6a8014219423692985e495a25a0cb6c818e3bb04
[cascardo/linux.git] / drivers / net / wireless / ath / ath10k / ce.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * recieves an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63                                                        u32 ce_ctrl_addr,
64                                                        unsigned int n)
65 {
66         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70                                                       u32 ce_ctrl_addr)
71 {
72         return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76                                                       u32 ce_ctrl_addr,
77                                                       unsigned int n)
78 {
79         ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83                                                      u32 ce_ctrl_addr)
84 {
85         return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89                                                     u32 ce_ctrl_addr)
90 {
91         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95                                                     u32 ce_ctrl_addr,
96                                                     unsigned int addr)
97 {
98         ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102                                                u32 ce_ctrl_addr,
103                                                unsigned int n)
104 {
105         ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109                                                u32 ce_ctrl_addr,
110                                                unsigned int n)
111 {
112         u32 ctrl1_addr = ath10k_pci_read32((ar),
113                                            (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116                            (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117                            CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121                                                     u32 ce_ctrl_addr,
122                                                     unsigned int n)
123 {
124         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127                            (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128                            CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132                                                      u32 ce_ctrl_addr,
133                                                      unsigned int n)
134 {
135         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138                            (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139                            CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143                                                      u32 ce_ctrl_addr)
144 {
145         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149                                                      u32 ce_ctrl_addr,
150                                                      u32 addr)
151 {
152         ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156                                                 u32 ce_ctrl_addr,
157                                                 unsigned int n)
158 {
159         ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163                                                    u32 ce_ctrl_addr,
164                                                    unsigned int n)
165 {
166         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169                            (addr & ~SRC_WATERMARK_HIGH_MASK) |
170                            SRC_WATERMARK_HIGH_SET(n));
171 }
172
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174                                                   u32 ce_ctrl_addr,
175                                                   unsigned int n)
176 {
177         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180                            (addr & ~SRC_WATERMARK_LOW_MASK) |
181                            SRC_WATERMARK_LOW_SET(n));
182 }
183
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185                                                     u32 ce_ctrl_addr,
186                                                     unsigned int n)
187 {
188         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191                            (addr & ~DST_WATERMARK_HIGH_MASK) |
192                            DST_WATERMARK_HIGH_SET(n));
193 }
194
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196                                                    u32 ce_ctrl_addr,
197                                                    unsigned int n)
198 {
199         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202                            (addr & ~DST_WATERMARK_LOW_MASK) |
203                            DST_WATERMARK_LOW_SET(n));
204 }
205
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207                                                         u32 ce_ctrl_addr)
208 {
209         u32 host_ie_addr = ath10k_pci_read32(ar,
210                                              ce_ctrl_addr + HOST_IE_ADDRESS);
211
212         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213                            host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217                                                         u32 ce_ctrl_addr)
218 {
219         u32 host_ie_addr = ath10k_pci_read32(ar,
220                                              ce_ctrl_addr + HOST_IE_ADDRESS);
221
222         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223                            host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227                                                     u32 ce_ctrl_addr)
228 {
229         u32 host_ie_addr = ath10k_pci_read32(ar,
230                                              ce_ctrl_addr + HOST_IE_ADDRESS);
231
232         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233                            host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237                                                u32 ce_ctrl_addr)
238 {
239         u32 misc_ie_addr = ath10k_pci_read32(ar,
240                                              ce_ctrl_addr + MISC_IE_ADDRESS);
241
242         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243                            misc_ie_addr | CE_ERROR_MASK);
244 }
245
246 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
247                                                      u32 ce_ctrl_addr,
248                                                      unsigned int mask)
249 {
250         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
251 }
252
253
254 /*
255  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
256  * ath10k_ce_sendlist_send.
257  * The caller takes responsibility for any needed locking.
