b3069ee34bd25587596a25692b87ecccbb4f4dd2
[cascardo/linux.git] / drivers / net / tsi108_eth.c
1 /*******************************************************************************
2
3   Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of the GNU General Public License as published by the Free
7   Software Foundation; either version 2 of the License, or (at your option)
8   any later version.
9
10   This program is distributed in the hope that it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc., 59
17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24  *
25  * Currently changes from original version are:
26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27  * - modifications to handle two ports independently and support for
28  *   additional PHY devices (alexandre.bounine@tundra.com)
29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30  *
31  */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50 #include <linux/etherdevice.h>
51
52 #include <asm/system.h>
53 #include <asm/io.h>
54 #include <asm/tsi108.h>
55
56 #include "tsi108_eth.h"
57
58 #define MII_READ_DELAY 10000    /* max link wait time in msec */
59
60 #define TSI108_RXRING_LEN     256
61
62 /* NOTE: The driver currently does not support receiving packets
63  * larger than the buffer size, so don't decrease this (unless you
64  * want to add such support).
65  */
66 #define TSI108_RXBUF_SIZE     1536
67
68 #define TSI108_TXRING_LEN     256
69
70 #define TSI108_TX_INT_FREQ    64
71
72 /* Check the phy status every half a second. */
73 #define CHECK_PHY_INTERVAL (HZ/2)
74
75 static int tsi108_init_one(struct platform_device *pdev);
76 static int tsi108_ether_remove(struct platform_device *pdev);
77
78 struct tsi108_prv_data {
79         void  __iomem *regs;    /* Base of normal regs */
80         void  __iomem *phyregs; /* Base of register bank used for PHY access */
81
82         struct net_device *dev;
83         struct napi_struct napi;
84
85         unsigned int phy;               /* Index of PHY for this interface */
86         unsigned int irq_num;
87         unsigned int id;
88         unsigned int phy_type;
89
90         struct timer_list timer;/* Timer that triggers the check phy function */
91         unsigned int rxtail;    /* Next entry in rxring to read */
92         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
93         unsigned int rxfree;    /* Number of free, allocated RX buffers */
94
95         unsigned int rxpending; /* Non-zero if there are still descriptors
96                                  * to be processed from a previous descriptor
97                                  * interrupt condition that has been cleared */
98
99         unsigned int txtail;    /* Next TX descriptor to check status on */
100         unsigned int txhead;    /* Next TX descriptor to use */
101
102         /* Number of free TX descriptors.  This could be calculated from
103          * rxhead and rxtail if one descriptor were left unused to disambiguate
104          * full and empty conditions, but it's simpler to just keep track
105          * explicitly. */
106
107         unsigned int txfree;
108
109         unsigned int phy_ok;            /* The PHY is currently powered on. */
110
111         /* PHY status (duplex is 1 for half, 2 for full,
112          * so that the default 0 indicates that neither has
113          * yet been configured). */
114
115         unsigned int link_up;
116         unsigned int speed;
117         unsigned int duplex;
118
119         tx_desc *txring;
120         rx_desc *rxring;
121         struct sk_buff *txskbs[TSI108_TXRING_LEN];
122         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
123
124         dma_addr_t txdma, rxdma;
125
126         /* txlock nests in misclock and phy_lock */
127
128         spinlock_t txlock, misclock;
129
130         /* stats is used to hold the upper bits of each hardware counter,
131          * and tmpstats is used to hold the full values for returning
132          * to the caller of get_stats().  They must be separate in case
133          * an overflow interrupt occurs before the stats are consumed.
134          */
135
136         struct net_device_stats stats;
137         struct net_device_stats tmpstats;
138
139         /* These stats are kept separate in hardware, thus require individual
140          * fields for handling carry.  They are combined in get_stats.
141          */
142
143         unsigned long rx_fcs;   /* Add to rx_frame_errors */
144         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
145         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
146         unsigned long rx_underruns;     /* Add to rx_length_errors */
147         unsigned long rx_overruns;      /* Add to rx_length_errors */
148
149         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
150         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
151
152         unsigned long mc_hash[16];
153         u32 msg_enable;                 /* debug message level */
154         struct mii_if_info mii_if;
155         unsigned int init_media;
156 };
157
158 /* Structure for a device driver */
159
160 static struct platform_driver tsi_eth_driver = {
161         .probe = tsi108_init_one,
162         .remove = tsi108_ether_remove,
163         .driver = {
164                 .name = "tsi-ethernet",
165         },
166 };
167
168 static void tsi108_timed_checker(unsigned long dev_ptr);
169
170 static void dump_eth_one(struct net_device *dev)
171 {
172         struct tsi108_prv_data *data = netdev_priv(dev);
173
174         printk("Dumping %s...\n", dev->name);
175         printk("intstat %x intmask %x phy_ok %d"
176                " link %d speed %d duplex %d\n",
177                TSI_READ(TSI108_EC_INTSTAT),
178                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
179                data->link_up, data->speed, data->duplex);
180
181         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
182                data->txhead, data->txtail, data->txfree,
183                TSI_READ(TSI108_EC_TXSTAT),
184                TSI_READ(TSI108_EC_TXESTAT),
185                TSI_READ(TSI108_EC_TXERR));
186
187         printk("RX: head %d, tail %d, free %d, stat %x,"
188                " estat %x, err %x, pending %d\n\n",
189                data->rxhead, data->rxtail, data->rxfree,
190                TSI_READ(TSI108_EC_RXSTAT),
191                TSI_READ(TSI108_EC_RXESTAT),
192                TSI_READ(TSI108_EC_RXERR), data->rxpending);
193 }
194
195 /* Synchronization is needed between the thread and up/down events.
196  * Note that the PHY is accessed through the same registers for both
197  * interfaces, so this can't be made interface-specific.
