Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / net / wireless / ath / ath10k / ce.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * receives an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63                                                        u32 ce_ctrl_addr,
64                                                        unsigned int n)
65 {
66         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70                                                       u32 ce_ctrl_addr)
71 {
72         return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76                                                       u32 ce_ctrl_addr,
77                                                       unsigned int n)
78 {
79         ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83                                                      u32 ce_ctrl_addr)
84 {
85         return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89                                                     u32 ce_ctrl_addr)
90 {
91         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95                                                     u32 ce_ctrl_addr,
96                                                     unsigned int addr)
97 {
98         ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102                                                u32 ce_ctrl_addr,
103                                                unsigned int n)
104 {
105         ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109                                                u32 ce_ctrl_addr,
110                                                unsigned int n)
111 {
112         u32 ctrl1_addr = ath10k_pci_read32((ar),
113                                            (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116                            (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117                            CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121                                                     u32 ce_ctrl_addr,
122                                                     unsigned int n)
123 {
124         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127                            (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128                            CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132                                                      u32 ce_ctrl_addr,
133                                                      unsigned int n)
134 {
135         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138                            (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139                            CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143                                                      u32 ce_ctrl_addr)
144 {
145         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149                                                      u32 ce_ctrl_addr,
150                                                      u32 addr)
151 {
152         ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156                                                 u32 ce_ctrl_addr,
157                                                 unsigned int n)
158 {
159         ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163                                                    u32 ce_ctrl_addr,
164                                                    unsigned int n)
165 {
166         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169                            (addr & ~SRC_WATERMARK_HIGH_MASK) |
170                            SRC_WATERMARK_HIGH_SET(n));
171 }
172
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174                                                   u32 ce_ctrl_addr,
175                                                   unsigned int n)
176 {
177         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180                            (addr & ~SRC_WATERMARK_LOW_MASK) |
181                            SRC_WATERMARK_LOW_SET(n));
182 }
183
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185                                                     u32 ce_ctrl_addr,
186                                                     unsigned int n)
187 {
188         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191                            (addr & ~DST_WATERMARK_HIGH_MASK) |
192                            DST_WATERMARK_HIGH_SET(n));
193 }
194
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196                                                    u32 ce_ctrl_addr,
197                                                    unsigned int n)
198 {
199         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202                            (addr & ~DST_WATERMARK_LOW_MASK) |
203                            DST_WATERMARK_LOW_SET(n));
204 }
205
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207                                                         u32 ce_ctrl_addr)
208 {
209         u32 host_ie_addr = ath10k_pci_read32(ar,
210                                              ce_ctrl_addr + HOST_IE_ADDRESS);
211
212         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213                            host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217                                                         u32 ce_ctrl_addr)
218 {
219         u32 host_ie_addr = ath10k_pci_read32(ar,
220                                              ce_ctrl_addr + HOST_IE_ADDRESS);
221
222         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223                            host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227                                                     u32 ce_ctrl_addr)
228 {
229         u32 host_ie_addr = ath10k_pci_read32(ar,
230                                              ce_ctrl_addr + HOST_IE_ADDRESS);
231
232         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233                            host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237                                                u32 ce_ctrl_addr)
238 {
239         u32 misc_ie_addr = ath10k_pci_read32(ar,
240                                              ce_ctrl_addr + MISC_IE_ADDRESS);
241
242         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243                            misc_ie_addr | CE_ERROR_MASK);
244 }
245
246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247                                                 u32 ce_ctrl_addr)
248 {
249         u32 misc_ie_addr = ath10k_pci_read32(ar,
250                                              ce_ctrl_addr + MISC_IE_ADDRESS);
251
252         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253                            misc_ie_addr & ~CE_ERROR_MASK);
254 }
255
256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257                                                      u32 ce_ctrl_addr,
258                                                      unsigned int mask)
259 {
260         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262
263 /*
264  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
265  * ath10k_ce_sendlist_send.
266  * The caller takes responsibility for any needed locking.
