Merge tag 'char-misc-3.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[cascardo/linux.git] / drivers / net / fddi / defxx.c
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14  *   adapters include:
15  *
16  *              DEC FDDIcontroller/TURBOchannel (DEFTA)
17  *              DEC FDDIcontroller/EISA         (DEFEA)
18  *              DEC FDDIcontroller/PCI          (DEFPA)
19  *
20  * The original author:
21  *   LVS        Lawrence V. Stefani <lstefani@yahoo.com>
22  *
23  * Maintainers:
24  *   macro      Maciej W. Rozycki <macro@linux-mips.org>
25  *
26  * Credits:
27  *   I'd like to thank Patricia Cross for helping me get started with
28  *   Linux, David Davies for a lot of help upgrading and configuring
29  *   my development system and for answering many OS and driver
30  *   development questions, and Alan Cox for recommendations and
31  *   integration help on getting FDDI support into Linux.  LVS
32  *
33  * Driver Architecture:
34  *   The driver architecture is largely based on previous driver work
35  *   for other operating systems.  The upper edge interface and
36  *   functions were largely taken from existing Linux device drivers
37  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38  *   driver.
39  *
40  *   Adapter Probe -
41  *              The driver scans for supported EISA adapters by reading the
42  *              SLOT ID register for each EISA slot and making a match
43  *              against the expected value.
44  *
45  *   Bus-Specific Initialization -
46  *              This driver currently supports both EISA and PCI controller
47  *              families.  While the custom DMA chip and FDDI logic is similar
48  *              or identical, the bus logic is very different.  After
49  *              initialization, the     only bus-specific differences is in how the
50  *              driver enables and disables interrupts.  Other than that, the
51  *              run-time critical code behaves the same on both families.
52  *              It's important to note that both adapter families are configured
53  *              to I/O map, rather than memory map, the adapter registers.
54  *
55  *   Driver Open/Close -
56  *              In the driver open routine, the driver ISR (interrupt service
57  *              routine) is registered and the adapter is brought to an
58  *              operational state.  In the driver close routine, the opposite
59  *              occurs; the driver ISR is deregistered and the adapter is
60  *              brought to a safe, but closed state.  Users may use consecutive
61  *              commands to bring the adapter up and down as in the following
62  *              example:
63  *                                      ifconfig fddi0 up
64  *                                      ifconfig fddi0 down
65  *                                      ifconfig fddi0 up
66  *
67  *   Driver Shutdown -
68  *              Apparently, there is no shutdown or halt routine support under
69  *              Linux.  This routine would be called during "reboot" or
70  *              "shutdown" to allow the driver to place the adapter in a safe
71  *              state before a warm reboot occurs.  To be really safe, the user
72  *              should close the adapter before shutdown (eg. ifconfig fddi0 down)
73  *              to ensure that the adapter DMA engine is taken off-line.  However,
74  *              the current driver code anticipates this problem and always issues
75  *              a soft reset of the adapter     at the beginning of driver initialization.
76  *              A future driver enhancement in this area may occur in 2.1.X where
77  *              Alan indicated that a shutdown handler may be implemented.
78  *
79  *   Interrupt Service Routine -
80  *              The driver supports shared interrupts, so the ISR is registered for
81  *              each board with the appropriate flag and the pointer to that board's
82  *              device structure.  This provides the context during interrupt
83  *              processing to support shared interrupts and multiple boards.
84  *
85  *              Interrupt enabling/disabling can occur at many levels.  At the host
86  *              end, you can disable system interrupts, or disable interrupts at the
87  *              PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88  *              have a bus-logic chip interrupt enable/disable as well as a DMA
89  *              controller interrupt enable/disable.
90  *
91  *              The driver currently enables and disables adapter interrupts at the
92  *              bus-logic chip and assumes that Linux will take care of clearing or
93  *              acknowledging any host-based interrupt chips.
94  *
95  *   Control Functions -
96  *              Control functions are those used to support functions such as adding
97  *              or deleting multicast addresses, enabling or disabling packet
98  *              reception filters, or other custom/proprietary commands.  Presently,
99  *              the driver supports the "get statistics", "set multicast list", and
100  *              "set mac address" functions defined by Linux.  A list of possible
101  *              enhancements include:
102  *
103  *                              - Custom ioctl interface for executing port interface commands
104  *                              - Custom ioctl interface for adding unicast addresses to
105  *                                adapter CAM (to support bridge functions).
106  *                              - Custom ioctl interface for supporting firmware upgrades.
107  *
108  *   Hardware (port interface) Support Routines -
109  *              The driver function names that start with "dfx_hw_" represent
110  *              low-level port interface routines that are called frequently.  They
111  *              include issuing a DMA or port control command to the adapter,
112  *              resetting the adapter, or reading the adapter state.  Since the
113  *              driver initialization and run-time code must make calls into the
114  *              port interface, these routines were written to be as generic and
115  *              usable as possible.
116  *
117  *   Receive Path -
118  *              The adapter DMA engine supports a 256 entry receive descriptor block
119  *              of which up to 255 entries can be used at any given time.  The
120  *              architecture is a standard producer, consumer, completion model in
121  *              which the driver "produces" receive buffers to the adapter, the
122  *              adapter "consumes" the receive buffers by DMAing incoming packet data,
123  *              and the driver "completes" the receive buffers by servicing the
124  *              incoming packet, then "produces" a new buffer and starts the cycle
125  *              again.  Receive buffers can be fragmented in up to 16 fragments
126  *              (descriptor     entries).  For simplicity, this driver posts
127  *              single-fragment receive buffers of 4608 bytes, then allocates a
128  *              sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129  *              utilization, a better approach would be to pass up the receive
130  *              buffer (no extra copy) then allocate and post a replacement buffer.
131  *              This is a performance enhancement that should be looked into at
132  *              some point.
133  *
134  *   Transmit Path -
135  *              Like the receive path, the adapter DMA engine supports a 256 entry
136  *              transmit descriptor block of which up to 255 entries can be used at
137  *              any     given time.  Transmit buffers can be fragmented in up to 255
138  *              fragments (descriptor entries).  This driver always posts one
139  *              fragment per transmit packet request.
140  *
141  *              The fragment contains the entire packet from FC to end of data.
142  *              Before posting the buffer to the adapter, the driver sets a three-byte
143  *              packet request header (PRH) which is required by the Motorola MAC chip
144  *              used on the adapters.  The PRH tells the MAC the type of token to
145  *              receive/send, whether or not to generate and append the CRC, whether
146  *              synchronous or asynchronous framing is used, etc.  Since the PRH
147  *              definition is not necessarily consistent across all FDDI chipsets,
148  *              the driver, rather than the common FDDI packet handler routines,
149  *              sets these bytes.
150  *
151  *              To reduce the amount of descriptor fetches needed per transmit request,
152  *              the driver takes advantage of the fact that there are at least three
153  *              bytes available before the skb->data field on the outgoing transmit
154  *              request.  This is guaranteed by having fddi_setup() in net_init.c set
155  *              dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156  *              header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157  *              bytes which we'll use to store the PRH.
158  *
159  *              There's a subtle advantage to adding these pad bytes to the
160  *              hard_header_len, it ensures that the data portion of the packet for
161  *              an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162  *              implementations may not need the extra padding and can start copying
163  *              or DMAing directly from the FC byte which starts at skb->data.  Should
164  *              another driver implementation need ADDITIONAL padding, the net_init.c
165  *              module should be updated and dev->hard_header_len should be increased.
166  *              NOTE: To maintain the alignment on the data portion of the packet,
167  *              dev->hard_header_len should always be evenly divisible by 4 and at
168  *              least 24 bytes in size.
169  *
170  * Modification History:
171  *              Date            Name    Description
172  *              16-Aug-96       LVS             Created.
173  *              20-Aug-96       LVS             Updated dfx_probe so that version information
174  *                                                      string is only displayed if 1 or more cards are
175  *                                                      found.  Changed dfx_rcv_queue_process to copy
176  *                                                      3 NULL bytes before FC to ensure that data is
177  *                                                      longword aligned in receive buffer.
178  *              09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
179  *                                                      LLC group promiscuous mode if multicast list
180  *                                                      is too large.  LLC individual/group promiscuous
181  *                                                      mode is now disabled if IFF_PROMISC flag not set.
182  *                                                      dfx_xmt_queue_pkt no longer checks for NULL skb
183  *                                                      on Alan Cox recommendation.  Added node address
184  *                                                      override support.
185  *              12-Sep-96       LVS             Reset current address to factory address during
186  *                                                      device open.  Updated transmit path to post a
187  *                                                      single fragment which includes PRH->end of data.
188  *              Mar 2000        AC              Did various cleanups for 2.3.x
189  *              Jun 2000        jgarzik         PCI and resource alloc cleanups
190  *              Jul 2000        tjeerd          Much cleanup and some bug fixes
191  *              Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
192  *              Feb 2001                        Skb allocation fixes
193  *              Feb 2001        davej           PCI enable cleanups.
194  *              04 Aug 2003     macro           Converted to the DMA API.
195  *              14 Aug 2004     macro           Fix device names reported.
196  *              14 Jun 2005     macro           Use irqreturn_t.
197  *              23 Oct 2006     macro           Big-endian host support.
198  *              14 Dec 2006     macro           TURBOchannel support.
199  */
200
201 /* Include files */
202 #include <linux/bitops.h>
203 #include <linux/compiler.h>
204 #include <linux/delay.h>
205 #include <linux/dma-mapping.h>
206 #include <linux/eisa.h>
207 #include <linux/errno.h>
208 #include <linux/fddidevice.h>
209 #include <linux/interrupt.h>
210 #include <linux/ioport.h>
211 #include <linux/kernel.h>
212 #include <linux/module.h>
213 #include <linux/netdevice.h>
214 #include <linux/pci.h>
215 #include <linux/skbuff.h>
216 #include <linux/slab.h>
217 #include <linux/string.h>
218 #include <linux/tc.h>
219
220 #include <asm/byteorder.h>
221 #include <asm/io.h>
222
223 #include "defxx.h"
224
225 /* Version information string should be updated prior to each new release!  */
226 #define DRV_NAME "defxx"
227 #define DRV_VERSION "v1.10"
228 #define DRV_RELDATE "2006/12/14"
229
230 static char version[] =
231         DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
232         "  Lawrence V. Stefani and others\n";
233
234 #define DYNAMIC_BUFFERS 1
235
236 #define SKBUFF_RX_COPYBREAK 200
237 /*
238  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
239  * alignment for compatibility with old EISA boards.
240  */
241 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
242
243 #ifdef CONFIG_EISA
244 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
245 #else
246 #define DFX_BUS_EISA(dev) 0
247 #endif
248
249 #ifdef CONFIG_TC
250 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
251 #else
252 #define DFX_BUS_TC(dev) 0
253 #endif
254
255 #ifdef CONFIG_DEFXX_MMIO
256 #define DFX_MMIO 1
257 #else
258 #define DFX_MMIO 0
259 #endif
260
261 /* Define module-wide (static) routines */
262
263 static void             dfx_bus_init(struct net_device *dev);
264 static void             dfx_bus_uninit(struct net_device *dev);
265 static void             dfx_bus_config_check(DFX_board_t *bp);
266
267 static int              dfx_driver_init(struct net_device *dev,
268                                         const char *print_name,
269                                         resource_size_t bar_start);
270 static int              dfx_adap_init(DFX_board_t *bp, int get_buffers);
271
272 static int              dfx_open(struct net_device *dev);
273 static int              dfx_close(struct net_device *dev);
274
275 static void             dfx_int_pr_halt_id(DFX_board_t *bp);
276 static void             dfx_int_type_0_process(DFX_board_t *bp);
277 static void             dfx_int_common(struct net_device *dev);
278 static irqreturn_t      dfx_interrupt(int irq, void *dev_id);
279
280 static struct           net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
281 static void             dfx_ctl_set_multicast_list(struct net_device *dev);
282 static int              dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
283 static int              dfx_ctl_update_cam(DFX_board_t *bp);
284 static int              dfx_ctl_update_filters(DFX_board_t *bp);
285
286 static int              dfx_hw_dma_cmd_req(DFX_board_t *bp);
287 static int              dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
288 static void             dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
289 static int              dfx_hw_adap_state_rd(DFX_board_t *bp);
290 static int              dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
291
292 static int              dfx_rcv_init(DFX_board_t *bp, int get_buffers);
293 static void             dfx_rcv_queue_process(DFX_board_t *bp);
294 #ifdef DYNAMIC_BUFFERS
295 static void             dfx_rcv_flush(DFX_board_t *bp);
296 #else
297 static inline void      dfx_rcv_flush(DFX_board_t *bp) {}
298 #endif
299
300 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
301                                      struct net_device *dev);
302 static int              dfx_xmt_done(DFX_board_t *bp);
303 static void             dfx_xmt_flush(DFX_board_t *bp);
304
305 /* Define module-wide (static) variables */
306
307 static struct pci_driver dfx_pci_driver;
308 static struct eisa_driver dfx_eisa_driver;
309 static struct tc_driver dfx_tc_driver;
310
311
312 /*
313  * =======================
314  * = dfx_port_write_long =
315  * = dfx_port_read_long  =
316  * =======================
317  *
318  * Overview:
319  *   Routines for reading and writing values from/to adapter
320  *
321  * Returns:
322  *   None
323  *
324  * Arguments:
325  *   bp         - pointer to board information
326  *   offset     - register offset from base I/O address
327  *   data       - for dfx_port_write_long, this is a value to write;
328  *                for dfx_port_read_long, this is a pointer to store
329  *                the read value
330  *
331  * Functional Description:
332  *   These routines perform the correct operation to read or write
333  *   the adapter register.
334  *
335  *   EISA port block base addresses are based on the slot number in which the
336  *   controller is installed.  For example, if the EISA controller is installed
337  *   in slot 4, the port block base address is 0x4000.  If the controller is
338  *   installed in slot 2, the port block base address is 0x2000, and so on.