198  */
199
200 static DEFINE_SPINLOCK(phy_lock);
201
202 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
203 {
204         unsigned i;
205
206         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
207                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
208                                 (reg << TSI108_MAC_MII_ADDR_REG));
209         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
210         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
211         for (i = 0; i < 100; i++) {
212                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
213                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
214                         break;
215                 udelay(10);
216         }
217
218         if (i == 100)
219                 return 0xffff;
220         else
221                 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
222 }
223
224 static void tsi108_write_mii(struct tsi108_prv_data *data,
225                                 int reg, u16 val)
226 {
227         unsigned i = 100;
228         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
229                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
230                                 (reg << TSI108_MAC_MII_ADDR_REG));
231         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
232         while (i--) {
233                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
234                         TSI108_MAC_MII_IND_BUSY))
235                         break;
236                 udelay(10);
237         }
238 }
239
240 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
241 {
242         struct tsi108_prv_data *data = netdev_priv(dev);
243         return tsi108_read_mii(data, reg);
244 }
245
246 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
247 {
248         struct tsi108_prv_data *data = netdev_priv(dev);
249         tsi108_write_mii(data, reg, val);
250 }
251
252 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
253                                         int reg, u16 val)
254 {
255         unsigned i = 1000;
256         TSI_WRITE(TSI108_MAC_MII_ADDR,
257                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
258                              | (reg << TSI108_MAC_MII_ADDR_REG));
259         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
260         while(i--) {
261                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
262                         return;
263                 udelay(10);
264         }
265         printk(KERN_ERR "%s function time out \n", __FUNCTION__);
266 }
267
268 static int mii_speed(struct mii_if_info *mii)
269 {
270         int advert, lpa, val, media;
271         int lpa2 = 0;
272         int speed;
273
274         if (!mii_link_ok(mii))
275                 return 0;
276
277         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
278         if ((val & BMSR_ANEGCOMPLETE) == 0)
279                 return 0;
280
281         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
282         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
283         media = mii_nway_result(advert & lpa);
284
285         if (mii->supports_gmii)
286                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
287
288         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
289                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
290         return speed;
291 }
292
293 static void tsi108_check_phy(struct net_device *dev)
294 {
295         struct tsi108_prv_data *data = netdev_priv(dev);
296         u32 mac_cfg2_reg, portctrl_reg;
297         u32 duplex;
298         u32 speed;
299         unsigned long flags;
300
301         /* Do a dummy read, as for some reason the first read
302          * after a link becomes up returns link down, even if
303          * it's been a while since the link came up.
304          */
305
306         spin_lock_irqsave(&phy_lock, flags);
307
308         if (!data->phy_ok)
309                 goto out;
310
311         tsi108_read_mii(data, MII_BMSR);
312
313         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
314         data->init_media = 0;
315
316         if (netif_carrier_ok(dev)) {
317
318                 speed = mii_speed(&data->mii_if);
319
320                 if ((speed != data->speed) || duplex) {
321
322                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
323                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
324
325                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
326
327                         if (speed == 1000) {
328                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
329                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
330                         } else {
331                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
332                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
333                         }
334
335                         data->speed = speed;
336
337                         if (data->mii_if.full_duplex) {
338                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
339                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
340                                 data->duplex = 2;
341                         } else {
342                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
343                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
344                                 data->duplex = 1;
345                         }
346
347                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
348                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
349
350                         if (data->link_up == 0) {
351                                 /* The manual says it can take 3-4 usecs for the speed change
352                                  * to take effect.
353                                  */
354                                 udelay(5);
355
356                                 spin_lock(&data->txlock);
357                                 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
358                                         netif_wake_queue(dev);
359
360                                 data->link_up = 1;
361                                 spin_unlock(&data->txlock);
362                         }
363                 }
364
365         } else {
366                 if (data->link_up == 1) {
367                         netif_stop_queue(dev);
368                         data->link_up = 0;
369                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
370                 }
371
372                 goto out;
373         }
374
375
376 out:
377         spin_unlock_irqrestore(&phy_lock, flags);
378 }
379
380 static inline void
381 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
382                       unsigned long *upper)
383 {
384         if (carry & carry_bit)
385                 *upper += carry_shift;
386 }
387
388 static void tsi108_stat_carry(struct net_device *dev)
389 {
390         struct tsi108_prv_data *data = netdev_priv(dev);
391         u32 carry1, carry2;
392
393         spin_lock_irq(&data->misclock);
394
395         carry1 = TSI_READ(TSI108_STAT_CARRY1);
396         carry2 = TSI_READ(TSI108_STAT_CARRY2);
397
398         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
399         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
400
401         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
402                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
403
404         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
405                               TSI108_STAT_RXPKTS_CARRY,
406                               &data->stats.rx_packets);
407
408         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
409                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
410
411         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
412                               TSI108_STAT_RXMCAST_CARRY,
413                               &data->stats.multicast);
414
415         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
416                               TSI108_STAT_RXALIGN_CARRY,
417                               &data->stats.rx_frame_errors);
418
419         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
420                               TSI108_STAT_RXLENGTH_CARRY,
421                               &data->stats.rx_length_errors);
422
423         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
424                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
425
426         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
427                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
428
429         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
430                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
431
432         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
433                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
434
435         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
436                               TSI108_STAT_RXDROP_CARRY,
437                               &data->stats.rx_missed_errors);
438
439         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
440                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
441
442         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
443                               TSI108_STAT_TXPKTS_CARRY,
444                               &data->stats.tx_packets);
445
446         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
447                               TSI108_STAT_TXEXDEF_CARRY,
448                               &data->stats.tx_aborted_errors);
449
450         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
451                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
452
453         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
454                               TSI108_STAT_TXTCOL_CARRY,
455                               &data->stats.collisions);
456
457         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
458                               TSI108_STAT_TXPAUSEDROP_CARRY,
459                               &data->tx_pause_drop);
460
461         spin_unlock_irq(&data->misclock);
462 }
463
464 /* Read a stat counter atomically with respect to carries.
465  * data->misclock must be held.
466  */
467 static inline unsigned long
468 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
469                  int carry_shift, unsigned long *upper)
470 {
471         int carryreg;
472         unsigned long val;
473
474         if (reg < 0xb0)
475                 carryreg = TSI108_STAT_CARRY1;
476         else
477                 carryreg = TSI108_STAT_CARRY2;
478
479       again:
480         val = TSI_READ(reg) | *upper;
481
482         /* Check to see if it overflowed, but the interrupt hasn't
483          * been serviced yet.  If so, handle the carry here, and
484          * try again.
