Merge remote-tracking branches 'asoc/topic/ab8500', 'asoc/topic/adau17x1', 'asoc...
[cascardo/linux.git] / drivers / net / ethernet / ti / netcp_core.c
1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:     Sandeep Nair <sandeep_n@ti.com>
6  *              Sandeep Paulraj <s-paulraj@ti.com>
7  *              Cyril Chemparathy <cyril@ti.com>
8  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *              Murali Karicheri <m-karicheri2@ti.com>
10  *              Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31
32 #include "netcp.h"
33
34 #define NETCP_SOP_OFFSET        (NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT       64
36 #define NETCP_TX_TIMEOUT        (5 * HZ)
37 #define NETCP_PACKET_SIZE       (ETH_FRAME_LEN + ETH_FCS_LEN)
38 #define NETCP_MIN_PACKET_SIZE   ETH_ZLEN
39 #define NETCP_MAX_MCAST_ADDR    16
40
41 #define NETCP_EFUSE_REG_INDEX   0
42
43 #define NETCP_MOD_PROBE_SKIPPED 1
44 #define NETCP_MOD_PROBE_FAILED  2
45
46 #define NETCP_DEBUG (NETIF_MSG_HW       | NETIF_MSG_WOL         |       \
47                     NETIF_MSG_DRV       | NETIF_MSG_LINK        |       \
48                     NETIF_MSG_IFUP      | NETIF_MSG_INTR        |       \
49                     NETIF_MSG_PROBE     | NETIF_MSG_TIMER       |       \
50                     NETIF_MSG_IFDOWN    | NETIF_MSG_RX_ERR      |       \
51                     NETIF_MSG_TX_ERR    | NETIF_MSG_TX_DONE     |       \
52                     NETIF_MSG_PKTDATA   | NETIF_MSG_TX_QUEUED   |       \
53                     NETIF_MSG_RX_STATUS)
54
55 #define NETCP_EFUSE_ADDR_SWAP   2
56
57 #define knav_queue_get_id(q)    knav_queue_device_control(q, \
58                                 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
59
60 #define knav_queue_enable_notify(q) knav_queue_device_control(q,        \
61                                         KNAV_QUEUE_ENABLE_NOTIFY,       \
62                                         (unsigned long)NULL)
63
64 #define knav_queue_disable_notify(q) knav_queue_device_control(q,       \
65                                         KNAV_QUEUE_DISABLE_NOTIFY,      \
66                                         (unsigned long)NULL)
67
68 #define knav_queue_get_count(q) knav_queue_device_control(q, \
69                                 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
70
71 #define for_each_netcp_module(module)                   \
72         list_for_each_entry(module, &netcp_modules, module_list)
73
74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
75         list_for_each_entry(inst_modpriv, \
76                 &((netcp_device)->modpriv_head), inst_list)
77
78 #define for_each_module(netcp, intf_modpriv)                    \
79         list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
80
81 /* Module management structures */
82 struct netcp_device {
83         struct list_head        device_list;
84         struct list_head        interface_head;
85         struct list_head        modpriv_head;
86         struct device           *device;
87 };
88
89 struct netcp_inst_modpriv {
90         struct netcp_device     *netcp_device;
91         struct netcp_module     *netcp_module;
92         struct list_head        inst_list;
93         void                    *module_priv;
94 };
95
96 struct netcp_intf_modpriv {
97         struct netcp_intf       *netcp_priv;
98         struct netcp_module     *netcp_module;
99         struct list_head        intf_list;
100         void                    *module_priv;
101 };
102
103 static LIST_HEAD(netcp_devices);
104 static LIST_HEAD(netcp_modules);
105 static DEFINE_MUTEX(netcp_modules_lock);
106
107 static int netcp_debug_level = -1;
108 module_param(netcp_debug_level, int, 0);
109 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
110
111 /* Helper functions - Get/Set */
112 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
113                          struct knav_dma_desc *desc)
114 {
115         *buff_len = le32_to_cpu(desc->buff_len);
116         *buff = le32_to_cpu(desc->buff);
117         *ndesc = le32_to_cpu(desc->next_desc);
118 }
119
120 static u32 get_sw_data(int index, struct knav_dma_desc *desc)
121 {
122         /* No Endian conversion needed as this data is untouched by hw */
123         return desc->sw_data[index];
124 }
125
126 /* use these macros to get sw data */
127 #define GET_SW_DATA0(desc) get_sw_data(0, desc)
128 #define GET_SW_DATA1(desc) get_sw_data(1, desc)
129 #define GET_SW_DATA2(desc) get_sw_data(2, desc)
130 #define GET_SW_DATA3(desc) get_sw_data(3, desc)
131
132 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
133                              struct knav_dma_desc *desc)
134 {
135         *buff = le32_to_cpu(desc->orig_buff);
136         *buff_len = le32_to_cpu(desc->orig_len);
137 }
138
139 static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
140 {
141         int i;
142
143         for (i = 0; i < num_words; i++)
144                 words[i] = le32_to_cpu(desc[i]);
145 }
146
147 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
148                          struct knav_dma_desc *desc)
149 {
150         desc->buff_len = cpu_to_le32(buff_len);
151         desc->buff = cpu_to_le32(buff);
152         desc->next_desc = cpu_to_le32(ndesc);
153 }
154
155 static void set_desc_info(u32 desc_info, u32 pkt_info,
156                           struct knav_dma_desc *desc)
157 {
158         desc->desc_info = cpu_to_le32(desc_info);
159         desc->packet_info = cpu_to_le32(pkt_info);
160 }
161
162 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
163 {
164         /* No Endian conversion needed as this data is untouched by hw */
165         desc->sw_data[index] = data;
166 }
167
168 /* use these macros to set sw data */
169 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
170 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
171 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
172 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
173
174 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
175                              struct knav_dma_desc *desc)
176 {
177         desc->orig_buff = cpu_to_le32(buff);
178         desc->orig_len = cpu_to_le32(buff_len);
179 }
180
181 static void set_words(u32 *words, int num_words, __le32 *desc)
182 {
183         int i;
184
185         for (i = 0; i < num_words; i++)
186                 desc[i] = cpu_to_le32(words[i]);
187 }
188
189 /* Read the e-fuse value as 32 bit values to be endian independent */
190 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
191 {
192         unsigned int addr0, addr1;
193
194         addr1 = readl(efuse_mac + 4);
195         addr0 = readl(efuse_mac);
196
197         switch (swap) {
198         case NETCP_EFUSE_ADDR_SWAP:
199                 addr0 = addr1;
200                 addr1 = readl(efuse_mac);
201                 break;
202         default:
203                 break;
204         }
205
206         x[0] = (addr1 & 0x0000ff00) >> 8;
207         x[1] = addr1 & 0x000000ff;
208         x[2] = (addr0 & 0xff000000) >> 24;
209         x[3] = (addr0 & 0x00ff0000) >> 16;
210         x[4] = (addr0 & 0x0000ff00) >> 8;
211         x[5] = addr0 & 0x000000ff;
212
213         return 0;
214 }
215
216 static const char *netcp_node_name(struct device_node *node)
217 {
218         const char *name;
219
220         if (of_property_read_string(node, "label", &name) < 0)
221                 name = node->name;
222         if (!name)
223                 name = "unknown";
224         return name;
225 }
226
227 /* Module management routines */
228 static int netcp_register_interface(struct netcp_intf *netcp)
229 {
230         int ret;
231
232         ret = register_netdev(netcp->ndev);
233         if (!ret)
234                 netcp->netdev_registered = true;
235         return ret;
236 }
237
238 static int netcp_module_probe(struct netcp_device *netcp_device,
239                               struct netcp_module *module)
240 {
241         struct device *dev = netcp_device->device;
242         struct device_node *devices, *interface, *node = dev->of_node;
243         struct device_node *child;
244         struct netcp_inst_modpriv *inst_modpriv;
245         struct netcp_intf *netcp_intf;
246         struct netcp_module *tmp;
247         bool primary_module_registered = false;
248         int ret;
249
250         /* Find this module in the sub-tree for this device */
251         devices = of_get_child_by_name(node, "netcp-devices");
252         if (!devices) {
253                 dev_err(dev, "could not find netcp-devices node\n");
254                 return NETCP_MOD_PROBE_SKIPPED;
255         }
256
257         for_each_available_child_of_node(devices, child) {
258                 const char *name = netcp_node_name(child);
259
260                 if (!strcasecmp(module->name, name))
261                         break;
262         }
263
264         of_node_put(devices);
265         /* If module not used for this device, skip it */
266         if (!child) {
267                 dev_warn(dev, "module(%s) not used for device\n", module->name);
268                 return NETCP_MOD_PROBE_SKIPPED;
269         }
270
271         inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
272         if (!inst_modpriv) {
273                 of_node_put(child);
274                 return -ENOMEM;
275         }
276
277         inst_modpriv->netcp_device = netcp_device;
278         inst_modpriv->netcp_module = module;
279         list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
280
281         ret = module->probe(netcp_device, dev, child,
282                             &inst_modpriv->module_priv);
283         of_node_put(child);
284         if (ret) {
285                 dev_err(dev, "Probe of module(%s) failed with %d\n",
286                         module->name, ret);
287                 list_del(&inst_modpriv->inst_list);
288                 devm_kfree(dev, inst_modpriv);
289                 return NETCP_MOD_PROBE_FAILED;
290         }
291
292         /* Attach modules only if the primary module is probed */
293         for_each_netcp_module(tmp) {
294                 if (tmp->primary)
295                         primary_module_registered = true;
296         }
297
298         if (!primary_module_registered)
299                 return 0;
300
301         /* Attach module to interfaces */
302         list_for_each_entry(netcp_intf, &netcp_device->interface_head,
303                             interface_list) {
304                 struct netcp_intf_modpriv *intf_modpriv;
305
306                 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
307                                             GFP_KERNEL);
308                 if (!intf_modpriv)