339  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
340  *   registers using the register offsets defined in DEFXX.H.
341  *
342  *   PCI port block base addresses are assigned by the PCI BIOS or system
343  *   firmware.  There is one 128 byte port block which can be accessed.  It
344  *   allows for I/O mapping of both PDQ and PFI registers using the register
345  *   offsets defined in DEFXX.H.
346  *
347  * Return Codes:
348  *   None
349  *
350  * Assumptions:
351  *   bp->base is a valid base I/O address for this adapter.
352  *   offset is a valid register offset for this adapter.
353  *
354  * Side Effects:
355  *   Rather than produce macros for these functions, these routines
356  *   are defined using "inline" to ensure that the compiler will
357  *   generate inline code and not waste a procedure call and return.
358  *   This provides all the benefits of macros, but with the
359  *   advantage of strict data type checking.
360  */
361
362 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
363 {
364         writel(data, bp->base.mem + offset);
365         mb();
366 }
367
368 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
369 {
370         outl(data, bp->base.port + offset);
371 }
372
373 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
374 {
375         struct device __maybe_unused *bdev = bp->bus_dev;
376         int dfx_bus_tc = DFX_BUS_TC(bdev);
377         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
378
379         if (dfx_use_mmio)
380                 dfx_writel(bp, offset, data);
381         else
382                 dfx_outl(bp, offset, data);
383 }
384
385
386 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
387 {
388         mb();
389         *data = readl(bp->base.mem + offset);
390 }
391
392 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
393 {
394         *data = inl(bp->base.port + offset);
395 }
396
397 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
398 {
399         struct device __maybe_unused *bdev = bp->bus_dev;
400         int dfx_bus_tc = DFX_BUS_TC(bdev);
401         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
402
403         if (dfx_use_mmio)
404                 dfx_readl(bp, offset, data);
405         else
406                 dfx_inl(bp, offset, data);
407 }
408
409
410 /*
411  * ================
412  * = dfx_get_bars =
413  * ================
414  *
415  * Overview:
416  *   Retrieves the address range used to access control and status
417  *   registers.
418  *
419  * Returns:
420  *   None
421  *
422  * Arguments:
423  *   bdev       - pointer to device information
424  *   bar_start  - pointer to store the start address
425  *   bar_len    - pointer to store the length of the area
426  *
427  * Assumptions:
428  *   I am sure there are some.
429  *
430  * Side Effects:
431  *   None
432  */
433 static void dfx_get_bars(struct device *bdev,
434                          resource_size_t *bar_start, resource_size_t *bar_len)
435 {
436         int dfx_bus_pci = dev_is_pci(bdev);
437         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
438         int dfx_bus_tc = DFX_BUS_TC(bdev);
439         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
440
441         if (dfx_bus_pci) {
442                 int num = dfx_use_mmio ? 0 : 1;
443
444                 *bar_start = pci_resource_start(to_pci_dev(bdev), num);
445                 *bar_len = pci_resource_len(to_pci_dev(bdev), num);
446         }
447         if (dfx_bus_eisa) {
448                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
449                 resource_size_t bar;
450
451                 if (dfx_use_mmio) {
452                         bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
453                         bar <<= 8;
454                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
455                         bar <<= 8;
456                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
457                         bar <<= 16;
458                         *bar_start = bar;
459                         bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
460                         bar <<= 8;
461                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
462                         bar <<= 8;
463                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
464                         bar <<= 16;
465                         *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
466                 } else {
467                         *bar_start = base_addr;
468                         *bar_len = PI_ESIC_K_CSR_IO_LEN;
469                 }
470         }
471         if (dfx_bus_tc) {
472                 *bar_start = to_tc_dev(bdev)->resource.start +
473                              PI_TC_K_CSR_OFFSET;
474                 *bar_len = PI_TC_K_CSR_LEN;
475         }
476 }
477
478 static const struct net_device_ops dfx_netdev_ops = {
479         .ndo_open               = dfx_open,
480         .ndo_stop               = dfx_close,
481         .ndo_start_xmit         = dfx_xmt_queue_pkt,
482         .ndo_get_stats          = dfx_ctl_get_stats,
483         .ndo_set_rx_mode        = dfx_ctl_set_multicast_list,
484         .ndo_set_mac_address    = dfx_ctl_set_mac_address,
485 };
486
487 /*
488  * ================
489  * = dfx_register =
490  * ================
491  *
492  * Overview:
493  *   Initializes a supported FDDI controller
494  *
495  * Returns:
496  *   Condition code
497  *
498  * Arguments:
499  *   bdev - pointer to device information
500  *
501  * Functional Description:
502  *
503  * Return Codes:
504  *   0           - This device (fddi0, fddi1, etc) configured successfully
505  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
506  *
507  * Assumptions:
508  *   It compiles so it should work :-( (PCI cards do :-)
509  *
510  * Side Effects:
511  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
512  *   initialized and the board resources are read and stored in
513  *   the device structure.
514  */
515 static int dfx_register(struct device *bdev)
516 {
517         static int version_disp;
518         int dfx_bus_pci = dev_is_pci(bdev);
519         int dfx_bus_tc = DFX_BUS_TC(bdev);
520         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
521         const char *print_name = dev_name(bdev);
522         struct net_device *dev;
523         DFX_board_t       *bp;                  /* board pointer */
524         resource_size_t bar_start = 0;          /* pointer to port */
525         resource_size_t bar_len = 0;            /* resource length */
526         int alloc_size;                         /* total buffer size used */
527         struct resource *region;
528         int err = 0;
529
530         if (!version_disp) {    /* display version info if adapter is found */
531                 version_disp = 1;       /* set display flag to TRUE so that */
532                 printk(version);        /* we only display this string ONCE */
533         }
534
535         dev = alloc_fddidev(sizeof(*bp));
536         if (!dev) {
537                 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
538                        print_name);
539                 return -ENOMEM;
540         }
541
542         /* Enable PCI device. */
543         if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
544                 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
545                        print_name);
546                 goto err_out;
547         }
548
549         SET_NETDEV_DEV(dev, bdev);
550
551         bp = netdev_priv(dev);
552         bp->bus_dev = bdev;
553         dev_set_drvdata(bdev, dev);
554
555         dfx_get_bars(bdev, &bar_start, &bar_len);
556
557         if (dfx_use_mmio)
558                 region = request_mem_region(bar_start, bar_len, print_name);
559         else
560                 region = request_region(bar_start, bar_len, print_name);
561         if (!region) {
562                 printk(KERN_ERR "%s: Cannot reserve I/O resource "
563                        "0x%lx @ 0x%lx, aborting\n",
564                        print_name, (long)bar_len, (long)bar_start);
565                 err = -EBUSY;
566                 goto err_out_disable;
567         }
568
569         /* Set up I/O base address. */
570         if (dfx_use_mmio) {
571                 bp->base.mem = ioremap_nocache(bar_start, bar_len);
572                 if (!bp->base.mem) {
573                         printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
574                         err = -ENOMEM;
575                         goto err_out_region;
576                 }
577         } else {
578                 bp->base.port = bar_start;
579                 dev->base_addr = bar_start;
580         }
581
582         /* Initialize new device structure */
583         dev->netdev_ops                 = &dfx_netdev_ops;
584
585         if (dfx_bus_pci)
586                 pci_set_master(to_pci_dev(bdev));
587
588         if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
589                 err = -ENODEV;
590                 goto err_out_unmap;
591         }
592
593         err = register_netdev(dev);
594         if (err)
595                 goto err_out_kfree;
596
597         printk("%s: registered as %s\n", print_name, dev->name);
598         return 0;
599
600 err_out_kfree:
601         alloc_size = sizeof(PI_DESCR_BLOCK) +
602                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
603 #ifndef DYNAMIC_BUFFERS
604                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
605 #endif
606                      sizeof(PI_CONSUMER_BLOCK) +
607                      (PI_ALIGN_K_DESC_BLK - 1);
608         if (bp->kmalloced)
609                 dma_free_coherent(bdev, alloc_size,
610                                   bp->kmalloced, bp->kmalloced_dma);
611
612 err_out_unmap:
613         if (dfx_use_mmio)
614                 iounmap(bp->base.mem);
615
616 err_out_region:
617         if (dfx_use_mmio)
618                 release_mem_region(bar_start, bar_len);
619         else
620                 release_region(bar_start, bar_len);
621
622 err_out_disable:
623         if (dfx_bus_pci)
624                 pci_disable_device(to_pci_dev(bdev));
625
626 err_out:
627         free_netdev(dev);
628         return err;
629 }
630
631
632 /*
633  * ================
634  * = dfx_bus_init =
635  * ================
636  *
637  * Overview:
638  *   Initializes the bus-specific controller logic.
639  *
640  * Returns:
641  *   None
642  *
643  * Arguments:
644  *   dev - pointer to device information
645  *
646  * Functional Description:
647  *   Determine and save adapter IRQ in device table,
648  *   then perform bus-specific logic initialization.
649  *
650  * Return Codes:
651  *   None
652  *
653  * Assumptions:
654  *   bp->base has already been set with the proper
655  *       base I/O address for this device.
656  *
657  * Side Effects:
658  *   Interrupts are enabled at the adapter bus-specific logic.
659  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
660  *   enabled yet.
661  */
662
663 static void dfx_bus_init(struct net_device *dev)
664 {
665         DFX_board_t *bp = netdev_priv(dev);
666         struct device *bdev = bp->bus_dev;
667         int dfx_bus_pci = dev_is_pci(bdev);
668         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
669         int dfx_bus_tc = DFX_BUS_TC(bdev);
670         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
671         u8 val;
672
673         DBG_printk("In dfx_bus_init...\n");
674
675         /* Initialize a pointer back to the net_device struct */
676         bp->dev = dev;
677
678         /* Initialize adapter based on bus type */
679
680         if (dfx_bus_tc)
681                 dev->irq = to_tc_dev(bdev)->interrupt;
682         if (dfx_bus_eisa) {
683                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
684
685                 /* Get the interrupt level from the ESIC chip.  */
686                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
687                 val &= PI_CONFIG_STAT_0_M_IRQ;
688                 val >>= PI_CONFIG_STAT_0_V_IRQ;
689
690                 switch (val) {
691                 case PI_CONFIG_STAT_0_IRQ_K_9:
692                         dev->irq = 9;
693                         break;
694
695                 case PI_CONFIG_STAT_0_IRQ_K_10:
696                         dev->irq = 10;
697                         break;
698
699                 case PI_CONFIG_STAT_0_IRQ_K_11:
700                         dev->irq = 11;
701                         break;
702
703                 case PI_CONFIG_STAT_0_IRQ_K_15:
704                         dev->irq = 15;
705                         break;
706                 }
707
708                 /*
709                  * Enable memory decoding (MEMCS0) and/or port decoding
710                  * (IOCS1/IOCS0) as appropriate in Function Control
711                  * Register.  One of the port chip selects seems to be
712                  * used for the Burst Holdoff register, but this bit of
713                  * documentation is missing and as yet it has not been
714                  * determined which of the two.  This is also the reason
715                  * the size of the decoded port range is twice as large
716                  * as one required by the PDQ.
717                  */
718
719                 /* Set the decode range of the board.  */
720                 val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
721                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
722                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
723                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
724                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
725                 val = PI_ESIC_K_CSR_IO_LEN - 1;
726                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
727                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
728                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
729                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
730
731                 /* Enable the decoders.  */
732                 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
733                 if (dfx_use_mmio)
734                         val |= PI_FUNCTION_CNTRL_M_MEMCS0;
735                 outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
736
737                 /*
738                  * Enable access to the rest of the module
739                  * (including PDQ and packet memory).
740                  */
741                 val = PI_SLOT_CNTRL_M_ENB;
742                 outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
743
744                 /*
745                  * Map PDQ registers into memory or port space.  This is
746                  * done with a bit in the Burst Holdoff register.
747                  */
748                 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
749                 if (dfx_use_mmio)
750                         val |= PI_BURST_HOLDOFF_V_MEM_MAP;
751                 else
752                         val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
753                 outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
754
755                 /* Enable interrupts at EISA bus interface chip (ESIC) */
756                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
757                 val |= PI_CONFIG_STAT_0_M_INT_ENB;
758                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
759         }
760         if (dfx_bus_pci) {
761                 struct pci_dev *pdev = to_pci_dev(bdev);
762
763                 /* Get the interrupt level from the PCI Configuration Table */
764
765                 dev->irq = pdev->irq;
766
767                 /* Check Latency Timer and set if less than minimal */
768
769                 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
770                 if (val < PFI_K_LAT_TIMER_MIN) {
771                         val = PFI_K_LAT_TIMER_DEF;
772                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
773                 }
774
775                 /* Enable interrupts at PCI bus interface chip (PFI) */
776                 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
777                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
778         }
779 }
780
781 /*
782  * ==================
783  * = dfx_bus_uninit =
784  * ==================
785  *
786  * Overview:
787  *   Uninitializes the bus-specific controller logic.
788  *
789  * Returns:
790  *   None
791  *
792  * Arguments:
793  *   dev - pointer to device information
794  *
795  * Functional Description:
796  *   Perform bus-specific logic uninitialization.
797  *
798  * Return Codes:
799  *   None
800  *
801  * Assumptions:
802  *   bp->base has already been set with the proper
803  *       base I/O address for this device.
804  *
805  * Side Effects:
806  *   Interrupts are disabled at the adapter bus-specific logic.
807  */
808
809 static void dfx_bus_uninit(struct net_device *dev)
810 {
811         DFX_board_t *bp = netdev_priv(dev);
812         struct device *bdev = bp->bus_dev;
813         int dfx_bus_pci = dev_is_pci(bdev);
814         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
815         u8 val;
816
817         DBG_printk("In dfx_bus_uninit...\n");
818
819         /* Uninitialize adapter based on bus type */
820
821         if (dfx_bus_eisa) {
822                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
823
824                 /* Disable interrupts at EISA bus interface chip (ESIC) */
825                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
826                 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
827                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
828         }
829         if (dfx_bus_pci) {
830                 /* Disable interrupts at PCI bus interface chip (PFI) */
831                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
832         }
833 }
834
835
836 /*
837  * ========================
838  * = dfx_bus_config_check =
839  * ========================
840  *
841  * Overview:
842  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
843  *   are illegal, then this routine will set new defaults.
