arm: sa1100: move irda header to linux/platform_data
[cascardo/linux.git] / drivers / net / irda / sa1100_ir.c
1 /*
2  *  linux/drivers/net/irda/sa1100_ir.c
3  *
4  *  Copyright (C) 2000-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  Infra-red driver for the StrongARM SA1100 embedded microprocessor
11  *
12  *  Note that we don't have to worry about the SA1111's DMA bugs in here,
13  *  so we use the straight forward dma_map_* functions with a null pointer.
14  *
15  *  This driver takes one kernel command line parameter, sa1100ir=, with
16  *  the following options:
17  *      max_rate:baudrate       - set the maximum baud rate
18  *      power_level:level       - set the transmitter power level
19  *      tx_lpm:0|1              - set transmit low power mode
20  */
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/types.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/netdevice.h>
27 #include <linux/slab.h>
28 #include <linux/rtnetlink.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/dmaengine.h>
34 #include <linux/sa11x0-dma.h>
35
36 #include <net/irda/irda.h>
37 #include <net/irda/wrapper.h>
38 #include <net/irda/irda_device.h>
39
40 #include <mach/hardware.h>
41 #include <linux/platform_data/irda-sa11x0.h>
42
43 static int power_level = 3;
44 static int tx_lpm;
45 static int max_rate = 4000000;
46
47 struct sa1100_buf {
48         struct device           *dev;
49         struct sk_buff          *skb;
50         struct scatterlist      sg;
51         struct dma_chan         *chan;
52         dma_cookie_t            cookie;
53 };
54
55 struct sa1100_irda {
56         unsigned char           utcr4;
57         unsigned char           power;
58         unsigned char           open;
59
60         int                     speed;
61         int                     newspeed;
62
63         struct sa1100_buf       dma_rx;
64         struct sa1100_buf       dma_tx;
65
66         struct device           *dev;
67         struct irda_platform_data *pdata;
68         struct irlap_cb         *irlap;
69         struct qos_info         qos;
70
71         iobuff_t                tx_buff;
72         iobuff_t                rx_buff;
73
74         int (*tx_start)(struct sk_buff *, struct net_device *, struct sa1100_irda *);
75         irqreturn_t (*irq)(struct net_device *, struct sa1100_irda *);
76 };
77
78 static int sa1100_irda_set_speed(struct sa1100_irda *, int);
79
80 #define IS_FIR(si)              ((si)->speed >= 4000000)
81
82 #define HPSIR_MAX_RXLEN         2047
83
84 static struct dma_slave_config sa1100_irda_sir_tx = {
85         .direction      = DMA_TO_DEVICE,
86         .dst_addr       = __PREG(Ser2UTDR),
87         .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
88         .dst_maxburst   = 4,
89 };
90
91 static struct dma_slave_config sa1100_irda_fir_rx = {
92         .direction      = DMA_FROM_DEVICE,
93         .src_addr       = __PREG(Ser2HSDR),
94         .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
95         .src_maxburst   = 8,
96 };
97
98 static struct dma_slave_config sa1100_irda_fir_tx = {
99         .direction      = DMA_TO_DEVICE,
100         .dst_addr       = __PREG(Ser2HSDR),
101         .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
102         .dst_maxburst   = 8,
103 };
104
105 static unsigned sa1100_irda_dma_xferred(struct sa1100_buf *buf)
106 {
107         struct dma_chan *chan = buf->chan;
108         struct dma_tx_state state;
109         enum dma_status status;
110
111         status = chan->device->device_tx_status(chan, buf->cookie, &state);
112         if (status != DMA_PAUSED)
113                 return 0;
114
115         return sg_dma_len(&buf->sg) - state.residue;
116 }
117
118 static int sa1100_irda_dma_request(struct device *dev, struct sa1100_buf *buf,
119         const char *name, struct dma_slave_config *cfg)
120 {
121         dma_cap_mask_t m;
122         int ret;
123
124         dma_cap_zero(m);
125         dma_cap_set(DMA_SLAVE, m);
126
127         buf->chan = dma_request_channel(m, sa11x0_dma_filter_fn, (void *)name);
128         if (!buf->chan) {
129                 dev_err(dev, "unable to request DMA channel for %s\n",
130                         name);
131                 return -ENOENT;
132         }
133
134         ret = dmaengine_slave_config(buf->chan, cfg);
135         if (ret)
136                 dev_warn(dev, "DMA slave_config for %s returned %d\n",
137                         name, ret);
138
139         buf->dev = buf->chan->device->dev;
140
141         return 0;
142 }
143
144 static void sa1100_irda_dma_start(struct sa1100_buf *buf,
145         enum dma_transfer_direction dir, dma_async_tx_callback cb, void *cb_p)
146 {
147         struct dma_async_tx_descriptor *desc;
148         struct dma_chan *chan = buf->chan;
149
150         desc = dmaengine_prep_slave_sg(chan, &buf->sg, 1, dir,
151                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
152         if (desc) {
153                 desc->callback = cb;
154                 desc->callback_param = cb_p;
155                 buf->cookie = dmaengine_submit(desc);
156                 dma_async_issue_pending(chan);
157         }
158 }
159
160 /*
161  * Allocate and map the receive buffer, unless it is already allocated.