309                         return -ENOMEM;
310
311                 interface = of_parse_phandle(netcp_intf->node_interface,
312                                              module->name, 0);
313
314                 if (!interface) {
315                         devm_kfree(dev, intf_modpriv);
316                         continue;
317                 }
318
319                 intf_modpriv->netcp_priv = netcp_intf;
320                 intf_modpriv->netcp_module = module;
321                 list_add_tail(&intf_modpriv->intf_list,
322                               &netcp_intf->module_head);
323
324                 ret = module->attach(inst_modpriv->module_priv,
325                                      netcp_intf->ndev, interface,
326                                      &intf_modpriv->module_priv);
327                 of_node_put(interface);
328                 if (ret) {
329                         dev_dbg(dev, "Attach of module %s declined with %d\n",
330                                 module->name, ret);
331                         list_del(&intf_modpriv->intf_list);
332                         devm_kfree(dev, intf_modpriv);
333                         continue;
334                 }
335         }
336
337         /* Now register the interface with netdev */
338         list_for_each_entry(netcp_intf,
339                             &netcp_device->interface_head,
340                             interface_list) {
341                 /* If interface not registered then register now */
342                 if (!netcp_intf->netdev_registered) {
343                         ret = netcp_register_interface(netcp_intf);
344                         if (ret)
345                                 return -ENODEV;
346                 }
347         }
348         return 0;
349 }
350
351 int netcp_register_module(struct netcp_module *module)
352 {
353         struct netcp_device *netcp_device;
354         struct netcp_module *tmp;
355         int ret;
356
357         if (!module->name) {
358                 WARN(1, "error registering netcp module: no name\n");
359                 return -EINVAL;
360         }
361
362         if (!module->probe) {
363                 WARN(1, "error registering netcp module: no probe\n");
364                 return -EINVAL;
365         }
366
367         mutex_lock(&netcp_modules_lock);
368
369         for_each_netcp_module(tmp) {
370                 if (!strcasecmp(tmp->name, module->name)) {
371                         mutex_unlock(&netcp_modules_lock);
372                         return -EEXIST;
373                 }
374         }
375         list_add_tail(&module->module_list, &netcp_modules);
376
377         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
378                 ret = netcp_module_probe(netcp_device, module);
379                 if (ret < 0)
380                         goto fail;
381         }
382         mutex_unlock(&netcp_modules_lock);
383         return 0;
384
385 fail:
386         mutex_unlock(&netcp_modules_lock);
387         netcp_unregister_module(module);
388         return ret;
389 }
390 EXPORT_SYMBOL_GPL(netcp_register_module);
391
392 static void netcp_release_module(struct netcp_device *netcp_device,
393                                  struct netcp_module *module)
394 {
395         struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
396         struct netcp_intf *netcp_intf, *netcp_tmp;
397         struct device *dev = netcp_device->device;
398
399         /* Release the module from each interface */
400         list_for_each_entry_safe(netcp_intf, netcp_tmp,
401                                  &netcp_device->interface_head,
402                                  interface_list) {
403                 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
404
405                 list_for_each_entry_safe(intf_modpriv, intf_tmp,
406                                          &netcp_intf->module_head,
407                                          intf_list) {
408                         if (intf_modpriv->netcp_module == module) {
409                                 module->release(intf_modpriv->module_priv);
410                                 list_del(&intf_modpriv->intf_list);
411                                 devm_kfree(dev, intf_modpriv);
412                                 break;
413                         }
414                 }
415         }
416
417         /* Remove the module from each instance */
418         list_for_each_entry_safe(inst_modpriv, inst_tmp,
419                                  &netcp_device->modpriv_head, inst_list) {
420                 if (inst_modpriv->netcp_module == module) {
421                         module->remove(netcp_device,
422                                        inst_modpriv->module_priv);
423                         list_del(&inst_modpriv->inst_list);
424                         devm_kfree(dev, inst_modpriv);
425                         break;
426                 }
427         }
428 }
429
430 void netcp_unregister_module(struct netcp_module *module)
431 {
432         struct netcp_device *netcp_device;
433         struct netcp_module *module_tmp;
434
435         mutex_lock(&netcp_modules_lock);
436
437         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
438                 netcp_release_module(netcp_device, module);
439         }
440
441         /* Remove the module from the module list */
442         for_each_netcp_module(module_tmp) {
443                 if (module == module_tmp) {
444                         list_del(&module->module_list);
445                         break;
446                 }
447         }
448
449         mutex_unlock(&netcp_modules_lock);
450 }
451 EXPORT_SYMBOL_GPL(netcp_unregister_module);
452
453 void *netcp_module_get_intf_data(struct netcp_module *module,
454                                  struct netcp_intf *intf)
455 {
456         struct netcp_intf_modpriv *intf_modpriv;
457
458         list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
459                 if (intf_modpriv->netcp_module == module)
460                         return intf_modpriv->module_priv;
461         return NULL;
462 }
463 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
464
465 /* Module TX and RX Hook management */
466 struct netcp_hook_list {
467         struct list_head         list;
468         netcp_hook_rtn          *hook_rtn;
469         void                    *hook_data;
470         int                      order;
471 };
472
473 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
474                           netcp_hook_rtn *hook_rtn, void *hook_data)
475 {
476         struct netcp_hook_list *entry;
477         struct netcp_hook_list *next;
478         unsigned long flags;
479
480         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
481         if (!entry)
482                 return -ENOMEM;
483
484         entry->hook_rtn  = hook_rtn;
485         entry->hook_data = hook_data;
486         entry->order     = order;
487
488         spin_lock_irqsave(&netcp_priv->lock, flags);
489         list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
490                 if (next->order > order)
491                         break;
492         }
493         __list_add(&entry->list, next->list.prev, &next->list);
494         spin_unlock_irqrestore(&netcp_priv->lock, flags);
495
496         return 0;
497 }
498 EXPORT_SYMBOL_GPL(netcp_register_txhook);
499
500 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
501                             netcp_hook_rtn *hook_rtn, void *hook_data)
502 {
503         struct netcp_hook_list *next, *n;
504         unsigned long flags;
505
506         spin_lock_irqsave(&netcp_priv->lock, flags);
507         list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
508                 if ((next->order     == order) &&
509                     (next->hook_rtn  == hook_rtn) &&
510                     (next->hook_data == hook_data)) {
511                         list_del(&next->list);
512                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
513                         devm_kfree(netcp_priv->dev, next);
514                         return 0;
515                 }
516         }
517         spin_unlock_irqrestore(&netcp_priv->lock, flags);
518         return -ENOENT;
519 }
520 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
521
522 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
523                           netcp_hook_rtn *hook_rtn, void *hook_data)
524 {
525         struct netcp_hook_list *entry;
526         struct netcp_hook_list *next;
527         unsigned long flags;
528
529         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
530         if (!entry)
531                 return -ENOMEM;
532
533         entry->hook_rtn  = hook_rtn;
534         entry->hook_data = hook_data;
535         entry->order     = order;
536
537         spin_lock_irqsave(&netcp_priv->lock, flags);
538         list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
539                 if (next->order > order)
540                         break;
541         }
542         __list_add(&entry->list, next->list.prev, &next->list);
543         spin_unlock_irqrestore(&netcp_priv->lock, flags);
544
545         return 0;
546 }
547
548 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
549                             netcp_hook_rtn *hook_rtn, void *hook_data)
550 {
551         struct netcp_hook_list *next, *n;
552         unsigned long flags;
553
554         spin_lock_irqsave(&netcp_priv->lock, flags);
555         list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
556                 if ((next->order     == order) &&
557                     (next->hook_rtn  == hook_rtn) &&
558                     (next->hook_data == hook_data)) {
559                         list_del(&next->list);
560                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
561                         devm_kfree(netcp_priv->dev, next);
562                         return 0;
563                 }
564         }
565         spin_unlock_irqrestore(&netcp_priv->lock, flags);
566
567         return -ENOENT;
568 }
569
570 static void netcp_frag_free(bool is_frag, void *ptr)
571 {
572         if (is_frag)
573                 skb_free_frag(ptr);
574         else
575                 kfree(ptr);
576 }
577
578 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
579                                      struct knav_dma_desc *desc)
580 {
581         struct knav_dma_desc *ndesc;
582         dma_addr_t dma_desc, dma_buf;
583         unsigned int buf_len, dma_sz = sizeof(*ndesc);
584         void *buf_ptr;
585         u32 tmp;
586
587         get_words(&dma_desc, 1, &desc->next_desc);
588
589         while (dma_desc) {