844  *
845  * Returns:
846  *   None
847  *
848  * Arguments:
849  *   bp - pointer to board information
850  *
851  * Functional Description:
852  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
853  *   PDQ, and all FDDI PCI controllers, all values are legal.
854  *
855  * Return Codes:
856  *   None
857  *
858  * Assumptions:
859  *   dfx_adap_init has NOT been called yet so burst size and other items have
860  *   not been set.
861  *
862  * Side Effects:
863  *   None
864  */
865
866 static void dfx_bus_config_check(DFX_board_t *bp)
867 {
868         struct device __maybe_unused *bdev = bp->bus_dev;
869         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
870         int     status;                         /* return code from adapter port control call */
871         u32     host_data;                      /* LW data returned from port control call */
872
873         DBG_printk("In dfx_bus_config_check...\n");
874
875         /* Configuration check only valid for EISA adapter */
876
877         if (dfx_bus_eisa) {
878                 /*
879                  * First check if revision 2 EISA controller.  Rev. 1 cards used
880                  * PDQ revision B, so no workaround needed in this case.  Rev. 3
881                  * cards used PDQ revision E, so no workaround needed in this
882                  * case, either.  Only Rev. 2 cards used either Rev. D or E
883                  * chips, so we must verify the chip revision on Rev. 2 cards.
884                  */
885                 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
886                         /*
887                          * Revision 2 FDDI EISA controller found,
888                          * so let's check PDQ revision of adapter.
889                          */
890                         status = dfx_hw_port_ctrl_req(bp,
891                                                                                         PI_PCTRL_M_SUB_CMD,
892                                                                                         PI_SUB_CMD_K_PDQ_REV_GET,
893                                                                                         0,
894                                                                                         &host_data);
895                         if ((status != DFX_K_SUCCESS) || (host_data == 2))
896                                 {
897                                 /*
898                                  * Either we couldn't determine the PDQ revision, or
899                                  * we determined that it is at revision D.  In either case,
900                                  * we need to implement the workaround.
901                                  */
902
903                                 /* Ensure that the burst size is set to 8 longwords or less */
904
905                                 switch (bp->burst_size)
906                                         {
907                                         case PI_PDATA_B_DMA_BURST_SIZE_32:
908                                         case PI_PDATA_B_DMA_BURST_SIZE_16:
909                                                 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
910                                                 break;
911
912                                         default:
913                                                 break;
914                                         }
915
916                                 /* Ensure that full-duplex mode is not enabled */
917
918                                 bp->full_duplex_enb = PI_SNMP_K_FALSE;
919                                 }
920                         }
921                 }
922         }
923
924
925 /*
926  * ===================
927  * = dfx_driver_init =
928  * ===================
929  *
930  * Overview:
931  *   Initializes remaining adapter board structure information
932  *   and makes sure adapter is in a safe state prior to dfx_open().
933  *
934  * Returns:
935  *   Condition code
936  *
937  * Arguments:
938  *   dev - pointer to device information
939  *   print_name - printable device name
940  *
941  * Functional Description:
942  *   This function allocates additional resources such as the host memory
943  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
944  *       Remaining bus initialization steps are also completed.  The adapter
945  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
946  *   must call dfx_open() to open the adapter and bring it on-line.
947  *
948  * Return Codes:
949  *   DFX_K_SUCCESS      - initialization succeeded
950  *   DFX_K_FAILURE      - initialization failed - could not allocate memory
951  *                                              or read adapter MAC address
952  *
953  * Assumptions:
954  *   Memory allocated from pci_alloc_consistent() call is physically
955  *   contiguous, locked memory.
956  *
957  * Side Effects:
958  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
959  *   returning from this routine.
960  */
961
962 static int dfx_driver_init(struct net_device *dev, const char *print_name,
963                            resource_size_t bar_start)
964 {
965         DFX_board_t *bp = netdev_priv(dev);
966         struct device *bdev = bp->bus_dev;
967         int dfx_bus_pci = dev_is_pci(bdev);
968         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
969         int dfx_bus_tc = DFX_BUS_TC(bdev);
970         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
971         int alloc_size;                 /* total buffer size needed */
972         char *top_v, *curr_v;           /* virtual addrs into memory block */
973         dma_addr_t top_p, curr_p;       /* physical addrs into memory block */
974         u32 data;                       /* host data register value */
975         __le32 le32;
976         char *board_name = NULL;
977
978         DBG_printk("In dfx_driver_init...\n");
979
980         /* Initialize bus-specific hardware registers */
981
982         dfx_bus_init(dev);
983
984         /*
985          * Initialize default values for configurable parameters
986          *
987          * Note: All of these parameters are ones that a user may
988          *       want to customize.  It'd be nice to break these
989          *               out into Space.c or someplace else that's more
990          *               accessible/understandable than this file.
991          */
992
993         bp->full_duplex_enb             = PI_SNMP_K_FALSE;
994         bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
995         bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
996         bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
997
998         /*
999          * Ensure that HW configuration is OK
1000          *
1001          * Note: Depending on the hardware revision, we may need to modify
1002          *       some of the configurable parameters to workaround hardware
1003          *       limitations.  We'll perform this configuration check AFTER
1004          *       setting the parameters to their default values.
1005          */
1006
1007         dfx_bus_config_check(bp);
1008
1009         /* Disable PDQ interrupts first */
1010
1011         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1012
1013         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1014
1015         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1016
1017         /*  Read the factory MAC address from the adapter then save it */
1018
1019         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1020                                  &data) != DFX_K_SUCCESS) {
1021                 printk("%s: Could not read adapter factory MAC address!\n",
1022                        print_name);
1023                 return DFX_K_FAILURE;
1024         }
1025         le32 = cpu_to_le32(data);
1026         memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1027
1028         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1029                                  &data) != DFX_K_SUCCESS) {
1030                 printk("%s: Could not read adapter factory MAC address!\n",
1031                        print_name);
1032                 return DFX_K_FAILURE;
1033         }
1034         le32 = cpu_to_le32(data);
1035         memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1036
1037         /*
1038          * Set current address to factory address
1039          *
1040          * Note: Node address override support is handled through
1041          *       dfx_ctl_set_mac_address.
1042          */
1043
1044         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1045         if (dfx_bus_tc)
1046                 board_name = "DEFTA";
1047         if (dfx_bus_eisa)
1048                 board_name = "DEFEA";
1049         if (dfx_bus_pci)
1050                 board_name = "DEFPA";
1051         pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1052                 print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1053                 (long long)bar_start, dev->irq, dev->dev_addr);
1054
1055         /*
1056          * Get memory for descriptor block, consumer block, and other buffers
1057          * that need to be DMA read or written to by the adapter.
1058          */
1059
1060         alloc_size = sizeof(PI_DESCR_BLOCK) +
1061                                         PI_CMD_REQ_K_SIZE_MAX +
1062                                         PI_CMD_RSP_K_SIZE_MAX +
1063 #ifndef DYNAMIC_BUFFERS
1064                                         (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1065 #endif
1066                                         sizeof(PI_CONSUMER_BLOCK) +
1067                                         (PI_ALIGN_K_DESC_BLK - 1);
1068         bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size,
1069                                                     &bp->kmalloced_dma,
1070                                                     GFP_ATOMIC);
1071         if (top_v == NULL)
1072                 return DFX_K_FAILURE;
1073
1074         top_p = bp->kmalloced_dma;      /* get physical address of buffer */
1075
1076         /*
1077          *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1078          *  plus the amount of memory needed was allocated.  The physical address
1079          *      is now 8K aligned.  By carving up the memory in a specific order,
1080          *  we'll guarantee the alignment requirements for all other structures.
1081          *
1082          *  Note: If the assumptions change regarding the non-paged, non-cached,
1083          *                physically contiguous nature of the memory block or the address
1084          *                alignments, then we'll need to implement a different algorithm
1085          *                for allocating the needed memory.
1086          */
1087
1088         curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1089         curr_v = top_v + (curr_p - top_p);
1090
1091         /* Reserve space for descriptor block */
1092
1093         bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1094         bp->descr_block_phys = curr_p;
1095         curr_v += sizeof(PI_DESCR_BLOCK);
1096         curr_p += sizeof(PI_DESCR_BLOCK);
1097
1098         /* Reserve space for command request buffer */
1099
1100         bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1101         bp->cmd_req_phys = curr_p;
1102         curr_v += PI_CMD_REQ_K_SIZE_MAX;
1103         curr_p += PI_CMD_REQ_K_SIZE_MAX;
1104
1105         /* Reserve space for command response buffer */
1106
1107         bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1108         bp->cmd_rsp_phys = curr_p;
1109         curr_v += PI_CMD_RSP_K_SIZE_MAX;
1110         curr_p += PI_CMD_RSP_K_SIZE_MAX;
1111
1112         /* Reserve space for the LLC host receive queue buffers */
1113
1114         bp->rcv_block_virt = curr_v;
1115         bp->rcv_block_phys = curr_p;
1116
1117 #ifndef DYNAMIC_BUFFERS
1118         curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1119         curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1120 #endif
1121
1122         /* Reserve space for the consumer block */
1123
1124         bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1125         bp->cons_block_phys = curr_p;
1126
1127         /* Display virtual and physical addresses if debug driver */
1128
1129         DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1130                    print_name,
1131                    (long)bp->descr_block_virt, bp->descr_block_phys);
1132         DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1133                    print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1134         DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1135                    print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1136         DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1137                    print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1138         DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1139                    print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1140
1141         return DFX_K_SUCCESS;
1142 }
1143
1144
1145 /*
1146  * =================
1147  * = dfx_adap_init =
1148  * =================
1149  *
1150  * Overview:
1151  *   Brings the adapter to the link avail/link unavailable state.
1152  *
1153  * Returns:
1154  *   Condition code
1155  *
1156  * Arguments:
1157  *   bp - pointer to board information
1158  *   get_buffers - non-zero if buffers to be allocated
1159  *
1160  * Functional Description:
1161  *   Issues the low-level firmware/hardware calls necessary to bring
1162  *   the adapter up, or to properly reset and restore adapter during
1163  *   run-time.
1164  *
1165  * Return Codes:
1166  *   DFX_K_SUCCESS - Adapter brought up successfully
1167  *   DFX_K_FAILURE - Adapter initialization failed
1168  *
1169  * Assumptions:
1170  *   bp->reset_type should be set to a valid reset type value before
1171  *   calling this routine.
1172  *
1173  * Side Effects:
1174  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1175  *   upon a successful return of this routine.
1176  */
1177
1178 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1179         {
1180         DBG_printk("In dfx_adap_init...\n");
1181
1182         /* Disable PDQ interrupts first */
1183
1184         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1185
1186         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1187
1188         if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1189                 {
1190                 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1191                 return DFX_K_FAILURE;
1192                 }
1193
1194         /*
1195          * When the PDQ is reset, some false Type 0 interrupts may be pending,
1196          * so we'll acknowledge all Type 0 interrupts now before continuing.
1197          */
1198
1199         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1200
1201         /*
1202          * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1203          *
1204          * Note: We only need to clear host copies of these registers.  The PDQ reset
1205          *       takes care of the on-board register values.
1206          */
1207
1208         bp->cmd_req_reg.lword   = 0;
1209         bp->cmd_rsp_reg.lword   = 0;
1210         bp->rcv_xmt_reg.lword   = 0;
1211
1212         /* Clear consumer block before going to DMA_AVAILABLE state */
1213
1214         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1215
1216         /* Initialize the DMA Burst Size */
1217
1218         if (dfx_hw_port_ctrl_req(bp,
1219                                                         PI_PCTRL_M_SUB_CMD,
1220                                                         PI_SUB_CMD_K_BURST_SIZE_SET,
1221                                                         bp->burst_size,
1222                                                         NULL) != DFX_K_SUCCESS)
1223                 {
1224                 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1225                 return DFX_K_FAILURE;
1226                 }
1227
1228         /*
1229          * Set base address of Consumer Block
1230          *
1231          * Assumption: 32-bit physical address of consumer block is 64 byte
1232          *                         aligned.  That is, bits 0-5 of the address must be zero.
1233          */
1234
1235         if (dfx_hw_port_ctrl_req(bp,
1236                                                         PI_PCTRL_M_CONS_BLOCK,
1237                                                         bp->cons_block_phys,
1238                                                         0,
1239                                                         NULL) != DFX_K_SUCCESS)
1240                 {
1241                 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1242                 return DFX_K_FAILURE;
1243                 }
1244
1245         /*
1246          * Set the base address of Descriptor Block and bring adapter
1247          * to DMA_AVAILABLE state.
1248          *
1249          * Note: We also set the literal and data swapping requirements
1250          *       in this command.
1251          *
1252          * Assumption: 32-bit physical address of descriptor block
1253          *       is 8Kbyte aligned.