162  */
163 static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
164 {
165         if (si->dma_rx.skb)
166                 return 0;
167
168         si->dma_rx.skb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
169         if (!si->dma_rx.skb) {
170                 printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
171                 return -ENOMEM;
172         }
173
174         /*
175          * Align any IP headers that may be contained
176          * within the frame.
177          */
178         skb_reserve(si->dma_rx.skb, 1);
179
180         sg_set_buf(&si->dma_rx.sg, si->dma_rx.skb->data, HPSIR_MAX_RXLEN);
181         if (dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE) == 0) {
182                 dev_kfree_skb_any(si->dma_rx.skb);
183                 return -ENOMEM;
184         }
185
186         return 0;
187 }
188
189 /*
190  * We want to get here as soon as possible, and get the receiver setup.
191  * We use the existing buffer.
192  */
193 static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
194 {
195         if (!si->dma_rx.skb) {
196                 printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
197                 return;
198         }
199
200         /*
201          * First empty receive FIFO
202          */
203         Ser2HSCR0 = HSCR0_HSSP;
204
205         /*
206          * Enable the DMA, receiver and receive interrupt.
207          */
208         dmaengine_terminate_all(si->dma_rx.chan);
209         sa1100_irda_dma_start(&si->dma_rx, DMA_DEV_TO_MEM, NULL, NULL);
210
211         Ser2HSCR0 = HSCR0_HSSP | HSCR0_RXE;
212 }
213
214 static void sa1100_irda_check_speed(struct sa1100_irda *si)
215 {
216         if (si->newspeed) {
217                 sa1100_irda_set_speed(si, si->newspeed);
218                 si->newspeed = 0;
219         }
220 }
221
222 /*
223  * HP-SIR format support.
224  */
225 static void sa1100_irda_sirtxdma_irq(void *id)
226 {
227         struct net_device *dev = id;
228         struct sa1100_irda *si = netdev_priv(dev);
229
230         dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE);
231         dev_kfree_skb(si->dma_tx.skb);
232         si->dma_tx.skb = NULL;
233
234         dev->stats.tx_packets++;
235         dev->stats.tx_bytes += sg_dma_len(&si->dma_tx.sg);
236
237         /* We need to ensure that the transmitter has finished. */
238         do
239                 rmb();
240         while (Ser2UTSR1 & UTSR1_TBY);
241
242         /*
243          * Ok, we've finished transmitting.  Now enable the receiver.
244          * Sometimes we get a receive IRQ immediately after a transmit...
245          */
246         Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
247         Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
248
249         sa1100_irda_check_speed(si);
250
251         /* I'm hungry! */
252         netif_wake_queue(dev);
253 }
254
255 static int sa1100_irda_sir_tx_start(struct sk_buff *skb, struct net_device *dev,
256         struct sa1100_irda *si)
257 {
258         si->tx_buff.data = si->tx_buff.head;
259         si->tx_buff.len  = async_wrap_skb(skb, si->tx_buff.data,
260                                           si->tx_buff.truesize);
261
262         si->dma_tx.skb = skb;
263         sg_set_buf(&si->dma_tx.sg, si->tx_buff.data, si->tx_buff.len);
264         if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) {
265                 si->dma_tx.skb = NULL;
266                 netif_wake_queue(dev);
267                 dev->stats.tx_dropped++;
268                 return NETDEV_TX_OK;
269         }
270
271         sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_sirtxdma_irq, dev);
272
273         /*
274          * The mean turn-around time is enforced by XBOF padding,
275          * so we don't have to do anything special here.