258  */
259 static int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
260                                  void *per_transfer_context,
261                                  u32 buffer,
262                                  unsigned int nbytes,
263                                  unsigned int transfer_id,
264                                  unsigned int flags)
265 {
266         struct ath10k *ar = ce_state->ar;
267         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
268         struct ce_desc *desc, *sdesc;
269         unsigned int nentries_mask = src_ring->nentries_mask;
270         unsigned int sw_index = src_ring->sw_index;
271         unsigned int write_index = src_ring->write_index;
272         u32 ctrl_addr = ce_state->ctrl_addr;
273         u32 desc_flags = 0;
274         int ret = 0;
275
276         if (nbytes > ce_state->src_sz_max)
277                 ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
278                             __func__, nbytes, ce_state->src_sz_max);
279
280         ath10k_pci_wake(ar);
281
282         if (unlikely(CE_RING_DELTA(nentries_mask,
283                                    write_index, sw_index - 1) <= 0)) {
284                 ret = -EIO;
285                 goto exit;
286         }
287
288         desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
289                                    write_index);
290         sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
291
292         desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
293
294         if (flags & CE_SEND_FLAG_GATHER)
295                 desc_flags |= CE_DESC_FLAGS_GATHER;
296         if (flags & CE_SEND_FLAG_BYTE_SWAP)
297                 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
298
299         sdesc->addr   = __cpu_to_le32(buffer);
300         sdesc->nbytes = __cpu_to_le16(nbytes);
301         sdesc->flags  = __cpu_to_le16(desc_flags);
302
303         *desc = *sdesc;
304
305         src_ring->per_transfer_context[write_index] = per_transfer_context;
306
307         /* Update Source Ring Write Index */
308         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
309
310         /* WORKAROUND */
311         if (!(flags & CE_SEND_FLAG_GATHER))
312                 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
313
314         src_ring->write_index = write_index;
315 exit:
316         ath10k_pci_sleep(ar);
317         return ret;
318 }
319
320 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
321                    void *per_transfer_context,
322                    u32 buffer,
323                    unsigned int nbytes,
324                    unsigned int transfer_id,
325                    unsigned int flags)
326 {
327         struct ath10k *ar = ce_state->ar;
328         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
329         int ret;
330
331         spin_lock_bh(&ar_pci->ce_lock);
332         ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
333                                     buffer, nbytes, transfer_id, flags);
334         spin_unlock_bh(&ar_pci->ce_lock);
335
336         return ret;
337 }
338
339 void ath10k_ce_sendlist_buf_add(struct ce_sendlist *sendlist, u32 buffer,
340                                 unsigned int nbytes, u32 flags)
341 {
342         unsigned int num_items = sendlist->num_items;
343         struct ce_sendlist_item *item;
344
345         item = &sendlist->item[num_items];
346         item->data = buffer;
347         item->u.nbytes = nbytes;
348         item->flags = flags;
349         sendlist->num_items++;
350 }
351
352 int ath10k_ce_sendlist_send(struct ath10k_ce_pipe *ce_state,
353                             void *per_transfer_context,
354                             struct ce_sendlist *sendlist,
355                             unsigned int transfer_id)
356 {
357         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
358         struct ce_sendlist_item *item;
359         struct ath10k *ar = ce_state->ar;
360         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
361         unsigned int nentries_mask = src_ring->nentries_mask;
362         unsigned int num_items = sendlist->num_items;
363         unsigned int sw_index;
364         unsigned int write_index;
365         int i, delta, ret = -ENOMEM;
366
367         spin_lock_bh(&ar_pci->ce_lock);
368
369         sw_index = src_ring->sw_index;
370         write_index = src_ring->write_index;
371
372         delta = CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
373
374         if (delta >= num_items) {
375                 /*
376                  * Handle all but the last item uniformly.
377                  */
378                 for (i = 0; i < num_items - 1; i++) {
379                         item = &sendlist->item[i];
380                         ret = ath10k_ce_send_nolock(ce_state,
381                                                     CE_SENDLIST_ITEM_CTXT,
382                                                     (u32) item->data,
383                                                     item->u.nbytes, transfer_id,
384                                                     item->flags |
385                                                     CE_SEND_FLAG_GATHER);
386                         if (ret)
387                                 ath10k_warn("CE send failed for item: %d\n", i);
388                 }
389                 /*
390                  * Provide valid context pointer for final item.