590                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
591                 if (unlikely(!ndesc)) {
592                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
593                         break;
594                 }
595                 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
596                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
597                  * field as a 32bit value. Will not work on 64bit machines
598                  */
599                 buf_ptr = (void *)GET_SW_DATA0(ndesc);
600                 buf_len = (int)GET_SW_DATA1(desc);
601                 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
602                 __free_page(buf_ptr);
603                 knav_pool_desc_put(netcp->rx_pool, desc);
604         }
605         /* warning!!!! We are retrieving the virtual ptr in the sw_data
606          * field as a 32bit value. Will not work on 64bit machines
607          */
608         buf_ptr = (void *)GET_SW_DATA0(desc);
609         buf_len = (int)GET_SW_DATA1(desc);
610
611         if (buf_ptr)
612                 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
613         knav_pool_desc_put(netcp->rx_pool, desc);
614 }
615
616 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
617 {
618         struct knav_dma_desc *desc;
619         unsigned int dma_sz;
620         dma_addr_t dma;
621
622         for (; ;) {
623                 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
624                 if (!dma)
625                         break;
626
627                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
628                 if (unlikely(!desc)) {
629                         dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
630                                 __func__);
631                         netcp->ndev->stats.rx_errors++;
632                         continue;
633                 }
634                 netcp_free_rx_desc_chain(netcp, desc);
635                 netcp->ndev->stats.rx_dropped++;
636         }
637 }
638
639 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
640 {
641         unsigned int dma_sz, buf_len, org_buf_len;
642         struct knav_dma_desc *desc, *ndesc;
643         unsigned int pkt_sz = 0, accum_sz;
644         struct netcp_hook_list *rx_hook;
645         dma_addr_t dma_desc, dma_buff;
646         struct netcp_packet p_info;
647         struct sk_buff *skb;
648         void *org_buf_ptr;
649
650         dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
651         if (!dma_desc)
652                 return -1;
653
654         desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
655         if (unlikely(!desc)) {
656                 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
657                 return 0;
658         }
659
660         get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
661         /* warning!!!! We are retrieving the virtual ptr in the sw_data
662          * field as a 32bit value. Will not work on 64bit machines
663          */
664         org_buf_ptr = (void *)GET_SW_DATA0(desc);
665         org_buf_len = (int)GET_SW_DATA1(desc);
666
667         if (unlikely(!org_buf_ptr)) {
668                 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
669                 goto free_desc;
670         }
671
672         pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
673         accum_sz = buf_len;
674         dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
675
676         /* Build a new sk_buff for the primary buffer */
677         skb = build_skb(org_buf_ptr, org_buf_len);
678         if (unlikely(!skb)) {
679                 dev_err(netcp->ndev_dev, "build_skb() failed\n");
680                 goto free_desc;
681         }
682
683         /* update data, tail and len */
684         skb_reserve(skb, NETCP_SOP_OFFSET);
685         __skb_put(skb, buf_len);
686
687         /* Fill in the page fragment list */
688         while (dma_desc) {
689                 struct page *page;
690
691                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
692                 if (unlikely(!ndesc)) {
693                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
694                         goto free_desc;
695                 }
696
697                 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
698                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
699                  * field as a 32bit value. Will not work on 64bit machines
700                  */
701                 page = (struct page *)GET_SW_DATA0(desc);
702
703                 if (likely(dma_buff && buf_len && page)) {
704                         dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
705                                        DMA_FROM_DEVICE);
706                 } else {
707                         dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
708                                 &dma_buff, buf_len, page);
709                         goto free_desc;
710                 }
711
712                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
713                                 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
714                 accum_sz += buf_len;
715
716                 /* Free the descriptor */
717                 knav_pool_desc_put(netcp->rx_pool, ndesc);
718         }
719
720         /* Free the primary descriptor */
721         knav_pool_desc_put(netcp->rx_pool, desc);
722
723         /* check for packet len and warn */
724         if (unlikely(pkt_sz != accum_sz))
725                 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
726                         pkt_sz, accum_sz);
727
728         /* Remove ethernet FCS from the packet */
729         __pskb_trim(skb, skb->len - ETH_FCS_LEN);
730
731         /* Call each of the RX hooks */
732         p_info.skb = skb;
733         p_info.rxtstamp_complete = false;
734         list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
735                 int ret;
736
737                 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
738                                         &p_info);
739                 if (unlikely(ret)) {
740                         dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
741                                 rx_hook->order, ret);
742                         netcp->ndev->stats.rx_errors++;
743                         dev_kfree_skb(skb);
744                         return 0;
745                 }
746         }
747
748         netcp->ndev->stats.rx_packets++;
749         netcp->ndev->stats.rx_bytes += skb->len;
750
751         /* push skb up the stack */
752         skb->protocol = eth_type_trans(skb, netcp->ndev);
753         netif_receive_skb(skb);
754         return 0;
755
756 free_desc:
757         netcp_free_rx_desc_chain(netcp, desc);
758         netcp->ndev->stats.rx_errors++;
759         return 0;
760 }
761
762 static int netcp_process_rx_packets(struct netcp_intf *netcp,
763                                     unsigned int budget)
764 {
765         int i;
766
767         for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
768                 ;
769         return i;
770 }
771
772 /* Release descriptors and attached buffers from Rx FDQ */
773 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
774 {
775         struct knav_dma_desc *desc;
776         unsigned int buf_len, dma_sz;
777         dma_addr_t dma;
778         void *buf_ptr;
779
780         /* Allocate descriptor */
781         while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
782                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
783                 if (unlikely(!desc)) {
784                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
785                         continue;
786                 }
787
788                 get_org_pkt_info(&dma, &buf_len, desc);
789                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
790                  * field as a 32bit value. Will not work on 64bit machines
791                  */
792                 buf_ptr = (void *)GET_SW_DATA0(desc);
793
794                 if (unlikely(!dma)) {
795                         dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
796                         knav_pool_desc_put(netcp->rx_pool, desc);
797                         continue;
798                 }
799
800                 if (unlikely(!buf_ptr)) {
801                         dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
802                         knav_pool_desc_put(netcp->rx_pool, desc);
803                         continue;
804                 }
805
806                 if (fdq == 0) {
807                         dma_unmap_single(netcp->dev, dma, buf_len,
808                                          DMA_FROM_DEVICE);
809                         netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
810                 } else {
811                         dma_unmap_page(netcp->dev, dma, buf_len,
812                                        DMA_FROM_DEVICE);
813                         __free_page(buf_ptr);
814                 }
815
816                 knav_pool_desc_put(netcp->rx_pool, desc);
817         }
818 }
819
820 static void netcp_rxpool_free(struct netcp_intf *netcp)
821 {
822         int i;
823
824         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
825              !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
826                 netcp_free_rx_buf(netcp, i);
827
828         if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
829                 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
830                         netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
831
832         knav_pool_destroy(netcp->rx_pool);
833         netcp->rx_pool = NULL;
834 }
835
836 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
837 {
838         struct knav_dma_desc *hwdesc;
839         unsigned int buf_len, dma_sz;
840         u32 desc_info, pkt_info;
841         struct page *page;
842         dma_addr_t dma;
843         void *bufptr;
844         u32 sw_data[2];
845
846         /* Allocate descriptor */
847         hwdesc = knav_pool_desc_get(netcp->rx_pool);
848         if (IS_ERR_OR_NULL(hwdesc)) {
849                 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
850                 return -ENOMEM;
851         }
852
853         if (likely(fdq == 0)) {
854                 unsigned int primary_buf_len;
855                 /* Allocate a primary receive queue entry */
856                 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
857                 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
858                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