276          */
277         Ser2UTCR3 = UTCR3_TXE;
278
279         return NETDEV_TX_OK;
280 }
281
282 static irqreturn_t sa1100_irda_sir_irq(struct net_device *dev, struct sa1100_irda *si)
283 {
284         int status;
285
286         status = Ser2UTSR0;
287
288         /*
289          * Deal with any receive errors first.  The bytes in error may be
290          * the only bytes in the receive FIFO, so we do this first.
291          */
292         while (status & UTSR0_EIF) {
293                 int stat, data;
294
295                 stat = Ser2UTSR1;
296                 data = Ser2UTDR;
297
298                 if (stat & (UTSR1_FRE | UTSR1_ROR)) {
299                         dev->stats.rx_errors++;
300                         if (stat & UTSR1_FRE)
301                                 dev->stats.rx_frame_errors++;
302                         if (stat & UTSR1_ROR)
303                                 dev->stats.rx_fifo_errors++;
304                 } else
305                         async_unwrap_char(dev, &dev->stats, &si->rx_buff, data);
306
307                 status = Ser2UTSR0;
308         }
309
310         /*
311          * We must clear certain bits.
312          */
313         Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
314
315         if (status & UTSR0_RFS) {
316                 /*
317                  * There are at least 4 bytes in the FIFO.  Read 3 bytes
318                  * and leave the rest to the block below.
319                  */
320                 async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
321                 async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
322                 async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
323         }
324
325         if (status & (UTSR0_RFS | UTSR0_RID)) {
326                 /*
327                  * Fifo contains more than 1 character.
328                  */
329                 do {
330                         async_unwrap_char(dev, &dev->stats, &si->rx_buff,
331                                           Ser2UTDR);
332                 } while (Ser2UTSR1 & UTSR1_RNE);
333
334         }
335
336         return IRQ_HANDLED;
337 }
338
339 /*
340  * FIR format support.
341  */
342 static void sa1100_irda_firtxdma_irq(void *id)
343 {
344         struct net_device *dev = id;
345         struct sa1100_irda *si = netdev_priv(dev);
346         struct sk_buff *skb;
347
348         /*
349          * Wait for the transmission to complete.  Unfortunately,
350          * the hardware doesn't give us an interrupt to indicate
351          * "end of frame".
352          */
353         do
354                 rmb();
355         while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
356
357         /*
358          * Clear the transmit underrun bit.
359          */
360         Ser2HSSR0 = HSSR0_TUR;
361
362         /*
363          * Do we need to change speed?  Note that we're lazy
364          * here - we don't free the old dma_rx.skb.  We don't need
365          * to allocate a buffer either.
366          */
367         sa1100_irda_check_speed(si);
368
369         /*
370          * Start reception.  This disables the transmitter for
371          * us.  This will be using the existing RX buffer.
372          */
373         sa1100_irda_rx_dma_start(si);
374
375         /* Account and free the packet. */
376         skb = si->dma_tx.skb;
377         if (skb) {
378                 dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1,
379                              DMA_TO_DEVICE);
380                 dev->stats.tx_packets ++;
381                 dev->stats.tx_bytes += skb->len;
382                 dev_kfree_skb_irq(skb);
383                 si->dma_tx.skb = NULL;
384         }
385
386         /*
387          * Make sure that the TX queue is available for sending
388          * (for retries).  TX has priority over RX at all times.
389          */
390         netif_wake_queue(dev);
391 }
392
393 static int sa1100_irda_fir_tx_start(struct sk_buff *skb, struct net_device *dev,
394         struct sa1100_irda *si)
395 {
396         int mtt = irda_get_mtt(skb);
397
398         si->dma_tx.skb = skb;
399         sg_set_buf(&si->dma_tx.sg, skb->data, skb->len);
400         if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) {
401                 si->dma_tx.skb = NULL;
402                 netif_wake_queue(dev);
403                 dev->stats.tx_dropped++;
404                 dev_kfree_skb(skb);
405                 return NETDEV_TX_OK;
406         }
407
408         sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_firtxdma_irq, dev);
409
410         /*
411          * If we have a mean turn-around time, impose the specified
412          * specified delay.  We could shorten this by timing from
413          * the point we received the packet.