485          */
486
487         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
488                 *upper += carry_shift;
489                 TSI_WRITE(carryreg, carry_bit);
490                 goto again;
491         }
492
493         return val;
494 }
495
496 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
497 {
498         unsigned long excol;
499
500         struct tsi108_prv_data *data = netdev_priv(dev);
501         spin_lock_irq(&data->misclock);
502
503         data->tmpstats.rx_packets =
504             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
505                              TSI108_STAT_CARRY1_RXPKTS,
506                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
507
508         data->tmpstats.tx_packets =
509             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
510                              TSI108_STAT_CARRY2_TXPKTS,
511                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
512
513         data->tmpstats.rx_bytes =
514             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
515                              TSI108_STAT_CARRY1_RXBYTES,
516                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
517
518         data->tmpstats.tx_bytes =
519             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
520                              TSI108_STAT_CARRY2_TXBYTES,
521                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
522
523         data->tmpstats.multicast =
524             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
525                              TSI108_STAT_CARRY1_RXMCAST,
526                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
527
528         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
529                                  TSI108_STAT_CARRY2_TXEXCOL,
530                                  TSI108_STAT_TXEXCOL_CARRY,
531                                  &data->tx_coll_abort);
532
533         data->tmpstats.collisions =
534             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
535                              TSI108_STAT_CARRY2_TXTCOL,
536                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
537
538         data->tmpstats.collisions += excol;
539
540         data->tmpstats.rx_length_errors =
541             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
542                              TSI108_STAT_CARRY1_RXLENGTH,
543                              TSI108_STAT_RXLENGTH_CARRY,
544                              &data->stats.rx_length_errors);
545
546         data->tmpstats.rx_length_errors +=
547             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
548                              TSI108_STAT_CARRY1_RXRUNT,
549                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
550
551         data->tmpstats.rx_length_errors +=
552             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
553                              TSI108_STAT_CARRY1_RXJUMBO,
554                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
555
556         data->tmpstats.rx_frame_errors =
557             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
558                              TSI108_STAT_CARRY1_RXALIGN,
559                              TSI108_STAT_RXALIGN_CARRY,
560                              &data->stats.rx_frame_errors);
561
562         data->tmpstats.rx_frame_errors +=
563             tsi108_read_stat(data, TSI108_STAT_RXFCS,
564                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
565                              &data->rx_fcs);
566
567         data->tmpstats.rx_frame_errors +=
568             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
569                              TSI108_STAT_CARRY1_RXFRAG,
570                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
571
572         data->tmpstats.rx_missed_errors =
573             tsi108_read_stat(data, TSI108_STAT_RXDROP,
574                              TSI108_STAT_CARRY1_RXDROP,
575                              TSI108_STAT_RXDROP_CARRY,
576                              &data->stats.rx_missed_errors);
577
578         /* These three are maintained by software. */
579         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
580         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
581
582         data->tmpstats.tx_aborted_errors =
583             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
584                              TSI108_STAT_CARRY2_TXEXDEF,
585                              TSI108_STAT_TXEXDEF_CARRY,
586                              &data->stats.tx_aborted_errors);
587
588         data->tmpstats.tx_aborted_errors +=
589             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
590                              TSI108_STAT_CARRY2_TXPAUSE,
591                              TSI108_STAT_TXPAUSEDROP_CARRY,
592                              &data->tx_pause_drop);
593
594         data->tmpstats.tx_aborted_errors += excol;
595
596         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
597         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
598             data->tmpstats.rx_crc_errors +
599             data->tmpstats.rx_frame_errors +
600             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
601
602         spin_unlock_irq(&data->misclock);
603         return &data->tmpstats;
604 }
605
606 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
607 {
608         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
609                              TSI108_EC_RXQ_PTRHIGH_VALID);
610
611         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
612                              | TSI108_EC_RXCTRL_QUEUE0);
613 }
614
615 static void tsi108_restart_tx(struct tsi108_prv_data * data)
616 {
617         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
618                              TSI108_EC_TXQ_PTRHIGH_VALID);
619
620         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
621                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
622 }
623
624 /* txlock must be held by caller, with IRQs disabled, and
625  * with permission to re-enable them when the lock is dropped.
626  */
627 static void tsi108_complete_tx(struct net_device *dev)
628 {
629         struct tsi108_prv_data *data = netdev_priv(dev);
630         int tx;
631         struct sk_buff *skb;
632         int release = 0;
633
634         while (!data->txfree || data->txhead != data->txtail) {
635                 tx = data->txtail;
636
637                 if (data->txring[tx].misc & TSI108_TX_OWN)
638                         break;
639
640                 skb = data->txskbs[tx];
641
642                 if (!(data->txring[tx].misc & TSI108_TX_OK))
643                         printk("%s: bad tx packet, misc %x\n",
644                                dev->name, data->txring[tx].misc);
645
646                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
647                 data->txfree++;
648
649                 if (data->txring[tx].misc & TSI108_TX_EOF) {
650                         dev_kfree_skb_any(skb);
651                         release++;
652                 }
653         }
654
655         if (release) {
656                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
657                         netif_wake_queue(dev);
658         }
659 }
660
661 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
662 {
663         struct tsi108_prv_data *data = netdev_priv(dev);
664         int frags = skb_shinfo(skb)->nr_frags + 1;
665         int i;
666
667         if (!data->phy_ok && net_ratelimit())
668                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
669
670         if (!data->link_up) {
671                 printk(KERN_ERR "%s: Transmit while link is down!\n",
672                        dev->name);
673                 netif_stop_queue(dev);
674                 return NETDEV_TX_BUSY;
675         }
676
677         if (data->txfree < MAX_SKB_FRAGS + 1) {
678                 netif_stop_queue(dev);
679
680                 if (net_ratelimit())
681                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
682                                dev->name);
683                 return NETDEV_TX_BUSY;
684         }
685
686         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
687                 netif_stop_queue(dev);
688         }
689
690         spin_lock_irq(&data->txlock);
691
692         for (i = 0; i < frags; i++) {
693                 int misc = 0;
694                 int tx = data->txhead;
695
696                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
697                  * the interrupt bit.  TX descriptor-complete interrupts are
698                  * enabled when the queue fills up, and masked when there is
699                  * still free space.  This way, when saturating the outbound
700                  * link, the tx interrupts are kept to a reasonable level.