859
860                 bufptr = netdev_alloc_frag(primary_buf_len);
861                 sw_data[1] = primary_buf_len;
862
863                 if (unlikely(!bufptr)) {
864                         dev_warn_ratelimited(netcp->ndev_dev,
865                                              "Primary RX buffer alloc failed\n");
866                         goto fail;
867                 }
868                 dma = dma_map_single(netcp->dev, bufptr, buf_len,
869                                      DMA_TO_DEVICE);
870                 if (unlikely(dma_mapping_error(netcp->dev, dma)))
871                         goto fail;
872
873                 /* warning!!!! We are saving the virtual ptr in the sw_data
874                  * field as a 32bit value. Will not work on 64bit machines
875                  */
876                 sw_data[0] = (u32)bufptr;
877         } else {
878                 /* Allocate a secondary receive queue entry */
879                 page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
880                 if (unlikely(!page)) {
881                         dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
882                         goto fail;
883                 }
884                 buf_len = PAGE_SIZE;
885                 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
886                 /* warning!!!! We are saving the virtual ptr in the sw_data
887                  * field as a 32bit value. Will not work on 64bit machines
888                  */
889                 sw_data[0] = (u32)page;
890                 sw_data[1] = 0;
891         }
892
893         desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
894         desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
895         pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
896         pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
897         pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
898                     KNAV_DMA_DESC_RETQ_SHIFT;
899         set_org_pkt_info(dma, buf_len, hwdesc);
900         SET_SW_DATA0(sw_data[0], hwdesc);
901         SET_SW_DATA1(sw_data[1], hwdesc);
902         set_desc_info(desc_info, pkt_info, hwdesc);
903
904         /* Push to FDQs */
905         knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
906                            &dma_sz);
907         knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
908         return 0;
909
910 fail:
911         knav_pool_desc_put(netcp->rx_pool, hwdesc);
912         return -ENOMEM;
913 }
914
915 /* Refill Rx FDQ with descriptors & attached buffers */
916 static void netcp_rxpool_refill(struct netcp_intf *netcp)
917 {
918         u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
919         int i, ret = 0;
920
921         /* Calculate the FDQ deficit and refill */
922         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
923                 fdq_deficit[i] = netcp->rx_queue_depths[i] -
924                                  knav_queue_get_count(netcp->rx_fdq[i]);
925
926                 while (fdq_deficit[i]-- && !ret)
927                         ret = netcp_allocate_rx_buf(netcp, i);
928         } /* end for fdqs */
929 }
930
931 /* NAPI poll */
932 static int netcp_rx_poll(struct napi_struct *napi, int budget)
933 {
934         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
935                                                 rx_napi);
936         unsigned int packets;
937
938         packets = netcp_process_rx_packets(netcp, budget);
939
940         netcp_rxpool_refill(netcp);
941         if (packets < budget) {
942                 napi_complete(&netcp->rx_napi);
943                 knav_queue_enable_notify(netcp->rx_queue);
944         }
945
946         return packets;
947 }
948
949 static void netcp_rx_notify(void *arg)
950 {
951         struct netcp_intf *netcp = arg;
952
953         knav_queue_disable_notify(netcp->rx_queue);
954         napi_schedule(&netcp->rx_napi);
955 }
956
957 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
958                                      struct knav_dma_desc *desc,
959                                      unsigned int desc_sz)
960 {
961         struct knav_dma_desc *ndesc = desc;
962         dma_addr_t dma_desc, dma_buf;
963         unsigned int buf_len;
964
965         while (ndesc) {
966                 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
967
968                 if (dma_buf && buf_len)
969                         dma_unmap_single(netcp->dev, dma_buf, buf_len,
970                                          DMA_TO_DEVICE);
971                 else
972                         dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
973                                  &dma_buf, buf_len);
974
975                 knav_pool_desc_put(netcp->tx_pool, ndesc);
976                 ndesc = NULL;
977                 if (dma_desc) {
978                         ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
979                                                      desc_sz);
980                         if (!ndesc)
981                                 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
982                 }
983         }
984 }
985
986 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
987                                           unsigned int budget)
988 {
989         struct knav_dma_desc *desc;
990         struct sk_buff *skb;
991         unsigned int dma_sz;
992         dma_addr_t dma;
993         int pkts = 0;
994
995         while (budget--) {
996                 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
997                 if (!dma)
998                         break;
999                 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1000                 if (unlikely(!desc)) {
1001                         dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1002                         netcp->ndev->stats.tx_errors++;
1003                         continue;
1004                 }
1005
1006                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
1007                  * field as a 32bit value. Will not work on 64bit machines
1008                  */
1009                 skb = (struct sk_buff *)GET_SW_DATA0(desc);
1010                 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1011                 if (!skb) {
1012                         dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1013                         netcp->ndev->stats.tx_errors++;
1014                         continue;
1015                 }
1016
1017                 if (netif_subqueue_stopped(netcp->ndev, skb) &&
1018                     netif_running(netcp->ndev) &&
1019                     (knav_pool_count(netcp->tx_pool) >
1020                     netcp->tx_resume_threshold)) {
1021                         u16 subqueue = skb_get_queue_mapping(skb);
1022
1023                         netif_wake_subqueue(netcp->ndev, subqueue);
1024                 }
1025
1026                 netcp->ndev->stats.tx_packets++;
1027                 netcp->ndev->stats.tx_bytes += skb->len;
1028                 dev_kfree_skb(skb);
1029                 pkts++;
1030         }
1031         return pkts;
1032 }
1033
1034 static int netcp_tx_poll(struct napi_struct *napi, int budget)
1035 {
1036         int packets;
1037         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1038                                                 tx_napi);
1039
1040         packets = netcp_process_tx_compl_packets(netcp, budget);
1041         if (packets < budget) {
1042                 napi_complete(&netcp->tx_napi);
1043                 knav_queue_enable_notify(netcp->tx_compl_q);
1044         }
1045
1046         return packets;
1047 }
1048
1049 static void netcp_tx_notify(void *arg)
1050 {
1051         struct netcp_intf *netcp = arg;
1052
1053         knav_queue_disable_notify(netcp->tx_compl_q);
1054         napi_schedule(&netcp->tx_napi);
1055 }
1056
1057 static struct knav_dma_desc*
1058 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1059 {
1060         struct knav_dma_desc *desc, *ndesc, *pdesc;
1061         unsigned int pkt_len = skb_headlen(skb);
1062         struct device *dev = netcp->dev;
1063         dma_addr_t dma_addr;
1064         unsigned int dma_sz;
1065         int i;
1066
1067         /* Map the linear buffer */
1068         dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1069         if (unlikely(dma_mapping_error(dev, dma_addr))) {
1070                 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1071                 return NULL;
1072         }
1073
1074         desc = knav_pool_desc_get(netcp->tx_pool);
1075         if (IS_ERR_OR_NULL(desc)) {
1076                 dev_err(netcp->ndev_dev, "out of TX desc\n");
1077                 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1078                 return NULL;
1079         }
1080
1081         set_pkt_info(dma_addr, pkt_len, 0, desc);
1082         if (skb_is_nonlinear(skb)) {
1083                 prefetchw(skb_shinfo(skb));
1084         } else {
1085                 desc->next_desc = 0;
1086                 goto upd_pkt_len;
1087         }
1088
1089         pdesc = desc;
1090
1091         /* Handle the case where skb is fragmented in pages */
1092         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1093                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1094                 struct page *page = skb_frag_page(frag);
1095                 u32 page_offset = frag->page_offset;
1096                 u32 buf_len = skb_frag_size(frag);
1097                 dma_addr_t desc_dma;
1098                 u32 desc_dma_32;
1099                 u32 pkt_info;
1100
1101                 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1102                                         DMA_TO_DEVICE);
1103                 if (unlikely(!dma_addr)) {
1104                         dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1105                         goto free_descs;
1106                 }
1107
1108                 ndesc = knav_pool_desc_get(netcp->tx_pool);
1109                 if (IS_ERR_OR_NULL(ndesc)) {
1110                         dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1111                         dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1112                         goto free_descs;
1113                 }
1114
1115                 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1116                 pkt_info =
1117                         (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1118                                 KNAV_DMA_DESC_RETQ_SHIFT;
1119                 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1120                 desc_dma_32 = (u32)desc_dma;