414          */
415         if (mtt)
416                 udelay(mtt);
417
418         Ser2HSCR0 = HSCR0_HSSP | HSCR0_TXE;
419
420         return NETDEV_TX_OK;
421 }
422
423 static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
424 {
425         struct sk_buff *skb = si->dma_rx.skb;
426         unsigned int len, stat, data;
427
428         if (!skb) {
429                 printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
430                 return;
431         }
432
433         /*
434          * Get the current data position.
435          */
436         len = sa1100_irda_dma_xferred(&si->dma_rx);
437         if (len > HPSIR_MAX_RXLEN)
438                 len = HPSIR_MAX_RXLEN;
439         dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE);
440
441         do {
442                 /*
443                  * Read Status, and then Data.
444                  */
445                 stat = Ser2HSSR1;
446                 rmb();
447                 data = Ser2HSDR;
448
449                 if (stat & (HSSR1_CRE | HSSR1_ROR)) {
450                         dev->stats.rx_errors++;
451                         if (stat & HSSR1_CRE)
452                                 dev->stats.rx_crc_errors++;
453                         if (stat & HSSR1_ROR)
454                                 dev->stats.rx_frame_errors++;
455                 } else
456                         skb->data[len++] = data;
457
458                 /*
459                  * If we hit the end of frame, there's
460                  * no point in continuing.
461                  */
462                 if (stat & HSSR1_EOF)
463                         break;
464         } while (Ser2HSSR0 & HSSR0_EIF);
465
466         if (stat & HSSR1_EOF) {
467                 si->dma_rx.skb = NULL;
468
469                 skb_put(skb, len);
470                 skb->dev = dev;
471                 skb_reset_mac_header(skb);
472                 skb->protocol = htons(ETH_P_IRDA);
473                 dev->stats.rx_packets++;
474                 dev->stats.rx_bytes += len;
475
476                 /*
477                  * Before we pass the buffer up, allocate a new one.
478                  */
479                 sa1100_irda_rx_alloc(si);
480
481                 netif_rx(skb);
482         } else {
483                 /*
484                  * Remap the buffer - it was previously mapped, and we
485                  * hope that this succeeds.
486                  */
487                 dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE);
488         }
489 }
490
491 /*
492  * We only have to handle RX events here; transmit events go via the TX
493  * DMA handler. We disable RX, process, and the restart RX.
494  */
495 static irqreturn_t sa1100_irda_fir_irq(struct net_device *dev, struct sa1100_irda *si)
496 {
497         /*
498          * Stop RX DMA
499          */
500         dmaengine_pause(si->dma_rx.chan);
501
502         /*
503          * Framing error - we throw away the packet completely.
504          * Clearing RXE flushes the error conditions and data
505          * from the fifo.
506          */
507         if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
508                 dev->stats.rx_errors++;
509
510                 if (Ser2HSSR0 & HSSR0_FRE)
511                         dev->stats.rx_frame_errors++;
512
513                 /*
514                  * Clear out the DMA...
515                  */
516                 Ser2HSCR0 = HSCR0_HSSP;
517
518                 /*
519                  * Clear selected status bits now, so we
520                  * don't miss them next time around.
521                  */
522                 Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
523         }
524
525         /*
526          * Deal with any receive errors.  The any of the lowest
527          * 8 bytes in the FIFO may contain an error.  We must read
528          * them one by one.  The "error" could even be the end of
529          * packet!
530          */
531         if (Ser2HSSR0 & HSSR0_EIF)
532                 sa1100_irda_fir_error(si, dev);
533
534         /*
535          * No matter what happens, we must restart reception.
536          */
537         sa1100_irda_rx_dma_start(si);
538
539         return IRQ_HANDLED;
540 }
541
542 /*
543  * Set the IrDA communications speed.