267  */
268 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
269                           void *per_transfer_context,
270                           u32 buffer,
271                           unsigned int nbytes,
272                           unsigned int transfer_id,
273                           unsigned int flags)
274 {
275         struct ath10k *ar = ce_state->ar;
276         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
277         struct ce_desc *desc, sdesc;
278         unsigned int nentries_mask = src_ring->nentries_mask;
279         unsigned int sw_index = src_ring->sw_index;
280         unsigned int write_index = src_ring->write_index;
281         u32 ctrl_addr = ce_state->ctrl_addr;
282         u32 desc_flags = 0;
283         int ret = 0;
284
285         if (nbytes > ce_state->src_sz_max)
286                 ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
287                             __func__, nbytes, ce_state->src_sz_max);
288
289         if (unlikely(CE_RING_DELTA(nentries_mask,
290                                    write_index, sw_index - 1) <= 0)) {
291                 ret = -ENOSR;
292                 goto exit;
293         }
294
295         desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
296                                    write_index);
297
298         desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
299
300         if (flags & CE_SEND_FLAG_GATHER)
301                 desc_flags |= CE_DESC_FLAGS_GATHER;
302         if (flags & CE_SEND_FLAG_BYTE_SWAP)
303                 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
304
305         sdesc.addr   = __cpu_to_le32(buffer);
306         sdesc.nbytes = __cpu_to_le16(nbytes);
307         sdesc.flags  = __cpu_to_le16(desc_flags);
308
309         *desc = sdesc;
310
311         src_ring->per_transfer_context[write_index] = per_transfer_context;
312
313         /* Update Source Ring Write Index */
314         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
315
316         /* WORKAROUND */
317         if (!(flags & CE_SEND_FLAG_GATHER))
318                 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
319
320         src_ring->write_index = write_index;
321 exit:
322         return ret;
323 }
324
325 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
326 {
327         struct ath10k *ar = pipe->ar;
328         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
329         struct ath10k_ce_ring *src_ring = pipe->src_ring;
330         u32 ctrl_addr = pipe->ctrl_addr;
331
332         lockdep_assert_held(&ar_pci->ce_lock);
333
334         /*
335          * This function must be called only if there is an incomplete
336          * scatter-gather transfer (before index register is updated)
337          * that needs to be cleaned up.
338          */
339         if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
340                 return;
341
342         if (WARN_ON_ONCE(src_ring->write_index ==
343                          ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
344                 return;
345
346         src_ring->write_index--;
347         src_ring->write_index &= src_ring->nentries_mask;
348
349         src_ring->per_transfer_context[src_ring->write_index] = NULL;
350 }
351
352 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
353                    void *per_transfer_context,
354                    u32 buffer,
355                    unsigned int nbytes,
356                    unsigned int transfer_id,
357                    unsigned int flags)
358 {
359         struct ath10k *ar = ce_state->ar;
360         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
361         int ret;
362
363         spin_lock_bh(&ar_pci->ce_lock);
364         ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
365                                     buffer, nbytes, transfer_id, flags);
366         spin_unlock_bh(&ar_pci->ce_lock);
367
368         return ret;
369 }
370
371 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
372 {
373         struct ath10k *ar = pipe->ar;
374         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
375         int delta;
376
377         spin_lock_bh(&ar_pci->ce_lock);
378         delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
379                               pipe->src_ring->write_index,
380                               pipe->src_ring->sw_index - 1);
381         spin_unlock_bh(&ar_pci->ce_lock);
382
383         return delta;
384 }
385
386 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
387 {
388         struct ath10k *ar = pipe->ar;
389         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
390         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
391         unsigned int nentries_mask = dest_ring->nentries_mask;
392         unsigned int write_index = dest_ring->write_index;
393         unsigned int sw_index = dest_ring->sw_index;
394
395         lockdep_assert_held(&ar_pci->ce_lock);
396
397         return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
398 }
399
400 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
401 {
402         struct ath10k *ar = pipe->ar;
403         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
404         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
405         unsigned int nentries_mask = dest_ring->nentries_mask;
406         unsigned int write_index = dest_ring->write_index;
407         unsigned int sw_index = dest_ring->sw_index;
408         struct ce_desc *base = dest_ring->base_addr_owner_space;
409         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
410         u32 ctrl_addr = pipe->ctrl_addr;
411
412         lockdep_assert_held(&ar_pci->ce_lock);
413
414         if ((pipe->id != 5) &&
415             CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
416                 return -ENOSPC;
417
418         desc->addr = __cpu_to_le32(paddr);
419         desc->nbytes = 0;
420
421         dest_ring->per_transfer_context[write_index] = ctx;
422         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
423         ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
424         dest_ring->write_index = write_index;
425
426         return 0;
427 }
428
429 void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
430 {
431         struct ath10k *ar = pipe->ar;
432         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
433         unsigned int nentries_mask = dest_ring->nentries_mask;
434         unsigned int write_index = dest_ring->write_index;
435         u32 ctrl_addr = pipe->ctrl_addr;
436         u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
437
438         /* Prevent CE ring stuck issue that will occur when ring is full.