391                  */
392                 item = &sendlist->item[i];
393                 ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
394                                             (u32) item->data, item->u.nbytes,
395                                             transfer_id, item->flags);
396                 if (ret)
397                         ath10k_warn("CE send failed for last item: %d\n", i);
398         }
399
400         spin_unlock_bh(&ar_pci->ce_lock);
401
402         return ret;
403 }
404
405 int ath10k_ce_recv_buf_enqueue(struct ath10k_ce_pipe *ce_state,
406                                void *per_recv_context,
407                                u32 buffer)
408 {
409         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
410         u32 ctrl_addr = ce_state->ctrl_addr;
411         struct ath10k *ar = ce_state->ar;
412         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
413         unsigned int nentries_mask = dest_ring->nentries_mask;
414         unsigned int write_index;
415         unsigned int sw_index;
416         int ret;
417
418         spin_lock_bh(&ar_pci->ce_lock);
419         write_index = dest_ring->write_index;
420         sw_index = dest_ring->sw_index;
421
422         ath10k_pci_wake(ar);
423
424         if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
425                 struct ce_desc *base = dest_ring->base_addr_owner_space;
426                 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
427
428                 /* Update destination descriptor */
429                 desc->addr    = __cpu_to_le32(buffer);
430                 desc->nbytes = 0;
431
432                 dest_ring->per_transfer_context[write_index] =
433                                                         per_recv_context;
434
435                 /* Update Destination Ring Write Index */
436                 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
437                 ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
438                 dest_ring->write_index = write_index;
439                 ret = 0;
440         } else {
441                 ret = -EIO;
442         }
443         ath10k_pci_sleep(ar);
444         spin_unlock_bh(&ar_pci->ce_lock);
445
446         return ret;
447 }
448
449 /*
450  * Guts of ath10k_ce_completed_recv_next.
451  * The caller takes responsibility for any necessary locking.
452  */
453 static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
454                                                 void **per_transfer_contextp,
455                                                 u32 *bufferp,
456                                                 unsigned int *nbytesp,
457                                                 unsigned int *transfer_idp,
458                                                 unsigned int *flagsp)
459 {
460         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
461         unsigned int nentries_mask = dest_ring->nentries_mask;
462         unsigned int sw_index = dest_ring->sw_index;
463
464         struct ce_desc *base = dest_ring->base_addr_owner_space;
465         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
466         struct ce_desc sdesc;
467         u16 nbytes;
468
469         /* Copy in one go for performance reasons */
470         sdesc = *desc;
471
472         nbytes = __le16_to_cpu(sdesc.nbytes);
473         if (nbytes == 0) {
474                 /*
475                  * This closes a relatively unusual race where the Host
476                  * sees the updated DRRI before the update to the
477                  * corresponding descriptor has completed. We treat this
478                  * as a descriptor that is not yet done.
479                  */
480                 return -EIO;
481         }
482
483         desc->nbytes = 0;
484
485         /* Return data from completed destination descriptor */
486         *bufferp = __le32_to_cpu(sdesc.addr);
487         *nbytesp = nbytes;
488         *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
489
490         if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
491                 *flagsp = CE_RECV_FLAG_SWAPPED;
492         else
493                 *flagsp = 0;
494
495         if (per_transfer_contextp)
496                 *per_transfer_contextp =
497                         dest_ring->per_transfer_context[sw_index];
498
499         /* sanity */
500         dest_ring->per_transfer_context[sw_index] = NULL;
501
502         /* Update sw_index */
503         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
504         dest_ring->sw_index = sw_index;
505
506         return 0;
507 }
508
509 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
510                                   void **per_transfer_contextp,
511                                   u32 *bufferp,
512                                   unsigned int *nbytesp,
513                                   unsigned int *transfer_idp,
514                                   unsigned int *flagsp)
515 {
516         struct ath10k *ar = ce_state->ar;
517         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
518         int ret;
519
520         spin_lock_bh(&ar_pci->ce_lock);
521         ret = ath10k_ce_completed_recv_next_nolock(ce_state,
522                                                    per_transfer_contextp,
523                                                    bufferp, nbytesp,
524                                                    transfer_idp, flagsp);
525         spin_unlock_bh(&ar_pci->ce_lock);
526
527         return ret;
528 }
529
530 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
531                                void **per_transfer_contextp,
532                                u32 *bufferp)
533 {
534         struct ath10k_ce_ring *dest_ring;
535         unsigned int nentries_mask;
536         unsigned int sw_index;
537         unsigned int write_index;
538         int ret;
539         struct ath10k *ar;
540         struct ath10k_pci *ar_pci;
541
542         dest_ring = ce_state->dest_ring;
543
544         if (!dest_ring)
545                 return -EIO;
546
547         ar = ce_state->ar;
548         ar_pci = ath10k_pci_priv(ar);
549
550         spin_lock_bh(&ar_pci->ce_lock);
551
552         nentries_mask = dest_ring->nentries_mask;
553         sw_index = dest_ring->sw_index;
554         write_index = dest_ring->write_index;
555         if (write_index != sw_index) {
556                 struct ce_desc *base = dest_ring->base_addr_owner_space;
557                 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
558
559                 /* Return data from completed destination descriptor */
560                 *bufferp = __le32_to_cpu(desc->addr);
561
562                 if (per_transfer_contextp)
563                         *per_transfer_contextp =
564                                 dest_ring->per_transfer_context[sw_index];
565
566                 /* sanity */
567                 dest_ring->per_transfer_context[sw_index] = NULL;
568
569                 /* Update sw_index */
570                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
571                 dest_ring->sw_index = sw_index;
572                 ret = 0;
573         } else {
574                 ret = -EIO;
575         }
576
577         spin_unlock_bh(&ar_pci->ce_lock);
578
579         return ret;
580 }
581
582 /*
583  * Guts of ath10k_ce_completed_send_next.