1254          */
1255         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1256                                  (u32)(bp->descr_block_phys |
1257                                        PI_PDATA_A_INIT_M_BSWAP_INIT),
1258                                  0, NULL) != DFX_K_SUCCESS) {
1259                 printk("%s: Could not set descriptor block address!\n",
1260                        bp->dev->name);
1261                 return DFX_K_FAILURE;
1262         }
1263
1264         /* Set transmit flush timeout value */
1265
1266         bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1267         bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
1268         bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
1269         bp->cmd_req_virt->char_set.item[0].item_index   = 0;
1270         bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
1271         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1272                 {
1273                 printk("%s: DMA command request failed!\n", bp->dev->name);
1274                 return DFX_K_FAILURE;
1275                 }
1276
1277         /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1278
1279         bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1280         bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
1281         bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
1282         bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
1283         bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
1284         bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
1285         bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
1286         bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
1287         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1288                 {
1289                 printk("%s: DMA command request failed!\n", bp->dev->name);
1290                 return DFX_K_FAILURE;
1291                 }
1292
1293         /* Initialize adapter CAM */
1294
1295         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1296                 {
1297                 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1298                 return DFX_K_FAILURE;
1299                 }
1300
1301         /* Initialize adapter filters */
1302
1303         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1304                 {
1305                 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1306                 return DFX_K_FAILURE;
1307                 }
1308
1309         /*
1310          * Remove any existing dynamic buffers (i.e. if the adapter is being
1311          * reinitialized)
1312          */
1313
1314         if (get_buffers)
1315                 dfx_rcv_flush(bp);
1316
1317         /* Initialize receive descriptor block and produce buffers */
1318
1319         if (dfx_rcv_init(bp, get_buffers))
1320                 {
1321                 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1322                 if (get_buffers)
1323                         dfx_rcv_flush(bp);
1324                 return DFX_K_FAILURE;
1325                 }
1326
1327         /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1328
1329         bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1330         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1331                 {
1332                 printk("%s: Start command failed\n", bp->dev->name);
1333                 if (get_buffers)
1334                         dfx_rcv_flush(bp);
1335                 return DFX_K_FAILURE;
1336                 }
1337
1338         /* Initialization succeeded, reenable PDQ interrupts */
1339
1340         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1341         return DFX_K_SUCCESS;
1342         }
1343
1344
1345 /*
1346  * ============
1347  * = dfx_open =
1348  * ============
1349  *
1350  * Overview:
1351  *   Opens the adapter
1352  *
1353  * Returns:
1354  *   Condition code
1355  *
1356  * Arguments:
1357  *   dev - pointer to device information
1358  *
1359  * Functional Description:
1360  *   This function brings the adapter to an operational state.
1361  *
1362  * Return Codes:
1363  *   0           - Adapter was successfully opened
1364  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1365  *
1366  * Assumptions:
1367  *   This routine should only be called for a device that was
1368  *   initialized successfully.
1369  *
1370  * Side Effects:
1371  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1372  *   if the open is successful.
1373  */
1374
1375 static int dfx_open(struct net_device *dev)
1376 {
1377         DFX_board_t *bp = netdev_priv(dev);
1378         int ret;
1379
1380         DBG_printk("In dfx_open...\n");
1381
1382         /* Register IRQ - support shared interrupts by passing device ptr */
1383
1384         ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1385                           dev);
1386         if (ret) {
1387                 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1388                 return ret;
1389         }
1390
1391         /*
1392          * Set current address to factory MAC address
1393          *
1394          * Note: We've already done this step in dfx_driver_init.
1395          *       However, it's possible that a user has set a node
1396          *               address override, then closed and reopened the
1397          *               adapter.  Unless we reset the device address field
1398          *               now, we'll continue to use the existing modified
1399          *               address.
1400          */
1401
1402         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1403
1404         /* Clear local unicast/multicast address tables and counts */
1405
1406         memset(bp->uc_table, 0, sizeof(bp->uc_table));
1407         memset(bp->mc_table, 0, sizeof(bp->mc_table));
1408         bp->uc_count = 0;
1409         bp->mc_count = 0;
1410
1411         /* Disable promiscuous filter settings */
1412
1413         bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
1414         bp->group_prom          = PI_FSTATE_K_BLOCK;
1415
1416         spin_lock_init(&bp->lock);
1417
1418         /* Reset and initialize adapter */
1419
1420         bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
1421         if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1422         {
1423                 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1424                 free_irq(dev->irq, dev);
1425                 return -EAGAIN;
1426         }
1427
1428         /* Set device structure info */
1429         netif_start_queue(dev);
1430         return 0;
1431 }
1432
1433
1434 /*
1435  * =============
1436  * = dfx_close =
1437  * =============
1438  *
1439  * Overview:
1440  *   Closes the device/module.
1441  *
1442  * Returns:
1443  *   Condition code
1444  *
1445  * Arguments:
1446  *   dev - pointer to device information
1447  *
1448  * Functional Description:
1449  *   This routine closes the adapter and brings it to a safe state.
1450  *   The interrupt service routine is deregistered with the OS.
1451  *   The adapter can be opened again with another call to dfx_open().
1452  *
1453  * Return Codes:
1454  *   Always return 0.
1455  *
1456  * Assumptions:
1457  *   No further requests for this adapter are made after this routine is
1458  *   called.  dfx_open() can be called to reset and reinitialize the
1459  *   adapter.
1460  *
1461  * Side Effects:
1462  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1463  *   routine.
1464  */
1465
1466 static int dfx_close(struct net_device *dev)
1467 {
1468         DFX_board_t *bp = netdev_priv(dev);
1469
1470         DBG_printk("In dfx_close...\n");
1471
1472         /* Disable PDQ interrupts first */
1473
1474         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1475
1476         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1477
1478         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1479
1480         /*
1481          * Flush any pending transmit buffers
1482          *
1483          * Note: It's important that we flush the transmit buffers
1484          *               BEFORE we clear our copy of the Type 2 register.
1485          *               Otherwise, we'll have no idea how many buffers
1486          *               we need to free.
1487          */
1488
1489         dfx_xmt_flush(bp);
1490
1491         /*
1492          * Clear Type 1 and Type 2 registers after adapter reset
1493          *
1494          * Note: Even though we're closing the adapter, it's
1495          *       possible that an interrupt will occur after
1496          *               dfx_close is called.  Without some assurance to
1497          *               the contrary we want to make sure that we don't
1498          *               process receive and transmit LLC frames and update
1499          *               the Type 2 register with bad information.
1500          */
1501
1502         bp->cmd_req_reg.lword   = 0;
1503         bp->cmd_rsp_reg.lword   = 0;
1504         bp->rcv_xmt_reg.lword   = 0;
1505
1506         /* Clear consumer block for the same reason given above */
1507
1508         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1509
1510         /* Release all dynamically allocate skb in the receive ring. */
1511
1512         dfx_rcv_flush(bp);
1513
1514         /* Clear device structure flags */
1515
1516         netif_stop_queue(dev);
1517
1518         /* Deregister (free) IRQ */
1519
1520         free_irq(dev->irq, dev);
1521
1522         return 0;
1523 }
1524
1525
1526 /*
1527  * ======================
1528  * = dfx_int_pr_halt_id =
1529  * ======================
1530  *
1531  * Overview:
1532  *   Displays halt id's in string form.
1533  *
1534  * Returns:
1535  *   None
1536  *
1537  * Arguments:
1538  *   bp - pointer to board information
1539  *
1540  * Functional Description:
1541  *   Determine current halt id and display appropriate string.
1542  *
1543  * Return Codes:
1544  *   None
1545  *
1546  * Assumptions:
1547  *   None
1548  *
1549  * Side Effects:
1550  *   None
1551  */
1552
1553 static void dfx_int_pr_halt_id(DFX_board_t      *bp)
1554         {
1555         PI_UINT32       port_status;                    /* PDQ port status register value */
1556         PI_UINT32       halt_id;                                /* PDQ port status halt ID */
1557
1558         /* Read the latest port status */
1559
1560         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1561
1562         /* Display halt state transition information */
1563
1564         halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1565         switch (halt_id)
1566                 {
1567                 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1568                         printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1569                         break;
1570
1571                 case PI_HALT_ID_K_PARITY_ERROR:
1572                         printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1573                         break;
1574
1575                 case PI_HALT_ID_K_HOST_DIR_HALT:
1576                         printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1577                         break;
1578
1579                 case PI_HALT_ID_K_SW_FAULT:
1580                         printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1581                         break;
1582
1583                 case PI_HALT_ID_K_HW_FAULT:
1584                         printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1585                         break;
1586
1587                 case PI_HALT_ID_K_PC_TRACE:
1588                         printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1589                         break;
1590
1591                 case PI_HALT_ID_K_DMA_ERROR:
1592                         printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1593                         break;
1594
1595                 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1596                         printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1597                         break;
1598
1599                 case PI_HALT_ID_K_BUS_EXCEPTION:
1600                         printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1601                         break;
1602
1603                 default:
1604                         printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1605                         break;
1606                 }
1607         }
1608
1609
1610 /*
1611  * ==========================
1612  * = dfx_int_type_0_process =
1613  * ==========================
1614  *
1615  * Overview:
1616  *   Processes Type 0 interrupts.
1617  *
1618  * Returns:
1619  *   None
1620  *
1621  * Arguments:
1622  *   bp - pointer to board information
1623  *
1624  * Functional Description:
1625  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1626  *   is a serious fault on the adapter, then an error message is displayed
1627  *   and the adapter is reset.
1628  *
1629  *   One tricky potential timing window is the rapid succession of "link avail"
1630  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1631  *   interrupt must be done before reading the state from the Port Status
1632  *   register.  This is true because a state change could occur after reading
1633  *   the data, but before acknowledging the interrupt.  If this state change
1634  *   does happen, it would be lost because the driver is using the old state,
1635  *   and it will never know about the new state because it subsequently
1636  *   acknowledges the state change interrupt.
1637  *
1638  *          INCORRECT                                      CORRECT
1639  *      read type 0 int reasons                   read type 0 int reasons
1640  *      read adapter state                        ack type 0 interrupts
1641  *      ack type 0 interrupts                     read adapter state
1642  *      ... process interrupt ...                 ... process interrupt ...
1643  *
1644  * Return Codes:
1645  *   None
1646  *
1647  * Assumptions:
1648  *   None
1649  *
1650  * Side Effects:
1651  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1652  *   or if the port status indicates that the adapter is halted.  The driver
1653  *   is responsible for reinitializing the adapter with the current CAM
1654  *   contents and adapter filter settings.
1655  */
1656
1657 static void dfx_int_type_0_process(DFX_board_t  *bp)
1658
1659         {
1660         PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
1661         PI_UINT32       state;                          /* current adap state (from port status) */
1662
1663         /*
1664          * Read host interrupt Type 0 register to determine which Type 0
1665          * interrupts are pending.  Immediately write it back out to clear
1666          * those interrupts.
1667          */
1668
1669         dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1670         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1671
1672         /* Check for Type 0 error interrupts */
1673
1674         if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1675                                                         PI_TYPE_0_STAT_M_PM_PAR_ERR |
1676                                                         PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1677                 {
1678                 /* Check for Non-Existent Memory error */
1679
1680                 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1681                         printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1682
1683                 /* Check for Packet Memory Parity error */
1684
1685                 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1686                         printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1687
1688                 /* Check for Host Bus Parity error */
1689
1690                 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1691                         printk("%s: Host Bus Parity Error\n", bp->dev->name);
1692
1693                 /* Reset adapter and bring it back on-line */
1694
1695                 bp->link_available = PI_K_FALSE;        /* link is no longer available */
1696                 bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1697                 printk("%s: Resetting adapter...\n", bp->dev->name);
1698                 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1699                         {
1700                         printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1701                         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1702                         return;
1703                         }
1704                 printk("%s: Adapter reset successful!\n", bp->dev->name);
1705                 return;
1706                 }
1707
1708         /* Check for transmit flush interrupt */
1709
1710         if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1711                 {
1712                 /* Flush any pending xmt's and acknowledge the flush interrupt */
1713
1714                 bp->link_available = PI_K_FALSE;                /* link is no longer available */
1715                 dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
1716                 (void) dfx_hw_port_ctrl_req(bp,
1717                                                                         PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1718                                                                         0,
1719                                                                         0,
1720                                                                         NULL);
1721                 }
1722
1723         /* Check for adapter state change */
1724
1725         if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1726                 {
1727                 /* Get latest adapter state */
1728
1729                 state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
1730                 if (state == PI_STATE_K_HALTED)
1731                         {
1732                         /*
1733                          * Adapter has transitioned to HALTED state, try to reset
1734                          * adapter to bring it back on-line.  If reset fails,
1735                          * leave the adapter in the broken state.
1736                          */
1737
1738                         printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1739                         dfx_int_pr_halt_id(bp);                 /* display halt id as string */
1740
1741                         /* Reset adapter and bring it back on-line */
1742
1743                         bp->link_available = PI_K_FALSE;        /* link is no longer available */
1744                         bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1745                         printk("%s: Resetting adapter...\n", bp->dev->name);
1746                         if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1747                                 {
1748                                 printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1749                                 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1750                                 return;
1751                                 }
1752                         printk("%s: Adapter reset successful!\n", bp->dev->name);
1753                         }
1754                 else if (state == PI_STATE_K_LINK_AVAIL)
1755                         {
1756                         bp->link_available = PI_K_TRUE;         /* set link available flag */
1757                         }
1758                 }
1759         }
1760
1761
1762 /*
1763  * ==================
1764  * = dfx_int_common =
1765  * ==================
1766  *
1767  * Overview:
1768  *   Interrupt service routine (ISR)
1769  *
1770  * Returns:
1771  *   None
1772  *
1773  * Arguments:
1774  *   bp - pointer to board information
1775  *
1776  * Functional Description:
1777  *   This is the ISR which processes incoming adapter interrupts.
1778  *
1779  * Return Codes:
1780  *   None
1781  *
1782  * Assumptions:
1783  *   This routine assumes PDQ interrupts have not been disabled.
1784  *   When interrupts are disabled at the PDQ, the Port Status register
1785  *   is automatically cleared.  This routine uses the Port Status
1786  *   register value to determine whether a Type 0 interrupt occurred,
1787  *   so it's important that adapter interrupts are not normally
1788  *   enabled/disabled at the PDQ.
1789  *
1790  *   It's vital that this routine is NOT reentered for the
1791  *   same board and that the OS is not in another section of
1792  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1793  *   different thread.
1794  *
1795  * Side Effects:
1796  *   Pending interrupts are serviced.  Depending on the type of
1797  *   interrupt, acknowledging and clearing the interrupt at the
1798  *   PDQ involves writing a register to clear the interrupt bit
1799  *   or updating completion indices.