701                  * When the queue is not full, reclamation of skbs still occurs
702                  * as new packets are transmitted, or on a queue-empty
703                  * interrupt.
704                  */
705
706                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
707                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
708                         misc = TSI108_TX_INT;
709
710                 data->txskbs[tx] = skb;
711
712                 if (i == 0) {
713                         data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
714                                         skb->len - skb->data_len, DMA_TO_DEVICE);
715                         data->txring[tx].len = skb->len - skb->data_len;
716                         misc |= TSI108_TX_SOF;
717                 } else {
718                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
719
720                         data->txring[tx].buf0 =
721                             dma_map_page(NULL, frag->page, frag->page_offset,
722                                             frag->size, DMA_TO_DEVICE);
723                         data->txring[tx].len = frag->size;
724                 }
725
726                 if (i == frags - 1)
727                         misc |= TSI108_TX_EOF;
728
729                 if (netif_msg_pktdata(data)) {
730                         int i;
731                         printk("%s: Tx Frame contents (%d)\n", dev->name,
732                                skb->len);
733                         for (i = 0; i < skb->len; i++)
734                                 printk(" %2.2x", skb->data[i]);
735                         printk(".\n");
736                 }
737                 data->txring[tx].misc = misc | TSI108_TX_OWN;
738
739                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
740                 data->txfree--;
741         }
742
743         tsi108_complete_tx(dev);
744
745         /* This must be done after the check for completed tx descriptors,
746          * so that the tail pointer is correct.
747          */
748
749         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
750                 tsi108_restart_tx(data);
751
752         spin_unlock_irq(&data->txlock);
753         return NETDEV_TX_OK;
754 }
755
756 static int tsi108_complete_rx(struct net_device *dev, int budget)
757 {
758         struct tsi108_prv_data *data = netdev_priv(dev);
759         int done = 0;
760
761         while (data->rxfree && done != budget) {
762                 int rx = data->rxtail;
763                 struct sk_buff *skb;
764
765                 if (data->rxring[rx].misc & TSI108_RX_OWN)
766                         break;
767
768                 skb = data->rxskbs[rx];
769                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
770                 data->rxfree--;
771                 done++;
772
773                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
774                         spin_lock_irq(&data->misclock);
775
776                         if (data->rxring[rx].misc & TSI108_RX_CRC)
777                                 data->stats.rx_crc_errors++;
778                         if (data->rxring[rx].misc & TSI108_RX_OVER)
779                                 data->stats.rx_fifo_errors++;
780
781                         spin_unlock_irq(&data->misclock);
782
783                         dev_kfree_skb_any(skb);
784                         continue;
785                 }
786                 if (netif_msg_pktdata(data)) {
787                         int i;
788                         printk("%s: Rx Frame contents (%d)\n",
789                                dev->name, data->rxring[rx].len);
790                         for (i = 0; i < data->rxring[rx].len; i++)
791                                 printk(" %2.2x", skb->data[i]);
792                         printk(".\n");
793                 }
794
795                 skb_put(skb, data->rxring[rx].len);
796                 skb->protocol = eth_type_trans(skb, dev);
797                 netif_receive_skb(skb);
798                 dev->last_rx = jiffies;
799         }
800
801         return done;
802 }
803
804 static int tsi108_refill_rx(struct net_device *dev, int budget)
805 {
806         struct tsi108_prv_data *data = netdev_priv(dev);
807         int done = 0;
808
809         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
810                 int rx = data->rxhead;
811                 struct sk_buff *skb;
812
813                 data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2);
814                 if (!skb)
815                         break;
816
817                 skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
818
819                 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
820                                                         TSI108_RX_SKB_SIZE,
821                                                         DMA_FROM_DEVICE);
822
823                 /* Sometimes the hardware sets blen to zero after packet
824                  * reception, even though the manual says that it's only ever
825                  * modified by the driver.
826                  */
827
828                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
829                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
830
831                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
832                 data->rxfree++;
833                 done++;
834         }
835
836         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
837                            TSI108_EC_RXSTAT_QUEUE0))
838                 tsi108_restart_rx(data, dev);
839
840         return done;
841 }
842
843 static int tsi108_poll(struct napi_struct *napi, int budget)
844 {
845         struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
846         struct net_device *dev = data->dev;
847         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
848         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
849         int num_received = 0, num_filled = 0;
850
851         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
852             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
853
854         TSI_WRITE(TSI108_EC_RXESTAT, estat);
855         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
856
857         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
858                 num_received = tsi108_complete_rx(dev, budget);
859
860         /* This should normally fill no more slots than the number of
861          * packets received in tsi108_complete_rx().  The exception
862          * is when we previously ran out of memory for RX SKBs.  In that
863          * case, it's helpful to obey the budget, not only so that the
864          * CPU isn't hogged, but so that memory (which may still be low)
865          * is not hogged by one device.
866          *
867          * A work unit is considered to be two SKBs to allow us to catch
868          * up when the ring has shrunk due to out-of-memory but we're
869          * still removing the full budget's worth of packets each time.
870          */
871
872         if (data->rxfree < TSI108_RXRING_LEN)
873                 num_filled = tsi108_refill_rx(dev, budget * 2);
874
875         if (intstat & TSI108_INT_RXERROR) {
876                 u32 err = TSI_READ(TSI108_EC_RXERR);
877                 TSI_WRITE(TSI108_EC_RXERR, err);
878
879                 if (err) {
880                         if (net_ratelimit())
881                                 printk(KERN_DEBUG "%s: RX error %x\n",
882                                        dev->name, err);
883
884                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
885                               TSI108_EC_RXSTAT_QUEUE0))
886                                 tsi108_restart_rx(data, dev);
887                 }
888         }
889
890         if (intstat & TSI108_INT_RXOVERRUN) {
891                 spin_lock_irq(&data->misclock);
892                 data->stats.rx_fifo_errors++;
893                 spin_unlock_irq(&data->misclock);
894         }
895
896         if (num_received < budget) {
897                 data->rxpending = 0;
898                 netif_rx_complete(dev, napi);
899
900                 TSI_WRITE(TSI108_EC_INTMASK,
901                                      TSI_READ(TSI108_EC_INTMASK)
902                                      & ~(TSI108_INT_RXQUEUE0
903                                          | TSI108_INT_RXTHRESH |
904                                          TSI108_INT_RXOVERRUN |
905                                          TSI108_INT_RXERROR |
906                                          TSI108_INT_RXWAIT));
907         } else {
908                 data->rxpending = 1;
909         }
910
911         return num_received;
912 }
913
914 static void tsi108_rx_int(struct net_device *dev)
915 {
916         struct tsi108_prv_data *data = netdev_priv(dev);
917
918         /* A race could cause dev to already be scheduled, so it's not an
919          * error if that happens (and interrupts shouldn't be re-masked,
920          * because that can cause harmful races, if poll has already
921          * unmasked them but not cleared LINK_STATE_SCHED).