584  * The caller takes responsibility for any necessary locking.
585  */
586 static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
587                                                 void **per_transfer_contextp,
588                                                 u32 *bufferp,
589                                                 unsigned int *nbytesp,
590                                                 unsigned int *transfer_idp)
591 {
592         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
593         u32 ctrl_addr = ce_state->ctrl_addr;
594         struct ath10k *ar = ce_state->ar;
595         unsigned int nentries_mask = src_ring->nentries_mask;
596         unsigned int sw_index = src_ring->sw_index;
597         struct ce_desc *sdesc, *sbase;
598         unsigned int read_index;
599
600         if (src_ring->hw_index == sw_index) {
601                 /*
602                  * The SW completion index has caught up with the cached
603                  * version of the HW completion index.
604                  * Update the cached HW completion index to see whether
605                  * the SW has really caught up to the HW, or if the cached
606                  * value of the HW index has become stale.
607                  */
608                 ath10k_pci_wake(ar);
609                 src_ring->hw_index =
610                         ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
611                 src_ring->hw_index &= nentries_mask;
612                 ath10k_pci_sleep(ar);
613         }
614
615         read_index = src_ring->hw_index;
616
617         if ((read_index == sw_index) || (read_index == 0xffffffff))
618                 return -EIO;
619
620         sbase = src_ring->shadow_base;
621         sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
622
623         /* Return data from completed source descriptor */
624         *bufferp = __le32_to_cpu(sdesc->addr);
625         *nbytesp = __le16_to_cpu(sdesc->nbytes);
626         *transfer_idp = MS(__le16_to_cpu(sdesc->flags),
627                            CE_DESC_FLAGS_META_DATA);
628
629         if (per_transfer_contextp)
630                 *per_transfer_contextp =
631                         src_ring->per_transfer_context[sw_index];
632
633         /* sanity */
634         src_ring->per_transfer_context[sw_index] = NULL;
635
636         /* Update sw_index */
637         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
638         src_ring->sw_index = sw_index;
639
640         return 0;
641 }
642
643 /* NB: Modeled after ath10k_ce_completed_send_next */
644 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
645                                void **per_transfer_contextp,
646                                u32 *bufferp,
647                                unsigned int *nbytesp,
648                                unsigned int *transfer_idp)
649 {
650         struct ath10k_ce_ring *src_ring;
651         unsigned int nentries_mask;
652         unsigned int sw_index;
653         unsigned int write_index;
654         int ret;
655         struct ath10k *ar;
656         struct ath10k_pci *ar_pci;
657
658         src_ring = ce_state->src_ring;
659
660         if (!src_ring)
661                 return -EIO;
662
663         ar = ce_state->ar;
664         ar_pci = ath10k_pci_priv(ar);
665
666         spin_lock_bh(&ar_pci->ce_lock);
667
668         nentries_mask = src_ring->nentries_mask;
669         sw_index = src_ring->sw_index;
670         write_index = src_ring->write_index;
671
672         if (write_index != sw_index) {
673                 struct ce_desc *base = src_ring->base_addr_owner_space;
674                 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
675
676                 /* Return data from completed source descriptor */
677                 *bufferp = __le32_to_cpu(desc->addr);
678                 *nbytesp = __le16_to_cpu(desc->nbytes);
679                 *transfer_idp = MS(__le16_to_cpu(desc->flags),
680                                                 CE_DESC_FLAGS_META_DATA);
681
682                 if (per_transfer_contextp)
683                         *per_transfer_contextp =
684                                 src_ring->per_transfer_context[sw_index];
685
686                 /* sanity */
687                 src_ring->per_transfer_context[sw_index] = NULL;
688
689                 /* Update sw_index */
690                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
691                 src_ring->sw_index = sw_index;
692                 ret = 0;
693         } else {
694                 ret = -EIO;
695         }
696
697         spin_unlock_bh(&ar_pci->ce_lock);
698
699         return ret;
700 }
701
702 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
703                                   void **per_transfer_contextp,
704                                   u32 *bufferp,
705                                   unsigned int *nbytesp,
706                                   unsigned int *transfer_idp)
707 {
708         struct ath10k *ar = ce_state->ar;
709         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
710         int ret;
711
712         spin_lock_bh(&ar_pci->ce_lock);
713         ret = ath10k_ce_completed_send_next_nolock(ce_state,
714                                                    per_transfer_contextp,
715                                                    bufferp, nbytesp,
716                                                    transfer_idp);
717         spin_unlock_bh(&ar_pci->ce_lock);
718
719         return ret;
720 }
721
722 /*
723  * Guts of interrupt handler for per-engine interrupts on a particular CE.