544  */
545 static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
546 {
547         unsigned long flags;
548         int brd, ret = -EINVAL;
549
550         switch (speed) {
551         case 9600:      case 19200:     case 38400:
552         case 57600:     case 115200:
553                 brd = 3686400 / (16 * speed) - 1;
554
555                 /* Stop the receive DMA, and configure transmit. */
556                 if (IS_FIR(si)) {
557                         dmaengine_terminate_all(si->dma_rx.chan);
558                         dmaengine_slave_config(si->dma_tx.chan,
559                                                 &sa1100_irda_sir_tx);
560                 }
561
562                 local_irq_save(flags);
563
564                 Ser2UTCR3 = 0;
565                 Ser2HSCR0 = HSCR0_UART;
566
567                 Ser2UTCR1 = brd >> 8;
568                 Ser2UTCR2 = brd;
569
570                 /*
571                  * Clear status register
572                  */
573                 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
574                 Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
575
576                 if (si->pdata->set_speed)
577                         si->pdata->set_speed(si->dev, speed);
578
579                 si->speed = speed;
580                 si->tx_start = sa1100_irda_sir_tx_start;
581                 si->irq = sa1100_irda_sir_irq;
582
583                 local_irq_restore(flags);
584                 ret = 0;
585                 break;
586
587         case 4000000:
588                 if (!IS_FIR(si))
589                         dmaengine_slave_config(si->dma_tx.chan,
590                                                 &sa1100_irda_fir_tx);
591
592                 local_irq_save(flags);
593
594                 Ser2HSSR0 = 0xff;
595                 Ser2HSCR0 = HSCR0_HSSP;
596                 Ser2UTCR3 = 0;
597
598                 si->speed = speed;
599                 si->tx_start = sa1100_irda_fir_tx_start;
600                 si->irq = sa1100_irda_fir_irq;
601
602                 if (si->pdata->set_speed)
603                         si->pdata->set_speed(si->dev, speed);
604
605                 sa1100_irda_rx_alloc(si);
606                 sa1100_irda_rx_dma_start(si);
607
608                 local_irq_restore(flags);
609
610                 break;
611
612         default:
613                 break;
614         }
615
616         return ret;
617 }
618
619 /*
620  * Control the power state of the IrDA transmitter.
621  * State:
622  *  0 - off
623  *  1 - short range, lowest power
624  *  2 - medium range, medium power
625  *  3 - maximum range, high power
626  *
627  * Currently, only assabet is known to support this.
628  */
629 static int
630 __sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
631 {
632         int ret = 0;
633         if (si->pdata->set_power)
634                 ret = si->pdata->set_power(si->dev, state);
635         return ret;
636 }
637
638 static inline int
639 sa1100_set_power(struct sa1100_irda *si, unsigned int state)
640 {
641         int ret;
642
643         ret = __sa1100_irda_set_power(si, state);
644         if (ret == 0)
645                 si->power = state;
646
647         return ret;
648 }
649
650 static irqreturn_t sa1100_irda_irq(int irq, void *dev_id)
651 {
652         struct net_device *dev = dev_id;
653         struct sa1100_irda *si = netdev_priv(dev);
654
655         return si->irq(dev, si);
656 }
657
658 static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
659 {
660         struct sa1100_irda *si = netdev_priv(dev);
661         int speed = irda_get_next_speed(skb);
662
663         /*
664          * Does this packet contain a request to change the interface
665          * speed?  If so, remember it until we complete the transmission
666          * of this frame.
667          */
668         if (speed != si->speed && speed != -1)
669                 si->newspeed = speed;
670
671         /* If this is an empty frame, we can bypass a lot. */
672         if (skb->len == 0) {
673                 sa1100_irda_check_speed(si);
674                 dev_kfree_skb(skb);
675                 return NETDEV_TX_OK;
676         }
677
678         netif_stop_queue(dev);
679
680         /* We must not already have a skb to transmit... */
681         BUG_ON(si->dma_tx.skb);
682
683         return si->tx_start(skb, dev, si);
684 }
685
686 static int
687 sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
688 {
689         struct if_irda_req *rq = (struct if_irda_req *)ifreq;
690         struct sa1100_irda *si = netdev_priv(dev);
691         int ret = -EOPNOTSUPP;
692
693         switch (cmd) {
694         case SIOCSBANDWIDTH:
695                 if (capable(CAP_NET_ADMIN)) {
696                         /*
697                          * We are unable to set the speed if the
698                          * device is not running.
699                          */
700                         if (si->open) {
701                                 ret = sa1100_irda_set_speed(si,
702                                                 rq->ifr_baudrate);
703                         } else {
704                                 printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
705                                 ret = 0;
706                         }
707                 }
708                 break;
709
710         case SIOCSMEDIABUSY:
711                 ret = -EPERM;
712                 if (capable(CAP_NET_ADMIN)) {
713                         irda_device_set_media_busy(dev, TRUE);
714                         ret = 0;
715                 }
716                 break;
717
718         case SIOCGRECEIVING:
719                 rq->ifr_receiving = IS_FIR(si) ? 0
720                                         : si->rx_buff.state != OUTSIDE_FRAME;
721                 break;
722
723         default:
724                 break;
725         }
726                 
727         return ret;
728 }
729
730 static int sa1100_irda_startup(struct sa1100_irda *si)
731 {
732         int ret;
733
734         /*
735          * Ensure that the ports for this device are setup correctly.