922          *
923          * This can happen if this code races with tsi108_poll(), which masks
924          * the interrupts after tsi108_irq_one() read the mask, but before
925          * netif_rx_schedule is called.  It could also happen due to calls
926          * from tsi108_check_rxring().
927          */
928
929         if (netif_rx_schedule_prep(dev, &data->napi)) {
930                 /* Mask, rather than ack, the receive interrupts.  The ack
931                  * will happen in tsi108_poll().
932                  */
933
934                 TSI_WRITE(TSI108_EC_INTMASK,
935                                      TSI_READ(TSI108_EC_INTMASK) |
936                                      TSI108_INT_RXQUEUE0
937                                      | TSI108_INT_RXTHRESH |
938                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
939                                      TSI108_INT_RXWAIT);
940                 __netif_rx_schedule(dev, &data->napi);
941         } else {
942                 if (!netif_running(dev)) {
943                         /* This can happen if an interrupt occurs while the
944                          * interface is being brought down, as the START
945                          * bit is cleared before the stop function is called.
946                          *
947                          * In this case, the interrupts must be masked, or
948                          * they will continue indefinitely.
949                          *
950                          * There's a race here if the interface is brought down
951                          * and then up in rapid succession, as the device could
952                          * be made running after the above check and before
953                          * the masking below.  This will only happen if the IRQ
954                          * thread has a lower priority than the task brining
955                          * up the interface.  Fixing this race would likely
956                          * require changes in generic code.
957                          */
958
959                         TSI_WRITE(TSI108_EC_INTMASK,
960                                              TSI_READ
961                                              (TSI108_EC_INTMASK) |
962                                              TSI108_INT_RXQUEUE0 |
963                                              TSI108_INT_RXTHRESH |
964                                              TSI108_INT_RXOVERRUN |
965                                              TSI108_INT_RXERROR |
966                                              TSI108_INT_RXWAIT);
967                 }
968         }
969 }
970
971 /* If the RX ring has run out of memory, try periodically
972  * to allocate some more, as otherwise poll would never
973  * get called (apart from the initial end-of-queue condition).
974  *
975  * This is called once per second (by default) from the thread.
976  */
977
978 static void tsi108_check_rxring(struct net_device *dev)
979 {
980         struct tsi108_prv_data *data = netdev_priv(dev);
981
982         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
983          * directly, so as to keep the receive path single-threaded
984          * (and thus not needing a lock).
985          */
986
987         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
988                 tsi108_rx_int(dev);
989 }
990
991 static void tsi108_tx_int(struct net_device *dev)
992 {
993         struct tsi108_prv_data *data = netdev_priv(dev);
994         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
995
996         TSI_WRITE(TSI108_EC_TXESTAT, estat);
997         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
998                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
999         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
1000                 u32 err = TSI_READ(TSI108_EC_TXERR);
1001                 TSI_WRITE(TSI108_EC_TXERR, err);
1002
1003                 if (err && net_ratelimit())
1004                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
1005         }
1006
1007         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1008                 spin_lock(&data->txlock);
1009                 tsi108_complete_tx(dev);
1010                 spin_unlock(&data->txlock);
1011         }
1012 }
1013
1014
1015 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1016 {
1017         struct net_device *dev = dev_id;
1018         struct tsi108_prv_data *data = netdev_priv(dev);
1019         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1020
1021         if (!(stat & TSI108_INT_ANY))
1022                 return IRQ_NONE;        /* Not our interrupt */
1023
1024         stat &= ~TSI_READ(TSI108_EC_INTMASK);
1025
1026         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1027                     TSI108_INT_TXERROR))
1028                 tsi108_tx_int(dev);
1029         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1030                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1031                     TSI108_INT_RXERROR))
1032                 tsi108_rx_int(dev);
1033
1034         if (stat & TSI108_INT_SFN) {
1035                 if (net_ratelimit())
1036                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1037                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1038         }
1039
1040         if (stat & TSI108_INT_STATCARRY) {
1041                 tsi108_stat_carry(dev);
1042                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1043         }
1044
1045         return IRQ_HANDLED;
1046 }
1047
1048 static void tsi108_stop_ethernet(struct net_device *dev)
1049 {
1050         struct tsi108_prv_data *data = netdev_priv(dev);
1051         int i = 1000;
1052         /* Disable all TX and RX queues ... */
1053         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1054         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1055
1056         /* ...and wait for them to become idle */
1057         while(i--) {
1058                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1059                         break;
1060                 udelay(10);
1061         }
1062         i = 1000;
1063         while(i--){
1064                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1065                         return;
1066                 udelay(10);
1067         }
1068         printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1069 }
1070
1071 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1072 {
1073         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1074         udelay(100);
1075         TSI_WRITE(TSI108_MAC_CFG1, 0);
1076
1077         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1078         udelay(100);
1079         TSI_WRITE(TSI108_EC_PORTCTRL,
1080                              TSI_READ(TSI108_EC_PORTCTRL) &
1081                              ~TSI108_EC_PORTCTRL_STATRST);
1082
1083         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1084         udelay(100);
1085         TSI_WRITE(TSI108_EC_TXCFG,
1086                              TSI_READ(TSI108_EC_TXCFG) &
1087                              ~TSI108_EC_TXCFG_RST);
1088
1089         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1090         udelay(100);
1091         TSI_WRITE(TSI108_EC_RXCFG,
1092                              TSI_READ(TSI108_EC_RXCFG) &
1093                              ~TSI108_EC_RXCFG_RST);
1094
1095         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1096                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1097                              TSI108_MAC_MII_MGMT_RST);
1098         udelay(100);
1099         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1100                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1101                              ~(TSI108_MAC_MII_MGMT_RST |
1102                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1103 }
1104
1105 static int tsi108_get_mac(struct net_device *dev)
1106 {
1107         struct tsi108_prv_data *data = netdev_priv(dev);
1108         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1109         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1110
1111         /* Note that the octets are reversed from what the manual says,
1112          * producing an even weirder ordering...