724  *
725  * Invokes registered callbacks for recv_complete,
726  * send_complete, and watermarks.
727  */
728 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
729 {
730         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
731         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
732         u32 ctrl_addr = ce_state->ctrl_addr;
733         void *transfer_context;
734         u32 buf;
735         unsigned int nbytes;
736         unsigned int id;
737         unsigned int flags;
738
739         ath10k_pci_wake(ar);
740         spin_lock_bh(&ar_pci->ce_lock);
741
742         /* Clear the copy-complete interrupts that will be handled here. */
743         ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
744                                           HOST_IS_COPY_COMPLETE_MASK);
745
746         if (ce_state->recv_cb) {
747                 /*
748                  * Pop completed recv buffers and call the registered
749                  * recv callback for each
750                  */
751                 while (ath10k_ce_completed_recv_next_nolock(ce_state,
752                                                             &transfer_context,
753                                                             &buf, &nbytes,
754                                                             &id, &flags) == 0) {
755                         spin_unlock_bh(&ar_pci->ce_lock);
756                         ce_state->recv_cb(ce_state, transfer_context, buf,
757                                           nbytes, id, flags);
758                         spin_lock_bh(&ar_pci->ce_lock);
759                 }
760         }
761
762         if (ce_state->send_cb) {
763                 /*
764                  * Pop completed send buffers and call the registered
765                  * send callback for each
766                  */
767                 while (ath10k_ce_completed_send_next_nolock(ce_state,
768                                                             &transfer_context,
769                                                             &buf,
770                                                             &nbytes,
771                                                             &id) == 0) {
772                         spin_unlock_bh(&ar_pci->ce_lock);
773                         ce_state->send_cb(ce_state, transfer_context,
774                                           buf, nbytes, id);
775                         spin_lock_bh(&ar_pci->ce_lock);
776                 }
777         }
778
779         /*
780          * Misc CE interrupts are not being handled, but still need
781          * to be cleared.
782          */
783         ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
784
785         spin_unlock_bh(&ar_pci->ce_lock);
786         ath10k_pci_sleep(ar);
787 }
788
789 /*
790  * Handler for per-engine interrupts on ALL active CEs.
791  * This is used in cases where the system is sharing a
792  * single interrput for all CEs
793  */
794
795 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
796 {
797         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
798         int ce_id;
799         u32 intr_summary;
800
801         ath10k_pci_wake(ar);
802         intr_summary = CE_INTERRUPT_SUMMARY(ar);
803
804         for (ce_id = 0; intr_summary && (ce_id < ar_pci->ce_count); ce_id++) {
805                 if (intr_summary & (1 << ce_id))
806                         intr_summary &= ~(1 << ce_id);
807                 else
808                         /* no intr pending on this CE */
809                         continue;
810
811                 ath10k_ce_per_engine_service(ar, ce_id);
812         }
813
814         ath10k_pci_sleep(ar);
815 }
816
817 /*
818  * Adjust interrupts for the copy complete handler.
819  * If it's needed for either send or recv, then unmask
820  * this interrupt; otherwise, mask it.
821  *
822  * Called with ce_lock held.