736          */
737         if (si->pdata->startup) {
738                 ret = si->pdata->startup(si->dev);
739                 if (ret)
740                         return ret;
741         }
742
743         /*
744          * Configure PPC for IRDA - we want to drive TXD2 low.
745          * We also want to drive this pin low during sleep.
746          */
747         PPSR &= ~PPC_TXD2;
748         PSDR &= ~PPC_TXD2;
749         PPDR |= PPC_TXD2;
750
751         /*
752          * Enable HP-SIR modulation, and ensure that the port is disabled.
753          */
754         Ser2UTCR3 = 0;
755         Ser2HSCR0 = HSCR0_UART;
756         Ser2UTCR4 = si->utcr4;
757         Ser2UTCR0 = UTCR0_8BitData;
758         Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
759
760         /*
761          * Clear status register
762          */
763         Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
764
765         ret = sa1100_irda_set_speed(si, si->speed = 9600);
766         if (ret) {
767                 Ser2UTCR3 = 0;
768                 Ser2HSCR0 = 0;
769
770                 if (si->pdata->shutdown)
771                         si->pdata->shutdown(si->dev);
772         }
773
774         return ret;
775 }
776
777 static void sa1100_irda_shutdown(struct sa1100_irda *si)
778 {
779         /*
780          * Stop all DMA activity.
781          */
782         dmaengine_terminate_all(si->dma_rx.chan);
783         dmaengine_terminate_all(si->dma_tx.chan);
784
785         /* Disable the port. */
786         Ser2UTCR3 = 0;
787         Ser2HSCR0 = 0;
788
789         if (si->pdata->shutdown)
790                 si->pdata->shutdown(si->dev);
791 }
792
793 static int sa1100_irda_start(struct net_device *dev)
794 {
795         struct sa1100_irda *si = netdev_priv(dev);
796         int err;
797
798         si->speed = 9600;
799
800         err = sa1100_irda_dma_request(si->dev, &si->dma_rx, "Ser2ICPRc",
801                                 &sa1100_irda_fir_rx);
802         if (err)
803                 goto err_rx_dma;
804
805         err = sa1100_irda_dma_request(si->dev, &si->dma_tx, "Ser2ICPTr",
806                                 &sa1100_irda_sir_tx);
807         if (err)
808                 goto err_tx_dma;
809
810         /*
811          * Setup the serial port for the specified speed.
812          */
813         err = sa1100_irda_startup(si);
814         if (err)
815                 goto err_startup;
816
817         /*
818          * Open a new IrLAP layer instance.
819          */
820         si->irlap = irlap_open(dev, &si->qos, "sa1100");
821         err = -ENOMEM;
822         if (!si->irlap)
823                 goto err_irlap;
824
825         err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
826         if (err)
827                 goto err_irq;
828
829         /*
830          * Now enable the interrupt and start the queue
831          */
832         si->open = 1;
833         sa1100_set_power(si, power_level); /* low power mode */
834
835         netif_start_queue(dev);
836         return 0;
837
838 err_irq:
839         irlap_close(si->irlap);
840 err_irlap:
841         si->open = 0;
842         sa1100_irda_shutdown(si);
843 err_startup:
844         dma_release_channel(si->dma_tx.chan);
845 err_tx_dma:
846         dma_release_channel(si->dma_rx.chan);
847 err_rx_dma:
848         return err;
849 }
850
851 static int sa1100_irda_stop(struct net_device *dev)
852 {
853         struct sa1100_irda *si = netdev_priv(dev);
854         struct sk_buff *skb;
855
856         netif_stop_queue(dev);
857
858         si->open = 0;
859         sa1100_irda_shutdown(si);
860
861         /*
862          * If we have been doing any DMA activity, make sure we
863          * tidy that up cleanly.