1800  */
1801
1802 static void dfx_int_common(struct net_device *dev)
1803 {
1804         DFX_board_t *bp = netdev_priv(dev);
1805         PI_UINT32       port_status;            /* Port Status register */
1806
1807         /* Process xmt interrupts - frequent case, so always call this routine */
1808
1809         if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
1810                 netif_wake_queue(dev);
1811
1812         /* Process rcv interrupts - frequent case, so always call this routine */
1813
1814         dfx_rcv_queue_process(bp);              /* service received LLC frames */
1815
1816         /*
1817          * Transmit and receive producer and completion indices are updated on the
1818          * adapter by writing to the Type 2 Producer register.  Since the frequent
1819          * case is that we'll be processing either LLC transmit or receive buffers,
1820          * we'll optimize I/O writes by doing a single register write here.
1821          */
1822
1823         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1824
1825         /* Read PDQ Port Status register to find out which interrupts need processing */
1826
1827         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1828
1829         /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1830
1831         if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1832                 dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
1833         }
1834
1835
1836 /*
1837  * =================
1838  * = dfx_interrupt =
1839  * =================
1840  *
1841  * Overview:
1842  *   Interrupt processing routine
1843  *
1844  * Returns:
1845  *   Whether a valid interrupt was seen.
1846  *
1847  * Arguments:
1848  *   irq        - interrupt vector
1849  *   dev_id     - pointer to device information
1850  *
1851  * Functional Description:
1852  *   This routine calls the interrupt processing routine for this adapter.  It
1853  *   disables and reenables adapter interrupts, as appropriate.  We can support
1854  *   shared interrupts since the incoming dev_id pointer provides our device
1855  *   structure context.
1856  *
1857  * Return Codes:
1858  *   IRQ_HANDLED - an IRQ was handled.
1859  *   IRQ_NONE    - no IRQ was handled.
1860  *
1861  * Assumptions:
1862  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1863  *   on Intel-based systems) is done by the operating system outside this
1864  *   routine.
1865  *
1866  *       System interrupts are enabled through this call.
1867  *
1868  * Side Effects:
1869  *   Interrupts are disabled, then reenabled at the adapter.
1870  */
1871
1872 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1873 {
1874         struct net_device *dev = dev_id;
1875         DFX_board_t *bp = netdev_priv(dev);
1876         struct device *bdev = bp->bus_dev;
1877         int dfx_bus_pci = dev_is_pci(bdev);
1878         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1879         int dfx_bus_tc = DFX_BUS_TC(bdev);
1880
1881         /* Service adapter interrupts */
1882
1883         if (dfx_bus_pci) {
1884                 u32 status;
1885
1886                 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1887                 if (!(status & PFI_STATUS_M_PDQ_INT))
1888                         return IRQ_NONE;
1889
1890                 spin_lock(&bp->lock);
1891
1892                 /* Disable PDQ-PFI interrupts at PFI */
1893                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1894                                     PFI_MODE_M_DMA_ENB);
1895
1896                 /* Call interrupt service routine for this adapter */
1897                 dfx_int_common(dev);
1898
1899                 /* Clear PDQ interrupt status bit and reenable interrupts */
1900                 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1901                                     PFI_STATUS_M_PDQ_INT);
1902                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1903                                     (PFI_MODE_M_PDQ_INT_ENB |
1904                                      PFI_MODE_M_DMA_ENB));
1905
1906                 spin_unlock(&bp->lock);
1907         }
1908         if (dfx_bus_eisa) {
1909                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1910                 u8 status;
1911
1912                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1913                 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1914                         return IRQ_NONE;
1915
1916                 spin_lock(&bp->lock);
1917
1918                 /* Disable interrupts at the ESIC */
1919                 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1920                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1921
1922                 /* Call interrupt service routine for this adapter */
1923                 dfx_int_common(dev);
1924
1925                 /* Reenable interrupts at the ESIC */
1926                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1927                 status |= PI_CONFIG_STAT_0_M_INT_ENB;
1928                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1929
1930                 spin_unlock(&bp->lock);
1931         }
1932         if (dfx_bus_tc) {
1933                 u32 status;
1934
1935                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1936                 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1937                                 PI_PSTATUS_M_XMT_DATA_PENDING |
1938                                 PI_PSTATUS_M_SMT_HOST_PENDING |
1939                                 PI_PSTATUS_M_UNSOL_PENDING |
1940                                 PI_PSTATUS_M_CMD_RSP_PENDING |
1941                                 PI_PSTATUS_M_CMD_REQ_PENDING |
1942                                 PI_PSTATUS_M_TYPE_0_PENDING)))
1943                         return IRQ_NONE;
1944
1945                 spin_lock(&bp->lock);
1946
1947                 /* Call interrupt service routine for this adapter */
1948                 dfx_int_common(dev);
1949
1950                 spin_unlock(&bp->lock);
1951         }
1952
1953         return IRQ_HANDLED;
1954 }
1955
1956
1957 /*
1958  * =====================
1959  * = dfx_ctl_get_stats =
1960  * =====================
1961  *
1962  * Overview:
1963  *   Get statistics for FDDI adapter
1964  *
1965  * Returns:
1966  *   Pointer to FDDI statistics structure
1967  *
1968  * Arguments:
1969  *   dev - pointer to device information
1970  *
1971  * Functional Description:
1972  *   Gets current MIB objects from adapter, then
1973  *   returns FDDI statistics structure as defined
1974  *   in if_fddi.h.
1975  *
1976  *   Note: Since the FDDI statistics structure is
1977  *   still new and the device structure doesn't
1978  *   have an FDDI-specific get statistics handler,
1979  *   we'll return the FDDI statistics structure as
1980  *   a pointer to an Ethernet statistics structure.
1981  *   That way, at least the first part of the statistics
1982  *   structure can be decoded properly, and it allows
1983  *   "smart" applications to perform a second cast to
1984  *   decode the FDDI-specific statistics.
1985  *
1986  *   We'll have to pay attention to this routine as the
1987  *   device structure becomes more mature and LAN media
1988  *   independent.
1989  *
1990  * Return Codes:
1991  *   None
1992  *
1993  * Assumptions:
1994  *   None
1995  *
1996  * Side Effects:
1997  *   None
1998  */
1999
2000 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2001         {
2002         DFX_board_t *bp = netdev_priv(dev);
2003
2004         /* Fill the bp->stats structure with driver-maintained counters */
2005
2006         bp->stats.gen.rx_packets = bp->rcv_total_frames;
2007         bp->stats.gen.tx_packets = bp->xmt_total_frames;
2008         bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2009         bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2010         bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2011                                    bp->rcv_frame_status_errors +
2012                                    bp->rcv_length_errors;
2013         bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2014         bp->stats.gen.rx_dropped = bp->rcv_discards;
2015         bp->stats.gen.tx_dropped = bp->xmt_discards;
2016         bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2017         bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
2018
2019         /* Get FDDI SMT MIB objects */
2020
2021         bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2022         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2023                 return (struct net_device_stats *)&bp->stats;
2024
2025         /* Fill the bp->stats structure with the SMT MIB object values */
2026
2027         memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2028         bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2029         bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2030         bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2031         memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2032         bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2033         bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2034         bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2035         bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2036         bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2037         bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2038         bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2039         bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2040         bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2041         bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2042         bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2043         bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2044         bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2045         bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2046         bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2047         bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2048         bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2049         bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2050         bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2051         bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2052         bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2053         bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2054         bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2055         bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2056         memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2057         memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2058         memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2059         memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2060         bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2061         bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2062         bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2063         memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2064         bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2065         bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2066         bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2067         bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2068         bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2069         bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2070         bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2071         bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2072         bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2073         bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2074         bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2075         bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2076         bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2077         bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2078         bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2079         bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2080         memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2081         bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2082         bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2083         bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2084         bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2085         bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2086         bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2087         bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2088         bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2089         bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2090         bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2091         memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2092         memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2093         bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2094         bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2095         bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2096         bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2097         bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2098         bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2099         bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2100         bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2101         bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2102         bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2103         bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2104         bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2105         bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2106         bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2107         bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2108         bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2109         bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2110         bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2111         bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2112         bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2113         bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2114         bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2115         bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2116         bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2117         bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2118         bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2119
2120         /* Get FDDI counters */
2121
2122         bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2123         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2124                 return (struct net_device_stats *)&bp->stats;
2125
2126         /* Fill the bp->stats structure with the FDDI counter values */
2127
2128         bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2129         bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2130         bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2131         bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2132         bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2133         bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2134         bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2135         bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2136         bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2137         bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2138         bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2139
2140         return (struct net_device_stats *)&bp->stats;
2141         }
2142
2143
2144 /*
2145  * ==============================
2146  * = dfx_ctl_set_multicast_list =
2147  * ==============================
2148  *
2149  * Overview:
2150  *   Enable/Disable LLC frame promiscuous mode reception
2151  *   on the adapter and/or update multicast address table.
2152  *
2153  * Returns:
2154  *   None
2155  *
2156  * Arguments:
2157  *   dev - pointer to device information
2158  *
2159  * Functional Description:
2160  *   This routine follows a fairly simple algorithm for setting the
2161  *   adapter filters and CAM:
2162  *
2163  *              if IFF_PROMISC flag is set
2164  *                      enable LLC individual/group promiscuous mode
2165  *              else
2166  *                      disable LLC individual/group promiscuous mode
2167  *                      if number of incoming multicast addresses >
2168  *                                      (CAM max size - number of unicast addresses in CAM)
2169  *                              enable LLC group promiscuous mode
2170  *                              set driver-maintained multicast address count to zero
2171  *                      else
2172  *                              disable LLC group promiscuous mode
2173  *                              set driver-maintained multicast address count to incoming count
2174  *                      update adapter CAM
2175  *              update adapter filters
2176  *
2177  * Return Codes:
2178  *   None
2179  *
2180  * Assumptions:
2181  *   Multicast addresses are presented in canonical (LSB) format.
2182  *
2183  * Side Effects:
2184  *   On-board adapter CAM and filters are updated.
2185  */
2186
2187 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2188 {
2189         DFX_board_t *bp = netdev_priv(dev);
2190         int                                     i;                      /* used as index in for loop */
2191         struct netdev_hw_addr *ha;
2192
2193         /* Enable LLC frame promiscuous mode, if necessary */
2194
2195         if (dev->flags & IFF_PROMISC)
2196                 bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
2197
2198         /* Else, update multicast address table */
2199
2200         else
2201                 {
2202                 bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
2203                 /*
2204                  * Check whether incoming multicast address count exceeds table size
2205                  *
2206                  * Note: The adapters utilize an on-board 64 entry CAM for
2207                  *       supporting perfect filtering of multicast packets
2208                  *               and bridge functions when adding unicast addresses.
2209                  *               There is no hash function available.  To support
2210                  *               additional multicast addresses, the all multicast
2211                  *               filter (LLC group promiscuous mode) must be enabled.
2212                  *
2213                  *               The firmware reserves two CAM entries for SMT-related
2214                  *               multicast addresses, which leaves 62 entries available.
2215                  *               The following code ensures that we're not being asked
2216                  *               to add more than 62 addresses to the CAM.  If we are,
2217                  *               the driver will enable the all multicast filter.
2218                  *               Should the number of multicast addresses drop below
2219                  *               the high water mark, the filter will be disabled and
2220                  *               perfect filtering will be used.
2221                  */
2222
2223                 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2224                         {
2225                         bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2226                         bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2227                         }
2228                 else
2229                         {
2230                         bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
2231                         bp->mc_count    = netdev_mc_count(dev);         /* Add mc addrs to CAM */
2232                         }
2233
2234                 /* Copy addresses to multicast address table, then update adapter CAM */
2235
2236                 i = 0;
2237                 netdev_for_each_mc_addr(ha, dev)
2238                         memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2239                                ha->addr, FDDI_K_ALEN);
2240
2241                 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2242                         {
2243                         DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2244                         }
2245                 else
2246                         {
2247                         DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2248                         }
2249                 }
2250
2251         /* Update adapter filters */
2252
2253         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2254                 {
2255                 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2256                 }
2257         else
2258                 {
2259                 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2260                 }
2261         }
2262
2263
2264 /*
2265  * ===========================
2266  * = dfx_ctl_set_mac_address =
2267  * ===========================
2268  *
2269  * Overview:
2270  *   Add node address override (unicast address) to adapter
2271  *   CAM and update dev_addr field in device table.
2272  *
2273  * Returns:
2274  *   None
2275  *
2276  * Arguments:
2277  *   dev  - pointer to device information
2278  *   addr - pointer to sockaddr structure containing unicast address to add
2279  *
2280  * Functional Description:
2281  *   The adapter supports node address overrides by adding one or more
2282  *   unicast addresses to the adapter CAM.  This is similar to adding
2283  *   multicast addresses.  In this routine we'll update the driver and
2284  *   device structures with the new address, then update the adapter CAM
2285  *   to ensure that the adapter will copy and strip frames destined and
2286  *   sourced by that address.
2287  *
2288  * Return Codes:
2289  *   Always returns zero.
2290  *
2291  * Assumptions:
2292  *   The address pointed to by addr->sa_data is a valid unicast
2293  *   address and is presented in canonical (LSB) format.
2294  *
2295  * Side Effects:
2296  *   On-board adapter CAM is updated.  On-board adapter filters
2297  *   may be updated.
2298  */
2299
2300 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2301         {
2302         struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2303         DFX_board_t *bp = netdev_priv(dev);
2304
2305         /* Copy unicast address to driver-maintained structs and update count */
2306
2307         memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);        /* update device struct */
2308         memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
2309         bp->uc_count = 1;
2310
2311         /*
2312          * Verify we're not exceeding the CAM size by adding unicast address
2313          *
2314          * Note: It's possible that before entering this routine we've
2315          *       already filled the CAM with 62 multicast addresses.
2316          *               Since we need to place the node address override into
2317          *               the CAM, we have to check to see that we're not
2318          *               exceeding the CAM size.  If we are, we have to enable
2319          *               the LLC group (multicast) promiscuous mode filter as
2320          *               in dfx_ctl_set_multicast_list.