823  */
824 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state,
825                                                 int disable_copy_compl_intr)
826 {
827         u32 ctrl_addr = ce_state->ctrl_addr;
828         struct ath10k *ar = ce_state->ar;
829
830         ath10k_pci_wake(ar);
831
832         if ((!disable_copy_compl_intr) &&
833             (ce_state->send_cb || ce_state->recv_cb))
834                 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
835         else
836                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
837
838         ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
839
840         ath10k_pci_sleep(ar);
841 }
842
843 void ath10k_ce_disable_interrupts(struct ath10k *ar)
844 {
845         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
846         int ce_id;
847
848         ath10k_pci_wake(ar);
849         for (ce_id = 0; ce_id < ar_pci->ce_count; ce_id++) {
850                 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
851                 u32 ctrl_addr = ce_state->ctrl_addr;
852
853                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
854         }
855         ath10k_pci_sleep(ar);
856 }
857
858 void ath10k_ce_send_cb_register(struct ath10k_ce_pipe *ce_state,
859                                 void (*send_cb)(struct ath10k_ce_pipe *ce_state,
860                                                 void *transfer_context,
861                                                 u32 buffer,
862                                                 unsigned int nbytes,
863                                                 unsigned int transfer_id),
864                                 int disable_interrupts)
865 {
866         struct ath10k *ar = ce_state->ar;
867         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
868
869         spin_lock_bh(&ar_pci->ce_lock);
870         ce_state->send_cb = send_cb;
871         ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
872         spin_unlock_bh(&ar_pci->ce_lock);
873 }
874
875 void ath10k_ce_recv_cb_register(struct ath10k_ce_pipe *ce_state,
876                                 void (*recv_cb)(struct ath10k_ce_pipe *ce_state,
877                                                 void *transfer_context,
878                                                 u32 buffer,
879                                                 unsigned int nbytes,
880                                                 unsigned int transfer_id,
881                                                 unsigned int flags))
882 {
883         struct ath10k *ar = ce_state->ar;
884         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
885
886         spin_lock_bh(&ar_pci->ce_lock);
887         ce_state->recv_cb = recv_cb;
888         ath10k_ce_per_engine_handler_adjust(ce_state, 0);
889         spin_unlock_bh(&ar_pci->ce_lock);
890 }
891
892 static int ath10k_ce_init_src_ring(struct ath10k *ar,
893                                    unsigned int ce_id,
894                                    struct ath10k_ce_pipe *ce_state,
895                                    const struct ce_attr *attr)
896 {
897         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
898         struct ath10k_ce_ring *src_ring;
899         unsigned int nentries = attr->src_nentries;
900         unsigned int ce_nbytes;
901         u32 ctrl_addr = ath10k_ce_base_address(ce_id);
902         dma_addr_t base_addr;
903         char *ptr;
904
905         nentries = roundup_pow_of_two(nentries);
906
907         if (ce_state->src_ring) {
908                 WARN_ON(ce_state->src_ring->nentries != nentries);
909                 return 0;
910         }
911
912         ce_nbytes = sizeof(struct ath10k_ce_ring) + (nentries * sizeof(void *));
913         ptr = kzalloc(ce_nbytes, GFP_KERNEL);
914         if (ptr == NULL)
915                 return -ENOMEM;
916
917         ce_state->src_ring = (struct ath10k_ce_ring *)ptr;
918         src_ring = ce_state->src_ring;
919
920         ptr += sizeof(struct ath10k_ce_ring);
921         src_ring->nentries = nentries;
922         src_ring->nentries_mask = nentries - 1;
923
924         ath10k_pci_wake(ar);
925         src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
926         src_ring->sw_index &= src_ring->nentries_mask;
927         src_ring->hw_index = src_ring->sw_index;
928
929         src_ring->write_index =
930                 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
931         src_ring->write_index &= src_ring->nentries_mask;
932         ath10k_pci_sleep(ar);
933
934         src_ring->per_transfer_context = (void **)ptr;
935
936         /*
937          * Legacy platforms that do not support cache
938          * coherent DMA are unsupported
939          */
940         src_ring->base_addr_owner_space_unaligned =
941                 pci_alloc_consistent(ar_pci->pdev,
942                                      (nentries * sizeof(struct ce_desc) +
943                                       CE_DESC_RING_ALIGN),
944                                      &base_addr);
945         if (!src_ring->base_addr_owner_space_unaligned) {
946                 kfree(ce_state->src_ring);
947                 ce_state->src_ring = NULL;
948                 return -ENOMEM;
949         }
950
951         src_ring->base_addr_ce_space_unaligned = base_addr;
952
953         src_ring->base_addr_owner_space = PTR_ALIGN(
954                         src_ring->base_addr_owner_space_unaligned,
955                         CE_DESC_RING_ALIGN);
956         src_ring->base_addr_ce_space = ALIGN(
957                         src_ring->base_addr_ce_space_unaligned,
958                         CE_DESC_RING_ALIGN);
959
960         /*
961          * Also allocate a shadow src ring in regular
962          * mem to use for faster access.