1121                 set_words(&desc_dma_32, 1, &pdesc->next_desc);
1122                 pkt_len += buf_len;
1123                 if (pdesc != desc)
1124                         knav_pool_desc_map(netcp->tx_pool, pdesc,
1125                                            sizeof(*pdesc), &desc_dma, &dma_sz);
1126                 pdesc = ndesc;
1127         }
1128         if (pdesc != desc)
1129                 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1130                                    &dma_addr, &dma_sz);
1131
1132         /* frag list based linkage is not supported for now. */
1133         if (skb_shinfo(skb)->frag_list) {
1134                 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1135                 goto free_descs;
1136         }
1137
1138 upd_pkt_len:
1139         WARN_ON(pkt_len != skb->len);
1140
1141         pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1142         set_words(&pkt_len, 1, &desc->desc_info);
1143         return desc;
1144
1145 free_descs:
1146         netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1147         return NULL;
1148 }
1149
1150 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1151                                struct sk_buff *skb,
1152                                struct knav_dma_desc *desc)
1153 {
1154         struct netcp_tx_pipe *tx_pipe = NULL;
1155         struct netcp_hook_list *tx_hook;
1156         struct netcp_packet p_info;
1157         unsigned int dma_sz;
1158         dma_addr_t dma;
1159         u32 tmp = 0;
1160         int ret = 0;
1161
1162         p_info.netcp = netcp;
1163         p_info.skb = skb;
1164         p_info.tx_pipe = NULL;
1165         p_info.psdata_len = 0;
1166         p_info.ts_context = NULL;
1167         p_info.txtstamp_complete = NULL;
1168         p_info.epib = desc->epib;
1169         p_info.psdata = (u32 __force *)desc->psdata;
1170         memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1171
1172         /* Find out where to inject the packet for transmission */
1173         list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1174                 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1175                                         &p_info);
1176                 if (unlikely(ret != 0)) {
1177                         dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1178                                 tx_hook->order, ret);
1179                         ret = (ret < 0) ? ret : NETDEV_TX_OK;
1180                         goto out;
1181                 }
1182         }
1183
1184         /* Make sure some TX hook claimed the packet */
1185         tx_pipe = p_info.tx_pipe;
1186         if (!tx_pipe) {
1187                 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1188                 ret = -ENXIO;
1189                 goto out;
1190         }
1191
1192         /* update descriptor */
1193         if (p_info.psdata_len) {
1194                 /* psdata points to both native-endian and device-endian data */
1195                 __le32 *psdata = (void __force *)p_info.psdata;
1196
1197                 memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1198                         p_info.psdata_len);
1199                 set_words(p_info.psdata, p_info.psdata_len, psdata);
1200                 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1201                         KNAV_DMA_DESC_PSLEN_SHIFT;
1202         }
1203
1204         tmp |= KNAV_DMA_DESC_HAS_EPIB |
1205                 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1206                 KNAV_DMA_DESC_RETQ_SHIFT);
1207
1208         if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1209                 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1210                         KNAV_DMA_DESC_PSFLAG_SHIFT);
1211         }
1212
1213         set_words(&tmp, 1, &desc->packet_info);
1214         /* warning!!!! We are saving the virtual ptr in the sw_data
1215          * field as a 32bit value. Will not work on 64bit machines
1216          */
1217         SET_SW_DATA0((u32)skb, desc);
1218
1219         if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1220                 tmp = tx_pipe->switch_to_port;
1221                 set_words(&tmp, 1, &desc->tag_info);
1222         }
1223
1224         /* submit packet descriptor */
1225         ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1226                                  &dma_sz);
1227         if (unlikely(ret)) {
1228                 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1229                 ret = -ENOMEM;
1230                 goto out;
1231         }
1232         skb_tx_timestamp(skb);
1233         knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1234
1235 out:
1236         return ret;
1237 }
1238
1239 /* Submit the packet */
1240 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1241 {
1242         struct netcp_intf *netcp = netdev_priv(ndev);
1243         int subqueue = skb_get_queue_mapping(skb);
1244         struct knav_dma_desc *desc;
1245         int desc_count, ret = 0;
1246
1247         if (unlikely(skb->len <= 0)) {
1248                 dev_kfree_skb(skb);
1249                 return NETDEV_TX_OK;
1250         }
1251
1252         if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1253                 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1254                 if (ret < 0) {
1255                         /* If we get here, the skb has already been dropped */
1256                         dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1257                                  ret);
1258                         ndev->stats.tx_dropped++;
1259                         return ret;
1260                 }
1261                 skb->len = NETCP_MIN_PACKET_SIZE;
1262         }
1263
1264         desc = netcp_tx_map_skb(skb, netcp);
1265         if (unlikely(!desc)) {
1266                 netif_stop_subqueue(ndev, subqueue);
1267                 ret = -ENOBUFS;
1268                 goto drop;
1269         }
1270
1271         ret = netcp_tx_submit_skb(netcp, skb, desc);
1272         if (ret)
1273                 goto drop;
1274
1275         ndev->trans_start = jiffies;
1276
1277         /* Check Tx pool count & stop subqueue if needed */
1278         desc_count = knav_pool_count(netcp->tx_pool);
1279         if (desc_count < netcp->tx_pause_threshold) {
1280                 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1281                 netif_stop_subqueue(ndev, subqueue);
1282         }
1283         return NETDEV_TX_OK;
1284
1285 drop:
1286         ndev->stats.tx_dropped++;
1287         if (desc)
1288                 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1289         dev_kfree_skb(skb);
1290         return ret;
1291 }
1292
1293 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1294 {
1295         if (tx_pipe->dma_channel) {
1296                 knav_dma_close_channel(tx_pipe->dma_channel);
1297                 tx_pipe->dma_channel = NULL;
1298         }
1299         return 0;
1300 }
1301 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1302
1303 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1304 {
1305         struct device *dev = tx_pipe->netcp_device->device;
1306         struct knav_dma_cfg config;
1307         int ret = 0;
1308         u8 name[16];
1309
1310         memset(&config, 0, sizeof(config));
1311         config.direction = DMA_MEM_TO_DEV;
1312         config.u.tx.filt_einfo = false;
1313         config.u.tx.filt_pswords = false;
1314         config.u.tx.priority = DMA_PRIO_MED_L;
1315
1316         tx_pipe->dma_channel = knav_dma_open_channel(dev,
1317                                 tx_pipe->dma_chan_name, &config);
1318         if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1319                 dev_err(dev, "failed opening tx chan(%s)\n",
1320                         tx_pipe->dma_chan_name);
1321                 goto err;
1322         }
1323
1324         snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1325         tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1326                                              KNAV_QUEUE_SHARED);
1327         if (IS_ERR(tx_pipe->dma_queue)) {
1328                 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1329                         name, ret);
1330                 ret = PTR_ERR(tx_pipe->dma_queue);
1331                 goto err;
1332         }
1333
1334         dev_dbg(dev, "opened tx pipe %s\n", name);
1335         return 0;
1336
1337 err:
1338         if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1339                 knav_dma_close_channel(tx_pipe->dma_channel);
1340         tx_pipe->dma_channel = NULL;
1341         return ret;
1342 }
1343 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1344
1345 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1346                       struct netcp_device *netcp_device,
1347                       const char *dma_chan_name, unsigned int dma_queue_id)
1348 {
1349         memset(tx_pipe, 0, sizeof(*tx_pipe));
1350         tx_pipe->netcp_device = netcp_device;
1351         tx_pipe->dma_chan_name = dma_chan_name;
1352         tx_pipe->dma_queue_id = dma_queue_id;
1353         return 0;
1354 }
1355 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1356
1357 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1358                                           const u8 *addr,
1359                                           enum netcp_addr_type type)
1360 {
1361         struct netcp_addr *naddr;
1362
1363         list_for_each_entry(naddr, &netcp->addr_list, node) {
1364                 if (naddr->type != type)
1365                         continue;
1366                 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1367                         continue;
1368                 return naddr;
1369         }
1370
1371         return NULL;
1372 }
1373
1374 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1375                                          const u8 *addr,
1376                                          enum netcp_addr_type type)
1377 {
1378         struct netcp_addr *naddr;
1379
1380         naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1381         if (!naddr)
1382                 return NULL;
1383
1384         naddr->type = type;
1385         naddr->flags = 0;
1386         naddr->netcp = netcp;
1387         if (addr)
1388                 ether_addr_copy(naddr->addr, addr);
1389         else
1390                 eth_zero_addr(naddr->addr);
1391         list_add_tail(&naddr->node, &netcp->addr_list);
1392
1393         return naddr;
1394 }
1395
1396 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1397 {