864          */
865         skb = si->dma_rx.skb;
866         if (skb) {
867                 dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1,
868                              DMA_FROM_DEVICE);
869                 dev_kfree_skb(skb);
870                 si->dma_rx.skb = NULL;
871         }
872
873         skb = si->dma_tx.skb;
874         if (skb) {
875                 dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1,
876                              DMA_TO_DEVICE);
877                 dev_kfree_skb(skb);
878                 si->dma_tx.skb = NULL;
879         }
880
881         /* Stop IrLAP */
882         if (si->irlap) {
883                 irlap_close(si->irlap);
884                 si->irlap = NULL;
885         }
886
887         /*
888          * Free resources
889          */
890         dma_release_channel(si->dma_tx.chan);
891         dma_release_channel(si->dma_rx.chan);
892         free_irq(dev->irq, dev);
893
894         sa1100_set_power(si, 0);
895
896         return 0;
897 }
898
899 static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
900 {
901         io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
902         if (io->head != NULL) {
903                 io->truesize = size;
904                 io->in_frame = FALSE;
905                 io->state    = OUTSIDE_FRAME;
906                 io->data     = io->head;
907         }
908         return io->head ? 0 : -ENOMEM;
909 }
910
911 static const struct net_device_ops sa1100_irda_netdev_ops = {
912         .ndo_open               = sa1100_irda_start,
913         .ndo_stop               = sa1100_irda_stop,
914         .ndo_start_xmit         = sa1100_irda_hard_xmit,
915         .ndo_do_ioctl           = sa1100_irda_ioctl,
916 };
917
918 static int sa1100_irda_probe(struct platform_device *pdev)
919 {
920         struct net_device *dev;
921         struct sa1100_irda *si;
922         unsigned int baudrate_mask;
923         int err, irq;
924
925         if (!pdev->dev.platform_data)
926                 return -EINVAL;
927
928         irq = platform_get_irq(pdev, 0);
929         if (irq <= 0)
930                 return irq < 0 ? irq : -ENXIO;
931
932         err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
933         if (err)
934                 goto err_mem_1;
935         err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
936         if (err)
937                 goto err_mem_2;
938         err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
939         if (err)
940                 goto err_mem_3;
941
942         dev = alloc_irdadev(sizeof(struct sa1100_irda));
943         if (!dev) {
944                 err = -ENOMEM;
945                 goto err_mem_4;
946         }
947
948         SET_NETDEV_DEV(dev, &pdev->dev);
949
950         si = netdev_priv(dev);
951         si->dev = &pdev->dev;
952         si->pdata = pdev->dev.platform_data;
953
954         sg_init_table(&si->dma_rx.sg, 1);
955         sg_init_table(&si->dma_tx.sg, 1);
956
957         /*
958          * Initialise the HP-SIR buffers
959          */
960         err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
961         if (err)
962                 goto err_mem_5;
963         err = sa1100_irda_init_iobuf(&si->tx_buff, IRDA_SIR_MAX_FRAME);
964         if (err)
965                 goto err_mem_5;
966
967         dev->netdev_ops = &sa1100_irda_netdev_ops;
968         dev->irq        = irq;
969
970         irda_init_max_qos_capabilies(&si->qos);
971
972         /*
973          * We support original IRDA up to 115k2. (we don't currently
974          * support 4Mbps).  Min Turn Time set to 1ms or greater.
975          */
976         baudrate_mask = IR_9600;
977
978         switch (max_rate) {
979         case 4000000:           baudrate_mask |= IR_4000000 << 8;
980         case 115200:            baudrate_mask |= IR_115200;
981         case 57600:             baudrate_mask |= IR_57600;
982         case 38400:             baudrate_mask |= IR_38400;
983         case 19200:             baudrate_mask |= IR_19200;
984         }
985                 
986         si->qos.baud_rate.bits &= baudrate_mask;
987         si->qos.min_turn_time.bits = 7;
988
989         irda_qos_bits_to_value(&si->qos);
990
991         si->utcr4 = UTCR4_HPSIR;
992         if (tx_lpm)
993                 si->utcr4 |= UTCR4_Z1_6us;
994
995         /*
996          * Initially enable HP-SIR modulation, and ensure that the port
997          * is disabled.