2321          */
2322
2323         if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2324                 {
2325                 bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2326                 bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2327
2328                 /* Update adapter filters */
2329
2330                 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2331                         {
2332                         DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2333                         }
2334                 else
2335                         {
2336                         DBG_printk("%s: Adapter filters updated!\n", dev->name);
2337                         }
2338                 }
2339
2340         /* Update adapter CAM with new unicast address */
2341
2342         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2343                 {
2344                 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2345                 }
2346         else
2347                 {
2348                 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2349                 }
2350         return 0;                       /* always return zero */
2351         }
2352
2353
2354 /*
2355  * ======================
2356  * = dfx_ctl_update_cam =
2357  * ======================
2358  *
2359  * Overview:
2360  *   Procedure to update adapter CAM (Content Addressable Memory)
2361  *   with desired unicast and multicast address entries.
2362  *
2363  * Returns:
2364  *   Condition code
2365  *
2366  * Arguments:
2367  *   bp - pointer to board information
2368  *
2369  * Functional Description:
2370  *   Updates adapter CAM with current contents of board structure
2371  *   unicast and multicast address tables.  Since there are only 62
2372  *   free entries in CAM, this routine ensures that the command
2373  *   request buffer is not overrun.
2374  *
2375  * Return Codes:
2376  *   DFX_K_SUCCESS - Request succeeded
2377  *   DFX_K_FAILURE - Request failed
2378  *
2379  * Assumptions:
2380  *   All addresses being added (unicast and multicast) are in canonical
2381  *   order.
2382  *
2383  * Side Effects:
2384  *   On-board adapter CAM is updated.
2385  */
2386
2387 static int dfx_ctl_update_cam(DFX_board_t *bp)
2388         {
2389         int                     i;                              /* used as index */
2390         PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
2391
2392         /*
2393          * Fill in command request information
2394          *
2395          * Note: Even though both the unicast and multicast address
2396          *       table entries are stored as contiguous 6 byte entries,
2397          *               the firmware address filter set command expects each
2398          *               entry to be two longwords (8 bytes total).  We must be
2399          *               careful to only copy the six bytes of each unicast and
2400          *               multicast table entry into each command entry.  This
2401          *               is also why we must first clear the entire command
2402          *               request buffer.
2403          */
2404
2405         memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
2406         bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2407         p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2408
2409         /* Now add unicast addresses to command request buffer, if any */
2410
2411         for (i=0; i < (int)bp->uc_count; i++)
2412                 {
2413                 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2414                         {
2415                         memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2416                         p_addr++;                       /* point to next command entry */
2417                         }
2418                 }
2419
2420         /* Now add multicast addresses to command request buffer, if any */
2421
2422         for (i=0; i < (int)bp->mc_count; i++)
2423                 {
2424                 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2425                         {
2426                         memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2427                         p_addr++;                       /* point to next command entry */
2428                         }
2429                 }
2430
2431         /* Issue command to update adapter CAM, then return */
2432
2433         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2434                 return DFX_K_FAILURE;
2435         return DFX_K_SUCCESS;
2436         }
2437
2438
2439 /*
2440  * ==========================
2441  * = dfx_ctl_update_filters =
2442  * ==========================
2443  *
2444  * Overview:
2445  *   Procedure to update adapter filters with desired
2446  *   filter settings.
2447  *
2448  * Returns:
2449  *   Condition code
2450  *
2451  * Arguments:
2452  *   bp - pointer to board information
2453  *
2454  * Functional Description:
2455  *   Enables or disables filter using current filter settings.
2456  *
2457  * Return Codes:
2458  *   DFX_K_SUCCESS - Request succeeded.
2459  *   DFX_K_FAILURE - Request failed.
2460  *
2461  * Assumptions:
2462  *   We must always pass up packets destined to the broadcast
2463  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2464  *   broadcast filter enabled.
2465  *
2466  * Side Effects:
2467  *   On-board adapter filters are updated.
2468  */
2469
2470 static int dfx_ctl_update_filters(DFX_board_t *bp)
2471         {
2472         int     i = 0;                                  /* used as index */
2473
2474         /* Fill in command request information */
2475
2476         bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2477
2478         /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2479
2480         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
2481         bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
2482
2483         /* Initialize LLC Individual/Group Promiscuous filter */
2484
2485         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
2486         bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
2487
2488         /* Initialize LLC Group Promiscuous filter */
2489
2490         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
2491         bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
2492
2493         /* Terminate the item code list */
2494
2495         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
2496
2497         /* Issue command to update adapter filters, then return */
2498
2499         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2500                 return DFX_K_FAILURE;
2501         return DFX_K_SUCCESS;
2502         }
2503
2504
2505 /*
2506  * ======================
2507  * = dfx_hw_dma_cmd_req =
2508  * ======================
2509  *
2510  * Overview:
2511  *   Sends PDQ DMA command to adapter firmware
2512  *
2513  * Returns:
2514  *   Condition code
2515  *
2516  * Arguments:
2517  *   bp - pointer to board information
2518  *
2519  * Functional Description:
2520  *   The command request and response buffers are posted to the adapter in the manner
2521  *   described in the PDQ Port Specification:
2522  *
2523  *              1. Command Response Buffer is posted to adapter.
2524  *              2. Command Request Buffer is posted to adapter.
2525  *              3. Command Request consumer index is polled until it indicates that request
2526  *         buffer has been DMA'd to adapter.
2527  *              4. Command Response consumer index is polled until it indicates that response
2528  *         buffer has been DMA'd from adapter.
2529  *
2530  *   This ordering ensures that a response buffer is already available for the firmware
2531  *   to use once it's done processing the request buffer.
2532  *
2533  * Return Codes:
2534  *   DFX_K_SUCCESS        - DMA command succeeded
2535  *       DFX_K_OUTSTATE   - Adapter is NOT in proper state
2536  *   DFX_K_HW_TIMEOUT - DMA command timed out
2537  *
2538  * Assumptions:
2539  *   Command request buffer has already been filled with desired DMA command.
2540  *
2541  * Side Effects:
2542  *   None
2543  */
2544
2545 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2546         {
2547         int status;                     /* adapter status */
2548         int timeout_cnt;        /* used in for loops */
2549
2550         /* Make sure the adapter is in a state that we can issue the DMA command in */
2551
2552         status = dfx_hw_adap_state_rd(bp);
2553         if ((status == PI_STATE_K_RESET)                ||
2554                 (status == PI_STATE_K_HALTED)           ||
2555                 (status == PI_STATE_K_DMA_UNAVAIL)      ||
2556                 (status == PI_STATE_K_UPGRADE))
2557                 return DFX_K_OUTSTATE;
2558
2559         /* Put response buffer on the command response queue */
2560
2561         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2562                         ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2563         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2564
2565         /* Bump (and wrap) the producer index and write out to register */
2566
2567         bp->cmd_rsp_reg.index.prod += 1;
2568         bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2569         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2570
2571         /* Put request buffer on the command request queue */
2572
2573         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2574                         PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2575         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2576
2577         /* Bump (and wrap) the producer index and write out to register */
2578
2579         bp->cmd_req_reg.index.prod += 1;
2580         bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2581         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2582
2583         /*
2584          * Here we wait for the command request consumer index to be equal
2585          * to the producer, indicating that the adapter has DMAed the request.
2586          */
2587
2588         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2589                 {
2590                 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2591                         break;
2592                 udelay(100);                    /* wait for 100 microseconds */
2593                 }
2594         if (timeout_cnt == 0)
2595                 return DFX_K_HW_TIMEOUT;
2596
2597         /* Bump (and wrap) the completion index and write out to register */
2598
2599         bp->cmd_req_reg.index.comp += 1;
2600         bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2601         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2602
2603         /*
2604          * Here we wait for the command response consumer index to be equal
2605          * to the producer, indicating that the adapter has DMAed the response.
2606          */
2607
2608         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2609                 {
2610                 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2611                         break;
2612                 udelay(100);                    /* wait for 100 microseconds */
2613                 }
2614         if (timeout_cnt == 0)
2615                 return DFX_K_HW_TIMEOUT;
2616
2617         /* Bump (and wrap) the completion index and write out to register */
2618
2619         bp->cmd_rsp_reg.index.comp += 1;
2620         bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2621         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2622         return DFX_K_SUCCESS;
2623         }
2624
2625
2626 /*
2627  * ========================
2628  * = dfx_hw_port_ctrl_req =
2629  * ========================
2630  *
2631  * Overview:
2632  *   Sends PDQ port control command to adapter firmware
2633  *
2634  * Returns:
2635  *   Host data register value in host_data if ptr is not NULL
2636  *
2637  * Arguments:
2638  *   bp                 - pointer to board information
2639  *       command        - port control command
2640  *       data_a         - port data A register value
2641  *       data_b         - port data B register value
2642  *       host_data      - ptr to host data register value
2643  *
2644  * Functional Description:
2645  *   Send generic port control command to adapter by writing
2646  *   to various PDQ port registers, then polling for completion.
2647  *
2648  * Return Codes:
2649  *   DFX_K_SUCCESS        - port control command succeeded
2650  *   DFX_K_HW_TIMEOUT - port control command timed out
2651  *
2652  * Assumptions:
2653  *   None
2654  *
2655  * Side Effects:
2656  *   None
2657  */
2658
2659 static int dfx_hw_port_ctrl_req(
2660         DFX_board_t     *bp,
2661         PI_UINT32       command,
2662         PI_UINT32       data_a,
2663         PI_UINT32       data_b,
2664         PI_UINT32       *host_data
2665         )
2666
2667         {
2668         PI_UINT32       port_cmd;               /* Port Control command register value */
2669         int                     timeout_cnt;    /* used in for loops */
2670
2671         /* Set Command Error bit in command longword */
2672
2673         port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2674
2675         /* Issue port command to the adapter */
2676
2677         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2678         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2679         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2680
2681         /* Now wait for command to complete */
2682
2683         if (command == PI_PCTRL_M_BLAST_FLASH)
2684                 timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
2685         else
2686                 timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
2687
2688         for (; timeout_cnt > 0; timeout_cnt--)
2689                 {
2690                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2691                 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2692                         break;
2693                 udelay(100);                    /* wait for 100 microseconds */
2694                 }
2695         if (timeout_cnt == 0)
2696                 return DFX_K_HW_TIMEOUT;
2697
2698         /*
2699          * If the address of host_data is non-zero, assume caller has supplied a
2700          * non NULL pointer, and return the contents of the HOST_DATA register in
2701          * it.
2702          */
2703
2704         if (host_data != NULL)
2705                 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2706         return DFX_K_SUCCESS;
2707         }
2708
2709
2710 /*
2711  * =====================
2712  * = dfx_hw_adap_reset =
2713  * =====================
2714  *
2715  * Overview:
2716  *   Resets adapter
2717  *
2718  * Returns:
2719  *   None
2720  *
2721  * Arguments:
2722  *   bp   - pointer to board information
2723  *   type - type of reset to perform
2724  *
2725  * Functional Description:
2726  *   Issue soft reset to adapter by writing to PDQ Port Reset
2727  *   register.  Use incoming reset type to tell adapter what
2728  *   kind of reset operation to perform.
2729  *
2730  * Return Codes:
2731  *   None
2732  *
2733  * Assumptions:
2734  *   This routine merely issues a soft reset to the adapter.
2735  *   It is expected that after this routine returns, the caller
2736  *   will appropriately poll the Port Status register for the
2737  *   adapter to enter the proper state.
2738  *
2739  * Side Effects:
2740  *   Internal adapter registers are cleared.
2741  */
2742
2743 static void dfx_hw_adap_reset(
2744         DFX_board_t     *bp,
2745         PI_UINT32       type
2746         )
2747
2748         {
2749         /* Set Reset type and assert reset */
2750
2751         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
2752         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2753
2754         /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2755
2756         udelay(20);
2757
2758         /* Deassert reset */
2759
2760         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2761         }
2762
2763
2764 /*
2765  * ========================
2766  * = dfx_hw_adap_state_rd =
2767  * ========================
2768  *
2769  * Overview:
2770  *   Returns current adapter state
2771  *
2772  * Returns:
2773  *   Adapter state per PDQ Port Specification
2774  *
2775  * Arguments:
2776  *   bp - pointer to board information
2777  *
2778  * Functional Description:
2779  *   Reads PDQ Port Status register and returns adapter state.
2780  *
2781  * Return Codes:
2782  *   None
2783  *
2784  * Assumptions:
2785  *   None
2786  *
2787  * Side Effects:
2788  *   None
2789  */
2790
2791 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2792         {
2793         PI_UINT32 port_status;          /* Port Status register value */
2794
2795         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2796         return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2797         }
2798
2799
2800 /*
2801  * =====================
2802  * = dfx_hw_dma_uninit =
2803  * =====================
2804  *
2805  * Overview:
2806  *   Brings adapter to DMA_UNAVAILABLE state
2807  *
2808  * Returns:
2809  *   Condition code
2810  *
2811  * Arguments:
2812  *   bp   - pointer to board information
2813  *   type - type of reset to perform
2814  *
2815  * Functional Description:
2816  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2817  *              1. Set reset type bit in Port Data A Register then reset adapter.
2818  *              2. Check that adapter is in DMA_UNAVAILABLE state.
2819  *
2820  * Return Codes:
2821  *   DFX_K_SUCCESS        - adapter is in DMA_UNAVAILABLE state
2822  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2823  *
2824  * Assumptions:
2825  *   None
2826  *
2827  * Side Effects:
2828  *   Internal adapter registers are cleared.