1113          */
1114         if (word2 == 0 && word1 == 0) {
1115                 dev->dev_addr[0] = 0x00;
1116                 dev->dev_addr[1] = 0x06;
1117                 dev->dev_addr[2] = 0xd2;
1118                 dev->dev_addr[3] = 0x00;
1119                 dev->dev_addr[4] = 0x00;
1120                 if (0x8 == data->phy)
1121                         dev->dev_addr[5] = 0x01;
1122                 else
1123                         dev->dev_addr[5] = 0x02;
1124
1125                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1126
1127                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1128                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1129
1130                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1131                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1132         } else {
1133                 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1134                 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1135                 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1136                 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1137                 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1138                 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1139         }
1140
1141         if (!is_valid_ether_addr(dev->dev_addr)) {
1142                 printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2);
1143                 return -EINVAL;
1144         }
1145
1146         return 0;
1147 }
1148
1149 static int tsi108_set_mac(struct net_device *dev, void *addr)
1150 {
1151         struct tsi108_prv_data *data = netdev_priv(dev);
1152         u32 word1, word2;
1153         int i;
1154
1155         if (!is_valid_ether_addr(addr))
1156                 return -EINVAL;
1157
1158         for (i = 0; i < 6; i++)
1159                 /* +2 is for the offset of the HW addr type */
1160                 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1161
1162         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1163
1164         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1165             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1166
1167         spin_lock_irq(&data->misclock);
1168         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1169         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1170         spin_lock(&data->txlock);
1171
1172         if (data->txfree && data->link_up)
1173                 netif_wake_queue(dev);
1174
1175         spin_unlock(&data->txlock);
1176         spin_unlock_irq(&data->misclock);
1177         return 0;
1178 }
1179
1180 /* Protected by dev->xmit_lock. */
1181 static void tsi108_set_rx_mode(struct net_device *dev)
1182 {
1183         struct tsi108_prv_data *data = netdev_priv(dev);
1184         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1185
1186         if (dev->flags & IFF_PROMISC) {
1187                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1188                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1189                 goto out;
1190         }
1191
1192         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1193
1194         if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
1195                 int i;
1196                 struct dev_mc_list *mc = dev->mc_list;
1197                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1198
1199                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1200
1201                 while (mc) {
1202                         u32 hash, crc;
1203
1204                         if (mc->dmi_addrlen == 6) {
1205                                 crc = ether_crc(6, mc->dmi_addr);
1206                                 hash = crc >> 23;
1207
1208                                 __set_bit(hash, &data->mc_hash[0]);
1209                         } else {
1210                                 printk(KERN_ERR
1211                                        "%s: got multicast address of length %d "
1212                                        "instead of 6.\n", dev->name,
1213                                        mc->dmi_addrlen);
1214                         }
1215
1216                         mc = mc->next;
1217                 }
1218
1219                 TSI_WRITE(TSI108_EC_HASHADDR,
1220                                      TSI108_EC_HASHADDR_AUTOINC |
1221                                      TSI108_EC_HASHADDR_MCAST);
1222
1223                 for (i = 0; i < 16; i++) {
1224                         /* The manual says that the hardware may drop
1225                          * back-to-back writes to the data register.
1226                          */
1227                         udelay(1);
1228                         TSI_WRITE(TSI108_EC_HASHDATA,
1229                                              data->mc_hash[i]);
1230                 }
1231         }
1232
1233       out:
1234         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1235 }
1236
1237 static void tsi108_init_phy(struct net_device *dev)
1238 {
1239         struct tsi108_prv_data *data = netdev_priv(dev);
1240         u32 i = 0;
1241         u16 phyval = 0;
1242         unsigned long flags;
1243
1244         spin_lock_irqsave(&phy_lock, flags);
1245
1246         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1247         while (i--){
1248                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1249                         break;
1250                 udelay(10);
1251         }
1252         if (i == 0)
1253                 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1254
1255         if (data->phy_type == TSI108_PHY_BCM54XX) {
1256                 tsi108_write_mii(data, 0x09, 0x0300);
1257                 tsi108_write_mii(data, 0x10, 0x1020);
1258                 tsi108_write_mii(data, 0x1c, 0x8c00);
1259         }
1260
1261         tsi108_write_mii(data,
1262                          MII_BMCR,
1263                          BMCR_ANENABLE | BMCR_ANRESTART);
1264         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1265                 cpu_relax();
1266
1267         /* Set G/MII mode and receive clock select in TBI control #2.  The
1268          * second port won't work if this isn't done, even though we don't
1269          * use TBI mode.
1270          */
1271
1272         tsi108_write_tbi(data, 0x11, 0x30);
1273
1274         /* FIXME: It seems to take more than 2 back-to-back reads to the
1275          * PHY_STAT register before the link up status bit is set.