998          */
999         Ser2UTCR3 = 0;
1000         Ser2UTCR4 = si->utcr4;
1001         Ser2HSCR0 = HSCR0_UART;
1002
1003         err = register_netdev(dev);
1004         if (err == 0)
1005                 platform_set_drvdata(pdev, dev);
1006
1007         if (err) {
1008  err_mem_5:
1009                 kfree(si->tx_buff.head);
1010                 kfree(si->rx_buff.head);
1011                 free_netdev(dev);
1012  err_mem_4:
1013                 release_mem_region(__PREG(Ser2HSCR2), 0x04);
1014  err_mem_3:
1015                 release_mem_region(__PREG(Ser2HSCR0), 0x1c);
1016  err_mem_2:
1017                 release_mem_region(__PREG(Ser2UTCR0), 0x24);
1018         }
1019  err_mem_1:
1020         return err;
1021 }
1022
1023 static int sa1100_irda_remove(struct platform_device *pdev)
1024 {
1025         struct net_device *dev = platform_get_drvdata(pdev);
1026
1027         if (dev) {
1028                 struct sa1100_irda *si = netdev_priv(dev);
1029                 unregister_netdev(dev);
1030                 kfree(si->tx_buff.head);
1031                 kfree(si->rx_buff.head);
1032                 free_netdev(dev);
1033         }
1034
1035         release_mem_region(__PREG(Ser2HSCR2), 0x04);
1036         release_mem_region(__PREG(Ser2HSCR0), 0x1c);
1037         release_mem_region(__PREG(Ser2UTCR0), 0x24);
1038
1039         return 0;
1040 }
1041
1042 #ifdef CONFIG_PM
1043 /*
1044  * Suspend the IrDA interface.
1045  */
1046 static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
1047 {
1048         struct net_device *dev = platform_get_drvdata(pdev);
1049         struct sa1100_irda *si;
1050
1051         if (!dev)
1052                 return 0;
1053
1054         si = netdev_priv(dev);
1055         if (si->open) {
1056                 /*
1057                  * Stop the transmit queue
1058                  */
1059                 netif_device_detach(dev);
1060                 disable_irq(dev->irq);
1061                 sa1100_irda_shutdown(si);
1062                 __sa1100_irda_set_power(si, 0);
1063         }
1064
1065         return 0;
1066 }
1067
1068 /*
1069  * Resume the IrDA interface.
1070  */
1071 static int sa1100_irda_resume(struct platform_device *pdev)
1072 {
1073         struct net_device *dev = platform_get_drvdata(pdev);
1074         struct sa1100_irda *si;
1075
1076         if (!dev)
1077                 return 0;
1078
1079         si = netdev_priv(dev);
1080         if (si->open) {
1081                 /*
1082                  * If we missed a speed change, initialise at the new speed
1083                  * directly.  It is debatable whether this is actually
1084                  * required, but in the interests of continuing from where
1085                  * we left off it is desirable.  The converse argument is
1086                  * that we should re-negotiate at 9600 baud again.
1087                  */
1088                 if (si->newspeed) {
1089                         si->speed = si->newspeed;
1090                         si->newspeed = 0;
1091                 }
1092
1093                 sa1100_irda_startup(si);
1094                 __sa1100_irda_set_power(si, si->power);
1095                 enable_irq(dev->irq);
1096
1097                 /*
1098                  * This automatically wakes up the queue
1099                  */
1100                 netif_device_attach(dev);
1101         }
1102
1103         return 0;
1104 }
1105 #else
1106 #define sa1100_irda_suspend     NULL
1107 #define sa1100_irda_resume      NULL
1108 #endif
1109
1110 static struct platform_driver sa1100ir_driver = {
1111         .probe          = sa1100_irda_probe,
1112         .remove         = sa1100_irda_remove,
1113         .suspend        = sa1100_irda_suspend,
1114         .resume         = sa1100_irda_resume,
1115         .driver         = {
1116                 .name   = "sa11x0-ir",
1117         },
1118 };
1119
1120 static int __init sa1100_irda_init(void)
1121 {
1122         /*
1123          * Limit power level a sensible range.
1124          */
1125         if (power_level < 1)
1126                 power_level = 1;
1127         if (power_level > 3)
1128                 power_level = 3;
1129
1130         return platform_driver_register(&sa1100ir_driver);
1131 }
1132
1133 static void __exit sa1100_irda_exit(void)
1134 {
1135         platform_driver_unregister(&sa1100ir_driver);
1136 }
1137
1138 module_init(sa1100_irda_init);
1139 module_exit(sa1100_irda_exit);
1140 module_param(power_level, int, 0);
1141 module_param(tx_lpm, int, 0);
1142 module_param(max_rate, int, 0);
1143
1144 MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
1145 MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
1146 MODULE_LICENSE("GPL");
1147 MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
1148 MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
1149 MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");
1150 MODULE_ALIAS("platform:sa11x0-ir");