439          * Make sure that write index is 1 less than read index.
440          */
441         if ((cur_write_idx + nentries)  == dest_ring->sw_index)
442                 nentries -= 1;
443
444         write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
445         ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
446         dest_ring->write_index = write_index;
447 }
448
449 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
450 {
451         struct ath10k *ar = pipe->ar;
452         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
453         int ret;
454
455         spin_lock_bh(&ar_pci->ce_lock);
456         ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
457         spin_unlock_bh(&ar_pci->ce_lock);
458
459         return ret;
460 }
461
462 /*
463  * Guts of ath10k_ce_completed_recv_next.
464  * The caller takes responsibility for any necessary locking.
465  */
466 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
467                                          void **per_transfer_contextp,
468                                          unsigned int *nbytesp)
469 {
470         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
471         unsigned int nentries_mask = dest_ring->nentries_mask;
472         unsigned int sw_index = dest_ring->sw_index;
473
474         struct ce_desc *base = dest_ring->base_addr_owner_space;
475         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
476         struct ce_desc sdesc;
477         u16 nbytes;
478
479         /* Copy in one go for performance reasons */
480         sdesc = *desc;
481
482         nbytes = __le16_to_cpu(sdesc.nbytes);
483         if (nbytes == 0) {
484                 /*
485                  * This closes a relatively unusual race where the Host
486                  * sees the updated DRRI before the update to the
487                  * corresponding descriptor has completed. We treat this
488                  * as a descriptor that is not yet done.
489                  */
490                 return -EIO;
491         }
492
493         desc->nbytes = 0;
494
495         /* Return data from completed destination descriptor */
496         *nbytesp = nbytes;
497
498         if (per_transfer_contextp)
499                 *per_transfer_contextp =
500                         dest_ring->per_transfer_context[sw_index];
501
502         /* Copy engine 5 (HTT Rx) will reuse the same transfer context.
503          * So update transfer context all CEs except CE5.
504          */
505         if (ce_state->id != 5)
506                 dest_ring->per_transfer_context[sw_index] = NULL;
507
508         /* Update sw_index */
509         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
510         dest_ring->sw_index = sw_index;
511
512         return 0;
513 }
514
515 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
516                                   void **per_transfer_contextp,
517                                   unsigned int *nbytesp)
518 {
519         struct ath10k *ar = ce_state->ar;
520         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
521         int ret;
522
523         spin_lock_bh(&ar_pci->ce_lock);
524         ret = ath10k_ce_completed_recv_next_nolock(ce_state,
525                                                    per_transfer_contextp,
526                                                    nbytesp);
527         spin_unlock_bh(&ar_pci->ce_lock);
528
529         return ret;
530 }
531
532 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
533                                void **per_transfer_contextp,
534                                u32 *bufferp)
535 {
536         struct ath10k_ce_ring *dest_ring;
537         unsigned int nentries_mask;
538         unsigned int sw_index;
539         unsigned int write_index;
540         int ret;
541         struct ath10k *ar;
542         struct ath10k_pci *ar_pci;
543
544         dest_ring = ce_state->dest_ring;
545
546         if (!dest_ring)
547                 return -EIO;
548
549         ar = ce_state->ar;
550         ar_pci = ath10k_pci_priv(ar);
551
552         spin_lock_bh(&ar_pci->ce_lock);
553
554         nentries_mask = dest_ring->nentries_mask;
555         sw_index = dest_ring->sw_index;
556         write_index = dest_ring->write_index;
557         if (write_index != sw_index) {
558                 struct ce_desc *base = dest_ring->base_addr_owner_space;
559                 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
560
561                 /* Return data from completed destination descriptor */
562                 *bufferp = __le32_to_cpu(desc->addr);
563
564                 if (per_transfer_contextp)
565                         *per_transfer_contextp =
566                                 dest_ring->per_transfer_context[sw_index];
567
568                 /* sanity */
569                 dest_ring->per_transfer_context[sw_index] = NULL;
570                 desc->nbytes = 0;
571
572                 /* Update sw_index */
573                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
574                 dest_ring->sw_index = sw_index;
575                 ret = 0;
576         } else {
577                 ret = -EIO;
578         }
579
580         spin_unlock_bh(&ar_pci->ce_lock);
581
582         return ret;
583 }
584
585 /*
586  * Guts of ath10k_ce_completed_send_next.