963          */
964         src_ring->shadow_base_unaligned =
965                 kmalloc((nentries * sizeof(struct ce_desc) +
966                          CE_DESC_RING_ALIGN), GFP_KERNEL);
967         if (!src_ring->shadow_base_unaligned) {
968                 pci_free_consistent(ar_pci->pdev,
969                                     (nentries * sizeof(struct ce_desc) +
970                                      CE_DESC_RING_ALIGN),
971                                     src_ring->base_addr_owner_space,
972                                     src_ring->base_addr_ce_space);
973                 kfree(ce_state->src_ring);
974                 ce_state->src_ring = NULL;
975                 return -ENOMEM;
976         }
977
978         src_ring->shadow_base = PTR_ALIGN(
979                         src_ring->shadow_base_unaligned,
980                         CE_DESC_RING_ALIGN);
981
982         ath10k_pci_wake(ar);
983         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
984                                          src_ring->base_addr_ce_space);
985         ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
986         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
987         ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
988         ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
989         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
990         ath10k_pci_sleep(ar);
991
992         return 0;
993 }
994
995 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
996                                     unsigned int ce_id,
997                                     struct ath10k_ce_pipe *ce_state,
998                                     const struct ce_attr *attr)
999 {
1000         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1001         struct ath10k_ce_ring *dest_ring;
1002         unsigned int nentries = attr->dest_nentries;
1003         unsigned int ce_nbytes;
1004         u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1005         dma_addr_t base_addr;
1006         char *ptr;
1007
1008         nentries = roundup_pow_of_two(nentries);
1009
1010         if (ce_state->dest_ring) {
1011                 WARN_ON(ce_state->dest_ring->nentries != nentries);
1012                 return 0;
1013         }
1014
1015         ce_nbytes = sizeof(struct ath10k_ce_ring) + (nentries * sizeof(void *));
1016         ptr = kzalloc(ce_nbytes, GFP_KERNEL);
1017         if (ptr == NULL)
1018                 return -ENOMEM;
1019
1020         ce_state->dest_ring = (struct ath10k_ce_ring *)ptr;
1021         dest_ring = ce_state->dest_ring;
1022
1023         ptr += sizeof(struct ath10k_ce_ring);
1024         dest_ring->nentries = nentries;
1025         dest_ring->nentries_mask = nentries - 1;
1026
1027         ath10k_pci_wake(ar);
1028         dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
1029         dest_ring->sw_index &= dest_ring->nentries_mask;
1030         dest_ring->write_index =
1031                 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
1032         dest_ring->write_index &= dest_ring->nentries_mask;
1033         ath10k_pci_sleep(ar);
1034
1035         dest_ring->per_transfer_context = (void **)ptr;
1036
1037         /*
1038          * Legacy platforms that do not support cache
1039          * coherent DMA are unsupported
1040          */
1041         dest_ring->base_addr_owner_space_unaligned =
1042                 pci_alloc_consistent(ar_pci->pdev,
1043                                      (nentries * sizeof(struct ce_desc) +
1044                                       CE_DESC_RING_ALIGN),
1045                                      &base_addr);
1046         if (!dest_ring->base_addr_owner_space_unaligned) {
1047                 kfree(ce_state->dest_ring);
1048                 ce_state->dest_ring = NULL;
1049                 return -ENOMEM;
1050         }
1051
1052         dest_ring->base_addr_ce_space_unaligned = base_addr;
1053
1054         /*
1055          * Correctly initialize memory to 0 to prevent garbage
1056          * data crashing system when download firmware
1057          */
1058         memset(dest_ring->base_addr_owner_space_unaligned, 0,
1059                nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1060
1061         dest_ring->base_addr_owner_space = PTR_ALIGN(
1062                         dest_ring->base_addr_owner_space_unaligned,
1063                         CE_DESC_RING_ALIGN);
1064         dest_ring->base_addr_ce_space = ALIGN(
1065                         dest_ring->base_addr_ce_space_unaligned,
1066                         CE_DESC_RING_ALIGN);
1067
1068         ath10k_pci_wake(ar);
1069         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
1070                                           dest_ring->base_addr_ce_space);
1071         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
1072         ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
1073         ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
1074         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
1075         ath10k_pci_sleep(ar);
1076
1077         return 0;
1078 }
1079
1080 static struct ath10k_ce_pipe *ath10k_ce_init_state(struct ath10k *ar,
1081                                              unsigned int ce_id,
1082                                              const struct ce_attr *attr)
1083 {
1084         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1085         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1086         u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1087
1088         spin_lock_bh(&ar_pci->ce_lock);
1089
1090         ce_state->ar = ar;
1091         ce_state->id = ce_id;
1092         ce_state->ctrl_addr = ctrl_addr;
1093         ce_state->attr_flags = attr->flags;
1094         ce_state->src_sz_max = attr->src_sz_max;
1095
1096         spin_unlock_bh(&ar_pci->ce_lock);
1097
1098         return ce_state;
1099 }
1100
1101 /*
1102  * Initialize a Copy Engine based on caller-supplied attributes.