2829  */
2830
2831 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2832         {
2833         int timeout_cnt;        /* used in for loops */
2834
2835         /* Set reset type bit and reset adapter */
2836
2837         dfx_hw_adap_reset(bp, type);
2838
2839         /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2840
2841         for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2842                 {
2843                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2844                         break;
2845                 udelay(100);                                    /* wait for 100 microseconds */
2846                 }
2847         if (timeout_cnt == 0)
2848                 return DFX_K_HW_TIMEOUT;
2849         return DFX_K_SUCCESS;
2850         }
2851
2852 /*
2853  *      Align an sk_buff to a boundary power of 2
2854  *
2855  */
2856 #ifdef DYNAMIC_BUFFERS
2857 static void my_skb_align(struct sk_buff *skb, int n)
2858 {
2859         unsigned long x = (unsigned long)skb->data;
2860         unsigned long v;
2861
2862         v = ALIGN(x, n);        /* Where we want to be */
2863
2864         skb_reserve(skb, v - x);
2865 }
2866 #endif
2867
2868 /*
2869  * ================
2870  * = dfx_rcv_init =
2871  * ================
2872  *
2873  * Overview:
2874  *   Produces buffers to adapter LLC Host receive descriptor block
2875  *
2876  * Returns:
2877  *   None
2878  *
2879  * Arguments:
2880  *   bp - pointer to board information
2881  *   get_buffers - non-zero if buffers to be allocated
2882  *
2883  * Functional Description:
2884  *   This routine can be called during dfx_adap_init() or during an adapter
2885  *       reset.  It initializes the descriptor block and produces all allocated
2886  *   LLC Host queue receive buffers.
2887  *
2888  * Return Codes:
2889  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2890  *   dynamic buffer allocation). If the buffer allocation failed, the
2891  *   already allocated buffers will not be released and the caller should do
2892  *   this.
2893  *
2894  * Assumptions:
2895  *   The PDQ has been reset and the adapter and driver maintained Type 2
2896  *   register indices are cleared.
2897  *
2898  * Side Effects:
2899  *   Receive buffers are posted to the adapter LLC queue and the adapter
2900  *   is notified.
2901  */
2902
2903 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2904         {
2905         int     i, j;                                   /* used in for loop */
2906
2907         /*
2908          *  Since each receive buffer is a single fragment of same length, initialize
2909          *  first longword in each receive descriptor for entire LLC Host descriptor
2910          *  block.  Also initialize second longword in each receive descriptor with
2911          *  physical address of receive buffer.  We'll always allocate receive
2912          *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2913          *  block and produce new receive buffers by simply updating the receive
2914          *  producer index.
2915          *
2916          *      Assumptions:
2917          *              To support all shipping versions of PDQ, the receive buffer size
2918          *              must be mod 128 in length and the physical address must be 128 byte
2919          *              aligned.  In other words, bits 0-6 of the length and address must
2920          *              be zero for the following descriptor field entries to be correct on
2921          *              all PDQ-based boards.  We guaranteed both requirements during
2922          *              driver initialization when we allocated memory for the receive buffers.
2923          */
2924
2925         if (get_buffers) {
2926 #ifdef DYNAMIC_BUFFERS
2927         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2928                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2929                 {
2930                         struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO);
2931                         if (!newskb)
2932                                 return -ENOMEM;
2933                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2934                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2935                         /*
2936                          * align to 128 bytes for compatibility with
2937                          * the old EISA boards.
2938                          */
2939
2940                         my_skb_align(newskb, 128);
2941                         bp->descr_block_virt->rcv_data[i + j].long_1 =
2942                                 (u32)dma_map_single(bp->bus_dev, newskb->data,
2943                                                     NEW_SKB_SIZE,
2944                                                     DMA_FROM_DEVICE);
2945                         /*
2946                          * p_rcv_buff_va is only used inside the
2947                          * kernel so we put the skb pointer here.
2948                          */
2949                         bp->p_rcv_buff_va[i+j] = (char *) newskb;
2950                 }
2951 #else
2952         for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2953                 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2954                         {
2955                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2956                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2957                         bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2958                         bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2959                         }
2960 #endif
2961         }
2962
2963         /* Update receive producer and Type 2 register */
2964
2965         bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2966         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2967         return 0;
2968         }
2969
2970
2971 /*
2972  * =========================
2973  * = dfx_rcv_queue_process =
2974  * =========================
2975  *
2976  * Overview:
2977  *   Process received LLC frames.
2978  *
2979  * Returns:
2980  *   None
2981  *
2982  * Arguments:
2983  *   bp - pointer to board information
2984  *
2985  * Functional Description:
2986  *   Received LLC frames are processed until there are no more consumed frames.
2987  *   Once all frames are processed, the receive buffers are returned to the
2988  *   adapter.  Note that this algorithm fixes the length of time that can be spent
2989  *   in this routine, because there are a fixed number of receive buffers to
2990  *   process and buffers are not produced until this routine exits and returns
2991  *   to the ISR.
2992  *
2993  * Return Codes:
2994  *   None
2995  *
2996  * Assumptions:
2997  *   None
2998  *
2999  * Side Effects:
3000  *   None
3001  */
3002
3003 static void dfx_rcv_queue_process(
3004         DFX_board_t *bp
3005         )
3006
3007         {
3008         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3009         char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
3010         u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
3011         struct sk_buff          *skb;                           /* pointer to a sk_buff to hold incoming packet data */
3012
3013         /* Service all consumed LLC receive frames */
3014
3015         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3016         while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3017                 {
3018                 /* Process any errors */
3019
3020                 int entry;
3021
3022                 entry = bp->rcv_xmt_reg.index.rcv_comp;
3023 #ifdef DYNAMIC_BUFFERS
3024                 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3025 #else
3026                 p_buff = bp->p_rcv_buff_va[entry];
3027 #endif
3028                 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3029
3030                 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3031                         {
3032                         if (descr & PI_FMC_DESCR_M_RCC_CRC)
3033                                 bp->rcv_crc_errors++;
3034                         else
3035                                 bp->rcv_frame_status_errors++;
3036                         }
3037                 else
3038                 {
3039                         int rx_in_place = 0;
3040
3041                         /* The frame was received without errors - verify packet length */
3042
3043                         pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3044                         pkt_len -= 4;                           /* subtract 4 byte CRC */
3045                         if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3046                                 bp->rcv_length_errors++;
3047                         else{
3048 #ifdef DYNAMIC_BUFFERS
3049                                 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3050                                         struct sk_buff *newskb;
3051
3052                                         newskb = dev_alloc_skb(NEW_SKB_SIZE);
3053                                         if (newskb){
3054                                                 rx_in_place = 1;
3055
3056                                                 my_skb_align(newskb, 128);
3057                                                 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3058                                                 dma_unmap_single(bp->bus_dev,
3059                                                         bp->descr_block_virt->rcv_data[entry].long_1,
3060                                                         NEW_SKB_SIZE,
3061                                                         DMA_FROM_DEVICE);
3062                                                 skb_reserve(skb, RCV_BUFF_K_PADDING);
3063                                                 bp->p_rcv_buff_va[entry] = (char *)newskb;
3064                                                 bp->descr_block_virt->rcv_data[entry].long_1 =
3065                                                         (u32)dma_map_single(bp->bus_dev,
3066                                                                 newskb->data,
3067                                                                 NEW_SKB_SIZE,
3068                                                                 DMA_FROM_DEVICE);
3069                                         } else
3070                                                 skb = NULL;
3071                                 } else
3072 #endif
3073                                         skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
3074                                 if (skb == NULL)
3075                                         {
3076                                         printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3077                                         bp->rcv_discards++;
3078                                         break;
3079                                         }
3080                                 else {
3081                                         if (!rx_in_place) {
3082                                                 /* Receive buffer allocated, pass receive packet up */
3083
3084                                                 skb_copy_to_linear_data(skb,
3085                                                                p_buff + RCV_BUFF_K_PADDING,
3086                                                                pkt_len + 3);
3087                                         }
3088
3089                                         skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
3090                                         skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
3091                                         skb->protocol = fddi_type_trans(skb, bp->dev);
3092                                         bp->rcv_total_bytes += skb->len;
3093                                         netif_rx(skb);
3094
3095                                         /* Update the rcv counters */
3096                                         bp->rcv_total_frames++;
3097                                         if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3098                                                 bp->rcv_multicast_frames++;
3099                                 }
3100                         }
3101                         }
3102
3103                 /*
3104                  * Advance the producer (for recycling) and advance the completion
3105                  * (for servicing received frames).  Note that it is okay to
3106                  * advance the producer without checking that it passes the
3107                  * completion index because they are both advanced at the same
3108                  * rate.
3109                  */
3110
3111                 bp->rcv_xmt_reg.index.rcv_prod += 1;
3112                 bp->rcv_xmt_reg.index.rcv_comp += 1;
3113                 }
3114         }
3115
3116
3117 /*
3118  * =====================
3119  * = dfx_xmt_queue_pkt =
3120  * =====================
3121  *
3122  * Overview:
3123  *   Queues packets for transmission
3124  *
3125  * Returns:
3126  *   Condition code
3127  *
3128  * Arguments:
3129  *   skb - pointer to sk_buff to queue for transmission
3130  *   dev - pointer to device information
3131  *
3132  * Functional Description:
3133  *   Here we assume that an incoming skb transmit request
3134  *   is contained in a single physically contiguous buffer
3135  *   in which the virtual address of the start of packet
3136  *   (skb->data) can be converted to a physical address
3137  *   by using pci_map_single().
3138  *
3139  *   Since the adapter architecture requires a three byte
3140  *   packet request header to prepend the start of packet,
3141  *   we'll write the three byte field immediately prior to
3142  *   the FC byte.  This assumption is valid because we've
3143  *   ensured that dev->hard_header_len includes three pad
3144  *   bytes.  By posting a single fragment to the adapter,
3145  *   we'll reduce the number of descriptor fetches and
3146  *   bus traffic needed to send the request.
3147  *
3148  *   Also, we can't free the skb until after it's been DMA'd
3149  *   out by the adapter, so we'll queue it in the driver and
3150  *   return it in dfx_xmt_done.
3151  *
3152  * Return Codes:
3153  *   0 - driver queued packet, link is unavailable, or skbuff was bad
3154  *       1 - caller should requeue the sk_buff for later transmission
3155  *
3156  * Assumptions:
3157  *       First and foremost, we assume the incoming skb pointer
3158  *   is NOT NULL and is pointing to a valid sk_buff structure.
3159  *
3160  *   The outgoing packet is complete, starting with the
3161  *   frame control byte including the last byte of data,
3162  *   but NOT including the 4 byte CRC.  We'll let the
3163  *   adapter hardware generate and append the CRC.
3164  *
3165  *   The entire packet is stored in one physically
3166  *   contiguous buffer which is not cached and whose
3167  *   32-bit physical address can be determined.
3168  *
3169  *   It's vital that this routine is NOT reentered for the
3170  *   same board and that the OS is not in another section of
3171  *   code (eg. dfx_int_common) for the same board on a
3172  *   different thread.
3173  *
3174  * Side Effects:
3175  *   None
3176  */
3177
3178 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3179                                      struct net_device *dev)
3180         {
3181         DFX_board_t             *bp = netdev_priv(dev);
3182         u8                      prod;                           /* local transmit producer index */
3183         PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
3184         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3185         unsigned long           flags;
3186
3187         netif_stop_queue(dev);
3188
3189         /*
3190          * Verify that incoming transmit request is OK
3191          *
3192          * Note: The packet size check is consistent with other
3193          *               Linux device drivers, although the correct packet
3194          *               size should be verified before calling the
3195          *               transmit routine.
3196          */
3197
3198         if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3199         {
3200                 printk("%s: Invalid packet length - %u bytes\n",
3201                         dev->name, skb->len);
3202                 bp->xmt_length_errors++;                /* bump error counter */
3203                 netif_wake_queue(dev);
3204                 dev_kfree_skb(skb);
3205                 return NETDEV_TX_OK;                    /* return "success" */
3206         }
3207         /*
3208          * See if adapter link is available, if not, free buffer
3209          *
3210          * Note: If the link isn't available, free buffer and return 0
3211          *               rather than tell the upper layer to requeue the packet.
3212          *               The methodology here is that by the time the link
3213          *               becomes available, the packet to be sent will be
3214          *               fairly stale.  By simply dropping the packet, the
3215          *               higher layer protocols will eventually time out
3216          *               waiting for response packets which it won't receive.
3217          */
3218
3219         if (bp->link_available == PI_K_FALSE)
3220                 {
3221                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
3222                         bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
3223                 else
3224                         {
3225                         bp->xmt_discards++;                                     /* bump error counter */
3226                         dev_kfree_skb(skb);             /* free sk_buff now */
3227                         netif_wake_queue(dev);
3228                         return NETDEV_TX_OK;            /* return "success" */
3229                         }
3230                 }
3231
3232         spin_lock_irqsave(&bp->lock, flags);
3233
3234         /* Get the current producer and the next free xmt data descriptor */
3235
3236         prod            = bp->rcv_xmt_reg.index.xmt_prod;
3237         p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3238
3239         /*
3240          * Get pointer to auxiliary queue entry to contain information
3241          * for this packet.
3242          *
3243          * Note: The current xmt producer index will become the
3244          *       current xmt completion index when we complete this
3245          *       packet later on.  So, we'll get the pointer to the
3246          *       next auxiliary queue entry now before we bump the
3247          *       producer index.
3248          */
3249
3250         p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
3251
3252         /* Write the three PRH bytes immediately before the FC byte */
3253
3254         skb_push(skb,3);
3255         skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
3256         skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
3257         skb->data[2] = DFX_PRH2_BYTE;   /* specification */
3258
3259         /*
3260          * Write the descriptor with buffer info and bump producer
3261          *
3262          * Note: Since we need to start DMA from the packet request
3263          *               header, we'll add 3 bytes to the DMA buffer length,
3264          *               and we'll determine the physical address of the
3265          *               buffer from the PRH, not skb->data.
3266          *
3267          * Assumptions:
3268          *               1. Packet starts with the frame control (FC) byte
3269          *                  at skb->data.
3270          *               2. The 4-byte CRC is not appended to the buffer or
3271          *                      included in the length.
3272          *               3. Packet length (skb->len) is from FC to end of
3273          *                      data, inclusive.