587  * The caller takes responsibility for any necessary locking.
588  */
589 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
590                                          void **per_transfer_contextp)
591 {
592         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
593         u32 ctrl_addr = ce_state->ctrl_addr;
594         struct ath10k *ar = ce_state->ar;
595         unsigned int nentries_mask = src_ring->nentries_mask;
596         unsigned int sw_index = src_ring->sw_index;
597         unsigned int read_index;
598
599         if (src_ring->hw_index == sw_index) {
600                 /*
601                  * The SW completion index has caught up with the cached
602                  * version of the HW completion index.
603                  * Update the cached HW completion index to see whether
604                  * the SW has really caught up to the HW, or if the cached
605                  * value of the HW index has become stale.
606                  */
607
608                 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
609                 if (read_index == 0xffffffff)
610                         return -ENODEV;
611
612                 read_index &= nentries_mask;
613                 src_ring->hw_index = read_index;
614         }
615
616         read_index = src_ring->hw_index;
617
618         if (read_index == sw_index)
619                 return -EIO;
620
621         if (per_transfer_contextp)
622                 *per_transfer_contextp =
623                         src_ring->per_transfer_context[sw_index];
624
625         /* sanity */
626         src_ring->per_transfer_context[sw_index] = NULL;
627
628         /* Update sw_index */
629         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
630         src_ring->sw_index = sw_index;
631
632         return 0;
633 }
634
635 /* NB: Modeled after ath10k_ce_completed_send_next */
636 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
637                                void **per_transfer_contextp,
638                                u32 *bufferp,
639                                unsigned int *nbytesp,
640                                unsigned int *transfer_idp)
641 {
642         struct ath10k_ce_ring *src_ring;
643         unsigned int nentries_mask;
644         unsigned int sw_index;
645         unsigned int write_index;
646         int ret;
647         struct ath10k *ar;
648         struct ath10k_pci *ar_pci;
649
650         src_ring = ce_state->src_ring;
651
652         if (!src_ring)
653                 return -EIO;
654
655         ar = ce_state->ar;
656         ar_pci = ath10k_pci_priv(ar);
657
658         spin_lock_bh(&ar_pci->ce_lock);
659
660         nentries_mask = src_ring->nentries_mask;
661         sw_index = src_ring->sw_index;
662         write_index = src_ring->write_index;
663
664         if (write_index != sw_index) {
665                 struct ce_desc *base = src_ring->base_addr_owner_space;
666                 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
667
668                 /* Return data from completed source descriptor */
669                 *bufferp = __le32_to_cpu(desc->addr);
670                 *nbytesp = __le16_to_cpu(desc->nbytes);
671                 *transfer_idp = MS(__le16_to_cpu(desc->flags),
672                                                 CE_DESC_FLAGS_META_DATA);
673
674                 if (per_transfer_contextp)
675                         *per_transfer_contextp =
676                                 src_ring->per_transfer_context[sw_index];
677
678                 /* sanity */
679                 src_ring->per_transfer_context[sw_index] = NULL;
680
681                 /* Update sw_index */
682                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
683                 src_ring->sw_index = sw_index;
684                 ret = 0;
685         } else {
686                 ret = -EIO;
687         }
688
689         spin_unlock_bh(&ar_pci->ce_lock);
690
691         return ret;
692 }
693
694 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
695                                   void **per_transfer_contextp)
696 {
697         struct ath10k *ar = ce_state->ar;
698         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
699         int ret;
700
701         spin_lock_bh(&ar_pci->ce_lock);
702         ret = ath10k_ce_completed_send_next_nolock(ce_state,
703                                                    per_transfer_contextp);
704         spin_unlock_bh(&ar_pci->ce_lock);
705
706         return ret;
707 }
708
709 /*
710  * Guts of interrupt handler for per-engine interrupts on a particular CE.