1398         list_del(&naddr->node);
1399         devm_kfree(netcp->dev, naddr);
1400 }
1401
1402 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1403 {
1404         struct netcp_addr *naddr;
1405
1406         list_for_each_entry(naddr, &netcp->addr_list, node)
1407                 naddr->flags = 0;
1408 }
1409
1410 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1411                                 enum netcp_addr_type type)
1412 {
1413         struct netcp_addr *naddr;
1414
1415         naddr = netcp_addr_find(netcp, addr, type);
1416         if (naddr) {
1417                 naddr->flags |= ADDR_VALID;
1418                 return;
1419         }
1420
1421         naddr = netcp_addr_add(netcp, addr, type);
1422         if (!WARN_ON(!naddr))
1423                 naddr->flags |= ADDR_NEW;
1424 }
1425
1426 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1427 {
1428         struct netcp_addr *naddr, *tmp;
1429         struct netcp_intf_modpriv *priv;
1430         struct netcp_module *module;
1431         int error;
1432
1433         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1434                 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1435                         continue;
1436                 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1437                         naddr->addr, naddr->type);
1438                 for_each_module(netcp, priv) {
1439                         module = priv->netcp_module;
1440                         if (!module->del_addr)
1441                                 continue;
1442                         error = module->del_addr(priv->module_priv,
1443                                                  naddr);
1444                         WARN_ON(error);
1445                 }
1446                 netcp_addr_del(netcp, naddr);
1447         }
1448 }
1449
1450 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1451 {
1452         struct netcp_addr *naddr, *tmp;
1453         struct netcp_intf_modpriv *priv;
1454         struct netcp_module *module;
1455         int error;
1456
1457         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1458                 if (!(naddr->flags & ADDR_NEW))
1459                         continue;
1460                 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1461                         naddr->addr, naddr->type);
1462
1463                 for_each_module(netcp, priv) {
1464                         module = priv->netcp_module;
1465                         if (!module->add_addr)
1466                                 continue;
1467                         error = module->add_addr(priv->module_priv, naddr);
1468                         WARN_ON(error);
1469                 }
1470         }
1471 }
1472
1473 static void netcp_set_rx_mode(struct net_device *ndev)
1474 {
1475         struct netcp_intf *netcp = netdev_priv(ndev);
1476         struct netdev_hw_addr *ndev_addr;
1477         bool promisc;
1478
1479         promisc = (ndev->flags & IFF_PROMISC ||
1480                    ndev->flags & IFF_ALLMULTI ||
1481                    netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1482
1483         spin_lock(&netcp->lock);
1484         /* first clear all marks */
1485         netcp_addr_clear_mark(netcp);
1486
1487         /* next add new entries, mark existing ones */
1488         netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1489         for_each_dev_addr(ndev, ndev_addr)
1490                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1491         netdev_for_each_uc_addr(ndev_addr, ndev)
1492                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1493         netdev_for_each_mc_addr(ndev_addr, ndev)
1494                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1495
1496         if (promisc)
1497                 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1498
1499         /* finally sweep and callout into modules */
1500         netcp_addr_sweep_del(netcp);
1501         netcp_addr_sweep_add(netcp);
1502         spin_unlock(&netcp->lock);
1503 }
1504
1505 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1506 {
1507         int i;
1508
1509         if (netcp->rx_channel) {
1510                 knav_dma_close_channel(netcp->rx_channel);
1511                 netcp->rx_channel = NULL;
1512         }
1513
1514         if (!IS_ERR_OR_NULL(netcp->rx_pool))
1515                 netcp_rxpool_free(netcp);
1516
1517         if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1518                 knav_queue_close(netcp->rx_queue);
1519                 netcp->rx_queue = NULL;
1520         }
1521
1522         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1523              !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1524                 knav_queue_close(netcp->rx_fdq[i]);
1525                 netcp->rx_fdq[i] = NULL;
1526         }
1527
1528         if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1529                 knav_queue_close(netcp->tx_compl_q);
1530                 netcp->tx_compl_q = NULL;
1531         }
1532
1533         if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1534                 knav_pool_destroy(netcp->tx_pool);
1535                 netcp->tx_pool = NULL;
1536         }
1537 }
1538
1539 static int netcp_setup_navigator_resources(struct net_device *ndev)
1540 {
1541         struct netcp_intf *netcp = netdev_priv(ndev);
1542         struct knav_queue_notify_config notify_cfg;
1543         struct knav_dma_cfg config;
1544         u32 last_fdq = 0;
1545         u8 name[16];
1546         int ret;
1547         int i;
1548
1549         /* Create Rx/Tx descriptor pools */
1550         snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1551         netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1552                                                 netcp->rx_pool_region_id);
1553         if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1554                 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1555                 ret = PTR_ERR(netcp->rx_pool);
1556                 goto fail;
1557         }
1558
1559         snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1560         netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1561                                                 netcp->tx_pool_region_id);
1562         if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1563                 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1564                 ret = PTR_ERR(netcp->tx_pool);
1565                 goto fail;
1566         }
1567
1568         /* open Tx completion queue */
1569         snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1570         netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1571         if (IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1572                 ret = PTR_ERR(netcp->tx_compl_q);
1573                 goto fail;
1574         }
1575         netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1576
1577         /* Set notification for Tx completion */
1578         notify_cfg.fn = netcp_tx_notify;
1579         notify_cfg.fn_arg = netcp;
1580         ret = knav_queue_device_control(netcp->tx_compl_q,
1581                                         KNAV_QUEUE_SET_NOTIFIER,
1582                                         (unsigned long)&notify_cfg);
1583         if (ret)
1584                 goto fail;
1585
1586         knav_queue_disable_notify(netcp->tx_compl_q);
1587
1588         /* open Rx completion queue */
1589         snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1590         netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1591         if (IS_ERR_OR_NULL(netcp->rx_queue)) {
1592                 ret = PTR_ERR(netcp->rx_queue);
1593                 goto fail;
1594         }
1595         netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1596
1597         /* Set notification for Rx completion */
1598         notify_cfg.fn = netcp_rx_notify;
1599         notify_cfg.fn_arg = netcp;
1600         ret = knav_queue_device_control(netcp->rx_queue,
1601                                         KNAV_QUEUE_SET_NOTIFIER,
1602                                         (unsigned long)&notify_cfg);
1603         if (ret)
1604                 goto fail;
1605
1606         knav_queue_disable_notify(netcp->rx_queue);
1607
1608         /* open Rx FDQs */
1609         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1610              ++i) {
1611                 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1612                 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1613                 if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) {
1614                         ret = PTR_ERR(netcp->rx_fdq[i]);
1615                         goto fail;
1616                 }
1617         }
1618
1619         memset(&config, 0, sizeof(config));
1620         config.direction                = DMA_DEV_TO_MEM;
1621         config.u.rx.einfo_present       = true;
1622         config.u.rx.psinfo_present      = true;
1623         config.u.rx.err_mode            = DMA_DROP;
1624         config.u.rx.desc_type           = DMA_DESC_HOST;
1625         config.u.rx.psinfo_at_sop       = false;
1626         config.u.rx.sop_offset          = NETCP_SOP_OFFSET;
1627         config.u.rx.dst_q               = netcp->rx_queue_id;
1628         config.u.rx.thresh              = DMA_THRESH_NONE;
1629
1630         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1631                 if (netcp->rx_fdq[i])
1632                         last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1633                 config.u.rx.fdq[i] = last_fdq;
1634         }
1635
1636         netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1637                                         netcp->dma_chan_name, &config);
1638         if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1639                 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1640                         netcp->dma_chan_name);
1641                 goto fail;
1642         }
1643
1644         dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1645         return 0;
1646
1647 fail:
1648         netcp_free_navigator_resources(netcp);
1649         return ret;
1650 }
1651
1652 /* Open the device */
1653 static int netcp_ndo_open(struct net_device *ndev)
1654 {
1655         struct netcp_intf *netcp = netdev_priv(ndev);
1656         struct netcp_intf_modpriv *intf_modpriv;
1657         struct netcp_module *module;
1658         int ret;
1659
1660         netif_carrier_off(ndev);
1661         ret = netcp_setup_navigator_resources(ndev);
1662         if (ret) {