1276          */
1277
1278         data->link_up = 1;
1279
1280         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1281                  BMSR_LSTATUS)) {
1282                 if (i++ > (MII_READ_DELAY / 10)) {
1283                         data->link_up = 0;
1284                         break;
1285                 }
1286                 spin_unlock_irqrestore(&phy_lock, flags);
1287                 msleep(10);
1288                 spin_lock_irqsave(&phy_lock, flags);
1289         }
1290
1291         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1292         data->phy_ok = 1;
1293         data->init_media = 1;
1294         spin_unlock_irqrestore(&phy_lock, flags);
1295 }
1296
1297 static void tsi108_kill_phy(struct net_device *dev)
1298 {
1299         struct tsi108_prv_data *data = netdev_priv(dev);
1300         unsigned long flags;
1301
1302         spin_lock_irqsave(&phy_lock, flags);
1303         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1304         data->phy_ok = 0;
1305         spin_unlock_irqrestore(&phy_lock, flags);
1306 }
1307
1308 static int tsi108_open(struct net_device *dev)
1309 {
1310         int i;
1311         struct tsi108_prv_data *data = netdev_priv(dev);
1312         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1313         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1314
1315         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1316         if (i != 0) {
1317                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1318                        data->id, data->irq_num);
1319                 return i;
1320         } else {
1321                 dev->irq = data->irq_num;
1322                 printk(KERN_NOTICE
1323                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1324                        data->id, dev->irq, dev->name);
1325         }
1326
1327         data->rxring = dma_alloc_coherent(NULL, rxring_size,
1328                         &data->rxdma, GFP_KERNEL);
1329
1330         if (!data->rxring) {
1331                 printk(KERN_DEBUG
1332                        "TSI108_ETH: failed to allocate memory for rxring!\n");
1333                 return -ENOMEM;
1334         } else {
1335                 memset(data->rxring, 0, rxring_size);
1336         }
1337
1338         data->txring = dma_alloc_coherent(NULL, txring_size,
1339                         &data->txdma, GFP_KERNEL);
1340
1341         if (!data->txring) {
1342                 printk(KERN_DEBUG
1343                        "TSI108_ETH: failed to allocate memory for txring!\n");
1344                 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1345                 return -ENOMEM;
1346         } else {
1347                 memset(data->txring, 0, txring_size);
1348         }
1349
1350         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1351                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1352                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1353                 data->rxring[i].vlan = 0;
1354         }
1355
1356         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1357
1358         data->rxtail = 0;
1359         data->rxhead = 0;
1360
1361         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1362                 struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN);
1363
1364                 if (!skb) {
1365                         /* Bah.  No memory for now, but maybe we'll get
1366                          * some more later.
1367                          * For now, we'll live with the smaller ring.
1368                          */
1369                         printk(KERN_WARNING
1370                                "%s: Could only allocate %d receive skb(s).\n",
1371                                dev->name, i);
1372                         data->rxhead = i;
1373                         break;
1374                 }
1375
1376                 data->rxskbs[i] = skb;
1377                 /* Align the payload on a 4-byte boundary */
1378                 skb_reserve(skb, 2);
1379                 data->rxskbs[i] = skb;
1380                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1381                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1382         }
1383
1384         data->rxfree = i;
1385         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1386
1387         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1388                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1389                 data->txring[i].misc = 0;
1390         }
1391
1392         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1393         data->txtail = 0;
1394         data->txhead = 0;
1395         data->txfree = TSI108_TXRING_LEN;
1396         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1397         tsi108_init_phy(dev);
1398
1399         napi_enable(&data->napi);
1400
1401         setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1402         mod_timer(&data->timer, jiffies + 1);
1403
1404         tsi108_restart_rx(data, dev);
1405
1406         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1407
1408         TSI_WRITE(TSI108_EC_INTMASK,
1409                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1410                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1411                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1412                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1413
1414         TSI_WRITE(TSI108_MAC_CFG1,
1415                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1416         netif_start_queue(dev);
1417         return 0;
1418 }
1419
1420 static int tsi108_close(struct net_device *dev)
1421 {
1422         struct tsi108_prv_data *data = netdev_priv(dev);
1423
1424         netif_stop_queue(dev);
1425         napi_disable(&data->napi);
1426
1427         del_timer_sync(&data->timer);
1428
1429         tsi108_stop_ethernet(dev);
1430         tsi108_kill_phy(dev);
1431         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1432         TSI_WRITE(TSI108_MAC_CFG1, 0);
1433
1434         /* Check for any pending TX packets, and drop them. */
1435
1436         while (!data->txfree || data->txhead != data->txtail) {
1437                 int tx = data->txtail;
1438                 struct sk_buff *skb;
1439                 skb = data->txskbs[tx];
1440                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1441                 data->txfree++;
1442                 dev_kfree_skb(skb);
1443         }
1444
1445         synchronize_irq(data->irq_num);
1446         free_irq(data->irq_num, dev);
1447
1448         /* Discard the RX ring. */
1449
1450         while (data->rxfree) {
1451                 int rx = data->rxtail;
1452                 struct sk_buff *skb;
1453
1454                 skb = data->rxskbs[rx];
1455                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1456                 data->rxfree--;
1457                 dev_kfree_skb(skb);
1458         }
1459
1460         dma_free_coherent(0,
1461                             TSI108_RXRING_LEN * sizeof(rx_desc),
1462                             data->rxring, data->rxdma);
1463         dma_free_coherent(0,
1464                             TSI108_TXRING_LEN * sizeof(tx_desc),
1465                             data->txring, data->txdma);
1466
1467         return 0;
1468 }
1469
1470 static void tsi108_init_mac(struct net_device *dev)
1471 {
1472         struct tsi108_prv_data *data = netdev_priv(dev);
1473
1474         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1475                              TSI108_MAC_CFG2_PADCRC);
1476
1477         TSI_WRITE(TSI108_EC_TXTHRESH,
1478                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1479                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1480
1481         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1482                              ~(TSI108_STAT_CARRY1_RXBYTES |
1483                                TSI108_STAT_CARRY1_RXPKTS |
1484                                TSI108_STAT_CARRY1_RXFCS |
1485                                TSI108_STAT_CARRY1_RXMCAST |
1486                                TSI108_STAT_CARRY1_RXALIGN |
1487                                TSI108_STAT_CARRY1_RXLENGTH |
1488                                TSI108_STAT_CARRY1_RXRUNT |