711  *
712  * Invokes registered callbacks for recv_complete,
713  * send_complete, and watermarks.
714  */
715 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
716 {
717         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
718         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
719         u32 ctrl_addr = ce_state->ctrl_addr;
720
721         spin_lock_bh(&ar_pci->ce_lock);
722
723         /* Clear the copy-complete interrupts that will be handled here. */
724         ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
725                                           HOST_IS_COPY_COMPLETE_MASK);
726
727         spin_unlock_bh(&ar_pci->ce_lock);
728
729         if (ce_state->recv_cb)
730                 ce_state->recv_cb(ce_state);
731
732         if (ce_state->send_cb)
733                 ce_state->send_cb(ce_state);
734
735         spin_lock_bh(&ar_pci->ce_lock);
736
737         /*
738          * Misc CE interrupts are not being handled, but still need
739          * to be cleared.
740          */
741         ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
742
743         spin_unlock_bh(&ar_pci->ce_lock);
744 }
745
746 /*
747  * Handler for per-engine interrupts on ALL active CEs.
748  * This is used in cases where the system is sharing a
749  * single interrput for all CEs
750  */
751
752 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
753 {
754         int ce_id;
755         u32 intr_summary;
756
757         intr_summary = CE_INTERRUPT_SUMMARY(ar);
758
759         for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
760                 if (intr_summary & (1 << ce_id))
761                         intr_summary &= ~(1 << ce_id);
762                 else
763                         /* no intr pending on this CE */
764                         continue;
765
766                 ath10k_ce_per_engine_service(ar, ce_id);
767         }
768 }
769
770 /*
771  * Adjust interrupts for the copy complete handler.
772  * If it's needed for either send or recv, then unmask
773  * this interrupt; otherwise, mask it.
774  *
775  * Called with ce_lock held.
776  */
777 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
778 {
779         u32 ctrl_addr = ce_state->ctrl_addr;
780         struct ath10k *ar = ce_state->ar;
781         bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
782
783         if ((!disable_copy_compl_intr) &&
784             (ce_state->send_cb || ce_state->recv_cb))
785                 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
786         else
787                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
788
789         ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
790 }
791
792 int ath10k_ce_disable_interrupts(struct ath10k *ar)
793 {
794         int ce_id;
795
796         for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
797                 u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
798
799                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
800                 ath10k_ce_error_intr_disable(ar, ctrl_addr);
801                 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
802         }
803
804         return 0;
805 }
806
807 void ath10k_ce_enable_interrupts(struct ath10k *ar)
808 {
809         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
810         int ce_id;
811
812         /* Skip the last copy engine, CE7 the diagnostic window, as that
813          * uses polling and isn't initialized for interrupts.