1663                 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1664                 goto fail;
1665         }
1666
1667         for_each_module(netcp, intf_modpriv) {
1668                 module = intf_modpriv->netcp_module;
1669                 if (module->open) {
1670                         ret = module->open(intf_modpriv->module_priv, ndev);
1671                         if (ret != 0) {
1672                                 dev_err(netcp->ndev_dev, "module open failed\n");
1673                                 goto fail_open;
1674                         }
1675                 }
1676         }
1677
1678         napi_enable(&netcp->rx_napi);
1679         napi_enable(&netcp->tx_napi);
1680         knav_queue_enable_notify(netcp->tx_compl_q);
1681         knav_queue_enable_notify(netcp->rx_queue);
1682         netcp_rxpool_refill(netcp);
1683         netif_tx_wake_all_queues(ndev);
1684         dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1685         return 0;
1686
1687 fail_open:
1688         for_each_module(netcp, intf_modpriv) {
1689                 module = intf_modpriv->netcp_module;
1690                 if (module->close)
1691                         module->close(intf_modpriv->module_priv, ndev);
1692         }
1693
1694 fail:
1695         netcp_free_navigator_resources(netcp);
1696         return ret;
1697 }
1698
1699 /* Close the device */
1700 static int netcp_ndo_stop(struct net_device *ndev)
1701 {
1702         struct netcp_intf *netcp = netdev_priv(ndev);
1703         struct netcp_intf_modpriv *intf_modpriv;
1704         struct netcp_module *module;
1705         int err = 0;
1706
1707         netif_tx_stop_all_queues(ndev);
1708         netif_carrier_off(ndev);
1709         netcp_addr_clear_mark(netcp);
1710         netcp_addr_sweep_del(netcp);
1711         knav_queue_disable_notify(netcp->rx_queue);
1712         knav_queue_disable_notify(netcp->tx_compl_q);
1713         napi_disable(&netcp->rx_napi);
1714         napi_disable(&netcp->tx_napi);
1715
1716         for_each_module(netcp, intf_modpriv) {
1717                 module = intf_modpriv->netcp_module;
1718                 if (module->close) {
1719                         err = module->close(intf_modpriv->module_priv, ndev);
1720                         if (err != 0)
1721                                 dev_err(netcp->ndev_dev, "Close failed\n");
1722                 }
1723         }
1724
1725         /* Recycle Rx descriptors from completion queue */
1726         netcp_empty_rx_queue(netcp);
1727
1728         /* Recycle Tx descriptors from completion queue */
1729         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1730
1731         if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1732                 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1733                         netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1734
1735         netcp_free_navigator_resources(netcp);
1736         dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1737         return 0;
1738 }
1739
1740 static int netcp_ndo_ioctl(struct net_device *ndev,
1741                            struct ifreq *req, int cmd)
1742 {
1743         struct netcp_intf *netcp = netdev_priv(ndev);
1744         struct netcp_intf_modpriv *intf_modpriv;
1745         struct netcp_module *module;
1746         int ret = -1, err = -EOPNOTSUPP;
1747
1748         if (!netif_running(ndev))
1749                 return -EINVAL;
1750
1751         for_each_module(netcp, intf_modpriv) {
1752                 module = intf_modpriv->netcp_module;
1753                 if (!module->ioctl)
1754                         continue;
1755
1756                 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1757                 if ((err < 0) && (err != -EOPNOTSUPP)) {
1758                         ret = err;
1759                         goto out;
1760                 }
1761                 if (err == 0)
1762                         ret = err;
1763         }
1764
1765 out:
1766         return (ret == 0) ? 0 : err;
1767 }
1768
1769 static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu)
1770 {
1771         struct netcp_intf *netcp = netdev_priv(ndev);
1772
1773         /* MTU < 68 is an error for IPv4 traffic */
1774         if ((new_mtu < 68) ||
1775             (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) {
1776                 dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu);
1777                 return -EINVAL;
1778         }
1779
1780         ndev->mtu = new_mtu;
1781         return 0;
1782 }
1783
1784 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1785 {
1786         struct netcp_intf *netcp = netdev_priv(ndev);
1787         unsigned int descs = knav_pool_count(netcp->tx_pool);
1788
1789         dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1790         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1791         ndev->trans_start = jiffies;
1792         netif_tx_wake_all_queues(ndev);
1793 }
1794
1795 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1796 {
1797         struct netcp_intf *netcp = netdev_priv(ndev);
1798         struct netcp_intf_modpriv *intf_modpriv;
1799         struct netcp_module *module;
1800         unsigned long flags;
1801         int err = 0;
1802
1803         dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1804
1805         spin_lock_irqsave(&netcp->lock, flags);
1806         for_each_module(netcp, intf_modpriv) {
1807                 module = intf_modpriv->netcp_module;
1808                 if ((module->add_vid) && (vid != 0)) {
1809                         err = module->add_vid(intf_modpriv->module_priv, vid);
1810                         if (err != 0) {
1811                                 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1812                                         vid);
1813                                 break;
1814                         }
1815                 }
1816         }
1817         spin_unlock_irqrestore(&netcp->lock, flags);
1818
1819         return err;
1820 }
1821
1822 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1823 {
1824         struct netcp_intf *netcp = netdev_priv(ndev);
1825         struct netcp_intf_modpriv *intf_modpriv;
1826         struct netcp_module *module;
1827         unsigned long flags;
1828         int err = 0;
1829
1830         dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1831
1832         spin_lock_irqsave(&netcp->lock, flags);
1833         for_each_module(netcp, intf_modpriv) {
1834                 module = intf_modpriv->netcp_module;
1835                 if (module->del_vid) {
1836                         err = module->del_vid(intf_modpriv->module_priv, vid);
1837                         if (err != 0) {
1838                                 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1839                                         vid);
1840                                 break;
1841                         }
1842                 }
1843         }
1844         spin_unlock_irqrestore(&netcp->lock, flags);
1845         return err;
1846 }
1847
1848 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1849                               void *accel_priv,
1850                               select_queue_fallback_t fallback)
1851 {
1852         return 0;
1853 }
1854
1855 static int netcp_setup_tc(struct net_device *dev, u8 num_tc)
1856 {
1857         int i;
1858
1859         /* setup tc must be called under rtnl lock */
1860         ASSERT_RTNL();
1861
1862         /* Sanity-check the number of traffic classes requested */
1863         if ((dev->real_num_tx_queues <= 1) ||
1864             (dev->real_num_tx_queues < num_tc))
1865                 return -EINVAL;
1866
1867         /* Configure traffic class to queue mappings */
1868         if (num_tc) {
1869                 netdev_set_num_tc(dev, num_tc);
1870                 for (i = 0; i < num_tc; i++)
1871                         netdev_set_tc_queue(dev, i, 1, i);
1872         } else {
1873                 netdev_reset_tc(dev);
1874         }
1875
1876         return 0;
1877 }
1878
1879 static const struct net_device_ops netcp_netdev_ops = {
1880         .ndo_open               = netcp_ndo_open,
1881         .ndo_stop               = netcp_ndo_stop,
1882         .ndo_start_xmit         = netcp_ndo_start_xmit,
1883         .ndo_set_rx_mode        = netcp_set_rx_mode,
1884         .ndo_do_ioctl           = netcp_ndo_ioctl,
1885         .ndo_change_mtu         = netcp_ndo_change_mtu,
1886         .ndo_set_mac_address    = eth_mac_addr,
1887         .ndo_validate_addr      = eth_validate_addr,
1888         .ndo_vlan_rx_add_vid    = netcp_rx_add_vid,
1889         .ndo_vlan_rx_kill_vid   = netcp_rx_kill_vid,
1890         .ndo_tx_timeout         = netcp_ndo_tx_timeout,
1891         .ndo_select_queue       = netcp_select_queue,
1892         .ndo_setup_tc           = netcp_setup_tc,
1893 };
1894
1895 static int netcp_create_interface(struct netcp_device *netcp_device,
1896                                   struct device_node *node_interface)
1897 {
1898         struct device *dev = netcp_device->device;
1899         struct device_node *node = dev->of_node;
1900         struct netcp_intf *netcp;
1901         struct net_device *ndev;
1902         resource_size_t size;
1903         struct resource res;
1904         void __iomem *efuse = NULL;
1905         u32 efuse_mac = 0;
1906         const void *mac_addr;
1907         u8 efuse_mac_addr[6];
1908         u32 temp[2];
1909         int ret = 0;
1910
1911         ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1912         if (!ndev) {
1913                 dev_err(dev, "Error allocating netdev\n");
1914                 return -ENOMEM;
1915         }
1916
1917         ndev->features |= NETIF_F_SG;
1918         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1919         ndev->hw_features = ndev->features;
1920         ndev->vlan_features |=  NETIF_F_SG;
1921
1922         netcp = netdev_priv(ndev);
1923         spin_lock_init(&netcp->lock);
1924         INIT_LIST_HEAD(&netcp->module_head);
1925         INIT_LIST_HEAD(&netcp->txhook_list_head);
1926         INIT_LIST_HEAD(&netcp->rxhook_list_head);
1927         INIT_LIST_HEAD(&netcp->addr_list);
1928         netcp->netcp_device = netcp_device;
1929         netcp->dev = netcp_device->device;
1930         netcp->ndev = ndev;
1931         netcp->ndev_dev  = &ndev->dev;
1932         netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1933         netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1934         netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1935         netcp->node_interface = node_interface;
1936
1937         ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1938         if (efuse_mac) {