3274          *               4. The packet length does not exceed the maximum
3275          *                      FDDI LLC frame length of 4491 bytes.
3276          *               5. The entire packet is contained in a physically
3277          *                      contiguous, non-cached, locked memory space
3278          *                      comprised of a single buffer pointed to by
3279          *                      skb->data.
3280          *               6. The physical address of the start of packet
3281          *                      can be determined from the virtual address
3282          *                      by using pci_map_single() and is only 32-bits
3283          *                      wide.
3284          */
3285
3286         p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3287         p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3288                                                   skb->len, DMA_TO_DEVICE);
3289
3290         /*
3291          * Verify that descriptor is actually available
3292          *
3293          * Note: If descriptor isn't available, return 1 which tells
3294          *       the upper layer to requeue the packet for later
3295          *       transmission.
3296          *
3297          *       We need to ensure that the producer never reaches the
3298          *       completion, except to indicate that the queue is empty.
3299          */
3300
3301         if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3302         {
3303                 skb_pull(skb,3);
3304                 spin_unlock_irqrestore(&bp->lock, flags);
3305                 return NETDEV_TX_BUSY;  /* requeue packet for later */
3306         }
3307
3308         /*
3309          * Save info for this packet for xmt done indication routine
3310          *
3311          * Normally, we'd save the producer index in the p_xmt_drv_descr
3312          * structure so that we'd have it handy when we complete this
3313          * packet later (in dfx_xmt_done).  However, since the current
3314          * transmit architecture guarantees a single fragment for the
3315          * entire packet, we can simply bump the completion index by
3316          * one (1) for each completed packet.
3317          *
3318          * Note: If this assumption changes and we're presented with
3319          *       an inconsistent number of transmit fragments for packet
3320          *       data, we'll need to modify this code to save the current
3321          *       transmit producer index.
3322          */
3323
3324         p_xmt_drv_descr->p_skb = skb;
3325
3326         /* Update Type 2 register */
3327
3328         bp->rcv_xmt_reg.index.xmt_prod = prod;
3329         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3330         spin_unlock_irqrestore(&bp->lock, flags);
3331         netif_wake_queue(dev);
3332         return NETDEV_TX_OK;    /* packet queued to adapter */
3333         }
3334
3335
3336 /*
3337  * ================
3338  * = dfx_xmt_done =
3339  * ================
3340  *
3341  * Overview:
3342  *   Processes all frames that have been transmitted.
3343  *
3344  * Returns:
3345  *   None
3346  *
3347  * Arguments:
3348  *   bp - pointer to board information
3349  *
3350  * Functional Description:
3351  *   For all consumed transmit descriptors that have not
3352  *   yet been completed, we'll free the skb we were holding
3353  *   onto using dev_kfree_skb and bump the appropriate
3354  *   counters.
3355  *
3356  * Return Codes:
3357  *   None
3358  *
3359  * Assumptions:
3360  *   The Type 2 register is not updated in this routine.  It is
3361  *   assumed that it will be updated in the ISR when dfx_xmt_done
3362  *   returns.
3363  *
3364  * Side Effects:
3365  *   None
3366  */
3367
3368 static int dfx_xmt_done(DFX_board_t *bp)
3369         {
3370         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3371         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3372         u8                      comp;                   /* local transmit completion index */
3373         int                     freed = 0;              /* buffers freed */
3374
3375         /* Service all consumed transmit frames */
3376
3377         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3378         while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3379                 {
3380                 /* Get pointer to the transmit driver descriptor block information */
3381
3382                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3383
3384                 /* Increment transmit counters */
3385
3386                 bp->xmt_total_frames++;
3387                 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3388
3389                 /* Return skb to operating system */
3390                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3391                 dma_unmap_single(bp->bus_dev,
3392                                  bp->descr_block_virt->xmt_data[comp].long_1,
3393                                  p_xmt_drv_descr->p_skb->len,
3394                                  DMA_TO_DEVICE);
3395                 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3396
3397                 /*
3398                  * Move to start of next packet by updating completion index
3399                  *
3400                  * Here we assume that a transmit packet request is always
3401                  * serviced by posting one fragment.  We can therefore
3402                  * simplify the completion code by incrementing the
3403                  * completion index by one.  This code will need to be
3404                  * modified if this assumption changes.  See comments
3405                  * in dfx_xmt_queue_pkt for more details.
3406                  */
3407
3408                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3409                 freed++;
3410                 }
3411         return freed;
3412         }
3413
3414
3415 /*
3416  * =================
3417  * = dfx_rcv_flush =
3418  * =================
3419  *
3420  * Overview:
3421  *   Remove all skb's in the receive ring.
3422  *
3423  * Returns:
3424  *   None
3425  *
3426  * Arguments:
3427  *   bp - pointer to board information
3428  *
3429  * Functional Description:
3430  *   Free's all the dynamically allocated skb's that are
3431  *   currently attached to the device receive ring. This
3432  *   function is typically only used when the device is
3433  *   initialized or reinitialized.
3434  *
3435  * Return Codes:
3436  *   None
3437  *
3438  * Side Effects:
3439  *   None
3440  */
3441 #ifdef DYNAMIC_BUFFERS
3442 static void dfx_rcv_flush( DFX_board_t *bp )
3443         {
3444         int i, j;
3445
3446         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3447                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3448                 {
3449                         struct sk_buff *skb;
3450                         skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3451                         if (skb)
3452                                 dev_kfree_skb(skb);
3453                         bp->p_rcv_buff_va[i+j] = NULL;
3454                 }
3455
3456         }
3457 #endif /* DYNAMIC_BUFFERS */
3458
3459 /*
3460  * =================
3461  * = dfx_xmt_flush =
3462  * =================
3463  *
3464  * Overview:
3465  *   Processes all frames whether they've been transmitted
3466  *   or not.
3467  *
3468  * Returns:
3469  *   None
3470  *
3471  * Arguments:
3472  *   bp - pointer to board information
3473  *
3474  * Functional Description:
3475  *   For all produced transmit descriptors that have not
3476  *   yet been completed, we'll free the skb we were holding
3477  *   onto using dev_kfree_skb and bump the appropriate
3478  *   counters.  Of course, it's possible that some of
3479  *   these transmit requests actually did go out, but we
3480  *   won't make that distinction here.  Finally, we'll
3481  *   update the consumer index to match the producer.
3482  *
3483  * Return Codes:
3484  *   None
3485  *
3486  * Assumptions:
3487  *   This routine does NOT update the Type 2 register.  It
3488  *   is assumed that this routine is being called during a
3489  *   transmit flush interrupt, or a shutdown or close routine.
3490  *
3491  * Side Effects:
3492  *   None
3493  */
3494
3495 static void dfx_xmt_flush( DFX_board_t *bp )
3496         {
3497         u32                     prod_cons;              /* rcv/xmt consumer block longword */
3498         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3499         u8                      comp;                   /* local transmit completion index */
3500
3501         /* Flush all outstanding transmit frames */
3502
3503         while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3504                 {
3505                 /* Get pointer to the transmit driver descriptor block information */
3506
3507                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3508
3509                 /* Return skb to operating system */
3510                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3511                 dma_unmap_single(bp->bus_dev,
3512                                  bp->descr_block_virt->xmt_data[comp].long_1,
3513                                  p_xmt_drv_descr->p_skb->len,
3514                                  DMA_TO_DEVICE);
3515                 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3516
3517                 /* Increment transmit error counter */
3518
3519                 bp->xmt_discards++;
3520
3521                 /*
3522                  * Move to start of next packet by updating completion index
3523                  *
3524                  * Here we assume that a transmit packet request is always
3525                  * serviced by posting one fragment.  We can therefore
3526                  * simplify the completion code by incrementing the
3527                  * completion index by one.  This code will need to be
3528                  * modified if this assumption changes.  See comments
3529                  * in dfx_xmt_queue_pkt for more details.
3530                  */
3531
3532                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3533                 }
3534
3535         /* Update the transmit consumer index in the consumer block */
3536
3537         prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3538         prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3539         bp->cons_block_virt->xmt_rcv_data = prod_cons;
3540         }
3541
3542 /*
3543  * ==================
3544  * = dfx_unregister =
3545  * ==================
3546  *
3547  * Overview:
3548  *   Shuts down an FDDI controller
3549  *
3550  * Returns:
3551  *   Condition code
3552  *
3553  * Arguments:
3554  *   bdev - pointer to device information
3555  *
3556  * Functional Description:
3557  *
3558  * Return Codes:
3559  *   None
3560  *
3561  * Assumptions:
3562  *   It compiles so it should work :-( (PCI cards do :-)
3563  *
3564  * Side Effects:
3565  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3566  *   freed.
3567  */
3568 static void dfx_unregister(struct device *bdev)
3569 {
3570         struct net_device *dev = dev_get_drvdata(bdev);
3571         DFX_board_t *bp = netdev_priv(dev);
3572         int dfx_bus_pci = dev_is_pci(bdev);
3573         int dfx_bus_tc = DFX_BUS_TC(bdev);
3574         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3575         resource_size_t bar_start = 0;          /* pointer to port */
3576         resource_size_t bar_len = 0;            /* resource length */
3577         int             alloc_size;             /* total buffer size used */
3578
3579         unregister_netdev(dev);
3580
3581         alloc_size = sizeof(PI_DESCR_BLOCK) +
3582                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3583 #ifndef DYNAMIC_BUFFERS
3584                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3585 #endif
3586                      sizeof(PI_CONSUMER_BLOCK) +
3587                      (PI_ALIGN_K_DESC_BLK - 1);
3588         if (bp->kmalloced)
3589                 dma_free_coherent(bdev, alloc_size,
3590                                   bp->kmalloced, bp->kmalloced_dma);
3591
3592         dfx_bus_uninit(dev);
3593
3594         dfx_get_bars(bdev, &bar_start, &bar_len);
3595         if (dfx_use_mmio) {
3596                 iounmap(bp->base.mem);
3597                 release_mem_region(bar_start, bar_len);
3598         } else
3599                 release_region(bar_start, bar_len);
3600
3601         if (dfx_bus_pci)
3602                 pci_disable_device(to_pci_dev(bdev));
3603
3604         free_netdev(dev);
3605 }
3606
3607
3608 static int __maybe_unused dfx_dev_register(struct device *);
3609 static int __maybe_unused dfx_dev_unregister(struct device *);
3610
3611 #ifdef CONFIG_PCI
3612 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3613 static void dfx_pci_unregister(struct pci_dev *);
3614
3615 static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = {
3616         { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3617         { }
3618 };
3619 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3620
3621 static struct pci_driver dfx_pci_driver = {
3622         .name           = "defxx",
3623         .id_table       = dfx_pci_table,
3624         .probe          = dfx_pci_register,
3625         .remove         = dfx_pci_unregister,
3626 };
3627
3628 static int dfx_pci_register(struct pci_dev *pdev,
3629                             const struct pci_device_id *ent)
3630 {
3631         return dfx_register(&pdev->dev);
3632 }
3633
3634 static void dfx_pci_unregister(struct pci_dev *pdev)
3635 {
3636         dfx_unregister(&pdev->dev);
3637 }
3638 #endif /* CONFIG_PCI */
3639
3640 #ifdef CONFIG_EISA
3641 static struct eisa_device_id dfx_eisa_table[] = {
3642         { "DEC3001", DEFEA_PROD_ID_1 },
3643         { "DEC3002", DEFEA_PROD_ID_2 },
3644         { "DEC3003", DEFEA_PROD_ID_3 },
3645         { "DEC3004", DEFEA_PROD_ID_4 },
3646         { }
3647 };
3648 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3649
3650 static struct eisa_driver dfx_eisa_driver = {
3651         .id_table       = dfx_eisa_table,
3652         .driver         = {
3653                 .name   = "defxx",
3654                 .bus    = &eisa_bus_type,
3655                 .probe  = dfx_dev_register,
3656                 .remove = dfx_dev_unregister,
3657         },
3658 };
3659 #endif /* CONFIG_EISA */
3660
3661 #ifdef CONFIG_TC
3662 static struct tc_device_id const dfx_tc_table[] = {
3663         { "DEC     ", "PMAF-FA " },
3664         { "DEC     ", "PMAF-FD " },
3665         { "DEC     ", "PMAF-FS " },
3666         { "DEC     ", "PMAF-FU " },
3667         { }
3668 };
3669 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3670
3671 static struct tc_driver dfx_tc_driver = {
3672         .id_table       = dfx_tc_table,
3673         .driver         = {
3674                 .name   = "defxx",
3675                 .bus    = &tc_bus_type,
3676                 .probe  = dfx_dev_register,
3677                 .remove = dfx_dev_unregister,
3678         },
3679 };
3680 #endif /* CONFIG_TC */
3681
3682 static int __maybe_unused dfx_dev_register(struct device *dev)
3683 {
3684         int status;
3685
3686         status = dfx_register(dev);
3687         if (!status)
3688                 get_device(dev);
3689         return status;
3690 }
3691
3692 static int __maybe_unused dfx_dev_unregister(struct device *dev)
3693 {
3694         put_device(dev);
3695         dfx_unregister(dev);
3696         return 0;
3697 }
3698
3699
3700 static int dfx_init(void)
3701 {
3702         int status;
3703
3704         status = pci_register_driver(&dfx_pci_driver);
3705         if (!status)
3706                 status = eisa_driver_register(&dfx_eisa_driver);
3707         if (!status)
3708                 status = tc_register_driver(&dfx_tc_driver);
3709         return status;
3710 }
3711
3712 static void dfx_cleanup(void)
3713 {
3714         tc_unregister_driver(&dfx_tc_driver);
3715         eisa_driver_unregister(&dfx_eisa_driver);
3716         pci_unregister_driver(&dfx_pci_driver);
3717 }
3718
3719 module_init(dfx_init);
3720 module_exit(dfx_cleanup);
3721 MODULE_AUTHOR("Lawrence V. Stefani");
3722 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3723                    DRV_VERSION " " DRV_RELDATE);
3724 MODULE_LICENSE("GPL");