814          */
815         for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
816                 ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
817 }
818
819 static int ath10k_ce_init_src_ring(struct ath10k *ar,
820                                    unsigned int ce_id,
821                                    const struct ce_attr *attr)
822 {
823         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
824         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
825         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
826         u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
827
828         nentries = roundup_pow_of_two(attr->src_nentries);
829
830         memset(src_ring->base_addr_owner_space, 0,
831                nentries * sizeof(struct ce_desc));
832
833         src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
834         src_ring->sw_index &= src_ring->nentries_mask;
835         src_ring->hw_index = src_ring->sw_index;
836
837         src_ring->write_index =
838                 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
839         src_ring->write_index &= src_ring->nentries_mask;
840
841         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
842                                          src_ring->base_addr_ce_space);
843         ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
844         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
845         ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
846         ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
847         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
848
849         ath10k_dbg(ar, ATH10K_DBG_BOOT,
850                    "boot init ce src ring id %d entries %d base_addr %pK\n",
851                    ce_id, nentries, src_ring->base_addr_owner_space);
852
853         return 0;
854 }
855
856 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
857                                     unsigned int ce_id,
858                                     const struct ce_attr *attr)
859 {
860         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
861         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
862         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
863         u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
864
865         nentries = roundup_pow_of_two(attr->dest_nentries);
866
867         memset(dest_ring->base_addr_owner_space, 0,
868                nentries * sizeof(struct ce_desc));
869
870         dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
871         dest_ring->sw_index &= dest_ring->nentries_mask;
872         dest_ring->write_index =
873                 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
874         dest_ring->write_index &= dest_ring->nentries_mask;
875
876         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
877                                           dest_ring->base_addr_ce_space);
878         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
879         ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
880         ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
881         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
882
883         ath10k_dbg(ar, ATH10K_DBG_BOOT,
884                    "boot ce dest ring id %d entries %d base_addr %pK\n",
885                    ce_id, nentries, dest_ring->base_addr_owner_space);
886
887         return 0;
888 }
889
890 static struct ath10k_ce_ring *
891 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
892                          const struct ce_attr *attr)
893 {
894         struct ath10k_ce_ring *src_ring;
895         u32 nentries = attr->src_nentries;
896         dma_addr_t base_addr;
897
898         nentries = roundup_pow_of_two(nentries);
899
900         src_ring = kzalloc(sizeof(*src_ring) +
901                            (nentries *
902                             sizeof(*src_ring->per_transfer_context)),
903                            GFP_KERNEL);
904         if (src_ring == NULL)
905                 return ERR_PTR(-ENOMEM);
906
907         src_ring->nentries = nentries;
908         src_ring->nentries_mask = nentries - 1;
909
910         /*
911          * Legacy platforms that do not support cache
912          * coherent DMA are unsupported
913          */
914         src_ring->base_addr_owner_space_unaligned =
915                 dma_alloc_coherent(ar->dev,
916                                    (nentries * sizeof(struct ce_desc) +
917                                     CE_DESC_RING_ALIGN),
918                                    &base_addr, GFP_KERNEL);
919         if (!src_ring->base_addr_owner_space_unaligned) {
920                 kfree(src_ring);
921                 return ERR_PTR(-ENOMEM);
922         }
923
924         src_ring->base_addr_ce_space_unaligned = base_addr;
925
926         src_ring->base_addr_owner_space = PTR_ALIGN(
927                         src_ring->base_addr_owner_space_unaligned,
928                         CE_DESC_RING_ALIGN);
929         src_ring->base_addr_ce_space = ALIGN(
930                         src_ring->base_addr_ce_space_unaligned,
931                         CE_DESC_RING_ALIGN);
932
933         return src_ring;
934 }
935
936 static struct ath10k_ce_ring *
937 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
938                           const struct ce_attr *attr)
939 {
940         struct ath10k_ce_ring *dest_ring;
941         u32 nentries;
942         dma_addr_t base_addr;
943
944         nentries = roundup_pow_of_two(attr->dest_nentries);
945
946         dest_ring = kzalloc(sizeof(*dest_ring) +
947                             (nentries *
948                              sizeof(*dest_ring->per_transfer_context)),
949                             GFP_KERNEL);
950         if (dest_ring == NULL)
951                 return ERR_PTR(-ENOMEM);
952
953         dest_ring->nentries = nentries;
954         dest_ring->nentries_mask = nentries - 1;
955
956         /*
957          * Legacy platforms that do not support cache
958          * coherent DMA are unsupported
959          */
960         dest_ring->base_addr_owner_space_unaligned =
961                 dma_alloc_coherent(ar->dev,
962                                    (nentries * sizeof(struct ce_desc) +
963                                     CE_DESC_RING_ALIGN),
964                                    &base_addr, GFP_KERNEL);
965         if (!dest_ring->base_addr_owner_space_unaligned) {
966                 kfree(dest_ring);
967                 return ERR_PTR(-ENOMEM);
968         }
969
970         dest_ring->base_addr_ce_space_unaligned = base_addr;
971
972         /*
973          * Correctly initialize memory to 0 to prevent garbage
974          * data crashing system when download firmware
975          */
976         memset(dest_ring->base_addr_owner_space_unaligned, 0,
977                nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
978
979         dest_ring->base_addr_owner_space = PTR_ALIGN(
980                         dest_ring->base_addr_owner_space_unaligned,
981                         CE_DESC_RING_ALIGN);
982         dest_ring->base_addr_ce_space = ALIGN(
983                         dest_ring->base_addr_ce_space_unaligned,
984                         CE_DESC_RING_ALIGN);
985
986         return dest_ring;
987 }
988
989 /*
990  * Initialize a Copy Engine based on caller-supplied attributes.
