC_RESOURCE_NAME);
3590
3591                         return -ENOMEM;
3592                 }
3593         }
3594 #endif
3595
3596         return 0;
3597 }
3598
3599 static void __exit stmmac_exit(void)
3600 {
3601 #ifdef CONFIG_DEBUG_FS
3602         debugfs_remove_recursive(stmmac_fs_dir);
3603 #endif
3604 }
3605
3606 module_init(stmmac_init)
3607 module_exit(stmmac_exit)
3608
3609 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3610 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3611 MODULE_LICENSE("GPL");