1939                 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1940                         dev_err(dev, "could not find efuse-mac reg resource\n");
1941                         ret = -ENODEV;
1942                         goto quit;
1943                 }
1944                 size = resource_size(&res);
1945
1946                 if (!devm_request_mem_region(dev, res.start, size,
1947                                              dev_name(dev))) {
1948                         dev_err(dev, "could not reserve resource\n");
1949                         ret = -ENOMEM;
1950                         goto quit;
1951                 }
1952
1953                 efuse = devm_ioremap_nocache(dev, res.start, size);
1954                 if (!efuse) {
1955                         dev_err(dev, "could not map resource\n");
1956                         devm_release_mem_region(dev, res.start, size);
1957                         ret = -ENOMEM;
1958                         goto quit;
1959                 }
1960
1961                 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
1962                 if (is_valid_ether_addr(efuse_mac_addr))
1963                         ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1964                 else
1965                         random_ether_addr(ndev->dev_addr);
1966
1967                 devm_iounmap(dev, efuse);
1968                 devm_release_mem_region(dev, res.start, size);
1969         } else {
1970                 mac_addr = of_get_mac_address(node_interface);
1971                 if (mac_addr)
1972                         ether_addr_copy(ndev->dev_addr, mac_addr);
1973                 else
1974                         random_ether_addr(ndev->dev_addr);
1975         }
1976
1977         ret = of_property_read_string(node_interface, "rx-channel",
1978                                       &netcp->dma_chan_name);
1979         if (ret < 0) {
1980                 dev_err(dev, "missing \"rx-channel\" parameter\n");
1981                 ret = -ENODEV;
1982                 goto quit;
1983         }
1984
1985         ret = of_property_read_u32(node_interface, "rx-queue",
1986                                    &netcp->rx_queue_id);
1987         if (ret < 0) {
1988                 dev_warn(dev, "missing \"rx-queue\" parameter\n");
1989                 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
1990         }
1991
1992         ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
1993                                          netcp->rx_queue_depths,
1994                                          KNAV_DMA_FDQ_PER_CHAN);
1995         if (ret < 0) {
1996                 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
1997                 netcp->rx_queue_depths[0] = 128;
1998         }
1999
2000         ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2001         if (ret < 0) {
2002                 dev_err(dev, "missing \"rx-pool\" parameter\n");
2003                 ret = -ENODEV;
2004                 goto quit;
2005         }
2006         netcp->rx_pool_size = temp[0];
2007         netcp->rx_pool_region_id = temp[1];
2008
2009         ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2010         if (ret < 0) {
2011                 dev_err(dev, "missing \"tx-pool\" parameter\n");
2012                 ret = -ENODEV;
2013                 goto quit;
2014         }
2015         netcp->tx_pool_size = temp[0];
2016         netcp->tx_pool_region_id = temp[1];
2017
2018         if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2019                 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2020                         MAX_SKB_FRAGS);
2021                 ret = -ENODEV;
2022                 goto quit;
2023         }
2024
2025         ret = of_property_read_u32(node_interface, "tx-completion-queue",
2026                                    &netcp->tx_compl_qid);
2027         if (ret < 0) {
2028                 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2029                 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2030         }
2031
2032         /* NAPI register */
2033         netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2034         netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2035
2036         /* Register the network device */
2037         ndev->dev_id            = 0;
2038         ndev->watchdog_timeo    = NETCP_TX_TIMEOUT;
2039         ndev->netdev_ops        = &netcp_netdev_ops;
2040         SET_NETDEV_DEV(ndev, dev);
2041
2042         list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2043         return 0;
2044
2045 quit:
2046         free_netdev(ndev);
2047         return ret;
2048 }
2049
2050 static void netcp_delete_interface(struct netcp_device *netcp_device,
2051                                    struct net_device *ndev)
2052 {
2053         struct netcp_intf_modpriv *intf_modpriv, *tmp;
2054         struct netcp_intf *netcp = netdev_priv(ndev);
2055         struct netcp_module *module;
2056
2057         dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2058                 ndev->name);
2059
2060         /* Notify each of the modules that the interface is going away */
2061         list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2062                                  intf_list) {
2063                 module = intf_modpriv->netcp_module;
2064                 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2065                         module->name);
2066                 if (module->release)
2067                         module->release(intf_modpriv->module_priv);
2068                 list_del(&intf_modpriv->intf_list);
2069                 kfree(intf_modpriv);
2070         }
2071         WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2072              ndev->name);
2073
2074         list_del(&netcp->interface_list);
2075
2076         of_node_put(netcp->node_interface);
2077         unregister_netdev(ndev);
2078         netif_napi_del(&netcp->rx_napi);
2079         free_netdev(ndev);
2080 }
2081
2082 static int netcp_probe(struct platform_device *pdev)
2083 {
2084         struct device_node *node = pdev->dev.of_node;
2085         struct netcp_intf *netcp_intf, *netcp_tmp;
2086         struct device_node *child, *interfaces;
2087         struct netcp_device *netcp_device;
2088         struct device *dev = &pdev->dev;
2089         int ret;
2090
2091         if (!node) {
2092                 dev_err(dev, "could not find device info\n");
2093                 return -ENODEV;
2094         }
2095
2096         /* Allocate a new NETCP device instance */
2097         netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2098         if (!netcp_device)
2099                 return -ENOMEM;
2100
2101         pm_runtime_enable(&pdev->dev);
2102         ret = pm_runtime_get_sync(&pdev->dev);
2103         if (ret < 0) {
2104                 dev_err(dev, "Failed to enable NETCP power-domain\n");
2105                 pm_runtime_disable(&pdev->dev);
2106                 return ret;
2107         }
2108
2109         /* Initialize the NETCP device instance */
2110         INIT_LIST_HEAD(&netcp_device->interface_head);
2111         INIT_LIST_HEAD(&netcp_device->modpriv_head);
2112         netcp_device->device = dev;
2113         platform_set_drvdata(pdev, netcp_device);
2114
2115         /* create interfaces */
2116         interfaces = of_get_child_by_name(node, "netcp-interfaces");
2117         if (!interfaces) {
2118                 dev_err(dev, "could not find netcp-interfaces node\n");
2119                 ret = -ENODEV;
2120                 goto probe_quit;
2121         }
2122
2123         for_each_available_child_of_node(interfaces, child) {
2124                 ret = netcp_create_interface(netcp_device, child);
2125                 if (ret) {
2126                         dev_err(dev, "could not create interface(%s)\n",
2127                                 child->name);
2128                         goto probe_quit_interface;
2129                 }
2130         }
2131
2132         /* Add the device instance to the list */
2133         list_add_tail(&netcp_device->device_list, &netcp_devices);
2134
2135         return 0;
2136
2137 probe_quit_interface:
2138         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2139                                  &netcp_device->interface_head,
2140                                  interface_list) {
2141                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2142         }
2143
2144 probe_quit:
2145         pm_runtime_put_sync(&pdev->dev);
2146         pm_runtime_disable(&pdev->dev);
2147         platform_set_drvdata(pdev, NULL);
2148         return ret;
2149 }
2150
2151 static int netcp_remove(struct platform_device *pdev)
2152 {
2153         struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2154         struct netcp_intf *netcp_intf, *netcp_tmp;
2155         struct netcp_inst_modpriv *inst_modpriv, *tmp;
2156         struct netcp_module *module;
2157
2158         list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2159                                  inst_list) {
2160                 module = inst_modpriv->netcp_module;
2161                 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2162                 module->remove(netcp_device, inst_modpriv->module_priv);
2163                 list_del(&inst_modpriv->inst_list);
2164                 kfree(inst_modpriv);
2165         }
2166
2167         /* now that all modules are removed, clean up the interfaces */
2168         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2169                                  &netcp_device->interface_head,
2170                                  interface_list) {
2171                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2172         }
2173
2174         WARN(!list_empty(&netcp_device->interface_head),
2175              "%s interface list not empty!\n", pdev->name);
2176
2177         pm_runtime_put_sync(&pdev->dev);
2178         pm_runtime_disable(&pdev->dev);
2179         platform_set_drvdata(pdev, NULL);
2180         return 0;
2181 }
2182
2183 static const struct of_device_id of_match[] = {
2184         { .compatible = "ti,netcp-1.0", },
2185         {},
2186 };
2187 MODULE_DEVICE_TABLE(of, of_match);
2188
2189 static struct platform_driver netcp_driver = {
2190         .driver = {
2191                 .name           = "netcp-1.0",
2192                 .of_match_table = of_match,
2193         },
2194         .probe = netcp_probe,
2195         .remove = netcp_remove,
2196 };
2197 module_platform_driver(netcp_driver);
2198
2199 MODULE_LICENSE("GPL v2");
2200 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2201 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");