991  * This may be called once to initialize both source and destination
992  * rings or it may be called twice for separate source and destination
993  * initialization. It may be that only one side or the other is
994  * initialized by software/firmware.
995  */
996 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
997                         const struct ce_attr *attr)
998 {
999         int ret;
1000
1001         if (attr->src_nentries) {
1002                 ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1003                 if (ret) {
1004                         ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1005                                    ce_id, ret);
1006                         return ret;
1007                 }
1008         }
1009
1010         if (attr->dest_nentries) {
1011                 ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1012                 if (ret) {
1013                         ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1014                                    ce_id, ret);
1015                         return ret;
1016                 }
1017         }
1018
1019         return 0;
1020 }
1021
1022 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1023 {
1024         u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1025
1026         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1027         ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1028         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1029         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1030 }
1031
1032 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1033 {
1034         u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1035
1036         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1037         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1038         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1039 }
1040
1041 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1042 {
1043         ath10k_ce_deinit_src_ring(ar, ce_id);
1044         ath10k_ce_deinit_dest_ring(ar, ce_id);
1045 }
1046
1047 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1048                          const struct ce_attr *attr)
1049 {
1050         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1051         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1052         int ret;
1053
1054         /*
1055          * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1056          * additional TX locking checks.
1057          *
1058          * For the lack of a better place do the check here.
1059          */
1060         BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
1061                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1062         BUILD_BUG_ON(2 * TARGET_10X_NUM_MSDU_DESC >
1063                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1064         BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
1065                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1066
1067         ce_state->ar = ar;
1068         ce_state->id = ce_id;
1069         ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1070         ce_state->attr_flags = attr->flags;
1071         ce_state->src_sz_max = attr->src_sz_max;
1072
1073         if (attr->src_nentries)
1074                 ce_state->send_cb = attr->send_cb;
1075
1076         if (attr->dest_nentries)
1077                 ce_state->recv_cb = attr->recv_cb;
1078
1079         if (attr->src_nentries) {
1080                 ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1081                 if (IS_ERR(ce_state->src_ring)) {
1082                         ret = PTR_ERR(ce_state->src_ring);
1083                         ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1084                                    ce_id, ret);
1085                         ce_state->src_ring = NULL;
1086                         return ret;
1087                 }
1088         }
1089
1090         if (attr->dest_nentries) {
1091                 ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1092                                                                 attr);
1093                 if (IS_ERR(ce_state->dest_ring)) {
1094                         ret = PTR_ERR(ce_state->dest_ring);
1095                         ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1096                                    ce_id, ret);
1097                         ce_state->dest_ring = NULL;
1098                         return ret;
1099                 }
1100         }
1101
1102         return 0;
1103 }
1104
1105 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1106 {
1107         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1108         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1109
1110         if (ce_state->src_ring) {
1111                 dma_free_coherent(ar->dev,
1112                                   (ce_state->src_ring->nentries *
1113                                    sizeof(struct ce_desc) +
1114                                    CE_DESC_RING_ALIGN),
1115                                   ce_state->src_ring->base_addr_owner_space,
1116                                   ce_state->src_ring->base_addr_ce_space);
1117                 kfree(ce_state->src_ring);
1118         }
1119
1120         if (ce_state->dest_ring) {
1121                 dma_free_coherent(ar->dev,
1122                                   (ce_state->dest_ring->nentries *
1123                                    sizeof(struct ce_desc) +
1124                                    CE_DESC_RING_ALIGN),
1125                                   ce_state->dest_ring->base_addr_owner_space,
1126                                   ce_state->dest_ring->base_addr_ce_space);
1127                 kfree(ce_state->dest_ring);
1128         }
1129
1130         ce_state->src_ring = NULL;
1131         ce_state->dest_ring = NULL;
1132 }