1489                                TSI108_STAT_CARRY1_RXJUMBO |
1490                                TSI108_STAT_CARRY1_RXFRAG |
1491                                TSI108_STAT_CARRY1_RXJABBER |
1492                                TSI108_STAT_CARRY1_RXDROP));
1493
1494         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1495                              ~(TSI108_STAT_CARRY2_TXBYTES |
1496                                TSI108_STAT_CARRY2_TXPKTS |
1497                                TSI108_STAT_CARRY2_TXEXDEF |
1498                                TSI108_STAT_CARRY2_TXEXCOL |
1499                                TSI108_STAT_CARRY2_TXTCOL |
1500                                TSI108_STAT_CARRY2_TXPAUSE));
1501
1502         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1503         TSI_WRITE(TSI108_MAC_CFG1, 0);
1504
1505         TSI_WRITE(TSI108_EC_RXCFG,
1506                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1507
1508         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1509                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1510                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1511                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1512
1513         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1514                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1515                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1516                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1517
1518         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1519                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1520                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1521                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1522
1523         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1524                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1525                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1526                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1527
1528         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1529 }
1530
1531 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1532 {
1533         struct tsi108_prv_data *data = netdev_priv(dev);
1534         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1535 }
1536
1537 static int
1538 tsi108_init_one(struct platform_device *pdev)
1539 {
1540         struct net_device *dev = NULL;
1541         struct tsi108_prv_data *data = NULL;
1542         hw_info *einfo;
1543         int err = 0;
1544
1545         einfo = pdev->dev.platform_data;
1546
1547         if (NULL == einfo) {
1548                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1549                        pdev->id);
1550                 return -ENODEV;
1551         }
1552
1553         /* Create an ethernet device instance */
1554
1555         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1556         if (!dev) {
1557                 printk("tsi108_eth: Could not allocate a device structure\n");
1558                 return -ENOMEM;
1559         }
1560
1561         printk("tsi108_eth%d: probe...\n", pdev->id);
1562         data = netdev_priv(dev);
1563         data->dev = dev;
1564
1565         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1566                         pdev->id, einfo->regs, einfo->phyregs,
1567                         einfo->phy, einfo->irq_num);
1568
1569         data->regs = ioremap(einfo->regs, 0x400);
1570         if (NULL == data->regs) {
1571                 err = -ENOMEM;
1572                 goto regs_fail;
1573         }
1574
1575         data->phyregs = ioremap(einfo->phyregs, 0x400);
1576         if (NULL == data->phyregs) {
1577                 err = -ENOMEM;
1578                 goto regs_fail;
1579         }
1580 /* MII setup */
1581         data->mii_if.dev = dev;
1582         data->mii_if.mdio_read = tsi108_mdio_read;
1583         data->mii_if.mdio_write = tsi108_mdio_write;
1584         data->mii_if.phy_id = einfo->phy;
1585         data->mii_if.phy_id_mask = 0x1f;
1586         data->mii_if.reg_num_mask = 0x1f;
1587         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1588
1589         data->phy = einfo->phy;
1590         data->phy_type = einfo->phy_type;
1591         data->irq_num = einfo->irq_num;
1592         data->id = pdev->id;
1593         dev->open = tsi108_open;
1594         dev->stop = tsi108_close;
1595         dev->hard_start_xmit = tsi108_send_packet;
1596         dev->set_mac_address = tsi108_set_mac;
1597         dev->set_multicast_list = tsi108_set_rx_mode;
1598         dev->get_stats = tsi108_get_stats;
1599         netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1600         dev->do_ioctl = tsi108_do_ioctl;
1601
1602         /* Apparently, the Linux networking code won't use scatter-gather
1603          * if the hardware doesn't do checksums.  However, it's faster
1604          * to checksum in place and use SG, as (among other reasons)
1605          * the cache won't be dirtied (which then has to be flushed
1606          * before DMA).  The checksumming is done by the driver (via
1607          * a new function skb_csum_dev() in net/core/skbuff.c).
1608          */
1609
1610         dev->features = NETIF_F_HIGHDMA;
1611         SET_MODULE_OWNER(dev);
1612
1613         spin_lock_init(&data->txlock);
1614         spin_lock_init(&data->misclock);
1615
1616         tsi108_reset_ether(data);
1617         tsi108_kill_phy(dev);
1618
1619         if ((err = tsi108_get_mac(dev)) != 0) {
1620                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1621                        dev->name);
1622                 goto register_fail;
1623         }
1624
1625         tsi108_init_mac(dev);
1626         err = register_netdev(dev);
1627         if (err) {
1628                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1629                                 dev->name);
1630                 goto register_fail;
1631         }
1632
1633         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: "
1634                "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
1635                dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1636                dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1637 #ifdef DEBUG
1638         data->msg_enable = DEBUG;
1639         dump_eth_one(dev);
1640 #endif
1641
1642         return 0;
1643
1644 register_fail:
1645         iounmap(data->regs);
1646         iounmap(data->phyregs);
1647
1648 regs_fail:
1649         free_netdev(dev);
1650         return err;
1651 }
1652
1653 /* There's no way to either get interrupts from the PHY when
1654  * something changes, or to have the Tsi108 automatically communicate
1655  * with the PHY to reconfigure itself.
1656  *
1657  * Thus, we have to do it using a timer.
1658  */
1659
1660 static void tsi108_timed_checker(unsigned long dev_ptr)
1661 {
1662         struct net_device *dev = (struct net_device *)dev_ptr;
1663         struct tsi108_prv_data *data = netdev_priv(dev);
1664
1665         tsi108_check_phy(dev);
1666         tsi108_check_rxring(dev);
1667         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1668 }
1669
1670 static int tsi108_ether_init(void)
1671 {
1672         int ret;
1673         ret = platform_driver_register (&tsi_eth_driver);
1674         if (ret < 0){
1675                 printk("tsi108_ether_init: error initializing ethernet "
1676                        "device\n");
1677                 return ret;
1678         }
1679         return 0;
1680 }
1681
1682 static int tsi108_ether_remove(struct platform_device *pdev)
1683 {
1684         struct net_device *dev = platform_get_drvdata(pdev);
1685         struct tsi108_prv_data *priv = netdev_priv(dev);
1686
1687         unregister_netdev(dev);
1688         tsi108_stop_ethernet(dev);
1689         platform_set_drvdata(pdev, NULL);
1690         iounmap(priv->regs);
1691         iounmap(priv->phyregs);
1692         free_netdev(dev);
1693
1694         return 0;
1695 }
1696 static void tsi108_ether_exit(void)
1697 {
1698         platform_driver_unregister(&tsi_eth_driver);
1699 }
1700
1701 module_init(tsi108_ether_init);
1702 module_exit(tsi108_ether_exit);
1703
1704 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1705 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1706 MODULE_LICENSE("GPL");