1103  * This may be called once to initialize both source and destination
1104  * rings or it may be called twice for separate source and destination
1105  * initialization. It may be that only one side or the other is
1106  * initialized by software/firmware.
1107  */
1108 struct ath10k_ce_pipe *ath10k_ce_init(struct ath10k *ar,
1109                                 unsigned int ce_id,
1110                                 const struct ce_attr *attr)
1111 {
1112         struct ath10k_ce_pipe *ce_state;
1113         u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1114         int ret;
1115
1116         ce_state = ath10k_ce_init_state(ar, ce_id, attr);
1117         if (!ce_state) {
1118                 ath10k_err("Failed to initialize CE state for ID: %d\n", ce_id);
1119                 return NULL;
1120         }
1121
1122         if (attr->src_nentries) {
1123                 ret = ath10k_ce_init_src_ring(ar, ce_id, ce_state, attr);
1124                 if (ret) {
1125                         ath10k_err("Failed to initialize CE src ring for ID: %d (%d)\n",
1126                                    ce_id, ret);
1127                         ath10k_ce_deinit(ce_state);
1128                         return NULL;
1129                 }
1130         }
1131
1132         if (attr->dest_nentries) {
1133                 ret = ath10k_ce_init_dest_ring(ar, ce_id, ce_state, attr);
1134                 if (ret) {
1135                         ath10k_err("Failed to initialize CE dest ring for ID: %d (%d)\n",
1136                                    ce_id, ret);
1137                         ath10k_ce_deinit(ce_state);
1138                         return NULL;
1139                 }
1140         }
1141
1142         /* Enable CE error interrupts */
1143         ath10k_pci_wake(ar);
1144         ath10k_ce_error_intr_enable(ar, ctrl_addr);
1145         ath10k_pci_sleep(ar);
1146
1147         return ce_state;
1148 }
1149
1150 void ath10k_ce_deinit(struct ath10k_ce_pipe *ce_state)
1151 {
1152         struct ath10k *ar = ce_state->ar;
1153         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1154
1155         if (ce_state->src_ring) {
1156                 kfree(ce_state->src_ring->shadow_base_unaligned);
1157                 pci_free_consistent(ar_pci->pdev,
1158                                     (ce_state->src_ring->nentries *
1159                                      sizeof(struct ce_desc) +
1160                                      CE_DESC_RING_ALIGN),
1161                                     ce_state->src_ring->base_addr_owner_space,
1162                                     ce_state->src_ring->base_addr_ce_space);
1163                 kfree(ce_state->src_ring);
1164         }
1165
1166         if (ce_state->dest_ring) {
1167                 pci_free_consistent(ar_pci->pdev,
1168                                     (ce_state->dest_ring->nentries *
1169                                      sizeof(struct ce_desc) +
1170                                      CE_DESC_RING_ALIGN),
1171                                     ce_state->dest_ring->base_addr_owner_space,
1172                                     ce_state->dest_ring->base_addr_ce_space);
1173                 kfree(ce_state->dest_ring);
1174         }
1175
1176         ce_state->src_ring = NULL;
1177         ce_state->dest_ring = NULL;
1178 }